WO2000027904A1 - Particule contenant un polyamino-acide reticule - Google Patents

Particule contenant un polyamino-acide reticule Download PDF

Info

Publication number
WO2000027904A1
WO2000027904A1 PCT/JP1999/006162 JP9906162W WO0027904A1 WO 2000027904 A1 WO2000027904 A1 WO 2000027904A1 JP 9906162 W JP9906162 W JP 9906162W WO 0027904 A1 WO0027904 A1 WO 0027904A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamino acid
crosslinked
containing particles
crosslinked polyamino
acid
Prior art date
Application number
PCT/JP1999/006162
Other languages
English (en)
French (fr)
Inventor
Makoto Sukegawa
Yoshihiro Irizato
Takeshi Ishitoku
Katsuhiko Machida
Susumu Fukawa
Toshio Katoh
Hiroaki Tamatani
Akio Fukuoka
Original Assignee
Mitsui Chemicals, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Incorporated filed Critical Mitsui Chemicals, Incorporated
Priority to KR1020017005547A priority Critical patent/KR20010085992A/ko
Priority to EP99954394A priority patent/EP1152024A4/en
Publication of WO2000027904A1 publication Critical patent/WO2000027904A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1092Polysuccinimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/16Soil-conditioning materials or soil-stabilising materials containing organic compounds only applied in a physical form other than a solution or a grout, e.g. as platelets or granules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to biodegradable crosslinked polyamino acid-containing particles having a surface crosslinked, biodegradable crosslinked polyamino acid-containing particles having a surface coated with a coating material or a resin, and methods for producing the same. More specifically, the present invention relates to crosslinked polyamino acid-containing particles that have excellent water absorption, have a high water absorption rate, and are easily decomposed at the time of disposal. Background art
  • the water-absorbent resin is a resin that can absorb water of several tens to several thousand times its own weight.
  • an acrylic water-absorbent resin is known.
  • These water-absorbent resins are widely used in disposable hygiene products due to their high water absorbency.
  • conventional water-absorbent resins are not degradable, and there is a problem in the treatment of sanitary goods containing them. Therefore, there has been a strong demand for a water-absorbing resin having a high water absorption rate and having biodegradability.
  • polyamino acids are absorbed and digested by enzymatic action even when absorbed into the living body, do not show antigenicity in the living body, and have low inflammatory properties to the skin and mucous membranes of living organisms. It is a material that is kind to people. These have been studied as biopolymer models for a long time, and research on their use for artificial leather, drug carriers, cosmetics, etc. is also being conducted. As examples of such resins, polyaspartic acid, poly-gamma-glutamic acid, and polylysine have been found in nature.
  • EP 94/09628 discloses that polyamino acids, such as polyaspartic acid and its copolymers, promote fertilizer uptake by plants and promote plant growth.
  • a method for producing these crosslinked polyamino acids for example, a method for obtaining a mouth-opening gel by crosslinking an acidic amino acid (Akamatsu et al., US Pat. No. 3,948,833; Japanese Patent Publication No. 52-413) No. 09, Iwatsuki et al., JP-A-5-279416), a method of reacting polyaspartic acid and aspartic acid with a cross-linking agent by heat (Sikes et al., JP-T-6-506244; US Patent No. No. 5,247,068 and No.
  • the water-absorbent resin absorbs water and swells when it comes into contact with water, and becomes gel-like near the surface and becomes soft. Therefore, in the contact between adjacent particles, the gel-like particles are deformed and gaps between the gels are eliminated, thereby narrowing or losing the flow path of water, thereby preventing water permeation.
  • This phenomenon is called gel blocking, and this phenomenon can cause the water absorption rate to drop significantly. This phenomenon is particularly remarkable when used in hygiene products, as it adds weight.
  • water-absorbent resin when used as a sewage material for agriculture and horticulture,-although it has a water retention effect, the gel deforms in the soil and fills the space between the soil, maintaining the respiration of the roots In order to suppress root rot, the ventilation effect for maintaining air circulation becomes insufficient.
  • the water-absorbing resin used for hygiene articles is required to absorb a large amount of body fluids such as urine, blood, menstrual blood, sweat, etc. quickly. Its water absorption rate is affected by its surface area. When the total weight of the water-absorbing resin particles used is constant, the larger the particles, the smaller the sum of the surface areas, and the smaller the area in contact with water, the lower the water absorption speed.
  • a first object of the present invention is to solve the above-mentioned problems of the prior art, to have a high water absorption rate, to have biodegradability, to have crosslinked polyamino acid-containing particles having excellent water retention ability and aeration effect, and to provide the same. It is to provide a manufacturing method.
  • a second object of the present invention is that it has a high water absorption rate, has biodegradability, has no stickiness due to moisture absorption or soil moisture, has a sustained release of the active ingredient, and has an excellent water retention ability.
  • An object of the present invention is to provide crosslinked polyamino acid-containing particles and a method for producing the same.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that crosslinked polyamino acid-containing particles having a core Z-surreal structure are very effective, and have completed the present invention.
  • the present invention has a core phase structure in which at least a part of the surface of the core phase is covered with at least one shell phase, and the core phase is at least a cross-linked polymer.
  • Crosslinked polyamino acid-containing particles composed of amino acid-containing particles.
  • the present inventors have found that by cross-linking the surface of a biodegradable cross-linked polyamino acid, it is possible to prevent gel blocking at the time of water absorption, and to achieve excellent water absorption speed, water retention effect, and ventilation. They have found that the effects can be achieved, and have completed the first embodiment of the present invention.
  • by coating the surface of the biodegradable cross-linked polyamino acid with a coating material or resin it is possible to prevent mako phenomenon, and to exhibit excellent water absorption speed, stickiness prevention, sustained release and water retention effect. And completed the second embodiment.
  • the first embodiment of the present invention has a core Z-shell structure in which at least a part of the core phase surface is covered with at least one shell phase, and the core phase has at least crosslinked polyamino acid-containing particles.
  • the shell phase is a crosslinked polyamino acid-containing particle having a surface crosslinked, which comprises a crosslinked polyamino acid having a higher crosslinking density than the crosslinked polyamino acid contained in the core phase.
  • the first embodiment is a method for producing the surface-crosslinked crosslinked polyamino acid-containing particles, wherein at least a part of the surface of the crosslinked polyamino acid-containing particles is reacted with a carboxyl group of the crosslinked polyamino acid.
  • Cross-linking using a surface cross-linking agent having two or more possible functional groups in one molecule to form at least one shell phase containing a cross-linked polyamino acid having a high cross-linking density.
  • the present invention also includes a method for producing crosslinked polyamino acid-containing particles.
  • the second embodiment has a corenoshell structure in which at least a part of the core phase surface is covered with at least one shell phase, and the core phase is composed of at least crosslinked polyamino acid-containing particles,
  • the shell phase is a crosslinked polyamino acid-containing particle constituted by containing a coating material and / or a resin.
  • the second embodiment is a method for producing the crosslinked polyamino acid-containing particles, wherein the surface of the crosslinked polyamino acid-containing particles is a coating material solution or a coating material in a molten state, or a resin solution or a molten resin.
  • the present invention also includes a method for producing crosslinked polyamino acid-containing particles, which comprises a step of forming at least one sur phase on at least a part of the surface by applying a resin in a state.
  • the present invention relates to a sanitary material and a soil containing these crosslinked polyamino acid-containing particles. Also includes modifiers. BEST MODE FOR CARRYING OUT THE INVENTION
  • the particles of the present invention are manufactured using a cross-linked polyamino acid.
  • the crosslinked polyamino acid has a structure in which a part of the polyamino acid is crosslinked.
  • the basic skeleton of the crosslinked polyamino acid used in the present invention comprises a polypeptide obtained by dehydrating and condensing an amino acid or an amino acid derivative.
  • Specific examples of the amino acids include 20 kinds of amino acids classified into the following four (1) to (4).
  • Non-polar that is, amino acids having a hydrophobic R group: alanine, nocrine, leucine, isoleucine, methionine, tryptophan, pheninolealanine, and proline.
  • Polar but uncharged amino acids glycine, serine, threonine, cystine, tyrosine, asparagine, and gnoretamine.
  • Positively charged amino acids with R group lysine, histidine, arginine.
  • Amino acids with negatively charged R groups aspartic acid, glutamic acid.
  • Other specific examples include L-orditin, a series of amino acids, ⁇ -alanine, ⁇ -aminobutyric acid, neutral amino acids, acidic amino acids, ⁇ -esters of acidic amino acids, basic amino acids, basic amino acids ⁇ Substituted amino acids and amino acid derivatives such as di-aspartate-L-phenylalanine dimer (aspartame); aminosulfonic acids such as L-cysteic acid; ⁇ -Amino acids may be optically active (L-form or D-form) or racemic.
  • the polyamino acid may be a copolymer containing another monomer component.
  • the monomer component of the copolymer include aminocarboxylic acid, aminosulfonic acid, aminophosphonic acid, hydroxycarboxylic acid, mercaptocarboxylic acid, mercaptosulfonic acid, mercaptophosphonic acid, and the like.
  • polyamines, polyalcohols, polythiols, polycarboxylic acids, polysulfonic acids, polyphosphonic acids, polyhydrazine compounds, polyvalent rubamoyl compounds, polyvalent sulfonamide compounds, polyvalent sulfonamide compounds Phosphonamide compounds, polyepoxy compounds, polyisocyanate compounds poly Examples thereof include a polyvalent isothiocyanate compound, a polyvalent aziridine compound, a polyvalent carbamate compound, a polyvalent rubamic acid compound, a polyvalent oxazoline compound, a polyvalent reactive unsaturated bond compound, and a polyvalent metal. When it is a copolymer, it may be a block copolymer or a random copolymer. In addition, those having a graft structure may be used.
  • polyaspartic acid, polyglutamic acid, and polylysine which are homopolymers having excellent biodegradability, as a basic skeleton.
  • polyaspartic acid and polyglutamic acid having high water absorption are used as the basic skeleton, and polyaspartic acid suitable for industrial production is most preferable.
  • the side chain structure of the crosslinked polyamino acid used in the present invention may be a polyamino acid residue having no substituent or a structure obtained by introducing another substituent into the polyamino acid residue.
  • polyaspartic acid has a carboxyl group because it has a structure in which the imido ring is simply opened, but another substituent may be introduced as a pendant group into this structure.
  • the other substituent include an amino acid residue such as lysine, a hydrocarbon group having a carboxyl group, and a hydrocarbon group having a sulfonic acid group.
  • the carboxyl group or side chain group of the acidic polyamino acid may be bonded at any position with respect to the amide bond of the polymer main chain.
  • an aspartic acid residue it may be substituted at the ⁇ -position or at the i3-position.
  • a daltamic acid residue it may be substituted at the ⁇ -position or at the ⁇ -position.
  • the binding portion between the basic skeleton and the side chain portion of the acidic polyamino acid is not particularly limited. For example, an amide bond, an ester bond, a thioester bond and the like can be mentioned.
  • the carboxyl group of the crosslinked polyamino acid may be in a form in which a hydrogen atom is bonded or in a form forming a salt.
  • the counter ion of the lipoxyl group include alkali metal salts, ammonium salts, and amine salts.
  • the surface-crosslinked crosslinked polyamino acid-containing particle (the first embodiment), the degree of neutralization of the carboxyl groups present in the crosslinking Poriamino acid molecules in total grain New [molar 0/0] 5 0 ⁇ 1 0 0 mole 0/0 favored - Sig, more preferably 5 5-9 5 mol%, 6 0-9 0 mol. / 0 is particularly preferred.
  • Increasing the degree of neutralization increases the ion intensity of the cross-linked polyamino acid, thereby increasing the water absorption.
  • the polyamino acid in the particles of the present invention is a crosslinked product.
  • the crosslinked portion and the side chain portion of the crosslinked polyamino acid may be unsubstituted or substituted.
  • the substituent include an optionally branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aralkyl group, an optionally substituted phenyl group, and a substituted group.
  • Naphthyl group optionally branched alkoxy group having 1 to 18 carbon atoms, aralkyloxy group, phenylthio group, optionally branched alkylthio group having 1 to 18 carbon atoms, carbon atom
  • Examples include an alkylammonium group, a hydroxyl group, an amino group, a mercapto group, a sulfonyl group, a sulfonic acid group, a phosphonic acid group, and salts thereof, an alkoxycarbonyl group, and an alkylcarbonyloxy group. That.
  • the method for producing the crosslinked polyamino acid used in the present invention is not particularly limited.
  • JP-A-7-224163 Journal of Polymers, Vol. 50, No. 10, p. 755 (1993), US Pat. No. 3,948,863 (Japanese Patent Publication No. 52-41) 309), JP-A-5-279416, JP-T-6-506244 (US Pat. Nos. 5,247,068 and 5,284,936) and JP-A-7-309943 can be used.
  • the crosslinked polyamino acid-containing particles of the present invention have an internal core phase and a core / diner structure covering at least a part of the surface.
  • the shell phase in the first embodiment has a higher crosslink density than the crosslink polyamino acid contained in the core phase. It is configured to contain amino acids.
  • the shell phase in the second embodiment is configured to contain a coating material and Z or a resin.
  • the term "particle” fully encompasses the concepts that these terms generally have in polymer chemistry, but is not necessarily equivalent.
  • the morphology of the “particles” used in the present specification as observed by a scanning electron microscope is not limited to a spherical morphology, but may include, for example, a number of protrusions in the form of raspberry or gold rice sugar (confinito in Portuguese).
  • the term “particle” refers to, for example, not only microspheres having an average particle diameter of about 1 nm to l0 / m, such as those constituting a polymer emulsion, a latex, and a polymer suspension. Also, particles having an average particle diameter of about 10 / xm to 100 mm are included. However, in the present invention, the average particle diameter is 100 ⁇ ! Particles of up to about 25 mm are common embodiments.
  • particle used in the present specification is not necessarily equivalent to the concept that these terms generally have in polymer chemistry. It will be used for convenience in frequent reference to the essential aspects of such systems.
  • the particles may be primary particles or higher-order particles. That is, a secondary particle that is an aggregate or aggregate of a plurality of primary particles, a tertiary particle that is an aggregate or aggregate of a plurality of secondary particles, There is no particular limitation on quaternary particles, which are aggregates or aggregates of tertiary particles, or even higher order particles, as long as the effects of the present invention are exhibited.
  • the terms “core”, “jiel” and “core z-shell” fully encompass the concepts that these terms generally have in polymer chemistry, but are not necessarily equivalent. Absent. For example, regarding the “core z-shell” particles according to the present invention, Includes embodiments wherein the “core” is at least partially enveloped in the “shell”. Thus, the terms “core”, “shell”, and “corenoshell” as used herein may not necessarily be equivalent to the concept these words generally have in polymer chemistry. Nevertheless, for the sake of frequent reference to the essential aspects of the heterogeneous systems of the polymers according to the invention, they shall be used for convenience.
  • core is generally used interchangeably with the terms center, nucleus, and seed, and the term “shenole (she11) _) is , Skin, husk, sheath, and robe, so the terms “core” and “shell” as used herein shall be used interchangeably.
  • Examples of the core Z / sh structure include the following embodiments (1) to (4). However, it is not limited only to these.
  • V An embodiment in which the core particles are porous particles, and at least a part of the voids of the porous particles is filled with the material constituting the shell.
  • V An embodiment in which the core particles are porous particles, and at least a part of the voids of the porous particles are covered with the material constituting the shell without being filled, and a void phase is present.
  • the particles of the present invention may have a single-layer or multi-layer shell phase as long as the desired function can be substantially expressed.
  • the core phase and the Sur phase may change continuously.
  • the world is not always clear. Even in such a case, since there is a cross-linking density gradient between the particle surface and the inside of the particle and the cross-linking density on the particle surface is higher, the existence of a core phase near the core and a sur phase near the surface can be recognized Is possible, which is also a particle of the present invention.
  • the core portion and the shell portion may be completely separated from each other, or the shell portion may be penetrated into the core portion.
  • a gas phase may be contained between the core phase and the shell phase.
  • the surface area of the core phase covered with the shell phase when the surface area of the core phase covered with the shell phase is increased, functions such as prevention of stickiness and sustained release of the active ingredient are enhanced. In contrast, the water absorption of the crosslinked polyamino acid itself becomes more pronounced when the coverage area is smaller.
  • the area covered by the shell phase may be appropriately determined according to the properties of the material forming the shell phase, the intended use, and the like.
  • the core phase of the particles of the present invention comprises a crosslinked polyamino acid.
  • the core phase may be composed of the crosslinked polyamino acid alone, or may contain other useful components as needed.
  • the function of sustained release of the useful component is also excellently performed, and therefore, it is very effective to include the useful component.
  • Other useful ingredients include, for example, moisture, bulking agents, pigments, UV absorbers, antioxidants, fungicides, fragrances, deodorants, organic fertilizers, biological fertilizers, chemical fertilizers, compost, chicken dung, organic materials, pH adjustment lj, surfactant, foaming agent, corrosive substance, water retention and fertilization improving mineral powder (bentonite, zeolite powder, etc.), pesticide (pesticide, fungicide, herbicide, fungicide) Etc.), plant vitalizers, plant life prolonging agents, vermin and animal repellents, soil penetrants, nutrients of trace elements, diatomaceous earth, clay, lime, plant hormones, minerals, cola nolesand, activated carbon, calcium carbonate, calcium carbonate Inorganic particles such as nesium, kaolin, clay, a / remina, silica, titanium oxide, tanolek, diatomaceous earth, my strength, shirasu balloon, glass beads, etc.
  • mineral powder bentonite
  • Beads coarse, small pieces of wood, wood flour, sawdust, flour, vegetable shells and stems powder grinds, plant species, useful bacteria, antimicrobial agents, and the like.
  • fine radioactive minerals such as Ferguson, far-infrared radioactive ceramics, and ethylene gas-absorbing minerals such as Otaniishi and Zeolite may be added.
  • inorganic water retention materials such as perlite, pumice, and vermiculite may be added.
  • Fertilizers that are useful ingredients are not particularly limited, and are selected according to the target plant and construction method. It should be fixed. Specific examples are ammonium sulfate, urea, lime nitrogen, salt ammonium, ammonium nitrate, molten potassium, potassium sulfate, potassium chloride, potassium nitrate, potassium bicarbonate, lanthanum, diphosphorus, lime superphosphate, and lime.
  • Pesticides that are useful ingredients are not particularly limited, and may be selected according to the target plant and construction method. Specific examples include PCP granules, PCP mixed granules, 2.4 PA granules, 2.4 PA mixed granules, MCP granules, ⁇ ⁇ ⁇ !
  • Granules MCPB granules, MCPCA granules, CNP granules, CNP-MCP IJ, DBN granules, CAT granules, promethrin granules, promethrin-MC PB granules, simethrin granules, simetrin mixed granules , Trifluralin granules, Benchocarb granules, Benchocarb-Simethrin granules, Benchocarb-CNP granules, NIP granules, NIP-MCP granules, Morine toximethrin granules, Herbicides such as chlorates Dimethoate granules, ethyl thiomethone granules lj, ethyl thiomethone mixed granules, DEP granules, MPP granules
  • useful cells that are useful components include VA mycorrhizal fungi, rhizobia, pseudomonas, bacilli and the like.
  • useful antimicrobial agents include captan, dariodin, and ben. Rate, thiobendazole, amicar, bioside, kasugamycin, griseofulvin, polyoxin and the like.
  • useful plant hormones include auxin, which promotes rooting and callus formation of 2,4-dichlorophenoxyacetic acid, naphthaleneacetic acid, indoleacetic acid, etc .; power inetine, zeatin, impentenyladenine, Citrate, which promotes the differentiation of shoots such as benzyladenine;
  • Other examples include gibberellin, which promotes the growth of stems and leaves, abscisic acid, which has a growth balance regulating action, and ethylene, which promotes the maturation of flowering fruits.
  • the required hormones also depend on the type of plant. These may be used alone or in combination of two or more.
  • useful minerals include calcium, magnesium, lithium, strontium, potassium, and aluminum. These are not particularly limited, and are used, for example, in the form of carbonate, sulfate, acetate, nitrate, oxalate, phosphate, hydroxide, chloride, bromide, iodide and the like.
  • carriers disintegrants, excipients, molding aids, bulking agents, lubricants, and reinforcements are used to form particles, to disintegrate particles, and to improve the stability and handling of particles.
  • Various optional components such as a carrier, a mineral carrier, and a solvent may be contained.
  • the carrier that is an optional component include: pyroxene clay, kaolin, sericite, intermediarite, talc, bentonite, acid clay, calcium carbonate, silica, silica sand, diatomaceous earth, pumice, zeolite, perlite, Birch miracle, slaked lime, urea, ammonium sulfate, salt ammonium, chemical fertilizer, brass foam, slag, fly ash, bran, bran, rice husk, sawdust, wood powder, pulp floc, soy flour, corn stalk, hard hull, Fruit tree nuclei and the like.
  • the optional disintegrant include, when used for pharmaceutical applications, agar, starch, hydroxypropyl starch, sodium alginate, carboxymethyl starch ether, gum arabic, tragacanth, gelatin, casein, cellulose, calca Boximethi / resenorelose, canoleboximethinoresenolerose kanoreshimu, tsuin, pull mouth nick, sodium laurate, carboxyl resin, etc.
  • Ammonium sulfate, potassium chloride, salt, bentonite, urea, anionic surfactant, etc. can be used when used for performing arts, and salt, sodium glutamate, sodium inosinate, dextrin for food applications. , Starch, agar and the like.
  • a water-absorbing resin other than the crosslinked polyamino acid may be used in the core phase in combination with the crosslinked polyamino acid.
  • a binder may be used for the core phase as needed.
  • the binder include fully fermented oil residue, clay, gelatin, gum arabic, acacia powder, polyvinylpyrrolidone, methylcellulose, carboxymethylcellulose, hydroxyxethylcellulose, dextrin, starch, sodium alginate, Examples include acrylate latexes, styrene butadiene latexes, vinyl acetate latexes, acrylyl monoacrylamide propane sulfone amide docopolymers, partially oxidized polyvinyl alcohols, and octyl phthalate. It is preferable that these binders have biodegradability from the viewpoint of environmental protection.
  • the core phase may also contain a surfactant (soil penetrant).
  • a surfactant soil penetrant
  • the surfactant is not particularly limited. Specific examples thereof include sodium lauryl sulfate, triethanolamine lauryl sulfate, and alkyl sulfates such as ammonium lauryl sulfate; polyoxyethylene lauryl ether sodium sulfate, polyoxyethylene lauryl ether triethanolamine, and the like.
  • higher alcohols such as lauryl alcohol, myristyl alcohol, cetanol, cetostearyl alcohol, stearyl alcohol, 2-octynoledodecanol and behenyl alcohol; glycerin, ethylene glycol, diethylene glycol, triethylene glycol
  • Polyhydric alcohols such as riconolle, polyethylene glycolone, propylene glycol, dipropylene glycol, polypropylene glycol, sorbitol, sonorebitant, pentaerythritol; polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, Polyoxyethylene alkyls such as polyoxyethylene oleate ⁇ ether and polyoxyethylene higher alcohol ether
  • Polyoxyethylene octylphenyl ether polyoxyethylene noninole phenylene oleate, polyoxyethylene octenolide decyl ferrate, polyoxyethylene octyl phenyl
  • alkylamine salts such as coconut amine acetate and stearylamine acetate
  • alkyltrimethylammonium salts such as lauryl trimethylammonium chloride, stearyltrimethylammonium chloride and cetyl trimethylammonium chloride
  • Cationic surfactants such as distealyldimethylammonium, dialkyl (12-18) dimethylammonium and other dialkyldimethylammonium salts
  • benzalcoium chloride and other benzalco-dium salts .
  • alkyl betaines such as lauryl betaine and stearyl betaine
  • betaines such as lauryl dimethinoleaminoacetic acid betaine and alkyl dimethylaminoacetate such as betaine stearyl dimethylaminoacetate
  • Alkaline carboxymethinoles such as N-hydroxylethylimidazoline betaine, etc.
  • Alkoxy / reamidopropisoles such as amidopropyl betaine laurate and amidopropyl betaine laurate
  • Amphoteric surfactants such as tine; alkynolehydroxysulfobetaine such as laurigrech-droxysinorehobetaine; alkyldimethylamine oxide such as lauryl dimethylamine oxide;
  • the shell phase in the first embodiment contains a crosslinked polyamino acid.
  • the shell phase is Like the core phase described above, other useful components and various optional components may be contained. Further, for the core phase and the shell phase, if necessary, a water-absorbing resin other than the crosslinked polyamino acid may be mixed with the crosslinked polyamino acid.
  • the cinnamon phase in the second embodiment contains a coating material and Z or a resin.
  • the coating material and the resin are not particularly limited as long as they can form a shell phase.
  • the coating material and the resin are mainly composed of a substance capable of forming a coating film, and may contain other useful components as needed. Specific examples of components contained in the shell phase as necessary include the various components described above as specific examples of useful components and optional components of the core phase.
  • hydrophilic coating material for forming the shell phase starch, soluble starch, dextrin, alpha-starch, alginic acid, Al Gin sodium, Arabiyagomu, tragacanth, locust bean gum, Hydrophilic natural products such as casein, casein sodium, gelatin, chicken, soybean protein, etc .; sodium urexoxy methinoresenorelose, methinoresenorelose, hydroxyxetinoresore norelose, ligninsoreno sodium, lignosorenole Hydrophilic semi-synthetic products such as canoleic acid acid, potassium sodium ruboxylmethyl starch, hydroxyshethyl starch, ester sodium starch starch, hydroxypropylcellulose, and hydroxypropylmethylcellulose; Polyvinyl alcohol , Polybutyl methyl ether, polyacrylamide, sodium polyacrylate, polyacrylamide, oral sulfonic acid, polyethylene glycol, polyvinyl alcohol , Polybutyl methyl
  • examples of the hydrophobic coating material for forming the shell phase include shellac, rosin, tall oil, animal and vegetable oils, soybean oil, fish oil, beef oil, liquid paraffin, heavy oil, machine oil, Hydrophobic natural products such as spindle oil; ethylcell Hydrophobic semi-synthetic products such as loin, acetyl cellulose and ester gum; and hydrophobic synthetic products such as polybutyl acetate, cumarone resin, petroleum resin, and fuynol resin.
  • the resin for forming the shell phase examples include a vinyl chloride resin, a vinyl acetate resin, a vinylidene chloride resin, a high-density polyethylene, a low-density polyethylene, a polypropylene, an acrylic resin, and an ABS resin.
  • phenolic resins, urea resins, melamine resins, unsaturated polyester resins, epoxy resins, polyurethane resins, etc. which become thermosetting resins after molding.
  • the shell phase when used for agricultural and horticultural purposes, it is generally difficult to recover, so it is preferable that the shell phase also has biodegradability.
  • biodegradable polymer for example, polylactic acid, polylactide, polybutylene succinate, polyproprolactone, polyhydroxybutylate, polyhydroxyvalerate, polyglycolic acid, polyamino acid, polysuccinic imid, and copolymers thereof, etc.
  • a biodegradable polymer include aliphatic polyesters and polysuccinic acid imides.
  • Specific examples of the aliphatic polyester include (co) polyhydroxycarboxylic acid such as (co) polylactic acid.
  • the shell phase may or may not have a water vapor barrier property as long as the desired function can be exhibited.
  • a sur layer having poor water vapor barrier properties the weight of the particles themselves increases due to moisture absorption, but if the shell phase itself is not sticky due to moisture absorption, stickiness may be prevented in some cases.
  • the molecules of the useful component are often not permeated due to the large molecules, and the useful component is blocked by the shell phase, and may be useful in terms of sustained release.
  • a hydrophobic shell phase is formed on the surface of the inherently hydrophilic crosslinked polyamino acid-containing particles by using a coating material
  • the surface is immediately contacted with water. It does not begin to absorb water, the particles disperse in water, and the particle aggregate becomes isolated particles. After that, each particle absorbs water and swells. It is unlikely to occur.
  • a hydrophilic coating material if a surfactant is used as a coating material, the hydrophilic groups of the surfactant are directed inward, and the hydrophobic groups are directed to the outer side. Is obtained.
  • the ratio of the shell phase and the ratio of the crosslinked polyamino acid in the whole particles may be appropriately set to optimal values according to the intended function of the shell phase.
  • the amount of the shell phase is from 0.1 to 50% by weight based on the total weight of the particles. / 0 is preferred, and 1 to 10 weight. / 0 is more preferable, and the amount of the crosslinked polyamino acid is preferably 1 to 99.9% by weight, more preferably 10 to 99% by weight, based on the weight of the whole particles. / 0 is more preferred.
  • the shape of the particles of the present invention is not particularly limited. It may be formed by tableting, or may be of irregular shape obtained by pulverization, crushing, or dry granulation.
  • the size of the particles of the present invention is not particularly limited, and may be changed according to the intended use and intended purpose.
  • the average particle size is preferably from 100 to 100,000 / zm, more preferably from 100 to 500,000 m.
  • the average particle size is preferably from 1 to 5 OO O / xm, more preferably from 10 to: L000 ⁇ m, and particularly preferably from 100 to 500 ⁇ m.
  • the method for producing the crosslinked polyamino acid-containing particles before surface crosslinking is not particularly limited.
  • a cross-linked polyamino acid produced in advance is pulverized and Z or sized and used
  • a compression granulation method a method using a binder and the like.
  • a desired particle can be formed by using a thermoplastic resin as a binder, melting the resin by heating, and cooling the resin.
  • Various methods described in the Granulation Handbook (Ohm Co., Ltd., published in 1980, edited by Japan Powder Industry Association) can be used.
  • At least a part of the surface of the crosslinked polyamino acid-containing particles is crosslinked by using a surface crosslinker having two or more functional groups capable of reacting with a carboxyl group of the crosslinked polyamino acid in one molecule.
  • a surface crosslinker having two or more functional groups capable of reacting with a carboxyl group of the crosslinked polyamino acid in one molecule.
  • the particles of the first embodiment have a shell phase having a higher crosslinking density than the core phase on the surface of the particles.
  • the shell phase can be formed by surface-crosslinking the core particles with a surface crosslinking agent.
  • the method for surface-crosslinking the core particles is not particularly limited, but a method in which the crosslinked polyamino acid particles and a surface crosslinking agent are mixed and, if necessary, heated.
  • the surface crosslinking agent used in the first embodiment is not particularly limited, but is preferably a compound having two or more functional groups capable of reacting with the carboxyl group of the acidic polyamino acid.
  • Polyhydric alcohols such as, 6-hexanediol, trimethylolpropane, jetanolamine, triethanolamine, polyoxypropylene, polybutyl alcohol, oxyethyleneoxypyrropyrene block copolymer, pentaerythritol and sorbitol; Ethylene glycol diglycidyl ether, polyethylene glycol / resin glycidinoleate, glycerol, polyglycidinoleate, diglyceride, poly
  • -Polyvalent isocyanates such as magnesium; magnesium Salts or hydroxides of divalent metals such as shim, norium, zinc and iron, and polyvalent metals such as trivalent metals such as aluminum and iron.
  • the salts or hydroxides of the polyvalent metal include inorganic salts and double salts of the above metals such as halides, nitrates, phosphates, sulfates and carbonates; organic salts such as oxalates and acetates, or Hydroxide.
  • polylysine a compound having two or more functional groups capable of reacting with the amino group of polylysine is preferred.
  • a polyvalent glycidyl compound, a polyvalent carboxylic acid, a polyvalent isocyanate, a polyvalent halogen compound, a polyvalent sulfonic acid, a polyvalent phosphonic acid, a polyvalent alde, and a hydride are exemplified.
  • These surface cross-linking agents may be used alone or in combination of two or more.
  • the amount of the surface cross-linking agent to be used is preferably 0.05 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, particularly preferably 100 to 100 parts by weight of the cross-linked polyamino acid. 0.0 1 to 5 parts by weight.
  • the lower limit of these ranges is significant in terms of surface treatment effects, and the upper limit is significant in terms of water absorption.
  • the method for mixing the crosslinked polyamino acid-containing particles with the surface crosslinking agent is not particularly limited. Usually, the following embodiments (1) to (4) are mentioned.
  • a method of mixing particles containing cross-linked polyamino acid and a surface cross-linking agent without solvent 1.
  • the mixer for mixing the crosslinked polyamino acid-containing particles and the surface crosslinker include a cylindrical mixer, a double cone mixer, a V mixer, a ribbon mixer, and a screw mixer. Mixer, fluidized mixer, rotating disk mixer, air flow mixer, double-arm kneader, internal mixer, muller-type kneader, roll mixer, screw-type extruder, etc.
  • Specific examples of the mixing method include a pan coating method, a fluid coating method, a dry coating method, a belt-type electrostatic coating method, a dipping method, a drum method, and a ring method.
  • the pan coating method is a method in which a coating agent is sprayed or dropped while a substance to be coated is rotated in a coating pan, and the solvent is removed by drying.
  • the material of the coating pan is not particularly limited, and examples thereof include copper, stainless steel, and plastic.
  • the shape of the coating pan is not particularly limited, and examples thereof include a pier type, an onion type, and a conical type.
  • a baffle may be attached to the bread to help stir. The position, size, quantity, etc. of the baffle are not limited. The size is not limited, and a diameter of several tens cm to several meters can be used.
  • the method of supplying the surface crosslinking agent is not particularly limited. It may be supplied by spraying or supplied as droplets.
  • the spraying method a method using an air spray, an airless spray or the like can be used.
  • the air spray uses a two-fluid nozzle and atomizes the coating liquid with compressed air around the nozzle.
  • the airless spray atomizes the surface cross-linking agent solution or dispersion by applying a pressure of several Pa to several tens of Pa.
  • the size, pattern and amount of the sprayed mist are not particularly limited.
  • the fluid coating method is a method of coating particles in a suspended state, in a spouted bed, a fluidized bed, and a transport bed.
  • the coating is performed in a fluidized bed state in which a gas flow is supplied from the bottom of the packed bed of solid particles to maintain the particles in a dynamic suspension state, or in a spouted bed state in which the gas flow is blown from the bottom of the cone.
  • Particles are usually blown up in the center, descend and circulate near the wall.
  • Spray flow rate and temperature in the system can be appropriately selected depending on the surface crosslinking agent solution or suspension used.
  • the number, position, and orientation of the spray nozzles are not particularly limited.
  • the amount of water constituting the treatment solution is 100 parts by weight of the cross-linked polyamino acid. 0.1 to 40 parts by weight is preferred. If this amount is at least 1 part by weight, the surface cross-linking agent will penetrate appropriately into the vicinity of the particle surface, and a shell phase will be formed appropriately. When the amount is less than 40 parts by weight, excessive penetration does not occur, so that the effect of surface cross-linking is sufficiently exhibited without impairing the water absorption capacity.
  • the solvent used for the solution or dispersion of the surface crosslinking agent is not particularly limited. Usually, water, a hydrophilic organic solvent, or a mixture of water and a hydrophilic organic solvent is used.
  • the hydrophilic organic solvent include methanol, ethanol, n-propanol, and 2-prono.
  • the amount of the surface crosslinking agent solution or dispersion used is not particularly limited. Usually, it is 0.1 to 10 parts by weight based on 100 parts by weight of the crosslinked polyamino acid. When the amount is at least 0.1 part by weight, the crosslinked polyamino acid particles and the surface crosslinking agent can be uniformly mixed. If the amount is less than 10 parts by weight, cost is advantageous.
  • the concentration of the surface crosslinking agent in this solution or dispersion is not particularly limited. However, when spraying from a nozzle or the like, it is preferable that the viscosity is such that it can be sprayed smoothly.
  • the liquid can be supplied to the core particles while being mixed by an operation such as stirring.
  • the cross-linked polyamino acid constituting the particles before surface cross-linking has a carboxyl group neutralized as an alkali metal salt and / or an ammonium salt.
  • the cross-linking degree of neutralization of the carboxyl groups of the polyamino acid N [mole 0/0] 4 9-9 9 mol% are preferred, more preferably 5 4-9 4 mol%, 5 9-8 9 moles. / 0 is particularly preferred.
  • the lower limits of these ranges are significant in terms of the ionic strength of the cross-linked polyamino acid and the amount of water absorbed thereby.
  • the upper limit is, in terms of reactivity with the surface cross-linking agent and efficiency.
  • a mixture obtained by mixing a processing solution containing a surface crosslinking agent with a crosslinked polyamino acid resin can be heated as needed.
  • the reaction proceeds even at room temperature, but heating may be performed to promote the reaction.
  • the heating method is not particularly limited, but usually, a groove-type stirring dryer, a rotary dryer, a disc dryer, a kneading dryer, a fluidized-bed dryer, a flash dryer, an infrared dryer, a dielectric heating dryer, or the like is used. be able to.
  • the heat treatment temperature is usually 30 to 300 ° C., preferably 40 to 250 ° C., and more preferably 50 to 200 ° C.
  • the method for producing the crosslinked polyamino acid-containing particles is not particularly limited.
  • (4-1) a step of producing core particles (particles serving as a core phase)
  • (4-2) A method including a step of forming a shell phase by coating core particles.
  • the method for producing the core particles is not particularly limited. Similar to the method for producing crosslinked polyamino acid-containing particles before surface crosslinking in the first embodiment described above, a method using pulverization and Z or sizing, compression granulation, using a binder, Various methods can be applied, such as a molding method, a method of melting a resin by heating using a thermoplastic resin as a binder and cooling the resin to form desired particles.
  • the compression granulation method is not particularly limited.
  • the shape (shape of the core particles) of the obtained compression molded product is not particularly limited as long as it can finally form the core phase, and can be selected as needed.
  • Specific examples of the shape include round, football, triangular, square, rectangular, hexagonal, and ring types in tabletting, and the plane is a goishi shape, flat edge, Flat type, convex type, concave type, ring type and the like can be mentioned.
  • Examples of the pricketting include sheet, plate, pillow type, lens type, almond type, prism type, rod type, corrugated sheet, and the like. In compacting, crushed or the like can be mentioned.
  • the size of the compression molded product is not particularly limited, either, and can be selected according to the intended use.
  • the use of a powder exhibiting a strong compression molded product can be obtained.
  • a plasticizer may be added in some cases.
  • plastic deformation is easily caused by compression, the contact surface between the particles becomes large, and no elastic strain remains in the molded product even after the compressive force is removed. Is obtained.
  • the surface of the raw material powder is not contaminated by steam, gas, oxide film and the like. Therefore, for example, it is preferable to pulverize the particles just before molding to form a clean fractured surface and then compression-molding, since a strong molded product can be obtained.
  • a binder may be added, if necessary.
  • the use of a binder facilitates molding when a large amount of porous powder such as ore or coke having high hardness is used as a component other than the polyamino acid.
  • the binder include a matrix type binder such as clay, asphalt, portland cement, wax, paraffin, sugar, starch, gilsonite, coal tar pitch; water, molasses, pulp waste liquid, sodium silicate, Film-type binders such as starch, pitch emulsion, polyvinyl alcohol, bentonite and the like.
  • a reactive binder which forms a chemical bond between binder components or between a binder and other raw material powders is also included.
  • the raw material powder used for tabletting and brigetting contains two or more components, it is preferable to sufficiently mix them before compression molding.
  • the equipment used for mixing is not particularly limited, and examples thereof include an edge runner mill and an Eirich mixer. ⁇
  • Lubricants may be added for tabletting and pre-ketting, as the case may be. Using a lubricant reduces internal friction and wall friction inside the powder, This improves the transmission of the compressive force and facilitates the supply of the raw material powder between the rolls and the die, thereby enhancing the molding effect.
  • the lubricant may be an internal lubricant used after being mixed with the raw material powder before molding, or an external lubricant used by being applied to a die, a roll surface or the like.
  • Specific examples of the lubricant include water, lubricating oil, glycerin, silicon, graphite, talc, magnesium stearate, molybdenum disulfide, ethylene glycol, paraffin and the like.
  • a nucleating agent may be used if necessary.
  • the shape of the nucleating agent is not particularly limited, and examples thereof include a sphere, a lens, a column, and an irregular shape.
  • Compressors used for compression molding include tableting machines and prequetting machines. Specific examples of the tableting machine include a single-shot tableting machine, a rotary tableting machine, a one-point compression type machine, a multi-point compression type machine, a cored tableting machine, a multi-layered tableting machine, and an inclined roll type tableting machine. No.
  • compression molding can be classified into wet granule compression, dry granule compression, direct powder compression, etc. from the viewpoint of the manufacturing process.
  • a molding method using a binder which is one of the methods for producing core particles, includes a method of binding using a binder and a solvent, and a method of using a thermoplastic resin as a binder and heating the resin. Is melted and cooled to form a molded article.
  • a hydrophilic binder water is used as a solvent
  • a hydrophobic binder an organic solvent is used.
  • the organic solvent a solvent which is easily removed and has high safety is preferable. Examples include acetone, methanol, ethanol, isopropanol, toluene, xylene, methylene chloride, chloroform, and carbon tetrachloride. If the binder itself is a liquid, a solvent may not be required.
  • the binder is not particularly limited. Specific examples thereof include the various components described above as specific examples of the coating material for forming the hydrophilic and hydrophobic shell phases. Further, an adhesive having higher adhesiveness than a normal binder may be used. Adhesives are classified into solvent type and reactive type, which react during molding to cause cross-linking.
  • the granulation method used in the method for producing the core particles is not particularly limited, but is preferably an extrusion molding method. That is, a solvent is added to the powder or granules as raw materials, mixed, and mixed through a hole in a screen, die, etc. by an appropriate extrusion mechanism. This is a method of granulating by extruding an object.
  • the machine used here is not particularly limited. Specific examples thereof include a screw extrusion extrusion granulator such as a pre-extrusion type extrusion granulator, a lateral extrusion type extrusion granulator, a vacuum extrusion type extrusion granulator, a pre-treatment type extrusion granulator, and a cylindrical die horizontal.
  • Open-type extrusion granulators such as cylindrical extrusion dies, cylindrical dies vertical extrusion granulators, and disk-type dies horizontal extrusion granulators; basket-type extrusion granulators, oscillating extrusion granulators Pellet extrusion granulators such as granulators; self-molding extrusion granulators such as gear complete extrusion granulators, cylinder complete extrusion granulators; rams such as intermittent extrusion granulators and continuous extrusion granulators Extrusion granulator; and the like.
  • the particle size of the raw materials used here is not particularly limited, and may be selected according to the purpose of use. However, a particle size that can easily pass through the hole of the die and enables uniform mixing is preferable. Generally, fine powder having a size of 100 to 200 mesh or less is preferable.
  • the raw materials When core particles are produced by a dry process, it is preferable that the raw materials have fluidity. Further, it is preferable that the raw material has plasticity showing a thixotropic phenomenon. In some cases, it is preferable to add excipients and binders that exhibit the dilatancy phenomenon.
  • binders include: acetone, methanol, ethanol, arabia gum, sodium alginate, hydroxypropinoresenololose, methylse / relose, sodium caseinate, glycerin, cornstarch, sodium carboxymethylcellulose, gelatin, dextrin, starch , Molasses, lactose, polyvinyl alcohol, polyvinylpyrrolidone, microcrystalline cellulose, pitch, sodium polyacrylate, polyethylene glycol, lignin, alumina sol, aqueous ammonia, sodium silicate, bentonite, sodium polyphosphate and the like. These act as thickeners, thinners, extenders, solvents, plasticizers, lubricants, etc.
  • the method of mixing the raw materials is not particularly limited, but a mixer such as a kneader can be used.
  • the method of liquid addition is not particularly limited, and may be determined as desired.
  • the post-treatment step for producing the core particles is not particularly limited, but it is preferable to perform sizing. Examples of a method for sizing include a crushing and sizing method and a spherical sizing method.
  • the core particles can be dried if necessary.
  • the drying temperature is particularly limited However, in the case of ordinary drying, the temperature is preferably from 10 ° C to 200 ° C, more preferably from 40 ° C to 120 ° C. Further, crushing, crushing, sieving, etc. may be performed.
  • thermoplastic resin When a thermoplastic resin is used as a binder and molded by melting the resin by heating and cooling, the thermoplastic resin is not particularly limited, but is a solid at room temperature, but softens when heat is applied. Melts and becomes solid again when returned to room temperature.In addition to ordinary thermoplastic resin, it shows plasticity during molding, but once heat is applied, crosslinking occurs between molecules due to heat, crosslinking agent, etc. Also included are those that become cured after molding or during molding to become thermosetting resins. Here, both are referred to as thermoplastic resins. Specific examples of the thermoplastic resin include the various resins described above as specific examples of the resin for forming the shell phase.
  • the amount of the thermoplastic resin used is too small, the effect as a binder is lost, and if the amount is too large, the sustained release and efficacy of the active ingredient are reduced. In particular, it greatly affects the sustained release of the active ingredient.
  • the amount of use is not certain, it is preferably 5 to 90% by weight, more preferably 10 to 80% by weight in the core particles. /. Is particularly preferred.
  • a plasticizer, a stabilizer, a lubricant, a coloring agent, a reinforcing agent, a bulking agent, and the like may be added to the core particles as needed.
  • the specific steps in this method are not particularly limited, but generally include mixing, kneading, granulating, and dehydrating and drying steps.
  • the mixer include mixers such as a ribbon blender, a Henschel blender, and a drum blender.
  • Examples of the kneading machine include a mixin d'allol, an intensive mixer, a short-screw extruder, and a high-speed twin-screw continuous mixer.
  • the granulating device include a cold cutting device such as a sheet cutting method and a strand cutting method, and a hot cutting method device such as an aerial hot cutting method and an underwater cutting method.
  • the dehydration and drying step is necessary when granulation is performed by an air hot cut method or an underwater cut method, such as a centrifugal dryer.
  • the particles of the present invention have a shell phase composed of a coating material and Z or resin on the surface of the core particles.
  • the shell phase can be preferably formed by applying a coating material solution or a molten coating material on the surface of the core particles, or a resin solution or a molten resin.
  • the coating material is a substance capable of forming a film. Specific examples of the coating material and the resin are as described above.
  • the same solvents as those described above can be used.
  • the viscosity of the liquid for coating is not particularly limited, but when spraying from a nozzle or the like, it is preferable that the viscosity be such that it can be sprayed smoothly.
  • the liquid can be supplied to the core particles while being mixed by an operation such as stirring.
  • the method for coating the core particles is not particularly limited, and any commonly used method can be used.
  • a pan coating method, a fluid coating method, a dry coating method, a belt-type electrostatic coating method, an immersion method, a drum method, a ring method and the like can be mentioned.
  • the pan coating method and the fluid coating method are as described in the description of the first embodiment.
  • the particle size of the core particles to be coated may be large enough to be in a floating state. For example, a diameter of about 1 mm is preferable.
  • the number, position and orientation of the spray nozzles can be varied according to the desired coat.
  • the dry coating method is a method in which granules for coating are coated on the tablet surface by a dry method using a special tableting machine (pressed tableting machine). After tableting the core tablet, coating may be performed using the same tableting machine.After forming the core tablet with another tableting machine, the core is supplied to a cored tableting machine. Dry coating of the outer layer may be performed.
  • the method of placing the core material is to drop the nucleus from the transfer plate at the point where the center of the nucleus transferred by the nucleus transfer device is synchronized with the center of the mortar. A method of inserting the nucleus into the mortar. If the coating layer is too thin, the coating layer may not be able to withstand the swelling of the core after compression molding, which may cause capping and lamination.
  • the product may crack.
  • the difference in diameter between the coating layer and the core is preferably 2 mm or more when the core is 8 mm or less, and 3 mm or more when the core is 8 mm or more.
  • the radius of curvature of the coating layer is preferably 1.1 times or more, more preferably 1.5 times, the radius of curvature of the core surface.
  • the particle size distribution of the nucleus is preferably narrow, and coarse particles do not contain fine powder, and the gap between large particles is filled. It is preferable to include a small amount of fine granules in an appropriate ratio.
  • the belt-type electrostatic coating method is a method of arranging core particles on a belt, atomizing a coating solution with a sprayer, and passing the mist between high voltage grids to coat the surface of the core particles.
  • the immersion method is a method in which core particles are immersed in a coating liquid, pulled up and dried.
  • One of the effects of the particles of the second embodiment lies in the sustained release of an active ingredient such as a drug.
  • sustained release is not necessary, such as water retention materials for agricultural and horticultural purposes.
  • the particles of the present invention also have an effect of preventing stickiness, that is, an excellent effect of preventing deterioration in workability due to moisture absorption or absorption of water contained in the soil.
  • the required water retention, the onset of water retention, and the sustained release of the drug differ depending on the use and purpose of using the particles of the second embodiment.
  • Water retention is required for a certain period of time, and in some cases, it is preferable that the water retention be eliminated after a certain period of time. If the resin has too high water retention, such as a cross-linked polyacrylic acid resin, the root is likely to rot, and the water in the gel cannot be used effectively by the plant under vigorous drying. On the other hand, the particles of the present invention do not cause root rot of the plant, and the plant can effectively use the water in the gel even under dry conditions.
  • the water retention occurs, but it can be adjusted as appropriate by changing the type of resin contained in the shell phase (coat layer), the thickness of the shell phase, and the like.
  • the resin contained in the shell phase has high hydrophilicity, the expression of water absorption is fast, and when the resin is highly hydrophobic, the expression of water absorption is slow.
  • the permeability of water vapor also affects the appearance of water absorption, and a resin having a high water vapor barrier delays the appearance of water absorption.
  • the shell phase is thick, the biodegradability or degradability of the resin, the mode, etc. also affect the development of water absorption.
  • the onset of water absorption is fast, and if it is slow, it is slow.
  • the decomposition occurs from the surface and is difficult to occur inside, the onset of water absorption is slow, and when the decomposition occurs on the inside as in the case of hydrolysable resins, the onset of water absorption is fast.
  • the amount of cross-linked polyamino acid in the particles is preferably from 1 to 80% by weight, preferably from 10 to 50% by weight, based on the weight of the whole particles. /. Is more preferred. However, if the emphasis is on water retention, 50 to 100 weight. /. Is preferable, and 60 to 100% by weight is more preferable.
  • the sustained-release properties of the particles of the present invention when it is desired to maintain the effect over a long period of time, when it is desired to exhibit the effect efficiently in a short period of time, when it is desired to maintain a certain amount of effect for a certain period of time, or when the effect is exhibited after a certain period of time. It can be controlled to be effective in any of the cases.
  • the method of controlling the sustained release depends on the polyamino acid or its content, the active ingredient, the molding method, the strength of the molded product, the additive, or its content, and the like.
  • the sustained release of a polyamino acid varies depending on the affinity between the polyamino acid and the active ingredient and the degree of gelation of the polyamino acid.
  • polyamino acids have high hydrophilicity
  • active ingredients with high hydrophilicity have high affinity with polyamino acid gels and are not easily released.
  • active ingredients with high hydrophobicity have low affinity and are easily released.
  • the polyamino acid is in a gel state and its swelling ratio is high, it becomes easy to release the drug.
  • the amount of the polyamino acid is increased, the disintegration of the whole particle is promoted, so that the sustained-release becomes faster.
  • the amount of the polyamino acid is small, the disintegration is controlled by other components.
  • the release period is short when the active ingredient is highly hydrophilic, and the sustained release period is long when the hydrophobicity is high or the solubility in water is low.
  • the difference in sustained release due to the molding method cannot be determined unconditionally because it is strongly affected by other factors, but the general trend is that the sustained release of compression molded products is performed in a short period of time, Treated products have a longer sustained release period.
  • the product produced by extrusion granulation using a binder has a sustained release property shorter than that of a compression molded product. On the other hand, those that are melted using a resin have a longer sustained release.
  • the molding method and the polyamino acid content in particular strongly affect sustained release.
  • crosslinked polyamino acid-containing particles of the present invention is not particularly limited.
  • used as a water-absorbing resin for various applications such as agricultural and horticultural, pharmaceutical, food, bath additives, and sanitary materials it can.
  • it is very useful for sanitary materials and soil conditioners.
  • the most effective use of water retention and sustained release of chemicals is for soil conditioners used in agriculture and horticulture.
  • a soil composition obtained by mixing the crosslinked polyamino acid-containing particles of the present invention with soil as a soil conditioner is very useful.
  • the soil used in this soil composition includes, for example, hard akadama soil, burnt akadama soil, hard kanuma soil, humus, black soil, Kiryu sand, pumice sand, Fuji sand, Yahagi sand, arakida sand, river sand, morning light sand, and Keke And soil, bami-kiuraito, charcoal, hiyuga soil, clay and the like.
  • soil such as fields and sands to which the soil composition is applied, or other soils can also be used. These may be used alone or in combination as a culture soil. At this time, the composition can be adjusted according to the type of plant or the form to be used. If desired, peat moss may be added.
  • the form of the soil used when preparing the soil composition is not particularly limited as long as the soil composition can exhibit substantially sufficient water retention and ventilation effects at the same time, and may be powder or granular. I do not care. Generally, a particle size of about 5 to 50 mesh (in a dry state) or a particle size of about 0.5 to 5.0 mm (in a dry state) capable of expressing coarse pores having excellent air permeability and water permeability. ) are preferred.
  • the soil composition may contain various useful components as necessary.
  • the useful component to be added preferably has biodegradability from the viewpoint of environmental protection. Each of the useful components listed above often has a rapid effect.
  • the soil composition may be made into a solid by a binder.
  • binders include fully fermented oil scum, clay, acrylate latex, styrene butadiene latex, butyl acetate latex, acrylamide monoacrylamide propane sulfone amide copolymer, polyvinyl alcohol Coal partial chloride. It is preferable that these binders have biodegradability from the viewpoint of environmental protection.
  • the method of use and the place of use are not particularly limited.
  • a method in which a molded product or a soil composition is applied to a field as topsoil and a method in which a cultivated soil is used in a nursery or the like. It may be applied to paddy fields, rivers, ponds, moats, the sea, etc. Spraying may be performed manually or by machine. There is also a method of spraying from the air using a helicopter, airplane, radio control airplane, or the like.
  • the state of the plant can be used in a wide range and in a wide range, and is not particularly limited in the range in which the plant is cultivated.For example, seed germination, seedling raising, leaf vegetables, fruit vegetables, root vegetables, root plants, flowers, etc. It can be used for replanting.
  • the type, shape, size and style of the crosslinked polyamino acid-containing particles of the present invention are not limited, and are suitably used for generally used sanitary articles. In particular, it has an excellent effect on the treatment of waste and the characteristics of sanitary goods.
  • the types of sanitary articles include children's paper diapers, adult paper diapers, sanitary napkins, tambons, panty liners, sanitary sheets, incontinence pads, medical blood absorbers, and the like.
  • the crosslinked polyamino acid-containing particles of the present invention can be used for any particles that require a function as an absorber.
  • the structure of the sanitary ware is not particularly limited, and may be the structure used for general sanitary ware.
  • the size can be selected according to the type, shape and style of the sanitary goods used. These generally consist of a topsheet, a backsheet and an absorbent core.
  • a sanitary product it does not necessarily consist of only these parts, but may include other necessary parts as necessary.
  • other parts such as waist gears, leakage prevention gathers, inner leg gears, outer red gathers, frontal tape, adhesive, magic tape, fat tape tape system, release tape Systems, mechanical tape tape systems from Berg Koutou, liquid diffusion layers, and the like.
  • the sanitary ware can have a structure without a top sheet and a back sheet or a back sheet, if necessary.
  • an essential element of a sanitary product is an absorbent core, and if it is a sanitary product containing the absorbent core, the other parts are not particularly limited, and the sanitary product can be constructed by combining various parts. Further, one part may have two or more functions at the same time.
  • the absorbent core can have a diffusing function.
  • the top sheet layer / acquisition layer, the end cap Z waist gears, the release tape / faston tape are composited, the top sheet and side sheets, the inner leg gathers are compounded, and the back sheet and absorber are combined.
  • Hygiene products can have multiple structures as well as a single structure.
  • the absorption capacity can be enhanced by the structure in which the absorption cores are stacked. These may be not only the structure of the entire sanitary product but also the structure of each part. For example, not only a structure in which the tissue layer Z, the pulp layer, and the Z absorbent resin layer are vertically combined, but also a combination of them to form a multi-layer structure.
  • the structure of the absorbent core is made of, for example, pulp and a water-absorbent resin, and in some cases, may include absorbent paper (diffusing paper).
  • the pulp is preferably defibrated pulp.
  • the absorbent paper is not limited, but is usually a paper mainly composed of cellulose.
  • the location of the absorbent resin is not particularly limited, and may be any of the upper, middle, and lower layers of the absorbent core, and may be a mixture with the pulp. A structure that can efficiently absorb body fluids and the like is preferable.
  • the water-absorbent resin should be able to fully demonstrate its performance. It is preferred to disperse in For this reason, a method of fixing the water-absorbent resin may be adopted in such a manner that the water-absorbent resin is not unevenly distributed during the manufacturing process, the delivery of the product, and the storage. For example, there is a method in which a thermoplastic resin is mixed into pulp and partially adhered by heat or the like, or partially adhered by a binder.
  • the binder resin is not particularly limited. To exhibit biodegradability, which is one of the objects of the present invention, it is preferable to use a biodegradable polymer binder.
  • the material constituting the sanitary article together with the crosslinked polyamino acid-containing particles of the present invention is not particularly limited, but a biodegradable polymer is preferred.
  • the material constituting the top sheet and the back sheet include non-sized paper, nonwoven fabric, water-permeable porous sheets such as polyethylene, polypropylene, hydrophilic polyethylene, and polypropylene, cellophane, vinylon fuinolem, and polyvinylinoleco Nore (PVA) finolem, a thermoplastic film that has been foamed to have fine communication holes at the time of film production, and that has been formed by adding an inorganic substance or a high melting point nucleating agent and stretching to form fine communication holes Paper, mixed paper of polyethylene and polypropylene and pulp, laminate of paper and non-woven fabric, sized paper, non-woven fabric with viscose formed cell opening film, and fine pores formed in cellulose film Plastic film made of thermoplastic resin, polyethylene paper, metal foil, A part or all of the nonwoven fabric
  • the biodegradable materials that make up the topsheet and backsheet are divided into non-meltable materials and fusible materials.
  • the non-melting material include pulp, cotton, wool, regenerated cellulose fiber, and solvent-spun cellulose fiber.
  • pulp include virgin pulp from wood and pulp recovered from waste paper.
  • the fusible material include aliphatic polyester and aliphatic polyester amide.
  • Specific examples of the aliphatic polyester include poly ( ⁇ - hydroxycarboxylic acid) such as polyglycolide and polylactic acid; poly (t-hydroxylatantone, poly (l)) 3-propiolactone, poly (l-3).
  • Specific examples of the aliphatic polyester amide include lactone and lactam copolymers such as a copolymer of £ -caprolactone and f-caprolactam.
  • Biodegradability was measured by the compost method.
  • the composting method was carried out in accordance with ISOCD144485, which is an application of ASTM D-5 33 38.92. That is, first, the amount of carbon contained in the test sample was measured by elemental analysis, and then 15 parts of the test sample was added to 800 parts of the inocula, and the test was carried out at 58 ° C for 40 days to produce the test sample. The amount of carbon dioxide was measured, and the amount of carbon dioxide generated relative to the amount of carbon dioxide contained in the test sample converted to carbon dioxide was expressed as the biodegradation rate (%).
  • some biodegradable samples may accelerate the decomposition of even the carbon content in the inoculum, so the value may exceed 100%.
  • the amount of water absorption was measured by the tea bag method for physiological saline (Example A) or tap water (Example B). That is, about 0.03 parts of the water-absorbent resin is put into a non-woven tea bag (80 mm X 50 mm), immersed in an excessive solution to swell the resin for 10 hours, and the tea bag is pulled up. After draining for 1 minute, the weight was measured. In addition, assuming that the same operation was performed using only the tea bag as a blank, the value obtained by subtracting the weight of the blank and the weight of the water-absorbent resin from the measured value was calculated as The divided value was defined as the water absorption (7 resins, 1 ⁇ ).
  • the water absorption rate was measured by the tea bag method for physiological saline (Example A) or tap water (Example B). That is, put about 0.03 parts of the water-absorbent resin into a non-woven tea bag (80 mm x 50 mm), immerse it in excess solution to swell the tree for 1 minute, pull up the tea bag and drain for 10 seconds. The weight was measured. The calculation of the water absorption (g g resin) is as described above.
  • Example A a seedling raising test using Snapdragon was performed, and 30 days after growth, the underground was observed and judged.
  • Example B as a plant growth test, a seedling growth test using cucumber and a growth test using transplanted geranium seedlings were performed. The results of the seedling raising test of Cucumber were determined based on the degree of leaf withering or the growth index observed 25 days after the growth. - ⁇
  • the growth index was calculated as follows. First, take out the grown plants together with their roots, wash them with water to remove mud, etc., absorb excess water with a paper towel, Alternatively, the fresh weight (g Z pieces) was measured per leaf and root. Then, it was air-dried, and the air-dry weight per g (g / pow) was calculated. Percentage of fresh weight and air dry weight when the test material is used assuming 100 as the fresh weight and air dry weight of the plants in the standard plot grown under the same growth conditions except that the test material is not used (%).
  • the growth test using the seedlings of Zeraem was carried out by transplanting the seedlings of Zeranium using the soil contaminated with the seedling blight and conducting a growth test for 60 days to calculate the control rate of the seedling blight.
  • a 100-fold diluted solution of Tachigaren wettable powder manufactured by Sankyo Co., Ltd. was perfused at 5 Om1 per strain.
  • Example A Example of surface crosslinked particles
  • the reaction product was transferred to a mixer equipped with a blade with stirring blades, and 400 parts of distilled water and 40 parts of methanol were added.
  • the gel was shredded at 800 rpm for 5 minutes. 19.7 parts of a sodium hydroxide aqueous solution was added dropwise over 2 hours. After the dropwise addition, the mixture was further stirred for 2 hours, and then weighed 7 wt. /.
  • the crosslinked polyaspartic acid polymer was sieved to obtain crosslinked polyaspartic acid particles having a particle size of 105 ⁇ to 500 ⁇ m.
  • crosslinked polyatalylic acid particles having a particle size of 105 m to 500 ⁇ m were obtained.
  • Crosslinked polyamino acid-containing particles surface-crosslinked were obtained in the same manner as in Example A1, except that the crosslinked polyaspartic acid particles obtained in Production Example A2 were used.
  • Crosslinked polyamino acid-containing particles having been surface crosslinked were obtained in the same manner as in Example A2, except that the crosslinked polyaspartic acid particles obtained in Production Example A2 were used.
  • Crosslinked polyamino acid-containing particles having been surface crosslinked were obtained in the same manner as in Example A3, except that the crosslinked polyaspartic acid particles obtained in Production Example A2 were used.
  • Crosslinked polyamino acid-containing particles surface-crosslinked were obtained in the same manner as in Example A1, except that 0.5 parts of epichlorohydrin was used instead of ethylene glycol diglycidyl ether.
  • a cross-linked surface-crosslinked polymer was prepared in the same manner as in Example A1, except that 0.5 parts of pentaerythritol-tris [] 3- (N-aziridinyl) propionate] was used instead of ethylene glycol diglycidyl ether. Amino acid-containing particles were obtained.
  • Crosslinked polyamino acid-containing particles having been surface crosslinked were obtained in the same manner as in Example A1, except that 0.5 parts of hexamethylene diisocyanate was used instead of ethylene glycol diglycidyl ether.
  • Example A10 Crosslinked polyamino acid-containing particles having been surface crosslinked were obtained in the same manner as in Example A2, except that 0.5 parts of hexamethylenediamine was used instead of glycerin.
  • Crosslinked polyamino acid-containing particles having been surface crosslinked were obtained in the same manner as in Example A1, except that the crosslinked polyaspartic acid particles obtained in Production Example A3 were used.
  • Crosslinked polyamino acid-containing particles that had been surface crosslinked were obtained in the same manner as in Example A1, except that the crosslinked polyaspartic acid particles obtained in Production Example A4 were used.
  • Crosslinked polyamino acid-containing particles surface-crosslinked were obtained in the same manner as in Example A1, except that the crosslinked poly- y -glutamic acid particles obtained in Production Example A5 were used.
  • the crosslinked polyaspartic acid particles obtained in Production Example A1 were directly used for evaluation. When the biodegradability was examined, the biodegradation rate was as good as 101%.
  • Particles water-absorbing polymer particles
  • Example A1 water-absorbing polymer particles
  • Example A growth test was performed in the same manner as in Example A10 except that the crosslinked polyaspartic acid-containing particles obtained in Comparative Example A1 were used. When observed 30 days later, root rot was observed in 25% of the seedlings.
  • Example B Example of surface-coated particles
  • the crosslinked polyaspartic acid obtained in Production Example B1 was pulverized and subjected to a mesh pass to obtain particles having a particle size of 105 Atm to 500 ⁇ m. Next, 10 parts of the particles were added to a solution of 0.5 part of sorbitan monolaurate (trade name: Reodol SP-L10, manufactured by Kao Corporation) dissolved in 50 parts of methanol, and mixed. . Thereafter, methanol was distilled off under reduced pressure to obtain core-shell particles having a shell phase containing sorbitan monolaurate.
  • sorbitan monolaurate trade name: Reodol SP-L10, manufactured by Kao Corporation
  • Example B1 The same treatment as in Example B1 was performed except that oleic acid monoglyceride (trade name: Leodor MO-60, manufactured by Kao Corporation) was used instead of sorbitan monolaurate.
  • oleic acid monoglyceride trade name: Leodor MO-60, manufactured by Kao Corporation
  • sorbitan monolaurate sorbitan monolaurate
  • Example B1 The procedure of Example B1 was repeated, except that polyoxyethylene (26) sorbitan monooleate (trade name: Reodol TW-012, manufactured by Kao Corporation) was used instead of sorbitan monolaurate. Core-shell particles having a shell phase containing oxyethylene (26) sorbitan monooleate were obtained.
  • polyoxyethylene (26) sorbitan monooleate trade name: Reodol TW-012, manufactured by Kao Corporation
  • Raryl trimethyl ammonium chloride instead of sorbitan monolaurate Core shell particles having a shell phase containing lauryltrimethylammonium chloride were obtained in the same manner as in Example B1, except that an id (Coatamine 24P, manufactured by Kao Corporation) was used.
  • Core-shell particles having a shell phase containing sodium octanesulfonate were obtained in the same manner as in Example B1, except that sodium octanesulfonate was used instead of sorbitan monolaurate.
  • Core-shell particles having a shell phase containing polyvinylpyrrolidone were obtained in the same manner as in Example B1, except that polybulpyrrolidone (weight average molecular weight: 630000) was used instead of sorbitan monolaurate.
  • the crosslinked polyaspartic acid obtained in Production Example B1 was pulverized and mesh-passed in the same manner as in Example B1 to obtain core particles having a particle size of 105 to 500 ⁇ . This core particle was used for evaluation as it was.
  • Example B 7 The crosslinked polyaspartic acid obtained in Production Example B1 was pulverized and mesh-passed to obtain core particles having a particle size of 0.5 to 1.5 mm.
  • the core particles were immersed in a 40% by weight solution of polysuccinic acid imid in DMF, pulled out of the solution, dried at 120 ° C under a reduced pressure of 60 mmHg for 20 hours, and dried. By removing the particles, particles coated with polysuccinic acid imide were obtained. The moisture absorption of the particles was 22.9% after 20 hours, and did not adhere for more than 20 hours in the stickiness test.
  • the main stem length was 13.5 cm
  • the stem dry weight was ⁇ .30 parts Z
  • the growth index was 12.8, and the leaf dry weight was 0.77 parts Z.
  • the growth index is 1 39
  • the root dry weight is 0.129 parts / line
  • the growth index is 160
  • the foliage dry weight is 1.16 parts Z lines
  • the growth index is 1 48 The remarkable growth promotion was seen.
  • the crosslinked polyaspartic acid obtained in Production Example B2 was pulverized and mesh-passed to obtain core particles having a particle diameter of 0.5 to 1.5 mm. 10 weight of these core particles. /.
  • Particles coated with ethyl cellulose were obtained in the same manner as in Example B8 except that ethyl cellulose was used instead of polylactic acid. The moisture absorption of these particles is 1.7.7 after 20 hours. /. In the stickiness test, it did not adhere for more than 20 hours.
  • a soil composition was obtained by sufficiently mixing 0.6 parts of the particles (granules) coated with ethyl cellulose with 200 parts of Supersol No. 2 (horticultural floor soil). This soil composition was subjected to a plant growth test using a cucumber in the same manner as in Example B7, under the limitation of the number of times of irrigation.
  • the main stem length was 13.7 cm
  • the stem dry weight was 0.32 parts
  • the growth index was 138
  • the leaf dry weight was 0.78 parts / tree.
  • the growth index is 142
  • the root dry weight is 0.137, 3 parts / row
  • the growth index is 170
  • the foliage dry weight is 1.17 parts
  • the growth index is remarkably 150. Growth promotion was observed.
  • Particles coated with polylactic acid were obtained in the same manner as in Example B8.
  • a tablet was obtained in the same manner as in Example B10, except that 300 parts of the particles and 6 parts of Tachigaren wettable powder (manufactured by Sankyo Co., Ltd.) were mixed and used.
  • This tablet and 100 parts of powdered polylactic acid (trade name: LACE A, manufactured by Mitsui Chemicals, Inc.) are mixed at a resin temperature of 180 to 190 ° C, and the tablet is pulled up and cooled to recover polylactic acid.
  • LACE A powdered polylactic acid
  • Example B1 With respect to the particles of the crosslinked polyacrylic acid obtained in Comparative Production Example B1, a growth test was carried out in the same manner as in Example B7 while limiting the number of times of irrigation. As a result, when the resin and the soil were mixed, the resin became sticky due to the stickiness of the resin and was not uniformly dispersed. Also, as a result of the plant growth test, after 25 days, the main stem length was 12.7 cm, the stem dry weight was 0.17 parts / tree, the growth index was 80, the leaf dry weight was 0.47 parts, and Z The growth index was 85, the root dry weight was 0.074 parts Z, the growth index was 91, the foliage dry weight was 0.71 parts Z, and the growth index was 91, indicating growth inhibition.
  • the crosslinked polyaspartic acid obtained in Production Example 1 was pulverized and mesh-passed to obtain particles having a particle size of 0.5 to 1.5 mm.
  • the moisture absorption of the particles was 25.5% after 20 hours, and adhered within 10 minutes as a result of the stickiness test.
  • the particles were subjected to a growth test under the restriction of the number of times of irrigation in the same manner as in Example B7.
  • the main stem length was 13.4 cm
  • the stem dry weight was 0.30 parts / tree
  • the growth index was 128, the leaf dry weight was 0.78 parts
  • the growth index was 141
  • the dry weight of the roots was 0.1274 parts
  • Z the growth index was 158
  • the dry weight of foliage was 1.16 parts / tree
  • the growth index was 148, which was good.
  • the resin solidifies due to the stickiness of the resin when mixing the resin and soil. And did not disperse uniformly.
  • Tatigalen wettable powder manufactured by Sankyo Co., Ltd.
  • a growth test of geranium was performed in the same manner as in Example 10. As a result, root rot was observed in 30% of the seedlings 60 days after transplantation.
  • a growth test of geranium was performed in the same manner as in Example B10 except that the particles of the crosslinked polyacrylic acid obtained in Comparative Production Example B1 were used. As a result, root rot was observed in 20% of the seedlings 60 days after transplantation.
  • the cross-linking has no accumulation property in the soil after use, has a high water absorption rate, and has an excellent water retention ability and aeration effect.
  • Polyamino acid-containing particles can be provided. Specifically, for example, the following effects 1 to 3 are achieved.
  • the crosslinked polyamino acid-containing particles of the present invention have an excellent aeration effect of maintaining air circulation in order to maintain root respiration and suppress root rot, as well as a water retention effect.
  • the crosslinked polyamino acid-containing particles of the present invention do not accumulate in soil after use, and are excellent in terms of environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyamides (AREA)

Description

明 細 書
架橋ポリアミノ酸含有粒子 技術分野
本発明は、 表面架橋された生分解性架橋ポリアミノ酸含有粒子、 表面がコー ティング材又は樹脂により被覆された生分解性架橋ポリアミノ酸含有粒子、 及び それらの製造方法に関する。 さらに詳しくは、 優れた吸水性を有し、 吸水速度が 速く、 廃棄時には容易に分解する架橋ポリアミノ酸含有粒子に関する。 背景技術
[吸水性樹脂の技術的背景]
吸水性樹脂は、 自重の数十倍から数千倍の水を吸収できる樹脂であり、 例えば アクリル系吸水性樹脂などが知られている。 これらの吸水性樹脂は、 その高い吸 水性から広く使い捨て衛生用品に使用されている。 しかし、 これまでの吸水性樹 脂は分解性がなく、 それを含む衛生用品の処理方法に問題がある。 したがって、 吸水速度が速く、 生分解性を有する吸水性樹脂が強く要望されていた。
[吸水性樹脂を用いた保水材]
一方、 自重の数百倍もの水を吸水する高吸水性樹脂を土壌に混合して、 土壌の 保水性を向上させたり有効成分を徐放させることはよく知られており、 特に、 砂 漠緑化や砂漠化防止といった環境保全において重要な役割を果たすことが期待さ れている。 しカゝし、 保水材に生分解性が無いと、 長期にわたる使用では地中に蓄 積されることになり、 問題を引き起こす場合がある。
[架橋ポリアミノ酸系樹脂の技術的背景]
ポリアミノ酸は生体内に吸収されても酵素作用により消化吸収され、 しかも、 生体内での抗原性を示さず、 分解生成物も生物の皮膚や粘膜に対する炎症性が低 いことが明らかにされているので、 人に対してもやさしい素材である。 これらは、 古くより生体高分子モデルとして研究されてきた他に、 人工皮革、 薬剤の担体、 化粧品等への用途研究も行われている。 このような樹脂の例として、 ポリアスパ ラギン酸、 ポリ一 γ—グルタミン酸、 ポリリジンが自然界より発見されている。 欧州特許第 94/0 96 28号には、 ポリアスパラギン酸及びそのコポリマー 等のポリアミノ酸が、 植物による肥料吸収を促進し、 植物成長を助長することが 開示されている。 しかし、 ポリアミノ酸自体は水溶性であるため、 土壌中で灌水 等により、 流出し、 効果を持続させるのは難しい。 そこで、 本発明者らは、 育苗 用ポットに使用される育苗用土壌組成物を開発した (特開平 8 _ 3 3 7 7 7 5 号) 。 この組成物は架橋したポリアスパラギン酸を含む組成物であり、 植物の根 の活着を促進するので有用である。 これちのポリアミノ酸を架橋して得られる樹 脂は、 水を吸収して膨潤し、 いったん吸収した水は荷重をかけても放出しにくい という性質を持つ。 このように保水性を有し、 生分解性を有するので、 ポリアミ ノ酸は地球環境にやさしい素材である。 これらの架橋ポリアミノ酸の製造法とし ては、 例えば、 酸性アミノ酸を架橋させてハイ ド口ゲルを得る方法 (Ak ama t s uら、 米国特許第 3 9488 6 3号;特公昭 5 2— 4 1 3 0 9号、 岩月ら、 特開平 5— 27 94 1 6号) 、 ポリアスパラギン酸、 ァスパラギン酸と架橋剤を 熱により反応する方法 (Sikesら、 特表平 6— 506 244号;米国特許第 5 2 4 706 8及び同第 5 284 9 3 6号、 鈴木ら、 特開平 7— 3 0 9 94 3号、 原 田ら、 特開平 8— 5 9 8 20号) 、 ポリ _γ—グルタミン酸に γ線を照射する方 法 (国岡ら、 高分子論文集、 50巻 1 0号、 75 5頁 (1 9 9 3年) ) がある。 また、 本発明者らは、 特開平 7— 224 1 6 3号においてポリコハク酸イミ ド をジァミンにて架橋し、 残りのイミ ド環をアル力リで加水分解して塩水吸水能の 高い吸水性樹脂を得る方法について開示した。
吸水性樹脂は、 水と接触すると吸水、 膨潤し、 表面近傍はゲル状となり柔らか くなる。 したがって、 隣接する粒子同士の接触において、 ゲル状粒子が変形し、 ゲル間の隙間がなくなることにより、 水の流通経路が狭くなったり失われたりし、 水の浸透が妨げられる。 この現象はゲル ·プロッキングと呼ばれており、 この現 象により吸水速度は著しく低下することがある。 特に、 衛生用品に用いられた場 合、 これに体重がかかるのでこの現象は顕著である。 また例えば、 吸水性樹脂を 農園芸用の屎水材として用いた場合、 -保水効果はあるものの、 土中でゲルが変形 し、 土と土の空間を埋めてしまうので、 根の呼吸の維持と、 根腐れを抑制するた めに、 空気の流通を維持する通気効果が不十分になる。 さらに、 衛生用品に用いられる吸水性樹脂は、 尿、 血液、 経血、 汗等の体液を 大量に、 かつ速やかに吸収することが要求される。 その吸水速度は、 その表面積 に影響を受ける。 使用する吸水性樹脂粒子の総重量が一定の場合、 その粒子が大 きいほど表面積の和は小さくなり、 水と接触する面積が小さいくなるので吸水速 度は遅くなる。 逆に、 その粒子が細かくなるほど表面積の和は大きくなり、 吸水 速度は速くなる。 ただし、 吸水性樹脂の粒子が細かくても、 水と接触したとき、 所謂 『ママコ』 が発生し、 これが原因で吸水速度が速くならない場合がある。 こ の 『ママコ』 とは、 吸水性樹脂が水と接触すると、 接触した表面部分のみが吸水 し、 表面が粘着性を示すようになり、 粒子集合体の内部への水の浸透を妨げるよ うになる状態と考えられている。
また、 吸水性樹脂を土と混合したり、 散布する等の作業を行う際に、 湿度が高 いと、 この樹脂が空気中の水分を吸湿し、 表面がベたつき易くなり、 農具、 靴等 に付着し易くなる。 また、 土と混合する際に、 土中の水分を吸収してゲルが固ま りとなり易く、 均一な混合が難しくなる。 さらに、 植物体に有用成分を与える場 合、 吸水性樹脂は短時間で有用成分を放出するので、 長期にわたり有効成分の効 果を持続するような徐放性は期待できない。 発明の開示
本発明の第一の目的は、 上述のような従来技術の課題を解決し、 吸水速度が速 く、 生分解性を有し、 優れた保水能及び通気効果を有する架橋ポリアミノ酸含有 粒子及びその製造方法を提供することにある。
本発明の第二の目的は、 吸水速度が速く、 生分解性を有し、 吸湿や土中の水分 によるべとっきが無く、 有効成分の徐放性を有し、 優れた保水能を有する架橋ポ リアミノ酸含有粒子及びその製造方法を提供することにある。
本発明者らは、 上記課題を解決すべく鋭意検討した結果、 コア Zシュル構造を 有する架橋ポリァミノ酸含有粒子が非常に有効であることを見出し、 本発明を完 成するに至った。 - すなわち本発明は、 コア相表面の少なくとも一部が少なくとも一層のシェル相 により被覆されたコアノシヱル構造を有し、 前記コア相は少なくとも架橋ポリア ミノ酸含有粒子により構成されるものである架橋ポリアミノ酸含有粒子である。 さらに、 本発明者らは、 鋭意検討の結果、 生分解性を有する架橋ポリアミノ酸 の表面を架橋することによって、 吸水の際のゲル 'ブロッキングを防止でき、 優 れた吸水速度や保水効果及び通気効果を発現できることを見出し、 本発明の第一 の実施形態を完成するに至った。 また、 生分解性を有する架橋ポリアミノ酸の表 面をコーティング材ゃ樹脂で被覆することによって、 ママコ現象を防止でき、 優 れた吸水速度、 ベとつき防止、 徐放性や保水効果を発現できることを見出し、 第 二の実施形態を完成するに至った。
すなわち、 本発明の第一の実施形態は、 コア相表面の少なくとも一部が少なく とも一層のシェル相により被覆されたコア Zシェル構造を有し、 前記コア相は少 なくとも架橋ポリアミノ酸含有粒子により構成され、 前記シェル相は前記コア相 に含まれる架橋ポリアミノ酸よりも架橋密度が高い架橋ポリアミノ酸を含有して 構成されるものである表面架橋された架橋ポリアミノ酸含有粒子である。
さらに第一の実施形態は、 この表面架橋された架橋ポリアミノ酸含有粒子を製 造する為の方法であって、 架橋ポリアミノ酸含有粒子の表面の少なくとも一部を、 架橋ポリアミノ酸のカルボキシル基と反応可能な官能基を一分子中に二つ以上有 する表面架橋剤を用いて架橋させることにより、 架橋密度が高い架橋ポリアミノ 酸を含有する少なくとも一層のシェル相を形成する工程を有する表面架橋された 架橋ポリアミノ酸含有粒子の製造方法をも包含する。
また、 第二の実施形態は、 コア相表面の少なく とも一部が少なく とも一層の シェル相により被覆されたコアノシェル構造を有し、 前記コア相は少なくとも架 橋ポリアミノ酸含有粒子により構成され、 前記シェル相はコーティング材及び/ 又は樹脂を含有して構成されるものである架橋ポリアミノ酸含有粒子である。 さらに第二の実施形態は、 この架橋ポリアミノ酸含有粒子を製造するための方 法であって、 架橋ポリアミノ酸含有粒子の表面にコーティング材溶液又は溶融状 態のコーティング材、 若しくは、 樹脂溶液又は溶融状態の樹脂を塗布することに より、 該表面の少なくとも一部に少な-くとも一層のシュル相を形成する工程を有 する架橋ポリアミノ酸含有粒子の製造方法をも包含する。
さらに本発明は、 これらの架橋ポリアミノ酸含有粒子を含む衛生材料及び土壌 改良剤をも包含する。 発明を実施するための最良の形態
( 1 ) 架橋ポリアミノ酸の構造
本発明の粒子は、 架橋ポリアミノ酸を用いて製造される。 この架橋ポリアミノ 酸は、 ポリアミノ酸の一部が架橋した構造である。 本発明に使用される架橋ポリ ァミノ酸の基本骨格は、 ァミノ酸又はァミノ酸誘導体が脱水縮合したポリぺプチ ドからなる。 アミノ酸類の具体例としては、 以下の四種①〜④に分類される 2 0 種類のアミノ酸を挙げることができる。
① . 非極性、 すなわち疎水性の R基をもつアミノ酸: ァラニン、 ノくリン、 ロイ シン、 イソロイシン、 メチォニン、 トリプトファン、 フエニノレアラニン、 プ 口リン。
② . 極性だが電荷のないァミノ酸: グリシン、 セリン、 トレオニン、 システィ ン、 チロシン、 ァスパラギン、 グノレタミン。
③ . 正電荷をもつ R基を有するアミノ酸: リジン、 ヒスチジン、 アルギニン。
④ . 負電荷をもつ R基を有するアミノ酸: ァスパラギン酸、 グルタミン酸。 他の具体例としては、 L一オル二チン、 一連のひ一アミノ酸、 β—ァラニン、 γ—ァミノ酪酸、 中性アミノ酸、 酸性アミノ酸、 酸性アミノ酸の ω—エステル、 塩基性アミノ酸、 塩基性アミノ酸の Ν置換体、 ァスパラギン酸一 L—フエニルァ ラニン 2量体 (アスパルテーム) 等のアミノ酸及びアミノ酸誘導体、 L一システ イン酸等のアミノスルホン酸等を挙げることができる。 α—アミノ酸は、 光学活 性体 (L体、 D体) であっても、 ラセミ体であってもよレヽ。
また、 ポリアミノ酸は他の単量体成分を含む共重合体であってもよい。 共重合 体の単量体成分の具体例としては、 ァミノカルボン酸、 ァミノスルホン酸、 ァミ ノホスホン酸、 ヒ ドロキシカルボン酸、 メルカプトカルボン酸、 メルカプトスル ホン酸、 メルカプトホスホン酸等が挙げられる。 さらに、 多価ァミン、 多価アル コール、 多価チオール、 多価カルボン酸、 多価スルホン酸、 多価ホスホン酸、 多 価ヒ ドラジン化合物、 多価力ルバモイル化合物、 多価スルホンアミ ド化合物、 多 価ホスホンアミ ド化合物、 多価エポキシ化合物、 多価イソシアナ一ト化合物、 多 価イソチオシアナート化合物、 多価アジリジン化合物、 多価カーバメイ ト化合物、 多価力ルバミン酸化合物、 多価ォキサゾリン化合物、 多価反応性不飽和結合化合 物、 多価金属等も挙げられる。 共重合体である場合、 ブロック · コポリマーで あっても、 ランダム 'コポリマ一であっても構わない。 また、 グラフト構造のも のでも構わない。
これらの中では、 生分解性に優れたホモポリマーである、 ポリアスパラギン酸、 ポリグルタミン酸、 ポリリジンを基本骨格とすることが好ましい。 さらに、 高い 吸水性を有するポリァスパラギン酸、 ポリグルタミン酸を基本骨格とすることが より好ましく、 特に、 工業的生産に適したポリアスパラギン酸が最も好ましい。 本発明に使用する架橋ポリアミノ酸の側鎖構造については、 置換基が無いポリ ァミノ酸残基であっても、 ポリアミノ酸残基に他の置換基を導入したものであつ ても構わない。 例えばポリアスパラギン酸は、 単純にイミ ド環を開環した構造な のでカルボキシル基を持つが、 この構造に他の置換基をペンダント基として導入 しても構わない。 他の置換基としては、 リジン等のアミノ酸残基、 カルボキシル 基を有する炭化水素基、 スルホン酸基を有する炭化水素基等が挙げられる。
また、 酸性ポリアミノ酸のカルボキシル基もしくは側鎖基は、 ポリマー主鎖の アミ ド結合に対し、 どの位置に結合していてもよい。 例えば、 ァスパラギン酸残 基の場合は、 α位に置換されていても、 i3位に置換されていても構わない。 ダル タミン酸残基の場合は、 α位に置換されていても、 γ位に置換されていても構わ ない。 酸性ポリアミノ酸の基本骨格と側鎖部分の結合部分は、 特に限定されない。 例えば、 アミ ド結合、 エステル結合、 チォエステル結合等が挙げられる。
また架橋ポリアミノ酸のカルボキシル基は、 水素原子が結合した形でも、 塩を 構成した形でも構わない。 力ルポキシル基の対イオンとしては、 アルカリ金属塩、 アンモニゥム塩、 アミン塩等がある。
また、 表面架橋された架橋ポリアミノ酸含有粒子 (第一の実施形態) において、 全粒子中の架橋ポリァミノ酸分子内に存在するカルボキシル基の中和度 Ν [モ ル0 /0] は、 5 0〜 1 0 0モル0 /0が好ま-しぐ、 5 5〜 9 5モル%がより好ましく、 6 0〜9 0モル。 /0が特に好ましい。 中和度を高くすると、 架橋ポリアミノ酸のィ オン強度が高くなるので、 吸水量が向上する。 なお、 表面架橋された架橋ポリア ミノ酸含有粒子 (第一の実施形態) の製造過程における表面架橋前の粒子中の架 橋ポリアミノ酸分子内に存在するカルボキシル基の中和度 N' [モル。 /0] につい ては後述する。
本発明の粒子中のポリアミノ酸は、 架橋体である。 架橋ポリアミノ酸の架橋部 分及び側鎖部分は、 無置換でもよく、 置換していてもよい。 置換基としては、 炭 素原子数 1から 1 8の分岐していてもよいアルキル基、 炭素原子数 3から 8のシ クロアルキル基、 ァラルキル基、 置換していてもよいフエニル基、 置換していて もよいナフチル基、 炭素原子数 1から 1 8の分岐していてもよいアルコキシ基、 ァラルキルォキシ基、 フエ二ルチオ基、 炭素原子数 1から 1 8の分岐していても よいアルキルチオ基、 炭素原子数 1から 1 8の分岐していてもよいアルキルアミ ノ基、 炭素原子数 1から 1 8の分岐していてもよいジアルキルアミノ基、 炭素原 子数 1から 1 8の分岐していてもよいトリアルキルアンモニゥム基、 水酸基、 ァ ミノ基、 メルカプト基、 スルホニル基、 スルホン酸基、 ホスホン酸基及びこれら の塩、 アルコキシカルボニル基、 アルキルカルボニルォキシ基等が挙げられる。
( 2 ) 架橋ポリアミノ酸の製造方法
本発明に用いる架橋ポリアミノ酸を製造する方法は、 特に限定されない。 例え ば、 従来技術の説明において言及した、 特開平 7— 224 1 63号、 高分子論文 集 50卷 10号, 755頁 (1 993年) 、 米国特許第 3 948863号 (特公 昭 52— 41 309号) 、 特開平 5— 2794 1 6号、 特表平 6— 506244 号 (米国特許第 5247068及び同第 5284936号) 、 特開平 7— 309 943号に記載の方法を用いることができる。
その他、 ポリグルタミン酸の架橋剤による架橋、 ポリリジンの架橋剤による架 橋、 ポリアスパラギン酸の γ線架橋、 ポリリジンの γ線架橋、 ポリアスパラギン 酸、 ポリグルタミン酸、 ポリリジンの電子線による架橋などにより架橋ポリアミ ノ酸を製造することができる。
( 3 ) 架橋ポリアミノ酸含有粒子の構造、 大きさ
本発明の架橋ポリアミノ酸含有粒子ば、 内部のコア相と、 その表面の少なくと も一部を被覆するコア/シヱノレ構造を有する。 特に、 第一の実施形態における シェル相は、 コア相に含まれる架橋ポリアミノ酸よりも架橋密度が高い架橋ポリ アミノ酸を含んで構成される。 また、 第二の実施形態におけるシェル相は、 コー ティング材及び Z又は樹脂を含有して構成される。
[語 「粒子」 の概念]
本明細書において用いる 「粒子」 なる語の概念は、 これらの語が高分子化学に おレヽて一般的に有する概念を完全に包含するが、 必ずしも等価なものではなレ、。 本明細書において用いる 「粒子」 の走査電子顕微鏡により観察される形態に関し ては、 球状の態様のみならず、 例えば、 ラズベリー状又は金米糖 (こんぺいとう、 ポルトガノレ語の c o n f e i t o ) 状の多くの突起を有するような態様、 赤血球 状の偏平な態様、 ラグビーボール状の回転楕円体様の態様、 大腸菌状の紡錘形様 の態様、 雷おこし (浅草名物の菓子) 状の多孔質な態様等をも包含する。 本明細 書において用いる 「粒子」 なる語の概念は、 例えば、 ポリマーェマルジヨン、 ラ テックス、 ポリマ一サスペンジョンを構成するような平均粒子直径 1 n m〜l 0 / m程度のマイクロスフィァのみならず、 平均粒子直径 1 0 /x m〜l 0 0 mm程 度の粒子をも包含する。 ただし、 本発明においては、 平均粒子直径 1 0 0 μ π!〜 2 5 m m程度の粒子が一般的な態様である。
このように、 本明細書において用いる 「粒子」 なる語は、 これらの語が高分子 化学において一般的に有する概念と、 必ずしも等価なものではないのではあるが、 本発明に係るポリマーの不均一な系の本質的態様について屡々言及するに当たり 便宜的に用いるものとする。
[高次粒子]
本発明において、 粒子は一次粒子であっても、 高次粒子であってもよい。 すな わち、 複数個の一次粒子の集合体又は凝集体である二次粒子であっても、 複数個 の二次粒子の集合体又は凝集体である三次粒子であっても、 複数個の三次粒子の 集合体又は凝集体である四次粒子であっても、 さらには、 それ以上の高次粒子で あっても、 本発明の効果を奏する限りにおいて、 特に制限されない。
[コアノシェル構造を有する粒子]
本明細書において用いる 「コア」 、 —「ジエル」 及び 「コア zシェル」 なる語は、 これらの語が高分子化学において一般的に有する概念を完全に包含するが、 必ず しも等価なものではない。 例えば、 本発明に係る 「コア zシェル」 粒子に関して は、 「コア」 が少なくとも部分的に 「シェル」 に包まれている態様を包含する。 このように、 本明細書において用いる 「コア」 、 「シェル」 及び 「コアノシェ ル」 なる語は、 これらの語が高分子化学において一般的に有する概念と、 必ずし も等価なものではないのではあるが、 本発明に係るポリマーの不均一な系の本質 的態様について屡々言及するに当たり便宜的に用いるものとする。
なお、 高分子化学においては、 一般的に、 「コア (c o r e) 」 なる語は、 c e n t e r , n u c l e u s , 及び s e e dなる語と等価に用レヽられ、 「シェ ノレ ( s h e 1 1 ) _) なる語は、 s k i n, h u s k, s h e a t h, 及び r o b eなる語と等価に用いられる。 したがって、 本明細書において用いる 「コア」 及 び 「シェル」 なる語も、 それらと等価に用いるものとする。
[粒子の構造]
コア Zシュ /レ構造としては、 例えば、 以下の態様①〜⑦を挙げることができる。 ただし、 これらのみに限定されるものではない。
① . コア粒子表面がシュルで覆い尽くされた典型的なコアノシェル型の態様。
② . コア粒子表面上にシェルが一部堆積し、 完全には覆い尽くされていない構造 の態様。
③ . シェルにより複数のコア粒子が封じ込められ、 断面がサラミソーセージ状の いわゆる 『サラミ構造』 の態様。
④ . コア粒子が中空粒子である態様。
⑤ . コア粒子が多孔質粒子であって、 シェルを構成する材料により、 多孔質粒子 の空隙が充填されていなレ、態様。
⑥ . コア粒子が多孔質粒子であって、 シェルを構成する材料により、 多孔質粒子 の空隙の少なくとも一部が充填されている態様。
⑦ . コア粒子が多孔質粒子であって、 シェルを構成する材料により、 多孔質粒子 の空隙の少なくとも一部が充填されることなく被覆されて、 空隙相が存在す る態様。
本発明の粒子は、 実質的に目的とする機能が発現できれば、 シェル相が一層で あっても、 多層であっても構わない。 また、 特に第一の実施形態においては、 コ ァ相とシュル相が連続的に変化していても良く、 その場合コア相とシュル相の境 界は必ずしも明確ではない。 その場合であっても、 粒子表面と粒子内部に架橋密 度勾配を有し、 粒子表面の架橋密度の方が高いのであるから、 芯近傍のコア相と 表面近傍のシュル相の存在を認めることは可能であり、 これも本発明の粒子であ る。 また、 コア部分とシェル部分が完全に分離した構造であっても、 シェル部分 がコア部分に浸透した状態であっても構わない。 また、 コア相とシェル相の間に 気相を含有させても構わない。
また、 第二の実施形態においては、 コア相表面のシェル相による被覆面積が広 くなると、 ベたつき防止、 有効成分の徐放性等の機能発現が強化される。 それに 対し、 架橋ポリアミノ酸そのものが持つ吸水性の発現は被覆面積が狭い方が顕著 になる。 このシェル相による被覆面積は、 シェル相を形成する材料の特性、 目的 とする用途等に応じて、 適宜決定すればよい。
本発明の粒子のコア相は、 架橋ポリアミノ酸を含む。 コア相は、 架橋ポリアミ ノ酸単独で構成してもよいし、 必要により他の有用成分を含有しても構わない。 特に第二の実施形態においては、 有用成分の徐放の機能も良好に奏するので、 有 用成分を含有すると非常に効果的である。 他の有用成分としては、 例えば、 水分、 増量剤、 顔料、 紫外線吸収剤、 酸化防止剤、 防カビ剤、 香料、 消臭剤、 有機肥料、 生物肥料、 化学肥料、 堆肥、 鶏糞、 有機質素材、 p H調整斉 lj、 界面活性剤、 発泡 剤、 腐食物質、 保水性保肥性改良鉱物質粉末材 (ベントナイ ト、 ゼォライ ト粉末 等) 、 農薬 (殺虫剤、 殺菌剤、 除草剤、 防黴剤等) 、 植物活力剤、 植物延命剤、 害虫及び動物の忌避剤、 土壌浸透剤、 微量元素の栄養成分、 珪藻土、 粘土、 石灰、 植物ホルモン、 ミネラル、 コーラノレサンド、 活性炭、 炭酸カルシウム、 炭酸マグ ネシゥム、 カオリン、 クレー、 ァ /レミナ、 シリカ、 酸化チタン、 タノレク、 ケイソ ゥ土、 マイ力、 シラスバルーン、 ガラスビーズ等の無機質粒子、 合成樹脂製のぺ レット、 ビーズ、 粗粒、 木の小片、 木粉、 おがくず、 穀物粉、 植物の殻や茎の粉 砕物、 植物の種、 有用菌体、 抗微生物剤等が挙げられる。 また、 フェルグソン等 の微放射性鉱物、 遠赤外線放射性セラミックス、 大谷石、 ゼォライ ト等のェチレ ンガス吸収性鉱物等を添加しても構わない。 さらに、 パーライ ト、 パミス、 バー ミキユラィ ト等の無機系保水材を添加しても構わない。
有用成分である肥料は、 特に限定されず、 目的とする植物、 施工法に応じて選 定すればよい。 その具体例としては、 硫安、 尿素、 石灰窒素、 塩安、 硝安、 熔成 カリウム、 硫酸カリウム、 塩化カリウム、 硝酸カリウム、 重炭酸カリウム、 一り ん安、 二りん安、 過りん酸石灰、 重過石、 過石、 消石灰、 生石灰、 熔りん、 重焼 りん、 焼成りん、 硫酸マグネシウム、 水酸化マグネシウム、 炭酸マグネシウム、 珪酸カルシウム、 炭酸カルシウム、 骨粉、 カリ苦土、 I B、 CDU、 UF、 苦土 過石、 混合りん肥、 ほう酸塩肥料、 魚肥、 植物油粕、 有機質肥、 普通化成、 尿素 入り硫加りん安、 I Bりん加安、 りん硝安カリウム、 尿素入り硫加りん安、 I B CDU りん加安、 塩化りん安、 苦土塩加りん安、 硫加りん安、 塩加りん安、 り ん加安、 硫加りん安、 りん加安、 硫加りん安、 マグネシウム入り硫加りん安、 尿 素りん加安、 マグネシウム入り尿素硫加りん安、 硝りん加安、 尿素硫加りん安、 塩加りん安、 苦土入り尿素りん加安、 りん加苦土等の高度化成、 NK化成、 りん 硝安系高度化成、 りん硝安カリ系高度化成、 有機入り化成肥料、 マグネシウム入 り化成、 コ一ティング肥料等が挙げられる。 その形態は、 特に限定されず、 顆粒、 粉末、 水溶液等が挙げられる。
有用成分である農薬は、 特に限定されず、 目的とする植物、 施工法に応じて選 定すればよレ、。 その具体例としては、 PCP粒剤、 P CP混合粒剤、 2.4 PA 粒剤、 2.4 P A混合粒剤、 MCP粒剤、 ^ 〇じー^!じ?粒剤、 MCPB粒剤、 MCPCA粒剤、 CNP粒剤、 CNP—MCP IJ、 DBN粒剤、 CAT粒剤、 プロメ トリン粒剤、 プロメ トリンー MC P B粒剤、 シメ トリン粒剤、 シメ トリン 混合粒剤、 トリフルラリン粒剤、 ベンチォカーブ粒剤、 ベンチォカーブーシメ ト リン粒剤、 ベンチォカーブ— CNP粒剤、 N I P粒剤、 N I P— MCP粒剤、 モ リネ一トーシメ トリン粒剤、 塩素酸塩類等の除草剤;ジメ トエート粒剤、 ェチル チオメ トン粒斉 lj、 ェチルチオメ トン混合粒剤、 DEP粒剤、 MPP粒剤、 ダイァ ジノン粒剤、 ダイアジノン混合粒剤、 カルタップ粒剤、 カルタップ混合粒剤、 ク 口フエナミジン粒剤、 クロフヱナミジン混合粒剤等の殺虫剤; DC I P粒剤、 D B C P粒剤等の殺線虫剤; I B P粒剤等の殺菌剤;等が挙げられる。
有用成分である有用菌体の具体例どしては、 VA菌根菌、 根粒菌、 シユードモ ナス、 バチルス等が挙げられる。
有用成分である抗微生物剤の具体例としては、 キヤブタン、 ダリオジン、 ベン レート、 チォベンダゾール、 アミカール、 バイオサイ ド、 カスガマイシン、 グリ セオフルビン、 ポリォキシン等が挙げられる。
有用成分である植物ホルモンの具体例としては、 2 , 4 —ジクロロフヱノキシ 酢酸、 ナフタレン酢酸、 インドール酢酸等の発根とカルス化を促進するォーキシ ン; 力イネチン、 ゼァチン、 インペンテニルアデニン、 ベンジルアデニン等の芽 の分化を促進するサイ トカイユン;等が挙げられる。 その他、 茎や葉梢の成長を 促進するジベレリン、 成長バランスの調節作用を有するアブシジン酸、 開花ゃ果 実の成熟を促進するエチレン等が挙げられる。 必要となるホルモンは植物の種類 によっても異なる。 これらは単独でも、 2種以上を混合して用いてもよい。
有用成分であるミネラルの具体例としては、 カルシウム、 マグネシウム、 リチ ゥム、 ストロンチウム、 ノ リウム、 アルミニウム等がある。 これらは、 特に限定 されないが、 例えば炭酸塩、 硫酸塩、 酢酸塩、 硝酸塩、 シユウ酸塩、 リン酸塩、 水酸化物、 塩化物、 臭化物、 ヨウ化物等の形で用いられる。
また、 粒子を形成するため、 もしくは粒子の崩壊のため、 さらには粒子の安定 化及び取り扱いを良くするために、 担体、 崩壊剤、 賦形剤、 成形助剤、 増量剤、 滑沢剤、 補強剤、 可塑剤、 分散剤、 湿潤剤、 潤滑剤、 着色剤、 発泡剤、 消泡剤、 帯電防止剤、 電荷制御剤、 芳香剤、 安定剤、 緩衝剤、 撥水剤、 乾燥剤、 水溶性担 体、 鉱物質担体、 溶剤等の各種任意成分を含有しても構わない。
任意成分である担体の具体例としては、 ろう石クレー、 カオリン、 セリサイト、 ジークライ ト、 タルク、 ベントナイ ト、 酸性白土、 炭酸カルシウム、 珪石、 珪砂、 けいそう土、 軽石、 ゼォライ ト、 パーライ ト、 バーミキユラィ ト、 消石灰、 尿素、 硫安、 塩安、 化成肥料、 ブラスティック発泡体、 鉱滓類、 フライアッシュ、 ぬか、 ふすま、 もみがら、 おがくず、 木質粉、 パルプフロック、 大豆粉、 とうもろこし 茎、 堅果外皮、 果樹核等が挙げられる。
任意成分である崩壊剤の具体例としては、 医薬用途に用いる場合は、 寒天、 澱 粉、 ヒ ドロキシプロピルスターチ、 アルギン酸ソーダ、 カルボキシメチル澱粉 エーテル、 アラビアゴム、 トラガンド、 ゼラチン、 カゼイン、 セルロース、 カル ボキシメチ /レセノレロース、 カノレボキシメチノレセノレロースカノレシゥム、 ツイ一ン、 プル口ニック、 ラウリル酸ソーダ、 カルボキシリックレジン等が挙げられ、 農園 芸用途に用いる場合は、 硫安、 塩化カリウム、 食塩、 ベントナイ ト、 尿素、 ァニ オン界面活性剤等が挙げられ、 食品用途に用いる場合は、 食塩、 グルタミン酸 ソ一ダ、 イノシン酸ソーダ、 デキス トリン、 澱粉、 寒天等が挙げられる。
以上挙げた各種の添加剤は、 環境保全の点から生分解性を有するものが好まし い。 また、 コア相には必要に応じて架橋ポリアミノ酸以外の吸水性樹脂を、 架橋 ポリアミノ酸と混合して用いてもよレ、。
また、 コア相には必要に応じてバインダーを用いてもよい。 バインダーの具体 例としては、 十分に発酵させた油カス、 粘土、 ゼラチン、 アラビアゴム、 ァカシ ァ粉末、 ポリビニルピロリ ドン、 メチルセルロース、 カルボキシメチルセルロー ス、 ヒ ドロキシェチルセルロース、 デキストリン、 澱粉、 アルギン酸ソーダ、 ァ クリル酸エステル系ラテックス、 スチレンブタジエン系ラテックス、 酢酸ビニル 系ラテックス、 アク リル酸一アク リルアミ ドプロパンスルホンアミ ドーコポリ マ一、 ポリビュルアルコール部分鹼化物、 ジォクチルフタレート等が挙げられる。 これらバインダ一は、 環境保全の点から生分解性を有するものが好ましい。
またコア相は、 界面活性剤 (もしぐは土壌浸透剤) を含んでいても構わない。 界面活性剤 (もしくは土壌浸透剤) は特に限定されない。 その.具体例としては、 ラウリル硫酸ナトリウム、 ラウリル硫酸トリエタノールァミン、 ラウリル硫酸ァ ンモニゥム等のアルキル硫酸塩; ポリオキシエチレンラウリルエーテル硫酸ナト リウム、 ポリオキシエチレンラウリルェ一テル硫酸トリエタノールァミン等のポ リォキシエチレンアルキルエーテル硫酸エステル塩; ラゥリルスルホン酸ナトリ ゥム、 ラウリルスルホン酸カリウム、 ラウリルスルホン酸トリエタノールァミン、 ラウリルスルホン酸アンモニゥム、 ステアリルスルホン酸ナトリゥム等のアルキ ルスルホン酸塩; ドデシルジフエ二ルェ一テルジスルホン酸ナトリゥム等のアル キルジフエニルエーテルジスルホン酸塩; ドデシルベンゼンスルホン酸ナトリウ ム等のアルキルァリ一ルスルホン酸塩; ドデシルナフタレンスルホン酸ナトリウ ム、 ]3—ナフタレンスルホン酸ホルマリン縮合物のナトリゥム塩等のアルキルナ フタレンスルホン酸; リグニンスルホン酸塩、 ジステアリルスルホコハク酸ナト リウム、 ジォクチルスルホコハク酸ナトリゥム等のジアルキルスルホサクシネ一 ト : ポリォキシエチレンラウリルェ一テル酢酸、 ポリオキシエチレンラゥリル エーテル酢酸ナトリゥム等のポリォキシエチレンアルキルエーテル酢酸塩; アル キレンマレイン酸共重合体等のカルボキシル基を有する共重合体のアル力リ金属 塩; ヤシ油脂肪酸、 パルミチン酸、 ベへニン酸、 ラウリン酸、 ステアリン酸、 ミ リスチン酸、 ォレイン酸、 ラウリン酸ナトリウム、 ラウリン酸カリウム、 ラウリ ン酸トリエタノールァミン、 ラウリン酸アンモニゥム、 ステアリン酸ナトリウム、 ステアリン酸カリウム、 ステアリン酸トリエタノールァミン、 ステアリン酸アン モニゥム等の脂肪酸もしくはその塩; ラウリルリン酸ナトリゥム、 ラウリルリン 酸トリエタノールアミン、 ラウリノレリン酸アンモェゥム等のモノアルキルリン酸 塩;等のァユオン性界面活性剤が挙げられる。 さらに、 ラウリルアルコール、 ミ リスチルアルコール、 セタノール、 セトステアリルアルコール、 ステアリルアル コール、 2—ォクチノレドデカノ一ル、 ベへニルアルコール等の高級アルコーノレ 類; グリセリン、 エチレングリコ一ル、 ジエチレングリコール、 トリエチレング リコーノレ、 ポリエチレングリコーノレ、 プロピレングリコール、 ジプロピレングリ コール、 ポリプロピレングリコ一ル、 ソルビトール、 ソノレビタント、 ペンタエリ スリ トール等の多価アルコール; ポリオキシエチレンラウリルエーテル、 ポリオ キシエチレンセチルエーテル、 ポリオキシエチレンステアリルエーテル、 ポリオ キシエチレンォレイ Λ ^エーテル、 ポリオキシエチレン高級アルコーノレエーテル等 のポリオキシエチレンアルキルエーテル; ポリオキシエチレンォクチルフエニル ェ一テノレ、 ポリオキシエチレンノニノレフエニノレエーテノレ、 ポリオキシエチレンォ クチノレドデシルフェュルエーテ /レ、 ポリォキシエチレンォクチルフエ二ルェ一テ ル、 ポリオキシエチレンノニノレフェニルエーテノレ等のポリオキシエチレンアルキ ルフエニルエーテノレ、 ポリオキシエチレンスチリノレフエ二/レエーテノレ、 モノステ アリン酸ポリエチレングリコール、 ジステアリン酸ポリエチレングリコール、 ジ ステアリン酸エチレングリコーノレ、 ポリオキシエチレン硬化ヒマシ油等のポリオ キシエチレンアルキルエステノレ; ポリオキシエチレンポリオキシプロピレングリ コール等のポリォキシエチレングリコールとポリォキシプロピレングリコールの 共重合体;モノラウリン酸ソルビタン、 モノステアリン酸ソルビタン、 モノォレ イン酸ソルビタン、 モノパルミチン酸ソルビタン、 セスキォレイン酸ソルビタン、 ヤシ油脂肪酸ソルビタン、 モノノく/レミチン酸ソルビタン、 トリステアリン酸ソル ビタン、 モノォレイン酸ソルビタン、 トリオレイン酸ソルビタン等のソルビタン アルキルエステル;モノラウリル酸ポリオキシエチレンソルビタン、 ポリオキシ エチレンャシ油脂肪酸ソ /レビタン、 モノパルミチン酸ポリオキシェチレンソルビ タン、 モノステアリン酸ポリオキシエチレンソルビタン、 トリステアリン酸ポリ ォキシエチレンソルビタン、 モノォレイン酸ポリオキシエチレンソノレビタン、 ト リオレイン酸ポリオキシエチレンソルビタン、 トリイソステアリン酸ポリオキシ エチレンソルビタン等のポリオキシエチレンソルビタンアルキルエステル;テト ラオレイン酸ポリオキシエチレンソルビッ ト等のテトラ脂肪酸ポリオキシェチレ ンソルビッ ト ; モノステアリン酸グリセリン、 モノォレイン酸グリセリン、 モノ カプリル酸グリセリン等のグリセリンアルキルエステル;モノステアリン酸プロ ピレンダリコール等のプロピレンダリコールァノレキルエステノレ;ポリオキシェチ レンステアリルァミン等のポリオキシエチレンアルキルァミン;パーム核油脂肪 酸ジエタノ一ルァミ ド、 ラウリン酸ジェタノ一ルァミ ド等のアルキルアルカノ一 ルアミ ド;等のノニオン性界面活性剤が挙げられる。 さらに、 ココナッツァミン ァセテ一ト、 ステアリルアミンァセテート等のアルキルアミン塩;塩化ラウリル トリメチルアンモニゥム、 塩化ステアリルトリメチルアンモニゥム、 塩化セチル トリメチルアンモニゥム等のアルキルトリメチルアンモニゥム塩;塩化ジステア リルジメチルアンモニゥム、 塩化ジアルキル (1 2— 1 8 ) ジメチルアンモユウ ム等のジアルキルジメチルアンモニゥム塩;塩化ベンザルコユウム等のベンザル コ -ゥム塩; 等のカチオン系界面活性剤が挙げられる。 さらに、 ラウリルべタイ ン、 ステアリルべタイン等のアルキルべタイン ; ラウリルジメチノレアミノ酢酸べ タイン、 ステアリルジメチルァミノ酢酸べタイン等のアルキルジメチルァミノ酢 酸べタイン、 2—ァノレキル一 N—カルボキシメチノレ一 N—ヒ ドロキシェチルイミ ダゾリニゥムベタイン等のアルキノレカルボキシメチノレヒ ドロキシェチルイミダゾ リニゥムベタイン ; ラウリン酸ァミ ドプロピルべタイン、 ャシ酸ァミ ドプロピル ベタイン等のアルキ /レアミ ドプロピゾレべタイン; ラウリグレヒ ドロキシスノレホベタ イン等のアルキノレヒ ドロキシスルホベタイン; ラウリルジメチルアミンォキシド 等のアルキルジメチルアミンォキシド;等の両性系界面活性剤が挙げられる。 第一の実施形態におけるシェル相は、 架橋ポリアミノ酸を含む。 シェル相は、 上述のコァ相と同様に、 他の有用成分及び各種任意成分を含有しても構わない。 さらに、 コア相及ぴシェル相には、 必要に応じて架橋ポリアミノ酸以外の吸水性 樹脂を、 架橋ポリアミノ酸と混合して用いてもよい。
第二の実施形態におけるシ-ノレ相は、 コーティング材及び Z又は樹脂を含有し て構成される。 コーティング材と樹脂は、 シェル相を形成できるものであれば特 に限定されず、 被覆皮膜を形成可能な物質を主成分とし、 必要に応じて他の有用 成分等を含有しても構わない。 シェル相に必要に応じて含有する成分の具体例と しては、 コア相の有用成分及び任意成分の具体例として先に挙げた各種成分を同 様に挙げることができる。
第二の実施形態において、 シェル相を形成する為の親水性コーティング材の具 体例としては、 澱粉、 可溶性澱粉、 デキストリン、 α化澱粉、 アルギン酸、 アル ギン酸ソーダ、 ァラビヤゴム、 トラガカントゴム、 ローカストビーンガム、 カゼ イン、 カゼインナトリウム、 ゼラチン、 にわか、 大豆蛋白等の親水性天然物;力 ノレボキシメチノレセノレロースナトリウム、 メチノレセノレロース、 ヒ ドロキシェチノレセ ノレロース、 リグニンスノレホン酸ナトリウム、 リグ-ンスノレホン酸カノレシゥム、 力 ルボキシメチルスターチナトリウム、 ヒ ドロキシェチルスターチ、 澱粉リン酸ェ ステルナトリゥム、 ヒ ドロキシプロピルセルロース、 ヒ ドロキシプロピルメチル セルロース等の親水性半合成品; ポリビエルアルコール、 ポリビュルメチルエー テル、 ポリアクリルアミ ド、 ポリアクリル酸ナトリウム、 ポリアクリルアミ ドプ 口ピルスルホン酸、 ポリエチレングリコール、 ポリェチレンォキシド、 7Κリビニ ルピロリ ドン、 ビュルピロリ ドン—酢酸ビニル共重合体及びこれらの共重合体等 の親水性合成品; ノニオン系界面活性剤、 ァニオン系界面活性剤、 カチオン系界 面活性剤、 両性界面活性剤等の界面活性剤; けい酸ナトリウム; グリセリン;等 が挙げられる。 これら界面活性剤の具体例としては、 コア相に含有させてもよい 界面活性剤の具体例として先に挙げた各種の界面活性剤を同様に挙げることがで きる。
第二の実施形態において、 シェル相を形成する為の疎水性コーティング材の具 体例としては、 セラック、 ロジン、 トール油、 動植物油、 大豆油、 魚油、 牛油、 流動パラフィン、 重油、 マシン油、 スピンドル油等の疎水性天然物;ェチルセル ロース、 ァセチルセルロース、 エステルガム等の疎水性半合成品;ポリビュルァ セテート、 クマロン樹脂、 石油樹脂、 フユノール樹脂等の疎水性合成品;等が挙 げられる。
第二の実施形態において、 シェル相を形成する為の樹脂の具体例としては、 塩 化ビニル樹脂、 酢酸ビュル樹脂、 塩化ビユリデン樹脂、 高密度ポリエチレン、 低 密度ポリエチレン、 ポリプロピレン、 アク リル樹脂、 A B S樹脂、 ポリスチレン 樹脂、 スチロール樹脂、 ポリアミ ド樹脂、 ァセタール樹脂、 ポリカーボネート樹 脂、 ポリエステル樹脂等が挙げられる。 さらに、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂、 不飽和ポリエステル樹脂、 エポキシ樹脂、 ポリウレタン樹脂等、 成形後に熱硬化性樹脂となるものも挙げられる。 さらに、 農園芸用等に使用する 場合は一般に回収が困難なので、 シェル相も生分解性を有する方が好ましい。 こ のような観点においては、 例えば、 ポリ乳酸、 ボリラクチド、 ポリプチレンサク シネート、 ポリ力プロラク トン、 ポリヒ ドロキシプチレート、 ポリヒ ドロキシバ リレート、 ポリグリコール酸、 ポリアミノ酸、 ポリコハク酸イミ ド及びそれらの コポリマー等の生分解性重合体を用いることが好ましい。 この生分解性重合体と しては、 一般に、 脂肪族ポリエステル、 ポリコハク酸イミ ドが代表例として挙げ られる。 脂肪族ポリエステルの具体例としては、 (コ) ポリ乳酸等の (コ) ポリ ヒ ドロキシカルボン酸が挙げられる。
第二の実施形態において、 シェル相は、 目的とする機能が発現できれば、 水蒸 気バリアー性を有するものでも、 有しないものでも構わない。 水蒸気バリアー性 に劣るシュル層の場合は、 粒子自体が吸湿により重量が増加してくるが、 シェル 相自身が吸湿によりべたつくものでなければ、 ベたつきは防止できる場合もある。 また、 たとえ水蒸気は透過しても、 有用成分の分子は大きいので透過できない場 合が多く、 有用成分はシェル相によってブロックされ、 徐放性の点では有用であ る場合もある。
また、 第二の実施形態において、 本来親水性である架橋ポリアミノ酸含有粒子 の表面に、 例えば、 コーティング材を用いて疎水性のシェル相を形成すれば、 水 と接触してもすぐに表面が吸水し始めることはなく、 水へ粒子が分散し、 粒子集 合体は孤立した粒子となる。 その後、 各粒子は吸水、 膨潤するので 『ママコ』 を 生じ難くなる。 また例えば、 親水性コーティング材を用いた場合でも、 さらに コ一ティング材として界面活性剤を用いれば、 界面活性剤の親水性基は内側に向 き、 疎水性基は外側に向くので良好な効果が得られる。
第二の実施形態において、 粒子全体におけるシェル相の割合及び架橋ポリアミ ノ酸の割合は、 目的とするシェル相の機能に応じて最適な値を適宜設定すればよ い。 一般的には、 シェル相が少なすぎると、 シェル相の機能発現が弱くなり、 多 すぎると吸水速度や保水性が低下することがある。 通常は、 シェル相の量は、 粒 子全体の重量に対して、 0 . 1〜5 0重量。 /0が好ましく、 1〜1 0重量。 /0がより 好ましく、 架橋ポリアミノ酸の量は、 粒子全体の重量に対して、 1〜9 9 . 9重 量%が好ましく、 1 0〜9 9重量。 /0がより好ましい。
本発明の粒子の形状は、 特に限定されない。 タブレツティングにより成形され たものであってもよいし、 粉砕、 破砕や、 乾燥造粒によって得られる不定形のも のであっても構わない。 本発明の粒子の大きさも特に限定されず、 使用用途、 使 用目的に応じて変えればよい。 例えば、 農園芸用の保水材等の土壌改良剤として 使用する場合、 その平均粒径は 1 0〜 1 0 0 0 0 /z mが好ましく、 1 0 0〜 5 0 0 0 ^ mがより好ましい。 衛生材料として使用する場合、 その平均粒径は 1〜 5 O O O /x mが好ましく、 1 0〜: L 0 0 0 μ mがより好ましく、 1 0 0〜5 0 0 μ mが特に好ましい。
( 4 ) 架橋ポリアミノ酸含有粒子の製造方法
第一の実施形態において、 表面架橋する前の架橋ポリアミノ酸含有粒子を製造 する方法としては、 特に限定されない。 例えば、 予め製造した架橋ポリアミノ酸 を、 粉砕及び Z又は整粒して用いる方法、 圧縮造粒法、 粘結剤を用いて成形する 方法等がある。 また、 粘結剤として熱可塑性樹脂を用いて、 加熱により樹脂を溶 融させ、 冷却することにより所望の粒子を成形することもできる。 また、 造粒便 覧 (オーム社、 昭和 5 0年発行、 日本粉体工業協会編) に記載の各種の方法を用 いることができる。 好ましくは、 このような架橋ポリアミノ酸含有粒子の表面の 少なくとも一部を、 架橋ポリアミノ酸のカルボキシル基と反応可能な官能基を一 分子中に二つ以上有する表面架橋剤を用いて架橋させることにより、 架橋密度が 高い架橋ポリアミノ酸を含有する少なくとも一層のシェル相を形成する工程 (表 面架橋工程) により、 第一の実施形態の粒子を得ることができる。
[コア粒子を表面架橋する工程]
第一の実施形態の粒子は、 粒子の表面にコア相よりも架橋密度が高いシェル相 を有することが、 重要な特徴の一つである。 シェル相は、 コア粒子を表面架橋剤 により表面架橋することにより形成できる。 コア粒子を表面架橋する方法として は、 特に限定されないが、 架橋ポリアミノ酸粒子と表面架橋剤を混合し、 必要に より加熱する方法が一般的である。
第一の実施形態に用いる表面架橋剤は、 特に制限されないが、 酸性ポリアミノ 酸のカルボキシル基と反応しうる官能基を 2個以上有する化合物が好ましい。 例 えば、 エチレングリコー Λ ジエチレングリコーノレ、 トリエチレングリコー^^、 テトラエチレングリコ一ル、 ポリエチレングリコ一ル、 グリセリン、 ポリグリセ リン、 プロピレングリコール、 1, 4—ブタンジオール、 1, 5—ペンタンジォー ル、 1, 6—へキサンジオール、 トリメチロールプロパン、 ジェタノ一ルァミン、 トリエタノールァミン、 ポリオキシプロピレン、 ポリビュルアルコール、 ォキシ エチレンォキシピロピレンブロック共重合体、 ペンタエリスリ トール、 ソルビ トール等の多価アルコール;エチレングリコールジグリシジルエーテル、 ポリエ チレングリ コ一/レジグリシジノレエーテノレ、 グリセ口一ルポリグリシジノレエ一テノレ、 ジグリセ口一ルポリグリシジルエーテル、 ポリグリセ口一ルポリグリシジルエー テル、 ソルビトールポリグリシジノレエ一テノレ、 ペンタエリスリ ト一ノレポリグリシ ジスレエーテ /レ、 プロピレングリコ一ノレジグリシジノレエーテ Λ^、 ポリプロピレング リコールジグリシジルエーテル等の多価グリシジル化合物; 2, 2 '—ビスヒ ドロ キシメチルブタノ一ルー トリス [ 3 — ( 1—アジリジニル) プロピオネート] 、 1, 6一へキサメチレンジエチレンゥレア、 ジフエニノレメタン一ビス一 4, 4 '- Ν, Ν,一ジエチレンゥレア等の多価アジリジン ;ェピク ロノレヒ ドリン、 ェピブ口 モヒ ドリン、 α —メチルクロルヒ ドリン等のハロエポキシ化合物;エチレンジァ ミン、 ジエチレントリアミン、 トリエチレンテトラァミン、 テトラエチレンペン タミン、 ペンタエチレンへキサミン、 —ポリエチレンィミン、 ポリアミ ドポリアミ ンェピクロルヒ ドリン等の多価ァミン ; 2, 4 一トルイレンジィソシァネート、
-ト等の多価ィソシァネート ; マグネシウム、 カル シゥム、 ノ リウム、 亜鉛、 鉄などの 2価金属、 及び、 アルミニウム、 鉄などの 3 価金属等の多価金属の塩または水酸化物; を挙げることができる。
この多価金属の塩または水酸化物は、 上記金属のハロゲン化物、 硝酸塩、 リン 酸塩、 硫酸塩、 炭酸塩などの無機塩及び複塩; シユウ酸塩、 酢酸塩などの有機酸 塩、 または水酸化物である。 具体的には、 塩化カルシウム、 塩化マグネシウム、 塩化第 1鉄、 塩化第 2鉄、 塩化アルミニウム、 ポリ塩化アルミニウム、 硝酸鉄、 硝酸カルシウム、 硝酸アルミニウム、 リン酸マグネシウム、 リン酸カルシウム、 リン酸アルミユウム、 硫酸マグネシウム、 硫酸第 1鉄、 硫酸アルミニウム、 硫酸 アルミニウムカリウム、 硫酸アルミニウムアンモニゥム、 炭酸カルシウム、 炭酸 マグネシウム、 炭酸マグネシウムカルシウム、 シユウ酸マグネシウム、 酢酸カル シゥム、 酢酸アルミニウム、 水酸化カルシウム、 水酸化アルミニウム等が挙げら れる。
ポリリジンの場合は、 ポリリジンのァミノ基と反応しうる官能基を 2個以上有 する化合物が好ましレ、。 例えば、 多価グリシジル化合物、 多価カルボン酸、 多価 イソシァネート、 多価ハロゲン化合物、 多価スルホン酸、 多価ホスホン酸、 多価 アルデ、ヒ ドが挙げられる。
これら表面架橋剤は、 単独でもあるいは 2種以上を併用しても構わなレ、。 表面架橋剤の使用量は、 架橋ポリアミノ酸 1 0 0重量部に対して、 好ましくは 0 . 0 0 5〜 2 0重量部、 より好ましくは 0 . 0 0 5〜 1 0重量部、 特に好ましく は 0 . 0 1〜 5重量部である。 これら範囲の下限値は表面処理効果の点で有意義 であり、 上限値は吸水量の点で有意義である。
架橋ポリアミノ酸含有粒子と表面架橋剤を混合する方法は特に限定されない。 通常は、 以下の態様①〜④が挙げられる。
① . 架橋ポリアミノ酸含有粒子と表面架橋剤を無溶媒で混合する方法。
② . 架橋ポリアミノ酸含有粒子を疎水性有機溶媒、 あるいは、 親水性有機溶媒及 び Zまたは水に分散させ、 表面架橋剤を加えて混合する方法。
③ . 架橋ポリアミノ酸含有粒子を混合機中で攪拌しながら、 表面架橋剤または表 面架橋剤溶液または表面架橋剤分散液を噴霧あるいは滴下する方法。
④ . 架橋ポリァミノ酸含有粒子と表面架橋剤を気流下で接触させる方法。 架橋ポリアミノ酸含有粒子と表面架橋剤を混合する為の混合機としては、 具体 的には、 円筒型混合機、 二重円錐型混合機、 V型混合機、 リボン型混合機、 スク リュー型混合機、 流動化型混合機、 回転円盤型混合機、 気流型混合機、 双腕型捏 和機、 インタ一ナルミキサー、 マラー型捏和機、 ロールミキサー、 スクリユー型 押出機等を挙げることができる。 混合方式の具体例としては、 パンコーティング 法、 流動コーティング法、 ドライコーティング法、 ベルト式静電塗装法、 浸漬法 、 ドラム法、 リング法等が挙げられる。
パンコーティング法は、 被コート物質をコーティングパン中にて回転させなが ら、 コート剤を噴霧又は滴下し、 乾燥により溶剤を除去する方法である。 コーテ イングパンの材質は、 特に限定されず、 銅、 ステンレス、 プラスチック等が挙げ られる。 また、 コーティングパンの形状も特に限定されず、 ピア型、 オニオン型 、 コニカル型等が挙げられる。 パンに撹拌を助けるためにバッフルを取り付けて も構わない。 バッフルの位置、 大きさ、 数量等は限定されない。 その大きさも限 定されず、 直径数十 c mから数 mのものが使用できる。 表面架橋剤の供給方法も 特に限定されない。 噴霧による供給でも、 液滴として供給しても構わない。 噴霧 方式はエアスプレーやエアレススプレー等を用いた方法が挙げられる。 エアスプ レーは、 二流体ノズルを用い、 コート液をノズル周辺の圧縮空気にて霧化する。 エアレススプレーは、 表面架橋剤溶液あるいは分散液に数 P a〜数十 P aの圧力 を付加し、 霧化する。 噴霧する霧の粒径、 パターン、 量は特に制限されない。 流動コ一ティング法は、 粒子を浮遊懸濁させた状態、 噴流層、 流動層、 輸送層 にてコーティングする方法である。 例えば、 固体粒子の充填層の底部から、 ガス 流を送入して粒子群がダイナミックサスペンションの状態に保った流動層状態、 または円錐の底部からガス流を吹き込んだ噴流層状態にてコートする。 粒子は通 常、 中央部で吹き上げられ、 周壁近くで下降し、 循環する。 噴霧の流速、 系内の 温度は使用する表面架橋剤溶液あるいは懸濁液によつて適宜選べばょレ、。 噴霧す るノズルの数、 位置、 向きは特に制限されない。
架橋ポリアミノ酸含有粒子と表面架橋剤—を混合する為には、 水及び Z又は親水 性有機溶剤を含む処理溶液を用いることが、 処理効果を高める上で好ましい。 こ の場合、 処理溶液を構成する水の量は、 架橋ポリアミノ酸 1 0 0重量部に対して 0 . 1〜4 0重量部が好ましい。 この量が◦. 1重量部以上であれば、 表面架橋剤 が粒子表面近傍へ適度に浸透し、 シェル相が適度に形成される。 また、 4 0重量 部以下であれば、 過度に浸透しないので、 吸水倍率が阻害されることなく、 表面 架橋の効果が十分発現する。
表面架橋剤の溶液あるいは分散液に用いる溶媒は特に制限されない。 通常は、 水、 親水性有機溶媒、 水と親水性有機溶媒の混合物が用いられる。 親水性有機溶 媒としては、 例えば、 メタノール、 エタノール、 n—プロパノール、 2—プロノ、。 ノーノレ、 n—プタノーノレ、 i s o—プタノ一ノレ、 t—ブタノーノレ等のァ /レコーノレ 類;エチレングリコール等の多価アルコール類;アセトン、 メチルェチルケトン 等のケトン類; ジォキサン、 テトラヒ ドロフラン等のエーテル類; N, N—ジメ チルホルムアミ ド、 N, N—ジメチルァセトアミ ド、 N—メチルー 2—ピロリ ド ン等のアミ ド類; ジメチルスルホキシド、 スルホラン等の非プロ トン性極性溶 媒;等が挙げられる。
表面架橋剤溶液あるいは分散液の使用量は、 特に制限されない。 通常は、 架橋 ポリアミノ酸 1 0 0重量部に対して、 0 . 1〜1 0重量部である。 この量が 0 . 1 重量部以上であれば、 架橋ポリアミノ酸粒子と表面架橋剤を均一に混合できる。 また、 1 0重量部未満であれば、 コスト的に有利である。
この溶液あるいは分散液中の表面架橋剤の濃度は、 特に限定されない。 ただし ノズル等から噴霧する場合は、 スムーズに噴霧できる粘度である方が好ましい。 また、 分散液の場合は、 撹拌等の操作により混合しながら液をコア粒子に供給す ることができる。
表面架橋前の粒子を構成する架橋ポリアミノ酸は、 カルボキシル基がアル力リ 金属塩及び/又はアンモニゥム塩として中和されていることが好ましい。 この架 橋ポリアミノ酸のカルボキシル基の中和度 N, [モル0 /0] は、 4 9〜9 9モル% が好ましく、 5 4〜9 4モル%がより好ましく、 5 9〜8 9モル。 /0が特に好まし い。 これら範囲の下限値は、 架橋ポリアミノ酸のイオン強度及びこれによる吸水 量の点で有意義である。 また、 上限値は、 表面架橋剤との反応性、 効率性の点で , である。
架橋ポリアミノ酸樹脂に表面架橋剤を含む処理溶液を混合して得た混合物は、 必要に応じて加熱することができる。 例えば、 アジリジン化合物や多価金属塩の 場合、 室温でも反応が進行するが、 反応促進のため加熱することもできる。 加熱 方法は特に制限されないが、 普通、 溝型攪拌乾燥器、 回転乾燥器、 円盤乾燥器、 捏和乾燥器、 流動層乾燥器、 気流乾燥器、 赤外線乾燥器、 誘電加熱乾燥器等を用 いることができる。 加熱処理温度は、 通常は 3 0〜 3 0 0 °C、 好ましくは 4 0〜 2 5 0 °C、 さらに好ましくは 5 0〜 2 0 0 °Cである。
第二の実施形態において、 架橋ポリアミノ酸含有粒子の製造方法は、 特に限定 されないが、 例えば (4— 1 ) コア粒子 (コア相となる粒子) を製造する工程、
( 4 - 2 ) コア粒子を被覆することによりシェル相を形成する工程を含む方法が 挙げられる。
( 4 - 1 ) コァ粒子を製造する工程
コア粒子を製造する方法としては、 特に限定されない。 先に説明した第一の実 施形態における表面架橋する前の架橋ポリアミノ酸含有粒子の製造方法と同様に、 粉砕及び Z又は整粒して用いる方法、 圧縮造粒法、 粘結剤を用いて成形する方法、 粘結剤として熱可塑性樹脂を用いて加熱により樹脂を溶融させ冷却することによ り所望の粒子を成形する方法など、 各種の方法が適用できる。
圧縮造粒法は、 特に限定されない。 例えば、 タブレツティング、 ブリゲッティ ング、 さらには、 それらによって得られた成形物を砕いたコンパクティングが挙 げられる。 得られる圧縮成形物の形状 (コア粒子の形状) は、 特に限定されず、 最終的にコア相を形成できるものであればよく、 必要に応じて選択できる。 その 形状の具体例としては、 タブレツティングでは、 丸型、 フットボール型、 三角型、 四角型、 長方型、 六角型、 リング型等が挙げられ、 その平面は碁石型、 平型ふち 角、 真平型、 凸型、 凹型、 リング型等が挙げられる。 プリケッティングでは、 シート状、 板状、 ピロ一型、 レンズ型、 ァ一モンド型、 プリズム型、 棒状、 波型 シート等が挙げられる。 コンパクティングでは、 破'砕状等が挙げられる。 圧縮成 形物の大きさも、 特に限定されず、 使用用途に応じて選択できる。
タブレツティング及びブリケッティングに用いる原料の粒子径は、 特に限定さ れず、 使用するポリアミノ酸及びそれ以外の添加物等の材料によつて変わってく る = 一般的には、 粗粒子の中に微粒子が混ざっているような、 幅の広い粒度分布 を示す粉体を用いる方が、 強い圧縮成形物が得られる。 微粒子で構成された粉体 を用いる場合は、 ラミネーティングを防ぐために、 原料粉体に粗粒子を混合する ことが好ましい。
一方、 原料粉体の一定量を臼の中に容易に供給でき、 得られた圧縮成形物の大 きさを一定に維持し、 生産性を高めるには、 粉体の密度のばらつきが無いことが 好ましい。 そのために、 場合によっては原料粉体のふるい分けを行い、 粒度を揃 えたり、 前段階で造粒操作を行なって粒度を調整することが好ましい。
タブレツティング及びプリケッティングでは、 場合によっては、 可塑剤を加え ても構わない。 可塑性をもつ粉体を用いると、 圧縮によって容易に塑性変形を起 こし、 粒子間の密着面が大きくなり、 圧縮力を除いた後も成形物内に弾性ひずみ が残らないので、 強固な成形物が得られる。
原料粉体の表面は、 蒸気、 ガス、 酸化膜等により汚染していない方が好ましい。 したがって、 例えば、 成形直前に粒子を粉砕して清浄な破面をつくつてから圧縮 成形すると、 強固な成形物が得られるので好ましい。
タブレツティング及びプリケッティングでは、 場合によっては、 粘結剤を加え ても構わない。 粘結剤を用いると、 ポリアミノ酸以外の成分として、 硬度の高い 鉱石又はコークス等の多孔質の粉体等を多く用いた場合の成形も容易となる。 粘 結剤の具体例としては、 粘土、 アスファルト、 ポルトランドセメント、 ワックス、 パラフィン、 砂糖、 澱粉、 ギルソナイ ト、 コールタールピッチ等のマトリ ックス 型粘結剤;水、 糖蜜、 パルプ廃液、 ケィ酸ナトリウム、 澱粉、 ピッチェマルジョ ン、 ポリビニルアルコール、 ベントナイ ト等のフィルム型粘結剤;が挙げられる。 さらに、 粘結剤成分間又は粘結剤と他の原料粉との間に化学結合を形成する反応 性型粘結剤も挙げられる。
タブレツティング及びブリゲッティングに用いる原料粉は、 二成分以上を含む 場合には、 圧縮成形する前に混合を十分に行なう方が好ましい。 混合に使用する 機器は特に限定されないが、 例えば、 ェッジランナーミル、 アイリツヒミキサー 等が挙げられる。 ―
タブレツティング及びプリケッティングでは、 場合によっては、 滑沢剤を加え ても構わない。 滑沢剤を用いると、 粉体内部の内部摩擦、 壁面摩擦を減少させて、 圧縮力の伝播をよくし、 また、 ロール問、 ダイス内への原料粉体の供給を容易に して、 成形効果を高めることができる。 滑沢剤は、 成形前に前もって原料粉体に 混合してから使用する内部滑沢剤であっても、 ダイス、 ロール表面等に塗布して 使用する外部滑沢剤であっても構わない。 滑沢剤の具体例としては、 水、 潤滑油、 グリセリン、 シリコン、 グラフアイ ト、 タルク、 ステアリン酸マグネシウム、 二 硫化モリブデン、 エチレングリコール、 パラフィン等が挙げられる。
タブレツティングでは、 必要に応じて、 核剤を用いても構わない。 核剤の形状 は、 特に限定されないが、 球状、 レンズ状、 円柱状、 不規則形状等が挙げられる。 圧縮成形に使用する圧縮機としては、 打錠機、 プリケッティング ·マシーンが 挙げられる。 打錠機の具体例としては、 単発打錠機、 ロータリー打錠機、 一点圧 縮型機、 多点圧縮型機、 有核打錠機、 多層打錠機、 傾斜ロール型打錠機等が挙げ られる。 また、 圧縮成形は、 製造プロセス上からは、 湿式顆粒圧縮法、 乾式顆粒 圧縮法、 直接粉末圧縮法等に分類できる。
コァ粒子の製造方法の一つである粘結剤を用いた成形方法には、 粘結剤と溶媒 を用いて粘結させる方法と、 粘結剤として、 熱可塑性樹脂を用いて、 加熱により 樹脂を溶融させて冷却することにより成形する方法がある。 親水性の粘結剤を用 いる場合は、 溶媒として水を用い、 疎水性の粘結剤を用いる場合は、 有機溶剤を 用いる。 有機溶剤としては、 除去がしゃすく、 安全性の高いものが好ましい。 例 えば、 アセトン、 メタノール、 エタノール、 イソプロパノール、 トルエン、 キシ レン、 塩化メチレン、 クロ口ホルム、 四塩化炭素等が挙げられる。 また、 粘結剤 そのものが液体である場合は、 溶媒を必要としない場合もある。
粘結剤は、 特に限定されない。 その具体例としては、 親水性及び疎水性のシェ ル相を形成する為のコーティング材の具体例として先に挙げた各種の成分を同様 に挙げることができる。 さらに、 通常の粘結剤をよりも接着性の高い接着剤を使 用しても構わない。 接着剤には、 溶剤タイプと、 成形中に反応して架橋等を起こ す、 反応タイプがある。
コア粒子の製造方法に使用する造粒方法は、 特に限定されないが、 押し出し成 形法が好ましい。 すなわち、 原材料である粉末もしくは顆粒等に、 溶媒を加え、 混合を行い、 適当な押し出し機構によって、 スクリーン、 ダイス等の穴より混合 物を押し出すことによって造粒する方法である。 ここで使用する機械は、 特に限 定されない。 その具体例として、 前押出し式押出し造粒機、 横押出し式押出し造 粒機、 真空押出し式押出し造粒機、 前処理兼用式押出し造粒機等のスクリュー型 押出し造粒機; 円筒形ダイス水平式押出し造粒機、 円筒形ダイス垂直式押出し造 粒機、 円板型ダイス水平式押出し造粒機等の口一ル型押出し造粒機;バスケッ ト 式押出し造粒機、 オシレーティング式押出し造粒機等のプレード型押出し造粒 機;ギヤ一式押出し造粒機、 シリンダ一式押出し造粒機等の自己成形型押出し造 粒機;断続式押出し造粒機、 連続式押出し造粒機等のラム型押出し造粒機;など が挙げられる。
ここで使用する原材料の粒度は、 特に限定されず、 使用目的に応じて選択すれ ばよいが、 ダイスの穴を容易に通過でき、 混合が均一になる粒度が好ましい。 一 般的には、 1 0 0〜 2 0 0メッシュ以下の微粉が好ましい。
コァ粒子の製造を乾式にて行なう場合は、 原材料は流動性を持つ場合が好まし い。 また、 原材料は、 チキソトロピー現象を示す可塑性をもつものが好ましい。 ダイラタンシー現象を示すものは、 場合によっては、 賦形剤、 結合剤を添加する 方が好ましい。 結合剤の例としては、 アセ トン、 メタノール、 エタノール、 ァラ ビアゴム、 アルギン酸ソーダ、 ヒ ドロキシプロピノレセノレロース、 メチルセ/レロー ス、 カゼインナトリウム、 グリセリン、 コーンスターチ、 ナトリウムカルボキシ メチルセルロース、 ゼラチン、 デキストリン、 澱粉、 糖蜜、 乳糖、 ポリビュルァ ルコール、 ポリビニルピロリ ドン、 微結晶セルロース、 ピッチ、 ポリアクリル酸 ナトリウム、 ポリエチレングリコール、 リグニン、 アルミナゾル、 アンモニア水、 けい酸ソ一ダ、 ベントナイ ト、 ポリリン酸ナトリウム等が挙げられる。 これらは、 増粘剤、 減粘剤、 増量剤、 溶剤、 可塑剤、 潤滑剤等として働く。
原材料の混合は方法は、 特に限定されないが、 ニーダ一等の混合機を用いるこ とができる。 また、 加液の方法も特に限定されず、 所望に応じて決定すればよい。 コア粒子の製造の後処理工程としては、 特に限定されないが、 整粒を行なう方 が好ましい。 整粒を行なう方法としては、 例えば、 解砕整粒法、 球形整粒法が挙 げられる。
コア粒子は、 必要に応じて乾燥することができる。 乾燥温度は、 特に限定され ないが、 通常の乾燥の場合は、 1 0 °C〜 2 0 0 °Cが好ましく、 4 0 °C〜 1 2 0 °C がより好ましい。 さらに粉砕、 破砕、 ふるい分け等を行なっても構わない。
粘結剤として熱可塑性樹脂を用いて、 加熱により樹脂を溶融させて冷却するこ とにより成形する場合、 熱可塑性樹脂は、 特に限定されないが、 常温では固体で あるが、 熱を加えると軟化 ·溶融し、 常温に戻すと再び固体になる、 通常の熱可 塑性樹脂に加え、 成形中は可塑性を示すが、 一度熱を加えると、 分子間に、 熱、 架橋剤等により、 架橋が起こり、 成形後、 もしくは、 成形中に硬化して熱硬化性 樹脂となるものも含まれる。 ここでは、 両者を含めて、 熱可塑性樹脂と呼ぶ。 こ の熱可塑性樹脂の具体例としては、 シェル相を形成する為の樹脂の具体例として 先に挙げた各種の樹脂を同様に挙げることができる。
熱可塑性樹脂の樹脂の使用量は、 一般的には、 使用量が少な過ぎると粘結剤と しての効果が無くなり、 多過ぎると有効成分の徐放性及び効能が低下する。 特に 有効成分の徐放性に大きく影響する。 その使用量は一概にいえないが、 コア粒子 中、 5〜 9 0重量%が好ましく、 1 0〜 8 0重量。/。が特に好ましい。 コア粒子に は、 ポリアミノ酸、 熱可塑性樹脂以外にも、 必要に応じて可塑剤、 安定剤、 滑剤、 着色剤、 補強剤、 増量剤等を添加しても構わない。
この方法での具体的工程は特に限定されないが、 一般に、 混合、 混練り、 造粒、 脱水乾燥工程からなる。 混合機としては、 リボンプレンダ一、 ヘンシェルプレン ダ一、 ドラムプレンダ一等の混合機が挙げられる。 混練り機としては、 ミキシン ダロール、 インテンシブミキサー、 短軸押出し機、 高速二軸連続ミキサー等が挙 げられる。 造粒装置としては、 シートカット法、 ストランドカット法等のコール ドカツト法の装置、 空中ホットカツト法、 水中カツト法等のホットカツト法の装 置が挙げられる。 脱水乾燥工程は、 空中ホットカツト法、 水中カツト法で造粒し た時に必要であり、 遠心乾燥機等が挙げられる。
( 4 - 2 ) コア粒子を被覆する工程
本発明の粒子は、 コア粒子の表面にコーティング材及び Z又は樹脂を含有して 構成されるシェル相を有することが、 重要な特徴の一つである。 シェル相は、 好 ましくは、 コア粒子の表面にコーティング材溶液又は溶融状態のコーティング材、 は、 樹脂溶液又は溶融状態の樹脂を塗布することにより形成できる。 ここ で、 コーティング材とは、 皮膜形成可能な物質をいう。 コーティング材及び樹脂 の具体例は、 先に説明した通りである。
樹脂を溶解する溶媒の具体例としては、 コア粒子製造の際に粘結剤と溶媒を用 いて粘結させる場合、 その溶媒として先に挙げた具体例と同様のものを挙げるこ とができる。 被覆の為の液の粘度は特に限定されないが、 ノズル等より噴霧する 場合はスムーズに噴霧できる粘度である方が好ましい。 また、 懸濁液である場合 は、 撹拌等の操作により混合しながら液をコア粒子に供給することもできる。 コア粒子を被覆する方法は、 特に限定されず、 一般的に使用する方法は全て使 用できる。 例えば、 パンコーティング法、 流動コーティング法、 ドライコーティ ング法、 ベルト式静電塗装法、 浸漬法、 ドラム法、 リング法等が挙げられる。 パンコーティング法、 流動コーティング法は、 第一の実施形態の説明において、 説明した通りである。 なお、 流動コーティング法においては、 被コート物である コア粒子の粒径は浮遊状態になる程度の大きさにすればよい。 例えば 1 mm程度 の直径が好ましい。 噴霧するノズルの数、 位置、 向きは目的とするコートに応じ て変えることができる。
ドライコーティング法は特殊な打錠機 (有核打錠機) を用いて、 錠剤の表面に コ一ティング用の顆粒を乾式法にてコ一ティングする方法である。 核となる錠剤 を打錠後、 同一の打錠機を用いてコーティングを行ってもよく、 別の打錠機にて 核となる錠剤を成形後、 この核を有核打錠機に供給して外層のドライコーティン グを行ってもよい。 核となる物質の置き方は、 核移送装置によって移送された核 の中心が臼の中心と同調した点で核を移送板から落とす方法であっても、 核を真 空で吸着したノズルを徐々に臼中に装入させ核を埋め込む方法が挙げられる。 コ一ティング層が薄すぎる場合は、 圧縮成形後の核の膨張にコーティング層が耐 え切れず、 キヤッピングゃラミネーションを引き起こす原因となる場合がある。 逆に、 コーティング層が厚すぎる場合は、 製品に割れが発生する場合がある。 コ一ティング層と核の直径の差は、 核が 8 mm以下では、 コーティング層は 2 m m以上、 核が 8 mm以上では、 3 mm以上が好ましい。 コーティング層の曲率半 径は核の面の曲率半径の 1 . 1倍以上が好ましく、 1 . 5倍が特に好ましい。 核の 粒度分布は、 狭い方が好ましく、 粗い粒子ゃ微粉末を含まず、 大粒子の間隔を埋 める程度の微小顆粒を適当な割合で含む方が好ましい。
ベルト式静電塗装法は、 ベルト上に核となる粒子を並べ、 噴霧器でコーティン グ液を霧化し、 この霧を高電圧グリッド間を通し、 核粒子の表面にコーティング する方法である。
浸漬法は、 核粒子をコーティング液に浸潰し、 これを引き上げて乾燥する方法 である。
( 5 ) 架橋ポリアミノ酸含有粒子の保水性と薬品徐放性
第二の実施形態の粒子の効果の一つは、 薬品等の有効成分の徐放性にある。 だ たし、 農園芸用保水材など、 必ずしも徐放性が必要ではない用途の場合でも非常 に有用である。 本発明の粒子は、 ベたつき防止の効果、 すなわち、 吸湿または土 中に含まれる水分を吸収することによる作業性の悪化を防止するという優れた効 果をも奏するからである。
第二の実施形態の粒子を使用する用途、 目的に応じて、 必要とされる保水性及 び保水性の発現時期、 薬品徐放性は異なる。 保水性は、 一定期間必要であり、 場 合によっては、 一定期間後は無くなる方が好ましい。 また、 架橋ポリアクリル酸 系樹脂に代表される保水性が強すぎる樹脂の場合は、 根腐れを起こしやすく、 力 つ乾燥下において、 ゲル中の水を植物が有効に利用できない。 一方、 本発明の粒 子は、 植物の根腐れを起こさず、 乾燥下においても、 ゲル中の水分を植物が有効 に利用できる。 保水性の発現時期は、 特に限定されないが、 シェル相 (コート 層) に含まれる樹脂の種類、 シェル相の厚さ等を変えることで適宜調整できる。 一般的には、 シェル相に含まれる樹脂の親水性が高い場合に、 吸水性の発現が 速く、 疎水性の高い樹脂の場合は、 吸水性の発現が遅い。 また、 水蒸気の透過性 も吸水性の発現性に影響し、 水蒸気バリァ一性の高い樹脂は吸水性の発現性が遅 くなる。 さらに、 シェル相が厚い場合、 樹脂の生分解性又は分解性の速度、 様式 等も吸水性の発現に影響する。 樹脂の生分解性が速い場合は吸水性の発現が速く、 遅い場合は遅い。 分解が表面から起こり、 内部で起こりにくい場合は吸水性の発 現は遅く、 加水分解性のある樹脂等の-ように内部も含め分解が起こる場合は吸水 性の発現が速い。
粒子中の架橋ポリアミノ酸の量は、 多い方が保水性が高くなり、 量が少ないと 保水性は低くなるが、 その使用量は薬品徐放性との兼ね合レ、があるので、 一概に いえない。 一般に、 架橋ポリアミノ酸の量は、 粒子全体の重量に対して、 1〜8 0重量%が好ましく、 1 0〜 5 0重量。/。がより好ましい。 ただし、 保水性に重点 を置く場合は、 5 0〜 1 0 0重量。/。が好ましく、 6 0〜 1 0 0重量%がより好ま しい。
本発明の粒子の徐放性に関しては、 長期にわたり効果を持続させたい場合、 短 期で効率よく効果を発現させたい場合、 一定期間一定量の効果を維持したい場合、 一定期間後に効果を発現させたい場合の何れにおいても有効となるように制御で きる。 徐放性の制御方法は、 ポリアミノ酸、 もしくはその含有量、 有効成分、 成 形方法、 成形物の強度、 添加物、 もしくはその含有量等により変わってくる。 ポリアミノ酸の徐放性は、 ポリアミノ酸と有効成分との親和性、 ポリアミノ酸 のゲル化の程度によって変化する。 ポリアミノ酸は親水性が高いので、 親水性の 高い有効成分は、 ポリアミノ酸ゲルとの親和性が高く、 リリースされにくい。 一 方、 疎水性の高い有効成分は親和性が低く、 リリースされやすい。 また、 ポリア ミノ酸は、 ゲル状態になりその膨潤率が高くなると、 薬品をリリースしやすくな る。 ポリアミノ酸の量が多くなると、 粒子全体の崩壊性が促進されるので、 徐放 性は速くなる。 一方、 ポリアミノ酸の量が少ない場合は、 崩壊性は、 他の成分に 支配される。 一般に、 有効成分の親水性が高い場合は除放の期間が短く、 疎水性 が高いもしくは水への溶解性が低い場合は、 徐放の期間が長くなる。 成形法によ る徐放性の違いについては、 他の要因を強く受けるので一概にいえないが、 一般 的な傾向としては、 圧縮成形物は徐放性が短期間で行われ、 それを再処理したも のは徐放の期間が長くなる。 粘結剤を用いて押出し造粒等で製造したものの徐放 性は、 圧縮成形物より短くなる。 一方、 樹脂を用いて溶融したものは、 徐放性は 長くなる。
これらの要因の中で、 特に成形法と、 ポリアミノ酸の含有量は徐放性に強く影 響する。
( 6 ) 架橋ポリアミノ酸含有粒子の使用用途
本発明の架橋ポリアミノ酸含有粒子の使用用途は、 特に限定されない。 例えば、 農園芸、 医薬、 食品、 入浴剤、 衛生材料などの各種用途の吸水性樹脂として使用 できる。 特に、 衛生材料、 土壌改良剤の用途に非常に有用である。 さらには、 保 水性と薬品徐放性が最も有効に利用できる用途は、 農園芸に用いる土壌改良剤の 用途である。
( 7 ) 架橋ポリアミノ酸含有粒子を含む土壌組成物の組成
農園芸用途において、 本発明の架橋ポリアミノ酸含有粒子を土壌改良剤として 土に混合してなる土壌組成物は非常に有用である。 この土壌組成物に使用する土 としては、 例えば、 硬質赤玉土、 焼赤玉土、 硬質鹿沼土、 腐葉土、 黒土、 桐生砂、 軽石砂、 富士砂、 矢作砂、 荒木田砂、 川砂、 朝明砂、 けと土、 バーミキユラィ ト、 燻炭、 ひゆうが土、 クレイ等が挙げられる。 また、 土壌組成物を施す田畑、 砂地 等の土壌もしくは他の土壌も使用できる。 これらは、 単独でもよいし混合して培 養土として用いてもよい。 このとき、 植物の種類もしくは使用する形態に応じた 配合が可能である。 また、 所望によりピートモスを添カ卩してもよい。
土壌組成物を調製する際に使用する土の形態は、 土壌組成物を調製した際に、 実質的に充分な保水効果と通気効果を同時に発揮できるのであれば特に限定され ず、 粉末でも粒状でも構わない。 一般的には、 優れた通気性及び透水性に優れた 粗孔隙を発現し得る、 粒度 5〜5 0メッシュ程度 (乾燥状態) 、 又は、 粒径 0 . 5〜 5 . O mm程度 (乾燥状態) に造粒したものが好ましい。 土壌組成物は、 必 要により、 各種の有用成分を含有してもよい。 例えば、 水分、 有機肥料、 生物肥 料、 化学肥料、 堆肥、 鶏糞、 有機質素材、 p H調整剤、 界面活性剤、 発泡剤、 腐 食物質、 保水性保肥性改良鉱物質粉末材 (ベントナイ ト、 ゼォライ ト粉末等) 、 農薬 (殺虫剤、 殺菌剤、 除草剤、 防徵剤等) 、 植物活力剤、 植物延命剤、 害虫及 ぴ動物の忌避剤、 土壌浸透剤、 微量元素の栄養成分、 珪藻土、 粘土、 石灰、 植物 ホルモン、 ミネラル、 コーラルサンド、 活性炭、 炭酸カルシウム、 炭酸マグネシ ゥム、 カオリン、 クレー、 アルミナ、 シリカ、 酸化チタン、 タノレク、 ケイソゥ土、 マイ力、 シラスバルーン、 ガラスビーズ等の無機質粒子、 合成樹脂製のペレッ ト、 ビーズ、 粗粒、 木の小片、 おがくず、 穀物粉、 植物の殻や茎の粉砕物、 植物の種、 菌体、 フユルグソン等の微放射性鉱物、 遠赤外線放射性セラミックス、 大谷石、 ゼォライ ト等のエチレンガス吸収性鉱物、 パーライ ト、 ノ、。ミス、 バーミキユラィ ト等の無機系保水材、 架橋ポリアミノ酸系樹脂以外の吸水性樹脂等が挙げられる。 添加する有用成分は、 環境保全の観点から生分解性を有するものが好ましい。 以 上挙げた各有用成分は、 速効性を示すものが多い。
また、 この土壌組成物は、 バインダーによって固形物としても構わない。 バイ ンダ一の例としては、 十分に発酵させた油カス、 粘土、 アクリル酸エステル系ラ テックス、 スチレンブタジエン系ラテックス、 酢酸ビュル系ラテックス、 アタリ ル酸一ァクリルアミ ドプロパンスルホンアミ ド一コポリマー、 ポリビニルアル コール部分鹼化物等が挙げられる。 これらのバインダ一は環境保全の観点から、 生分解性を有するものが好ましい。
( 8 ) 架橋ポリアミノ酸含有粒子の使用方法、 使用場所
その使用方法、 使用場所は、 特に限定されない。 例えば、 成形物もしくは土壌 組成物を田畑に表土として散布する方法、 培養土として苗床等に使用する方法が ある。 また、 水田、 川、 池、 堀、 海等に散布しても構わない。 散布は、 人力で行 なっても、 機械を用いてもよい。 ヘリコプター、 飛行機、 ラジコン飛行機等を用 いて空中から散布する方法もある。 また、 粒子のまま、 もしくは水、 液肥等で膨 潤したゲルとして、 所定量を土中に埋めていく方法、 バインダーで固形化したも のを田畑に散布もしくは埋めていく方法、 成形苗等に含ませて植物と一緒に移植 する方法、 土壌を耕しながら、 混合していく方法でも構わない。 また、 植物の状 態についても広レ、範囲で使用でき、 植物の育成を行う範囲で特に限定されないが、 例えば、 種子の発芽、 育苗、 葉菜、 果菜、 根菜、 花等の生育、 成木の植え替え等 に使用できる。
( 9 ) 架橋ポリアミノ酸含有粒子を含む衛生材料
本発明の架橋ポリアミノ酸含有粒子は、 種類、 形状、 大きさ及びスタイルに関 して限定されず、 一般に使用されている衛生用品に好適に使用される。 特に、 そ の廃棄物の処理および衛生用品の特性において、 優れた効果を発揮する。
衛生用品の種類としては、 例えば、 子供用紙おむつ、 大人用紙おむつ、 生理用 ナプキン、 タンボン、 パンティライナー、 生理用シーツ、 失禁用パッド、 医療用 血液吸収体等が挙げられる。 このように、 本発明の架橋ポリアミノ酸含有粒子は 吸収体としての機能が必要とされる何れのものにも使用できる。
衛生用品の構造は特に限定されず、 一般の衛生用品に使用されている構造をと ることができ、 使用する衛生用品の種類、 形状、 スタイルに応じて大きさを選択 できる。 これらは、 一般に、 トップシート、 バックシート、 吸収コアからなるこ とを基本とする。 しかし、 衛生用品として、 これらのパーツのみで構成されてい るわけではなく、 必要に応じてこれら以外の必要なパーツを含んでいても構わな レ、。 例えば、 紙おむつ用品としては、 これら以外のパーツとして、 ウェストギヤ ザ一、 漏れ防止ギャザー、 インナーレッグギヤザ一、 アウターレッダギャザー、 フロンタルテープ、 粘着剤、 マジックテープ、 フアツスンテープシステム、 リ リーズテープシステム、 ベルク口社等のメカ二カルフアツスンテープシステム、 液拡散層等が挙げられる。 また、 衛生用品は、 必要に応じて、 トップシート及ぴ ノ又はバックシートが無い構造をとることができる。 すなわち、 衛生用品に不可 欠な要素は吸収コアであり、 それを含んだ衛生用品であれば、 他のパーツについ ては特に限定されず、 様々なパーツを組み合せて衛生用品を構築できる。 さらに、 一つのパーツに同時に二つ以上の機能を持たせてもよい。 例えば、 吸収コアに拡 散機能を持たせることができる。 また、 トップシート層/ァクイジッシヨン層、 エンドキヤップ Zウェストギヤザ—、 リ リーズテープ /ファッスンテープのコン ポジット化、 トップシ一トとサイドシ一ト及びィンナーレッグギャザー等の複合 化、 バックシートと吸収体とが複合されたフィルムレスの複合化等が挙げられる。 衛生用品は、 一重の構造のみならず、 多重の構造をとることもできる。 特に吸 収コアを重ねた構造により吸収能力を強化することができる。 これらは、 衛生用 品全体の構造のみならず、 各パーツの構造についても多重構造となっても構わな レ、。 例えば、 ティッシュ層 Zパルプ層 Z吸収性樹脂層を垂直的に組み合わせた構 造のみならず、 これらを組み合わせて多重構造にすることができる。
吸収コアの構造は、 例えば、 パルプと吸水性樹脂からなり、 場合によっては、 吸収紙 (拡散紙) を含むことができる。 パルプは、 解繊パルプが好ましい。 吸収 紙についても限定されないが、 通常、 セルロースを主体とした紙である場合が多 レ、。
吸収性樹脂の存在位置は特に限定されず、 吸収コアの上層、 中層、 下層の何れ であっても構わず、 パルプと混合したものでも構わない。 効率よく体液等を吸収 できる構造が好ましい。 また、 吸水性樹脂は、 その性能が十分に発揮できるよう に分散する方が好ましい。 その為に、 製造工程や、 製品の配送、 保存時等に吸水 性樹脂が偏在しなレ、様に吸水性樹脂を固定する方法をとつても構わない。 例えば パルプ中に熱可塑性樹脂を混合し、 熱等により一部を接着したり、 バインダーに より一部を接着する方法等が挙げられる。 バインダー樹脂は、 特に限定されない 力;、 本発明の目的の一つである生分解性を発現するには、 生分解性高分子のバイ ンダーを用いることが好ましい。
本発明の架橋ポリアミノ酸含有粒子と共に衛生用品を構成する材料は、 特に限 定されないが、 生分解性を有する高分子が^ ^ましい。 トップシート及びバック シートを構成する材料としては、 例えば、 無サイズ紙、 不織布、 ポリエチレン、 ポリプロピレン、 親水化したポリエチレン、 ポリプロピレン等の透水性多孔シー ト、 セロファン、 ビニロンフイノレム、 ポリビニノレアノレコーノレ ( P V A) フイノレム、 熱可塑性フィルムであって、 フィルム製造時に微細連通孔を持つように発泡加工 したもの、 無機物または高融点の核発生剤を添加して延伸加工して微細連通孔を 形成したもの、 ポリエチレンやポリプロピレンとパルプとの混抄紙、 紙と不織布 との積層体、 サイズ紙ゃ不織布にビスコースによつてセル口一ス膜を形成させた もの、 セルロース膜に微細な穴を形成させたもの、 熱可塑性樹脂からなるプラス チックフィルム、 ポリエチレン紙、 金属箔、 その一部または全部が熱可塑性の不 織布、 レーヨン、 パルプ等の繊維に、 ポリオレフイン、 ポリエステル、 ポリアミ ド等の樹脂を含浸または混入した不織布、 ポリオレフイン、 ポリエステル、 ポリ アミ ド等の樹脂からなる不織布などが挙げられる。
トップシ一ト及ぴバックシートを構成する生分解性材料としては、 非溶融性の 材料と溶融性の材料に分けられる。 非溶融性の材料としては、 例えば、 パルプ、 木綿、 羊毛、 再生セルロース繊維、 溶剤紡糸セルロース繊維などが挙げられる。 パルプの具体例としては、 木材からのバージンパルプ、 古紙等から回収したパル プが挙げられる。 溶融性の材料の具体例としては、 脂肪族ポリエステル、 脂肪族 ポリエステルアミ ドが挙げられる。 脂肪族ポリエステルの具体例としては、 ポリ グリコリ ド、 ポリ乳酸等のポリ ( α—-ヒ ドロキシカルボン酸) ; ポリー t 一力プ 口ラタ トン、 ポリ一 )3—プロピオラク トン、 ポリ一 3—ヒ ドロキシプロピオネー ト、 ポリ一 3—ヒ ドロキシブチレート、 ポリ一 3—ヒ ドロキシカプロレート、 ポ リー 3—ヒ ドロキシヘプタノエート、 ポリ一 3—ヒ ドロキシォクタノエート、 及 びこれらとポリ一 3—ヒ ドロキシバリレ一ト、 ポリ一 4—ヒ ドロキシプチレート との共重合体等のポリヒ ドロキシアルカノエート ;ポリエチレンォキサレート、 ポリエチレンサクシネート、 ポリブチレンサクシネート、 ポリブチレンアジぺー ト、 ポリブチレンセバケート、 ポリへキサメチレンセバケート、 ポリネオペンチ ルォキサレート及びこれらの共重合体等の二価アルコールと二価カルボン酸との 縮合物; さらにそれらを二価ィソシァネート化合物で鎖延長したウレタン結合を 有するもの;等が挙げられる。 脂肪族ポリエステルアミ ドの具体例としては、 £ —力プロラク トンと f —力プロラクタムの共重合体等のラク トンとラクタムの共 重合物が挙げられる。
以下、 実施例によって本発明をより具体的に説明するが、 本発明は実施例のみ に限定されるものではない。 実施例及び比較例において 「部」 とは 「重量部」 を 意味する。
( 1 ) 生分解性の測定
生分解性はコンポスト法にて測定した。 コンポスト法は、 A S TM D - 5 3 3 8 . 9 2の応用である I S O C D 1 4 8 5 5に準じて行った。 すなわち、 ま ず、 試験サンプルに含まれる炭素量を元素分析にて測定し、 次に、 試験サンプル 1 5部をイノキュラム 8 0 0部に加え、 5 8 °Cにて 4 0日間行い、 生成した二酸 化炭素の量を測定して、 試験サンプルに含まれる炭素量を二酸化炭素に換算した 量に対する発生二酸化炭素量を生分解率 (%) として表した。 ここで、 生分解性 しやすレ、サンプルの中には、 イノキュラム中の炭素分までも分解促進するものも あるので、 1 0 0 %を超える値となる場合もある。
( 2 ) 吸水量の測定
吸水量の測定は、 生理食塩水 (実施例 A) 又は水道水 (実施例 B ) を対象とし てティーバッグ法にて行った。 すなわち、 吸水性樹脂約 0 . 0 3部を不織布製の ティーバッグ (8 0 mm X 5 0 mm) に入れ、 過剰の溶液中に浸してこの樹脂を 1 0時間膨潤させ、 ティーバックを引き上げて 1分間水切りを行い、 重量を測定 した。 また、 同様な操作をティーバックのみで行った場合をブランクとして、 測 定値からブランクの重量と吸水性樹脂の重量を減じた値を、 吸水性樹脂の重量で 除した値を吸水量 ( 7樹脂1 §) とした。
(3) 『ママコ』 の生成試験
生理食塩水 40 gを入れた直径 70 mmのシャーレに、 吸水性樹脂 200 m g を一度に加えて観察し、 『ママコ』 ができなかったものを 「〇」 、 『ママコ』 力 S できたものを 「X」 とした。
(4) 吸水速度の測定
吸水速度の測定は、 生理食塩水 (実施例 A) 又は水道水 (実施例 B) を対象と してティーバッグ法にて行った。 すなわち、 吸水性樹脂約 0. 03部を不織布製 のティーバッグ (80mmX 50mm) に入れ、 過剰の溶液中に浸してこの樹月旨 を 1分間膨潤させ、 ティーバックを引き上げて 10秒間水切りを行い、 重量を測 定した。 吸水量 (gZ樹脂 l g) の計算は上述の通りである。
( 5 ) 吸湿量測定及び吸湿によるべたつき試験
吸湿量の測定は、 吸水性樹脂 1部をガラス製のシャーレに置き、 23°C、 60 ±3%の湿度 (RH) にて 20時間吸湿させた後の重量変化を、 元の重量に対す る増加分を0 /0にて表わした。 ベたつき試験は、 23°C、 60 ± 3。/0の湿度同条件 の恒温恒湿の部屋にて, ガラスのシャーレ上にて吸湿させたサンプルの容器へ付 着した時間を測定した。 すなわち、 樹脂が、 容器を 60度傾けても容器にくっつ き離れなくなった時間を測定し、 樹脂が容器に付着した時問の前の測定時間をべ たつき度として表わした。 測定時間は、 1時間までは 10分おきに、 1時問後は 1時間置きに測定し、 20時間まで測定した。 また、 土への混合時の、 土中の水 分の吸収によるべたつきは、 実際に土に混合して樹脂の分散の様子を観察した。
(6) 植物生育試験
実施例 Aでは、 キンギヨソゥを用いた育苗試験を行ない、 生育 30日後、 地下 部を観察し判定した。 実施例 Bでは、 植物の生育試験としては、 キユウリを用い た育苗試験と、 ゼラニゥムの苗を移植して用いた生育試験を行なった。 キユウリ の育苗試験の結果は、 生育 25日後の観察による葉の枯れ具合もしくは生育指数 にて判定した。 - ·
生育指数は、 次の通り計算した。 まず、 生育した植物を根ごと取り出し、 水洗 して泥等を落とし、 余分な水分をペーパータオルで吸い取り、 地上部と地下部、 もしくは葉部と根部に分け、 一本当たりの生重 (g Z本) を測定した。 次いで、 風乾して、 1本当たりの風乾重 (g /本) を算出した。 試験物を使用しないこと 以外は同じ生育条件の下で生育させた標準区の植物の生重と風乾重を 1 0 0とし て、 それに対する試験物を使用した場合の生重と風乾重の割合 (%) で表した。 ゼラエゥムの苗を用いた生育試験は、 苗立枯病に汚染された土壌を用いて、 ゼ ラニゥムの苗を移植し、 6 0日間の生育試験を行い、 苗立枯病の防除率を算出し た。 なお、 この対照区は、 タチガレン水和剤 (三共 (株) 製) の 1 0 0 0倍希釈 液を 1株当り 5 O m 1灌注したものを用いた。
[実施例 A:表面架橋された粒子の例]
く架橋ポリァスパラギン酸粒子の製造例 A 1 >
リジンメチルエステル · 2塩酸塩 7 · 2部とリジン ' 1塩酸塩 2 2 . 6部を蒸留 水 4 0部に溶解し、 苛性ソーダ 7 . 8部を少しずつ加えて中和し、 リジン水溶液 を調製した。 一方、 窒素気流下、 重量平均分子量 9 . 6万のポリコハク酸イミ ド 1 0 0部をジメチルホルムアミ ド (DM F ) 4 0 0部に溶解し、 前記リジン水溶 液を加え、 室温で 1時間撹拌し、 攪拌を止め、 2 0時間反応させた。 反応物を刃 付き撹拌翼を備えたミキサーに移送し、 蒸留水 4 0 0部とメタノール 4 0◦部を 加え、 8 0 0 0 r p mにて 5分間ゲルを細断し、 さらに 2 7重量%苛性ソーダ水 溶液 1 2 9 . 7部を 2時間かけて滴下した。 滴下後、 さらに 2時間撹拌し、 その 後 7重量。 /。塩酸水を用いて P H = 7になるまで中和した。 このときの中和度は 8 5 %であった。 中和後、 さらにメタノール 3 0 0部を加え、 沈殿物を 6 0 °Cで乾 燥し、 サンプルミルを用いて粉砕し、 架橋ポリアスパラギン酸ポリマー (吸水性 ポリマー) 1 4 3部を得た。 この架橋ポリアスパラギン酸ポリマーをふるい分け して、 粒子径 1 0 5 μ πι〜5 0 0 μ mの架橋ポリアスパラギン酸粒子を得た。 く架橋ポリアスパラギン酸粒子の製造例 A 2 >
重量平均分子量 9 . 6万のポリコハク酸イミ ド 1 0 0部を DM F 4 0 0部に溶 解し、 へキサンジァミン 3 . 5 9部を DM F 2 0部に溶解した溶液を加え、 室温 で 1時間撹拌し、 攪拌を止め、 2 0時間反応させた。 得られた反応物を製造例 A 1と同様に処理して、 粒子径 1 0 5 // m〜 5 0 0 // mの架橋ポリアスパラギン酸 粒子を得た。 <架橋ポリアスパラギン酸粒子の製造例 A 3 >
重量平均分子量 5万のポリァスパラギン酸ナトリウム 2 0部を水 8 0部に溶解 し、 塩酸を用いて p Hを 5 . 5に調整した。 エチレングリコールジグリシジル エーテル 3部を加えてよく混合し、 凍結乾燥し、 その後 1 7 0 °Cで 4 0分間 熱処理し、 ふるい分けして、 粒子径 1 0 5 t m〜5 0 0 μ παの架橋ポリアスパラ ギン酸粒子を得た。
<架橋ポリアスパラギン酸粒子の製造例 A 4〉
重量平均分子量 5万のポリアスパラギン酸ナトリゥム 2 5部を水 7 5部に溶解 し、 コノ ルト 6 0を線源として 8 0 k G yの γ線を照射した。 得られたゲルを粉 砕し、 6 0 °Cで 2 0時間乾燥し、 その後ふるい分けして、 粒子径1 0 5 / 111〜5 0 0 μ mの架橋ポリァスパラギン酸粒子を得た。
く架橋ポリー 1/—グルタミン酸粒子の製造例 A 5 >
ポリ一 γ—グルタミン酸 4部を水 9 6部に溶解し、 コバルト 6 0を線源として 4 0 k G yの γ線を照射した。 得られたゲルを粉砕し、 6 0 °Cで 2 0時間乾燥し、 その後ふるい分けして、 粒子径 1 0 5 // m〜5 0 0 μ ηιの架橋ポリ— γ—グルタ ミン酸粒子を得た。
<他の粒子の比較製造例 A 1 >
特公昭 5 4— 3 0 7 1 0号公報に記載の方法に準じて、 粒子径 1 0 5 m〜 5 0 0 μ mの架橋ポリアタリル酸粒子を得た。
ぐ実施例 A 1 >
製造例 A 1で得た架橋ポリァスパラギン酸粒子 1 0 0部を攪拌しながら、 ェチ レングリコールジグリシジルエーテル 0 . 5部、 水 1部、 メタノール 4部からな る表面架橋剤溶液を噴霧することにより表面架橋剤を均一に添加した。 この混合 物を 1 4 0 で 2 0分問熱処理をして、 表面架橋された架橋ポリアミノ酸含有粒 子を得た。 その生分解性を調べたところ、 生分解率 1 0 2 %と良好であった。 く実施例 A 2〉
製造例 A 1で得た架橋ポリアスパラ-ギン酸粒子 1 0 0部を攪拌しながら、 グリ セリン 0 . 5部、 水 1部、 メタノール 4部からなる表面架橋剤溶液を嘖霧するこ とにより表面架橋剤を均一に添加した。 この混合物を 2 2 0 °Cで 1 5分間熱処理 をして、 表面架橋された架橋ポリアミノ酸含有粒子を得た。 その生分解性を調べ たところ、 生分解率 1 0 2 %と良好であった。
<実施例 A 3 >
製造例 A 1で得た架橋ポリアスパラギン酸粒子 1 0 0部を攪拌しながら、 表面 架橋剤水溶液である 1 0重量%硫酸アルミニゥム水溶液 5部を噴霧することによ り表面架橋剤を均一に添加した。 この混合物を 6 0 °Cで 2時間乾燥して、 表面架 橋された架橋ポリアミノ酸含有粒子を得た。
ぐ実施例 A 4 >
製造例 A 2で得た架橋ポリアスパラギン酸粒子を用いたこと以外は、 実施例 A 1と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
<実施例 A 5〉
製造例 A 2で得た架橋ポリァスパラギン酸粒子を用いたこと以外は、 実施例 A 2と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
<実施例 A 6 >
製造例 A 2で得た架橋ポリアスパラギン酸粒子を用いたこと以外は、 実施例 A 3と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
<実施例 A 7 >
エチレングリコールジグリシジルエーテルの代わりに、 ェピクロルヒ ドリン 0 . 5部を用いたこと以外は、 実施例 A 1と同様にして表面架橋された架橋ポリアミ ノ酸含有粒子を得た。
く実施例 A 8〉
エチレングリコールジグリシジルエーテルの代わりに、 ペンタエリスリ トール —トリス [ ]3— (N—アジリジニル) プロピオネート] 0 . 5部を用いたこと以 外は、 実施例 A 1と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
<実施例 A 9 >
エチレングリコ一ルジグリシジルェ一テルの代わりに、 へキサメチレンジイソ シァネート 0 . 5部を用いたこと以外は、 実施例 A 1と同様にして表面架橋され た架橋ポリアミノ酸含有粒子を得た。
<実施例 A 1 0 > グリセリンの代わりに、 へキサメチレンジァミン 0 . 5部を用いたこと以外は、 実施例 A 2と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
<実施例 A 1 1 >
製造例 A 3で得た架橋ポリアスパラギン酸粒子を用いたこと以外は、 実施例 A 1と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
く実施例 A 1 2 >
製造例 A 4で得た架橋ポリァスパラギン酸粒子を用いたこと以外は、 実施例 A 1と同様にして表面架橋された架橋ポリアミノ酸含有粒子を得た。
ぐ実施例 A 1 3 >
製造例 A 5で得た架橋ポリー y—グルタミン酸粒子を用いたこと以外は、 実施 例 A 1と同様にして表面架橋された架橋ポリァミノ酸含有粒子を得た。
<比較例 A 1 >
製造例 A 1で得た架橋ポリアスパラギン酸粒子をそのまま評価に用いた。 その 生分解性を調べたところ、 生分解率 1 0 1 %と良好であった。
<比較例 A 2 >
比較製造例 A 1で得た架橋ポリアクリル酸粒子を用いたこと以外は、 実施例 A 1と同様にして粒子 (吸水性ポリマー粒子) を得た。 その生分解性を調べたとこ ろ、 生分解率は 2 . 2 %であり、 全く生分解性を示さなかった。
<実施例 A 1〜A 1 3、 比較例 A 1〜A 2の評価〉
実施例 A 1〜A 1 3、 比較例 A 1〜A 2で得た各粒子の吸水量及び吸水速度を 測定した。 その結果を下記表 1に示す。
Figure imgf000043_0001
く実施例 A 1 4〉
赤土 3 0 0部と、 実施例 1で得た表面架橋された架橋ポリアミノ酸含有粒子 1 部を混合し、 容積 5 O O m lのビニールポットに入れ、 試験作物としてキンギヨ ソゥを用いて生育試験を行なった。 具体的には、 キンギヨソゥの苗を移植し、 5 日間に 1回、 土が乾燥してから権水した。 3 0日後に観察したところ、 根腐れ等 の発生は認められなかつた。
<比較例 A 3 >
比較例 A 1で得た架橋ポリァスパラギン酸含有粒子を用いたこと以外は実施例 A 1 0と同様にして生育試験を行なった。 3 0日後に観察したところ、 2 5 %の 苗に根腐れが認められた。
[実施例 B :表面被覆された粒子の例]
く架橋ポリアスパラギン酸の製造例 B 1 >
製造例 A 1と同様にして、 架橋ポリ スパラギン酸 (吸水性ポリマー) 1 4 3 部を得た。 その生分解性を調べたところ、 生分解率 1 0 2 %と良好であった。 く架橋ポリアスパラギン酸の製造例 B 2 >
重量平均分子量 9 . 6万のポリコノヽク酸ィミ ド 1 0 0部を DM F 4 0 0部に溶 解し、 へキサンジァミン 3 . 5 9部を DM F 2 0部に溶解した溶液を加え、 室温 で 1時間撹拌し、 攪拌を止め、 2 0時間反応させた。 得られた反応物を製造例 A 1と同様に処理して、 架橋ポリアスパラギン酸を得た。 その生分解性を調べたと ころ、 生分解率 1 0 3 %と良好であった。
<他の樹脂の比較製造例 B 1 >
特公昭 5 4— 3 0 7 1 0号公報に記載の方法に準じて、 架橋ポリアタリル酸を 得た。 この樹脂の水道水に対する吸水量は 2 7 0倍と良好であつたが、 生分解率 は 2 . 2 %と全く生分解性を示さなかつた。
ぐ実施例 B 1 >
製造例 B 1で得た架橋ポリアスパラギン酸を粉砕し、 メッシュパスを行い、 粒 径 1 0 5 At m〜5 0 0 μ mの粒子を得た。 次いで、 この粒子 1 0部を、 メタノー ル 5 0部にソルビタンモノラウレート 0 . 5部 (商品名レオドール S P— L 1 0、 花王 (株) 製) を溶解した溶液中に添加し、 混合した。 その後メタノールを減圧 下で留去し、 ソルビタンモノラウレートを含むシェル相を有するコアシェル粒子 を得た。
<実施例 B 2 >
ソルビタンモノラウレートの代わりにォレイン酸モノグリセライ ド (商品名レ オドール MO— 6 0、 花王 (株) 製) を用いたこと以外は、 実施例 B 1と同様の 処理を行ない、 ォレイン酸モノグリセライ ドを含むシェル相を有するコアシェル 粒子を得た。
く実施例 B 3 >
ソルビタンモノラウレートの代わりにポリオキシエチレン (2 6 ) ソルビタン モノォレエート (商品名レオドール TW— 0 1 2 0、 花王 (株) 製) を用いたこ と以外は、 実施例 B 1と同様にして、 ポリオキシエチレン (2 6 ) ソルビタンモ ノォレエ一トを含むシェル相を有する-コアシェル粒子を得た。
く実施例 B 4 >
ソルビタンモノラウレートの代わりにラゥリルトリメチルアンモニゥムク口ラ イ ド (商品名コータミン 2 4 P、 花王 (株) 製) を用いたこと以外は、 実施例 B 1と同様にして、 ラウリルトリメチルアンモユウムクロライドを含むシェル相を 有するコアシヱル粒子を得た。
<実施例 B 5 >
ソルビタンモノラウレートの代わりにオクタンスルホン酸ナトリゥムを用いた こと以外は、 実施例 B 1 と同様にして、 オクタンスルホン酸ナトリウムを含む シェル相を有するコアシェル粒子を得た。
く実施例 B 6 >
ソルビタンモノラウレートの代わりにポリビュルピロリ ドン (重量平均分子量 6 3万) を用いたこと以外は、 実施例 B 1と同様にして、 ポリビニルピロリ ドン を含むシェル相を有するコアシェル粒子を得た。
<比較例 B 1 >
製造例 B 1で得た架橋ポリアスパラギン酸を、 実施例 B 1と同様にして粉砕し、 メッシュパスを行い、 粒径 1 0 5 〜 5 0 0 μ πιのコア粒子を得た。 このコア粒子 をそのまま評価に用いた。
<実施例 Β;!〜 Β 6、 比較例 Β 1の評価 >
実施例 Β 1 〜 Β 6、 比較例 Β 1で得た各粒子について、 吸水速度の測定及び 『ママコ』 の生成試験を行った。 結果を下記表 2に示す。
表 2
Figure imgf000045_0001
<実施例 B 7 > 製造例 B 1で得た架橋ポリアスパラギン酸を粉砕し、 メッシュパスを行い、 粒 径 0 . 5〜 1 . 5 mmのコア粒子を得た。 このコア粒子を 4 0重量%濃度のポリコ ハク酸イミ ドの DM F溶液に浸漬し、 液から引き上げ、 6 0 mm H gの減圧下、 1 2 0 °Cにて 2 0時間乾燥して溶媒を除去することにより、 ポリコハク酸イミ ド にてコー卜された粒子を得た。 この粒子の吸湿量は 2 0時間後 2 2 . 9 %であり、 ベたつき試験では 2 0時間以上付着しなかった。
培土としてスーパーソィル 2号 (園芸床土) 1 7 0 0部と、 上記ポリコハク酸 イミ ドにてコートされた粒子 5 . 1部を混合した。 このとき、 樹脂のベたつきに よる樹脂の固まり等の不均一性は見られなかった。 この混合物 2 1 0部を、 容積 5 0 0 m lのビニールポットに入れ、 試験作物としてキユウリを用いて生育試験 を行なった。
灌水については、 まず、 飽和状態になるまで十分な灌水を行い、 その後、 灌水 を行わずに 1 0日間生育試験を行った。 さらに、 試験は 2 5日まで行い、 葉、 根、 地上部の乾燥重量を測定した。 キユウリは、 播種後 5〜 7日後の子葉 (双葉) 展 開時にポットに移植した。 反復回数は 5回であり、 5回の平均を算出した。 なお 標準区としては、 保水剤の添加なしで移植後 1 0日までに水 8 0部を 4回灌水し、 その後 2 5日まで毎日十分な標準灌水を行ったものを用いた。
その結果、 2 5日後は、 主茎長は 1 3 . 5 c m, 茎乾燥重は◦. 3 0部 Z本で、 生育指数は 1 2 8、 葉乾燥重は 0 . 7 7部 Z本で、 生育指数は 1 3 9、 根乾燥重 は 0 . 1 2 9 0部/本で、 生育指数は 1 6 0、 茎葉乾燥重は 1 . 1 6部 Z本で、 生 育指数は 1 4 8と著しい生育促進がみられた。
<実施例 B 8 >
製造例 B 2で得た架橋ポリアスパラギン酸を粉砕し、 メッシュパスを行い、 粒 径 0 . 5〜 1 . 5 mmのコァ粒子を得た。 このコァ粒子を 1 0重量。/。濃度のポリ乳 酸のクロ口ホルム溶液に浸漬し、 液から引き上げ、 6 0 °Cにて 5時間乾燥し、 こ の浸漬乾燥操作を 3回繰り返すことにより、 ポリ乳酸にてコートされた粒子を得 た。 この粒子の吸湿量は 2 0時間後 Γ 6 . 3 %であり、 ベたつき試験では 2 0時 間以上付着しなかった。
このポリ乳酸にてコートされた粒子 (顆粒) 0 . 6部をスーパーソィル 2号 (園芸床土) 200部によく混合することにより、 土壌組成物を得た。 この土壌 組成物について、 実施例 B 7と同様にキュゥリを用いた、 濯水回数制限下の植物 生育試験を行なった。 その結果、 2 5日後は、 主茎長は 1 3. 9 c m、 茎乾燥重 は 0. 34部/本で、 生育指数は 1 4 8、 葉乾燥重は 0. 84部 Z本で、 生育指数 は 1 5 2、 根乾燥重は 0. 1 4 0 5部/本で、 生育指数は 1 74、 茎葉乾燥重は 1. 1 8部 本で、 生育指数は 1 5 1 と著しい生育促進がみられた。
<実施例 B 9 >
ポリ乳酸の代わりにェチルセルロースを用いたこと以外は、 実施例 B 8と同様 に処理して、 ェチルセルロースにてコートされた粒子を得た。 この粒子の吸湿量 は 20時間後 1 7. 7。/。であり、 ベたつき試験では 20時間以上付着しなかった。 このェチルセルロースでコートされた粒子 (顆粒) 0. 6部を、 スーパーソィ ル 2号 (園芸床土) 200部によく混合することにより、 土壌組成物を得た。 こ の土壌組成物について、 実施例 B 7と同様にキュゥリを用いた、 灌水回数制限下 の植物生育試験を行なった。 その結果、 その結果、 2 5日後は、 主茎長は 1 3. 7 c m, 茎乾燥重は 0. 3 2部 本で、 生育指数は 1 3 8、 葉乾燥重は 0. 78部 /本で、 生育指数は 1 42、 根乾燥重は 0. 1 3 7 3部/本で、 生育指数は 1 7 0、 茎葉乾燥重は 1. 1 7部 本で、 生育指数は 1 5 0と著しい生育促進がみら れた。
く実施例 B 1 0 >
製造例 B 1で得た架橋ポリアスパラギン酸 9 8部、 タチガレン水和剤 (三共 (株) 製) 2部をミキサーに入れ、 均一になるまで混合した。 この混合物 0. 4 2部を、 直径 1 Ommの臼が付いた打錠機 (菊水製作所製 7 A— S M型) に入れ、 錠剤の厚みが 4 mmとなるように上杵を調節して打錠し、 隅角で円盤状の錠剤を 得た。 この錠剤をフロイント産業 (株) 製 F L— 80に入れ、 ヒ ドロキシプロピ ルセルロースの 2 %ェタノール溶液を噴霧することにより、 ヒ ドロキシプロピル セルロースにてコートされた粒子を得た。 この粒子の吸湿量は 2 0時間後 3. 9 %であり、 ベたつき試験では 20時間以上付着しなかつた。
苗立枯病に汚染された土壌を採取し、 ゼラユウムの苗を移植し、 株周辺部に深 さ 3〜5 c mの穴をあけ、 ヒ ドロキシプロピルセルロースにてコ一トされた粒子 を投入し、 60日間、 標準灌水にて生育試験を行なった。 苗立枯病の防除率はほ ぼ 100%であり、 薬害、 根腐れも認められなかった。
ぐ実施例 B 1 1 >
実施例 B 8と同様にしてポリ乳酸にてコートされた粒子を得た。 この粒子 30 0部と、 タチガレン水和剤 (三共 (株) 製) 6部を混合して用いたこと以外は、 実施例 B 1 0と同様にして錠剤を得た。 この錠剤と粉末状ポリ乳酸 (三井化学 (株) 製、 商品名 LACE A) 100部を樹脂温 1 80〜: 1 90°Cで混合し、 錠 剤を引き上げて冷却することにより、 ポリ乳酸を含むシェル相を有する粒子を得 た。 この粒子の吸湿量は 20時間後 1 5. 9 %であり、 ベたつき試験では 20時 間以上付着しなかった。 実施例 B 1 0と同様にゼラ-ゥムの生育試験を行ったと ころ、 苗立枯病の防除率はほぼ 1 00%であり、 薬害、 根腐れも認められなかつ た。
<比較例 B 2>
比較製造例 B 1で得た架橋ポリアクリル酸の粒子について、 実施例 B 7と同様 にして、 キユウリの灌水回数制限下の生育試験を行った。 その結果、 樹脂と土の 混合時に樹脂のベたつきによって樹脂が固まりとなり、 均一に分散しなかった。 また、 植物育成試験の結果、 25日後は、 主茎長は 1 2. 7 cm、 茎乾燥重は 0. 1 7部/本で、 生育指数は 80、 葉乾燥重は 0.47部 Z本で、 生育指数は 85、 根乾燥重は 0.074部 Z本で、 生育指数は 91、 茎葉乾燥重は 0. 71部 Z本で、 生育指数は 91と生育阻害がみられた。
く比較例 B 3 >
製造例 1で得た架橋ポリアスパラギン酸を粉砕し、 メッシュパスを行い、 粒径 0. 5〜 1. 5 mmの粒子を得た。 この粒子の吸湿量は 20時間後 25. 5 %であ り、 ベたつき試験の結果 1 0分以内に付着した。 この粒子について、 実施例 B 7 と同様にして、 キユウリの灌水回数制限下の生育試験を行った。 その結果、 25 日後は主茎長は 1 3.4 cm、 茎乾燥重は 0. 30部/本で、 生育指数は 1 28、 葉乾燥重は 0. 78部 Z本で、 生育指数は 14 1、 根乾燥重は 0. 1 274部 Z本 で、 生育指数は 1 58、 茎葉乾燥重は 1. 1 6部/本で、 生育指数は 148と良 好であった。 しかし、 樹脂と土の混合時に樹脂のベたつきによって樹脂が固まり となり、 均一に分散しなかった。
く比較例 B 4 >
ヒ ドロキシプロピルセルロースにてコートされた粒子を用いることなく、 タチ ガレン水和剤 (三共 (株) 製) の 1 0 0 0倍希釈液を 1株当り 5 0 m 1灌注した こと以外は、 実施例 1 0と同様にしてゼラニゥムの生育試験を行った。 その結果、 移植後 6 0日間で、 3 0 %の苗に根腐れが認められた。
<比較例 B 5 >
比較製造例 B 1で得た架橋ポリアクリル酸の粒子を用いたこと以外は、 実施例 B 1 0と同様にゼラニゥムの生育試験を行なった。 その結果、 移植後 6 0日間で、 2 0 %の苗に根腐れが認められた。
以上説明したように、 特に、 第一の実施形態 (実施例 A) においては、 使用後 には土壌への蓄積性がなく、 吸水速度が速く、 優れた保水能及び通気効果を有す る架橋ポリアミノ酸含有粒子を提供できる。 具体的には、 例えば以下の作用効果 ①〜③を奏する。
① . 本発明の架橋ポリアミノ酸含有粒子は、 表面が更に架橋されているので、 吸 水の際のゲル ·プロッキングを生じ吸水速度が著しく低下するという従来の 架橋ポリアミノ酸粒子における問題が発生しない。 すなわち、 ゲル 'ブロッ キングが起こらず、 吸水速度に優れている。
② . 本発明の架橋ポリアミノ酸含有粒子は、 保水効果と共に、 根の呼吸の維持と、 根腐れを抑制するために、 空気の流通を維持するという優れた通気効果を有 する。
③ . 本発明の架橋ポリアミノ酸含有粒子は、 使用後には、 土壌への蓄積性がなく、 環境保護の点で優れている。
また、 特に、 第二の実施形態 (実施例 B ) においては、 使用後には土壌への蓄 積性がなく、 吸水速度が速く、 吸湿や土中の水分によるべとつきが無く、 優れた 保水能及び有効成分の徐放性を有する架橋ポリアミノ酸含有粒子を提供できる。 具体的には、 例えば以下の作用効果①-〜⑥を奏する。
①. 水と接触した際に 『ママコ』 が生じ吸水速度が著しく低下するという従来の 架橋ポリアミノ酸含有粒子における問題が発生しない。 すなわち、 『ママ コ』 が発生せず、 水への分散性が優れ、 吸水速度に優れている。
② . 水分等に起因する表面のベたつきががなく、 操作性に顕著に優れる。
③ . 水分や水蒸気を吸着し難く、 吸湿性が顕著に低い。
④ . 使用後には、 土壌への蓄積性がなく、 かつ優れた保水性を有する。
⑤ . 有効成分を徐放する用途に有用である。
⑥ . 植物生育促進等の目的での土壌改良剤の用途において有用である。

Claims

請求の範囲
1 . コア相表面の少なくとも一部が少なくとも一層のシェル相により被覆 されたコア Zシェル構造を有し、 前記コア相は少なくとも架橋ポリアミノ酸含有 粒子により構成されるものである架橋ポリアミノ酸含有粒子。
2 . 架橋ポリアミノ酸が、 架橋ポリアスパラギン酸及び/又は架橋ポリグ ルタミン酸を含む請求項 1記載の架撟ポリアミノ酸含有粒子。
3 . シェル相は、 コア相に含まれる架橋ポリアミノ酸よりも架橋密度が高 レ、架橋ポリアミノ酸を含有して構成されるものである請求項 1記載の表面架橋さ れた架橋ポリアミノ酸含有粒子。
4 . 全粒子中の架橋ポリァミノ酸分子内に存在するカルボキシル基の中和 度 N [モル%] が下記数式 (I )
5 0 [モル%] ≤ N ≤ 1 0 0 [モル0 /o] ( I ) を満たす請求項 3記載の架橋ポリアミノ酸含有粒子。
5 . 請求項 3記載の表面架橋された架橋ポリアミノ酸含有粒子を製造する 為の方法であって、 架橋ポリアミノ酸含有粒子の表面の少なくとも一部を、 架橋 ポリアミノ酸のカルボキシル基と反応可能な官能基を一分子中に二つ以上有する 表面架橋剤を用いて架橋させることにより、 架橋密度が高い架橋ポリアミノ酸を 含有する少なくとも一層のシェル相を形成する工程を有する表面架橋された架橋 ポリアミノ酸含有粒子の製造方法。
6 . 表面の少なくとも一部を架橋させる前の架橋ポリアミノ酸含有粒子中 の架橋ポリアミノ酸分子内に存在するカルボキシル基の中和度 N' [モル。 /0] 下記数式 (I I)
4 9 [モル%] ≤ N' ≤ 9 9 [モル0 /o] (II) を満たし、 表面の少なくとも一部を架橋させた後の架橋ポリアミノ酸含有粒子中 の架橋ポリアミノ酸分子内に存在する力ルポキシル基の中和度 N [モル%] が下 記数式 ( I ) -
5 0 [モル%] ≤ N ≤ 1 0 0 [モル%] ( I )
を満たす請求項 5記載の架橋ポリアミノ酸含有粒子の製造方法。
7 . 表面架橋剤が、 多価アルコール、 多価グリシジル化合物、 多価アジリ ジン、 ハロエポキシ化合物、 多価ァミン、 多価イソシァネート、 及び、 多価金属 の塩または水酸化物から成る群より選択された少なくとも一種の化合物である請 求項 5記載の架橋ポリアミノ酸含有粒子の製造方法。
8 . 請求項 5記載の方法により得られた表面架橋された架橋ポリアミノ酸 含有粒子。
9 . 請求項 3記載の表面架橋された架橋ポリアミノ酸含有粒子を含む衛生 材料。
1 0 . 請求項 3記載の表面架橋された架橋ポリアミノ酸含有粒子を含む土 壌改良剤。
1 1 . シェル相は、 コーティング材を含有して構成されるものである請求 項 1記載の架橋ポリアミノ酸含有粒子。
1 2 . コーティング材が、 界面活性剤を含有する請求項 1 1記載の架橋ポ リアミノ酸含有粒子。
1 3 . 請求項 1 1記載の架橋ポリアミノ酸含有粒子を製造するための方法 であって、 架橋ポリアミノ酸含有粒子の表面にコーティング材溶液又は溶融状態 のコーティング材を塗布することにより、 該表面の少なくとも一部に少なくとも 一層のシェル相を形成する工程を有する架橋ポリァミノ酸含有粒子の製造方法。
1 4 . 請求項 1 3記載の方法により得られた架橋ポリアミノ酸含有粒子。
1 5 . 請求項 1 1記載の架橋ポリアミノ酸含有粒子を含む衛生材料。
1 6 . 請求項 1 1記載の架橋ポリアミノ酸含有粒子を含む土壌改良剤。
1 7 . シェル相は、 樹脂を含有して構成されるものである請求項 1記載の 架橋ポリアミノ酸含有粒子。
1 8 . 樹脂が、 生分解性重合体を含む請求項 1 7記載の架橋ポリアミノ酸 含有粒子。
1 9 . 請求項 1 7記載の架橋ポリアミノ酸含有粒子を製造するための方法 であって、 架橋ポリアミノ酸含有粒子-の表面に樹脂溶液又は溶融状態の樹脂を塗 布することにより、 該表面の少なくとも一部に少なくとも一層のシェル相を形成 する工程を有する架橋ポリアミノ酸含有粒子の製造方法。
2 0 . 請求項 1 9記載の方法により得られた架橋ポリアミノ酸含有粒子。
2 1 . 請求項 1 7記載の架橋ポリアミノ酸含有粒子を含む衛生材料。
2 2 . 請求項 1 7記載の架橋ポリアミノ酸含有粒子を含む土壌改良剤。
PCT/JP1999/006162 1998-11-05 1999-11-05 Particule contenant un polyamino-acide reticule WO2000027904A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020017005547A KR20010085992A (ko) 1998-11-05 1999-11-05 가교폴리아미노산함유입자
EP99954394A EP1152024A4 (en) 1998-11-05 1999-11-05 CROSSLINKED PARTICLES CONTAINING POLYAMINOIC ACID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/314910 1998-11-05
JP31491098 1998-11-05

Publications (1)

Publication Number Publication Date
WO2000027904A1 true WO2000027904A1 (fr) 2000-05-18

Family

ID=18059122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006162 WO2000027904A1 (fr) 1998-11-05 1999-11-05 Particule contenant un polyamino-acide reticule

Country Status (4)

Country Link
EP (1) EP1152024A4 (ja)
KR (1) KR20010085992A (ja)
CN (1) CN1332767A (ja)
WO (1) WO2000027904A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001442A (zh) * 2015-08-20 2015-10-28 西南交通大学 一种微孔自发泡制备多孔水凝胶的方法
US11457624B2 (en) 2016-11-02 2022-10-04 Corbet Scientific, Llc Adjuvant compositions for plant treatment chemicals
US11666048B2 (en) 2017-02-24 2023-06-06 Corbet Scientific, Llc Treatment for plants in conjunction with harvesting

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140992A1 (en) * 2002-10-31 2006-06-29 Idemitsu Technofine Co., Ltd. Cosmetics excellent in texture and oil-dispersibility
WO2008108343A1 (ja) 2007-03-05 2008-09-12 Nippon Shokubai Co., Ltd. 吸水剤及びその製造方法
JP2010539939A (ja) * 2007-09-27 2010-12-24 アーカー−ダニエルズ−ミッドランド カンパニー 異形性のリジン飼料顆粒
KR101250543B1 (ko) * 2009-12-28 2013-04-03 주식회사 삼양바이오팜 수화겔, 이의 제조 방법 및 용도
AU2012298583A1 (en) * 2011-08-22 2014-03-13 Construction Research & Technology Gmbh Use of polyamine as anti-sticking additive
EP2814879B1 (en) 2012-02-17 2018-04-11 Andersen Corporation Polylactic acid containing building component
WO2014165767A1 (en) * 2013-04-04 2014-10-09 Rohm And Haas Company Alkaline-swellable emulsion polymers
GB201308244D0 (en) 2013-05-08 2013-06-12 Croda Int Plc Soil treatment
US9938461B2 (en) * 2014-11-03 2018-04-10 S.P.C.M. Sa Process for soil conditioning by aerial application of water soluble or swellable polymers
CN107033833A (zh) * 2017-03-15 2017-08-11 中国科学院长春应用化学研究所 一种聚氨基酸组合物及其制备方法和应用
CN106832265B (zh) * 2017-03-15 2020-04-03 长春鑫螯科技有限公司 一种交联聚氨基酸型金属吸附剂、制备方法及吸附金属的方法
CN109692673A (zh) * 2019-02-02 2019-04-30 嘉兴学院 一种多孔吸附树脂材料及其制备方法和使用方法
CN110204234B (zh) * 2019-04-24 2021-10-26 东南大学 一种双壳层中空大颗粒料的制备方法
CN110092922A (zh) * 2019-05-31 2019-08-06 成都金开生物工程有限公司 一种γ-聚谷氨酸复合凝胶的制备方法
CN112094409B (zh) * 2019-06-18 2023-08-08 四川大学华西医院 一种氨基酸修饰的聚乙烯亚胺化合物及其制备方法和用途
CN111013510A (zh) * 2019-12-31 2020-04-17 福州力天纺织有限公司 一种织物用相变储能微胶囊及制备方法
CN116284751B (zh) * 2022-09-09 2024-05-31 长江大学 聚天冬氨酸衍生物及其制备方法与作为润滑剂的应用、水基钻井液及其应用
CN116286018B (zh) * 2023-05-25 2023-07-21 地康食安(北京)农业科技有限公司 一种基于生物质炭的土壤调理剂及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121728A (ja) * 1985-11-20 1987-06-03 Chuichi Hirayama ポリアミノ酸の架橋球状粒子とその製造方法
US4808399A (en) * 1985-12-11 1989-02-28 Ceskoslovenska Akademie Ved Composition for diagnosing the transport function of the fallopian tube and a method for preparing said composition
JPH0859820A (ja) * 1994-08-25 1996-03-05 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
JPH08117323A (ja) * 1994-10-20 1996-05-14 Baiomatsupu Kk アパタイト被覆基材とその製造法
JPH10298282A (ja) * 1997-04-30 1998-11-10 Nippon Shokubai Co Ltd ポリアミノ酸系吸水性樹脂およびその製法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610208A (en) * 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121728A (ja) * 1985-11-20 1987-06-03 Chuichi Hirayama ポリアミノ酸の架橋球状粒子とその製造方法
US4808399A (en) * 1985-12-11 1989-02-28 Ceskoslovenska Akademie Ved Composition for diagnosing the transport function of the fallopian tube and a method for preparing said composition
JPH0859820A (ja) * 1994-08-25 1996-03-05 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
JPH08117323A (ja) * 1994-10-20 1996-05-14 Baiomatsupu Kk アパタイト被覆基材とその製造法
JPH10298282A (ja) * 1997-04-30 1998-11-10 Nippon Shokubai Co Ltd ポリアミノ酸系吸水性樹脂およびその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1152024A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001442A (zh) * 2015-08-20 2015-10-28 西南交通大学 一种微孔自发泡制备多孔水凝胶的方法
US11457624B2 (en) 2016-11-02 2022-10-04 Corbet Scientific, Llc Adjuvant compositions for plant treatment chemicals
US11666048B2 (en) 2017-02-24 2023-06-06 Corbet Scientific, Llc Treatment for plants in conjunction with harvesting

Also Published As

Publication number Publication date
EP1152024A4 (en) 2002-08-21
EP1152024A1 (en) 2001-11-07
CN1332767A (zh) 2002-01-23
KR20010085992A (ko) 2001-09-07

Similar Documents

Publication Publication Date Title
WO2000027904A1 (fr) Particule contenant un polyamino-acide reticule
CN100503670C (zh) 以吸水树脂作为主要成分的栽培植物用颗粒保水材料
JP4430945B2 (ja) 徐放性窒素肥料
US20110094967A1 (en) Composite material composed of polymer materials and a porous mineral matrix and the production and use thereof
CN102170771B (zh) 以聚丙烯酸(盐)系吸水树脂为主要成分的植物培育用颗粒状吸水剂
JP2000198858A (ja) 架橋ポリアミノ酸含有粒子
JPH11116950A (ja) 成形体及びその製造方法
JP2001131283A (ja) 表面架橋された架橋ポリアミノ酸含有粒子
JP4694809B2 (ja) 生分解性吸水性樹脂を主成分とする植物育成用保水材
JP2018117549A (ja) 被覆種子、被覆種子の製造方法及び被覆種子の播種方法
JPH11116798A (ja) 樹脂組成物
JP4694810B2 (ja) 吸水性樹脂を主成分とする植物育成用保水材
JP4153587B2 (ja) 粒状培地及びこれを用いた混合培地
KR101905157B1 (ko) 유기성 폐기물을 이용한 비료 및 이의 제조방법
JP2001178263A (ja) 育苗シートおよび育苗床
CN1282510A (zh) 无土栽培基质及其生产方法
JP2004283060A (ja) マット植物用培地、マット植物用粒状培地、及びこれらを用いた緑化施工方法
JP2002291332A (ja) 培地、粒状培地、粒状培地の製造方法、および作物の栽培方法
JP2001204264A (ja) 育苗シートおよび育苗床
JPH04149088A (ja) 鶏糞等の有機肥料とその製造法
JP2001340017A (ja) 粒状培地、これを用いた育苗容器施肥用材料、および作物の栽培方法
JP2018117550A (ja) 被覆種子、被覆種子の製造方法及び被覆種子の播種方法
JP2018117548A (ja) 被覆種子の製造方法及び被覆種子の播種方法
EP3822243A2 (en) Process for the production of a soil and plant nutrient matrix based on organic matter having a high swelling capacity
KR100348859B1 (ko) 이산화탄소와 수분을 흡수하는 중합체 분말, 그것을제조하는 방법 및 그것을 흡수제로 포함하는 고흡수용품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815211.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999954394

Country of ref document: EP

Ref document number: 09830688

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017005547

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017005547

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999954394

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999954394

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020017005547

Country of ref document: KR