WO2000017177A1 - Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff - Google Patents

Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff Download PDF

Info

Publication number
WO2000017177A1
WO2000017177A1 PCT/EP1999/006941 EP9906941W WO0017177A1 WO 2000017177 A1 WO2000017177 A1 WO 2000017177A1 EP 9906941 W EP9906941 W EP 9906941W WO 0017177 A1 WO0017177 A1 WO 0017177A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
steam
steam turbine
ethylene
water vapor
Prior art date
Application number
PCT/EP1999/006941
Other languages
German (de)
English (en)
French (fr)
Inventor
Gerhard Theis
Frans Vansant
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE59909416T priority Critical patent/DE59909416D1/de
Priority to BRPI9913938-3A priority patent/BR9913938B1/pt
Priority to US09/762,797 priority patent/US6397599B1/en
Priority to AT99969411T priority patent/ATE266014T1/de
Priority to AU59797/99A priority patent/AU5979799A/en
Priority to PL346778A priority patent/PL196670B1/pl
Priority to UA2001042716A priority patent/UA60382C2/uk
Priority to CA002343767A priority patent/CA2343767C/en
Priority to JP2000574087A priority patent/JP4582910B2/ja
Priority to EP99969411A priority patent/EP1115713B1/de
Publication of WO2000017177A1 publication Critical patent/WO2000017177A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a process for the production of ethylene oxide (hereinafter referred to as EO) by direct oxidation of ethylene and a process according to which glycol is obtained from EO by hydrolysis, pressure dewatering, vacuum dewatering and subsequent pure distillation.
  • EO ethylene oxide
  • EO is currently produced on a large scale by direct oxidation of ethylene with air or oxygen on silver catalysts.
  • the reaction is highly exothermic (overall heat generation 225 to 400 KJ per mole of ethylene); therefore, the excess heat of reaction is usually worked in tube bundle reactors, the reaction mixture being passed through the tubes and a boiling liquid, for example kerosene or tetralin, recently frequently water circulating between the tubes as heat transfer medium.
  • the present invention relates to methods according to which water is used as the heat transfer medium.
  • the water vapor produced in the direct ethylene oxidation is generally expanded to the pressure of a steam network via a valve.
  • the energy content of the water vapor from the relaxation is not used.
  • ethylene oxide (EO) from worldwide production is processed with increasing tendency to monoethylene glycol.
  • the hydrolysis reactor is operated with a large excess of water (water: EO weight ratio up to 15: 1).
  • the hydrolysis reactor is usually operated at temperatures from 120 ° C to 250 ° C and pressures from 30 - 40 bar.
  • the hydrolysis product is first dewatered, to a residual water content of 100-200 ppm and then separated into the various glycols in pure form.
  • Dewatering usually takes place in a cascade of pressure-graded columns, with decreasing pressure. For reasons of heat integration, usually only the bottom evaporator of the first pressure column is heated with live steam, all other pressure columns, on the other hand, with the vapors of the preceding column.
  • the pressure drainage cascade consists of 2 to 7 columns. Vacuum drainage follows the pressure drainage.
  • the dewatered solution containing glycols is broken down into the pure substances monoethylene glycol, di- and triethylene glycol in several columns.
  • the solution is based on a process for the production of EO by direct oxidation of ethylene with air or oxygen using water as Heat exchanger, whereby water vapor is generated, which is then expanded.
  • the invention is characterized in that the expansion of the water vapor takes place in one or more back pressure steam turbine (s).
  • Steam turbines are known in the known manner as heat engines with rotating running parts, in which the pressure gradient of continuously flowing steam is converted into mechanical work in one or more stages. Depending on the type of steam discharge, different types of steam turbines are distinguished; In so-called back-pressure steam turbines, the steam energy is also used for other purposes, usually for heating.
  • any back pressure steam turbine can be used for the present process.
  • Steam turbines are usually operated with steam supply under constant conditions.
  • a steam turbine is operated with a continuously increasing amount of steam and increasing steam pressure.
  • the conditions (amount of steam, pressure) for the time average are decisive for the economy of this solution.
  • the technical catalysts used in ethylene oxidation which generally contain up to 15% by weight of silver in the form of a finely divided layer on a support, lose activity as the operating time increases, and the selectivity of the partial oxidation of ethylene oxide decreases.
  • the reaction temperature In order to keep the production volume of an EO system constant as the operating time progresses, the reaction temperature must be raised with the same conversion, which increases the pressure of the water vapor.
  • the simultaneously decreasing selectivity leads to larger amounts of steam.
  • a water vapor pressure in the range of 30 bar often arises at the start of operation, with a continuous increase over a period of 2 years to a value of about 65 bar.
  • the steam turbine (s) can drive one or more working machines, in particular process pumps (for conveying circulating water) or compressors (for gaseous process streams) and / or one or more generators.
  • the steam turbine (s) supplied usually have a pressure of 25 to 70 bar, preferably 30 to 65 bar.
  • the water vapor obtained in the direct ethylene oxidation is converted to the pressure of the sump evaporator of the pressure dewatering column or the sump evaporator in a process for obtaining monoethylene glycol from ethylene oxide by hydrolysis, pressure dewatering, vacuum dewatering and subsequent pure distillation via the steam turbine (s) relaxed the first pressure dewatering column of a cascade and the steam from the steam turbine (s) used to heat the pressure dewatering column or the first pressure dewatering column of the cascade.
  • the amount of steam required for the pressure drainage can be approximated to the amount of steam generated in the direct ethylene oxidation. This significantly reduces the external procurement of high pressure steam over time.
  • the pressure drainage column or the first pressure drainage column of the cascade is heated by a bottom evaporator and the condensate is returned to the EO reaction stage.
  • the expansion takes place via the steam turbine ⁇ ) to the pressure of a steam network or to the operating pressure of consumers, such as steam injectors or sump evaporators.
  • the method according to the invention enables the specific energy consumption of an EO and / or monoethylene glycol system to be reduced by a high degree of heat integration.
  • the columns in the glycol process can mainly be operated with contaminated steam from the pressure drainage. An external procurement of high pressure steam on average is significantly reduced.
  • the economically and energetically cheapest solution is based on the general conditions of the location, in particular on the level of steaming and on energy prices.
  • Figure 1 shows schematically an example of multiple use of steam from the EO reaction in a back pressure steam turbine with connected generator and expansion to the back pressure of the bottom evaporator of the 1st stage of the glycol pressure drainage.
  • the current data are listed in Table 1.
  • the saturated steam 1 removed from the steam drum D of the EO reactor is in a counter-pressure steam turbine T to a pressure of 21 bar abs. relaxed.
  • the turbine T drives a generator G to generate electricity (for example 400 V).
  • the drive power is approximately 2 MW.
  • the expansion in the turbine T takes place in the wet steam area, which is why condensate 2 and saturated steam 3 are separated in a separator A.
  • the condensate 2 is pumped back into the steam drum D.
  • the saturated steam 3 is fed to the bottom evaporator S of the 1st stage of the glycol pressure drainage. If the amount is insufficient, the saturated steam 3 is supplemented with network steam 4.
  • the condensate 6 running out of the bottom evaporator S is also pumped back to the steam drum D.
  • Figure 2 shows a second example.
  • the relaxation takes place here at a counter pressure of 5 bar abs. (Current data see table 2).
  • the steam turbine T can drive one or more work machines M (process pumps, compressors) with an output of approx. 2.7 MW.
  • the saturated steam is largely fed to the bottom evaporator S of a column (stream 5). The rest of the saturated steam 4 is discharged into the steam trap N.
  • FIG. 3 shows a third example.
  • the pressure is released to a counter pressure of 17 bar abs. (Current data see table 3).
  • the steam turbine T drives a generator G to generate electricity (e.g. 400 V) with an output of approx.3.8 MW.
  • the saturated steam 3 is largely released into the steam network N (stream 4).
  • One or more steam injectors I are operated with the partial flow 5.
  • the bottom of a column K is heated with the help of the injectors and, at the same time, the bottom stream flowing off is cooled by generating negative pressure in a downstream container B (evaporative cooling).
  • the condensate is fed to the process water W.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
PCT/EP1999/006941 1998-09-23 1999-09-20 Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff WO2000017177A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE59909416T DE59909416D1 (de) 1998-09-23 1999-09-20 Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff
BRPI9913938-3A BR9913938B1 (pt) 1998-09-23 1999-09-20 processo para a preparação de óxido de etileno.
US09/762,797 US6397599B1 (en) 1998-09-23 1999-09-20 Method for producing ethylene oxide by directly oxidizing ethylene with air or oxygen
AT99969411T ATE266014T1 (de) 1998-09-23 1999-09-20 Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff
AU59797/99A AU5979799A (en) 1998-09-23 1999-09-20 Method for producing ethylene oxide by directly oxidizing ethylene with air or oxygen
PL346778A PL196670B1 (pl) 1998-09-23 1999-09-20 Sposób wytwarzania tlenku etylenu przez bezpośrednie utlenianie etylenu powietrzem lub tlenem
UA2001042716A UA60382C2 (uk) 1998-09-23 1999-09-20 Спосіб одержання етиленоксиду прямим окислюванням етилену повітрям або киснем
CA002343767A CA2343767C (en) 1998-09-23 1999-09-20 Method for producing ethylene oxide by directly oxidizing ethylene with air or oxygen
JP2000574087A JP4582910B2 (ja) 1998-09-23 1999-09-20 エチレンオキシドの製造方法及びモノエチレングリコールの製造方法
EP99969411A EP1115713B1 (de) 1998-09-23 1999-09-20 Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843654A DE19843654A1 (de) 1998-09-23 1998-09-23 Verfahren zur Herstellung von Ethylenoxid durch Direktoxidation von Ethylen mit Luft oder Sauerstoff
DE19843654.8 1998-09-23

Publications (1)

Publication Number Publication Date
WO2000017177A1 true WO2000017177A1 (de) 2000-03-30

Family

ID=7881988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006941 WO2000017177A1 (de) 1998-09-23 1999-09-20 Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff

Country Status (20)

Country Link
US (1) US6397599B1 (pt)
EP (1) EP1115713B1 (pt)
JP (1) JP4582910B2 (pt)
KR (1) KR100585360B1 (pt)
CN (1) CN1150177C (pt)
AR (1) AR020499A1 (pt)
AT (1) ATE266014T1 (pt)
AU (1) AU5979799A (pt)
BR (1) BR9913938B1 (pt)
CA (1) CA2343767C (pt)
DE (2) DE19843654A1 (pt)
ES (1) ES2221477T3 (pt)
ID (1) ID27730A (pt)
MY (1) MY121093A (pt)
PL (1) PL196670B1 (pt)
RU (1) RU2229477C2 (pt)
SA (1) SA99200694B1 (pt)
TW (1) TWI235154B (pt)
UA (1) UA60382C2 (pt)
WO (1) WO2000017177A1 (pt)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851020B (zh) * 2010-04-29 2012-02-01 浙江省电力试验研究院 直流锅炉定向氧化给水处理工艺
JP2012214399A (ja) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd エチレンオキシドの製造方法
FR3001969B1 (fr) * 2013-02-12 2015-08-21 IFP Energies Nouvelles Procede de production d'oxyde d'ethylene a partir d'un flux d'ethanol thermiquement integre
JP6174352B2 (ja) * 2013-03-29 2017-08-02 株式会社日本触媒 エチレンオキシドの製造方法
JP6391913B2 (ja) * 2013-03-29 2018-09-19 株式会社日本触媒 エチレンオキシドの製造方法
WO2014184751A1 (en) * 2013-05-14 2014-11-20 Saudi Basic Industries Corporation Method and apparatus for improved efficiency in an ethylene oxide/ethylene glycol process
CN104819448B (zh) * 2015-03-04 2017-04-05 中国天辰工程有限公司 一种环氧氯丙烷皂化工艺的能量供应系统
CN104976671B (zh) * 2015-06-26 2021-07-23 中国能源建设集团广东省电力设计研究院有限公司 背压式小汽机驱动给水泵的宽负荷供热节能系统
KR101811561B1 (ko) * 2017-09-29 2017-12-26 선테코 유한회사 복합화학공정 내의 증발스팀재압축기를 이용한 에너지 재활용 시스템
CN109395580A (zh) * 2018-12-10 2019-03-01 中石化上海工程有限公司 环氧乙烷-乙二醇装置含氧尾气的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552122A (en) * 1967-08-08 1971-01-05 Snam Progetti Process for the utilization of the exhausted gases from an ethylene oxide synthesis reactor
JPS507574B1 (pt) * 1968-05-10 1975-03-27
DE3935030A1 (de) * 1989-10-20 1991-04-25 Linde Ag Verfahren zur synthese von ethylenoxid
EP0532325A1 (en) * 1991-09-12 1993-03-17 Nippon Shokubai Co., Ltd. Method for the production of ethylene oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514110A (en) * 1974-04-30 1976-01-14 Snam Progetti Kisoniokeru jukikagobutsunobubunsankaho oyobi soreojitsushisurutamenosochi
US4099383A (en) * 1976-06-21 1978-07-11 Texaco Inc. Partial oxidation process
US4074981A (en) * 1976-12-10 1978-02-21 Texaco Inc. Partial oxidation process
US4121912A (en) * 1977-05-02 1978-10-24 Texaco Inc. Partial oxidation process with production of power
JPS5767573A (en) * 1980-10-16 1982-04-24 Nippon Shokubai Kagaku Kogyo Co Ltd Catalytic gas-phase oxidation of hydrocarbon and plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552122A (en) * 1967-08-08 1971-01-05 Snam Progetti Process for the utilization of the exhausted gases from an ethylene oxide synthesis reactor
JPS507574B1 (pt) * 1968-05-10 1975-03-27
DE3935030A1 (de) * 1989-10-20 1991-04-25 Linde Ag Verfahren zur synthese von ethylenoxid
EP0532325A1 (en) * 1991-09-12 1993-03-17 Nippon Shokubai Co., Ltd. Method for the production of ethylene oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197517, Derwent World Patents Index; Class E13, AN 1975-28267W, XP002128832 *

Also Published As

Publication number Publication date
DE59909416D1 (de) 2004-06-09
EP1115713B1 (de) 2004-05-06
UA60382C2 (uk) 2003-10-15
BR9913938A (pt) 2001-06-12
JP2003521454A (ja) 2003-07-15
SA99200694B1 (ar) 2006-08-21
CN1319098A (zh) 2001-10-24
TWI235154B (en) 2005-07-01
ES2221477T3 (es) 2004-12-16
MY121093A (en) 2005-12-30
PL196670B1 (pl) 2008-01-31
KR20010075292A (ko) 2001-08-09
ID27730A (id) 2001-04-26
DE19843654A1 (de) 2000-03-30
CA2343767C (en) 2008-04-15
BR9913938B1 (pt) 2009-08-11
PL346778A1 (en) 2002-02-25
AU5979799A (en) 2000-04-10
JP4582910B2 (ja) 2010-11-17
CN1150177C (zh) 2004-05-19
EP1115713A1 (de) 2001-07-18
US6397599B1 (en) 2002-06-04
CA2343767A1 (en) 2000-03-30
KR100585360B1 (ko) 2006-06-01
RU2229477C2 (ru) 2004-05-27
AR020499A1 (es) 2002-05-15
ATE266014T1 (de) 2004-05-15

Similar Documents

Publication Publication Date Title
DE2549439C2 (pt)
EP0159495B1 (de) Verfahren zum Entfernen von C02 und/oder H2S aus Gasen
DE112020001250T5 (de) Ammoniakzersetzunganlage, hiermit ausgestattetes gasturbinenkraftwerk, und ammoniakzersetzungsverfahren
EP3847146B1 (de) Verfahren zur herstellung von methanol aus synthesegas ohne emission von kohlendioxid
DE2755781A1 (de) Energierueckgewinnung bei katalytischen hydrierungen und dehydrierungen
DE2342085A1 (de) Verfahren zur herstellung eines stark reduzierenden gases
DE1717156A1 (de) Verfahren und Apparatur zur Dampfreformierung von Kohlenwasserstoffen
EP0190434A2 (de) Verfahren zum Entfernen von Co2 und/oder H2S aus Gasen
EP1115713B1 (de) Verfahren zur herstellung von ethylenoxid durch direktoxidation von ethylen mit luft oder sauerstoff
DE68904202T2 (de) Einstufiges verfahren zur synthese von dimethylaether unter verwendung eines fluessigphasen-reaktorsystems.
DE3037536C2 (de) Verfahren zur Herstellung von Carbonylverbindungen
DE3407925C1 (de) Verfahren zur Herstellung von Terephthalsaeuredimethylester aus p-Xylol und Methanol
DE2501377A1 (de) Verfahren zur energieerzeugung
EP1948585B1 (de) Verfahren zur herstellung von vinylacetat unter nutzung der dabei freiwerdenden reaktionswärme
EP2367780A1 (de) Verfahren und vorrichtung zum herstellen von dimethylether aus methanol
WO2019038045A1 (de) Verfahren zur herstellung von salpetersäure und vorrichtung zur herstellung von salpetersäure
EP0157122B1 (de) Verfahren zur Herstellung von Terephthalsäure über Terephthalsäuredimethylester aus p-Xylol und Methanol
EP3782974A1 (de) Verfahren und anlage zur herstellung von methanol aus synthesegasen mit hohem kohlendioxid-anteil
EP3782973A1 (de) Verfahren und anlage zur herstellung von methanol
DE2642429A1 (de) Verfahren zur abtrennung und rueckgewinnung von unreagierten materialien bei der harnstoffsynthese
EP0044071B2 (de) Verfahren zur Konvertierung eines Kohlenmonoxid enthaltenden Gasstroms
DE3135161A1 (de) "verfahren zur synthese von harnstoff"
EP3643888B1 (de) Verfahren zum betreiben einer chemischen anlage
DE102019115413A1 (de) Prozess und Anlage zur Herstellung eines Kohlenwasserstoffprodukts
WO2023057573A1 (de) Verfahren und vorrichtung zur herstellung eines methanhaltigen produktgases

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811285.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/001345

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09762797

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2343767

Country of ref document: CA

Ref document number: 2343767

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/388/CHE

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2000 574087

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017003676

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999969411

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999969411

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017003676

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999969411

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017003676

Country of ref document: KR