WO2000006603A1 - Anticorps pour la detection de micro-organismes - Google Patents

Anticorps pour la detection de micro-organismes Download PDF

Info

Publication number
WO2000006603A1
WO2000006603A1 PCT/JP1999/004122 JP9904122W WO0006603A1 WO 2000006603 A1 WO2000006603 A1 WO 2000006603A1 JP 9904122 W JP9904122 W JP 9904122W WO 0006603 A1 WO0006603 A1 WO 0006603A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
protein
microorganism
ribosomal protein
microorganisms
Prior art date
Application number
PCT/JP1999/004122
Other languages
English (en)
French (fr)
Inventor
Kenji Matsuyama
Takashi Shirai
Takashi Etoh
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to CA2338989A priority Critical patent/CA2338989C/en
Priority to DE69921329T priority patent/DE69921329T2/de
Priority to AU49317/99A priority patent/AU767270B2/en
Priority to AT99933198T priority patent/ATE280183T1/de
Priority to JP2000562399A priority patent/JP5219057B2/ja
Priority to EP99933198A priority patent/EP1104772B1/en
Priority to NZ509577A priority patent/NZ509577A/xx
Publication of WO2000006603A1 publication Critical patent/WO2000006603A1/ja
Priority to US12/424,370 priority patent/US20090269789A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56933Mycoplasma
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/205Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Campylobacter (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/285Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pasteurellaceae (F), e.g. Haemophilus influenza
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1217Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Neisseriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1242Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Pasteurellaceae (F), e.g. Haemophilus influenza
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1253Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Mycoplasmatales, e.g. Pleuropneumonia-like organisms [PPLO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1275Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Streptococcus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56927Chlamydia

Definitions

  • the present invention relates to an antibody useful for detecting various microorganisms, particularly bacteria, a method for detecting microorganisms using the same, a reagent kit for detecting microorganisms, and a method for producing a specific antibody for detecting microorganisms.
  • the present invention is effectively used in the pharmaceutical industry, particularly in the manufacture of a diagnostic drug for microbial infectious diseases centering on bacteria.
  • Diagnosis of microbial infections is usually confirmed by detecting the causative organism at the site of infection, or by detecting antibodies to the causative organism in serum or body fluids. In particular, this diagnosis is important because the detection of the causative organism allows for rapid treatment of the patient.
  • culture is performed by isolation and culture of the causative bacteria, and then the bacteria are identified based on their biochemical properties.
  • Genetic diagnosis can be broadly divided into immunological methods for detecting the causative organism using the specific reaction of the antibody with the surface antigen marker of the causative organism, but the culture identification method and the genetic diagnostic method can provide detection results Diagnosis by immunoassay is widely used because it takes a long time to detect the causative bacteria in a short time and with high sensitivity, and leads to prompt and appropriate treatment of patients.
  • LPS lipopolysaccharide
  • JP-A-63-298 describes an immunodetection method based on the western blotting method using a monoclonal antibody against a membrane antigen protein of about 43 kilodaltons of Mycoplasma pneumoniae. .
  • JP-A-62-148859 discloses a method for preparing a polyclonal antibody against an outer membrane protein of Haemophilus influenzae and the prepared antibody. Describes the diagnostic method.
  • UK Patent Application No. 2172704 describes a protein of about 20 kilodaltons isolated from sodium cholate extract of outer membrane vesicles of Neisseria gonorrhoeae strain BS4 (NCTC 11922). It is disclosed that a hybridoma is prepared using this substance, and EP 419238A1 was prepared using Neisseria gonorrhoeae cultured cells as an immunogen and converted to a protein of about 14 kilodaltons. Describes a monoclonal antibody that can bind and a method for producing it. In addition, Canadian Patent Application No. 1220147 for the same Neisseria gonorrhoeae describes a detection method using a monoclonal antibody against LPS.
  • the marker antigens used in these conventional technologies are the same functional molecules (for example, proteins with the same function, LPS or surface polysaccharide components) that are universally present in various microbial cells. It is not a unified approach of detecting a molecule that has changed for each species as a marker, but is based on the idea of detecting differences in antigenicity between bacterial species based on one molecule. The immunodiagnosis method used was not yet known.
  • the present invention is a unified marker that enables ideal detection and immunodiagnosis of microorganisms.An antibody against the same molecule for each microorganism is used as one antigen, and in particular, the same functional component molecules in cells are used for all microorganisms to be detected. Antibodies that have been changed during the evolution of microorganisms, a method for detecting microorganisms using the antibodies that can cover almost all serotypes, a reagent kit for detecting microorganisms, and a specific antibody for detecting microorganisms It is intended to provide a method for producing the same.
  • the present inventors have found a protein in which the same function is preserved in all microorganisms as a useful antigen protein. Usually, it is expected that such protein structural changes are extremely small. Surprisingly, however, the antigen epitope of the protein is specific to the species or genus of the microorganism, and antibodies against the protein have a variety that can be used to identify the species or genus of the microorganism. The target microorganism was found to be capable of detecting all its serotypes.
  • Ribosomal Protein L7 / L12 is a protein with a molecular weight of about 13 kilodaltons, which is known to be a ribosomal protein essential for protein synthesis, and its amino acid sequence in several microorganisms such as Escherichia coli and Bacillus subtilis. Analysis is progressing, and homology of about 50% to 65% amino acid sequence among microorganisms has been confirmed.
  • the present inventors have noted that although this molecule is similar between microorganisms, it partially has a structural portion such as an amino acid sequence unique to each microorganism, and by using an antibody against the protein, It was found that detection was possible for all serotypes that were specific to various microorganisms and within the same strain. Specifically For example, Haemophi lus influenzae, Streptococcus pneumoniae and ei s seri a gonorrhoeae t were used to develop immunological diagnostic techniques for microbial species using their specific antibodies. The present invention has been completed by finding that an antibody specific to the protein can be obtained in each of the microorganisms, and that the use of the antibody enables specific detection of each bacterium.
  • the present invention relates to an antibody for detecting microorganisms, a method for detecting microorganisms using the same, a reagent kit for detecting microorganisms, and a method for producing a specific antibody for detecting microorganisms, as described below.
  • Ribosomal Protein L7 / L12 of microorganisms obtained by genetic engineering techniques or isolation and purification from microorganisms, and its partial peptides or synthetic peptides corresponding to their partial peptides are used as immunogens. )).
  • SEQ ID NOs: 1 and 2 are the DNA sequence and the corresponding amino acid sequence of the Ribosomal Protein L7 / L12 gene of Haemophilus influenzae.
  • SEQ ID NOs: 3 and 4 are the DNA sequence of the Ribosomal Protein L7 / L12 gene of Helicobacter pylori and the corresponding amino acids.
  • the sequence U number ⁇ "5 and 6 are the DNA sequence of the Ribosomal Protein L7 / L12 gene of Streptococcus pneumoniae and the corresponding amino acid sequence.
  • Column numbers 7 and 8 are the Ribosomal Protein L7 / L12 genes of Neisseria gonorrhoeae SEQ ID NOS: 9 and 10 are the DNA sequence of the Ribosomal Protein L7 / L12 gene of Neisseria meningitidis and the corresponding amino acid sequence.
  • PCR primer DNA used to obtain the Ribosomal Protein L7 / L12 gene from Haemophi lus influenzae SEQ ID NOs: 13 and 1 are the PCR primers used to obtain the Ribosomal Protein L7 / L12 gene from streptococcus pneumonoiae
  • SEQ ID NOs: 15 and 16 are PCR primer DNAs used for obtaining Ribosomal Protein L7 / L12 iziz from Neisseria gonorrhoeae.
  • SEQ ID NOs: 19 and 20 are Ribosomal Protein / L12 3 ⁇ 4 ⁇ obtained from stre tococcus pneumoniae.
  • SEQ ID NOs: 21 and 22 are the DNA sequence of the Ribosomal Protein L7 / L12 gene and the corresponding amino acid sequence obtained from Neisseria gonorrhoeae.
  • N-terminal an amino group
  • C-terminal a carboxyl group terminal
  • microorganisms refer to all microorganisms such as bacteria, yeasts, molds, actinomycetes, and rickettsiae.
  • bacteria often cause problems in diagnosing microbial infectious diseases.
  • the term "antibody specifically reactive with a microorganism” refers to an antibody that specifically reacts with a species or genus of a microorganism, but specifically reacts with a species of a microorganism in diagnosis of a microbial infectious disease. Antibodies will be particularly useful.
  • the STD-causing microorganisms include Neisseria gonorrhoeae, Chlamydia trachomatis, Candida albicans, and TreDonema Da_l lidum. ), Ureaplasma urealyticum and the like, but are not limited to these microorganisms.
  • the causative microorganisms of the respiratory system infection include Haemophilus influenzae (Haemophi lus ⁇ ⁇ uenzae), Streptococcus pneumoniae (Streptococcus pneumoniae; Kneum pneumonia (chlamydia pneumoniae), Mycoplasma pneumoniae (Mycoplasma pneumoniae), and pneumonia (Klebsiel la pneumoniae), Staphylococcus aureus, Pseudomonas aeruginosa, Group A ⁇ (streptococcus sp.GroupA) ⁇ 3 ⁇ 4 (Mycobacterium tuberculosi s), Legionella (Legionel la pneumophi) la) ⁇ Fungus of the genus Aspe Resinoleth
  • an antibody refers to a polyclonal antibody or a monoclonal antibody, and can be produced using the full length of the liposome protein or a partial peptide thereof.
  • the length of the peptide for preparing the antibody is not particularly limited, but in the case of an antibody against the Ribosomal Protein L7 / L12 protein, it is sufficient that the length be characterized by this protein, and more preferably 5 amino acids or more, particularly Preferably, a peptide having 8 or more amino acids may be used.
  • This peptide or full-length protein is cross-linked to a carrier protein such as KLH (keyhole-l impet hemocyanin) or BSA (bovine serum albumin) as it is, or after inoculation with an adjuvant as needed, and the serum is recovered.
  • a carrier protein such as KLH (keyhole-l impet hemocyanin) or BSA (bovine serum albumin)
  • KLH keyhole-l impet hemocyanin
  • BSA bovine serum albumin
  • an antiserum containing an antibody (polyclonal antibody) that recognizes the Ribosomal Protein L7 / L12 protein can be obtained. Further, the antibody can be purified from the antiserum and used.
  • the animals to be inoculated include sheep, horses, goats, goats, mice, rats, and the like. Particularly, for producing polyclonal antibodies, sheep, goats, etc. are preferable.
  • a monoclonal antibody can be obtained by a known method for producing hybridoma cells.
  • a mouse is preferred.
  • a protein obtained by fusing a full-length protein or a partial peptide of 5 or more amino acids, preferably 8 or more residues with GST (daltathione-S-transferase) or the like is purified or left unpurified as an antigen. It can also be used.
  • An antibody against the Ribosomal Protein L7 / L12 protein that can be used as the marker antigen of the present invention can be obtained by the following three methods or other similar methods, but is not limited to these methods. .
  • the target antibody can be obtained by synthesizing a peptide fragment of about 5 to 30 amino acids in a region with low affinity and preparing a polyclonal or monoclonal antibody using the peptide fragment as an immunogen.
  • the full-length sequence of the gene can be obtained by using a conventional gene manipulation technique such as gene amplification by a PCR method using a DNA sequence at both ends of the known gene as a probe and a hybridization method using a homologous partial sequence as a ⁇ -type probe. Can be obtained.
  • a fusion gene with another protein gene is constructed, and the fusion gene is introduced into a host by a known gene transfer method using Escherichia coli or the like as a host, expressed in a large amount, and then used as a fusion protein.
  • the protein antigen of interest can be obtained by purifying the expressed protein by an antibody affinity column method or the like. In this case, since the full-length protein of Ribosomal Protein L7 / L12 serves as an antigen, obtaining an antibody against an amino acid portion preserved between microorganisms does not meet the purpose of the present invention.
  • a hybridoma that produces a monoclonal antibody is obtained by a known method, and a target antibody is obtained by selecting a clone that produces an antibody that reacts only with the relevant microorganism. be able to.
  • the amino acid sequence of Ribosomal Protein L7 / L12 is 50-60% homologous between bacterial species, indicating that the amino acid sequence is homologous.
  • the protein gene can be easily obtained by using a general gene manipulation technique such as gene amplification of a specific sequence portion by PCR or a hybridization method using a homologous partial sequence as a type I probe. it can.
  • a fusion gene with another protein gene is constructed, and the fusion gene is inserted into a host by Escherichia coli or the like using a known gene transfer technique and expressed in a large amount.
  • the target protein antigen can be obtained by purifying the expressed protein by a two-one column method or the like. This place Since the full-length protein of the combined Ribosomal Protein L7 / L12 serves as an antigen, obtaining an antibody against an amino acid portion conserved between microorganisms does not meet the purpose of the present invention. Therefore, for the antigen obtained by this method, a hybridoma producing a monoclonal antibody is obtained by a known method, and a clone producing an antibody that reacts only with the relevant microorganism is selected. You can get antibodies.
  • Ribosomal Protein L7 / L12 when the amino acid sequence of Ribosomal Protein L7 / L12 is unknown, another method is to use 5 to 30 amino acid sequences of the known Ribosomal Protein L7 / L12 that correspond to the consensus sequence conserved between microorganisms.
  • a synthetic peptide of amino acid is prepared, a polyclonal antibody or a monoclonal antibody is prepared by a known method for the peptide sequence, and the desired microbial cell lysate is purified by affinity column chromatography using the antibody.
  • highly purified Ribosomal Protein L7 / L12 protein can be obtained.
  • the protein is purified by a known purification method such as ion exchange chromatography, hydrophobic chromatography, or gel filtration, and then subjected to a method such as western blotting using an antibody prepared.
  • the purified protein can be obtained by identifying the elution fraction of Ribosomal Protein L7 / L12 protein. Based on the obtained purified Ribosomal Protein L7 / L12 protein antigen, obtain a hybridoma or polyclonal antibody by a known method and select a hybridoma or polyclonal antibody that specifically reacts with the target microorganism as in b). By doing so, the desired antibody can be obtained.
  • Antibodies specific to various microorganisms according to the present invention obtained by the above methods a) to c) are, for example, a coagulation reaction in which the antibodies are adsorbed on polystyrene latex particles, and an ELISA method which is a known technique performed in a microtiter plate. All known methods, such as the existing immunochromatography method, colored particles or particles having a color-forming ability, or sandwiches using magnetic particles coated with a capture antibody together with the antibody labeled with an enzyme or a fluorescent substance. Reagents for detection of microorganisms of various purposes by utilizing the immunoassay technique A kit can be provided.
  • the microorganism detection method using an antibody includes, for example, an agglutination reaction in which the antibody is adsorbed on polystyrene latex particles, an ELISA method, which is a known technique performed in a microtiter plate, an existing immunochromatography method, a colored particle or a colorant.
  • an agglutination reaction in which the antibody is adsorbed on polystyrene latex particles
  • an ELISA method which is a known technique performed in a microtiter plate
  • an existing immunochromatography method a colored particle or a colorant.
  • This corresponds to a detection method using a known immunoassay technique such as sandwich or the like using magnetic particles or the like coated with a capture antibody together with particles or the antibody labeled with an enzyme or a fluorescent substance.
  • a so-called detection method based on the principle of light interference in which an antibody reaction is performed on an optical thin film formed of silicon, silicon nitride or the like described in JP-T-7-509565, etc.
  • Optical immunoassays are useful as highly sensitive detection methods.
  • methods for extracting intracellular marker antigens from microorganisms required for the detection method include various surfactants such as Triton X-100 (Tween-20), Tween-20, and the like.
  • a known method of crushing cell structures such as a method using an extraction reagent using a bacterium, an enzyme treatment method using an enzyme such as an appropriate protease, or crushing a microbial cell by a physical method, may be used. It is desirable to set the optimal extraction conditions with the reagent for each microorganism by the combination.
  • the reagent kit for detecting a microorganism using an antibody in the present invention corresponds to a reagent kit for detection using the detection method.
  • the amino acid sequence and DNA sequence of Ribosomal Protein L7 / L12 protein of this bacterium are obtained from a database. And so on.
  • the amino acid sequence and the DNA sequence of Ribosomal Protein L7 / L12 of Haemophi lus influenzae are shown in SEQ ID NOs: 1 and 2 in the Sequence Listing.
  • the amino acid sequence of the Ribosomal Protein L7 / L12 protein is also known.
  • the amino acid sequence of the Ribosomal Protein L7 / L12 protein is compared with that of the same protein of Helicobacter milori shown in SEQ ID NOs: 3 and 4 in the Sequence Listing.
  • a synthetic peptide of 5 to 30 amino acids can be synthesized, and a polyclonal antibody or a monoclonal antibody specific to Haemophilus influenzae can be prepared against the peptide.
  • PCR primers based on the N-terminal and C-terminal sequences from the MA sequence of the Ribosomal Protein L7 / L12 protein of Haemophi lus influenzae for example, the PCR primers shown in SEQ ID NOs: 11 and 12 in the Sequence Listing are designed, and their homology is determined.
  • a genomic DNA extracted from cultured cells of Haemophilus influenzae is used as a material to obtain a DNA fragment to be amplified by PCR or the like, and DNA sequence information of the fragment is obtained.
  • the full-length gene of Ribosomal Protein L7 / L12 protein of Haemophi lus influenzae can be obtained.
  • the obtained Ribosomal Protein L7 / L12 gene of Haemophi lus influenzae constitutes a fusion protein gene with, for example, GST etc., constructs an expression vector using an appropriate expression plasmid, and then transforms E. coli or the like to transform the protein. White matter can be expressed in large quantities. After culturing an appropriate amount of the transformed E. coli and purifying the recovered cell lysate with an affinity column using GST, a fusion protein of Haemophilus influenzae Ribosomal Protein L7 / L12 protein and GST can be obtained. .
  • This protein is used as is, or after cleavage of the GST portion with a protease or the like, a plurality of hybridomas are established by a method known as an antigen protein, and the cells containing Haemophi lus influenzae cells are lysate of the cells or Ribosomal of Haemophi lus influenzae.
  • an antibody that shows a specific reaction to the Protein L7 / L12 protein it is also possible to obtain the desired specific monoclonal antibody.
  • Ribosomal Protein L7 / L12 protein are described in databases etc. It is known.
  • the amino acid sequence and DNA sequence of Ribosomal Protein L7 / L12 of Streputococcus pneumoniae are shown in SEQ ID NOs: 5 and 6 in the Sequence Listing.
  • a PCR primer based on the N-terminal and C-terminal sequences from the DNA sequence of Ribosomal Protein L7 / L12 protein of Streputococcus pneumoniae for example, SEQ ID NO:
  • Hybridoma AMSP-2 which produces a specific monoclonal antibody, was submitted to the Ministry of International Trade and Industry, Japan, on November 28, 1999 under the accession number of FERM BP-6807. As an international deposit.
  • Neisseria gonorrhoeae which is a causative bacterium of gonorrhea and whose diagnostic significance is recognized as a representative causative bacterium of STD
  • most of its DNA and amino acid sequences have recently been obtained from the Neisseria gonorrhoeae genome project at the University of Otarahoma, USA. And the DNA sequence of the bacterium is published on the Internet.
  • PCR primers based on the N-terminal and C-terminal sequences from the fragile sequence of Ribosomal Protein L7 / L12 protein of Neisseria gonorrhoeae, for example, SEQ ID NO: 15 and By designing the PCR primers shown in Fig. 16, it is possible to obtain an antibody specific to Neisseria gonorrhoeae, which uses the whole or a part of Ribosomal Protein L7 / L12 protein of Neisseria gonorrhoeae as an antigen, in exactly the same manner.
  • the amino acid sequence that differs in the amino acid sequence at the 115th position from the N-terminal is Neisseria gonorrhoeae.
  • Nei sseria meningit idi s there is only one amino acid difference that is glutamic acid.
  • the Ribosomal Protein L7 / L12 protein antibody of Neisseria gonorrhoeae which can detect Neisseria gonorrhoeae species-specifically, contains the 115th alanine from the N-terminal of the corresponding Ribosomal Protein L7 / L12 protein and contains it. It is definitely determined that the antibody recognizes the amino acid region as an epitope.
  • Antibodies prepared according to the present invention include known measurement techniques such as agglutination reaction in which the antibody is adsorbed on polystyrene latex particles, ELISA technique known in the art of microtiter plates, existing immunochromatography, The present invention can be used for all known immunoassay techniques such as a sandwich assay using colored particles or particles having a coloring ability, or magnetic particles coated with a capture antibody together with the antibody labeled with an enzyme or a fluorescent substance.
  • the antibody prepared according to the present invention can function as a capture antibody that captures the antigen protein in a solid phase or a liquid phase in all immunoassay techniques, and at the same time, uses an enzyme such as peroxidase or al lipophosphatase. Modification by a known method can function as a so-called enzyme-labeled antibody.
  • Haemophi lus influenzae ATCC933 (IID984) Co., Ltd. (sale from the Institute of Medical Science, University of Tokyo, purchase) after the inoculated appropriate amount on chocolate agar, C0 2 I Nkyubeta in one in 37 ° C, C0 2 0. 5 % Incubate under the conditions for 24 hours.
  • the grown colonies are suspended in TE Buffer (manufactured by Wako Pure Chemical Industries, Ltd.) so that the final colonies are around 5 ⁇ 10 9 CFU / ml. Transfer about 1.5 ml of this to a microcentrifuge tube, centrifuge at lOOOOrpm for 2 minutes, and discard the supernatant. Resuspend the pellet in 567 1 TE Buffer.
  • PCR polymerase chain reaction
  • This mixture was subjected to 5 cycles of 95 ° C for 1 minute, 50 ° C for 2 minutes, and 72 ° C for 3 minutes using TaKaRa PCR Thermal Cycler 480, and then 95 ° C for 1 minute, 60 ° C for 2 minutes, and 72 ° C for 2 minutes. 25 cycles of 3 minutes at ° C.
  • a portion of this PCR product was electrophoresed in a 1.5% agarose gel, stained with ethidium mouth mouth (manufactured by Nippon Gene Co., Ltd.), observed under ultraviolet light, and approximately 400 bp of cDNA was amplified. It was confirmed.
  • This vector can function as an expression vector for a target molecule capable of expressing a fusion protein with a GST protein by incorporating a target gene fragment into an appropriate restriction enzyme site.
  • the vector pGEX-4T-1 was mixed with the preceding DNA in a molar ratio of 1: 3, and the DNA was incorporated into the vector using T4 DNA ligase (Invitrogen).
  • L_Broth manufactured by Takara Shuzo
  • One of the five clones obtained has sequence homology with the probe used for PCR, and is very similar to the sequence of the Ribosomal Protein L7 / L12 gene of other microorganisms, such as Neisseria gonorrhoeae. DNA sequence was found. The entire nucleotide sequence and the corresponding amino acid sequence of the structural gene portion were as shown in SEQ ID NO: 17 and 18 in the Sequence Listing. This gene fragment encodes the gene for Ribosomal Protein L7 / L12 protein of Haemophi lus influenzae.
  • Escherichia coli incorporating the expression vector was cultured in LB medium at 50 ml 37 ° C for 1 ⁇ . 500 ml of 2 ⁇ TY medium was warmed at 37 ° C. for 1 hour. 50 ml of the 1 ⁇ -cultured E. coli solution was placed in 500 ml of the above-mentioned medium. After 1 hour, 100 mM isopropyl After culturing for 4 hours, the cells were collected and centrifuged at 7000 rpm for 10 minutes in 250 ml aliquots in a centrifuge tube. The supernatant was discarded, and the cells were dissolved in 25 ml of Lysis buffer containing 50 mM Tris-HCl (pH 7.4) and 25% sucrose.
  • NP_40 Nonidet P-40
  • MgCl 2 125 1 1M MgCl 2 125 1 were added and transferred to a plastic tube. Sonication was carried out in ice-cooling for 1 minute X 5 times, and the supernatant was collected after centrifugation at 12000 rpm for 15 minutes.
  • the power column was washed with a washing solution containing 20 mM Tris buffer pH 7.4, 4.2 mM MgCl 2 , and ImM dithiothreitol (DTT) for two beds of volume.
  • a washing solution containing 20 mM Tris buffer pH 7.4, 4.2 mM MgCl 2 , and ImM dithiothreitol (DTT) for two beds of volume.
  • DTT ImM dithiothreitol
  • the myeloma cells used for cell fusion were cultured in RPMI1640 medium containing 10% fetal calf serum (FCS) using NS-1 cell line, and 0.12 mM azaguanine was added 2 weeks before cell fusion. After culturing for 1 week in RPMI1640 medium containing 5 / g / ml MC-210 and 10% FCS, those cultured for another week in RPMI1640 medium containing 10% FCS were used.
  • FCS fetal calf serum
  • the cells were washed with a washing solution (T ⁇ veen20 0.02%, PBS), and 100 l of the culture solution of the fused cells was added thereto. After reacting at room temperature for 2 hours, the supernatant was removed, and the cells were washed with the washing solution.
  • 100 ng / ml of peroxidase-labeled goat anti-mouse IgG antibody solution was added at 100 / zl, the reaction was carried out at room temperature for 1 hour, the supernatant was removed, and the plate was washed with a washing solution, and then the TMB solution (KPL) was added to 100 / zl. The reaction was stopped by adding 1N sulfuric acid 100 / l after color development, and the absorbance at 450 nm was measured.
  • Protein L7 / L12 protein was found to contain antibodies.
  • the cells in the positive well were collected and cultured in a HAT medium in a 24-well plastic plate. Diluted 50 / zl Cultured fusion medium with HT medium so that such approximately 20 cells / ml cell number, a mouse thymus of 6 week old which were suspended in HT medium 106 cells and 96-well culture plates Then, the cells were cultured at 37 ° C for 2 weeks under 7% CO 2 conditions. The antibody activity in the culture supernatant was similarly assayed by the above-mentioned ELISA method, and cells positive for reaction with Ribosomal Protein L7 / L12 protein were collected. Further, the same dilution assay and clawing operation were repeated to obtain a total of five clones of the hybridoma HIRB-1 to HIRB-5.
  • cells subcultured using RPMI 1640 medium were intraperitoneally injected into Balb / C mice to which 0.5 ml of pristane was injected intraperitoneally two weeks ago. Six injections (in PBS) were made. Three weeks later, ascites was collected, and the centrifugal supernatant was obtained.
  • the obtained antibody-containing solution is absorbed on a Protein A column (5 ml bed, Pharmacia), washed with PBS in a 3-bed volume, eluted with a pH 3 citrate buffer, and the antibody fraction is collected to produce each hybridoma. Monoclonal antibody was obtained.
  • the sandwich assay is used for antibody evaluation, and the prepared monoclonal antibody is chemically bound to peroxidase to form an enzyme-labeled antibody. Used as
  • enzyme labeling was performed using horseradish peroxidase (Sigma grade VI) and binding was performed using the reagent S-acetylthioacetic acid N-hydroxysuccinimide, as described in Analytical Bio-chemistry 132 (1983), 68-73. The method was followed.
  • a 10 ⁇ g / ml solution of a commercially available anti-Haemophilus influenzae polyclonal antibody (Biosag, Persian) dissolved in PBS containing 0.05% sodium azide was diluted in 10 ⁇ g / ml concentrations into 96-well plates separately. And adsorbed 1 ⁇ at 4 ° C.
  • Ribosomal Protein L7 / L12 1B from streptococcus pneumoniae et al., large-scale expression and purification of the protein in Escherichia coli, and production of monoclonal antibodies against the protein.
  • PCR was performed using 10 ng of this genomic DNA. PCR used Taq polymerase (Takara Shuzo Co., Ltd., code R001A). 5 ⁇ l of the buffer attached to the enzyme, 4 ⁇ l of the dNTP mixture attached to the enzyme, synthetic oligonucleotide C shown in SEQ ID NO: 13 and synthetic oligonucleotide D shown in SEQ ID NO: 14 in the sequence listing, respectively 200 pmol was added to make a final volume of 501.
  • Taq polymerase Takara Shuzo Co., Ltd., code R001A
  • This mixture was subjected to 5 cycles of 95 ° C for 1 minute, 50 ° C for 2 minutes, and 72 ° C for 3 minutes using the TaKaRa PCR Thermal Cycler 480, and then 95 ° C for 1 minute, 60 ° C for 2 minutes, and 72 ° C for 2 minutes. 25 cycles of 3 minutes at ° C.
  • a portion of this PCR product was electrophoresed in a 1.5% agarose gel, stained with ethidium Mabuchi Mide (manufactured by Nippon Gene Co., Ltd.), and observed under ultraviolet light to confirm that approximately 400 bp cDNA had been amplified. did.
  • the vector pGEX-6P-1 and the above DNA were mixed at a molar ratio of 1: 5, and the DNA was incorporated into the vector using T4 DNA ligase (Invitrogen).
  • the vector pGEX-6P-1 incorporating the DNA was transfected into Escherichia coli One Shot Competent Cells (Invitrogen), and ampicillin was used.
  • L-Broth (Takara Shuzo) semi-solid medium containing 50ii g / ml, allowed to stand at 37 ° C for about 12 hours, and the colonies that appeared were randomly selected. Inoculate 2 ml of L-Broth liquid medium containing the same concentration of ampicillin, shake and culture at 37 ° C for about 8 hours, collect the cells, and use Wizard Miniprep.
  • PRISM Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems) was used.
  • a 0.5 ml microtube add 9.51 reaction stock solution, 4.0 / l of 0.8 ⁇ 1 / ⁇ 1 ⁇ 7 promoter primer (GIBC0 BRL) and 6.5 / i1 of 0.16 ⁇ g / ⁇ 1 sequence ⁇ Add ⁇ and mix, overlay with 100 1 mineral oil, perform 25 cycles of PCR amplification reaction at 96 ° C for 30 seconds, 55 ° C for 15 seconds, and 60 ° C for 4 minutes for 25 cycles. Incubated at C for 5 minutes.
  • One of the seven clones obtained has sequence homology with the probe used for PCR, and is very similar to the sequence of the Ribosomal Protein L7 / L12 gene of other microorganisms, for example, Neisseria gonorrhoeae. DNA sequence was found. The entire nucleotide sequence and the corresponding amino acid sequence of the structural gene portion were as shown in SEQ ID NO: 19 and 20 in the Sequence Listing. This gene fragment apparently encodes the gene of Ribosomal Protein L7 / L12 protein of Streptococcus pneumoniae.
  • Escherichia coli harboring the expression vector was cultured in a double concentration of YT medium at 50 ml at 37 ° C for 1 hour. 450 ml of 2X YT medium was warmed at 37 ° C for 1 hour. 1 ⁇ 50 ml of the cultured E. coli culture was placed in 450 ml of the aforementioned medium. After culturing at 37 ° C for 1 hour, 100 ⁇ l of 500 mM IPTG was added, and the cells were collected after culturing at 25 ° C for 4 hours, centrifuged at 5,000 rpm for 20 minutes in 250 ml centrifuge tubes. The supernatant was discarded, and the cells were dissolved in 25 ml of Lysis buffer containing 50 mM Tris-HCl pH 7.4 and 25% sucrose.
  • the supernatant was adsorbed to a daltathione sepharose (Pharmacia) column conditioned with PBS.
  • the column was washed with PBS for three times the amount of polytetrame.
  • elution was performed with 50 mM Tris-HCl 8.0 containing 10 mM daltathione, and the protein content in the fractionated fraction was detected by a dye binding method (Bradford method; BioRad) to obtain a main fraction.
  • the main fraction was dialyzed three times against 3 L PBS.
  • the GST portion was separated from the Ribosomal Protein L7 / L12 protein portion.
  • reaction solution was passed through a glutathione sepharose column conditioned with PBS, and the permeate was collected. Further, PBS was flowed through one bed volume, and this was also collected. The purity of the obtained purified Ribosomal Protein L7 / L12 protein was approximately 90% as confirmed by electrophoresis, and sufficient purity as an immunogen was secured.
  • Streptococcus pneumoniae Ribosomal Protein L7 / L12 protein antigen 100 ⁇ g was dissolved in PBS (2001), Freund's complete adjuvant (2001) was added, mixed, and emulsified.
  • PBS PBS
  • Freund's complete adjuvant 2001
  • the same emulsion antigen was injected intraperitoneally.
  • Furthermore 10 weeks, and 14 weeks later, a two-fold concentration of antigen emulsion was injected intraperitoneally, and three days after the final immunization. Later, the spleen was removed and subjected to cell fusion.
  • the myeloma cells used for cell fusion were cultured in RPMI1640 medium containing NS-1 cell line, and 0.1 weeks after cell fusion, 0.13 mM azaguanine, 0.5 ⁇ g / ml MC -After culturing in RPMI1640 medium containing 210 and 10% FCS for 1 week, and further culturing in RPMI1640 medium containing 10% FCS for 1 week, used.
  • the cells in the positive well were collected and cultured in a HAT medium in a 24-well plastic plate. After mixing the fusion medium was cultured and diluted with HT medium so that such approximately 20 cells / ml cell number, with 10 6 murine thymocytes 6 week old suspended in HT medium and a 96-well culture plates , 7% C0 2 conditions and 2 weeks cultured at 37 ° C.
  • the antibody activity in the culture supernatant was similarly assayed by the aforementioned ELISA method, and cells positive for reaction with the Ribosomal Protein L7 / L12 protein were collected. Further, the same dilution assay and clawing operation were repeated to obtain a total of 4 clones of the hybridomas AMSP-1 to AMSP-4.
  • cells subcultured using RPMI1640 medium were cultured in 25 cm 2 culture flasks at 2 ⁇ 10 5 cells / ml, 3.3 ⁇ 10 5 cells and 5 ⁇ 10 5 cells / ml.
  • the volume was diluted to about 5 ml with serum-free medium.
  • 7% C0 2, 37 ° C at grown for 3-5 days, among flasks in cell growth was observed, select the one original number of cells the least, finally 2 X 10 5 cells / ml
  • the same operation was repeated until the diluted cells grew to 2 ⁇ 10 6 cells / ml in 3 to 4 days, and the cells were adapted to a serum-free medium.
  • cloning was performed in a 96-well plate for bacterial culture, and cells that grew rapidly and had high antibody titers were selected.
  • the selected cells grown in a 24-well plate were diluted with a serum-free medium to a total volume of 10 ml in a 25 cm 2 culture flask at a concentration of about 2 ⁇ 10 5 cells / ml. This was grown to 7% C0 2, 37 ° and incubated for 3-4 days at C 1 X 10 6 cells / ml, 1 X 10 6 cells were grown similarly in 75 cm 2 culture flasks / ml, a 100ml Transferred to bottle for mass culture.
  • a serum-free medium 100 ml of a serum-free medium was added thereto, and the mixture was cultured at 37 ° C for 2 days with stirring. Divide this culture into 4 tubes, add 100 ml of serum-free medium each, and incubate for 2 days, add 400 ml of serum-free medium each, and further culture for about 6 days, collect the culture, and centrifuge at 10,000 rpm for 5 minutes for the purpose. A culture supernatant containing the antibody to be used was obtained. The culture supernatant was stored at 4 ° C after addition of 0.1% sodium azide.
  • a reaction substrate was prepared by reacting an antibody for capture on a silicon wafer having a thin layer of silicon nitride, and an antigenic substance, that is, an extract of microorganisms, was reacted for a certain period of time. After that, the captured antigen is further reacted with the enzyme-labeled antibody (amplification reagent), and finally the antigen-antibody reaction can be visually determined by the light interference color due to the thin film precipitation generated by adding the substrate solution. This is the way to go. 2.8
  • Monoclonal antibodies prepared was used as a ca p ture antibody immobilized on a silicon N'weha with thin layers of silicon nitride 0IA method was evaluated.
  • the detect antibody used was an AMGC-1 monoclonal antibody capable of non-specifically reacting with Ribosomal Protein L7 / L12 proteins of various microorganisms described in Reference Examples, which was enzymatically labeled with peroxidase. That is, the enzyme labeling uses horseradish peroxidase (Sigma grade VI) and the binding uses the reagent S-acetylthioacetic acid N-hydroxysuccinimide and is described in Analytical Bio-chemistry 32 (1983), 68-73. I went according to the method.
  • the monoclonal antibody in PBS containing 0.05% sodium azide was diluted to a concentration of lO ⁇ ug / ml with 0.1M HEPES pH 8.0. It was added to a silicon wafer and reacted at room temperature for 30 minutes, washed with distilled water, and used.
  • An antigen solution obtained by subjecting a suspension of various microorganisms to extraction with 0.5% concentration Triton X-100 at room temperature for 5 minutes is added to the suspension, and the mixture is reacted at room temperature for 15 minutes.
  • 20 mg / rnl of Add 15 1 peroxidase-labeled AMGC1 antibody perform reaction at room temperature for 10 minutes, wash with distilled water, add substrate solution (KPL) at 15 / xl each, react at room temperature for 5 minutes, wash with distilled water, and then detect signal was visually determined as the intensity of the light interference color.
  • Nei sseri a gonorrhoeae IID821 strain (sale from the University of Tokyo Institute of Medical Science, purchase) the after inoculated appropriate amount onto chocolate agar at 37 ° C, C0 2 0. 5 % condition in C0 2 incubator 24 Cultured for hours. The grown colonies eventually to be around 5 X l0 9 CFU / ml suspended in TE Buffer.
  • This mixture was subjected to 5 cycles of 95 ° C for 1 minute, 50 ° C for 2 minutes, and 72 ° C for 3 minutes using TaKaRa PCR Thermal Cycler 480, and then 95 ° C for 1 minute, 60 ° C for 2 minutes, and 72 ° C for 2 minutes. 25 cycles of 3 minutes at ° C.
  • a portion of this PCR product was electrophoresed in a 1.5% agarose gel, stained with ethidium mouth mouth (manufactured by Nippon Gene), observed under ultraviolet light, and approximately 400 bp of cDNA was amplified. It was confirmed. After digestion with restriction enzymes BamHI and Xhol, electrophoresis was performed in a 1.5% agarose gel.
  • the nucleotide sequence of the inserted DNA fragment was determined using a fluorescent theta-encer manufactured by Applied Biosystems. Preparation of sequence sample
  • PRISM Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems) was used.
  • reaction stock solution 9.51, 0.8 ⁇ 1 / ⁇ 1 of 4.0 / i 1 ⁇ 7 promoter and primer (Manufactured by GIBCO BRL) and 6.5 ⁇ l of 0.16 ⁇ g / ⁇ 1 DNA for sequence ⁇ ⁇ DNA were added and mixed, and 100 ⁇ 1 of mineral oil was overlaid.
  • the PCR amplification reaction was performed for 25 cycles, each cycle consisting of 15 ° C for 15 seconds and 60 ° C for 4 minutes, and incubated at 4 ° C for 5 minutes.
  • One of the five clones obtained has sequence homology to the probe used for PCR and is very similar to other microorganisms, for example, Riemosomal Protein L7 / L12 gene arrangement J 'of Haemophi lus influenzae. Similar DNA sequences were found.
  • a hybridoma GCRB-3 strain producing a monoclonal antibody against Ribosomal Protein L7 / L12 protein was obtained.
  • the obtained antibody-containing solution is adsorbed on a ProteinA column (5 ml bed, manufactured by Pharmacia), washed with PBS in a 3-bed volume, and eluted with a pH citrate buffer.
  • the antibody fraction is recovered and the hybridoma is recovered.
  • the monoclonal antibody to be produced was obtained.
  • the monoclonal antibody derived from the GCRB-3 hybridoma was evaluated by ELISA.
  • the antibody was evaluated by the sandwich assay method, and the prepared monoclonal antibody was used as an enzyme-labeled antibody by chemically binding to peroxidase.
  • the enzyme label is horseradish peroxidase (Sigma grade VI) and the reagent is N-hydroxysuccinimide S-acetylthioacetate for binding, as described in Analytical Bio-chemistry 32 (1983), 68-73.
  • the procedure was performed according to the method. In an ELISA reaction
  • a 96-well plate was prepared by diluting a commercially available anti-gonococcal polyclonal antibody (Vagilostat, Inc.) dissolved in PBS containing 0.05% sodium azide at a concentration of 10 / xg / ml into a 96-well plate. Dispensed separately and adsorbed 1 ⁇ at 4 ° C.
  • the hybridoma GCRB-3 was used as an enzyme-labeled antibody. If a monoclonal antibody of interest was used, the tested Neisseria
  • Neisseria gonorrhoeae IID821 strain (sale from the University of Tokyo Institute of Medical Science, purchase) was inoculated appropriate amount of chocolate agar on, in C0 2 incubator for 24 hours at 37 ° C for at C0 2 concentration of 0.5% Conditions .
  • PCR was performed using 10 ng of this genomic DM. PCR used Taq polymerase (Takara Shuzo Co., Ltd., code R001A). Due to the similarity between 5 ⁇ l of the buffer attached to the enzyme, 4 ⁇ l of the dNTP mixture attached to the enzyme, and the Ribosomal Protein L7 / L12 DNA sequence of other bacteria, the Internet information (Oklahoma University, Neisseria gonorrhoeae genome) The sequence was designed from Neisseria gonorrhoeae Ribosomal Protein L7 / L12 DNA sequence 3 ⁇ 4rb and was obtained from the project public genomic DNA information. 200 pmol of each of the synthetic oligonucleotides F shown in SEQ ID NO: 16 in the column list was used as a probe to give a final volume of 501.
  • This mixture was subjected to 5 cycles of 95 ° C for 1 minute, 50 ° C for 2 minutes, and 72 ° C for 3 minutes using TaKaRa PCR Thermal Cycler 480, and then 95 ° C for 1 minute, 60 ° C for 2 minutes, 25 cycles of 3 minutes at 72 ° C were performed.
  • a portion of this PCR product was subjected to electrophoresis in a 1.5% agarose gel, stained with ethidium Mabuchi Mide (manufactured by Nippon Jin Co., Ltd.), observed under ultraviolet light, and about 400 bp cDNA was amplified. I confirmed that.
  • the vector can function as an expression vector for a target molecule capable of expressing a fusion protein with a GST protein by incorporating a target gene fragment into an appropriate restriction enzyme site.
  • the vector pGEX-6P-1 and the above DNA are mixed at a molar ratio of 1: 5, and the mixture is converted into a vector using T4 DNA ligase (Invitrogen). DNA was incorporated.
  • the vector pGEX-6P-1 incorporating the DNA was transfected into Escherichia coli One Shot Competent Cells (manufactured by Invitrogen), and ampicillin was used.
  • the aqueous layer was subjected to three extractions with phenol / chloroform.
  • ⁇ of sodium 3 ⁇ acetate ( ⁇ (5.2) and 300 ⁇ l of ethanol were added and stirred, followed by centrifugation at room temperature at 14000 rpm for 15 minutes to collect the precipitate. After washing the precipitate with 75% ethanol, it was left standing under vacuum for 2 minutes and dried to prepare a sample for sequencing.
  • the sequence sample is 4 ⁇ l of 10 mM
  • Escherichia coli harboring the expression vector was cultivated in 50 ml 37 ° C 1 1 in a double concentration of YT medium. 450 ml of 2X YT medium was warmed at 37 ° C for 1 hour. 1 ⁇ 50 ml of the cultured E. coli culture was placed in 450 ml of the aforementioned medium. After culturing at 37 ° C for 1 hour, 100 // 1 of 500 mM IPTG was added, and the cells were collected after culturing for 4 hours at 25 ° C, and 250 ml of each was centrifuged at 5000 rpm for 20 minutes in a centrifuge tube. The supernatant was discarded, and the cells were dissolved in 25 ml of Lyss buffer containing 50 mM Tris-HCl pH 7.4 and 25% sucrose.
  • the supernatant was adsorbed to a daltathione sepharose (Pharmacia) column conditioned with PBS.
  • the column was washed with PBS for 3 bead polymums.
  • elution was performed with 50 mM Tris-HCl 8.0 containing 10 mM daltathione, and the protein content in the fractionated fraction was detected by the dye binding method (Bradford method; BioRad), and the main fraction was obtained. .
  • the main fraction was dialyzed three times against 3 L PBS.
  • reaction solution was passed through a glutathione sepharose column conditioned with PBS, and the permeate was collected. Further, PBS was flown through a one-bed volume and this was also collected.
  • the purity of the obtained purified Ribosomal Protein L7 / L12 was approximately 90%, as confirmed by electrophoresis, and it was sufficient to ensure sufficient purity as an immunogen. Came.
  • the myeloma cells used for cell fusion were cultured in RPMI1640 medium containing 1096 FCS using NS-1 cell line, and 0.13 mM azaguanine and 0.1 Sii g / ml were obtained from 2 weeks before cell fusion. After culturing for one week in RPMI1640 medium containing MC-210 and 10% FCS, the culture was further used for one week in RPMI1640 medium containing 10% FCS. To the mixed cell sample, add 30ml of 50ml RPMI1640 medium kept at 37 ° C, centrifuge at 1500rpm, remove the supernatant, add 1ml of 50% polyethylene glycol kept at 37 ° C, treat with vigorous stirring for 2 minutes, then 37 ° C. 10 ml of RPMI1640 medium kept warm was added to the solution C, and the solution was vigorously stirred and mixed for about 5 minutes while sucking and discharging the solution with a sterile pipe.
  • the cells in the positive well were collected and cultured in a HAT medium in a 24-well plastic plate. Dilute the cultured fusion medium with HT medium so that the cell number becomes about 20 cells / ml, and add 50 ⁇ l of 6-week-old mouse thymus cells suspended in ⁇ medium to 10 6 cells in a 96-well culture plate. in after mixing, 7% C0 2 conditions and 2 weeks cultured at 37 ° C.
  • the antibody activity in the culture supernatant was similarly assayed by the aforementioned ELISA method, and cells positive for reaction with the Ribosomal Protein L7 / L12 protein were collected. Further, the same dilution assay and cloning operation were repeated to obtain a total of 4 clones of hybridomas AMGC-5 to 8.
  • Monoclonal antibodies were produced and recovered according to a standard method using the positive hybridoma cells obtained as described above.
  • cloning was performed in a 96-well plate for bacterial culture, and cells that grew rapidly and had high antibody titers were selected.
  • the selected cells were diluted in serum-free media so that 2 X 10 approximately 5 cells / ml to those grown in 24 well plates in 25 cm 2 culture flasks The total volume was 10 ml. This was grown to 7% C0 2, 37 ° C in cultured 3-4 days 1 X 10 6 cells / ral, 1 X 10 6 cells were grown similarly in 75 cm 2 culture flasks / ml, a 100ml Transferred to bottle for mass culture. 100 ml of a serum-free medium was added thereto, and the mixture was cultured at 37 ° C for 2 days with stirring.
  • the monoclonal antibodies derived from these four strains of hybridomas were evaluated by the 0IA method described in JP-T-Hei 7-509565.
  • a reaction substrate was prepared by reacting an antibody for capture on a silicon wafer having a thin layer of silicon nitride, and an antigenic substance, that is, an extract of microorganisms, was reacted for a certain period of time. After that, the captured antigen is further reacted with the enzyme-labeled antibody (amplification reagent), and finally the antigen-antibody reaction can be visually determined by the light interference color due to the thin film precipitation generated by adding the substrate solution. This is the way to go.
  • the prepared monoclonal antibody was used as a capture antibody to be immobilized on a silicon wafer having a silicon nitride thin film layer by the 0IA method.
  • an AMGC-1 monoclonal antibody capable of non-specifically reacting with Ribosomal Protein L7 / L12 proteins of various microorganisms described in Reference Examples, which was enzymatically labeled with peroxidase, was used. That is, horseradish peroxidase (Sigma grade VI) is used for enzyme labeling, and reagent S-acetylthioacetic acid N-hydroxysuccinimide is used for binding.
  • the centrifugal supernatant of the Haemophilus influenzae cell extract treated with 0.5% Triton X-100 was used as the antigen.
  • 1.5 ml of a Freund's adjuvant was added to about 1.2 ml of a physiological saline solution containing 100 / zg of the antigen, and the mixture was emulsified.
  • four SPF Japanese White Rabbits were subcutaneously injected and immunized. Immunization was performed 5 to 6 times every two weeks, and the antibody titer was confirmed.
  • the plate was washed with a washing solution (0.02% Tween20, PBS), and serially diluted normal heron serum and post-immunized rabbit herb antiserum 100 // 1 were added.
  • a washing solution 0.02% Tween20, PBS
  • serially diluted normal heron serum and post-immunized rabbit herb antiserum 100 // 1 were added.
  • 100 ng / ml of a peroxidase-labeled anti-rabbit IgG antibody solution carry out the reaction at room temperature for 1 hour, remove the supernatant, wash with the washing solution, and then wash with the 0PD solution ( (Sigma) were added in 100 ⁇ l portions, and the reaction was carried out at room temperature for 20 minutes. After color development, the reaction was stopped by adding 100 ⁇ l of 1N sulfuric acid, and the absorbance at 492 mn was measured.
  • Blood was collected from the ear artery into a glass centrifuge tube, allowed to stand at 37 ° C for 1 hour, and then allowed to stand at 4 ° C. Thereafter, the mixture was centrifuged at 3000 rpm for 5 minutes, and the supernatant was recovered.
  • the obtained 4 lots of antiserum were stored at 4 ° C.
  • Buffer A 0.5 M ethanolamine, 0.5 M NaCl, pH 8.3
  • Buffer B 0.1 M acetic acid, 0.5 M NaCK pH 4
  • Buffer 6 ml of A was injected and left at 25 ° C. for 15 minutes.
  • 6 ml of Buffer B, 6 ml of Buffer A, and 6 ml of Buffer B were flowed. Thereafter, the mixture was equilibrated with 6 ml of PBS.
  • the polyclonal antibody thus purified was evaluated by the 0IA method in the same manner as in Example 6.
  • the purified antibody was used as a capture antibody in the 0IA method.
  • the detect antibody the AMGC-1 monoclonal antibody described in Reference Example was used as a peroxidase.
  • the one labeled with an enzyme was used. Enzyme labeling is performed using horseradish peroxidase (Sigma grade VI) and binding is performed using the reagent S-acetylthioacetic acid N-hydroxysuccinimide. Analytical Biochemistry 32 (1983), 68-73 was performed according to the method described in
  • a solution prepared by diluting a purified polyclonal antibody in PBS containing 0.05% sodium azide to a concentration of 10 zg / ml with 0.1 M HEPES pH 8.0 was added to the silicon wafer 50 ⁇ 1 and the mixture was added at room temperature. After reacting for 30 minutes, it was used after washing with distilled water.
  • the so-called sandwich assay method in which the antigen is generally sandwiched between the capture antibody and the labeled antibody for detection, is particularly useful because of its high detection sensitivity.
  • an antibody that specifically reacts with an antigenic substance derived from the target microorganism is required, and at the same time, another antibody that recognizes an antigen epitope different from the specific antibody is required.
  • Antibodies that react nonspecifically with Ribosomal Protein L7 / L12 proteins derived from various microorganisms are very useful as antibodies that can constitute a sandwich assay with antibodies that specifically react with Ribosomal Protein L7 / L12 proteins It is.
  • the Ribosomal Protein L7 / L12 protein has regions where the amino acid sequences are homologous in various microorganisms.
  • a monoclonal antibody that cross-reacts with the Ribosomal Protein L7 / L12 proteins of various microorganisms from Neisseria gonorrhoeae is shown here. And found that non-specific anti-Ribosomal Protein L7 / L12 protein antibodies obtained from one microorganism can be used in common for various microorganisms in the San German Chiassy.
  • the Ribosomal Protein L7 / L12 gene was cloned from Neisseria gonorrhoeae, large-scale expression and purification of the protein in Escherichia coli, and monoclonal antibodies against the protein were produced.
  • Nei sseria gonorrhoeae I ID821 strain (sale from the University of Tokyo Institute of Medical Science, purchase) the after inoculated appropriate amount on chocolate agar, C0 2 incubator in one among at 37 ° C, C0 2 0. 5 % Conditions Incubate for 24 hours. Suspend the grown colonies in TE Buffer to a final concentration of about 5 ⁇ 10 9 CFU / ml. Transfer about 1.5 ml to a microcentrifuge tube, centrifuge at lOOOOrpm for 2 minutes, and discard the supernatant. Resuspend the pellet in 567 ju 1 of TE Buffer.
  • PCR was performed using lOng of this genomic DNA. PCR used Taq polymerase (Takara Shuzo Co., Ltd., code R001A).
  • the buffer attached to the enzyme is 5 AiL, and the dNTP mixture 4 / zl attached to the enzyme is similar to the Ribosomal Protein L7 / L12 DNA sequence of bacteria such as Haemophilus influenzae and the Internet.
  • the sequence shown in SEQ ID NO: 15 was designed based on the Ribosomal Protein L7 / L12 DNA sequence of Nei sseria gonorrhoeae obtained from the information (University of Oklahoma, Nei sseria gonorrhoeae genomic project open genome DNA).
  • Oligonucleotide E and synthetic oligonucleotide F shown in SEQ ID NO: 16 in the Sequence Listing were used as probes, and 200 pmol of each was added to give a final volume of 501.
  • This mixture was subjected to 5 cycles of 95 ° C for 1 minute, 50 ° C for 2 minutes, and 72 ° C for 3 minutes using TaKaRa PCR Thermal Cycler 480, and then 95 ° C for 1 minute, 60 ° C for 2 minutes, and 72 ° C for 2 minutes. 25 cycles of 3 minutes at ° C.
  • a portion of this PCR product was subjected to electrophoresis in a 1.5% agarose gel, stained with ethidium bromide (manufactured by Nippon Gene Co., Ltd.), and observed under ultraviolet light. Confirmed that. After digestion with restriction enzymes BamHI and Xhol, electrophoresis was performed in 1.5% agarose gel. After staining with ethidium bromide, a band of about 370 bp was cut out from the gel, purified with SuprecOl (Takara Shuzo), and then marketed.
  • Vector pGEX-4T-1 Vector pGEX-4T-1
  • the DNA-incorporated vector pGEX-4T-1 was transfected into Escherichia coli One Shot Competent Cells (Invitrogen), and L-Broth (Takara Shuzo) containing 50 ⁇ g / ml ampicillin (Sigma) was used.
  • L-Broth Takara Shuzo
  • the culture was shake-cultured at ° C, the cells were collected, the plasmid was separated using Wizard Miniprep (Promega) according to the attached instructions, and this plasmid was purified using the restriction enzymes BamHI / XhoI. It was confirmed that the PCR product had been incorporated by excision and the DNA of about 370 bp was cut out, and the nucleotide sequence of the incorporated DNA was determined for the confirmed clone.
  • the nucleotide sequence of the inserted DNA fragment was determined using a fluorescent theta sensor manufactured by Applied Biosystems. Preparation of sequence samples PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems) was used. In a 0.5 ml microtube, add 9.51 reaction stock solution, 4. ⁇ of 0.8 pmol // l T7 promoter primer (manufactured by GIBCO BRL) and 6.5 zl of 0.16 iig / l type I DNA for sequence.
  • sequence sample was dissolved in 4 zl of formamide containing 10 mM EDTA, denatured at 90 ° C for 2 minutes, cooled on ice, and subjected to the sequence.
  • One of the five clones obtained had sequence homology with the probe used for PCR, and was very similar to the sequence of other microorganisms such as the Ribosomal Protein L7 / L12 gene of Haemophilus influenzae.
  • the DNA sequence was found. The entire nucleotide sequence of the structural gene portion and the corresponding amino acid sequence were as shown in SEQ ID NOs: 21 and 22 in the Sequence Listing.
  • This gene fragment clearly encodes the gene for the Ribosomal Protein L7 / L12 protein of Neisseria gonorrhoeae.
  • the GST fusion Ribosomal Protein L7 / L12 of Neisseria gonorrhoeae purified by the same method as described in Example 2 using the constructed Rissomal Protein L7 / L12 GST fusion protein expression vector of Neisseria gonorrhoeae L12 protein was obtained.
  • a hybridoma DOGC strain AMGC1 which was produced as a monoclonal antibody against the Ribosomal Protein L7 / L12 protein of Neisseria gonorrhoeae was obtained by the method described in Example 3 and the
  • monoclonal antibodies were produced and recovered according to a standard method. Specifically, cells subcultured using RPMI1640 medium (containing 10% FCS) 2 X 10 5 cells in 25 cm 2 culture flasks / ml, 3. to 3 X 10 5 and 5 X 10 approximately 5 cells / ml of the diluted whole picture in serum-free medium was 5 ml. Grow at 3 ° C for 2 to 5 days at 37 ° C and select the flask with the least number of original cells among the flasks in which cell growth was observed.Finally, dilute 2 x 10 5 cells / ml.
  • the same operation was repeated until the cells grew to 2 ⁇ 10 6 cells / ml in 3 to 4 days, and the cells were adapted to a serum-free medium.
  • cloning was performed in a 96-well plate for bacterial culture, and cells that grew rapidly and had high antibody titers were selected.
  • the selected cells grown in a 24-well plate were diluted with a serum-free medium to a total volume of 10 ml in a 25 cm 2 culture flask at a concentration of about 2 ⁇ 10 5 cells / ml.
  • the culture supernatant was stored at 4 ° C after addition of 0.1% sodium azide. After diluting 100 ml of the obtained antibody-containing solution 5 times with PBS, absorb it onto a Protein A column (5 ml bed volume, manufactured by Pharmacia), wash with 3 bed volumes with PBS, and elute with pH 3.0 citrate buffer. Then, the antibody fraction was recovered to obtain a monoclonal antibody produced by each hybridoma. Evaluation was performed by ELISA using the monoclonal antibody derived from the hybridoma.
  • Antibodies were evaluated using a 96-well plate sensitized with Ribosomal Protein L7 / L12 proteins derived from various microorganisms as antigens. After reacting the prepared monoclonal antibodies, the horseradish pellicle of anti-mouse IgG was used as a secondary antibody. The reaction was carried out with an oxidase label (MB330, Code330) and finally detected with an enzyme reaction coloring reagent.
  • MB330, Code330 an oxidase label
  • the AMGC1 antibody obtained here is used in combination with an anti-Ribosomal Protein L7 / L12 protein antibody specific for each microorganism in the detection of microorganisms by the so-called sandwich assay method such as the detection of microorganisms by Optical Immunoassay ELISA. Very useful as an antibody.
  • various microorganisms can be tested against intracellular molecules having the same function.
  • detecting microorganisms using the body it is possible to specifically detect microorganisms and accurately detect microorganisms of all serotypes within the same species.
  • ⁇ body can be used to detect Haemophi lus influenzae, Streptococcus pneumoniae and Neisseria gonorrhoeae ft times.
  • a reagent kit for detecting microorganisms comprising such an antibody as a component, the detection of microorganisms can be performed more generally and accurately.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

明細書
微生物検出用抗体
[技術分野]
本発明は、 種々の微生物、 特に細菌の検出に有用な抗体、 それを用いた 微生物検出方法、 微生物検出用試薬キッ ト及び微生物検出用特異的抗体の 作製法に関する。
本発明は、 医薬品工業、 特に細菌を中心とする微生物感染症のための診 断薬の製造に有効に利用される。
[背景技術]
微生物感染症の診断は通常感染部位などでの原因菌の検出か、 血清、 体 液中の原因菌に対する抗体の検出により確定される。 特に、 この診断は原 因菌の検出が患者への迅速な治療を可能にする意味で重要である。
感染症原因菌の検出には原因菌の分離培養を経て、 その生化学的性状を もとに菌の同定を行う培養同定法、 原因菌特異的遺伝子をもとに PCR法な どにより増幅し検出する遺伝子診断法、 原因菌の表面抗原マーカーとの抗 体の特異反応を利用して原因菌検出を行う免疫的手法に大別できるが、 培 養同定法、 遺伝子診断法は検出結果を得るまでに時間がかかり、 短時間に しかも高感度に原因菌を検出し、 迅速かつ適切な患者への治療につながる 点で免疫法による診断が汎用されている。
従来免疫法による感染症原因菌の検出には、 菌種によって様々なマーカ 一抗原と抗体の組み合わせが使われている。
例えばクラミジァ ( Chlamydia) 属の場合、 属特異的抗原であるリポ多糖 (LPS) の抗原決定基としての存在が知られており(Stephens, R.ら : J. Immunol. , 128: 1083-89, 1982、 Caldwel l. M. D.: Inf. Immun. , 44 : 306- 14, 1984)、 様々な診断用キッ トにおいて特にクラミジァ トラコマチス (Chlamydia trachomati s) の検出用試薬抗体に利用されている。
また、 Clilamydia 属の外膜主要蛋白質(M0MP ; Major Outer Membrane Protein)に対するモノクローナル抗体について El lena M. Peterson ら: Infection and Immunity, 59 (11), 4147 - 4153, 1991 及ぴ Byron E.
Batteiger ら: Infect ion and Immunity, 53 (3) , 530 - 533, 1986 カ それぞ れ報告している。
特開昭 63- 298号公報は、 約 43キロダルトンのマイコプラズマ ニュー モニァ (Mycoplasma pneumoniae) の膜抗原蛋白質に対するモノクローナル 抗体を用いたウェスタンプロッ ト法をべ一スとする免疫検出法が記載され ている。
また、 特開昭 62- 148859号公報 (特公平 6- 64065号公報) には、 へモフ ィルス インフルエンザ (Haemophi lus influenzae) の外膜蛋白質に対す るポリクローナル抗体の作製法と作製した抗体を用いた診断方法について 記載されている。
英国特許出願 2172704 号明細書には、 ナイセ リ ア ゴノ ロェ (Nei sseria gonorrhoeae) 株 BS4 (NCTC 11922)の外膜小胞のコール酸ナ トリゥム抽出液から単離された約 20 キロダルトンの蛋白質について記載さ れており、 この物質を用いてハイプリ ドーマを調製することが開示されて おり、 また EP 419238A1 号には Nei sseria gonorrhoeae培養菌体を免疫源 として作製され、 約 14 キロダルトンの蛋白質に結合可能なモノクローナル 抗体とその作製方法について記載されている。 また、 同じ Nei sseria gonorrhoeae についてカナダ特許出願 1220147号明細書には LPS に対する モノクローナル抗体を用いる検出法について記載されている。
しかし、 これらの抗体および検出法では、 微生物に対する種特異性が十 分ではなく、 また同一種に存在する複数の表面抗原による血清型の全てを カバーし検出することが困難であるなどの問題点がある。
またこれらの従来の技術に用いられているマーカー抗原は各種微生物細 胞において普遍的に存在する同一機能分子 (例えば、 同一機能の蛋白質、 LPSあるいは表面多糖成分) が微生物の進化の過程で菌種ごとに変化して きた分子をマーカーとして検出するというような統一的なものでなく、 1 つの分子を基準として菌種間で抗原性の差を検出しようという発想に基づ いた免疫診断法はいまだに知られていない。
[発明の開示]
本発明は、 理想的な微生物の検出 ·免疫診断法を可能とする統一マーカ 一抗原としてそれぞれの微生物について同一の分子に対する抗体、 特に検 出したい全ての微生物について細胞内の同一機能成分分子を用いて微生物 の進化の過程で変化が生じてきた部分に対する抗体、 該抗体を用いた特異 的でかつほぼ全ての血清型をカバ一できる微生物検出方法、 微生物検出用 試薬キッ ト及び微生物検出用特異抗体の作製方法を提供しようとするもの である。
本発明者らは、 全ての微生物において同一の機能が保存されている蛋白 質を有用な抗原蛋白質として見出した。 通常、 このような蛋白質の構造変 化は極めて少ないと予想される。 しかし驚くべきことに、 該蛋白質の抗原 ェピトープは微生物の種あるいは属特異的であり、 該蛋白質に対する抗体 は、 微生物の種あるいは属特異的な識別に用いることが可能な多様性を持 つと共に、 対象となる微生物についてはその全ての血清型を検出しうるも のであることが見出されたのである。
本発明者らは全ての微生物細胞に存在し、 しかもそのァミノ酸構造が微 生物間である程度の相違点をもつ細胞内分子、 特にリポソーム蛋白質の一 種であるリボソーム蛋白質 L7/L12 (Ribosomal Prote in L7/L12)に着目し た。 Ribosomal Protein L7/L12は蛋白質合成に必須なリボソーム蛋白質と してその存在が知られている分子量約 13キロダルトンの蛋白質であり、 特 に大腸菌、 枯草菌などいくつかの微生物でその全ァミノ酸配列の解析が進 んでおり、 微生物間で 50%〜65%程度のアミノ酸配列の相同性が確認され ている。
本発明者らはこの分子が微生物間で類似しているにもかかわらずその一 部に各微生物固有のアミノ酸配列等の構造部分を持つことに着目し、 該蛋 白質に対する抗体を利用することで様々な微生物に特異的でかつ同一菌種 内の全ての血清型について検出が可能であることを見いだした。 具体的に は例えは * Haemophi lus influenzae , ス ト レプ ト コ ッカス ニューモニァ ( Streptococcus pneumoniae) 及ひ ei s seri a gonorrhoeae tこつレヽてその 特異抗体を用いた微生物種の免疫法診断技術の開発を試みた結果、 個々の 微生物において当該蛋白質特異的な抗体が取得でき、 当該抗体を用いるこ とによりそれぞれの菌について特異的な検出が可能であるということを見 いだしたことにより本発明を完成した。
従って本発明は、 次のとおりの微生物検出用抗体、 それを用いる微生物 検出方法及び微生物検出用試薬キッ ト及び微生物検出用特異的抗体の作製 法に関する。
1)微生物のリポソーム蛋白質に対する抗体であって、 当該微生物に特異的 に反応する抗体、
2)微生物のリボソーム蛋白質が Ribosomal Protein L7/L12である、 1)に記 載の抗体、
3)微生物が性行為感染症 (STD, Sexually transmi tted disease) 原因微生 物である 1)または 2)に記載の抗体、
4)微生物が呼吸器系感染症の原因微生物である 1)または 2)に記載の抗体、
5)呼吸器系感染症の原因微生物のが Haemophi lus influenzae である 4) に 記載の抗体、
6)呼吸器系感染症の原因微生物が Streptococcus pneumoniae である 4)に 記載の抗体、
7)性行為感染症(STD, Sexual l y transmi tted di sease)微生物力 Neisseria gonorrhoeaeである 3)に言己載の饥体、
8) Nei sseria gonorrhoeae の Ribosomal Protein L7/L12 蛋白質に対する 抗体であって、 配列表配列番号: 22 のアミノ酸配列において 115番目のァ ラニンを含む 5から 30アミノ酸の長さの連続する部分ァミノ酸配列を認識 する抗体である 7)に記載の抗体、
9)各種の微生物について同一機能の細胞内分子に対する抗体を用いる微生 物検出方法、
10)各種の微生物について 1)から 8)のいずれかに記載の抗体を用いる微生 物検出方法、
11)各種の微生物について同一機能の細胞内分子に対する抗体を用いる微生 物検出用試薬キッ ト、
12)各種の微生物について 1)から 8)のいずれかに記載の抗体を用いる微生 物検出用試薬キッ ト、
13)遺伝子操作手法によりあるいは微生物からの単離精製により得られた微 生物の Ribosomal Protein L7/L12蛋白質、 その部分べプチド、 またはその 部分ペプチドに相当する合成ペプチドを免疫源とする 1)から 8)のいずれか に記載の抗体の作製方法。
以下本発明について詳細に説明する。
配列表において配列番号 1 及び 2 は Haemophi lus influenzae の Ribosomal Protein L7/L12遺伝子の DNA配列及び対応するアミノ酸配列 である。 配列番号 3 及び 4 はへリ コパクター ピロ リ (Helicobacter pylori) の Ribosomal Protein L7/L12遺伝子の DNA配列及び対応するアミ ノ 酸 ¾C歹リである。 配歹 U番^" 5 及ひ 6 {ま Streptococcus pneumoniae の Ribosomal Protein L7/L12遺伝子の DNA配列及ぴ対応するアミノ酸配列 である。 &1列番号 7 及び 8 は Nei sseria gonorrhoeae の Ribosomal Protein L7/L12 遺伝子の DNA配列及び対応するアミノ酸配列である。 配列 番号 9及び 10はナイセリア メニンギチヂス (Nei sser ia meningitidi s) の Ribosomal Protein L7/L12遺伝子の DNA配列及び対応するァミノ酸配列 である。 配列番号 11及び 12 は Haemophi lus influenzaeからの Ribosomal Protein L7/L12遺伝子の取得に用いた PCRのプライマー DNAである。 配列 番号 13及ぴ 1 は streptococcus pneumonoiae 力 らの Ribosomal Protein L7/L12 遺伝子の取得に用いた PCR のプライマー DNA である。 配列番号 15 及び 16 は Nei sseria gonorrhoeae 力 らの Ribosomal Protein L7/L12 ¾izs 子の取得に用いた PCR のプライマー DNA である。 配列番号 17 及ぴ 18 は Haemophi lus influenzae 力 ら取ネ守した Ribosomal Protein L7/L12 子 の DNA 配列及び対応するアミノ酸配列である。 配列番号 19 及び 20 は stre tococcus pneumoniae ら取得した Ribosomal Protein / L12 ¾ικ 子の DNA 配列及ぴ対応するアミノ酸配列である。 配列番号 21 及び 22 は Nei sseria gonorrhoeae 力 ら取得した Ribosomal Protein L7/L12遺伝子の DNA配列及ぴ対応するアミノ酸配列である。
なお、 配列表に記載されたァミノ酸配列の左端および右端はそれぞれァ ミノ基 (以下、 N末) およびカルボキシル基末端 (以下、 C末) であり、 ま た塩基配列の左端および右端はそれぞれ 5'末端および 3'末端である。
また、 本発明で述べられる遺伝子操作の一連の分子生物学的な実験は通 常の実験書の記載方法によって行うことができる。 前記の通常の実験書と しては、 例えば Molecular Cloning, A laoolatory manual, Cold Spring Harber Laboratory Press, Sambrook, J.ら(1989)を挙げることができる。
本発明において微生物は、 細菌、 酵母、 カビ、 放線菌、 リケッチア類な どの微生物類全般をさすが、 特に微生物感染症の診断において問題となる のは細菌の場合が多い。
本発明において、 「微生物に特異的に反応する抗体」 とは、 微生物の種あ るいは属に特異的に反応する抗体をさすが、 微生物感染症の診断において は微生物の種に特異的に反応する抗体が特に有用となる。
本発 明 に お い て 、 STD の原 因微生物 と は、 淋菌 (Neisseria gonorrhoeae ) 、 ク フ ミ シ ァ (Chlamydia trachomati s) 、 カ ン シ グ 菌 ( Candida albicans)、 ¾菌 (TreDonema Da_l l idum)、 ウ レァプラスマ菌 (Ureaplasma urealyticum)などをさすがこれらの微生物に限定されるもの ではない。
本発明において、 呼吸器系感染症の原因微生物とは、 インフルエンザ菌 (Haemophi lus ιηι丄 uenzae)、 肺炎球菌 (Streptococcus pneumoniae; 肺炎 クフ ン (chlamydia pneumoniae)、 月市炎マイコフラスマ (Mycoplasma pneumoniae)、 肺炎力 ん菌(Klebsiel la pneumoniae)、 黄色ブドウ球菌 (Staphylococcus aureus)、 緑膿鹵 (Pseudomonas aeruginosa)、 A群溶連 囷 (streptococcus sp. GroupA) ^ ¾ (Mycobacterium tuberculosi s)、 レ ジォネラ菌 (Legionel la pneumophi la) ^ アスペスレジノレス属真菌
(Aspergi llus spp. )などをさすがこれらの微生物に限定されるものではな い。
本発明において抗体は、 ポリクローナル抗体またはモノクローナル抗体 をさし、 該リポソーム蛋白質の全長あるいはその部分ぺプチドを用いて作 成することができる。 抗体を作成するためのぺプチドの長さは特に限定さ れないが Ribosomal Protein L7/L12蛋白質に対する抗体の場合、 この蛋白 質を特徴づけられる長さがあれば良く、 好ましくは 5アミノ酸以上、 特に 好ましくは 8アミノ酸以上のぺプチドを用いれば良い。 このべプチドある いは全長蛋白質をそのまま、 または KLH (keyhole-l impet hemocyanin)や BSA (bovine serum albumin)といったキャリア蛋白質と架橋した後必要に 応じてアジュバントとともに動物へ接種せしめ、 その血清を回収すること で Ribosomal Protein L7/L12蛋白質を認識する抗体 (ポリクローナル抗 体) を含む抗血清を得ることができる。 また抗血清より抗体を精製して使 用することもできる。 接種する動物としてはヒッジ、 ゥマ、 ャギ、 ゥサギ、 マウス、 ラッ ト等であり、 特にポリクローナル抗体作製にはヒッジ、 ゥサ ギなどが好ましい。 また、 ハイプリ ドーマ細胞を作製する公知の方法によ りモノクローナル抗体を得ることも可能であるが、 この場合はマウスが好 ましい。 また該蛋白質の全長またはアミノ酸 5残基以上、 望ましくは 8残 基以上の部分ペプチドを GST (ダルタチオン— S— トランスフェラーゼ) な どと融合させたものを精製して、 または未精製のまま、 抗原として用いる こともでさる。 成鲁 (Antibodies a laboratory manual, E. Harlow et al. , Cold Spring Harbor Labolatory)に示された各種の方法ならびに遺伝子ク ローニング法などにより分離されたィムノグロプリン遺伝子を用いて、 細 胞に発現させた遺伝子組み換え抗体によっても作製することができる。
本発明のマーカー抗原として用いることができる Ribosomal Protein L7/L12蛋白質に対する抗体は、 以下の 3つの方法あるいはその他の類似の 方法によって取得することができるが、 これらの方法に限定されるもので はない。
a) Ribosomal Protein L7/L12の遺伝子配列およびアミノ酸配列が既知の 微生物については、 他の微生物における該蛋白質のァミノ酸配列との類似 性が少ない領域についてアミノ酸数 5個から 30個ほどのぺプチド断片を合 成し、 それを免疫原としてポリクローナル抗体、 あるいはモノクローナル 抗体を作製することにより 目的の抗体を取得することができる。
また、 既知の該遺伝子の両端部位における DNA配列をプローブとした PCR手法による遺伝子増幅、 相同部分配列を铸型プローブとしたハイプリ ダイゼーション法など通常の遺伝子操作手法を用いることにより該遺伝子 の全長配列を取得することができる。
その後他の蛋白質遺伝子とのフュージョン遺伝子などを構築し、 大腸菌 等を宿主として公知の遺伝子導入手法により宿主内に該当フュージョン遺 伝子を揷入し大量に発現させた後にフュージョン蛋白質として用いた蛋白 質に対する抗体ァフィ二ティーカラム法などにより発現蛋白質を精製する ことにより 目的とする蛋白質抗原を取得することができる。 この場 合 Ribosomal Protein L7/L12の全長蛋白質が抗原となるため微生物間で保 存されているアミノ酸部分に対する抗体を取得しても本発明の目的に合致 しない。 従って、 本法によって取得した抗原に対しては公知の手法により モノクローナル抗体を産生するハイプリ ドーマを取得し、 該当する微生物 とのみ反応する抗体を産生するクローンを選択することにより 目的の抗体 を取得することができる。
b) Ribosomal Protein L7/L12のアミノ酸配列が未知の微生物については 1つには Ribosomal Protein L7/L12のァミノ酸配列が菌種間で 50〜60% 相同であることより、 そのァミノ酸配列の相同部分の配列を基にして PCR 法による特定配列部分の遺伝子増幅や相同部分配列を铸型プローブとした ハイプリダイゼーション法など通常の遺伝子操作手法を用いることにより 該蛋白質遺伝子を容易に取得することができる。
その後他の蛋白質遺伝子とのフュージョン遺伝子などを構築し、 大腸菌 等を宿主として公知の遺伝子導入手法により宿主内に該フュージョン遺伝 子を挿入し大量に発現させた後にフュージョン蛋白質として用いた蛋白質 に対する抗体ァフィ二ティ一カラム法などにより発現蛋白質を精製するこ とにより 目的とする蛋白質抗原を取得することができる。 この場 合 Ribosomal Protein L7/L12の全長蛋白質が抗原となるため微生物間で 保存されているアミノ酸部分に対する抗体を取得しても本発明の目的に合 致しない。 従って、 本法によって取得した抗原に対しては公知の手法によ りモノクローナル抗体を産生するハイプリ ドーマを取得し、 該当する微生 物とのみ反応する抗体を産生するクローンを選択することにより目的の抗 体を取得することができる。
c) あるいは Ribosomal Protein L7/L12のアミノ酸配列が未知な場合の別 な方法として、 既知の Ribosomal Protein L7/L12のアミノ酸配列のうち微 生物間で保存されている共通配列部分に相当する 5〜30ァミノ酸の合成ぺ プチドを作製し、 そのペプチド配列に対し公知の方法でポリクローナル抗 体あるいはモノクローナル抗体を作製し、 該抗体を用いたァフィ二ティー カラムクロマトによって目的の微生物細胞破砕液を精製することにより高 度に精製された Ribosomal Protein L7/L12蛋白質を取得することができる。
蛋白質の精製度が不足している場合は公知の精製手法であるイオン交換 クロマトグラフィー、 疎水クロマトグラフィー、 ゲル濾過などの手法によ り精製した後作製した抗体によるウェスタンプロッ トなどの方法によ り Ribosomal Protein L7/L12蛋白質の溶出画分を同定し精製蛋白質を得る ことができる。 得られた精製 Ribosomal Protein L7/L12蛋白質抗原を基に して公知の方法によりハイプリ ドーマあるいはポリクローナル抗体を取得 し b)と同様に目的の微生物に特異的に反応するハイプリ ドーマあるいはポ リクローナル抗体を選択することにより 目的の抗体を取得することができ る。
前記 a)〜c)などの方法によって取得した本発明における各種微生物特異 的な抗体は例えばポリスチレンラテックス粒子上に該抗体を吸着させた凝 集反応、 マイクロタイタープレート中で行う公知技術である ELISA法、 既 存のィムノクロマト法、 着色粒子もしくは発色能を有する粒子、 または酵 素もしくは蛍光体でラベルされた該抗体とともに捕捉(capture)抗体で被覆 した磁気微粒子などを用いるサンドィツチアツセィなど既知の全ての免疫 測定手法に利用することにより種々の目的の微生物に特異的な検出用試薬 キッ トを提供することができる。
抗体を用いる微生物検出方法とは、 例えばポリスチレンラテックス粒子 上に該抗体を吸着させた凝集反応、 マイクロタイタープレート中で行う公 知技術である ELISA法、 既存のィムノクロマト法、 着色粒子もしくは発色 能を有する粒子、 または酵素もしくは蛍光体でラベルされた該抗体ととも に capture抗体で被覆した磁気微粒子などを用いるサンドィツチアツセィ などの既知の免疫測定手法を利用する検出方法に相当する。
また、 特に抗体を用いる有用な微生物検出方法として特表平 7 - 509565号 公報に記載されているシリコン、 窒化珪素などにより形成された光学薄膜 上で抗体反応をおこない光干渉原理等により検出するいわゆるォプティカ ルイムノアッセィ (OIA, Optical Immunoassay) などが高感度な検出方法 として有用である。
また該検出方法において必要となる微生物からの細胞内マーカー抗原の 抽出方法としては、 トリ トン X - 100 (Triton X - 100)、 ツイーン- 20 (Tween - 20)をはじめとする種々の界面活性剤を用いた抽出試薬による処理法、 適当 なプロテアーゼなどの酵素を用いる酵素処理法、 物理的方法による微生物 細胞の破碎をはじめ既知の細胞構造の破砕手法が用いられうるが、 界面活 性剤等の組み合わせにより微生物ごとに試薬による最適な抽出条件を設定 することが望ましい。
また、 本発明における、 抗体を用いる微生物検出用試薬キットとは、 当 該検出方法を用いた検出用試薬キットに相当する。
例えば、 肺炎、 気管支炎、 髄膜炎などの原因菌として診断意義の高い Haemophi lus influenzaeの特異的抗体を取得する場合、 本菌の Ribosomal Protein L7/L12蛋白質のァミノ酸配列及ぴ DNA配列はデータベース等の記 載により公知でめる。 Haemophi lus influenzaeの Ribosomal Protein L7/L12のアミノ酸配列及び DNA配列を配列表配列番号: 1及ぴ 2に示す。
従って本菌の場合同様に Ribosomal Protein L7/L12蛋白質のァミノ酸配 列が公知である、 例えば配列表配列番号: 3及び 4に示す Hel icobacter miloriの同蛋白質などとのァミノ酸配列を比較しその相同性の低い部分に ついて 5〜30ァミノ酸の合成べプチドを合成しそのべプチドに対する Haemophi lus influenzae特異的なポリクローナル抗体あるいはモノクロー ナル抗体を作製することができる。
特にポリクローナル抗体の場合、 免疫した動物の抗血清を Protein A力 ラム等で精製し IgG 画分を取得した後、 さらに動物の免疫に用いた合成べ プチドによるァフィ二ティー精製を実施することが望ましい。
さらに Haemophi lus influenzae の Ribosomal Protein L7/L12 蛋白質の MA配列から N末端、 C末端の配列を元にした PCRプライマー、 例えば配列 表配列番号: 11 及び 12 に示す PCR プライマーを設計し、 その相同性を利 用して、 公知の方法に従い、 Haemophi lus influenzae の培養菌体より抽出 したゲノム DNAを材料として PCR法などにより増幅してくる DNA断片を取 得し、 その断片の DNA シー ク ェ ンス情報を解析する こ と によ り Haemophi lus influenzae の Ribosomal Protein L7/L12 蛋白質の全長遺伝 子を取得することができる。
取得した Haemophi lus influenzaeの Ribosomal Protein L7/L12遺伝子 は、 例えば GSTなどとフュージョ ン蛋白質遺伝子を構成し、 適当な発現用 プラスミ ドを用いて発現ベクターを構築後、 大腸菌等を形質転換して該蛋 白質を大量発現させうる。 形質転換した大腸菌を適当量培養し、 回収した 菌体破砕液を GSTを用いたァフィ二ティカラムで精製することにより、 Haemophi lus influenzaeの Ribosomal Protein L7/L12蛋白質と GST との フュージョ ン蛋白質が得られる。 この蛋白質をそのまま、 あるいは GST部 分をプロテアーゼなどにより切断後、 抗原蛋白質として公知の手法により、 複数のハイブリ ドーマを確立し、 Haemophi lus influenzae菌体あるレヽは菌 体破砕液または Haemophi lus influenzaeの Ribosomal Protein L7/L12蛋 白質に特異的な反応を示す抗体を選択することにより 目的の特異的モノク ローナル抗体を取得することも可能である。
また Haemophi lus influenzae と同様に呼吸器感染症原因菌として診断意 の局レヽ atreputococcus pneumoniae にっレ、て t> Ribosomal Protein L7/L12 蛋白質のアミノ酸配列及び DNA配列はデータベース等の記載により 公知であ 。 Streputococcus pneumoniae の Ribosomal Protein L7/L12 の ァミノ酸配列及び DNA配列を配列表配列番号: 5及び 6に示す。
従っ て本菌の場合 も Haemophi lus influenzae の場合 と 同様 に Streputococcus pneumoniae の Ribosomal Protein L7/L12蛋白質の DNA配 列から N 末端、 C 末端の配列を元にした PCR プライマー、 例えば配列表配 列番号: 13 及ぴ 14 に示す PCR プライマーを設計し、 以後全く同様の手法 を用いて Streputococcus pneumoniae 特異的なポリ クローナル抗体あるい はモノクローナル抗体を取得することが可能である。
streputococcus pneumoniae .特異的なモノクローナノレ抗体を産生するハ イブリ ドーマ AMSP- 2 を日本国通商産業省工業技術院生命工学工業技術研究 所に平成 11年 7月 28 日に受託番号: FERM BP- 6807 として国際寄託した。
また例えば淋病の原因菌であり STDの代表的な原因菌としてその診断意 義が認知されている Nei sseria gonorrhoeaeの場合、 その DNA、 アミノ酸 配列の大部分は最近米国オタラホマ大学で Neisseria gonorrhoeae ゲノム プロジェク トにおいて決定され、 該菌の DNA配列がィンターネッ ト上で公 開されている。
公知の Ribosomal Protein L7/L12蛋白質の DNA配列の一部配列を用いて 類似配列 DNA断片の有無を検索したところ Ribosomal Protein L7/L12遺伝 子に該当する DNA 配列が存在し、 その全 DNA配列情報を取得できた。 この Neisseria gonorrhoeae の Ribosomal Protein L7/L12 遺伝子の全塩基配歹【J 及び対応するアミノ酸配列を配列表配列番号: 7及び 8に示す。
従って Haemophi lus inf luenzae と Streputococcus pneumoniaeの場合と 同様に Nei sseria gonorrhoeaeの Ribosomal Protein L7/L12蛋白質の脆 配列から N末端、 C末端の配列を元にした PCRプライマー、 例えば配列表 配列番号: 15及ぴ 16に示す PCRプライマーを設計し、 以後全く同様の手 法により Neisseria gonorrhoeaeの Ribosomal Protein L7/L12蛋白質全部 あるいは一部を抗原とする Nei sseria gonorrhoeae特異的な目的の抗体を 得ることが可能である。
特【こ、 sseria gonorrhoeae 【こつレヽて fま同じ Nei sseria 属 こ属する Ne isseria meningitidi s の Ribosomal Protein L7/L12 の蛋白質遺伝子に 該当する遺伝子配列がインターネッ ト上で公開されており容易に入手可能 である。 この Neisseria meningi t idi s の Ribosomal Protein L7/L12這伝 子の全塩基配列および対応するアミノ酸配列を配列表配列番号: 9 及び 10 に不す。 こ こ で Ne isseria gonorrhoeae _と N_ei sseria meningitidi s の Ribosomal Protein L7/L12遺伝子の全塩基配列を比較するとアミノ酸配 列の異なる部分は N末端か ら 115 番 目 のア ミ ノ 酸が Neisseria gonorrhoeae はァラニンであるのに対して Nei sseria meningit idi s—の場合 はグルタミン酸であるただ 1 個のアミノ酸の違いだけである。 従って、 Nei sseria gonorrhoeae を種特異的に検出することカ できる Neisseria gonorrhoeae の Ribosomal Protein L7/L12 蛋 白 質抗体 は該 当 す る Ribosomal Protein L7/L12蛋白質の N末端から 115番目のァラニン及び それを含むァミノ酸領域をェピトープとして認識する抗体であると断定で さる。
本発明に基づき作製された抗体は、 公知の測定手法であるポリスチレン ラテツクス粒子上に該抗体を吸着させた凝集反応、 マイクロタイタープレ ート中で行う公知技術である ELISA法、 既存のィムノクロマト法、 着色粒 子もしくは発色能を有する粒子、 または酵素もしくは蛍光体でラベルされ た該抗体とともに capture抗体で被覆した磁気微粒子などを用いるサンド ィッチアッセィなど既知の全ての免疫測定手法に利用できる。
また本発明に基づき作製された抗体は全ての免疫測定手法において当該 抗原蛋白質を固相あるいは液相中で捕獲する capture抗体として機能しう ると同時にパーォキシダーゼやアル力リフォスファターゼなどの酵素を公 知の方法により修飾することによりいわゆる酵素標識抗体としても機能し うる。
[発明を実施するための最良の形態]
以下の例は本発明を具体的に説明するためのものであって本発明につい て何らその範囲を限定するものではない。 [実施例 1]
Haemophi lus influenzae 力 らの Ribosomal Protein L7/L12遺伝子のク ローニング
Haemophi lus influenzae ATCC933 (IID984) 株 (東京大学医科学研究所 より分譲、 購入) をチョコレート寒天培地上に適当量植菌した後、 C02 ィ ンキュベータ一中で 37°C、 C02 0. 5 %条件で 24時間培養する。 生育した コロニーを最終的に 5 X l09 CFU/ml 前後になるように TE Buffer (和光純薬 工業社製)に懸濁する。 このうち約 1. 5ml を微量遠心チューブに移し取り lOOOOrpmで 2分間遠心し、 上澄みを棄てる。 沈殿部分を 567 1 の TE Bufferに再懸濁する。 さらに 30 1 の 10%ドデシル硫酸ナトリウム(SDS) と 3 /x lの 20mg/ml Proteinase K溶液を加えて良く混合し、 37°Cで 1時間 インキュベートする。 次に 10%のセチルトリメチルアンモニゥムブロマイ ド /0. 7M NaCl溶液を 追添し、 よく混合した後 65°Cで 10分間ィンキ ュペートする。 次に、 体積比 24/1のクロ口ホルム- イソアミルアルコール 混合液を 700 1 加えよく攪拌する。 この溶液を微量遠心機で 12000rpm、 5分間 (4°Cコントロール下) 遠心処理した後、 水層画分を新しい微量遠心 管に移す。 そこに 0. 6倍量のィソプロパノールを加えチューブをよく振つ て DNAの沈殿を形成する。 白い DNA沈殿をガラス棒ですくつて 1mlの 70% エタノール (-20 °C冷却したもの) が入った別の微量遠心管に移す。
次に lOOOOrpm で 5分間遠心処理し、 上澄みを静かに除去した後さらに lmlの 70%エタノールを加えて再び 5分間遠心する。 再び上澄みを除去した 後沈殿を 100 /ζ 1·の TE Bufferに溶解し DNA溶液を得た。 このゲノム DNA 溶液の濃度を Molecular Cloning, A laboratory manual, 1989, Eds. Sambrook, J. , Fritsch, E. F. , and Maniati s, T. , Cold Spring harbor Laboratory Pressの E5, Spectrophotometric Determinat ion of the Amount of DNA or RNAに従って定量した。
このゲノム DNAのうち lOngを用いて PCR (polymerase chain reaction) を行った。 PCR は Taqポリメラーゼ (宝酒造社製、 コード R001A) を用い た。 酵素に添付のバッファーを 5 : 1、 酵素に添付の dNTP mixture 4 μ 1 と配列表配列表番号 : 11に示した合成オリゴヌクレオチド Α及び配列表配 列表番号: 12に示したォリ ゴヌクレオチド Bをそれぞれ 200pmol加え、 最 終容量 50 1 とした。
この混合物を、 TaKaRa PCR Thermal Cycler 480を用いて、 95°C 1分、 50°C 2分、 72°C 3分を 5サイクル行った後、 95°C 1分、 60°C 2分、 72°C 3分を 25サイクル行った。 この PCR産物の一部を 1. 5%ァガロースゲル中で 電気泳動を行い、 ェチジゥムブ口マイ ド (日本ジーン社製) にて染色後、 紫外線下で観察し、 約 400bpの cDNAが増幅されていることを確認した。 さ らに制限酵素 BamHI および Xholで切断処理後、 1. 5%ァガロースゲル中で 電気泳動を行いェチジゥムブ口マイ ド染色後約 370bp のバンドをゲルから 切り出して SuprecOl (宝酒造社製) で精製後、 市販のベクターである PGEX-4T-1 (Pharmacia 社製) に組み込んだ。 同ベクターは目的の遺伝子 断片を適当な制限酵素サイ トに組み込むことにより GST蛋白質とのフュー ジョン蛋白質を発現しうる目的分子の発現ベクターとして機能することが できる。
具体的には、 ベクター pGEX - 4T- 1 と先の DNAとをそのモル比が 1 : 3 とな るように混ぜ合わせて、 T4 DNAリガーゼ (Invitrogen社製) にてベクタ 一に DNAを組み込んだ。 DNAが組み込まれたベクター pGEX- 4T-1を大腸菌 One Shot Competent Cells ( Invitrogen社製) に遺伝子導入し、 アンピシ リン (Sigma 社製) を SO g/ml含む L_Broth (宝酒造社製) 半固型培地の プレートに蒔き、 12時間程度 37°Cに放置し、 現れてきたコロニーを無作為 選択し、 同濃度のアンピシリ ンを含む Broth 液体培地 2mlに植え付け、 8時間程度 37°Cで振盪培養し、 菌体を回収し、 ウイザ一ドミニプレップ
(Promega社製) を用いて添付の説明書に従ってプラスミ ドを分離し、 こ のプラスミ ドを制限酵素 BamHI/XhoI にて消化して、 約 370bp の DNAが切 り出されてくることで該 PCR産物が組み込まれていることを確認し、 確認 されたクローンについて、 組み込まれている DNAの塩基配列決定を行った。 挿入 DNA断片の塩基配列の決定は、 Applied Biosystems社製の蛍光シー タエンサーを用いて実施した。 シークェンスサンプルの調製は PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Appl ied Biosystems社製)を用いて行った。 0. 5ml 容のマイクロチューブに 9. 5 1 の反応ス トック液、 4. Ο μ 1 の 0. 8pmol/ 1 の T7プロモータープライマ 一(GIBC0 BRL 社製)および 6. 5 l の 0. 16 ^^/ 1 のシークェンス用铸型 DNAを加えて混合し、 100 ju l のミネラルオイルを重層後、 96°C30秒、 55°C 15秒および 60°C 4分を 1サイクルとする PCR増幅反応を 25サイクル行い、 4°Cで 5分間保温した。 反応後、 80 μ 1 の滅菌精製水を加えて攪拌し、 遠心 分離後、 その水層を 3回のフエノール ' クロ口ホルム抽出を行った。 100 μ 1 の水層に 10mlの 3M 酢酸ナトリゥム(pH5. 2) および 300 μ ΐ のェタノ ールを加えて攪拌後、 室温、 14,000rpm にて 15分間の遠心を行い沈殿を回 収した。 沈殿を 75%エタノールで 洗浄後、 真空下に 2分間静置して乾燥 させ、 シークェンス用サンプルとした。 シークェンスサンプルは、 4 μ 1 の 10mMの EDTAを含むホルムアミ ドに溶解して 90°C、 2分間で変性後、 氷中で 冷却してシークェンスに供した。
得られた 5個のクローンの内 1 個の配列に PCR に用いたプローブと配列 の相同性があ り さ らに他の微生物、 例えば Nei sseria gonorrhoeae の Ribosomal Protein L7/L12遺伝子配列と非常に類似した DNA配列が見い だされた。 その構造遺伝子部分の全塩基配列及び対応するアミノ酸配列は 配列表配列番号: 17 及び 18 のような配列であった。 この遺伝子断片は、 明ら力 こ Haemophi lus influenzae の Ribosomal Protein L7/L12 蛋白質の 遺伝子をコードするものである。
[実施例 2]
Haemophilus inf luenzae 力 らの Ribosomal Protein L7/L12遺 125子の大 腸菌での大量発現と精製
発現ベクターを組み込んだ大腸菌を LB培地中で 50ml 37°C 1晚培養した。 2倍濃度の TY培地 500mlを 37°Cで 1時間温めておいた。 1晚培養した大腸 菌液 50mlを 500ml の前述の培地に入れた。 1時間後、 100mM イソプロピル /3 - D (-) -チォガラタ トピラノシド(IPTG) 550 / 1 入れ 4時間培養後回収し、 250ml ずつ遠心チューブにいれて 7000rpm、 10分間遠心した。 上澄みを棄 てて 50mM トリ ス塩酸(Tris-HCl) pH7. 4、 25% スクロース(Sucrose)を含む Lysis バッファー 25mlずつに溶解した。
さらに、 10%ノニデッ ト P- 40 (NP_40) 1. 25ml , 1M MgCl2 125 1 を加え てプラスティックチューブに移した。 1分間 X 5回氷冷中で sonicationを 実施し、 12000rpm、 15分間遠心後上澄みを回収した。
次に、 リン酸緩衝生理食塩水(PBS)でコンディショユングしたダルタチォ ンァガロースカラムに前記の上澄み液を吸着させた。
次に、 20mM Tri s ノ ッファー pH7. 4、 4. 2mM MgCl2、 ImM ジチオスレィ ト ール(DTT)を含む洗浄液で力ラムを 2べッ ドボリユーム分洗浄した。 その後 5mM のグルタチオンを含む 50mM Tris バッファー pH9. 6 で溶出し、 分画し たフラクション中の蛋白質含有量を色素結合法 (ブラッ ドフォード法; Biorad社) で検出し、 メインフラクショ ンを取得した。 得られた精製 GST フュージョ ン Ribosoraal Protein L7/L12蛋白質の純度は電気泳動法により 確認したところ約 75%であり免疫源として充分な純度を確保できた。
[実施例 3]
Haemophilus influenzae の Ribosomal Protein L7/L12の蛋白質に対す るモノクローナル抗体の作製
まずマウスの免疫については Haemophi lus influenzae の GSTフュージ ヨ ン Ribosomal Protein L7/L 12蛋白質抗原 100 g を 200 / 1 の PBSに溶 解後フロイン 卜のコンプリー トアジュバン トを 200 μ 1 加え混合、 ェマル ジョン化した後 200 / l を腹腔内に注射した。
さらに、 2週間後、 4週間後、 6週間後に同様のェマルジヨ ン抗原を腹腔 内に注射し、 さらに 10週間後、 14週間後に 2倍濃度の抗原ェマルジヨ ン 液を腹腔内注射し最終免疫から 3 日後に脾臓を取り出し、 細胞融合に供し た。
無菌的に取り出したマウスの脾細胞 108個に対し骨髄腫細胞 2 X 107個を ガラスチューブに取り良く混合した後 1500rpm で 5分間遠心し上澄みを棄 て、 その後細胞をよく混合した。
細胞融合に使用した骨髄腫細胞は、 NS- 1系の細胞株を用い 10%ゥシ胎児 血清(FCS)を含む RPMI1640培地で培養し、 細胞融合の 2週間前から 0. 13mM のァザグァニン、 0. 5 / g/ml の MC- 210、 10%FCSを含む RPMI1640培地で 1 週間培養後、 さらに 10%FCSを含む RPMI1640 培地で 1週間培養したもの を用いた。 混合した細胞サンプルに 37°Cに保温した 50mlの RPMI1640培地 を 30ml加え 1500rpm で遠心、 上澄み除去後 37°Cに保温した 50%ポリェチ レンダリコールを lml加え激しく攪拌しながら 2分間処理後、 37°Cに保温 した 10mlの RPMI1640 培地を加え液を滅菌ピぺッ トで吸引、 排出しながら 約 5分間激しく攪拌混合した。
lOOOrpm で 5分間遠心、 上澄み除去後さらに 30ml の HAT培地を加え細胞 濃度が 5 X 106個/ ml になるように調整し攪拌均一化後、 96穴プレート型培 養プレートに 0. 1ml ずつ分注し 7%C02条件下、 37°Cで培養し、 1 日目、 1週 間目、 2週間目に HAT培地を 0. lml ずつ加えた。
次に目的の抗体を生産している細胞をスクリーユングするために ELISA 法による評価を実施した。 0. 05%のアジ化ソーダ含む PBS中に溶解した Haemophilus influenzaeの GSTフユ一ンョ ン Ribosomal Protein L7/L12 蛋白質及び GST蛋白質をそれぞれ lO /z g/ml濃度で希釈した液を ΙΟΟ μ Ι ず つ 96穴プレー トの別々に分注し 4°Cで 1晚吸着させた。 上澄み除去後、 1% 牛血清アルブミン溶液(PBS中) 200 μ 1 添加し室温で 1時間反応してプロッ キングした。 上澄み除去後洗浄液(T\veen20 0. 02% , PBS)で洗浄し、 その上 に融合細胞の培養液 100 l を加え室温で 2時間反応後上澄みを除去しさ らに洗浄液で洗浄した。 これに、 50ng/ml のペルォキシダーゼ標識ャギ抗 マウス IgG 抗体液を 100 /z l 加え室温、 1時間反応を実施し、 上澄みを除 去しさらに洗浄液で洗浄した後 TMB溶液(KPL社) を 100 // 1 ずつ加え室温 で 20分反応、 発色後 1Nの硫酸を 100 / l 添加して反応を停止し、 450nm の吸光を測定した。
この結果、 GSTフュージョン Ribosomal Protein L7/L12蛋白質にのみ反 応し GST蛋白質には反応しない陽性ゥエルが見いだされ Ribosomal
Protein L7/L12蛋白質に対する抗体が含まれていることが判明した。
そこで陽性ゥエル中の細胞をそれぞれ回収し 24穴プラスティックプレ一 ト中、 HAT 培地で培養した。 培養した融合培地を細胞数が約 20個/ ml にな るように HT培地で希釈し 50 /z l を、 HT培地に懸濁した 6週齢のマウス胸 腺細胞 106個と 96穴培養プレート中で混合後、 7%C02条件下、 37°Cで 2週 間培養した。 培養上澄み中の抗体活性を前述の ELISA法にて同様に検定 し、 Ribosomal Protein L7/L12蛋白質との反応陽性の細胞を回収した。 さらに、 同様の希釈検定、 クローユング操作を繰り返し、 ハイプリ ドー マ HIRB- 1〜5の計 5クローンを取得した。
. [実施例 4]
Haemophilus influenzae の Ribosomal Protein L7/L12蛋白質と反応す るモノクローナル抗体の Ne i sseria gonorrhoeaeおよび他の微生物との反 応試験
前述のようにして取得した陽性ハイプリ ドーマ細胞を用いて定法に従つ てモノクローナル抗体を生産回収した。
具体的には RPMI 1640培地 (10%FCS入り) を用いて継代培養した細胞を あらかじめ 2週間前に 0. 5ml のプリスタンを腹腔内に注射した Balb/Cマ ウスの腹腔内に 5 X 106個(PBS中) 注射し、 3週間後腹水を回収し、 その遠 心上澄みを取得した。
取得した抗体含有液を Protein Aカラム (5mlベッド, Pharmacia社) に 吸着させ、 PBSで 3ベッ ドボリューム洗浄し、 pH3のクェン酸バッファーで 溶出し、 抗体フラクショ ンを回収して各ハイプリ ドーマの生産するモノク ローナル抗体を得た。
この 5株のハイブリ ドーマ由来のモノクローナル抗体を用いて ELISA 法 により評価した。
抗体の評価にはサンドィッチアッセィ法を用い、 作製したモノクローナ ル抗体はパーォキシダーゼと化学的に結合させることにより酵素標識抗体 として使用した。
すなわち酵素標識は、 ホースラディッシュパーォキシダーゼ (Sigma グ レード VI) を用い結合には試薬 S-ァセチルチオ酢酸 N-ヒ ドロキシスクシ ンイミ ドを使用し Analytical Bio-chemistry 132(1983), 68-73 に述べら れている方法に従って行った。 ELISA 反応においては 0.05%のアジ化ソ一 ダ含む PBS中に溶解した市販の抗 Haemophilus influenzaeポリクローナ ル抗体 (Biodesign 社、 ゥサギ) を 10μ g/ml濃度で希釈した液を ΙΟΟμΙ ずつ 96穴プレートの別々に分注し 4°Cで 1晚吸着させた。
上澄み除去後、 1%牛血清アルブミン溶液(PBS中) 200//1 添加し室温で 1時間反応しブロッキングする。 上澄み除去後洗浄液 (Tween20 0.02%、 PBS)で洗浄し、 その上に各種微生物の培養液に 0.3 %濃度の Triton X- 100 により室温で 5分間抽出操作をほどこした抗原液を 100/zl を加え室温で 2時間反応後上澄みを除去し、 さらに洗浄液で洗浄後、 5 g/mlの各ペルォ キシダーゼ標識抗 Ribosomal Protein L7/L12 抗体液を 100 加え室温、 1時間反応を実施し、 上澄みを除去しさらに洗浄液で洗浄した後 ΤΜΒ溶液 (KPL社) を ΙΟΟμΙ ずつ加え室温で 20分反応、 発色後 1Nの硫酸を 100μ 1 添加して反応を停止し, 450nm の吸光を測定した。
その結果、 表 1に示すように酵素標識抗体としてハイプリ ドーマ HIRB - 2 由来のモノクローナル抗体を用いた場合、 試験した Haemophilus
influenzaeの全ての株を 106個/ ml の感度で検出すると同時に他の
Neisseria 属やその他の微生物について 108個/ mlの高濃度でも反応性を示 さず Ribosomal Protein L7/L12蛋白質に対するモノクローナル抗体を用い ることで Haemophilus influenzae特異的な反応性をもつ抗体を取得した ことが明確に確認できた。
[表 1]
106個/ ml検出結果
Haemophilus— inf luezae ATCC9327 +
Haemophilus inf luezae ATCC9334 + Haemophilus inf luezae ATCC9007 + Haemophilus inf luezae ATCC9332 +
Haemophilus inf luezae ATCC8142 +
Haemophilus inf luezae ATCC9833 +
108個 /ml検出結果
Neisseria menin^itides ATCC13090
Neisseria lactamica ATCC30011
Neisseria mucosa ATCC35611
Neisseria sicca ATCC9913
Branhamella catarrharis ATCC25240
Neisseria gonorrhoeae ATCC9793
Escherichia coli ATCC25922
Klebsiella Dneumoniae ATCC13883
(+ ; ポジティブ、 一 ;ネガティブ)
[実施例 5]
streptococcus pneumoniae 力 らの Ribosomal Protein L7/L12 遺 1Bナの クローニング、 同蛋白質の大腸菌での大量発現と精製および同蛋白質に対 するモノクローナル抗体の作製。
Streptococcus pneumoniae IID555株 (東京大学医科学研究所より分譲、 購入) を血液寒天培地上に適当量植菌した後、 インキュベータ一中、 37°C で 48 時間培養する。 生育したコロニーを最終的に 5Xl09CFU/ml 前後にな るように TE Buffer に懸濁する。 内約 1.5ml を微量遠心チューブに移し取 り lOOOOrpm で 2 分間遠心し、 上澄みを棄てる。 沈殿部分を 567 1 の TE Buffer に再懸濁する。 さ らに 30 の 10%SDS と 3 1 の 20mg/ml Proteinase K溶液を加えて良く混合し、 37°Cで 1時間インキュベートする。 次に 10%のセチルトリメチルアンモニゥムブロマイ ド /0.7M NaCl 溶液を 80/x l追添し、 よく混合した後 65°Cで 10分間インキュベートする。 次に、 体積比 24/1 のクロ口ホルム-ィ ソァミルアルコール混合液を 700μ 1加えよ く攪拌する。 この溶液を微量遠心機で 12000rpm、 5分間 (4°Cコン トロール 下) 遠心処理した後、 水層画分を新しい微量遠心管に移す。 そこに 0.6 倍 量のィソプロパノールを加えチューブをよく振って DNAの沈殿を形成する。 白い DNA沈殿をガラス棒ですくつて 1ml の 70%エタノール (- 20°C冷却した もの) が入った別の微量遠心管に移す。
次に lOOOOrpm で 5 分間遠心処理し、 上澄みを静かに除去した後さらに lml の 70%ェタ ノールを加えて再び 5分間遠心する。 再び上澄みを除去した 後沈殿を 100/i l の TE bufferに溶解し MA溶液を得た。 このゲノム DNA溶 液の 度を Molecular Cloning, A laboratory manual, 1989, Eds. Sambrook, J. , Fritsch, E. F. , and Maniatis, T. , Cold Spring harbor Laboratory Pr の E5, Spec tropho tome trie Determination of the Amount of DNA or RNAに従って定量した。
このゲノム DNAのうち 10ngを用いて PCRを行った。 PCRは Taqポリメラ ーゼ (宝酒造社製、 コード R001A) を用いた。 酵素に添付のバッファーを 5 μ 1, 酵素に添付の dNTP mixture 4μ 1 と配列表配列番号: 13に示した合成 オリゴヌク レオチ ド C および、 配列表配列番号: 14に示した合成オリゴヌ クレオチド Dをそれぞれ 200pmolを加え、 最終容量 50 1 とした。
この混合物を、 TaKaRa PCR Thermal Cycler 480 を用いて、 95°C 1 分、 50°C 2分、 72°C 3分を 5サイクル行った後、 95°C 1分、 60°C 2分、 72°C 3分を 25サイクル行った。 この PCR産物の一部を 1.5%ァガロースゲル中で 電気泳動を行い、 ェチジゥムブ口マイ ド (日本ジーン社製) にて染色後、 紫外線下で観察し、 約 400bp の cDNAが増幅されていることを確認した。 さ らに制限酵素 BamHIおよび Xholで切断処理後、 1.5%ァガロースゲル中で電 気泳動を行いェチジゥムブ口マイ ド染色後約 370bp のバンドをゲルから切 り出して SuprecOl (宝酒造社製) で精製後、 市販のベクターである pGEX- 6P-1 (Pharmacia 社製) に組み込んだ。 同ベクターは目的の遺伝子断片を 適当な制限酵素サイ トに組み込むことにより GST 蛋白質とのフュージョン 蛋白質を発現しうる目的分子の発現ベクターとして機能することができる。 具体的にはベクター pGEX- 6P- 1 と先の DNA とをそのモル比が 1:5 となるよ うに混ぜ合わせて、 T4 DNA リガ一ゼ (Invitrogen 社製) にてベクターに DNA を組み込んだ。 DNA が組み込まれたベクター pGEX- 6P- 1 を大腸菌 One Shot Competent Cells (Invitrogen 社製) に遺伝子導入し、 アンピシリン
(Sigma社製) を 50ii g/ml 含む L - Broth (宝酒造社製) 半固型培地のプレ ートに蒔き、 12時間程度 37°Cに放置し、 現れてきたコロニ一を無作為選択 し、 同濃度のアンピシリンを含む L- Broth液体培地 2ml に植え付け、 8 時 間程度 37°Cで振と う培養し、 菌体を回収し、 ウイザードミニプレップ
(Promega 社製) を用いて添付の説明書に従ってプラスミ ドを分離し、 こ のプラスミ ドを制限酵素 BamHI/XhoIにて消化して、 約 370bpの DNAが切り 出されてくることで該 PCR 産物が組み込まれていることを確認し、 確認さ れたクローンについて、 組み込まれている DNAの塩基配列決定を行った。 挿入 DNA断片の塩基配列の決定は、 Applied Biosystems社製の蛍光シー ク ェンサーを用いて実施 した。 シーク ェンスサ ンプルの調製は
PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems 社製) を用いて行った。 0.5ml 容のマイクロチューブに 9.5 1 の反応ス トツク液、 4.0/ l の 0.8ρπιο1/μ 1 の Τ7 プロモータープライマー (GIBC0 BRL社製) 及び 6.5/i 1 の 0.16 μ g/ μ 1 のシークェンス用铸型 ΜΑ を加えて混合し、 100 1 のミネラルオイルを重層後、 96°C 30 秒、 55°C15 秒おょぴ 60°C 4分を 1サイクルとする PCR増幅反応を 25サイクル行い、 4°Cで 5 分間保温した。 反応後、 80μ 1 の滅菌精製水を加えて攪拌し、 遠心 分離後、 その水層を 3 回のフエノール ' クロ口ホルム抽出を行った。 100 1 の水層に 10 1 の 3Μ酢酸ナトリ ウム (ρΗ5.2) および 300 // 1 のエタノー ルを加えて攪拌後、 室温、 14,000rpm にて 15 分間の遠心を行い沈殿を回収 した。 沈殿を 75%エタノールで洗浄後、 真空下に 2分間静置して乾燥させ、 シークェンス用サンプルと した。 シークェンスサンプルは、 4μ 1 の 10mM の EDTAを含むホルムアミ ドに溶解して 90°C、 2分間で変性後、 氷中で冷却 してシークェンスに供した。
得られた 7個のクローンの内 1 個の配列に PCR に用いたプローブと配列 の相同性があ り さ らに他の微生物、 例えば Nei sseria gonorrhoeae の Ribosomal Protein L7/L12遺伝子配列と非常に類似した DNA配列が見い だされた。 その構造遺伝子部分の全塩基配列及び対応するアミノ酸配列は 配列表配列番号: 19 及び 20 のような配列であった。 この遺伝子断片は、 明ら力 に Streptococcus pneumoniae の Ribosomal Protein L7/L12 蛋白質 の遺伝子をコードするものである。
発現ベクターを組み込んだ大腸菌を 2 倍濃度の YT 培地中で 50ml 37°C1 晚培養した。 2倍濃度の YT培地 450ml を 37°Cで 1 時間温めておいた。 1晚 培養した大腸菌培養液 50ml を 450ml の前述の培地に入れた。 37°C 1 時間 培養後、 500mMの IPTGを 100 μ 1入れ、 25°C 4時間培養後回収し、 250mlず つ遠心チューブにいれて 5000rpm、 20 分遠心した。 上澄みを棄てて 50mM Tri s-HCl pH7. 4、 25% Sucrose を含む Lysis バッファー 25ml ずつに 溶解した。
さらに 10% NP - 40 1. 25ml、 1M MgCl2 125 1 を加えてプラステイツクチ ユーブに移した。 1 分間 X 5 回氷冷中で sonicat ion を実施し、 12000rpm、 15分間遠心後上澄みを回収した。
次に PBS でコ ンディ ショ ニング したダルタチオンセファ ロース (Pharmacia 社製) カラムに前記の上澄み液を吸着させた。 次に PBS で力 ラムを 3べッ トポリユーム分洗浄した。 その後 10mMのダルタチオンを含む 50mM Tris-HCl 8. 0 で溶出し、 分画したフラクション中の蛋白質含有量を 色素結合法 (ブラッ ドフォード法; BioRad 社) で検出し、 メインフラクシ ョンを取得した。 メインフラクションを 3L PBSに対して 3回透析を行った。 得られた GST フュージョン Ribosomal Protein L7/L12 蛋白質の lmg/ml 溶液 10ml に 500mM Tris-HCl pH7. 0、 1. 5M NaCl、 lOmM EDTA, lOmM DTT を 含む Cleavage バッファ一 lml をカロえ、 さらに 2u/ μ 1 の PreSciss ion Protease (Pharmacia 社製) を 100 /i l 添加して 4°Cで反応させることによ り GST部分を Ribosomal Protein L7/L12蛋白質部分から切り離した。
次に PBS でコンディショニングしたグルタチオンセファロースカラムに 反応液を通し、 通過液を回収し、 さらに PBS を 1 べッ ドボリューム流し、 これも回収した。 取得した精製 Ribosomal Protein L7/L12蛋白質の純度は 電気泳動法により確認したところ約 90%であり免疫源として充分な純度を 確保できた。
ま マウスの免投につレヽては Streptococcus pneumoniae の Ribosomal Protein L7/L12蛋白質抗原 100 μ gを 200 1 の PBSに溶解後フロイントの コンプリ一トアジュバントを 200 1 加え混合、 ェマルジョン化した後 200 μ ΐ を腹腔内に注射した。 さらに 2週間後、 4週間後、 6週間後に同様のェ マルジヨン抗原を腹腔内に注射し、 さらに 10 週間後、 14 週間後に 2倍濃 度の抗原ェマルジヨン液を腹腔内注射し最終免疫から 3 日後に脾臓を取り 出し、 細胞融合に供した。
無菌的に取り出したマウスの脾細胞 108個に対し骨髄腫細胞 2 X 107個を ガラスチューブに取り良く混合した後 1500rpm で 5 分間遠心し上澄みを棄 て、 その後細胞をよく混合した。
細胞融合に使用した骨髄腫細胞は NS- 1 系の細胞株を用い を含 む RPMI1640培地で培養し、 細胞融合の 2週間前から 0. 13mMのァザグァニ ン、 0. 5 μ g/mlの MC- 210、 10%FCSを含む RPMI1640培地で 1週間培養後、 さ らに 10%FCS を含む RPMI1640培地で 1週間培養したものを用いた。 混合し た細胞サンプルに 37°Cに保温した 50ml の RPMI1640 培地を 30ml 加え 1500rpmで遠心、 上澄み除去後 37°Cに保温した 50%ポリエチレンダリコール を 1ml 加え激しく攪拌しながら 2 分間処理後、 37°Cに保温した 10ml の RPMI1640培地を加え液を滅菌ピぺッ トで吸引、 排出しながら約 5分間激 しく攪拌混合した。
lOOOrpmで 5分間遠心、 上澄み除去後さらに 30mlの HAT培地を加え細胞 濃度が 5 X 106個/ ml になるように調整し攪拌均一化後、 96穴プレート型培 養プレートに 0. 1mlずつ分注し 7%C02条件下、 37°Cで培養し、 1 日目、 1週 間目、 2週間目に HAT培地を 0. lmlずつ加えた。 次に目的の抗体を生産している細胞をスク リーニングするために ELISA 法による評価を実施した。 0. 05%のアジ化ソーダ含む PBS 中に溶解した Streptococcus pneumoniae の Ribosomal Protein L7/L12蛋白貧を 10 μ g/ml濃度に希釈した液を 100 /i lずつ 96穴プレートの別々に分注し 4°Cで 1 晚吸着させた。 上澄み除去後、 1%牛血清アルブミン溶液(PBS 中) 200 μ ΐ 添 加し室温で 1 時間反応しブロッキングする。 上澄み除去後洗浄液 (TWeen20 0. 02%、 PBS) で洗浄し、 その上に融合細胞の培養液 ΙΟΟ μ Ι を加え室温で 2 時間反応後上澄みを除去しさらに洗浄液で洗浄後、 50ng/ml のペルォキシ ダーゼ標識ャギ抗マウス IgG抗体液を ΙΟΟ μ Ι加え室温、 1 時間反応を実施 し、 上澄みを除去しさらに洗浄液で洗浄した後 ΤΜΒ 溶液(KPL 社)を 100 / 1 ずつ加え室温で 20分反応、 発色後 1Nの硫酸を 100 1添加して反応を停止 し、 450nmの吸光を測定した。
この結果 Ribosomal Protein L7/L12 蛋白質に反応する陽性ゥエルが見い だされ Ribosomal Protein L7/L12 蛋白質に対する抗体が含まれていること が判明した。
そこで陽性ゥエル中の細胞をそれぞれ回収し 24穴プラスティックプレ一 ト中、 HAT培地で培養した。 培養した融合培地を細胞数が約 20 個/ ml にな るように HT培地で希釈し を、 HT培地に懸濁した 6週齢のマウス胸腺 細胞 106個と 96穴培養プレート中で混合後、 7%C02条件下、 37°Cで 2週間培 養した。 培養上澄み中の抗体活性を前述の ELISA 法にて同様に検定 し、 Ribosomal Protein L7/L12蛋白質との反応陽性の細胞を回収した。 さらに同様の希釈検定、 クローユング操作を繰り返し、 ハイプリ ドーマ AMSP- 1〜4の計 4クローンを取得した。
[実施例 6]
Streptococcus pneumoniae の Ribosomal Protein L7/L12 蛋白質と反 応するモノクローナル抗体の Streptococcus pneumoniae及び他の微生物と の反応試験
前述のようにして取得した陽性ハイブリ ドーマ細胞を用いて定法にした がってモノクローナル抗体を生産回収した。
具体的には RPMI1640 培地(10%FCS 入り)を用いて継代培養した細胞を 25cm2培養フラスコ中で 2 X 105個/ ml、 3. 3 X 105個及び 5 X 105個/ ml程度に 無血清培地にて希釈し全容を 5ml とした。 7%C02、 37°Cで 3〜5 日間増殖さ せ、 細胞の増殖がみられたフラスコの内、 元の細胞数が最も少ないものを 選択し、 最終的に 2 X 105個/ ml希釈のものが 3〜4 日間で 2 X 106個/ mlに増 殖するようになるまで同様の操作を繰り返し無血清培地に馴化させた。 次 に細菌培養用 96穴プレート中でクローニングを行い、 増殖が早く抗体価の 高い細胞を選択した。 選択した細胞を 24 穴プレートで増殖させたものを 25cm2培養フラスコ中で 2 X 105個/ ml程度となるように無血清培地で希釈し 全容 10ml とした。 これを 7%C02、 37°Cで 3〜4 日間培養し 1 X 106個/ mlまで 増殖させた後、 75cm2培養フラスコにて同様に増殖させ 1 X 106個/ ml、 100ml を大量培養用ボトルに移した。 これに無血清培地 100ml を加え、 攪拌しな がら 37°Cで 2 日培養後、 無血清培地 200ml加えさらに 2 日培養した。 この 培養液を 4 本に分け各々 100ml の無血清培地を添加し、 2 日培養し各々 400ml の無血清培地を添加後さらに約 6 日培養した後、 培養液を回収し 10000rpml5 分の遠心により 目的とする抗体を含む培養上清を取得した。 培 養上清は 0. 1%アジ化ソーダ添加後 4°Cで保存した。 取得した抗体含有液 100mlを PBSで 5倍に希釈後 ProteinGカラム(5mlベッ ド, Pharmacia社)に 吸着させ、 PBSで 3ベッドボリューム洗浄し、 pH3 のクェン酸バッファーで 溶出し、 抗体フラクショ ンを回収して各ハイプリ ドーマの生産するモノク ローナル抗体を得た。 この 4 株のハイブリ ドーマ由来のモノクローナル抗 体は特表平 7-509565号公報に記載されている 0IA法により評価した。
すなわち 0IA 法は窒化珪素の薄膜層をもつシ リ コ ンウェハー上 に capture 用抗体を反応させた反応用基材を作製し、 これに抗原物質すな わち微生物の抽出液を一定時間反応させた後、 捕捉された抗原と酵素標識 した抗体 (増幅試薬) とをさらに反応させ、 最後に基質溶液を加えて生じ た薄膜沈殿による光干渉色の濃さにより、 抗原抗体反応を視覚的に判定で きる方法である。 2.8
作製したモノクローナル抗体は 0IA 法の窒化珪素の薄膜層をもつシリコ ンウェハー上に固相化する c apture 抗体として使用し、 評価した。 また detect 抗体としては参考例に記載した種々の微生物の Ribosomal Protein L7/L12 蛋白質と非特異的に反応しうる AMGC- 1 モノクローナル抗体をパー ォキシダ一ゼで酵素標識したものを使用した。 すなわち酵素標識はホース ラディッシュパーォキシダーゼ(Sigma グレード VI)を用い結合には試薬 S - ァセチルチオ酢酸 N -ヒ ドロキシスクシンイ ミ ドを使用し Analytical Bio - chemistryl32 (1983) , 68-73に述べられている方法に従って行った。
0IA反応においては 0. 05%アジ化ナトリゥムを含む PBS中のモノクローナ ル抗体を lO ^u g/ml濃度に 0. 1M HEPES pH8. 0で希釈した液を 50 1 ずつ窒 化珪素の薄膜層をもつシリコンウェハー上に添加し室温で 30分反応させた 後、 蒸留水で洗浄した後、 使用した。
その上に各種微生物の懸濁液に 0. 5%濃度の Triton X- 100 により室温で 5分間抽出操作をほどこした抗原液を 15 / l加え室温で 10分間反応後、 20 M g/rnl のペルォキシダーゼ標識 AMGC1抗体を 15 1加え室温 10分間反応を 実施し、 蒸留水で洗浄した後、 基質溶液 (KPL社) を 15 /x lずつ加え、 室温 で 5 分反応し、 蒸留水で洗浄後検出シグナルの濃さを光干渉色の強さとし て目視で判定した。
その結果表 2に示すように capture抗体としてハイブリ ドーマ AMSP- 2由 来のモ ノ ク ロ ーナル抗体を用いた場合、 試験した Streptococcus pneumoniae の全ての株を 10 個/ ml の感度で検出すると同時に他の微生物
8 一
について 10 個/ ml の咼濃度でも反応性を不さす Streptococcus pneumoniae の Ribosomal Protein L7/L12蛋白質に対するモノクローナル抗体を用いる ことで Streptococcus pneumoniae 特異的な反応性をもつ抗体を取得した ことが明確に確認できた。
Streptococcus pneumoniae 特異的なモノク口一ナル抗体を産生するハイ プリ ドーマ AMSP- 2 を日本国通商産業省工業技術院生命工学工業技術研究所 に平成 11年 7月 28 日に受託番号: FERM BP- 6807として国際寄託した。
[表 2 ] 106個/ ml検出結果
Streptococcus pneumoniae ATCC27336
Streptococcus pneumoniae IID554 +
Streptococcus pneumoniae I ID555 +
Streptococcus pneumoniae I ID556 +
Streptococcus pneumoniae IID557 +
Streptococcus pneumoniae IID558 +
Streptococcus pneumoniae IID559 +
Streptococcus pneumoniae IID1603 +
108個/ ml検出結果
Escherichia coli ATCC25922
Enterococcus laecali s ATCC19433
Ha_emoDhi lus influenzae ATCC10211
Klebs iel la pneumoniae ATCし 13883
Neisseri a gonorrhoeae IID821
Neisseria lactamica ATCC23970
Nei sseria meningi t idi s ATCC13090
Pseudomonas aeruginosa ATCC27853
GrouDB streptococcus ATCし 12386
Staphylococcus aureus ATCC25923
Streptococcs oyo且 enes ATCC19615
( + ; ポジティブ、 一 ;ネガティブ)
[実施例 7]
Nei sser i a gonorrhoeae 力 らの Ribosomal Protein L7/L12遺 15子のクロ 一二ング、 同蛋白質の大腸菌での大量発現、 精製および同蛋白質の対する モノクローナル抗体の作製。 Nei sseri a gonorrhoeae IID821 株 (東京大学医科学研究所より分譲、 購 入) をチョコレート寒天培地上に適当量植菌した後、 C02インキュベーター 中で 37°C、 C02 0. 5%条件で 24時間培養した。 生育したコロニーを最終的 に 5 X l09CFU/ml前後になるように TE Bufferに懸濁する。 そのうち約 1. 5 mlを微量遠心チューブに移し取り lOOOOrpmで 2分間遠心し、 上澄み を棄てた。 沈殿部分を 567 μ 1 の TE bufferに再懸濁した。 さらに、 30 j l の 10% SDS と 3 /i l の 20mg/ml Proteinase K溶液を加えて良く混合し、 37でで 1時間ィンキュベートした。
次に 10%のセチルトリメチルアンモニゥムブロマイ ド /0. 7M NaCl溶液 を 80 μ 1追添しよく混合した後 65°Cで 10分間ィンキュベートした。 次に、 体積比 24/1のクロ口ホルム-イソアミルアルコール混合液を 700 /z l 加え よく攪拌した。 この溶液を微量遠心機で 12000rpm、 5分間 (4°Cコントロー ル下) 遠心処理した後、 水層画分を新しい微量遠心管に移した。 そこに 0. 6 倍量のイソプロパノールを加えチューブをよく振って DNA の沈殿を形 成した。 白い DNA 沈殿をガラス棒ですくって lmlの 70%エタノール (- 20°Cに冷却したもの) が入った別の微量遠心管に移した。
次に、 lOOOOrpmで 5分間遠心処理し、 上澄みを静かに除去した後さらに lmlの 70%エタノールを加えて再び 5分間遠心した。 再び上澄みを除去した 後沈殿を ΙΟΟ μ Ι の TE bufferに溶解し DNA溶液を得た。 このゲノム DNA 溶液の濃度を Molecular Cloning, A laboratory manual, 1989, Eds.
Sambrook, J. , Fritsch, E. F., and Maniatis, T., Cold Spring harbor Laboratory Pressの E5, Spec trophotome trie Determination of the Amount of DNA or RNAに従って定量した。 このゲノム DNAのうち 10ngを 用いて PCRを行った。 PCRは Taq ポリメラーゼ (宝酒造社製、 コード R00 1A) を用いた。 酵素に添付のバッファーを 5 μ 1 、 酵素に添付の dNTP mixture 4 μ 1 と Haemophi lus influenzaeなどの囷-の Ri bosomal Protein L7/L12 DNA配列との類似性によりインターネッ ト情報 (オクラホマ大、 Neisseria gonorrhoeae ゲノムプロジェク ト公開 ゲノム DNA情報) より取 得した Nei sseria gonorrhoeae < Ribosomal Protein L7/L12 DNA配歹【』をも とに設計した配列表配列番号: 15に示した合成ヌクレオチド E及び配列表 配列番号: 16に示したオリゴヌクレオチド Fをプローブとしてそれぞれ 200 pmolを加え、 最終容量 50 μ 1 とした。
この混合物を、 TaKaRa PCR Thermal Cycler 480を用いて、 95°C 1分、 50°C 2分、 72°C 3分を 5サイクル行った後、 95°C 1分、 60°C 2分、 72°C 3分を 25サイクル行った。 この PCR産物の一部を 1. 5%ァガロースゲル中で 電気泳動を行い、 ェチジゥムブ口マイ ド (日本ジーン社製) にて染色後、 紫外線下で観察し、 約 400bp の cDNAが増幅されていることを確認した。 さらに制限酵素 BamHIおよび Xholで切断処理後、 1. 5%ァガロースゲル中 で電気泳動を行いェチジゥムブ口マイ ド染色後約 370bpのバンドをゲルか ら切り出して SuprecOl (宝酒造社製)で精製後、 市販のベクタ一である PGEX-4T- 1 (Pharmacia製)に組み込んだ。 具体的にはべクタ一 pGEX- 4T - 1 と先の DNAとをそのモル比が 1 : 3 となるように混ぜ合わせて、 T4 DNAリガ ーゼ (Invitrogen社製) にてベクターに DNAを組み込んだ。 DNAが組み込 まれたベクター pGEX - 4T- 1 を大腸菌 One Shot Competent Cells
( Invitrogen社製) に遺伝子導入し、 アンピシリ ン (Sigma社製) を 50 μ g/ml含む L- Broth (宝酒造社製) 半固型培地のプレートに蒔き、 12時間程 度 37でに放置し、 現れてきたコロニーを無作為選択し、 同濃度のアンピシ リ ンを含む L- Broth液体培地 2mlに植え付け、 8時間程度 37°Cで振盪培養 し、 菌体を回収し、 ウイザードミニプレップ (Promega社製) を用いて添 付の説明書に従ってプラスミ ドを分離し、 このプラスミ ドを制限酵素 BamHI/XhoIにて消化して、 約 370bp の DNAが切り出されてくることで該 PCR産物が組み込まれていることを確認し、 確認されたクローンについて、 組み込まれている DNAの塩基配列決定を行った。
挿入 DNA断片の塩基配列の決定は、 Appl ied Biosystems社製の蛍光シー タエンサーを用いて実施した。 シークェンスサンプルの調製は
PRISM, Ready React ion Dye Terminator Cycle Sequencing Kit (Appl ied Biosystems社製) を用いて行った。 0. 5ml 容のマイクロチューブに 9. 5 1の反応ス ト ック液、 4. 0 /i 1の 0. 8ρπιο1/ μ 1 の Τ7プロモータ一プライマー (GIBCO BRL 社製)および 6. 5 μ 1 の 0. 16 μ g/ μ 1のシークェンス用铸型 DNAを加えて混合し、 100 X 1のミネラルオイルを重層後、 96°C 30秒、 55°C 15秒および 60°C 4分を 1サイクルとする PCR増幅反応を 25サイクル行い、 4°Cで 5分間保温した。 反応後、 80 // 1の滅菌精製水を加えて撹梓し、 遠心 分離後、 その水層を 3回のフエノール ' クロ口ホルム抽出を行った。 100 /z 1の水層に 10 1の 3M 酢酸ナトリ ウム (pH5. 2) 及び 300 // 1のェタノ ールを加えて攪拌後、 室温、 14000rpm にて 15分間の遠心を行い沈殿を回 収した。 沈殿を 75%エタノールで洗浄後、 真空下に 2分間静置して乾燥さ せ、 シークェンス用サンプルと した。 シークェンスサンプルは、 4 μ 1の lOmMの EDTAを含むホルムアミ ドに溶解して 90°C、 2分間で変性後、 氷中で 冷却してシークェンスに供した。 得られた 5個のクローンの内 1個の配列 .に PCRに用いたプローブと配列の相同性がありさらに他の微生物、 例えば Haemophi lus influenzaeの Ribosomal Protein L7/L12遺伝子配歹' Jと非常 に類似した DNA配列が見いだされた。
その構造遺伝子部分の全塩基配列及び対応するアミノ酸配列は配列表配列 番号: 21及ぴ 22に示すような配列であった。 この遺伝子断片は明らかに Nei sseria gonorrhoeae の Ribosomal Protein L7/L12蛋白質の遺伝子をコ ードするものである。
このように構築した Nei sseria gonorrhoeaeの GSTフユ一ジョン
Ribosomal Protein L7/L12蛋白質発現ベクターを用いて実施例 2に記載の 方法と同様の方法により精製した Nei sseria gonorrhoeaeの GSTフュージ ヨン Ribosomal Protein L7/L12蛋白質を取得した。
さらに、 実 ¾fi例 3 a己載の方法【こ従レヽ Nei sseria gonorrhoeaeの
Ribosomal Protein L7/L12蛋白質に対するモノクローナル抗体に生産する ハイブリ ドーマ GCRB-3株を取得した。
[実施例 8]
Nei sseria gonorrhoeaeの Ribosomal Protein L7/L12蛋白質と反応する モノクローナル抗体の Ne isseria gonorrhoeae及び他の微生物との反応試 前述のようにして取得した陽性ハイブリ ドーマ細胞 GCRB- 3を用いて定法 にしたがってモノクローナル抗体を生産回収した。
具体的には、 RPMI1640 培地 (10% FCS 入り)を用いて継代培養した細胞 をあらかじめ 2 週間前に 0. 5ml のプリスタンを腹腔内に注射した Balb/C マウスの腹腔内に 5 X 106個(PBS中)注射し、 3週間後腹水を回収し、 その遠 心上澄みを取得した。 取得した抗体含有液を ProteinA カラム (5ml べッ ド, Pharmacia社製) に吸着させ、 PBS で 3ベッ ドボリューム洗浄し、 pHの クェン酸バッファーで溶出し、 抗体フラクションを回収してハイブリ ドー マの生産するモノクローナル抗体を得た。 この GCRB-3ハイブリ ドーマ由来 のモノクローナル抗体を用いて ELISA法により評価した。
抗体の評価にはサンドィッチアッセィ法を用い、 作製したモノクローナ ル抗体はパーォキシダーゼと化学的に結合させることにより酵素標識抗体 として使用した。 すなわち酵素標識はホースラディッシュパーォキシダー ゼ (Sigmaグレード V I ) を用い結合には試薬 S-ァセチルチオ酢酸 N - ヒ ドロキシスクシンイミ ドを使用し Analytical Bio - chemistryl32 (1983) , 68 - 73に述べられている方法に従って行った。 ELISA 反応においては
0. 05%のアジ化ソーダを含む PBS 中に溶解した市販の抗淋菌ポリクローナ ル抗体 (ヴアイロスタツ ト社、 ゥサギ) を 10 /x g/ml濃度で希釈した液を 100 μ 1 ずつ 96穴プレー トの別々に分注し 4°Cで 1晚吸着させた。
上澄み除去後、 1%牛血清アルブミン溶液(PBS中) 200 μ 1 添加し室温で 1時間反応しブロッキングした。 上澄み除去後洗浄液 (Tween20 0. 02%、 PBS)で洗浄し、 その上に各種微生物の培養液に 0. 3%濃度の Triton X- 100 により室温で 5分間抽出操作をほどこした抗原液を 100 /z l を加え室温で 2時間反応後上澄みを除去しさらに洗浄液で洗浄後、 5 g/nilのペルォキ シダーゼ標識抗 Ribosomal Protein L7/L12抗体液を 100 // 1 加え室温、 1 時間反応を実施し、 上澄みを除去しさらに洗浄液で洗浄した後 TMB溶液 (KPL社) を 100 / l ずつ加え室温で 20分反応、 発色後 1Nの硫酸を 100 μ ΐ 添加して反応を停止し、 450nm の吸光を測定した。
その結果、 表 3に示すように酵素標識抗体としてハイプリ ドーマ GCRB- 3 由来のモノクロ一ナル抗体を用いた場合、 試験した Neisseria
gonorrhoeaeの全ての株を 106個/ ml の感度で検出すると同時に他の Nei sseria 属やその他の微生物について 108個/ ml の高濃度でも反応性を 示さず Ribosomal Protein L7/L12蛋白質に対するモノクローナル抗体を用 いることで ei sseria gonorrhoeae特異的な反応性をもつ抗体を取得した ことが明確に確認できた。
[表 3]
106個/ ml 検出結果
Nei s seria gonorrhoeae ATCC9793 +
Neis seria gonorrhoeae ATCC19424 +
Neisseria gonorrhoeae ATCC27628 +
Nei sseria gonorrhoeae ATCC27629 +
Nei sseria gonorrhoeae ATCC27630 +
Nei s seria gonorrhoeae ATCC27631 +
Neisseria gonorrhoeae ATCC27632 +
Nei sseria gonorrhoeae ATCC27633 +
Neisseria gonorrhoeae ATCC35541 +
Neis seria gonorrhoeae ATCC35542 +
Neisseria g norrhoeae ATCC43069 +
Neisseria gonorrhoeae ATCC43070 +
Neisseria gonorrhoeae ATCC49226 +
108個/ ml 検出結果
Neisseria meningit ides ATCC 13090
Neisseria l actamica ATCC30011 Neisseria mucosa ATCC35611
Neisseria sicca ATCC9913
Branhamella catarrharis ATCC25240
Haemophilus influenzae ATCC10211
Escherichia coli ATCC25922
Klebsiella pneumoniae ATCC13883
(+ ; ポジティブ、 一 ;ネガティブ)
[実施例 9]
Neisseria 属特異的抗 Ribosomal Protein L7/L12 蛋白質モノクローナル 抗体の取得
Neisseria gonorrhoeae IID821 株 (東京大学医科学研究所より分譲、 購 入) をチョコレート寒天培地上に適当量植菌した後、 C02インキュベーター 中、 C02濃度 0.5%条件で 37°Cで 24時間培養する。 生育したコロニーを最終 的に 5XlO CFU/ml 前後になるように TE Buffer に懸濁する。 そのうち約 1.5ml を微量遠心チューブに移し取り lOOOOrpmで 2分間遠心し、 上澄みを 棄てる。 沈殿部分を 567μ1 の TE Buffer に再懸濁する。 さらに 30 1 の 10%SDS と 3μ1の 20mg/ml Proteinase K溶液を加えて良く混合し、 37°Cで 1時間インキュベートする。 次に 10%のセチルトリメチルアンモニゥム ブロマイ ド /0.7M NaCl溶液を 80μ1追添し、 よく混合した後 65°Cで 10分 間インキュベートする。 次に、 体積比 24/1 のクロ口ホルム-イソアミルァ ルコール混合液を 700 μ 1 加えよく攪拌する。 この溶液を微量遠心機で 12000rpra、 5 分間(4°Cコントロール下)遠心処理した後、 水層画分を新しい 微量遠心管に移す。 そこに 0.6 倍量のイソプロパノールを加えチューブを よく振って DNA の沈殿を形成する。 白い DNA 沈殿をガラス棒ですくつて lml の 70%エタノール (- 20°Cに冷却したもの) が入った別の微量遠心管に 移す。 次に lOOOOrpm で 5 分間遠心処理し、 上澄みを静かに除去した後さらに lmlの 70%ェタノールを加えて再び 5分間遠心する。 再び上澄みを除去した 後沈殿を ΙΟΟ μ Ιの TE Bufferに溶解し DNA溶液を得た。 このゲノム DNA溶 液 の濃度 を Mol ecular Cloning, A laboratory manual, 1989, Eds. Sambrook, J. , Fritsch, E. F. , and Maniati s, T. , Cold Spring harbor Laboratory Press の E5, Spectrophotometri c Determinat ion of the Amount of DNA or RNAに従って定量した。
このゲノム DMのうち 10ngを用いて PCRを行った。 PCRは Taqポリメラ ーゼ (宝酒造社製、 コード R001A) を用いた。 酵素に添付のバッファ一を 5 μ 1 , 酵素に添付の dNTP mixture 4 μ 1 と他菌の Ribosomal Protei n L7/L12 DNA 配列との類似性により、 インターネッ ト情報(ォクラホマ大、 Nei sser ia gonorrhoeae ゲノムプロジェク ト公開ゲノム DNA情報)より取得 し 7こ Ne i sseria gonorrhoeae の Ri bosomal Protein L7/L12 DNA 配列 ¾r b とに設計した配列表配列番号 : 15 に示した合成オリ ゴヌクレオチド E およ び、 配列表配列番号: 16 に示した合成オリゴヌクレオチド F をプローブと してそれぞれ 200pmolを加え、 最終容量 50 1 とした。
この混合物を、 TaKaRa PCR Thermal Cyc ler 480 を用いて、 95°C 1 分、 50°C 2分、 72°C 3 分を 5 サイクル行った後、 95°C 1 分、 60°C 2 分、 72°C 3分を 25サイクル行った。 この PCR産物の一部を 1. 5%ァガロースゲル中で 電気泳動を行い、 ェチジゥムブ口マイ ド (日本ジ一ン社製) にて染色後、 紫外線下で観察し、 約 400bpの cDNAが増幅されていることを確認した。 さ らに制限酵素 BamHIおよび Xholで切断処理後、 1. 5%ァガロースゲル中で電 気泳動を行いェチジゥムブ口マイ ド染色後約 370bp のバンドをゲルから切 り出して SuprecO l (宝酒造社製) で精製後、 市販のベクターである pGEX- 6P-1 ( Pharmac i a 社製) に組み込んだ。 同ベクターは目的の遺伝子断片を 適当な制限酵素サイ トに組み込むことにより GST 蛋白質とのフュージョン 蛋白質を発現しうる目的分子の発現ベクターと して機能することができる。 具体的にはベクター pGEX- 6P - 1 と先の DNA とをそのモル比が 1 : 5 となるよ うに混ぜ合わせて、 T4 DNA リガーゼ (Invi trogen 社製) にてベクターに DNA を組み込んだ。 DNA が組み込まれたベクター pGEX- 6P-1 を大腸菌 One Shot Competent Cells (Invitrogen 社製) に遺伝子導入し、 アンピシリ ン
(Sigma 社製) を 50/ g/ml 含む L-Broth (宝酒造社製) 半固型培地のプレ ートに蒔き、 12 時間程度 37°Cに放置し、 現れてきたコロニーを無作為選択 し、 同濃度のアンピシリ ンを含む L- Broth 液体培地 2ml に植え付け、 8 時 間程度 37°Cで振と う培養し、 菌体を回収し、 ウイザー ドミニプレップ
(Promega 社製) を用いて添付の説明書に従ってプラスミ ドを分離し、 こ のプラスミ ドを制限酵素 BamHI/XhoIにて消化して、 約 370bpの MAが切り 出されてく ることで該 PCR 産物が組み込まれていることを確認し、 確認さ れたクローンについて、 組み込まれている DNAの塩基配列決定を行った。 挿入 DNA 断片の塩基配列の決定は、 Applied Biosystems 社製の蛍光シー タ エンサーを用いて実施 した。 シーク ェンスサ ンプルの調製は
PRISM, Ready Reaction Dye Terminator し ycle Sequencing Kit (Applied Biosystems 社製)を用いて行った。 0.5ml 容のマイクロチューブに 9.5 μ 1 の反応ス トツク液、 4.0 1 の 0.8ρπιο1/μ1 の T7 プロモータープライマー (GIBC0 BRL社製) 及び 6.5μ1 の 0.16μ§/μ1 のシークェンス用铸型 DNA を加えて混合し、 100 / l のミネラルオイルを重層後、 96°C 30秒、 55°C 15 秒及ぴ 60°C 4分を 1サイクルとする PCR増幅反応を 25サイクル行い、 4°C で 5分間保温した。 反応後、 80/ 1の滅菌精製水を加えて攪拌し、 遠心分離 後、 その水層を 3 回のフエノール · クロ口ホルム抽出を行った。 100 μ 1 の 水層に ΙΟμΙ の 3Μ酢酸ナトリ ウム (ρΗ5.2) および 300 μ 1 のエタノールを 加えて攪拌後、 室温、 14000rpinにて 15分間の遠心を行い沈殿を回収した。 沈殿を 75%エタノールで洗浄後、 真空下に 2 分間静置して乾燥させ、 シー クエンス用サンプルと した。 シークェンスサンプルは、 4μ 1 の 10mM の
EDTA を含むホルムアミ ドに溶解して 90°C、 2 分間で変性後、 氷中で冷却し てシークェンスに供した。
得られた 4個のクローンの内 1 個の配列に PCR に用いたプローブと配列 の相同性があ り さ らに他の微生物、 例えば Haemophilus influenzae の Ribosomal Protein L7/L12遺伝子配列と非常に類似した DNA配列が見い だされた。 その構造遺伝子部分の全塩基配列及び対応するアミノ酸配列は 配列表配列番号: 21 及び: 22 のような配列であった。 この遺伝子断片は、 明ら力 こ Nei sseria gonorrhoeae の Ribosomal Protein L7/L12 蛋白質の 遺伝子をコードするものである。
発現ベクターを組み込んだ大腸菌を 2 倍濃度の YT 培地中で 50ml 37°C 1 晚培養した。 2倍濃度の YT培地 450ml を 37°Cで 1時間温めておいた。 1晚 培養した大腸菌培養液 50ml を 450ml の前述の培地に入れた。 37°C1 時間培 養後、 500mMの IPTGを 100 // 1入れ、 25°C 4時間培養後回収し、 250mlずつ 遠心チューブにいれて 5000rpm、 20 分遠心 した。 上澄みを棄てて 50mM Tri s-HCl pH7. 4、 25%Sucrose を含む Lysi s ノ ッファー 25mlずつに溶 解した。
さらに 10% NP- 40 1. 25ml、 1M MgCl2 125 1 を加えてプラステイツクチ ユーブに移した。 1 分間 X 5 回氷冷中で sonication を実施し、 12000rpm、 15分間遠心後上澄みを回収した。
次に PBS でコ ンディ シ ョ ニングしたダルタチオンセファ ロース (Pharmacia 社製)カラムに前記の上澄み液を吸着させた。 次に PBS でカラ ムを 3 ベッ トポリユーム分洗浄した。 その後 10mM のダルタチオンを含む 50mM Tris-HCl 8. 0 で溶出し、 分画したフラクショ ン中の蛋白質含有量を 色素結合法 (ブラッ ドフォード法 ; BioRad 社) で検出し、 メインフラクシ ョンを取得した。 メインフラクションを 3L PBSに対して 3回透析を行った。 得られた GST フュージョン Ribosomal Protein L7/L12 蛋白質の lmg/ml 溶液 10ml に 500mM Tri s-HCl pH7. 0、 1. 5M NaCl、 lOmM EDTA、 lOmM DTT を 含む Cleavage バッファー lml をカロえ、 さ らに 2u/ 1 の PreScission Protease (Pharmacia 社製) を 100 // 1 添加して 4°Cで反応させることによ り GST部分を Ribosomal Protein L7/L12蛋白質部分から切り離した。
次に PBS でコンディショニングしたグルタチオンセファロ一スカラムに 反応液を通し、 通過液を回収し、 さらに PBS を 1 べッ ドボリユーム流し、 これも回収した。 取得した精製 Ribosomal Protein L7/L12 の純度は電気泳 動法により確認したところ約 90%であり免疫源と して充分な純度を確保で きた。
まずマ ウス の免疫につレヽては Neisseria gonorrhoeae の Ribosomal Protein L7/L12蛋白質抗原 100 /z gを 200 μ 1 の PBS に溶解後フロイン トの コンプリ一トアジュバントを 200 ; l加え混合、 ェマルジョン化した後 200 β ϊ を腹腔内に注射した。 さらに 2週間後、 4週間後、 6週間後に同様のェ マルジヨ ン抗原を腹腔内に注射し、 さらに 10 週間後、 14週間後に 2 倍濃 度の抗原ェマルジヨ ン液を腹腔内注射し最終免疫から 3 日後に脾臓を取り 出し、 細胞融合に供した。
無菌的に取り出したマウスの脾細胞 108個に対し骨髄腫細胞 2 X 107個を ガラスチューブに取り良く混合した後 1500rpm で 5 分間遠心し上澄みを棄 て、 その後細胞をよく混合した。
細胞融合に使用した骨髄腫細胞は NS- 1 系の細胞株を用い 1096FCS を含 む RPMI1640培地で培養し、 細胞融合の 2週間前から 0. 13mMのァザグァニ ン、 0. S ii g/ml の MC- 210、 10%FCSを含む RPMI1640培地で 1週間培養後、 さ らに 10%FCS を含む RPMI1640培地で 1 週間培養したものを用いた。 混合し た細胞サンプルに 37°Cに保温した 50ml の RPMI1640 培地を 30ml 加え 1500rpmで遠心、 上澄み除去後 37°Cに保温した 50%ポリエチレングリコール を 1ml 加え激しく攪拌しながら 2 分間処理後、 37°Cに保温した 10ml の RPMI1640培地を加え液を滅菌ピぺッ トで吸引、 排出しながら約 5分間激 しく攪拌混合した。
lOOOrpmで 5分間遠心、 上澄み除去後さらに 30ml の HAT培地を加え細胞 濃度が 5 X 106個/ ml になるように調整し攪拌均一化後、 96穴プレート型培 養プレートに 0. lmlずつ分注し 7%C02条件下、 37°Cで培養し、 1 日目、 1週 間目、 2週間目に HAT培地を 0. lmlずつ加えた。
次に目的の抗体を生産している細胞をスクリ一二ングするために ELISA 法による評価を実施した。 0. 05%のアジ化ソーダ含む PBS 中に溶解した Neisseria gonorrhoeae の Ribosomal Protein L7/L12 蛋白質 10 μ g/ml 濃度で希釈した液を ΙΟΟ μ Ιずつ 96穴プレートの別々に分注し 4°Cで 1晚吸 着させた。 上澄み除去後、 1%牛血清アルブミン溶液(PBS 中) 200 ^ 1 添加し 室温で 1 時間反応しブロッキングする。 上澄み除去後洗浄液 (Tween20 0. 02¾、 PBS) で洗浄し、 その上に融合細胞の培養液 100 1 を加え室温で 2 時間反応後上澄みを除去しさらに洗浄液で洗浄後、 50ng/ml のペルォキシ ダーゼ標識ャギ抗マウス IgG抗体液を 100 / 1加え室温、 1 時間反応を実施 し、 上澄みを除去しさらに洗浄液で洗浄した後 ΤΜΒ溶液(KPL社)を ΙΟΟ μ Ι ずつ加え室温で 20分反応、 発色後 1Nの硫酸を 100 1添加して反応を停止 し、 450nmの吸光を測定した。
この結果 Ribosomal Protein L7/L12蛋白質に反応する陽性ゥエルが見い だされ Ribosomal Protein L7/L12蛋白質に対する抗体が含まれていること が判明した。
そこで陽性ゥエル中の細胞をそれぞれ回収し 24穴プラステイツクプレ一 ト中、 HAT培地で培養した。 培養した融合培地を細胞数が約 20個/ ml にな るように HT培地で希釈し 50 μ 1を、 ΗΤ培地に懸濁した 6週齢のマウス胸腺 細胞 106個と 96穴培養プレート中で混合後、 7%C02条件下、 37°Cで 2週間培 養した。 培養上澄み中の抗体活性を前述の ELISA 法にて同様に検定 し、 Ribosomal Protein L7/L12蛋白質との反応陽性の細胞を回収した。 さらに同様の希釈検定、 クローニング操作を操り返し、 ハイプリ ドーマ AMGC- 5〜8の計 4クローンを取得した。
前述のようにして取得した陽性ハイプリ ドーマ細胞を用いて定法にした がってモノクローナル抗体を生産回収した。
具体的には RPMI1640 培地(10%FCS 入り)を用いて継代培養した細胞を 25cm2培養フラスコ中で 2 105個 1、 3. 3 X 105個及び 5 X 105個/ ml 程度に 無血清培地にて希釈し全容を 5ml とした。 7%C02、 37°Cで 3〜5 日間増殖さ せ、 細胞の増殖がみられたフラスコの内、 元の細胞数が最も少ないものを 選択し、 最終的に 2 X 105個/ ml希釈のものが 3〜4 日間で 2 X 106個/ mlに増 殖するようになるまで同様の操作を繰り返し無血清培地に馴化させた。 次 に細菌培養用 96穴プレート中でクローニングを行い、 増殖が早く抗体価の 高い細胞を選択した。 選択した細胞を 24 穴プレートで増殖させたものを 25cm2培養フラスコ中で 2 X 105個/ ml程度となるように無血清培地で希釈し 全容 10ml とした。 これを 7%C02、 37°Cで 3〜4 日間培養し 1 X 106個/ ralまで 増殖させた後、 75cm2培養フラスコにて同様に増殖させ 1 X 106個 /ml、 100ml を大量培養用ボトルに移した。 これに無血清培地 100ml を加え、 攪拌しな がら 37°Cで 2 日培養後、 無血清培地 200ml加えさらに 2 日培養した。 この 培養液を 4 本に分け各々 100ml の無血清培地を添加し、 2 日培養し各々 400ml の無血清培地を添加後さらに約 6 日培養した後、 培養液を回収し 10000rpml5 分の遠心により 目的とする抗体を含む培養上清を取得した。 培 養上清は 0. 1%アジ化ソ一ダ添加後 4°Cで保存した。 取得した抗体含有液 100mlを PBS で 5倍に希釈後 ProteinGカラム (5mlベッ ド、 Pharmacia社) に吸着させ、 PBSで 3べッドボリユーム洗浄し、 pH3のクェン酸バッファー で溶出し、 抗体フラクショ ンを回収して各ハイプリ ドーマの生産するモノ ク口一ナル抗体を得た。
この 4株のハイブリ ドーマ由来のモノクローナル抗体は特表平 7-509565 号公報に記載されている 0IA法により評価した。
すなわち 0IA 法は窒化珪素の薄膜層をもつシ リ コ ンウェハー上 に capture 用抗体を反応させた反応用基材を作製し、 これに抗原物質すな わち微生物の抽出液を一定時間反応させた後、 捕捉された抗原と酵素標識 した抗体 (増幅試薬) とをさらに反応させ、 最後に基質溶液を加えて生じ た薄膜沈殿による光干渉色の濃さにより、 抗原抗体反応を視覚的に判定で きる方法である。
作製したモノクローナル抗体は 0IA 法の窒化珪素の薄膜層をもつシリコ ンウェハー上に固相化する capture抗体として使用した。 また detect抗体 としては参考例に記載した種々の微生物の Ribosomal Protein L7/L12蛋白 質と非特異的に反応しうる AMGC- 1モノクローナル抗体をパーォキシダーゼ で酵素標識したものを使用した。 すなわち酵素標識はホースラディッシュ パーォキシダーゼ(Sigma グレー ド VI)を用い結合には試薬 S-ァセチルチオ 酢酸 N- ヒ ド ロ キ シ ス ク シ ンイ ミ ド を使用 し Analytical Bio- chemistryl32 (1983) , 68-73に述べられている方法に従って行った。
0ΙΑ反応においては 0. 05%アジ化ナトリゥムを含む PBS中のモノクローナ ル抗体を lOiz g/ml濃度に 0.1M HEPES pH8.0 で希釈した液を 50// 1ずつ窒 化珪素の薄膜層をもつシリコンウェハー上に添加し室温で 30分反応させた 後、 蒸留水で洗浄した後、 使用した。
その上に各種微生物の懸濁液に 0.5%濃度の Triton X- 100 により室温で 5分間抽出操作をほどこした抗原液を 15 μ ΐ加え室温で 10分間反応後、 20 u g/mlのペルォキシダーゼ標識 AMGC1を 15/ 1加え室温 10分間反応を実施 し、 蒸留水で洗浄した後、 基質溶液 (KPL社) を 15 1ずつ加え、 室温で 5 分反応し、 蒸留水で洗浄後検出シグナルの濃さを光干渉色の強さとして目 視で判定した。
その結果表 4に示すように capture抗体としてハイブリ ドーマ AMGC-8由 来のモノ ク ローナル抗体を用いた場合、 108個/ ml の菌濃度で試験した Neisseria 属の全ての株を検出すると同時に他の微生物については反応性 を示さず、 Neisseria 属の Ribosomal Protein L7/L12蛋白質に対するモノ クローナル抗体を用いることで Neisseria 属特異的な反応性をもつ抗体を 取得したことが明確に確認できた。
[表 4]
10 個/ ml検出結果
Neisseria gonorrhoeae IID821 +
Neisseria lactamica ATし C23970 +
Neisseria meningitidis ATCし 13090 +
Escherichia col i ATCC25922
Enterococcus faecalis ATCC19433
Haemophilus influenzae ATCC10211
Klebsiella pneumoniae ATCC13883
Pseudomonas aeruginosa ATCC27853 GroupB streptococcus ATCC12386
Staphylococcus aureus ATCC25923
Streptococcus pneumoniae ATCC27336
Stre tococcus pyogenes ATCC19615
( + ; ポジティブ、 一 ;ネガティブ)
[実施例 10]
Ribosomal Protein L7/L12 蛋白質固定化ァフィ二ティカラムを用いた Haemophi lus influenzae Ribosomal Protein L7/L12 蛋白質と特異的に反 応するポリクローナル抗体の取得。
0. 5%濃度の Triton X- 100 で処理した Haemophi lus influenzae 菌体抽出 液の遠心上清を抗原と して使用した。 抗原 100 /z g を含む生理食塩水溶液約 1. 2ml にフロイントのアジュバンド 1. 5ml を加えェマルジョン化した後、 4 匹の SPF Japanese Whi te Rabbitに皮下注射し免疫した。 2週間おきに 5〜 6回免疫し、 抗体価を確認した。
抗体価の確認は ELISA法により実施した。 0. 05%のアジ化ソーダ含む PBS 中に溶解した Haemophi lus influenzae の Ribosomal Protein L7/L12 蛋 白質を 10 g/ml 濃度に希釈した液を ΙΟΟ μ Ι ずつ 96 穴プレートに分注し 4°Cで 1晚吸着させた。 上澄み除去後、 1%牛血清アルブミ ン溶液(PBS中) 200 n 1 添加し室温で 1 時間反応しブロッキングする。 上澄み除去後洗浄液 (0. 02% Tween20 , PBS)で洗浄し、 その上に正常ゥサギ血清と免疫後のゥサ ギ抗血清を段階希釈したもの 100 // 1 を加え室温で 2時間反応後、 上澄みを 除去しさらに洗浄液で洗浄後、 50ng/ml のペルォキシダーゼ標識抗ラビッ ト IgG抗体液を lOO ju l加え室温、 1時間反応を実施し、 上澄みを除去しさ らに洗浄液で洗浄した後 0PD溶液(Sigma社)を 100 μ 1ずつ加え室温で 20分 反応、 発色後 1Nの硫酸を 100 μ 1添加して反応を停止し, 492mnの吸光を測 定した。
抗体価上昇を確認できたものにつき、 大量採血を実施した。 耳動脈から 血液をガラス製遠心管に採取し、 37°C 1 時間放置後、 4°C —晚静置した。 その後 3000rpm 5分間遠心し、 上清を回収した。
得られた抗血清 4ロッ トは 4°Cで保存した。
次 に Haemo hi lus influenzae 及 ぴ ei sseria gonorrhoeae の Ribosomal Protein L7/L12 蛋白質を固定化したァフィ二ティカラムを調 製した。 カラムは HiTrap NHS-act ivated ( lml , Pharmacia社製) を使用し た。 ImM HC1 6ml でカ ラ ムを置換した後、 直ちに lmg/ml に調製し た Ri bosomal Protein L7/L12蛋白質の PBS溶液 1ml を注入し 25°Cで 15分 放置、 これを 5 回繰り返し、 Ribosomal Protein L7/L12蛋白質の PBS溶液 計 5ml をカラムに注入した。 その後、 ブロッキング試薬と して Buffer A (0. 5Mエタノールァミン、 0. 5M NaCl、 pH8. 3)を 6ml、 Buf f er B (0. 1M酢酸、 0. 5M NaCK pH4)を 6ml、 Buff er A 6ml を注入し、 25°C 15分放置後、 さらに Buffer Bを 6ml、 Buffer Aを 6ml、 Buffer Bを 6ml流した。 その後 PBS6ml で平衡化した。
この Haemophi lus influenzae の Ribosomal Protein L7/L12 蛋白質固定 化ァフィニテイカラムを使用して、 Haemophi lus influenzae の Triton X - 100 処理した菌体の上清を抗原と して得られた抗血清中のポリクローナル 抗体の精製を行った。 まず該抗血清を PBSで 5倍に希釈し、 0. 45 μ πιのフィ ノレ'タ ー を 通 し た 後 、 流 速 0. 5ml/min で Haemophi lus influenzae の Ribosomal Protein L7/L12 蛋白質固定化カラムに吸着させた。 その後 0. 1M ダリ シン pH2. 1 でカラムから溶出し、 直ちに 1M Tri s-HCl pH9. 0で中 和した後、 抗体価測定法と同様の ELISA 法により 目的とする抗体の溶出画 分を回収した。 次にこの画分を PBS で平衡化した Nei sseria gonorrhoeae の Ribosomal Protein L7/L12蛋白質固定化ァフィ二ティカラムを通過させ、 Neisseria gonorrhoeae の Ribosomal Protein L //L1 蛋白貧に反 、する饥 体を吸収除去させ非吸着の通過画分を回収した。
こう して精製したポリクローナル抗体は実施例 6 と同様に 0IA 法により 評価した。
精製した抗体は 0IA法の capture抗体として使用した。 また detect抗体 としては参考例に記載した AMGC - 1 モノクローナル抗体をパーォキシダーゼ で酵素標識したものを使用した。 酵素標識はホースラディッシュパーォキ シダーゼ(Sigma グレード VI)を用い結合には試薬 S-ァセチルチオ酢酸 N- ヒ ド ロ キ シス ク シ ンイ ミ ドを使用 し Analytical Bio- chemistryl32 (1983), 68-73に述べられている方法に従って行った。
0IA反応においては 0.05%アジ化ナトリゥムを含む PBS中の精製ポリク口 ーナル抗体を 10 zg/ml濃度に 0.1M HEPES pH8.0 で希釈した液を 50^1ず っシリコンウェハー上に添加し室温で 30分反応させた後、 蒸留水で洗浄し た後、 使用した。
その上に各種微生物の懸濁液に 0.5%濃度の Triton X- 100 により室温で 5分間抽出操作をほどこした抗原液を 15 μΐ を加え室温で 10分間反応後、 20^g/mlのペルォキシダーゼ標識 AMGC1を 15μ 1加え室温 10分間反応を実 施し、 蒸留水で洗浄した後、 基質溶液 (KPL社) を 15μ1ずつ加え、 室温で 5分反応し、 蒸留水で洗浄後青色の濃さを目視で判定した。
その結果表 5 に示すように capture抗体として APHI2-2 の精製ポリク口 ーナル抗体を用いた場合、 108個/ ml の菌濃度で試験した Haemophilus influenzae を検出する と 同時に他の微生物について反応性を示さ ず、 Ribosomal Protein L7/L12 蛋白質固定化ァフィ二ティカラムで精製し たポリク口一ナル抗体を用いることで Haemophilus influenzae特異的な反 応性をもつ抗体を取得したことが明確に確認できた。
[表 5]
108個/ ml検出結果
Haemophilus influenzae ATCC10211 + jcscherichia coll ATCC25922
Enterococcus f aecalis_ ATCC19433
Klebsiella pneumoniae ATCC13883 Nei sseria gonorrhoeae IID821
Neisseria lactamica ATCC23970
Ne isseria meningitidis ATCC13090
Pseudomonas aeruginosa ATCC27853
GroupB Stre tococcus ATCC12386
Staphylococcus aureus ATCC25923
Streptococcus pneumoniae ATCC27336
Streptococcus pyogenes ATCC19615
( + ; ポジティブ、 一 ; ネガティブ)
[参考例 1]
各種の微生物の Ribosomal Protein L7/L12蛋白質と非特異的に反応する モノクローナル抗体の取得。
オプティカルィムノアツセィゃ ELISA での微生物検出の際、 一般的に は capture抗体と detect用標識抗体で抗原をはさんで検出するいわゆるサ ンドィッチアッセィ法がその検出感度の高さから特に有用であるが、 その 場合対象微生物由来の抗原物質と特異的に反応する抗体が必要であると同 時にその特異的抗体とは異なる抗原ェピトープを認識するもう 1種の抗体 が必要である。
種々の微生物由来の Ribosomal Protein L7/L12 蛋白質と非特異的に反応 する抗体は、 Ribosomal Protein L7/L12 蛋白質と特異的に反応する抗体と のサンドイッチアツセィを構成しうる抗体と して非常に有用である。
幸い Ribosomal Protein L7/L12 蛋白質は種々の微生物でアミノ酸配列が 相同である領域が存在するため、 ここでは、 Nei sseria gonorrhoeae から 種々の微生物の Ribosomal Protein L7/L12 蛋白質と交差反応するモノク口 —ナル抗体の取得を試み、 一つの微生物から取得した特異性のない 抗 Ribosomal Protein L7/L12 蛋白質抗体を種々の微生物のサンドイツチア ッセィに共通して利用することが可能であることを見出した。 まず、 Neisseria gonorrhoeae から Ribosomal Protein L7/L12遺伝子を クローユングし、 同蛋白質の大腸菌での大量発現、 精製および同蛋白質の 対するモノクローナル抗体を作製した。
Nei sseria gonorrhoeae I ID821 株 (東京大学医科学研究所より分譲、 購 入) をチョコレート寒天培地上に適当量植菌した後、 C02インキュベータ一 中で 37°C、 C02 0. 5%条件で 24 時間培養する。 生育したコロニーを最終的 に 5 X l09CFU/ml 前後になるように TE Buffer に懸濁する。 内約 1. 5ml を微量遠心チューブに移し取り lOOOOrpmで 2分間遠心し、 上澄みを棄てる。 沈殿部分を 567 ju 1 の TE Bufferに再懸濁する。 さらに 30 μ 1 の 10%SDS と 3 // 1 の 20mg/ml Proteinase K溶液を加えて良く混合し、 37°Cで 1 時間ィ ンキュベートする。 次に 10%のセチルトリメチルアンモニゥムブロマイ ド /0. 7M NaCl溶液を 80 μ 1追添しよく混合した後 65°Cで 10分間ィンキュ ベートする。 次に、 体積比 24/1 のクロ口ホルム-イソアミルアルコール混 合液を 700 1加えよく攪拌する。 この溶液を微量遠心機で 12000rpm、 5分 間 (4°C コン トロール下) 遠心処理した後、 水層画分を新しい微量遠心管 に移す。 そこに 0. 6 倍量のイソプロパノールを加えチューブをよく振って DNAの沈殿を形成する。 白い DNA沈殿をガラス棒ですくつて 1mlの 70%エタ ノール (-20°C冷却したもの) が入った別の微量遠心管に移す。
次に lOOOOrpm で 5 分間遠心処理し、 上澄みを静かに除去した後さらに 1mlの 70%ェタノールを加えて再び 5分間遠心する。 再び上澄みを除去した 後沈殿を 100 /z l の TE Buffer に溶解し DNA溶液を得た。 このゲノム DNA 溶液の濃度を Molecular Cloning, A laboratory manual, 1989, Eds. Sambrook, J. , Fritsch, E. F. , and Maniati s, T., Cold Spring harbor Laboratory Press の E5, Spectrophotometric Determination of the Amount of DNA or RNAに従って定量した。
このゲノム DNAのうち lOngを用いて PCRを行った。 PCRは Taqポリメラ ーゼ (宝酒造社製、 コード R001A) を用いた。 酵素に添付のバッファーを 5 Ai l、 酵素に添付の dNTP mixture 4 /z l と Haemophi lus influenzae などの 菌の Ribosomal Protein L7/L12 DNA配列との類似性によりインターネッ ト 情報 (オクラホマ大、 Nei sseria gonorrhoeae ゲノムプロジェク ト公開ゲ ノ ム DNA 情報) よ り 取得した Nei sseria gonorrhoeae の Ribosomal Protein L7/L12 DNA配列をもとに設計した配列表配列番号: 15 に示した合 成オリ ゴヌク レオチド E および、 配列表配列番号 : 16 に示した合成オリ ゴ ヌクレオチド Fをプローブとしてそれぞれ 200pmolを加え、 最終容量 50 1 と した。
この混合物を、 TaKaRa PCR Thermal Cycler 480 を用いて、 95°C 1 分、 50°C 2 分、 72°C 3 分を 5 サイクル行った後、 95°C 1 分、 60°C 2分、 72°C 3分を 25サイクル行った。 この PCR産物の一部を 1. 5%ァガロースゲル中で 電気泳動を行い、 ェチジゥムブロマイ ド (日本ジーン社製) にて染色後、 紫外線下で観察し、 約 400bp の cDNAが増幅されていることを確認した。 さ らに制限酵素 BamHI及び Xholで切断処理後、 1. 5%ァガロースゲル中で電気 泳動を行いェチジゥムブ口マイ ド染色後約 370bp のバンドをゲルから切り 出して SuprecOl (宝酒造社製) で精製後市販のベクターである pGEX- 4T - 1
(Pharmacia製) に組み込んだ。 具体的にはベクター pGEX-4T- 1 と先の DNA と をそのモル比が 1 : 3 となるよ う に混ぜ合わせて、 T4 DNA リ ガーゼ
( Invitrogen 社製) にてベクターに DNA を組み込んだ。 DNA が組み込まれ たベクター pGEX- 4T- 1 を大腸菌 One Shot Competent Cel ls (Invitrogen社 製)に遺伝子導入し、 アンピシリ ン (S igma 社製) を 50 μ g/ml 含む L- Broth (宝酒造社製)半固型培地のプレートに蒔き、 12 時間程度 37°Cに放置 し、 現れてきたコロニーを無作為選択し、 同濃度のアンピシリ ンを含む L- Broth液体培地 2mlに植え付け、 8時間程度 37°Cで振と う培養し、 菌体を回 収し、 ウイザードミニプレップ (Promega 社製) を用いて添付の説明書に 従ってプラスミ ドを分離し、 このプラスミ ドを制限酵素 BamHI/XhoI にて消 化して、 約 370bp の DNAが切り出されてくることで該 PCR産物が組み込ま れていることを確認し、 確認されたクローンについて、 組み込まれている DNAの塩基配列決定を行った。
挿入 DNA断片の塩基配列の決定は、 Appl ied Biosystems 社製の蛍光シー タ エ ンサ一を用いて実施 した。 シー ク ェ ンス サ ンプルの調製は PRISM, Ready Reaction Dye Terminator Cycle Sequencing Kit (Applied Biosystems 社製)を用いて行った。 0.5ml 容のマイクロチューブに 9.5 1 の反応ス トツク液、 4. Ομΐ の 0.8pmol// l の T7 プロモータープライマー (GIBCO BRL社製) 及ぴ 6.5 zl の 0.16iig/ l のシークェンス用铸型 DNA を加えて混合し、 100 1 のミネラルオイルを重層後、 96°C 30秒、 55°C 15 秒及び 60°C 4分を 1サイクルとする PCR増幅反応を 25サイクル行い、 4°C で 5分間保温した。 反応後、 80/zlの滅菌精製水を加えて攪拌し、 遠心分離 後、 その水層を 3 回のフエノール ' クロ口ホルム抽出を行った。 100/zl の 水層に 10// 1 の 3M酢酸ナトリ ウム (pH5.2) および 300 μ 1 のエタノールを 加えて攪拌後、 室温 OOOrpm にて 15 分間の遠心を行い沈殿を回収した。 沈殿を 75%エタノールで洗浄後、 真空下に 2 分間静置して乾燥させ、 シー クエンス用サンプルと した。 シークェンスサンプルは、 4 z l の 10mM の EDTA を含むホルムアミ ドに溶解して 90°C2 分間で変性後、 氷中で冷却して シークェンスに供した。 得られた 5個のクローンの内 1 個の配列に PCRに 用いたプローブと配列の相同性があ り さ ら に他の微生物、 例えば Haemophilus influenzae の Ribosomal Protein L7/L12 遺伝子配列と非常 に類似した DNA 配列が見いだされた。 その構造遺伝子部分の全塩基配列及 ぴ対応するアミノ酸配列は配列表配列番号: 21 及び 22 に示すような配列 で あ っ た。 こ の 遺伝子 断片 は 明 ら 力 に Neisseria gonorrhoeae の Ribosomal Protein L7/L12蛋白質の遺伝子をコードするものである。 このよ つ 【こ構 した Neisseria gonorrhoeae の Ribosomal Protein L7/L12 GST フュージョン蛋白質発現ベクターを用いて実施例 2 に記載の方 法と同様の方法により精製した Neisseria gonorrhoeae の GST フユ一ジョ ン Ribosomal Protein L7/L12蛋白質を取得した。 さらに、 実施例 3記載の 方 と |pJ i 方法によ り Neisseria gonorrhoeae の Ribosomal Protein L7/L12 蛋白質に対するモノ ク ローナル抗体に生産するハイプリ ドーマ AMGC1 株を取得した。 前述のよ うにして取得した陽性ハイプリ ドーマ細胞 AMGC1株を用いて定法にしたがってモノクローナル抗体を生産回収した。 具体的には RPMI1640 培地 (10%FCS 入り) を用いて継代培養した細胞を 25cm2培養フラスコ中で 2 X 105個/ ml、 3. 3 X 105個及び 5 X 105個/ ml 程度に 無血清培地にて希釈し全容を 5ml とした。 7¾C02、 37°Cで 3〜5 日間増殖さ せ、 細胞の増殖がみられたフラスコの内、 元の細胞数が最も少ないものを 選択し、 最終的に 2 X 105個/ ml希釈のものが 3〜4 日間で 2 X 106個/ mlに増 殖するようになるまで同様の操作を繰り返し無血清培地に馴化させた。 次 に細菌培養用 96穴プレート中でクローニングを行い、 増殖が早く抗体価の 高い細胞を選択した。 選択した細胞を 24 穴プレートで増殖させたものを 25cm2培養フラスコ中で 2 X 105個 /ml程度となるように無血清培地で希釈し 全容 10ml とした。 これを 7%C02、 37°Cで 3〜4 日間培養し 1 X 106個/ mlまで 増殖させた後、 75cm2培養フラスコにて同様に増殖させ 1 X 106個 1、 100ml を大量培養用ボトルに移した。 これに無血清培地 100ml を加え、 攪拌しな がら 37°Cで 2 日培養後、 無血清培地 200ml加えさらに 2 日培養した。 この 培養液を 4 本に分け各々 100ml の無血清培地を添加し、 2 日培養し各々 400ml の無血清培地を添加後さらに約 6 日培養した後、 培養液を回収し 10000rpml5 分の遠心により目的とする抗体を含む培養上清を取得した。 培 養上清は 0. 1%アジ化ソーダ添加後 4°Cで保存した。 取得した抗体含有液 100ml を PBS で 5倍に希釈後 Protein Aカラム (5ml べッ ドボリューム、 Pharmacia社製) に吸着させ、 PBSで 3ベッ ドボリューム洗浄し、 pH3. 0 の クェン酸バッファーで溶出し、 抗体フラクショ ンを回収して各ハイプリ ド 一マの生産するモノ ク ローナル抗体を得た。 このハイブリ ドーマ由来のモ ノク口一ナル抗体を用いて ELISA法により評価した。
抗体の評価には各種の微生物由来の Ribosomal Protein L7/L12蛋白質を 抗原として感作した 96穴プレートを用い、 作製したモノクロ一ナル抗体を 反応させたあと 2 次抗体として抗マウス IgG のホースラディッシュペルォ キシダ一ゼ標識 (MBL 社製、 Code330) を反応させ最後に酵素反応発色試薬 により検出した。 ELISA反応においては 0. 05%のアジ化ソーダ含む PBS中に 溶 解 し た Neisseria gonorrhoeae 、 Haemophi lus influenzae 、 StreDtoc ccus pneumoniae のリ コンビナン ト Ribosomal Protein L7/L12 蛋白質を l ju g/ml 濃度に希釈した液を 100 μ 1 ずつ 96 穴プレートの別々に 分注し 4°Cで 1 晚吸着させた。 上澄み除去後、 1%牛血清アルブミン溶液 (PBS 中) 200 μ ΐ 添加し室温で 1 時間反応しブロッキングする。 上澄み除 去後洗浄液 (0. 02%Tween20、 PBS) で洗浄し、 その上に AMGC1抗体の 0. 1か ら 1 / g/ml液 100 /z lを加え室温で 2時間反応後上澄みを除去しさらに洗浄 液で洗浄後、 5 g/mlの抗マウス IgGのホースラディッシュペルォキシダー ゼ標識 (MBL社製、 Code330) 抗体液を lOO 1加え室温、 1時間反応を実施 し、 上澄みを除去しさらに洗浄液で洗浄した後 TMB溶液 (KPL社) を 100 /z 1ずつ加え室温で 20分反応、 発色後 1Nの硫酸を 100 ju l添加して反応を停 止し、 450nmの吸光を測定した。
その結果表 6 に示すようにハイブリ ドーマ AMGC1 由来のモノクローナル 饥体 用レヽ 7こ ¾合、 この 体力 Nei sseria gonorrhoeaeゝ Haemophi lus influenzae 及ひ Streptococcus pneumoniae の Ribosomal Protein L7/L12 蛋白質と反応できることを確認できた。
[表 6]
(AMGC1抗体と各微生物の Ribosomal Protein L7/L12蛋白質検出結果)
Nei sseria gonorrhoeae +
Haemoohi lus inf luenzae +
Streptococcus pneumoniae +
( + ; ポジティブ)
ここで取得された AMGC1 抗体はオプティカルィムノアツセィゃ ELISA で の微生物検出などいわゆるサンドィツチアツセィ法による微生物検出にお いて各微生物特異的な抗 Ribosomal Protein L7/L12蛋白質抗体と組み合わ せて用いる抗体として非常に有用である。
[産業上の利用可能性]
本発明によると各種の微生物について同一機能の細胞内分子に対する抗 体を用いて微生物の検出を行うことで微生物を特異的になおかつ同一種内 の全ての血清型の微生物を精度よく検出することができる。
このような抗体と して微生物のリボソーム蛋白質、 Ribosomal Protein L7/L12 に^ Γす。 ίτι体を用レヽ、 Haemophi lus influenzae や Streptococcus pneumoniae及び Neisseria gonorrhoeae の検出を ft度良く行つことカ でき る。
また、 このような抗体を構成要素とする微生物検出用試薬キットを用い ることで、 微生物の検出をより汎用的に精度良く行うことができる。
また各種の微生物における同一機能の細胞内分子を抗原として用いるこ とで、 各種の微生物の検出に用いる特異的抗体を作製することができる。
[寄託された微生物への言及]
寄託した寄託機関
名称: 通商産業省工業技術院生命工学工業技術研究所
あて名: 日本国茨城県つくば巿東 1丁目 1— 3
当該寄託機関に微生物を寄託した日付: 平成 11年(1999) 7月 28日 当該寄託機関が寄託について付した受託番号: FERM BP- 6807

Claims

>; ^
1 . 微生物のリボソーム蛋白質に対する抗体であって、 当該微生物に特異 的に反応する抗体。
2 . 微生物のリボソーム蛋白質が Ribosomal Protein L7/L12である、 請求 の範囲 1に記載の抗体。
3 . 微生物が性行為感染症(STD、 Sexual ly transmitted di sease) 原因微 生物である請求の範囲 1または 2に記載の抗体。
4 . 微生物が呼吸器系感染症原因微生物である請求の範囲 1 または 2 に記 載の抗体。
5 . 呼吸器系感染症原因微生物が Haemophi lus inf luenzaeである請求の範 囲 4に記載の抗体。
6 . 呼吸器系感染症原因微生物が Streptococcus pneumoniaeである請求の 範囲 4に記載の抗体。
7 . 性行為感染症(STD、 Sexual ly transmitted di sease ) 原因微生物が Neisseria gonorrhoeaeであ 青求の範囲 3に記載の抗体。
8 . Nei sseria gonorrhoeae の Ribosomal Protein L7/L12 蛋白質に対する 抗体であって、 配列表配列番号: 2 2のアミノ酸配列において 115 番目の ァラニンを含む 5から 30アミノ酸の長さの連続する部分ァミノ酸配列を認 識する抗体であることを特徴とする請求の範囲 7に記載の抗体。
9 . 各種の微生物について同一機能の細胞内分子に対する抗体を用いるこ とを特徴とする微生物検出方法。
1 0 . 各種の微生物について請求の範囲 1 から 8 のいずれかに記載の抗体 を用いることを特徴とする微生物検出方法。
1 1 . 各種の微生物について同一機能の細胞内分子に対する抗体を用いる ことを特徴とする微生物検出用試薬キッ ト。
1 2 . 各種の微生物について請求の範囲 1 から 8 のいずれかに記載の抗体 を用いることを特徴とする微生物検出用試薬キッ ト。
1 3 . 遺伝子操作手法によりあるいは微生物からの単離精製により得られ た微生物の Ribosomal Protein L7/L12蛋白質、 その部分ペプチド、 または その部分べプチドに相当する合成べプチドを免疫源とすることを特徴とす る請求の範囲 1から 8に記載の抗体の作製方法。
PCT/JP1999/004122 1998-07-31 1999-07-30 Anticorps pour la detection de micro-organismes WO2000006603A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2338989A CA2338989C (en) 1998-07-31 1999-07-30 Antibodies for detecting microorganisms
DE69921329T DE69921329T2 (de) 1998-07-31 1999-07-30 Anti-l7/l12-antikörper zum nachweis von bakterien
AU49317/99A AU767270B2 (en) 1998-07-31 1999-07-30 Antibody for detecting microorganism
AT99933198T ATE280183T1 (de) 1998-07-31 1999-07-30 Anti-l7/l12-antikörper zum nachweis von bakterien
JP2000562399A JP5219057B2 (ja) 1998-07-31 1999-07-30 微生物検出用抗体
EP99933198A EP1104772B1 (en) 1998-07-31 1999-07-30 Anti-l7/l12 antibody for detecting bacteria
NZ509577A NZ509577A (en) 1998-07-31 1999-07-30 Antibodies for ribosmal proteins specific to only one microorganism genus or species
US12/424,370 US20090269789A1 (en) 1998-07-31 2009-04-15 Antibodies for detecting microorganisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23020498 1998-07-31
JP10/230204 1998-07-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000625 Continuation-In-Part WO2001057089A1 (en) 1998-07-31 2001-01-31 Antibody for detecting chlamydia pneumoniae

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09744910 A-371-Of-International 2001-05-17
US10/386,050 Continuation-In-Part US20040014943A1 (en) 1998-07-31 2003-03-12 Antibodies for detecting microorganisms

Publications (1)

Publication Number Publication Date
WO2000006603A1 true WO2000006603A1 (fr) 2000-02-10

Family

ID=16904216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004122 WO2000006603A1 (fr) 1998-07-31 1999-07-30 Anticorps pour la detection de micro-organismes

Country Status (12)

Country Link
EP (1) EP1104772B1 (ja)
JP (2) JP5219057B2 (ja)
KR (1) KR100771275B1 (ja)
CN (1) CN1317014A (ja)
AT (1) ATE280183T1 (ja)
AU (1) AU767270B2 (ja)
CA (1) CA2338989C (ja)
DE (1) DE69921329T2 (ja)
ID (1) ID27972A (ja)
NZ (1) NZ509577A (ja)
TW (1) TWI231299B (ja)
WO (1) WO2000006603A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057089A1 (en) * 2000-01-31 2001-08-09 Asahi Kasei Kabushiki Kaisha Antibody for detecting chlamydia pneumoniae
JP2004201605A (ja) * 2002-12-26 2004-07-22 Asahi Kasei Corp レジオネラ属菌リボソームl7/l12タンパク質をコードするdna
JP2010248129A (ja) * 2009-04-16 2010-11-04 Asahi Kasei Corp レジオネラ菌検出用抗体
JP2012122921A (ja) * 2010-12-10 2012-06-28 Asahi Kasei Corp 乳汁中の特定物質を検出する方法
WO2013186885A1 (ja) 2012-06-13 2013-12-19 旭化成株式会社 乳汁中の特定物質を検出する方法
WO2015093544A1 (ja) 2013-12-18 2015-06-25 旭化成株式会社 乳汁中のブドウ球菌を検出する方法
WO2015093546A1 (ja) 2013-12-18 2015-06-25 旭化成株式会社 乳汁中のストレプトコッカス属の菌を検出する方法
WO2015093545A1 (ja) 2013-12-18 2015-06-25 旭化成株式会社 乳汁中の大腸菌群を検出する方法
JP2017207333A (ja) * 2016-05-17 2017-11-24 旭化成株式会社 細菌を検出する方法及びキット
US10435457B2 (en) 2015-08-06 2019-10-08 President And Fellows Of Harvard College Microbe-binding molecules and uses thereof
US10501729B2 (en) 2013-05-21 2019-12-10 President And Fellows Of Harvard College Engineered heme-binding compositions and uses thereof
US10513546B2 (en) 2013-12-18 2019-12-24 President And Fellows Of Harvard College CRP capture/detection of gram positive bacteria
US10526399B2 (en) 2011-07-18 2020-01-07 President And Fellows Of Harvard College Engineered microbe-targeting molecules and uses thereof
US10538562B2 (en) 2010-01-19 2020-01-21 President And Fellows Of Harvard College Engineered opsonin for pathogen detection and treatment
US10551379B2 (en) 2013-03-15 2020-02-04 President And Fellows Of Harvard College Methods and compositions for improving detection and/or capture of a target entity
WO2020045671A1 (ja) 2018-08-31 2020-03-05 旭化成株式会社 検体中の被分析物質を検出するための増感剤、及び検体中の被分析物質の検出方法
WO2020111223A1 (ja) 2018-11-30 2020-06-04 旭化成株式会社 乳房炎の原因菌の検出方法
WO2020111272A1 (ja) * 2018-11-30 2020-06-04 旭化成株式会社 細菌感染による急性副鼻腔炎の起炎菌の検出方法
JP2021069357A (ja) * 2019-11-01 2021-05-06 旭化成株式会社 検体中の緑膿菌を検出するための抗体、並びに斯かる抗体を用いて緑膿菌を検出するための方法、試薬、及びキット
WO2021085651A1 (ja) * 2019-11-01 2021-05-06 旭化成株式会社 検体中の黄色ブドウ球菌を検出するための抗体、並びに斯かる抗体を用いて黄色ブドウ球菌を検出するための方法、試薬、及びキット
JP2021087354A (ja) * 2019-11-01 2021-06-10 旭化成株式会社 検体中のインフルエンザ菌を検出するための抗体、並びに斯かる抗体を用いてインフルエンザ菌を検出するための方法、試薬、及びキット
JP2021087355A (ja) * 2019-11-01 2021-06-10 旭化成株式会社 検体中の肺炎球菌を検出するための抗体、並びに斯かる抗体を用いて肺炎球菌を検出するための方法、試薬、及びキット
JP2021164415A (ja) * 2020-04-06 2021-10-14 旭化成株式会社 検体中の大腸菌を検出するための抗体、並びに斯かる抗体を用いて大腸菌を検出するための方法、試薬、及びキット
JP2021164416A (ja) * 2020-04-06 2021-10-14 旭化成株式会社 検体中のモラクセラ・カタラーリス菌を検出するための抗体、並びに斯かる抗体を用いてモラクセラ・カタラーリス菌を検出するための方法、試薬、及びキット
WO2022154096A1 (ja) 2021-01-15 2022-07-21 旭化成株式会社 飲食品検体、環境検体、又は生体検体中の腸内細菌科細菌の有無及び/又は存在量を検出するための方法及びキット
WO2022154094A1 (ja) 2021-01-15 2022-07-21 旭化成株式会社 飲食品検体、環境検体、又は生体検体中の細菌の有無及び/又は存在量を検出するための方法及びキット
WO2022210594A1 (ja) 2021-03-29 2022-10-06 旭化成株式会社 淋菌検出キット及び淋菌検出方法
WO2023095845A1 (ja) 2021-11-24 2023-06-01 旭化成株式会社 溶菌方法、及び細菌検出方法
WO2023095843A1 (ja) 2021-11-24 2023-06-01 旭化成株式会社 イムノクロマト装置及びその製造方法、並びにそれを用いた対象細菌の検出方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI521063B (zh) 2015-03-10 2016-02-11 國立交通大學 生物感測裝置及分離生物分子的方法
US11673134B2 (en) * 2017-06-06 2023-06-13 Northwestern University Trans-interfacial magnetic separation
KR102053749B1 (ko) 2018-01-24 2020-01-22 강원대학교산학협력단 임질균 특이적 항체 및 이의 용도
WO2020069002A2 (en) * 2018-09-26 2020-04-02 Adaptive Phage Therapeutics, Inc. Monitoring host cell contamination of virus-based biological products
JP7491679B2 (ja) 2019-11-01 2024-05-28 旭化成株式会社 検体中のサルモネラ菌を検出するための抗体、並びに斯かる抗体を用いてサルモネラ菌を検出するための方法、試薬、及びキット

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500083A (ja) * 1986-05-01 1989-01-19 ワシントン リサーチ ファウンデイション 急性呼吸疾患に関連する独特のクラミジア株の検出

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116353B2 (ja) * 1986-11-24 2000-12-11 ジエン‐プローブ・インコーポレイテツド 非ウイルス微生物の検出及び/又は定量用核酸プローブ
EP0548200B1 (en) * 1990-09-11 1999-04-14 Institute For Child Health Research Cloning and sequencing of allergens of dermatophagoides (house dust mite)
DE4128454A1 (de) * 1991-08-28 1993-03-04 Riedel De Haen Ag Monoklonaler antikoerper, der mit pseudomonas aeruginosa reagiert
JPH06125784A (ja) * 1992-01-17 1994-05-10 Takeda Chem Ind Ltd モノクローナル抗体,ハイブリドーマ,その製造法および用途
JPH07316194A (ja) * 1993-02-26 1995-12-05 Takeda Chem Ind Ltd Pacapレセプター蛋白質、その製造法および用途
AU3355095A (en) * 1994-09-02 1996-03-27 Meiji Milk Products Company Limited Diagnostic drug for chlamydia infection
JPH0931097A (ja) * 1995-07-24 1997-02-04 Yuka Medeiasu:Kk クラミジア・トラコマティス抗体の測定法
JP3708210B2 (ja) * 1996-04-03 2005-10-19 協和醗酵工業株式会社 抗線維芽細胞増殖因子−8モノクローナル抗体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500083A (ja) * 1986-05-01 1989-01-19 ワシントン リサーチ ファウンデイション 急性呼吸疾患に関連する独特のクラミジア株の検出

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAN KOLBERG ET AL: "Monoclonal Antibodies Against Streptococcus Pneumoniae Detect Epitopes on Eubacterial Ribosomal Protein L7/L12 and on Streptococcal Elongation Factor Ts", MICROBIOLOGY, vol. 143, no. 1, 1997, pages 55 - 61, XP002925389 *
KITA E. ET AL: "Analysis of Immune Responses in Genital Tracts of Mice Immunised with Purified Ribosomal Fractions Neisseria-Gonorrhoeae", BRITISH JOURNAL OF VENEREAL DISEASES, vol. 60, no. 4, 1984, pages 219 - 225, XP000905316 *
SERGYL LAFONT ET AL: "Induction of Murine B Cell Proliferation and Immunoglobulin Synthesis by Some Bacterial Ribosomes", MICROBIOL. IMMUNOL.,, vol. 32, no. 10, 1988, pages 1043 - 1058, XP002925390 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057089A1 (en) * 2000-01-31 2001-08-09 Asahi Kasei Kabushiki Kaisha Antibody for detecting chlamydia pneumoniae
JP2004201605A (ja) * 2002-12-26 2004-07-22 Asahi Kasei Corp レジオネラ属菌リボソームl7/l12タンパク質をコードするdna
JP2010248129A (ja) * 2009-04-16 2010-11-04 Asahi Kasei Corp レジオネラ菌検出用抗体
US11203623B2 (en) 2010-01-19 2021-12-21 President And Fellows Of Harvard College Engineered opsonin for pathogen detection and treatment
US11059873B2 (en) 2010-01-19 2021-07-13 President And Fellows Of Harvard College Engineered opsonin for pathogen detection and treatment
US10538562B2 (en) 2010-01-19 2020-01-21 President And Fellows Of Harvard College Engineered opsonin for pathogen detection and treatment
US11059874B2 (en) 2010-01-19 2021-07-13 President And Fellows Of Harvard College Engineered opsonin for pathogen detection and treatment
JP2012122921A (ja) * 2010-12-10 2012-06-28 Asahi Kasei Corp 乳汁中の特定物質を検出する方法
US10526399B2 (en) 2011-07-18 2020-01-07 President And Fellows Of Harvard College Engineered microbe-targeting molecules and uses thereof
US11795212B2 (en) 2011-07-18 2023-10-24 President And Fellows Of Harvard College Engineered microbe-targeting molecules and uses thereof
US10865235B2 (en) 2011-07-18 2020-12-15 President And Fellows Of Harvard College Engineered microbe-targeting molecules and uses thereof
WO2013186885A1 (ja) 2012-06-13 2013-12-19 旭化成株式会社 乳汁中の特定物質を検出する方法
US10551379B2 (en) 2013-03-15 2020-02-04 President And Fellows Of Harvard College Methods and compositions for improving detection and/or capture of a target entity
US11312949B2 (en) 2013-05-21 2022-04-26 President And Fellows Of Harvard College Engineered heme-binding compositions and uses thereof
US10501729B2 (en) 2013-05-21 2019-12-10 President And Fellows Of Harvard College Engineered heme-binding compositions and uses thereof
US11939608B2 (en) 2013-05-21 2024-03-26 President And Fellows Of Harvard College Engineered heme-binding compositions and uses thereof
US10513546B2 (en) 2013-12-18 2019-12-24 President And Fellows Of Harvard College CRP capture/detection of gram positive bacteria
US11718651B2 (en) 2013-12-18 2023-08-08 President And Fellows Of Harvard College CRP capture/detection of gram positive bacteria
WO2015093546A1 (ja) 2013-12-18 2015-06-25 旭化成株式会社 乳汁中のストレプトコッカス属の菌を検出する方法
WO2015093545A1 (ja) 2013-12-18 2015-06-25 旭化成株式会社 乳汁中の大腸菌群を検出する方法
WO2015093544A1 (ja) 2013-12-18 2015-06-25 旭化成株式会社 乳汁中のブドウ球菌を検出する方法
US11034744B2 (en) 2013-12-18 2021-06-15 President And Fellows Of Harvard College CRP capture/detection of gram positive bacteria
US10696733B2 (en) 2015-08-06 2020-06-30 President And Fellows Of Harvard College Microbe-binding molecules and uses thereof
US11807677B2 (en) 2015-08-06 2023-11-07 President And Fellows Of Harvard College Microbe-binding molecules and uses thereof
US11236149B2 (en) 2015-08-06 2022-02-01 President And Fallows Of Harvard College Microbe-binding molecules and uses thereof
US10435457B2 (en) 2015-08-06 2019-10-08 President And Fellows Of Harvard College Microbe-binding molecules and uses thereof
JP2017207333A (ja) * 2016-05-17 2017-11-24 旭化成株式会社 細菌を検出する方法及びキット
WO2020045671A1 (ja) 2018-08-31 2020-03-05 旭化成株式会社 検体中の被分析物質を検出するための増感剤、及び検体中の被分析物質の検出方法
WO2020111272A1 (ja) * 2018-11-30 2020-06-04 旭化成株式会社 細菌感染による急性副鼻腔炎の起炎菌の検出方法
JPWO2020111272A1 (ja) * 2018-11-30 2021-09-30 旭化成株式会社 細菌感染による急性副鼻腔炎の起炎菌の検出方法
WO2020111223A1 (ja) 2018-11-30 2020-06-04 旭化成株式会社 乳房炎の原因菌の検出方法
JP2021087355A (ja) * 2019-11-01 2021-06-10 旭化成株式会社 検体中の肺炎球菌を検出するための抗体、並びに斯かる抗体を用いて肺炎球菌を検出するための方法、試薬、及びキット
JP2021087354A (ja) * 2019-11-01 2021-06-10 旭化成株式会社 検体中のインフルエンザ菌を検出するための抗体、並びに斯かる抗体を用いてインフルエンザ菌を検出するための方法、試薬、及びキット
JP2021069358A (ja) * 2019-11-01 2021-05-06 旭化成株式会社 検体中の黄色ブドウ球菌を検出するための抗体、並びに斯かる抗体を用いて黄色ブドウ球菌を検出するための方法、試薬、及びキット
WO2021085651A1 (ja) * 2019-11-01 2021-05-06 旭化成株式会社 検体中の黄色ブドウ球菌を検出するための抗体、並びに斯かる抗体を用いて黄色ブドウ球菌を検出するための方法、試薬、及びキット
JP2021069357A (ja) * 2019-11-01 2021-05-06 旭化成株式会社 検体中の緑膿菌を検出するための抗体、並びに斯かる抗体を用いて緑膿菌を検出するための方法、試薬、及びキット
JP2021164415A (ja) * 2020-04-06 2021-10-14 旭化成株式会社 検体中の大腸菌を検出するための抗体、並びに斯かる抗体を用いて大腸菌を検出するための方法、試薬、及びキット
JP2021164416A (ja) * 2020-04-06 2021-10-14 旭化成株式会社 検体中のモラクセラ・カタラーリス菌を検出するための抗体、並びに斯かる抗体を用いてモラクセラ・カタラーリス菌を検出するための方法、試薬、及びキット
WO2022154094A1 (ja) 2021-01-15 2022-07-21 旭化成株式会社 飲食品検体、環境検体、又は生体検体中の細菌の有無及び/又は存在量を検出するための方法及びキット
WO2022154096A1 (ja) 2021-01-15 2022-07-21 旭化成株式会社 飲食品検体、環境検体、又は生体検体中の腸内細菌科細菌の有無及び/又は存在量を検出するための方法及びキット
WO2022210594A1 (ja) 2021-03-29 2022-10-06 旭化成株式会社 淋菌検出キット及び淋菌検出方法
KR20230148421A (ko) 2021-03-29 2023-10-24 아사히 가세이 가부시키가이샤 임균 검출 키트 및 임균 검출 방법
WO2023095845A1 (ja) 2021-11-24 2023-06-01 旭化成株式会社 溶菌方法、及び細菌検出方法
WO2023095843A1 (ja) 2021-11-24 2023-06-01 旭化成株式会社 イムノクロマト装置及びその製造方法、並びにそれを用いた対象細菌の検出方法

Also Published As

Publication number Publication date
AU4931799A (en) 2000-02-21
AU767270B2 (en) 2003-11-06
TWI231299B (en) 2005-04-21
DE69921329T2 (de) 2006-02-09
ID27972A (id) 2001-05-03
EP1104772A4 (en) 2002-06-05
EP1104772A1 (en) 2001-06-06
ATE280183T1 (de) 2004-11-15
KR100771275B1 (ko) 2007-10-29
KR20010072121A (ko) 2001-07-31
CA2338989C (en) 2010-07-27
CN1317014A (zh) 2001-10-10
EP1104772B1 (en) 2004-10-20
JP5219057B2 (ja) 2013-06-26
JP2010268800A (ja) 2010-12-02
DE69921329D1 (de) 2004-11-25
CA2338989A1 (en) 2000-02-10
NZ509577A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
WO2000006603A1 (fr) Anticorps pour la detection de micro-organismes
US6828110B2 (en) Assays for detection of Bacillus anthracis
JP2012006968A (ja) マイコプラズマ・ニューモニア検出用抗体
US5474905A (en) Antibodies specific for streptococcus pneumoniae hemin/hemoglobin-binding antigens
JP5442641B2 (ja) 全インフルエンザ菌の測定方法
US7374888B2 (en) Methods for detecting B. anthracis infection
JPH06506114A (ja) 新規な遺伝子及びIgA結合蛋白質の製造方法
JP2012017334A (ja) クラミジア・ニューモニア検出用抗体
Shin et al. Monoclonal antibodies specific for Neisseria meningitidis group B polysaccharide and their peptide mimotopes
JP2002533083A (ja) 遺伝子およびたんぱく質、およびそれらの用途
US20090269789A1 (en) Antibodies for detecting microorganisms
US7393647B2 (en) Methods for detecting B. anthracis infection
JPH022357A (ja) ヘモフィルス・インフルエンゼb型主外層膜蛋白質抗原の製造方法および組成物
WO2020111272A1 (ja) 細菌感染による急性副鼻腔炎の起炎菌の検出方法
JP5351367B2 (ja) クラミジア・トラコマチス検出用抗体
JPH08333397A (ja) クラミジア・ニューモニエに特異的な標識化モノクローナル抗体、クラミジア・ニューモニエ検出・測定用試薬及びその試薬並びにクラミジア・ニューモニエ感染の診断薬

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99810707.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2000 562399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 509577

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2338989

Country of ref document: CA

Ref document number: 2338989

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017001292

Country of ref document: KR

Ref document number: 49317/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/147/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1999933198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09744910

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999933198

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017001292

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 49317/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999933198

Country of ref document: EP