WO2000005714A1 - Support magnetique d'enregistrement - Google Patents

Support magnetique d'enregistrement Download PDF

Info

Publication number
WO2000005714A1
WO2000005714A1 PCT/JP1999/003842 JP9903842W WO0005714A1 WO 2000005714 A1 WO2000005714 A1 WO 2000005714A1 JP 9903842 W JP9903842 W JP 9903842W WO 0005714 A1 WO0005714 A1 WO 0005714A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
magnetic recording
magnetic
polyurethane resin
diol
Prior art date
Application number
PCT/JP1999/003842
Other languages
English (en)
French (fr)
Inventor
Hiroshi Hashimoto
Yuichiro Murayama
Katsuhiko Meguro
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to EP99929870A priority Critical patent/EP1022726A4/en
Priority to US09/509,024 priority patent/US6500551B1/en
Priority to KR1020007002956A priority patent/KR100654322B1/ko
Publication of WO2000005714A1 publication Critical patent/WO2000005714A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/716Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3212Polyhydroxy compounds containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3234Polyamines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • C08G18/4233Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups derived from polymerised higher fatty acids or alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • G11B5/7021Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent containing a polyurethane or a polyisocyanate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing

Definitions

  • the present invention relates to a magnetic recording medium provided with a magnetic layer in which a ferromagnetic powder and a binder are dispersed on a non-magnetic support, and having extremely excellent electromagnetic conversion characteristics, durability, and storability.
  • a magnetic recording medium such as a recording tape, a video tape, or a floppy disk
  • a magnetic recording medium having a magnetic layer in which a ferromagnetic powder is dispersed in a binder provided on a nonmagnetic support is used.
  • Magnetic recording media are required to have excellent characteristics such as electromagnetic conversion characteristics, running durability and running performance.
  • a magnetic recording medium is required to have good running durability while having such excellent electromagnetic conversion characteristics.
  • an abrasive and a lubricant are generally added to the magnetic layer.
  • the low molecular components in the binder of the magnetic recording medium float near the surface of the magnetic layer and adhere to the magnetic head. There was the problem of magnetic head contamination.
  • Magnetic head contamination causes deterioration of electromagnetic conversion characteristics.
  • the magnetic head rotation speed is increasing, and even in a home digital video tape recorder, the magnetic head rotation speed is 960 rotations Z minutes.
  • the rotation speed is much higher than the 180-minute Z rotation of a consumer analog video tape recorder and the 500-minute rotation of a commercial analog tape recorder, and the sliding speed between the magnetic recording medium and the magnetic head.
  • small magnetic heads such as thin-film heads are used, and there is a demand for improvement of magnetic head contamination due to components generated from a magnetic recording medium.
  • a magnetic recording medium for high density recording that is used in place of a floppy disk is also required to have high strength and high reliability.
  • One solution to this problem is to use a hard binder to increase the hardness of the magnetic layer.
  • the use of a polyurethane resin with good abrasion resistance and high dispersibility has been used as a binder.
  • Japanese Patent Application Laid-Open No. 61-148626 describes that at least 20% by weight of a long-chain diol component is a bisphenol or a derivative thereof and an aromatic dibasic acid or a salt thereof.
  • a magnetic recording medium using a polyester polyurethane resin using a polyester diol obtained from a derivative is described.However, the dispersibility is insufficient, and the storage stability is deteriorated due to hydrolysis of the ester bond. Was.
  • Japanese Patent Application Laid-Open No. 11-267829 discloses a magnetic recording medium using a polyetherpolyurethane resin containing at least 80% by weight of a total polyether component having a cyclic structure. However, it was insufficient in terms of dispersibility or durability.
  • Japanese Patent Application Laid-Open No. 4-324110 discloses a magnetic recording medium using a polyurethane resin using a polyester polyol containing hydrogenated dimer acid. Acid is introduced into the skeleton of the polyester polyol and dispersibility is insufficient.
  • in terms of deterioration due to hydrolysis of the ester bond although it is superior to that using bisphenol, it is still insufficient, especially in magnetic recording media using ferromagnetic metal powder as a magnetic material. Preservability was insufficient.
  • An object of the present invention is to provide a magnetic recording medium having excellent dispersibility, coating film smoothness, and electromagnetic conversion characteristics. It is an object of the present invention to provide a magnetic recording medium having excellent aging stability.
  • the present invention provides a magnetic recording medium having a magnetic layer in which a ferromagnetic powder and a binder are dispersed on a support, wherein the binder is obtained by polymerizing a diol compound having a cyclic structure and a long alkyl chain with a diisocyanate compound.
  • This is a magnetic recording medium containing the obtained polyurethane resin 1.
  • Binder contains polyurethane resin 1 The magnetic recording medium described above.
  • the polyurethane resin 1 is a polyurethane resin containing a dimer diol and an aliphatic diol having a medium-chain alkyl branched chain as a diol component.
  • the polyurethane resin has one S_ ⁇ 3 M, one S_ ⁇ 4 M, one C_ ⁇ _ ⁇ _M, - PO 3M 2, - P 0 4 2, sulfobetaine group, phospho betaine group, sulfamic acid, from Surufuami phosphate bases is the magnetic recording medium of the at least one or more polar groups containing 1 X 1 0- 6 ⁇ 2 xl 0- 4 eq / g is chosen.
  • the above magnetic recording medium wherein the branched alkyl group of the aliphatic diol having a medium-chain alkyl branched chain has 2 to 18 carbon atoms.
  • the above magnetic recording medium comprising the polyurethane resin 1 and the polyurethane resin 2 comprising a polyether polyol having a cyclic structure.
  • R 6 where z is selected from a benzene ring, a naphthalene ring and a cyclohexane ring.
  • R 3 and R 4 are an alkylene group having 1 to 18 carbon atoms
  • R 5 and R 6 are an alkyl group having 2 to 18 carbon atoms
  • R 4 -OH R5 however, R 3, R 4 is an alkylene group with carbon number from 1 to 18
  • R 5 and R 6 are an alkyl group having 2 to 18 carbon atoms
  • the polyurethane resin 2 is composed of 10 to 50% by weight of a polyol having an ether group of 1 to 6 mmZg in polyurethane and a chain extender of 15 to 50% by weight of a diol having a cyclic structure, and an organic diisocyanate.
  • the above magnetic recording medium which is a polyurethane resin.
  • the above magnetic recording medium comprises a polyurethane resin 1 as a binder of the magnetic layer, and a polyurethane resin 2 as a binder of the lower layer.
  • the binder is the polyurethane resin 1, a polyester polyol and a chain extender And a polyisocyanate compound 3 obtained by polymerizing a diisocyanate compound.
  • the polyester polyol includes an aliphatic dibasic acid as a dibasic acid, and an aliphatic diol having no cyclic structure having an alkyl branched side chain.
  • the chain extender comprises an aliphatic diol having an alkyl branched side chain as a chain extender.
  • the above magnetic recording medium wherein the diol compound is at least one selected from the above formulas 1 and 2.
  • the magnetic recording medium comprising the polyurethane resin 1 as a binder of the magnetic layer, and the polyurethane resin 3 as a binder of the lower layer.
  • polyurethane resin 1 is a polyurethane resin containing 10% by weight or more of dimer diol in polyurethane.
  • the above magnetic recording medium wherein the urethane group concentration in the polyurethane of the polyurethane resin 3 is 2.5 to 4.5 mmo 1 Zg.
  • the binder contains the polyurethane resin 1 and the magnetic layer is selected from Formula 8 or Formula 9.
  • the above magnetic recording medium comprising a diester compound.
  • R 1 R 22 a fatty acid residue having 5 to 21 carbon atoms
  • R 33, R 44 2 dihydric alcohol groups of 5 to 21 carbon atoms
  • X Dihydric alcohol residue having 2 to 10 carbon atoms
  • Y Dicarboxylic acid residue having 3 to 10 carbon atoms
  • the magnetic recording medium according to the above, wherein the diol compound forming the polyurethane resin 1 is at least one selected from formulas 1 and 2.
  • the polyurethane resin 1 is the above-mentioned magnetic recording medium which is a polyurethane resin not containing a polyester polyol having a molecular weight of 800 or more as a diol component.
  • the polyurethane resin 1 force; single S_ ⁇ 3 M, one S_ ⁇ "VI, one C_ ⁇ _OM, - PO 3M 2, - P_ ⁇ 1 at least one polar group selected from 4 M 2 X 1 0- 6 eq Zg ⁇ 2 1 0 one 4 eq Z g wherein the magnetic recording medium is a Poriuretan resin containing.
  • the present invention relates to a polyester resin having a diol having a specific structure, a polyurethane resin 1 having an extremely high glass transition temperature (T g), excellent in repeated running stability, dispersibility, and smoothness, and a polyester polyol having a cyclic structure.
  • T g glass transition temperature
  • a polyurethane resin 2 consisting of a binder as a binder makes it possible to form a magnetic layer having excellent strength, such as excellent repetitive running properties, dispersibility, and smoothness, and particularly a polyurethane resin.
  • By incorporating 2 in the lower layer it is possible to obtain excellent durability by gradually supplying the lubricant to the surface of the magnetic layer by utilizing the supply function of the ester-based lubricant contained in the lower layer. They found what they could do.
  • the polyurethane resin 1 suitable for the present invention is a polyurethane resin obtained by polymerizing a diol compound having a cyclic structure and at least two long-chain alkyl chains with a diisocyanate compound.
  • a conventional polyurethane-based binder is obtained by reacting a long-chain polyol such as a polyester polyol or polyether polyol having a molecular weight of about 200 with a diisocyanate compound and polymerizing it. Chain diols have been used as chain extenders.
  • the diol component of the polyurethane of the present application includes a cyclic structure selected from a benzene ring, a naphthalene ring and a cyclohexane ring, and at least two alkylene groups having 1 to 18 carbon atoms, or further having 2 to 1 carbon atoms. Having two alkylene groups of 8, Since it has an intermediate size between the long-chain diol and the short-chain diol, the weight fraction of the diisocyanate component can be increased and the perylene bond can be increased as compared with the polyurethane having a long-chain polyol. This makes it possible to increase the intermolecular interaction of urethane bonds and increase the mechanical strength of polyurethane.
  • the mechanical strength can be increased because it has a cyclic structure selected from a benzene ring, a naphthalene ring, and a cyclohexane ring.
  • the diol compound may be at least one selected from formulas 1 and 2. Equation 1 Equation 2
  • R6 where Z is selected from a benzene ring, a naphthalene ring and a cyclohexane ring.
  • R 3 and R 4 are an alkylene group having 1 to 18 carbon atoms
  • R 5 and R 6 are an alkyl group having 2 to 18 carbon atoms
  • the diol compound may include at least one selected from formulas 3 to 6. Equation 3 Equation 4
  • R 3 and R 4 are an alkylene group having 1 to 18 carbon atoms.
  • R 5 and R 6 each have an alkyl group having 2 to 18 carbon atoms.
  • they have a cyclic structure selected from a benzene ring, a naphthalene ring, and a cyclohexane ring, and thus have a feature that the mechanical strength can be increased. ing.
  • dimer diol is preferable as the diol compound having such a cyclic structure and a long alkyl chain.
  • Dimer diol is obtained from dimer monoacid and has the following chemical structure of Formula 7:
  • Dimer diol has a molecular weight of 537 and falls in the intermediate range between long-chain polyols and short-chain diols. From this, it is possible to increase the weight fraction of the diisocyanate component and increase the urethane bond as compared with polyurethane using a long-chain polyol. This makes it possible to increase the intermolecular interaction of the urethane bond and increase the mechanical strength of the polyurethane. Further, since the dimer diol has a cyclohexane ring having a cyclic structure, the mechanical strength can be increased.
  • Dimer diol is obtained by dimer acid, which is a dimer of unsaturated aliphatic carboxylic acid having 18 carbon atoms, and then hydrogenates and reduces the unsaturated bond and carboxylic acid, followed by distillation and purification. . Dimer diol has a basic skeleton of saturated hydrocarbons, no unsaturated bonds, and an ester bond, ether bond, etc. in the middle of the molecule. Does not have a linking group.
  • the polyurethane resin composed of the diol and the diisocyanate compound does not have an ester bond or an ether bond. This makes them less susceptible to degradation and decomposition in high-temperature, high-humidity environments, and greatly improves the long-term storage characteristics of magnetic recording media.
  • hydrolysis of an ester bond portion and thermal decomposition of an ether bond of a polyether urethane have become problems.
  • the polyurethane of the present invention has solved this problem.
  • the hydrophobicity of the entire polymer is increased by using hydrogenated dimer monoacid as the acid component of the polyester polyol.
  • the hydrolysis resistance is improved, the problem of the hydrolysis resistance cannot be solved as long as it is basically a polyester-based urethane containing an ester bond.
  • the catalytic activity on the surface of the magnetic material is high, and the decomposition reaction of the binder is promoted, which is an important problem.
  • dimer diol has two long alkyl branched side chains and adopts a bent molecular structure, so that it has high solubility in solvents. This means that when a magnetic substance is dispersed in a binder and a solvent, it is easy to take a structure (conformation) that enlarges the molecular chain of the binder adsorbed on the magnetic substance, thereby improving dispersibility. Was completed. As a result, the electromagnetic conversion characteristics of the magnetic recording medium could be improved.
  • the dimer diol's bent structure increases the entanglement of the polymer chains.
  • High mechanical strength that is, high elastic modulus and high elongation at break can be achieved at the same time by the interaction between this and the intermolecular hydrogen bond between urethane groups.
  • the strength of the magnetic coating film of the magnetic recording medium can be increased, and the durability can be greatly improved.
  • Polyurethane using such a dimer diol exhibits the above-mentioned effects when used for either the upper layer or the lower layer, but particularly when used for the uppermost magnetic layer which directly contacts the head, high electromagnetic conversion characteristics and high electromagnetic conversion characteristics can be obtained. Driving durability can be obtained.
  • polyurethanes using dimer diols have a feature that ester-based lubricants are more compatible than conventional polyester-based polyether-based polyurethanes. 4-3 2 4 1 10
  • the ester-based lubricant becomes difficult to exist on the upper layer surface by being compatible with the polyurethane resin, so that it has a disadvantageous force on the durability especially in repeated running; a polyurethane resin made of dimer diol
  • a magnetic recording medium having more excellent coating smoothness and electromagnetic conversion characteristics and excellent in repeated running durability was obtained by using polyurethane resin 2 in combination.
  • polyurethane resin 2 is particularly effective when used for the lower layer.
  • the ester lubricant is hardly compatible with the polyurethane resin 2, the ester lubricant hardly exists in the coating film, and a function of supplying the ester lubricant to the surface of the coating film is generated. It is probable that more excellent durability could be obtained because the ester-based lubricant was supplied from the surface of the lower layer using resin 2 to the upper layer.
  • the polyurethane resin 2 has an appropriate amount of ether groups, the lower layer powder is excellent in dispersibility. This is presumably because the ether group is easily adsorbed on the powder. This also has the effect that the upper layer surface can be smoothed by smoothing the lower layer coating film.
  • the coating solution of the upper layer and the lower layer has good wettability, so it is hard to cause disturbance of the interface between the upper and lower layers during simultaneous layering. Since it also has a short-chain diol having the following, the strength of the coating film can be improved and the durability can be excellent.
  • the content of the dimer diol in the polyurethane is preferably 10% by weight or more. More preferably, it is 15 to 40% by weight.
  • dimer diol those commercially available from Henkel and Toagosei can be used.
  • diols may be used in combination with a diol having a specific structure such as the dimer diol of the present invention.
  • a diol having a specific structure such as the dimer diol of the present invention.
  • a diol that can be used in combination a low molecular weight diol having a molecular weight of 500 or less is preferable, and a diol having a molecular weight of 300 or less is more preferable.
  • a low molecular weight diol having a molecular weight of 500 or less is preferable. More preferably, it is 300 or less.
  • a long-chain diol having a molecular weight of more than 500 is not preferable because the urethane bond concentration is lowered and the mechanical strength is lowered. It is preferable that the amounts used include not more than 50% by weight in the polypropylene resin.
  • diisocyanate component used in the production of the polyurethane resin of the present invention known diisocyanate components may be used, and TDI (triylene diisocyanate), MDI (diphenylmethane diisocyanate), p- Phenylene diisocyanate, 0-phenylene diisocyanate, m-phenylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, etc. are preferred. .
  • the polyurethane resin preferably has a weight average molecular weight (Mw) of 30,000 to 70,000, more preferably 40,000 to 60,000. If it is less than 30 000, the strength of the coating film decreases and the durability decreases. If it is more than 70,000, solubility in a solvent is reduced, and dispersibility is reduced.
  • Mw weight average molecular weight
  • the glass transition temperature (Tg) of the polyurethane resin is preferably from 40 ° C to 200 ° C. More preferably, it is 80 ° C to 170 ° C. If the temperature is lower than 40 ° C, the strength of the coating film at high temperatures is reduced, so that the durability and the storability are reduced. Above 200 ° C, the moldability of the calendar decreases, and the electromagnetic conversion characteristics decrease.
  • the urethane group concentration is preferably 2.5 to 4.5 mmo 1 Zg. More preferably, it is 3.0 to 4.
  • Tg glass transition temperature
  • a polar group can be contained in the polyurethane.
  • the polar group one SOa, - ⁇ _S_ ⁇ 3 M, one C_ ⁇ _ ⁇ _M, be given an P_ ⁇ 3 M 2, least one or more polar groups selected from a F_ ⁇ 4 M 2 it can.
  • M is a hydrogen atom, an alkali metal, or are at least one selected from Anmoniumu one S_ ⁇ 3 M, -OSOaM are preferred.
  • the content of the polar group preferably contains 1 X 10- 5 eq / g ⁇ 2 1 0 one 4 e qZg into the polyurethane.
  • the number of ⁇ H groups in the polyurethane resin 1 is preferably 2 to 20 per molecule of polyurethane. More preferably, the number is 3 to 15 per molecule. If the number is less than 2 per molecule, the reactivity with the isocyanate curing agent is low, so that the film strength is low and the durability is low. When the number of molecules is 20 or more, the solubility in a solvent is reduced, and the dispersibility is reduced.
  • the compound used for imparting a branched OH group the following compounds having three or more OH groups can be used.
  • the polyurethane resin 2 can be produced by polymerizing a short-chain diol having a cyclic structure and a polyol having an ether group and other low-molecular diols using diisocyanate.
  • Examples of the short-chain diol having a cyclic structure include bisphenol A, hydrogenated bisphenol A, bisphenolinol S, hydrogenated bisphenol S, bisphenol P, water
  • Examples include hydrogenated bisphenol P and ethylene oxide and propylene oxide adducts thereof, preferably hydrogenated bisphenol A and propylene oxide adduct of hydrogenated bisphenol A.
  • the content of the short-chain diol having a cyclic structure is preferably from 20 to 40% by weight. If it is less than 20% by weight, the mechanical strength is reduced and the durability is reduced. If it is 40% by weight or more, the solubility in a solvent is reduced, and the dispersibility is reduced.
  • polyol containing an ether group examples include bisphenol A, hydrogenated bisphenol, bisphenol S, hydrogenated bisphenol S, bisphenol P, hydrogenated bisphenol P, and polyethylene oxide and polypropylene oxide adducts thereof.
  • Preferred are hydrogenated bisphenol A and a polypropylene oxide adduct of hydrogenated bisphenol A.
  • the content of the ether group-containing polyol is preferably from 20% by weight to 45% by weight.
  • the content is less than 20% by weight, it is difficult to adsorb the powder, and the dispersibility is reduced. On the other hand, when the content is more than 45% by weight, the strength of the coating film is reduced, so that the durability is reduced.
  • the ether group concentration in the polyurethane is preferably from 1 to 6 mmo 1 / g, more preferably from 3 to 6 mmo 1 Zg.
  • the dispersibility will be reduced, and if it is more than 6 mmo lZg, the coating film strength will be reduced and the durability will be easily reduced.
  • a diol that can be used in combination a low molecular weight diol having a molecular weight of 500 or less is preferable, and a diol having a molecular weight of 300 or less is more preferable.
  • CHDM cyclohexane dimethanol
  • CHD cyclohexanediol
  • H-BP A hydrogenated bisphenol A
  • Bisphenol A Bisphenol A
  • Bisphenol ⁇
  • diols can be mentioned as diols that can be used in combination, but polyester diols and polyether diols are not preferred.
  • a long-chain diol having a molecular weight of more than 500 is not preferable because the urethane bond concentration decreases and the mechanical strength decreases. It is preferred that the amount of these be used be 50% by weight or less in the polypropylene resin.
  • TDI tolylene diisocyanate
  • MDI diphenyl methane diisocyanate
  • p-phenylene diisocyanate p-phenylene diisocyanate
  • 0-phenylene diisocyanate m—funini Preference is given to range isocyanates, xylylene diisocyanates, hydrogenated xylylene diisocyanates, isophorone diisocyanates and the like.
  • the urethane group concentration is preferably 2.5 to 4.5 mmo 1 Zg. More preferably, it is 3.0 to 4. Ommol / g. If it is less than 2.5 mmo 1 Zg, the Tg of the coating film will decrease and the durability will decrease. If it is more than 4.5 mmo 1 Zg, the solubility in the solvent will be reduced, and the dispersibility will be reduced. In addition, it will be impossible to contain a polyol inevitably, and it will be difficult to adjust the molecular weight, which will cause inconvenience in synthesis. If it is too large, the dispersibility decreases.
  • the polyurethane resin 2 preferably has a weight average molecular weight (Mw) of 30,000 to 70,000, and more preferably 40,000 to 60,000. If it is less than 30,000, the strength of the coating film decreases and the durability decreases. If it is 70,000 or more, the solubility in the solvent decreases, and the dispersibility decreases.
  • Mw weight average molecular weight
  • the glass transition temperature (Tg) of the polyurethane resin is preferably from 40 ° C to 200 ° C. More preferably, it is 70 ° C to 180 ° C.
  • the temperature is lower than 4 ° C, the strength of the coating film at high temperatures is reduced, so that the durability and the storability are reduced.
  • the force renderability decreases and the electromagnetic conversion characteristics decrease.
  • a polar group can be contained in the polyurethane.
  • the polar group one S0 3 M, one ⁇ _S0 3 M, one C_ ⁇ _ ⁇ _M, -PO3M2, - even rather small selected from P_ ⁇ 4 M 2 can include one or more polar groups.
  • -M represents a hydrogen atom, an alkali metal, or a kind least selected from Anmoniumu one S_ ⁇ 3 M, -0 S OaM Is preferred.
  • the content of the polar group preferably contains 1 X 10 _5 eqZg 2 1 0 one 4 e qZg in Poriuretan. Since a is less than 1 X 10- 5 is adsorption to magnetic insufficient dispersibility is lowered. Further, solubility in 2 X 10- 4 or more when it comes to solvent dispersibility is lowered so reduced.
  • OH groups in the polyurethane resin preferably 2 to 20 per molecule of polyurethane. More preferably, the number is 4 to 15 per molecule. If the number is less than 3 per molecule, the reactivity with the isocyanate curing agent is low, so that the film strength is low and the durability is low. Further, when the number is more than 15 / molecule, the solubility in a solvent is reduced, so that the dispersibility is reduced.
  • polyurethane resin 2 examples include a polyurethane resin made of a polyether polyol having the following chemical structure.
  • R 44 dihydric alcohol group with 521 carbon atoms
  • X a dihydric alcohol residue having 210 carbon atoms
  • Y a diester compound represented by a dicarboxylic acid residue having 310 carbon atoms is used as a lubricant to improve compatibility with the dimer glycol-containing polyurethane resin of the present invention.
  • a lubricant to improve compatibility with the dimer glycol-containing polyurethane resin of the present invention.
  • the compatibility between the ester lubricant and the binder is high, there has been a problem that the ester lubricant plasticizes the binder, lowers the strength of the binder, and lowers the durability of the magnetic recording medium.
  • the polyurethane resin of the present application has a high mechanical strength, and has a high mechanical strength even when it is compatible with a diester-based lubricant, so that the durability is high. It is also taken up in the binder Perhaps because the lubricant gradually migrates to the tape surface, or because it has excellent durability during high-speed sliding and uses the fact that it gradually migrates to the surface, the diester lubricant on the magnetic layer surface can be set low. Since the coefficient of friction of the tape during low-speed running can be reduced, the durability of repeated running can be improved.
  • Examples thereof include 2-propylene glycol, 1,3-butanediol, and 1.4-butanediol. Of these, 1,2-propylene glycol, 1,
  • Residues of 3-butanediol and 1,4-butanediol are preferred, and ethylene glycol, neopentyldaricol and 1.3-propanediol are more preferred.
  • R, R 2 2 is preferably a fatty acid residue having a carbon number of 5-2 1, good branch, either straight. Further, the carbon chain preferably contains an unsaturated bond, and those having the same structure as RR 2 are preferable.
  • the chain length of the R 1 R 2 2 is preferably 5 to 2 1 with carbon number. More preferably, it is from 8 to 17, and if it is too short, it is easy to volatilize, and if the temperature becomes high during friction, the surface area of the magnetic layer decreases and the durability decreases.
  • Preferred compounds include neopentyl diol glycol dioleate, ethylene glycol dioleate, neopentyl diol glycol dimylate, neopentyl glycol dilaurate, neopentyl diol glycol didecanoate, neopentyl glycol dioctanoate and neopentyl glycol dioctanoate.
  • succinic Saturated dicarboxylic acids such as acid, daltaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, maleic acid, fumaric
  • R 33, R 4 4 is a C 2 1 alcohol residue having 5 to carbon atoms, branched, or may be either straight-chain aliphatic alcohols. It may be unsaturated or saturated.
  • R 33 and R 44 preferably have the same structure, and more preferably have 8 to 18 carbon atoms.
  • the addition amount of the diester of the present invention is 0.1 to 50 parts, more preferably 2 to 25 parts, based on 100 parts by weight of the magnetic substance or the nonmagnetic powder.
  • lubricants may be used in combination with the diester compound of the present invention.
  • ester compounds and fatty acids can be used as other lubricants that can be used in combination.
  • the ester compound a saturated fatty acid ester, an unsaturated fatty acid ester, an ester of an alkylene oxide-added alcohol and a fatty acid, and the like are preferable.
  • butyl stearate, butyl palmitate, butyl myristate, amyl stearate, amylno, Lumitate, amylmi restate, 2-ethylhexyl stearate, oleyl oleate, oleyl stearate, butoxystil stearate, butoxydiethylene dalicol stearate and the like are preferred.
  • the fatty acid an unsaturated fatty acid having 12 to 22 carbon atoms is preferable, and more preferably, no fatty acid. Lumitoleic acid, oleic acid, eric acid, and linoleic acid can be mentioned.
  • a vinyl chloride-based synthetic resin may be used in combination with the polyurethane resin of the present invention.
  • the polymerization degree of the vinyl chloride resin that can be used in combination is preferably from 200 to 600, particularly preferably from 250 to 450.
  • the vinyl chloride resin may be a copolymer of a vinyl monomer, for example, vinyl acetate, vinyl alcohol, vinylidene chloride, acrylonitrile, and the like.
  • each magnetic layer various synthetic resins can be used for forming each magnetic layer.
  • synthetic resins include a cellulose derivative such as an ethylene-vinyl acetate copolymer, a nitrocell ⁇ -based resin, an acrylic resin, a polyvinyl acetate resin, a polyvinyl butyral resin, an epoxy resin, and a phenoxy resin. These can be used alone or in combination.
  • the polyurethane contained in the magnetic layer preferably contains 10 to 90% by weight in the binder, more preferably 20 to 90% by weight. In the amount of ⁇ 80% by weight. Particularly preferred is an amount of 25-60% by weight.
  • the vinyl chloride resin is preferably contained in the binder in an amount of 10 to 80% by weight, more preferably 20 to 7% by weight. Particularly preferred is an amount of 30 to 60% by weight.
  • a curing agent such as a polyisocyanate compound can be used together with the binder of the present invention.
  • the polyisocyanate compound include a reaction product of 3 mol of tolylene diisocyanate and 1 mol of trimethylolpropane (eg, desmoduyl L-75 (manufactured by Bayer)), xylylene diisocyanate, Reaction product of 3 moles of diisocyanate such as xamethylene diisocyanate with 1 mole of trimethylol pulp, view addition compound with 3 moles of hexamethylene diisocyanate, tolylene disocyanate 5 moles of isocyanurate compound, 3 moles of tolylene diisocyanate and 2 moles of hexamethylene diisocyanate isocyanurate adduct, isophorone diisocyanate and diph Xnyl methane diisocyanate. Can be mentioned.
  • the polyisocyanate compound contained in the magnetic layer is preferably contained in the binder in the range of 10 to 50% by weight, more preferably in the range of 20 to 40% by weight.
  • a compound having a reactive double bond such as urethane acrylate may be used.
  • the total weight of the resin component and the curing agent (that is, the binder) is usually preferably in the range of 15 to 40 parts by weight, more preferably 100 parts by weight of the ferromagnetic powder. 20 to 30 parts by weight.
  • the ferromagnetic powder used in the magnetic recording medium of the present invention is a cobalt-containing ferromagnetic iron oxide or ferromagnetic alloy powder having an S BET specific surface area of 40 to 80 m 2 / g, preferably 50 to 7 Om 2 Zg. .
  • the crystallite size is between 12 and 25 nm, preferably between 13 and 22 ⁇ m, particularly preferably between 14 and 20 nm.
  • the major axis length is 0.05 to 0.25 ⁇ m, preferably 0.07 to 0.2, and particularly preferably 0.08 to 0.15 m.
  • Examples of the ferromagnetic powder include Fe containing Fe, Fe-Co, Fe—Ni, and Co—Ni—Fe, and yttrium in the ferromagnetic powder is included.
  • the content is preferably 0.5 to 20 atomic%, more preferably 5 to 10 atomic%, in which the ratio of yttrium to iron is YZFe. ⁇ .
  • the content is less than 5 atomic%, the magnetic properties are degraded because the ferromagnetic powder cannot have a high ⁇ S, and the electromagnetic conversion properties are degraded. If it is larger than 20 atomic%, the iron content is reduced, so that the magnetic characteristics are reduced and the electromagnetic conversion characteristics are reduced.
  • aluminum, silicon, sulfur, scandium, titanium, titanium, chromium, manganese, copper, zinc, molybdenum, rhodium, and palladium within the range of less than 20 atomic% to 100 atomic% of iron.
  • the ferromagnetic metal powder may contain a small amount of water, hydroxide or oxide.
  • An example may be mentioned in which oxyferric hydroxide obtained by blowing an oxidizing gas into an aqueous suspension obtained by mixing a ferrous salt and an aluminum salt is used as a starting material.
  • one Fe ⁇ OH is preferable, and the production method is as follows.
  • a ferrous salt is neutralized with an alkali hydroxide to form an aqueous suspension of Fe (OH) a.
  • an oxidizing gas is blown into this suspension to form a needle-like ⁇ -Fe ⁇ .
  • a ferrous salt is neutralized with an alkali carbonate to form an aqueous suspension of F e C 0 3
  • a second method to fusiform single F e OOH an oxidizing gas is blown into this suspension There is.
  • Such an oxyiron hydroxide is obtained by reacting an aqueous solution of ferrous salt with an aqueous solution of ferrite to obtain an aqueous solution containing ferrous hydroxide, and oxidizing the solution by air oxidation or the like.
  • a Ni salt, a salt of an alkaline earth element such as a Ca salt, a Ba salt, a Sr salt, a Cr salt, a Zn salt, or the like may coexist in the ferrous salt aqueous solution.
  • the particle shape (axial ratio) and the like can be adjusted.
  • ferrous salt ferrous chloride, ferrous sulfate and the like are preferable.
  • alkali sodium hydroxide, aqueous ammonia, ammonium carbonate, sodium carbonate and the like are preferable.
  • Salts that can coexist include nickel chloride and calcium chloride. Chloride such as shim, barium chloride, strontium chloride, chromium chloride and zinc chloride is preferred.
  • an aqueous solution of a cobalt compound such as cobalt sulfate or cobalt chloride is stirred and mixed with the above-mentioned slurry of iron oxyhydroxide before introducing yttrium.
  • a slurry of cobalt-containing iron oxyhydroxide an aqueous solution containing a compound of yttrium can be added to the slurry, followed by stirring and mixing.
  • neodymium, samarium, brassodymium, lanthanum, and the like can be introduced into the ferromagnetic powder of the present invention. These can be introduced using chlorides such as yttrium chloride, neodymium chloride, samarium chloride, praseodymium chloride, lanthanum chloride, and nitrates such as neodymium nitrate and gadolinium nitrate, and two or more of these can be used in combination. You may.
  • the shape of the ferromagnetic powder there is no particular limitation on the shape of the ferromagnetic powder, but usually, needle-like, granular, dice-like, rice-granular, plate-like, and the like are used. It is particularly preferable to use acicular ferromagnetic powder.
  • the above resin component, curing agent, and ferromagnetic powder are kneaded and dispersed together with a solvent such as methylethyl ketone, dioxane, cyclohexanone, and ethyl acetate that are usually used in the preparation of a magnetic coating to form a magnetic coating. .
  • a solvent such as methylethyl ketone, dioxane, cyclohexanone, and ethyl acetate that are usually used in the preparation of a magnetic coating to form a magnetic coating.
  • the kneading and dispersing can be performed according to a usual method.
  • the inorganic powder used for the lower layer of the present invention may be a magnetic powder or a non-magnetic powder.
  • a non-magnetic powder it can be selected from inorganic compounds such as metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides.
  • the inorganic compound include ⁇ -alumina having a conversion rate of 90 to 100%,) 3-alumina, alumina, silicon carbide, chromium oxide, cerium oxide, iron oxide, colanda.
  • silicon nitride titanium carbide, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zirconium oxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate, molybdenum disulfide, etc. Used alone or in combination. Particularly preferred are titanium dioxide, zinc oxide, iron oxide and barium sulfate, and more preferred is titanium dioxide.
  • the average particle size of these non-magnetic powders is preferably 0.005 to 2 m.However, if necessary, non-magnetic powders having different average particle sizes may be combined, or even a single non-magnetic powder may have a wider particle size distribution to achieve the same result.
  • the average particle size of the nonmagnetic powder is from 0.01 m to 0.2 wm.
  • the pH of the nonmagnetic powder is particularly preferably between 6 and 9.
  • the specific surface area of the nonmagnetic powder is 1 to 100 m 2 / g, preferably 5 to 50 m 2 / g, and more preferably 7 to 4 Orr ⁇ Zg.
  • the crystallite size of the nonmagnetic powder is preferably from 0.01 / m to 2 m.
  • the oil absorption using DBP is from 5 to 100 m1Zl00 g, preferably from 1 to 8 Oml / 100 g, and more preferably from 20 to 100 g / 100 g.
  • the specific gravity is 1 to 12, preferably 3 to 6.
  • the shape may be any of acicular, spherical, polyhedral, and plate shapes.
  • the surface of these nonmagnetic powders by surface treatment A1 2 0 3, Si0 2, Ti0 2, ZrOa. Sn0 2, SbzOa, it is preferred that ZnO is present. Particularly although preferred for dispersibility are A1 2 0 3, Si0 2, Ti0 2, Zr0 2,, more preferred is M 2 0 3, Si0 2, Zr0 2. These may be used in combination or may be used alone. Further, a surface treatment layer coprecipitated may be used according to the purpose, or a method of first treating with alumina and then treating the surface layer with silica, or vice versa, may be employed. Further, the surface treatment layer may be a porous layer depending on the purpose, but it is generally preferable that the surface treatment layer is uniform and dense.
  • Specific surface area of carbon black is 100 to 500 m 2 / g, preferably 150 to 400 m 2 / g DBP oil absorption is 20 to 40 Otnl / 100 g, preferably 30 to 200 ml / 100g.
  • the average particle size of the carbon black is 5 m to 8 Om, preferably 10 to 50 m, more preferably 10 to 4 Om. It is preferable that the pH of bonbon black is 2 to 10, the moisture content is 0.1 to 10%, and the tap density is 0.1 to 1 gZnU.
  • carbon black used in the present invention include B LACKP E ARL S 2000, 1300, 1 000, 900, 800, 880, 700, VULCAN XC-72, manufactured by CABOT CORPORATION, and Mitsubishi Chemical Corporation. # 3050 B, 3150 B, 3250B, # 3750B, # 3950B, # 950, # 650 B, # 970B, # 850B, MA-600, Columbia Rippo Bonn, CONDU CTEX SC, RAVEX 8800, 8000.7000, 5750, 5250, 3500.2100, 2000, 1800, 1500.1255.1250, and KETSUCHIN BLACK EC manufactured by AXO Corporation.
  • Magnetic powder can also be used for the lower layer of the present invention.
  • the magnetic powder Fe 2 0 3, C o modified y- F e 2 0 3, an alloy mainly an F e, C R_ ⁇ 2 or the like is used.
  • C 0 denatured ⁇ over F e 2 ⁇ 3 are preferred.
  • the ferromagnetic powder used in the lower layer of the present invention preferably has the same composition and performance as the ferromagnetic powder used in the upper magnetic layer. However, it is known that the performance is changed between the upper and lower layers according to the purpose.
  • He of the lower magnetic layer is set lower than that of the upper magnetic layer, and Br of the lower magnetic layer is higher than that of the upper magnetic layer. It is effective to do.
  • advantages by adopting a known multilayer structure can be provided.
  • the binder, lubricant, dispersant, additive, solvent, dispersing method and the like of the lower magnetic layer or the lower nonmagnetic layer can be applied to those of the magnetic layer.
  • a known technique for the magnetic layer can be applied.
  • the magnetic paint prepared from the above materials is applied to a non-magnetic support to form a magnetic layer.
  • nonmagnetic support examples include biaxially stretched polyethylene naphthalate, polyethylene terephthalate, polyamide, polyimide, polyamide doimide, aromatic polyamide, and polybenzoxydazole. Known ones can be used. Preferred are polyethylene naphthlate and aromatic polyamide.
  • These non-magnetic supports are pre-treated with corona discharge, plasma treatment, easy adhesion treatment, heat Processing, etc. may be performed.
  • the non-magnetic support that can be used in the present invention has an excellent centering surface roughness of 0.2 to 20 nm at a cut-off value of 0.25 mm, preferably 1 to 10 nm. Preferably it is a surface. It is preferred that these non-magnetic supports have not only a small center line average surface roughness but also no coarse protrusions of 1 mm or more.
  • the thickness of the magnetic layer after drying is reduced. 0.05 to 1.00 m, more preferably 0.07 to 0.5 m, so that the lower layer after drying has a thickness of 0.5 to 2.0 m. Preferably, it is applied so as to have a thickness of 1.0 to 1.5 m.
  • Applicators for applying the above magnetic paint include air doctor coat, blade coat, rod coat, extrusion coat, air knife coat, squeeze coat, impregnation coat, river roll coat, transfer roll coat, gravure coat, kiss coat, Cast coat, spray coat, spin coat, etc. can be used. These can be referred to, for example, “Latest Coating Technology” (March 31, 1983) published by Sogo Gijutsu Center.
  • the lower layer is first applied by a coating device such as gravure, roll, blade, or extrusion, which is generally applied in the application of magnetic paint.
  • the upper layer is applied by a support pressure type extrusion coating apparatus as disclosed in JP-A-46186, JP-A-60-238179, JP-A-2-265672 and the like.
  • the back layer is formed on the surface of the non-magnetic support used in the present invention on which the magnetic paint is not applied.
  • a locking layer may be provided.
  • the back layer is formed by applying a back layer forming coating material in which a particulate component such as an abrasive and an antistatic agent and a binder are dispersed in an organic solvent on the surface of the non-magnetic support on which the magnetic coating is not applied. It is a layer provided.
  • an adhesive layer may be provided on the surface of the non-magnetic support on which the magnetic paint and the back coat layer forming paint are applied.
  • the applied layer of the magnetic paint is dried after subjecting the ferromagnetic powder contained in the layer of the magnetic paint to a magnetic field orientation treatment.
  • the coating layer is subjected to a surface smoothing treatment.
  • a surface smoothing treatment for example, a super calender roll is used.
  • calendering roll a heat-resistant plastic roll such as epoxy, polyimide, polyamide, or polyimide is used. It can also be treated with a metal roll.
  • the magnetic recording medium of the present invention has an extremely smooth surface having a center line average roughness of 0.1 to 4 nm at a cutoff value of 0.25 mm, preferably 1 to 3 nm. Preferably, there is.
  • a magnetic layer formed by selecting a specific ferromagnetic powder and a binder is subjected to the above-mentioned calendar treatment.
  • the calendering conditions include a calender roll temperature of 60 to 100 ° C, preferably 70 to 100 ° C, particularly preferably 80 to 100 ° C, and a pressure of 100 to 500 kgcm. 2 , preferably in the range of 200 to 4508 (: 1 ⁇ 2 , particularly preferably in the range of 300 to 400 kg / cm 2 ).
  • the obtained magnetic recording medium can be used after being cut into a desired size using a cutting machine or the like.
  • the binder made of the polyurethane resin of the magnetic recording medium of the present invention is significantly different from the conventional binder made of the polyurethane resin. That is, the conventional one is a molecule A polymer obtained by reacting a long-chain polyol such as polyester polyol or polyether polyol having a molecular weight of about 200 with a diisocyanate compound, and using a short-chain diol having a molecular weight of about 100 as a chain extender if necessary. I was
  • the dimer diol contained in the diol component of the polyurethane resin of the invention of the present application has a molecular weight of 5336, which corresponds to an intermediate range between the long-chain polyol and the short-chain diol used in the conventional polyurethane resin. . From this, the weight fraction of the diisocyanate component can be increased and urethane bonds can be increased as compared with polyurethane using a long-chain polyol. This makes it possible to increase the intermolecular interaction of urethane bonds and increase the mechanical strength of the polyurethane.
  • dimer diol has a cyclohexane ring having a cyclic structure
  • the mechanical strength can be increased.
  • the entanglement of polymer single chains is increased by the bent structure of dimer diol.
  • High mechanical strength that is, high elastic modulus and large elongation at break can be achieved at the same time by the interaction between this and the intermolecular hydrogen bond between urethane groups.
  • the strength of the magnetic coating film of the magnetic recording medium can be increased, and the durability can be greatly improved.
  • Dimer diol is a diol having no unsaturated bond derived by hydrogenating high-purity dimer acid, and does not have a hydrophilic connecting group such as an ester bond or an ether bond in the middle of the molecule.
  • aliphatic diols having a medium-chain alkyl branch used in combination with dimer diols specifically, aliphatic diols branched by an alkyl group having 2 or more carbon atoms, have a lower molecular weight than dimer diol, and contain a diisocyanate component in the polyurethane.
  • the urethane bond concentration can be increased and the mechanical strength, heat resistance and Tg of the polyurethane can be increased.
  • the urethane bond enhances the mechanical strength and heat resistance by hydrogen bonding in polymer solids.It has the problem of strengthening the interaction between polymer molecules in a solution, increasing the viscosity, decreasing the dispersibility of the magnetic substance, and lowering the smoothness of the coating film. .
  • the solubility of the solvent decreases, and the solvent becomes insoluble in solvents such as MEK, MIBK, toluene, and cyclohexanone.
  • the alkyl branch of the diol of the present invention blocks the hydrogen bond of the urethane bond, thereby lowering the solution viscosity, increasing the smoothness of the magnetic coating film, and improving the dispersion stability of the magnetic substance. I understood that.
  • Dimer diols have long alkyl It has two branched side chains (C6, C8) and has a high molecular solubility because of its bent molecular structure. This means that when the magnetic material is dispersed in a binder or solvent, it is easy to take a structure (conformation) that widens the molecular weight of the binder adsorbed on the magnetic material, so that the dispersibility can be improved. . As a result, the electromagnetic conversion characteristics of the magnetic recording medium could be improved.
  • the polyurethane resin of the present invention basically comprises an ester. No bond or ether bond. This makes the magnetic recording medium less susceptible to degradation and decomposition in high-temperature, high-humidity environments, and greatly improves the long-term storage stability of magnetic recording media.
  • Table 11 shows the glass transition temperature and the weight average molecular weight (Mw) of the obtained polymer.
  • NPG Neopentyl glycol
  • Ferromagnetic alloy powder composition: Fe 92% Zn 4% Ni 4% Hc 20000e, crystallite size 15 nm BET specific surface area 59m 2 / g, major axis diameter 0.12 um, needle ratio 7 ⁇ s 140 emu / g
  • 100 parts were pulverized for 10 minutes in an open mixer, and then 1 part of funnylinyl phosphate, 10 parts of methyl ethyl ketone, 3 parts of cyclohexanone, and 3 parts of toluene were added and mixed and kneaded for another 30 minutes. did.
  • the obtained magnetic coating material was applied to the surface of a 6-m-thick amide support using a reverse roll so that the thickness after drying became 2.0 m.
  • the magnetic paint is applied to the non-magnetic support, and the magnetic paint is dried.
  • the magnetic field is oriented with a 3000 Gauss magnet, and after drying, the metal roll—metal roll—metal roll—metal roll—metal roll—metal roll— Metal roll—force render processing by combination of metal roll, speed 1
  • Example 11-11 a magnetic paint was prepared using the polyurethane resin shown in Tables 13 and 13 and used.
  • Titanium oxide (average particle diameter 0. 035 m, the crystal form rutile, T I_ ⁇ 2 content greater than 90%, the surface treatment layer: alumina, S BET 35 ⁇ 42m 2 / g, true specific gravity 4. 1, pH 6. 5 -8.0) 85 parts and 1 part of phenylphosphoric acid are ground and mixed in an open kneader for 10 minutes, and then 5 parts by weight of a vinyl chloride binder (Nippon Zeon MR 110), Then, the polyurethane resin shown in Table 3, 10 parts of methyl ethyl ketone, 3 parts of cyclohexanone, and 3 parts of toluene were added, and the mixture was further mixed and kneaded for 30 minutes. Next, 15 parts of methyl ethyl ketone and 10 parts of methyl isobutyl ketone were added and kneaded for 60 minutes.
  • the mixture was filtered with a filter to prepare a non-magnetic paint.
  • the obtained non-magnetic paint has a thickness of 6 m so that the thickness after drying is 2.0 m, and immediately after that, the thickness of the magnetic paint after drying is 0.1 l ⁇ m.
  • Simultaneous multi-layer coating was performed on the surface of the aramide support using a reverse roll.
  • the magnetic paint is applied to the non-magnetic support, and the magnetic paint is undried, and the magnetic field is aligned with a 3000 gauss magnet.
  • Electromagnetic conversion characteristics Recording and reproduction were performed on a sample tape using a drum tester at a recording wavelength of 0.5 m and a head speed of 1 Om / sec. The relative C / X of the tape when the reference tape (Comparative Example 11) was set to 0 dB was evaluated.
  • Dispersion stability The prepared magnetic paint and non-magnetic paint were left at 23 ° C for 24 hours, stirred for 10 minutes, and then applied in the same manner to produce a magnetic tape.
  • the surface roughness was measured by the method for measuring the surface roughness of the magnetic layer in 2), and was represented as “aging” in the table.
  • a diol having a composition shown in Table 2-1 was dissolved in a 30% cyclohexanone solution at 60 ° C. in a nitrogen stream in a vessel equipped with a reflux condenser and a stirrer and previously purged with nitrogen. Then, 60 pm of dibutyltin dilaurate was added as a catalyst, and the mixture was further dissolved for 15 minutes. Further, the diisocyanate shown in Table 2-1 was added and heated and reacted at 90 ° C. for 6 hours to obtain a polyurethane resin solution 2-1-1.
  • Table 2-1 shows the weight average molecular weight (Mw) of the obtained polyurethane resin.
  • HB p A hydrogenated bisphenol A PG: Neopentyl glycol
  • HBP A Hydrogenated bisphenol A
  • Ferromagnetic alloy powder Composition: 89 atomic% of Fe, 5 atomic% of Co. 6 atomic% of Y He 20000 e, crystallite size 15 nm. BET specific surface area 59 m 2 Z g, major axis diameter 0. ⁇ 2 urn, needle ratio 7. ⁇ s 150 emu / g) 100 parts open 10 in a row Crush for a minute,
  • Methyl ethyl ketone 50 parts was added, and the mixture was further stirred and mixed for 20 minutes. Then, the mixture was filtered using a filter having an average pore diameter of 1 m to prepare a nonmagnetic paint for a lower layer.
  • a sulfonic acid-containing polyester resin was applied as an adhesive layer to the surface of the 10-m-thick amide support using a coil bar so that the thickness after drying was 0.1 ⁇ m.
  • the obtained non-magnetic coating for the lower layer was applied to a thickness of 1.5 m, and immediately thereafter, the magnetic coating for the upper layer was coated simultaneously using a reverse roll so that the thickness after drying was 0.1 m. .
  • the magnetic paint is applied to the non-magnetic support, and the magnetic paint is undried and the magnetic field is oriented using a 5000 Gauss Co magnet and a 4000 Gauss solenoid magnet.
  • the tape was cut into 8 mm width to produce a magnetic tape.
  • Example 2 In the same manner as in Example 1-1, Example 2_1 was replaced with the polyurethane shown in Table 2-3 in place of the upper polyurethane 2-1-1 and the lower polyurethane 2-2-1 in Example 2-3. — Magnetic tapes of 2-2-6 and Comparative Example 2-1 were produced.
  • the lower layer solution a—F e 2 ⁇ 3 (average particle size 0.15 m, S BET 52 mVg, surface treatment Al 2 ⁇ 3 , S i ⁇ 2 , pH 6.5-8.0. Diameter 0.035 wm, crystalline rutile, Ti 0 2 content 90% or more, surface treatment layer alumina, S BET 35 to 42 m 2 / g, true specific gravity 4.1, pH 6.5 to 8.0)
  • the magnetic recording media of Examples 2-7 and Comparative Example 2-2 were produced in the same manner as in Example 2-1 and Comparative Example 2-1.
  • T2ZT1 Tapes stored for 1 week in an environment of 60 ° C and 90% RH were contacted with the guide bar used for DDS 3 drive under 40 ° C and an environment of 80% RH to load 10 g (T 1). Then, a tension (T2) was applied so that the time became 8 mmZ seconds, and the friction coefficient of the magnetic surface with respect to the guide rod was calculated from T2ZT1 by the following equation.
  • NPG Neopentyl glycol
  • Table 3-2 The dicarboxylic acids and diol components described in Table 3-2 were synthesized by dehydration and condensation by a conventional method.
  • Table 2-2 shows the weight average molecular weight (Mw) of the obtained polyester polyol.
  • Table 3-2 Dicarboxylic acid diol components
  • Polyurethane resin 3-2 was prepared in the same manner as for polyurethane 1-1 using the polyester polyol shown in Table 3-2 and the materials shown in Table 3-3.
  • Table 3-3 shows the weight average molecular weight (Mw) of the obtained polyurethane resin 2-2.
  • Ferromagnetic alloy powder composition: 89 atomic% of Fe, 5 atomic% of Co, 6 atomic% of Y, He 2000 ⁇ e, crystallite size 15 nm, BET specific surface area 59 m 2 / g, major axis diameter 0.1 2 wm, needle ratio 7, ⁇ s 1 50 emu / g
  • -Pulverize for 10 minutes with a kneader, then knead with 60 parts of polyurethane 3-1-12 parts (solid content) and 60 parts of cyclohexanone shown in Table 3-1 for 60 minutes.
  • Methyl ethyl ketone cyclohexanone 6/4 200 parts was added and dispersed with a sand mill for 120 minutes. to this
  • the sulfonic acid-containing polyester resin as an adhesive layer has a thickness of 0.1 after drying. m was applied to the surface of the 10-m-thick aramid support using a coil bar.
  • the obtained non-magnetic coating for lower layer was applied to 1.5, and immediately thereafter, the upper magnetic coating was applied simultaneously with a reverse roll so that the thickness after drying became 0.1 ⁇ m.
  • the magnetic paint is applied to the non-magnetic support, the magnetic paint is not dried, and the magnetic field is oriented by a 500 gauss C0 magnet and a 4000 gauss solenoid magnet.
  • Metal roll-Metal roll-Metal roll-Metal roll-Metal roll Combined force length treatment (speed 10 OmZ min, linear pressure SOO kgZcrru temperature 90 ° C), then cut to 3.8 mm width Magnetic tape.
  • Examples 3-2 to 3-6 were prepared in the same manner as in Example 3-1 except that the upper polyurethane 3-1-1 and the lower polyurethane 3-2-1 were changed to the polyurethanes shown in Table 3-4. A magnetic tape of Comparative Example 3-1 was produced.
  • the magnetic layer surface of the tape stored for 1 week in an environment of 60 C and 90% RH was brought into contact with the guide rod used in the DDS 3 drive in an environment of 40 ° C and 80% RH, and a load of 10 g (T 1) was applied. Then, a tension (T2) was applied so as to be 8 mmZ seconds, and the friction coefficient of the magnetic surface with respect to the guide rod was obtained from T2 ZT1 by the following equation.
  • Friction coefficient 1 ⁇ I n (T2 / T1)
  • the measurement was repeated up to 500 passes, and the friction coefficients of the first pass and the 500th pass were determined.
  • HBP A Hydrogenated bisphenol A
  • NPG Neopentyl glycol
  • Ferromagnetic alloy powder composition: Fe 92%, Zn4%, Xi 4%, Hc 2000Oe, Crystallite size 1 5 nm, 8 £ Ding specific surface area of 59111 m2 / 8, a major axis diameter 0. 12 m, acicular ratio 7, milled ⁇ s 140 emu / g
  • a major axis diameter 0. 12 m, acicular ratio 7, milled ⁇ s 140 emu / g
  • the obtained magnetic coating material was applied to the surface of the 6-layer thick amide support using a reverse roll so that the thickness after drying was 2.0 ⁇ m.
  • the magnetic paint is applied to the non-magnetic support, and the magnetic paint is undried.
  • the magnetic field is oriented with a 3000 gauss magnet, and after drying, the metal roll-1 metal roll-metal roll-metal roll-metal opening-1 roll
  • DVC digital video tape recorder
  • Titanium oxide (average particle size 0. 0 3 5 m, crystal forms rutile, T i 0 2 content of 90% or more, a surface treated layer; alumina, S BET 3 5 ⁇ 4 2 m 2 / g, true specific gravity 4. 1, pH 6.5-8.0) 85 parts and phenylphosphoric acid 1 part are pulverized and mixed with an open kneader for 10 minutes, and then 5 parts by weight of a vinyl chloride binder (Nippon Zeon MR110) And, the polyurethane resin shown in Table 4-1, 10 parts of methyl ethyl ketone, 3 parts of cyclohexanone, and 3 parts of toluene were added, and the mixture was further mixed and kneaded for 30 minutes. Next, and 15 parts of methyl ethyl ketone and 10 parts of methyl isobutyl ketone were added and kneaded for 60 minutes.
  • the obtained non-magnetic paint is placed on the surface of a 6 m-thick aramide support so that the thickness of the dried non-magnetic paint is 1.0 m, and then the thickness of the dried magnetic paint is 0.1 m. And simultaneous multi-layer coating.
  • the non-magnetic support coated with the magnetic paint is oriented in a magnetic field with a magnet of 300 gauss in a state where the magnetic paint is not dried, and after drying, the metal roll, the metal roll, the metal roll, and the metal opening are dried.
  • a metal roll at a speed of 100 mZ, a linear pressure of 300 kg, and a temperature of 90 ° C
  • 6.35 The tape was cut to a width of mm, and magnetic tapes of Examples 411 to 414 and Comparative Examples 413 were produced.
  • the center line average roughness was defined as Ra under the condition of a cutoff of 0.25 mm by an optical interferometry using a digital optical profilometer-1 (manufactured by WYKO).
  • a 60-minute length tape was run 100 times repeatedly using a digital video recorder (Matsushita Electric NV-BJ1) at 40 ° C and 10% RH, and the friction of the tape magnetic layer surface before and after running The coefficient was measured at 23 ° C and 50% RH.
  • the binder comprising the polyurethane resin of the magnetic recording medium of the present invention comprises a magnetic material
  • the electromagnetic conversion characteristics of the magnetic recording medium could be improved.
  • the polyurethane resin of the present invention is basically different from polyesterpolyurethane (polyurethane obtained by polymerizing a polyester polyol with diisocyanate) and polyether polyurethane (urethane obtained by polymerizing a polyether polyol with diisocyanate), which has been conventionally used. Since it has neither an ester bond nor an ether bond, it is less susceptible to degradation and decomposition under high-temperature and high-humidity environments, and greatly improves the long-term storage characteristics of magnetic recording media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

明 細 書
磁気記録媒体
技 術 分 野
強磁性粉末と結合剤とを分散させてなる磁性層を非磁性支持体上に設けた磁気 記録媒体において、 極めて優れた電磁変換特性及び耐久性、 保存性をもつ磁気記 録媒体に関する。
背 景 技 術
録音用テープ、 ビデオテープ、 あるいはフロッピ一ディスク等の磁気記録媒体 として、 強磁性粉末を結合剤中に分散させた磁性層を非磁性支持体上に設けた磁 気記録媒体が用いられている。
磁気記録媒体は、 電磁変換特性、 走行耐久性および走行性能などの諸特性が優 れていることが要求されている。
このような優れた電磁変換特性を有すると同時に、 磁気記録媒体は良好な走行 耐久性を持つことが要求されている。 そして、 良好な走行耐久性を得るために、 —般には研磨剤および潤滑剤が磁性層中に添加されている。
磁気記録媒体の使用機器において媒体と磁気へッ ドが摺動接触するために、 磁 気記録媒体の結合剤中の低分子成分が磁性層表面付近に浮上して磁気へッ ドに付 着する磁気へッ ド汚れが生じるという問題があつた。
磁気ヘッ ド汚れは電磁変換特性の劣化の原因となっている。 とくに、 高密度記 録用の機器では、 磁気ヘッ ド回転数が上昇しており、 家庭用のデジタルビデオテ ープレコーダにあっても、 磁気ヘッ ドの回転数が 9 6 0 0回転 Z分であり、 民生 用のアナログビデオテープレコーダの 1 8 0 0回転 Z分、 業務用の 5 0 0 0回転 分に比べて格段に高速回転数であり、 磁気記録媒体と磁気へッ ドとの摺動する 速度が大きくなり、 また磁気へッ ドも薄膜へッ ド等のように小型のものが用いら れており、 磁気記録媒体から生じる成分による磁気へッ ド汚れの改善が求められ ている。 また、 フロッピーディスクに代えて用いられる高密度記録用の磁気記録 媒体にあっても、 同様に強度が大きく信頼性の高い磁気記録媒体が要求されてい る。
このような問題を改善する方法として、 硬い結合剤を用いて磁性層の硬度を高 める方法が行われており、 耐磨耗性が良好で分散性も高いポリゥレタン樹脂を結 合剤とすることが行われている。
例えば、 特開昭 6 1— 1 4 8 6 2 6号公報には、 長鎖ジオール成分のうち、 少 なくとも 2 0重量%がビスフ ノール類あるいはその誘導体と芳香族二塩基酸あ るいはその誘導体から得られたポリエステルジオールを用いたポリエステルポリ ゥレタン樹脂を用いた磁気記録媒体が記載されているが、 分散性が不十分である とともに、 ェステル結合の加水分解による保存性の劣化が問題であつた。
また、 特開平 1一 2 6 7 8 2 9号公報には、 環状構造を有するポリエーテルポ リオールを全ポリオール成分の 8 0重量%以上を含むポリエーテルポリオ一ルポ リウレタン樹脂を用いた磁気記録媒体が記載されているが、 分散性あるいは耐久 性の点で不充分であった。 また、 特開平 4— 3 2 4 1 1 0号公報には、 水添ダイ マ一酸を含むポリエステルポリオールを用いたポリウレタン樹脂を用いた磁気記 録媒体が記載されているが、 水添ダイマ一酸をポリエステルポリオールの骨格に 導入しており、 分散性が不十分である。 また、 エステル結合の加水分解による劣 化の面では、 ビスフエノールを用いたものよりは優れてはいるものの、 なお不十 分であり、 特に強磁性金属粉末を磁性体に用いた磁気記録媒体では保存性が不十 分であった。
本発明は、 優れた分散性、 塗膜平滑性、 電磁変換特性を有する磁気記録媒体を 得ることを課題とするものであり、 走行耐久性および長期保存性に優れ、 塗布液 を作製した後の経時安定性に優れた磁気記録媒体を提供することを課題とするも のである。
発明の開示
本発明は、 支持体上に強磁性粉末と結合剤を分散した磁性層を有する磁気記録 媒体において、 前記結合剤が環状構造および長鎖アルキル鎖を有するジオール化 合物とジィソシァネート化合物を重合して得られるポリゥレタン樹脂 1を含有す る磁気記録媒体である。
前記支持体と前記磁性層の間に無機粉体または磁性粉体の少なくともいずれか 一方と結合剤とを分散させてなる下層を設けた磁気記録媒体において、 前記磁性 層または下層の少なくともいずれか一方の結合剤がポリゥレタン樹脂 1を含有す る前記の磁気記録媒体である。
ポリゥレタン樹脂 1がダイマージオール及び中鎖アルキル分岐鎖を有する脂肪 族ジオールをジオール成分として含むポリウレタン樹脂である前記の磁気記録媒 体である。
前記ポリウレタン樹脂が一 S〇3M、 一 S〇4M、 一 C〇〇M、 - P O 3M 2 , - P 04 2, スルホベタイン基、 ホスホべタイン基、 スルファミン酸、 スルフアミ ン酸塩基から選ばれる少なく とも 1種以上の極性基を 1 X 1 0— 6〜2 x l 0— 4 e q / g含有する前記の磁気記録媒体である。
中鎖アルキル分岐鎖を有する脂肪族ジオールの分岐アルキル基の炭素数が 2な いし 1 8である前記の磁気記録媒体である。
前記ポリゥレタン樹脂 1 と環状構造を有するポリエーテルポリオールからなる ポリウレタン樹脂 2を含む前記の磁気記録媒体である。
前記ジオール化合物が式 1または式 2から選ばれる少なくとも 1種である前記 の磁気記録媒体である。 式 1
Figure imgf000005_0001
式 2
HO-R3-Z— R4-OH
I
R6 ただし、 zはベンゼン環、 ナフタ レン環、 シク□へキサン環から選ばれる。
R 3、 R4は、 炭素数 1〜 1 8のアルキレン基
R 5, R 6は、 炭素数 2〜 1 8のアルキル基
ジオール化合物が式 3〜式 6から選ばれる少なく とも 1種である前記の磁気記 録媒体である。 ヽ 4- OH
Figure imgf000006_0001
R5
式 5 式 6
R4 - OH
Figure imgf000006_0002
R5 ただし、 R3、 R4は、 炭素数 1〜 18のアルキレン基
R5、 R6は、 炭素数 2〜 18のアルキル基
前記ジォ一ル化合物が式 7で示されるダイマージオールである前記の磁気記録 媒体である。
Figure imgf000006_0003
また、 前記ポリゥレ夕ン樹脂 2がポリウレタン中に 1〜6mmZgのエーテル 基を有するポリオール 10~50重量%と環状構造を有するジオールからなる鎖 延長剤 15〜50重量%と有機ジィソシァネー卜からなるからなるポリゥレタン 樹脂である前記の磁気記録媒体である。
前記磁性層の結合剤としてポリウレタン樹脂 1を含み、 前記下層の結合剤とし てポリゥレタン樹脂 2を含む前記の磁気記録媒体である。
前記結合剤が前記ポリウレタン樹脂 1と、 ポリエステルポリオールと鎖延長剤 とジィソシァネート化合物を重合して得られるポリゥレン樹脂 3を含み、 該ポリ エステルポリオールは、 二塩基酸として脂肪族二塩基酸を含み、 アルキル分岐側 鎖を有する環状構造を持たない脂肪族ジオールをジオール成分として含み、 該鎖 延長剤はアルキル分岐側鎖を持つ脂肪族ジオールを鎖延長剤として含む前記の磁 気記録媒体である。
前記ジオール化合物が前記式 1または前記式 2から選ばれる少なくとも 1種で ある前記の磁気記録媒体である。
前記ジオール化合物が前記式 3〜前記式 6から選ばれる少なくとも 1種である 前記の磁気記録媒体である。
前記ジォ一ル化合物が前記式 7で示されるダイマージオールである前記の磁気 記録媒体である。
前記磁性層の結合剤として前記ポリウレタン樹脂 1を含み、 前記下層の結合剤 として前記ポリウレタン樹脂 3を含む前記の磁気記録媒体である。
前記ポリゥレタン樹脂 1は、 ポリウレタン中にダイマージオールを 10重量% 以上含むポリゥレタン樹脂である前記の磁気記録媒体である。
前記ポリウレタン樹脂 3のポリウレタン中のウレタン基濃度が 2. 5〜4. 5 mmo 1 Zgである前記の磁気記録媒体である。
非磁性支持体上に強磁性粉末と結合剤を分散した磁性層を有する磁気記録媒体 において、 該結合剤が前記ポリウレタン樹脂 1を含有するとともに、 該磁性層に 式 8からあるいは式 9から選ばれるジエステル化合物を含む前記の磁気記録媒体 である。
式 8
R1に X - R22
式 9
R33-Y-R44
ただし、 R1 R22 :炭素数 5〜21の脂肪酸残基
R33、 R44 :炭素数 5〜21の 2価アルコール基
X:炭素数 2〜 10の 2価アルコール残基 Y:炭素数 3〜 10のジカルボン酸残基 前記ポリゥレタン樹脂 1 を形成するジオール化合物が式 1 または式 2から選ばれ る少なくとも 1種である前記の磁気記録媒体である。
前記ジオール化合物が式 3〜式 6から選ばれる少なくとも 1種である前記の磁気 記録媒体である。
前記ジオール化合物が式 7で示されるダイマージオールである前記の磁気記録媒 体である。
前記ポリウレタン樹脂 1はジオール成分として分子量 8 0 0以上のポリエステ ルポリオールを含有しないポリウレタン樹脂である前記の磁気記録媒体である。 前記ポリウレタン樹脂 1力; 一 S〇3M、 一 S〇"VI、 一 C〇OM、 - P O 3M 2, — P〇4M2から選ばれる少なくとも 1種の極性基を 1 X 1 0— 6 e q Zg〜2 1 0一4 e q Z g 含有するポリゥレタン樹脂である前記の磁気記録媒体である。
発明を実施するための最良の形態
本発明は、 特定の構造のジオールを有し、 極めて高いガラス転移温度 (T g ) と、 繰り返し走行安定性、 分散性、 平滑性が優れたポリウレタン樹脂 1 と環状構 造を有するポリエステルポリオ一ルからなるポリウレタン樹脂 2を結合剤とする ことによって、 繰り返し走行性、 分散性、 平滑性等が優れた強度の大きな磁性層 を形成することが可能であることを見出したものであり、 特にポリウレタン樹脂 2を下層に含有させることによって、 下層に含有させたエステル系潤滑剤の供給 機能を利用することによって磁性層の表面には潤滑剤を徐々に供給させることに よって優れた耐久性を得ることができることを見出したものである。
本発明に好適なポリウレタン樹脂 1は、 環状構造および少なく とも 2個の長鎖 アルキル鎖を有するジオール化合物とジイソシァネート化合物を重合して得られ るポリウレタン樹脂である。 従来のポリウレタン系結合剤は、 分子量 2 0 0 0程 度のポリエステルポリオール、 ポリエーテルポリオールなどの長鎖ポリオールと ジイソシァネート化合物を反応させて重合したもので、 必要に応じて分子量 1 0 0前後の短鎖ジオールが鎖延長剤として使用されていた。
本願のポリウレタンのジオール成分には、 ベンゼン環、 ナフタ レン環、 シクロ へキサン環から選ばれる環状構造と、 少なく とも 2個の炭素数 1〜 1 8のアルキ レン基、 あるいは更に炭素数 2〜 1 8の 2個のアルキレン基を有するものであり、 長鎖ジオールと短鎖ジオールとの中間的な大きさを有するので、 長鎖ポリオール を有するポリゥレタンに比べてジィソシァネート成分の重量分率を増やし、 ゥレ 夕ン結合を増やすことができる。 これによりゥレタン結合の分子間相互作用を高 めポリウレタンの力学強度を高めることが可能となる。
また、 ベンゼン環、 ナフタ レン環、 シクロへキサン環から選ばれる環状構造を 有するために力学強度を高めることができるという特徴を有している。
具体的には、 ジオール化合物が式 1または式 2から選ばれる少なくとも 1種を 挙げることができる。 式 1
Figure imgf000009_0001
式 2
R5
HO - R3— Z— R4— OH
R6 ただし、 Zはベンゼン環、 ナフタ レン環、 シクロへキサン環から選ばれる。
R 3、 R 4は、 炭素数 1〜 1 8のアルキレン基
R 5、 R 6は、 炭素数 2〜 1 8のアルキル基
また、 ジオール化合物として式 3〜式 6から選ばれる少なくとも 1種を挙げる とができる。 式 3 式 4
Figure imgf000009_0002
式 5 式 6
HO
Figure imgf000009_0003
ただし、 R 3、 R 4は、 炭素数 1〜 1 8のアルキレン基 R 5、 R 6は、 炭素数 2〜 1 8のアルキル基 また、 ベンゼン環、 ナフタ レン環、 シクロへキサン環から選ばれる環状構造を 有するために力学強度を高めることができるという特徴を有している。
特に、 これらの環状構造および長鎖アルキル鎖を有するジオール化合物として は、 ダイマージオールが好ましい。
ダイマージオールは、 ダイマ一酸から得られたもので、 下記の式 7の化学構造 を有している。
Figure imgf000010_0001
ダイマージオールは分子量が 5 3 7であり長鎖ポリオールと短鎖ジオールの中 間的な範囲に当たる。 このことから長鎖ポリオールを使うポリウレタンに比べて ジイソシァネート成分の重量分率を増やし、 ゥレタン結合を増やすことができる。 これによりウレタン結合の分子間相互作用を増しポリゥレタンの力学強度を高め ることが可能となる。 またダイマージオールには環状構造であるシクロへキサン 環を持つことからも力学強度を高めることができる。
ダイマージオールは、 炭素数が 1 8の不飽和脂肪族カルボン酸の 2量体である ダイマー酸とした後に、 不飽和結合およびカルボン酸を水添還元し、 さらに蒸留 精製して得られるものである。 ダイマージオールは、 飽和炭化水素の基本骨格を 有し、 不飽和結合を持たず、 また分子の中間にエステル結合、 エーテル結合など の連結基を持たない。
したがって、 このジオールとジイソシァネート化合物からなるポリウレタン樹 脂ではエステル結合、 エーテル結合を持たない。 このことは高温、 高湿環境下で の劣化、 分解を受けにく く し、 磁気記録媒体の長期保存性を大きく向上させる。 特に従来のポリエステルポリオールを用いたポリゥレタンではエステル結合部分 の加水分解やポリエーテルウレタンのエーテル結合の熱分解が問題となっていた 力 本願のポリウレタンではこの問題を解決することができた。
また、 先行技術として挙げた特開平 4 - 3 2 4 1 1 0号公報に記載のポリゥレ タンにおいては、 ポリエステルポリオールの酸成分に水添ダイマ一酸を使用して ポリマー全体の疎水性を高めて耐加水分解性を向上させてはいるものの、 基本的 にエステル結合を含有するポリエステル系のゥレタンである以上、 耐加水分解性 の問題を解決することはできない。 特に微粒子金属磁性体を用いた磁気記録媒体 では磁性体の表面の触媒活性は高くバインダ一の分解反応も促進されるため重要 な問題である。
またダイマージオールには長いァルキル分岐側鎖を 2本もち、 屈曲した分子構 造をとるため溶剤への溶解性が高い。 このことは磁性体を結合剤、 および溶剤中 で分散するときに、 磁性体に吸着した結合剤の分子鎖の広がりを大きくするよう な構造 (コンフォーメーション) をとりやすいため分散性を向上することができ た。 これによつて磁気記録媒体の電磁変換特性を向上させることができた。
さらに、 ダイマージオールの屈曲した構造によりポリマー鎖の絡み合いを増や す。 これとウレタン基間の分子間水素結合による相互作用で高い力学強度、 すな わち高い弾性率と大きな破断伸びを両立させることができる。 磁気記録媒体の磁 性塗膜の強度を大きく し耐久性を大きく向上することができる。
このようなダイマージオールを用いたポリゥレタンは上層または下層のどちら に用いても前記の効果を発揮するが特に直接的にへッ ドと接触する最上層の磁性 層に用いることで高い電磁変換特性と走行耐久性をえることができる。
一方、 ダイマージオールを用いたポリウレタンは、 従来のポリエステル系ゃポ リエーテル系ポリウレタンに比べてエステル系潤滑剤が相溶しやすい特徴があり、 特に下層に用いると、 先に先行技術として述べた特開平 4 - 3 2 4 1 1 0号公報 に記載のポリゥレタンにおいては、 エステル系潤滑剤はポリウレタン樹脂と相溶 することで上層表面に存在しにく くなるので特に繰り返し走行での耐久性に不利 に働く力;、 ダイマージオールからなるポリウレタン樹脂を用いる場合には、 ポリ ウレタン樹脂 2を併用することにより一層優れた塗膜平滑性、 電磁変換特性を有 し、 繰り返し走行耐久性にも優れた磁気記録媒体が得られた。 特にポリウレタン 樹脂 2は特に下層に用いると効果を発揮する。
すなわち、 ポリウレタン樹脂 2には、 エステル系潤滑剤が相溶しにくいので塗 膜中にエステル潤滑剤が存在しにく く塗膜表面にエステル系潤滑剤を供給する機 能が生じるために、 ポリゥレタン樹脂 2を用いた下層の表面から上層へとエステ ル系潤滑剤が供給されるのでより優れた耐久性を得ることができたと考えられる。 また、 ポリゥレタン樹脂 2は適正量のエーテル基を有するので下層粉体の分散性 に優れる。 これはエーテル基が粉体に吸着しやすいためと考えられる。 これによ り下層塗膜を平滑にすることで上層表面も平滑にできるという効果も得られる。 また、 上層と下層の塗布液の濡れ性が良いので同時重層時に上下層間での界面 の乱れ等が生じにくい等の塗布適正にも優れているために平滑な塗膜が得られ、 更に環状構造を有する短鎖ジオールも有するので塗膜強度が向上でき耐久性にも 優れたものとなる。
ポリゥレタン樹脂 1においては、 ポリゥレタン中のダイマージオールの含有量 は、 1 0重量%以上含まれるのが好ましい。 更に好ましくは、 1 5〜4 0重量% である。
ダイマージオールは、 ヘンケル社、 東亞合成などから市販されている物を用い ることができる。
本発明のダイマージオール等の特定の構造のジオールとともに他のジオールを 併用しても良い。 併用することができるジオールとしては、 分子量 5 0 0以下の 低分子ジオールが好ましく、 分子量 3 0 0以下のものがより好ましい。
具体的には、 分子量 5 0 0以下の低分子ジオールが好ましい。 さらには 3 0 0 以下のものが好ましい。
具体的には、 エチレングリコール、 1 , 3—プロパンジオール、 プロピレング リ コール、 ネオペンチルダリ コール (N P G ) 、 1 . 4—ブタンジオール、 1 , 5—ペンタンジオール、 1, 6—へキサンジオール、 1, 8—オクタンジオール、 1 , 9—ノナンジオール、 2, 2—ジメチル一 1, 3—プロパンジォ一ル、 2— ェチル—2ブチルー 1. 3—プロパンジオール、 2, 2—ジェチルー 1, 3—プ 口パンジオール等の脂肪族グリコール、 シク□へキサンジメタノール (CHDM) 、 シクロへキサンジオール (CHD) 、 水素化ビスフエノール A (H-BPA) 等 の脂環族ダリコール及びこれらのエチレンォキシド付加物、 プロピレンォキシド 付加物、 ビスフエノール A (BPA) 、 ビスフエノール S、 ビスフエノール P、 ビスフエノール Fなど芳香族グリコール及びこれらのエチレンォキシド付加物、 プロピレンォキシド付加物を挙げることができる。 なかでも特に好ましいものは 水素化ビスフヱノール Aを挙げることができる。
分子量 500を超える長鎖ジオールはウレタン結合濃度が低下するため力学強 度が低下し好ましくない。 これらの使用量はポリゥレ夕ン中の 50重量%以下の 量を含むことが好ましい。
本発明のポリウレタン樹脂の製造に使用されるジィソシァネート成分としては、 公知のものが用いられるが、 TD I (ト リ レンジイソシァネート) 、 MD I (ジ フエニルメタンジイソシァネート) 、 p—フエ二レンジイソシァネート、 0—フ ェニレンジイソシァネー ト、 m—フエ二レンジイソシァネート、 キシリ レンジィ ソシァネー ト、 水素化キシリ レンジイソシァネート、 イソホロンジイソシァネ一 トなどが好ましい。
また、 ポリウレタン樹脂の分子量は、 重量平均分子量 (Mw) が 30000〜 70000が好ましく、 さらに好ましくは 40000〜60000である。 30 000未満では塗膜強度が低下し、 耐久性が低下する。 70000以上では溶剤 への溶解性が低下し、 分散性が低下する。
ポリウレタン樹脂のガラス転移温度 (Tg) は、 40°C〜200°Cが好ましい。 更に好ましくは 80°C〜 1 70°Cである。 40°C未満では高温での塗膜強度が低 下するので耐久性、 保存性が低下する。 200°C以上では、 カレンダ一成型性が 低下し、 電磁変換特性が低下する。
また、 ウレタン基濃度は、 2. 5〜4. 5mmo 1 Zgが好ましい。 さらに好 ましくは 3. 0〜4. Ommo l /gである。 2. 5 mm o 1 Z gよりも少ない と塗膜のガラス転移温度 (Tg) が低下し、 耐久性が低下する。 4. 5mmo 1 Zgよりも多いと溶剤への溶解性が低下し、 分散性が低下するとともに、 ポリオ —ルを含有できなくなるために分子量の調整等が困難となる等の合成上の不都合 が生じやすい。
ポリウレタン中には、 極性基を含有させることができる。 極性基としては、 一 SOa , —〇S〇3M、 一 C〇〇M、 一 P〇3M2、 一 F〇4M2から選ばれる少な くとも 1種以上の極性基を挙げることができる。 Mは、 水素原子、 アルカリ金属、 またアンモニゥムから選ばれる少なくとも一種であり、 一 S〇3M、 -OSOaM が好ましい。 極性基の含有量は、 ポリウレタン中に 1 X 10— 5e q/g〜2 1 0一4 e qZg含有することが好ましい。 1 X 1 0一5 e q g未満であると磁性体 への吸着が不十分となるので分散性が低下する。 また、 S x l O e qZg以上 となると溶剤への溶解性が低下するので分散性が低下する。
ポリウレタン樹脂 1中の〇 H基、 ポリウレタン 1分子当たり 2個〜 20個が好 ましい。 更に好ましくは、 1分子当たり 3個〜 15個である。 1分子当たり 2個 未満であると、 イソシァネート硬化剤との反応性が低いので塗膜強度が低く、 耐 久性が低くなる。 また、 20個ノ分子以上となると溶剤への溶解性が低下するの で分散性が低下する。
分岐 OH基を付与するために用いる化合物としては、 以下の OH基が 3官能以 上の化合物を用いることができる。
ト リメチ口一ルェタン、 ト リメチロールプロパン、 無水ト リメ リ ッ ト酸、 グリ セリン、 ペンタエリスリ トール、 へキサント リオール、 3官能以上 OH基を持つ 分岐ポリエステル、 あるいはポリエーテルエステルである。
これらのなかでも、 3官能のものが好ましい。 4官能以上になると硬化剤との 反応が速くなりすぎポッ トライフが短くなる。
ポリウレタン樹脂 2は、 環状構造を有する短鎖ジオール、 エーテル基を含有す るポリオールとともにその他の低分子ジオールをジイソシァネ一トを用いて重合 することによって製造することができる。
環状構造を有する短鎖ジオールとしては、 ビスフヱノール A、 水素化ビスフエ ノール A、 ビスフニノール S、 水素化ビスフエノール S、 ビスフエノール P、 水 素化ビスフェノール P及びこれらのエチレンォキシド、 プロピレンォキシド付加 物を挙げることができ、 好ましくは水素化ビスフエノール Aおよび水素化ビスフ ヱノール Aのプロピレンォキシド付加物である。 環状構造を有する短鎖ジオール の含有量は 20〜40重量%が好ましい。 20重量%以下であると力学強度が低 下し、 耐久性が低下する。 また、 40重量%以上では、 溶剤への溶解性が低下し、 分散性が低下する。
エーテル基を含有するポリオールとしては、 ビスフエノール A、 水素化ビスフ エノール 、 ビスフエノール S、 水素化ビスフエノール S、 ビスフエノール P、 水素化ビスフエノール P及びこれらのポリエチレンォキシド、 ポリプロピレンォ キシド付加物を挙げることができ、 好ましくは水素化ビスフヱノール A及び水素 化ビスフエノール Aのポリプロピレンォキシド付加物である。
エーテル基を含有するポリオールの含量は 20重量%〜45重量%が好ましい。
20重量%以下では粉体への吸着がしにく くなり分散性が低下する。 また、 45 重量%以上では塗膜強度が低下するので耐久性が低下する。
ポリウレタン中のエーテル基濃度は、 l〜6mmo 1 /gであることがこのま しく、 より好ましくは 3〜6mmo 1 Zgである。
1 mmo i /gよりも少ないと分散性が低下し、 6mmo lZgよりも多いと 塗膜強度が低下し、 耐久性が低下しやすい。
併用できるジオールとしては、 分子量 500以下の低分子ジオールが好ましく、 さらには分子量 300以下のものが好ましい。
具体的には、 エチレングリコール、 1, 3—プロパンジオール、 プロピレング リコール、 ネオペンチルダリコール (NPG) 、 1, 4—ブタンジオール、 1, 5_ペンタンジオール、 1, 6—へキサンジオール、 1, 8—オクタンジオール、 1, 9—ノナンジオール、 2, 2—ジメチルー 1, 3—プロパンジオール、 2— ェチル一2—ブチルー 1, 3—プロパンジオール、 2, 2—ジェチルー 1, 3— プロパンジォール等の脂肪族グリコールを挙げることができ、 シクロへキサンジ メタノール (CHDM) 、 シクロへキサンジオール (CHD) 、 水素化ビスフエ ノール A (H-BP A) 等の脂環族グリコールを挙げることができ、 また、 ビス フエノール A (BP A) 、 ビスフエノ一ル≤、 ビスフエノール P、 ビスフニノー ル F等の芳香族ダリコールを挙げることができる。
併用することが可能なジオールとしては多くのジオールを挙げることができる が、 ポリエステルジオール、 ポリエーテルジオールは好ましくない。
また、 分子量 500を越える長鎖ジオールはウレタン結合濃度が低下するため 力学強度が低下するので好ましくない。 これらの使用量はポリゥレ夕ン中の 50 重量%以下とすることが好ましい。
また、 ジイソシァネートとしては、 公知のものが用いられる。 具体的には、 T D I (ト リ レンジイソシァネート) 、 MD I (ジフエニルメタンジイソシァネー ト) 、 p—フエ二レンジイソシァネート、 0—フエ二レンジイソシァネート、 m —フニ二レンジイソシァネート、 キシリ レンジイソシァネート、 水素化キシリ レ ンジイソシァネート、 イソホロンジイソシァネートなどが好ましい。
また、 ウレタン基濃度は、 2. 5〜4. 5mmo 1 Zgが好ましい。 さらに好 ましくは 3. 0〜4. Ommo l /gである。 2. 5 mm o 1 Zgよりも少ない と塗膜の Tgが低下し、 耐久性が低下する。 4. 5mmo 1 Zgよりも多いと溶 剤への溶解性が低下し、 分散性が低下するとともに、 必然的にポリオールを含有 できなくなるために分子量の調整が困難となり合成上の不都合が生じやすい。 多 すぎると分散性が低下する。
また、 ポリウレタン樹脂 2の分子量は、 重量平均分子量 (Mw) が 30000 〜70000が好ましく、 さらに好ましくは 40000〜60000である。 3 0000未満では塗膜強度が低下し、 耐久性が低下する。 70000以上では溶 剤への溶解性が低下し、 分散性が低下する。
ポリウレタン樹脂のガラス転移温度 (Tg) は、 40°C〜200°Cが好ましい。 更に好ましくは 70°C〜 1 80°Cである。
4〇°C未満では、 高温での塗膜強度が低下するので耐久性、 保存性が低下する。 200°C以上では力レンダー成型性が低下し、 電磁変換特性が低下する。
ポリウレタン中には、 極性基を含有させることができる。 極性基としては、 一 S03M、 一〇S03M、 一 C〇〇M、 -PO3M2, — P〇4M2から選ばれる少な く とも 1種以上の極性基を挙げることができる。 -Mは、 水素原子、 アルカリ金属、 またアンモニゥムから選ばれる少なく とも一種であり、 一 S〇3M、 -0 S OaM が好ましい。 極性基の含有量は、 ポリゥレタン中に 1 X 10_5eqZg 2 1 0一4 e qZg含有することが好ましい。 1 X 10— 5未満であると磁性体への吸着 が不十分となるので分散性が低下する。 また、 2 X 10— 4以上となると溶剤への 溶解性が低下するので分散性が低下する。
ポリウレタン樹脂中の OH基、 ポリウレタン 1分子当たり 2個〜 20個が好ま しい。 更に好ましくは、 1分子当たり 4個〜 15個である。 1分子当たり 3個未 満であると、 イソシァネート硬化剤との反応性が低いので塗膜強度が低く、 耐久 性が低くなる。 また、 15個/分子以上となると溶剤への溶解性が低下するので 分散性が低下する。
ポリウレタン樹脂 2は、 具体的には、 下記の化学構造のポリエーテルポリオ一 ルからなるポリゥレタン樹脂を挙げることができる。
Figure imgf000017_0001
また、 本願発明では、
式 8
R11 - X - R22
式 9
R33 - Y— R44
ただし、 R11. R22 :炭素数 5 21の
R33. R44 :炭素数 5 21の 2価アルコール基
X:炭素数 2 10の 2価アルコール残基 Y:炭素数 3 10のジカルボン酸残基 で表されるジエステル化合物を潤滑剤として用いると、 本願発明のダイマージォ ール含有ポリウレタン樹脂との相溶性が高いという特徴がある。 従来、 エステル 系潤滑剤と結合剤の相溶性が高い場合エステル系潤滑剤が結合剤を可塑化し結合 剤の強度を低下させ、 磁気記録媒体の耐久性を低下させると言う問題があつた。 しかし本願のポリウレタン樹脂は力学強度が高く、 ジエステル系潤滑剤と相溶し てもまだ充分な力学強度を有するため耐久性は高い。 また結合剤中に取り込まれ た潤滑剤が徐々にテープ表面に移行するためか、 高速摺動時の耐久性に優れ、 徐 々に表面に移行する点を利用して、 磁性層表面のジエステル潤滑剤を低く設定で きるため低速走行時のテープの摩擦係数を低くすることができるので繰り返し走 行の耐久性を向上させることができる。
本発明で使用する、 式 8 R 1 1— X— R 2 2で表されるジエステル化合物からな る潤滑剤において Xで表される炭素数 2〜 1 0の 2価アルコール残基としては、 エチレングリコール、 ネオペンチルダリコール、 1 , 3 —プロパンジオール、 1 ,
2 —プロピレングリコール、 1 , 3—ブタンジオール、 1 . 4—ブタンジオール を挙げることができる。 これらのなかでも、 1 , 2—プロピレングリコール、 1 ,
3—ブタンジオール、 1 , 4—ブタンジオールの残基などが好ましく、 更には、 エチレングリコール、 ネオペンチルダリコール、 1 . 3—プロパンジオールが好 ましい。
また、 R 、 R 2 2は、 炭素数 5〜2 1の脂肪酸残基であることが好ましく、 分 岐、 直鎖のいずれでも良い。 また、 炭素鎖には不飽和結合が含まれる方が好まし く、 R R 2が同じ構造であるものが好ましい。
また、 R 1 R 2 2の鎖長は、 炭素数で 5〜2 1であることが好ましい。 より好 ましくは 8〜 1 7であることが好ましく、 短すぎると揮発しやすく、 摩擦時に高 温になると磁性層表面量が減り耐久性が低下する。
大きすぎると粘度が高くなり、 流体潤滑性能が低下し耐久性が低下する。
好ましい化合物としては、 ネオペンチルダリコールジォレエ一ト、 エチレング リコ一ルジォレエート、 ネオペンチルダリコールジミ リステート、 ネオペンチル グリコールジラウレート、 ネオペンチルダリコールジデカノエート、 ネオペンチ ルグリコ一ルジォクタノエ一トを挙げることができる。
また、 式 9において、 R 3 3— Y— R 4 4で表されるジエステル化合物からなる潤 滑剤において、 Yで表される炭素数 3ないし 1 0のジカルボン酸残基としては、 マロン酸、 コハク酸、 ダルタル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼ ライン酸、 セバシン酸、 メチルマロン酸、 ェチルマロン酸、 プロピルマロン酸等 の飽和ジカルボン酸、 マレイン酸、 フマル酸、 ダルタコン酸、 ィタコン酸、 ムコ ン酸等の不飽和ジカルボン酸の残基が用いられる。 また、 R 33、 R 4 4は、 炭素数 5ないし 2 1のアルコール残基で、 分岐、 または 直鎖の脂肪族アルコールのいずれでも良い。 また、 不飽和、 飽和いずれでも良い。 R 33、 R 44は同じ構造のものが好ましく、 さらに炭素数は 8ないし 1 8が更に好 ましい。
本発明のジエステルの添加量は、 磁性体あるいは非磁性粉体 1 0 0重量部に対 して 0. 1〜5 0部、 さらに好ましくは 2〜2 5部である。
また、 本発明のジエステル化合物にはその他の潤滑剤を併用しても良い。 併用 できるその他の潤滑剤としては、 エステル化合物、 脂肪酸を用いることができる。 エステル化合物としては、 飽和脂肪酸エステル、 不飽和脂肪酸エステル、 アルキ レンォキサイ ド付加アルコールと脂肪酸とのエステルなどが好ましい。
具体的には、 プチルステアレート、 ブチルパルミテート、 ブチルミ リステート、 アミルステアレート、 アミルノ、。ルミテート、 アミルミ リステート、 2—ェチルへ キシルステアレート、 ォレイルォレエート、 ォレイルステアレート、 ブトキシェ チルステアレ一ト、 ブトキシジエチレンダリコールステアレートなどが好ましい。 また、 脂肪酸としては、 炭素数 1 2〜2 2の不飽和脂肪酸が好ましく、 更に好 ましくは、 ノヽ。ルミ ト レイン酸、 ォレイン酸、 エル力酸、 リノール酸を挙げること ができる。
本発明のポリゥレタン樹脂に塩化ビニル系の合成樹脂を併用しても良い。 併用 することができる塩化ビニル系樹脂の重合度は 2 0 0〜6 0 0が好ましく、 2 5 0〜4 5 0が特に好ましい。 塩化ビニル系樹脂はビニル系モノマー、 例えば酢酸 ビニル、 ビニルアルコール、 塩化ビニリデン、 アクリロニト リルなどを共重合さ せたものでもよい。
本発明のポリウレタン樹脂および塩化ビニル系樹脂の他に、 各磁性層の形成に は各種の合成樹脂を用いることができる。 例えば、 エチレン ·酢酸ビニル共重合 体、 ニトロセル π—ス樹脂などのセルロース誘導体、 アクリル樹脂、 ポリビニル ァセ夕一ル樹脂、 ポリビニルプチラール樹脂、 エポキシ樹脂、 フヱノキシ樹脂で ある。 これらは、 単独でも組み合わせでも使用することができる。
他の合成樹脂を併用する場合には、 磁性層に含まれるポリウレタンは、 結合剤 中に 1 0〜9 0重量%を含有されていることが好ましく、 さらに好ましくは 2 0 〜 80重量%の量である。 特に好ましくは 25〜60重量%の量である。 また塩 化ビニル系樹脂は、 結合剤中に 1 0〜80重量%含有されていることが好ましく、 さらに好ましくは 20〜7◦重量%の量である。 特に好ましくは 30〜60重量 %の量である。
また、 本発明の結合剤とともに、 ポリイソシァネート化合物等の硬化剤を使用 することができる。 ポリイソシァネート化合物の例としては、 ト リ レンジイソシ ァネート 3モルとト リメチロールプロパン 1モルとの反応性生物 (例、 デスモジ ユール L— 75 (バイエル社製) ) 、 キシリ レンジイソシァネートあるいはへキ サメチレンジィソシァネートなどのジイソシァネート 3モルと ト リメチロールプ 口パン 1モルとの反応生成物、 へキサメチレンジイソシァネート 3モルとのビュ —レツ ト付加化合物、 ト リ レンジィソシァネート 5モルのィソシァヌ レート化合 物、 トリ レンジイソシァネート 3モルとへキサメチレンジイソシァネート 2モル のィソシァヌレート付加化合物、 ィソホロンジィソシァネートおよびジフ Xニル メタンジィソシァネー卜のポリマ一を挙げることができる。
磁性層に含まれるポリイソシァネート化合物は、 結合剤中に 1 0〜50重量% の範囲で含有されていることが好ましく、 さらに好ましくは 20〜40重量%の 範囲である。
また、 電子線照射による硬化処理を行う場合には、 ウレタンアタリ レート等の ような反応性二重結合を有する化合物を使用することができる。
樹脂成分と硬化剤との合計 (すなわち結合剤) の重量は、 強磁性粉末 1 00重 量部に対して、 通常 1 5〜40重量部の範囲内にあることが好ましく、 さらに好 ましくは 20〜 30重量部である。
本発明の磁気記録媒体に使用される強磁性粉末は、 コバルト含有強磁性酸化鉄 又は強磁性合金粉末で S BET 比表面積が 40〜 80 m2 /g、 好ましくは 50〜 7 Om2 Zgである。 結晶子サイズは 12〜25nm、 好ましくは 1 3〜 22 η mであり、 特に好ましくは 1 4〜20 nmである。 長軸長は 0. 05〜0. 25 〃mであり、 好ましくは 0. 07〜0. 2 であり、 特に好ましくは 0. 08 〜0. 15 mである。 強磁性粉末としては、 ィッ ト リウムを含む F e、 F e - C o、 Fe— N i、 C o— N i—F eが挙げられ、 強磁性粉末中のイッ ト リウム 含有量は、 鉄原子に対してイッ ト リウム原子の比、 YZ F eが 0. 5原子%〜2 0原子%が好ましく、 更に好ましくは、 5〜 1 0原子%でぁる。 ◦. 5原子%ょ りも少ないと強磁性粉末の高 σ S化できないために磁気特性が低下し、 電磁変換 特性が低下する。 2 0原子%ょりも大きいと鉄の含有量が少なくなるので磁気特 性が低下し、 電磁変換特性が低下する。 さらに、 鉄 1 0 0原子%に対して 2 0原 子%以下の範囲内で、 アルミニウム、 ケィ素、 硫黄、 スカンジウム、 チタン、 ノく ナジゥム、 クロム、 マンガン、 銅、 亜鉛、 モリブデン、 ロジウム、 パラジウム、 錫、 アンチモン、 ホウ素、 バリウム、 タンタル、 タングステン、 レニウム、 金、 鉛、 リン、 ランタン、 セリウム、 プラセオジム、 ネオジム、 テルル、 ビスマス等 を含むことができる。 また、 強磁性金属粉末が少量の水、 水酸化物または酸化物 を含むものなどであってもよい。
本発明の、 コバルト、 イツ ト リゥムを導入した強磁性粉末の製造方法の一例を 示す。
第一鉄塩とアル力リを混合した水性懸濁液に、 酸化性気体を吹き込むことによ つて得られるォキシ水酸化鉄を出発原料とする例を挙げることができる。
このォキシ水酸化鉄の種類としては、 一 F e〇O Hが好ましく、 その製法と しては、 第一鉄塩を水酸化アルカリで中和して F e (O H) a の水性懸濁液とし、 この懸濁液に酸化性ガスを吹き込んで針状の α— F e〇〇Ηとする第一の製法が ある。 一方、 第一鉄塩を炭酸アルカリで中和して F e C 03 の水性懸濁液とし、 この懸濁液に酸化性気体を吹き込んで紡錘状の 一 F e O O Hとする第二の製法 がある。 このようなォキシ水酸化鉄は第一鉄塩水溶液とアル力リ水溶液とを反応 させて水酸化第一鉄を含有する水溶液を得て、 これを空気酸化等により酸化して 得られたものであることが好ましい。 この際、 第一鉄塩水溶液に N i塩や、 C a 塩、 B a塩、 S r塩等のアルカリ土類元素の塩、 C r塩、 Z n塩などを共存させ ても良く、 このような塩を適宣選択して用いることによって粒子形状 (軸比) な どを調製することができる。
第一鉄塩としては、 塩化第一鉄、 硫酸第一鉄等が好ましい。 またアルカリとし ては水酸化ナト リウム、 アンモニア水、 炭酸アンモニゥム、 炭酸ナト リウム等が 好ましい。 また、 共存させることができる塩としては、 塩化ニッケル、 塩化カル シゥム、 塩化バリウム、 塩化ス トロンチウム、 塩化クロム、 塩化亜鉛等の塩化物 が好ましい。
次いで、 鉄にコバルトを導入する場合は、 イ ッ ト リウムを導入する前に、 硫酸 コバルト、 塩化コバルト等のコバルト化合物の水溶液を前記のォキシ水酸化鉄の スラリーに撹拌混合する。 コバルトを含有するォキシ水酸化鉄のスラリーを調製 した後、 このスラリーにイッ ト リウムの化合物を含有する水溶液を添加し、 撹拌 混合することによつて導入することができる。
本発明の強磁性粉末には、 イッ トリウム以外にもネオジム、 サマリウム、 ブラ セォジゥム、 ランタン等を導入することができる。 これらは、 塩化イッ ト リウム、 塩化ネオジム、 塩化サマリウム、 塩化プラセォジゥム、 塩化ランタン等の塩化物、 硝酸ネオジム、 硝酸ガドリニゥム等の硝酸塩などを用いて導入することができ、 これらは、 二種以上を併用しても良い。
強磁性粉末の形状に特に制限はないが、 通常は針状、 粒状、 サイコロ状、 米粒 状および板状のものなどが使用される。 とくに針状の強磁性粉末を使用すること が好ましい。
上記の樹脂成分、 硬化剤および強磁性粉末を、 通常磁性塗料の調製の際に使用 されているメチルェチルケトン、 ジォキサン、 シクロへキサノン、 酢酸ェチル等 の溶剤と共に混練分散して磁性塗料とする。 混練分散は通常の方法に従って行う ことができる。
なお、 磁性塗料中には、 上記成分以外に、 《— A l 2 03 、 C r 2 03 等の研 磨材、 カーボンブラック等の帯電防止剤、 脂肪酸、 脂肪酸エステル、 シリコーン ォィル等の潤滑剤、 分散材など通常使用されている添加剤あるレ、は充塡剤を含む ものであってもよい。
次に本発明が多層構成の場合における下層非磁性層または下層磁性層について 説明する。 本発明の下層に用いられる無機粉末は、 磁性粉末、 非磁性粉末を問わ ない。 例えば非磁性粉末の場合、 金属酸化物、 金属炭酸塩、 金属硫酸塩、 金属窒 化物、 金属炭化物、 金属硫化物、 等の無機質化合物から選択することができる。 無機化合物としては例えば 化率 9 0〜 1 0 0 %の α —アルミナ、 )3—アルミナ、 アルミナ、 炭化ケィ素、 酸化クロム、 酸化セリウム、 ひ—酸化鉄、 コランダ ム、 窒化珪素、 チタンカーバイ ト、 酸化チタン、 二酸化珪素、 酸化すず、 酸化マ グネシゥム、 酸化タングステン、 酸化ジルコニウム、 窒化ホウ素、 酸化亜鉛、 炭 酸カルシウム、 硫酸カルシウム、 硫酸バリウム、 二硫化モリブデンなどが単独ま たは組合せで使用される。 特に好ましいのは二酸化チタン、 酸化亜鉛、 酸化鉄、 硫酸バリウムであり、 更に好ましいのは二酸化チタンである。 これら非磁性粉末 の平均粒径は 0. 005〜2 mが好ましいが、 必要に応じて平均粒径の異なる 非磁性粉末を組み合わせたり、 単独の非磁性粉末でも粒径分布を広く して同様の 効果をもたせることもできる。 とりわけ好ましいのは非磁性粉末の平均粒径は 0. 01 m〜0. 2 wmである。 非磁性粉末の p Hは 6〜 9の間が特に好ましい。 非磁性粉末の比表面積は 1〜 1 00m2/g、 好ましくは 5〜50m2/g、 更に 好ましくは 7〜4 Orr^Zgである。 非磁性粉末の結晶子サイス"は 0. 0 1 / m〜2 mが好ましい。 DBPを用いた吸油量は 5〜 100m 1 Zl00g、 好ましくは 1 O〜8 Om l /100g、 更に好ましくは 20〜6 Om 1 /100gである。 比重は 1〜 12、 好ましくは 3〜6である。 形状は針状、 球状、 多面体状、 板状のいずれで も良い。
これらの非磁性粉末の表面には、 表面処理によって A1203、 Si02, Ti02、 ZrOa. Sn02, SbzOa, ZnOが存在することが好ましい。 特に分散性に好ましいのは A1203、 Si02、 Ti02、 Zr02、 であるが、 更に好ましいのは M203、 Si02、 Zr02である。 これ らは組み合わせて使用しても良いし、 単独で用いることもできる。 また、 目的に 応じて共沈させた表面処理層を用いても良いし、 先ずアルミナで処理した後にそ の表層をシリカで処理する方法、 またはその逆の方法を採ることもできる。 また、 表面処理層は目的に応じて多孔質層にしても構わないが、 均質で密である方が一 般には好ましい。
下層にカーボンブラックを混合させて公知の効果である Rsを下げることがで きるとともに、 所望のマイクロピツカ一ス硬度を得る事ができる。 このためには ゴム用ファーネスブラック、 ゴム用サーマルブラック、 カラ一用カーボンブラッ ク、 アセチレンブラック等を用いることができる。
カーボンブラックの比表面積は 1 00〜500m2/g、 好ましくは 1 50〜4 00m2/g DBP吸油量は 20〜40 Otnl/100g、 好ましくは 30〜 200 ml /100gである。 カーボンブラックの平均粒径は 5m 〜 8 Om 、 好ましく 1 0〜 50m 、 さらに好ましくは 1 0〜4 Om〃である。 力一ボンブラックの pHは 2〜10、 含水率は 0. 1〜 1 0%、 タップ密度は 0. 1〜 1 gZnU、 が好まし い。 本発明に用いられるカーボンブラックの具体的な例としてはキヤボッ ト社製、 B LACKP E ARL S 2000、 1 300、 1 000、 900、 800, 8 80, 700, VULCAN X C— 72、 三菱化成工業社製、 # 3050 B, 3150 B, 3250B、 #3750B、 #3950B、 #950、 #650 B, #970B、 #850B、 MA— 600、 コロンビア力一ボン社製、 CONDU CTEX SC、 RAVEX 8800, 8000.7000, 5750, 5250, 3500.2100, 2000, 1800, 1500.1255.1250, ァクゾ一社製ケツチヱンブラック E Cなどが挙げられる。
本発明の下層にはまた、 磁性粉末を用いることもできる。 磁性粉末としては、 Fe 203、 C o変性 y— F e 203、 一 F eを主成分とする合金、 C r〇2等 が用いられる。 特に、 C 0変性ァー F e23が好ましい。 本発明の下層に用いら れる強磁性粉末は上層磁性層に用いられる強磁性粉末と同様な組成、 性能が好ま しい。 ただし、 目的に応じて、 上下層で性能を変化させることは公知の通りであ る。 例えば、 長波長記録特性を向上させるためには、 下層磁性層の Heは上層磁 性層のそれより低く設定することが望ましく、 また、 下層磁性層の B rを上層磁 性層のそれより高くする事が有効である。 それ以外にも、 公知の重層構成を採る 事による利点を付与させることができる。
下層磁性層または下層非磁性層の結合剤、 潤滑剤、 分散剤、 添加剤、 溶剤、 分 散方法その他は磁性層のそれが適用できる。 特に、 結合剤量、 種類、 添加剤、 分 散剤の添加量、 種類に関しては磁性層に関する公知技術が適用できる。
以上の材料により調製した磁性塗料を非磁性支持体上に塗布して磁性層を形成 する。
本発明に用いることのできる非磁性支持体としては二軸延伸を行ったポリェチ レンナフタ レート、 ポリエチレンテレフタレート、 ポリアミ ド、 ポリィミ ド、 ポ リアミ ドイミ ド、 芳香族ポリアミ ド、 ポリべンズォキシダゾール等の公知のもの が使用できる。 好ましくはポリエチレンナフ夕レ一ト、 芳香族ポリアミ ドである。 これらの非磁性支持体はあらかじめコロナ放電、 プラズマ処理、 易接着処理、 熱 処理、 などを行っても良い。 また本発明に用いることのできる非磁性支持体は中 心線平均表面粗さがカッ トオフ値 0. 25mmにおいて 0. l〜20nm、 好ま しくは 1〜 10 nmの範囲という優れた平滑性を有する表面であることが好まし い。 また、 これらの非磁性支持体は中心線平均表面粗さが小さいだけでなく 1〃 以上の粗大突起がないことがこのましい。
本発明の磁気記録媒体の製造方法は例えば、 走行下にある非磁性支持体の表面 に下層用の塗布液を塗布した後に、 あるいは同時に磁性塗料を塗布し、 磁性層の 乾燥後の層厚が 0. 05〜1. 00〃m、 より好ましくは 0. 07〜0. 5 m になるように塗布し、 下層の乾燥後の厚さが 0. 5〜2. 0 mとなるように、 より好ましくは 1. 0〜1. 5 mとなるように塗布する。
上記磁性塗料を塗布する塗布機としては、 エア一ドクターコート、 ブレードコ —ト、 ロッ ドコート、 押出しコート、 エアナイフコート、 スクイズコート、 含浸 コート、 リバ一スロールコート、 トランスファ一ロールコート、 グラビヤコート、 キスコート、 キャス トコート、 スプレイコート、 スピンコート等が利用できる。 これらについては例えば株式会社総合技術センター発行の 「最新コーティング 技術」 (昭和 58年 5月 31日) を参考にできる。
本発明を二層以上の構成の磁気記録媒体に適用する場合、 塗布する装置、 方法 の例として以下のものを提案できる。
(1) 磁性塗料の塗布で一般的に適用されるグラビア、 ロール、 ブレード、 ェク ス トルージョン等の塗布装置により、 まず下層を塗布し、 下層が未乾燥の状態の うちに特公平 1 -46186号公報、 特開昭 60-238179号公報、 特開平 2 -265672号公報等に開示されているような支持体加圧型ェクストルージョン 塗布装置により、 上層を塗布する。
(2) 特開昭 63- 88080号公報、 特開平 2-17971号公報、 特開平 2 - 2 65672号公報に開示されているような塗布液通液スリッ トを 2個有する一つ の塗布へッ ドにより上下層をほぼ同時に塗布する。
(3) 特開平 2-174965号公報に開示されているようなバックアップロール 付きのェクストルージョン塗布装置により、 上下層をほぼ同時に塗布する。
本発明で用いる非磁性支持体の磁性塗料が塗布されていない面にバック層 ッキング層) が設けられていてもよい。 通常バック層は、 非磁性支持体の磁性塗 料が塗布されていない面に、 研磨材、 帯電防止剤などの粒状成分と結合剤とを有 機溶剤に分散したバック層形成塗料を塗布して設けられた層である。
なお、 非磁性支持体の磁性塗料およびバックコート層形成塗料の塗布面に接着 剤層が設けられいてもよい。
塗布された磁性塗料の塗布層は、 磁性塗料の塗布層中に含まれる強磁性粉末を 磁場配向処理を施した後に乾燥される。
このようにして乾燥された後、 塗布層に表面平滑化処理を施す。 表面平滑化処 理には、 たとえばスーパ一カレンダーロールなどが利用される。 表面平滑化処理 を行うことにより、 乾燥時の溶剤の除去によって生じた空孔が消滅し磁性層中の 強磁性粉末の充塡率が向上するので、 電磁変換特性の高い磁気記録媒体を得るこ とができる。
カレンダー処理ロールとしてはエポキシ、 ポリイミ ド、 ポリアミ ド、 ポリアミ ドイミ ド等の耐熱性プラスチックロールを使用する。 また金属ロールで処理する こともできる。
本発明の磁気記録媒体は、 表面の中心線平均粗さが、 カットオフ値 0. 25m mにおいて 0. l〜4nm、 好ましくは 1〜 3 nmの範囲という極めて優れた平 滑性を有する表面であることが好ましい。 その方法として、 例えば上述したよう に特定の強磁性粉末と結合剤を選んで形成した磁性層を上記カレンダ一処理を施 すことにより行われる。 カレンダー処理条件としては、 カレンダーロールの温度 を 60〜100°Cの範囲、 好ましくは 70〜100°Cの範囲、 特に好ましくは 8 0〜 100°Cの範囲であり、 圧力は 100〜 500kgノ cm2 の範囲であり、 好ましくは 200〜450 8ノ(:1^2 の範囲であり、 特に好ましくは 300〜 400 kg/cm2 の範囲の条件で作動させることによって行われることが好ま しい。
得られた磁気記録媒体は、 裁断機などを使用して所望の大きさに裁断して使用 することができる。
本発明の磁気記録媒体のポリゥレタン樹脂からなる結合剤は、 従来のポリゥレ タン樹脂からなる結合剤とは大きく異なっている。 すなわち、 従来のものは分子 量 2 0 0 0程度のポリエステルポリオール、 ポリエーテルポリオールなどの長鎖 ポリオールとジイソシァネート化合物を反応させて重合したもので、 必要に応じ て分子量 1 0 0前後の短鎖ジオールを鎖延長剤として使用されていた。
ところが、 本願の発明のポリゥレタン樹脂のジオール成分に含まれるダイマー ジオールは分子量が 5 3 6であり従来のポリゥレタン樹脂に用いられていた長鎖 ポリオールと短鎖ジオールの中間的な範囲のものに相当する。 このことから長鎖 ポリオールを用いたポリウレタンに比べてジィソシァネート成分の重量分率を増 やし、 ウレタン結合を増やすことができる。 これによりウレタン結合の分子間相 互作用を増しポリウレタンの力学強度を高めることが可能となる。
またダイマージオールには環状構造であるシクロへキサン環を持つことからも 力学強度を高めることができる。 ダイマージオールの屈曲した構造によりポリマ 一鎖の絡み合いを増やす。 これとウレタン基間の分子間水素結合による相互作用 で高い力学強度、 即ち高い弾性率と大きな破断伸びを両立させることができる。 磁気記録媒体の磁性塗膜の強度を大きく し耐久性を大きく向上することができる。 ダイマージオールは高純度のダイマー酸を水素添加して誘導された不飽和結合 を持たないジオールであり、 分子の中間にエステル結合、 エーテル結合などの親 水性の連結基を持たない。 このため熱安定性、 耐加水分解性、 保存性に優れる。 更にダイマージオールと併用する中鎖アルキル分岐鎖を有する脂肪族ジオール、 具体的には炭素数 2以上のアルキル基で分岐した脂肪族ジオールはダイマージォ —ルより分子量が低く、 ポリゥレタン中のジィソシァネート成分の含有量を高め、 ウレタン結合の濃度を高めポリゥレタンの力学強度や耐熱性、 T gを高めること ができる。
ゥレタン結合はポリマー固体中では水素結合により力学強度、 耐熱性を高める 力 溶液中ではポリマー分子間の相互作用を強め粘度を上昇させ磁性体の分散性、 塗膜の平滑性を低下させる問題がある。 はなはだし 、場合は溶剤溶解性が低下し、 M E K、 M I B K、 トルエン、 シクロへキサノンなどの溶剤に溶けなくなる。 し かしながら本発明のジオールのァルキル分岐鎖がウレタン結合の水素結合をプロ ックするため溶液粘度を低下させ磁性塗膜の平滑性を高め、 さらには磁性体の分 散安定性も向上させることが分かった。 またダイマージオールには長いアルキル 分岐側鎖を 2本 (C 6、 C 8 ) もち、 屈曲した分子構造をとるため溶剤溶解性が 高い。 このことは磁性体をバインダー、 溶剤中で分散するときに、 磁性体に吸着 したバインダ一分子鎖の広がりを大きくするような構造 (コンフォーメーション) を取りやすいため分散性を向上することができた。 これによつて磁気記録媒体の 電磁変換特性を向上させることができた。
本発明のポリウレタン樹脂では従来よく用いられてきたポリエステルポリゥレ タン (ポリエステルポリオールをジイソシァネートで重合したポリウレタン) や ポリエーテルポリウレタン (ポリエーテルポリオールをジィソシァネー卜で重合 したウレタン) と違って基本的にエステル結合、 エーテル結合を持たない。 この ことは高温、 高湿環境下での劣化、 分解を受けにくく し、 磁気記録媒体の長期保 存性を大きく向上させる。 特に従来のポリエステルポリオールを用いたポリゥレ タンではエステル結合部分の加水分解やポリエーテルゥレタンのエーテル結合の 熱分解が問題となっていたが、 本願のポリゥレタンでは本質的にこの問題を解決 することができる。
また、 ポリエステルポリオールの酸成分に水添ダイマ一酸を使用してポリマー 全体の疎水性を高め耐加水分解性を向上させる従来のポリゥレタンは、 エステル 結合を含有するポリエステル系のウレタンである以上本質的にこの問題を解決す ることはできない。 とくに、 最近の微粒子金属磁性体を用いた磁気記録媒体では 磁性体の表面の触媒活性は高くバインダ一の分解反応も促進されるため重要な問 題であつたが、 本発明のポリウレタンはこのような問題点も解决することができ る。
以下に本発明の実施例を比較例とともに示し、 本発明を説明する。 実施例中の 「部」 の表示は 「重量部」 を示す。
実施例 1
実施例 1— 1〜 1 一 5および比較例 1 一 1
(ポリゥレタン樹脂の合成)
表 1 — 1において配合量とともに示す原料を、 シクロへキサノン : トルエン = 1 / 1混合溶媒中で仕込み、 ワンショッ ト法でポリウレタンを重合した。 得られ た重合体のガラス転移温度、 重量平均分子量 (Mw) を表 1 一 1に示す。 表 1
Figure imgf000029_0001
ただし表 1― 1において、
DD: ダイマージオール
EEP r : 2, 2—ジェチルー 1, 3—プロパンジオール
EBP r : 2—ェチルー 2—プチルー 1 , 3 _プロパンジオール
EFe : 3—ェチルー 1. 5—ペンタンジオール
NPG: ネオペンチルグリコール
PES : ポリエステルポリオ一ル (水添ダイマ一酸 イソフタル酸 /1, 6— へキサンジオール = 1. 8/2. 7/5. 4mo 1 , MW= 2020)
DE I S : ビス (ヒ ドロキシェチル) 5—スルホイソフタレ一トナト リゥム塩
MD I : ジフエニルメタンジイソシァネート
をそれぞれ表す。 また配合量は重量部を表す。
(磁気記録媒体の作製)
強磁性合金粉末 (組成: Fe 92% Zn 4% N i 4% Hc 2000 0e、 結晶子サイズ 15 nm BET比表面積 59m2/g、 長軸径 0. 12 u m、 針状比 7 σ s 140 emu/g) 100部をオープン二一ダ一で 10分間 粉砕し、 次いでフニニルリン酸 1部、 メチルェチルケトン 10部、 シクロへキサ ノン 3部、 トルエン 3部を添加してさらに 30分間混合、 混練した。
次に塩化ビニル系バインダー (日本ゼオン製 MR 1 10) 5部および表 1— 1 のポリウレタン樹脂 5部、 およびメチルェチルケトン 1 5部、 メチルイソブチル ケトン 1 0部を加えて 60分間混練し、 次いで
研磨剤 (A 1203 粒子サイズ 0. 3〃m ) 2部 力一ボンブラック (粒子サイズ 0. 1 m) 2部 メチルェチルケ トン 250部 を加えてサンドミルで 1 20分間分散した。 これに
ポリイソシァネート 5部 (固形分)
(日本ポリウレタン製 コロネート 3041 )
イソアミルステレート 2部 ステアリン酸 1部 メチルェチルケトン 50部 を加え、 さらに 20分間撹拌混合したあと、 1 mの平均孔径を有するフィルタ 一を用いて濾過し、 磁性塗料を調製した。
得られた磁性塗料を乾燥後の厚さが 2. 0 mになるように、 厚さ 6 mのァ ラミ ド支持体の表面にリバースロールを用いて塗布した。 磁性塗料が塗布された 非磁性支持体を、 磁性塗料が未乾燥の状態で 3000ガウスの磁石で磁場配向を 行ない、 さらに乾燥後、 金属ロール—金属ロール—金属ロール一金属ロール—金 属ロール—金属ロール—金属ロールの組み合せによる力レンダ一処理を、 速度 1
00 m/分、 線圧3001 8 111、 温度 90 °Cの条件で行なった後に 6. 35 mm幅に裁断しデジタルビデオテープレコーダ用の実施例 1— 1〜 1— 5および 比較例 1一 1のビデオテープを作製した。
実施例 1— 6〜 1— 8および比較例 1一 2
(上層用磁性塗料の調製)
実施例 1一 1と同様に、 表 1一 3に記載のポリウレタン樹脂を用いて磁性塗料 を調製して用いた。
(下層用非磁性塗料の調製)
酸化チタン (平均粒径 0. 035 m、 結晶型ルチル、 T i〇2 含有量 90% 以上、 表面処理層: アルミナ、 SBET 35〜42m2/g 、 真比重 4. 1、 pH 6. 5〜8. 0) 85部とフエニルリン酸 1部をオープンニーダ一で 1 0分間粉 砕混合し、 次いで塩化ビニル系バインダー (日本ゼオン製 MR 1 1 0) 5重量部、 および表 3のポリウレタン樹脂、 メチルェチルケトン 1 0部、 シクロへキサノン 3部、 トルエン 3部を添加してさらに 30分間混合、 混練した。 次いで、 メチル ェチルケトン 1 5部、 メチルイソブチルケトン 10部を加えて 60分間混練し、 次いで
カーボンブラック (粒子サイズ 0. 1 〃m) 2部
メチルェチルケトン 200部
を加えてサンドミルで 1 20分間分散した。 これに
プチルステアレート 2部
ステアリン酸 1部
メチルェチルケトン 50部
を加え、 さらに 20分間撹拌混合したあと、 1 mの平均孔径を有するフィルタ
—を用いて濾過し、 非磁性塗料を調製した。
得られた非磁性塗料を乾燥後の厚さが 2. 0 mとなるように、 さらにその直 後に磁性塗料を乾燥後の厚さが 0. l 〃mになるように、 厚さ 6 mのァラミ ド 支持体の表面にリバースロールを用いて同時重層塗布した。
磁性塗料が塗布された非磁性支持体を、 磁性塗料が未乾燥の状態で 3000ガ ウスの磁石で磁場配向を行ない、 さらに乾燥後、 金属ロール—金属ロール一金属 ロール—金属ロール一金属 ロール—金属ロール—金属ロールの組み合せによる力 レンダ一処理を速度 1 0 OmZ分、 線圧3001<8 (:111、 温度 90でで行なつ た後 6. 35 mm幅に裁断し、 実施例 1— 6〜 1— 8および比較例 1— 2のビデ ォテープを作製した。
実施例 1一 1〜 1一 8および比較例 1一 1〜 1— 2で得られた磁気テープを下 記の測定方法によって測定し、 その結果を表 1—2、 表 1—3に示す。
〔測定方法〕
( 1) 電磁変換特性:試料テープにドラムテスタ一を用いて記録波長 0. 5 m、 へッ ド速度 1 Om/秒の条件で記録し、 再生した。 基準テープ (比較例 1一 1 ) を 0 d Bとしたときのテープの相対的な C/Xを評価した。
(2) 磁性層表面粗さ R a : デジタルォプチカルプロフィメータ一 (WYKO製) を用いた光干渉法により、 カッ トオフ 0. 25 mmの条件で中心線平均粗さを R aとし、 表において 「直後」 として表した。
(3) 分散安定性: 調製した磁性塗料、 非磁性塗料を 23 °Cで 24時間放置した 後に 10分間撹拌した後に同様に塗布して磁気テープを作製し、 その磁性層表面 の粗さを (2) の磁性層表面粗さの測定方法によって測定し、 表において、 「経 時」 として表した。
(4) 耐久性: へッ ド汚れ、 出力低下: 60分長のテープをデジタルビデオテ一 プレコーダ (松下電器製 NV— BJ 1) を用いて 40°C 1 0%RH環境下で 1 00回連続繰り返し走行させ、 ビデオヘッ ドの汚れを観察し、 またビデオ出力を 連続して記録し、 1回目の出力を 0 d Bとして出力低下を測定した。
ビデオへッ ド汚れ
汚れが目視で観察されなかったもの :優
汚れが目視で観察されたもの : 不良
(5) 保存性: テープ試料を 60°C90%RH環境で 1ヶ月保存した後、 (4) と同様の評価を行った。
表 1一 2 耐久性 保存性
C/X 表面粗さ (nm) へッ ド 出力 へッ ド 出力
R a 汚れ 低下 汚れ 低下 ホ°リウレタン 直後 経時 (dB) (dB) 実施例 1一 1 a 1.6 2.1 2.2 優 -0.1 優 - 0.3 実施例 1一 2 b 1.6 2.0 2.0 優 -0.2 - 0.1 実施例 1一 3 c 1.8 2.1 2.1 -0.2 -0.2 実施例 1一 4 d 1.4 2.2 2.3 優 -0.1 -0.4 実施例 1一 5 e 1.5 2.3 2.3 優 -0.3 優 -0.4 比較例 1一 1 f 0 3.3 3.9 不良 -2.2 不良 -4.9 表 1 — 3
Figure imgf000033_0001
実施例 2
(ポリウレタン樹脂 2— 1の合成)
表 2— 1 に示した組成のジオールを還流式冷却器、 撹拌機を具備し、 予め窒素 置換した容器にシクロへキサノン 30%溶液に窒素気流下 60°Cで溶解した。 次 いで触媒として、 ジブチルスズジラウレ一ト 60 p pmを加え更に 1 5分間溶解 した。 更に表 2— 1に示したジィソシァネ— トを加え 90°Cにて 6時間加熱反応 し、 ポリウレタン樹脂溶液 2— 1— 1を得た。
得られたポリウレタン樹脂の重量平均分子量 (Mw) を表 2— 1に示す。
表 2— 1
Figure imgf000033_0002
ただし表 2— 1 において、
DD : ダイマージオール
HB p A : 水素化ビスフヱノール A PG : ネオペンチルグリコール
DMH : ジメチロールヘプタン
PES : ポリエステルポリオ一ル (水添ダイマー酸 Zイソフタル酸 ネオペン チルダリコール = 1. 8/2. 7/5. 4mo 1、 MW= 2020)
DE I S : ビス (ヒ ドロキシェチル) 5—スルホイソフ夕 レートナトリゥム塩
MD I : ジフエニルメタンジイソシァネート
TD I : ト リ レンジイソシァネート
をそれぞれ表し、 また配合量は重量部を表す。
表 2— 2
Figure imgf000034_0001
ただし表 2— 2において、
HBP A : 水素化ビスフヱノール A
DE I S : ビス (ヒ ドロキシェチル) 5—スルホイソフタレートナト リウム塩
MD I : ジフエニルメタンジイソシァネート
をそれぞれ表し、 それぞれの量を、 重量%で表す。
実施例 2— 1
(上層用磁性塗料の調製)
強磁性合金粉末 (組成: F e 89原子%, C o 5原子%. Y 6原子% He 20000 e, 結晶子サイズ 15 nm. B E T比表面積 59 m2Z g , 長軸径 0. \ 2 urn, 針状比 7. σ s 150 emu/g) 100部 をオープン 二一ダ一で 10分間粉砕し、
次いで表 2— 1に記載のポリウレタン 2— 1— 1 20部 (固形分) 、 シ クロへキサノン 60部で 60分間混練し、 次いで
研磨剤 (A l 2〇3 粒子サイズ 0. 3 m) 2部
カーボンブラック (粒子サイズ 40nm) 2部
メチルェチルケ ト ン/トルエン = 1/1 (重量比) 200部
を加えてサンドミルで 120分間分散した。 これに
ポリイソシァネート 5部 (固形分)
(日本ポリウレタン製 コロネ一 ト 3041)
ブチルステアレート 2部
ステアリン酸 1部
メチルェチルケ トン 50部
を加え、 さらに 20分間撹拌混合したあと、 1 mの平均孔径を有するフィルタ 一を用いて濾過し、 上層用磁性塗料を調製した。
(下層用非磁性塗料の調製)
一 F e 23 (平均粒径 0. 15 m、 S BET 52 m2ノ g、 表面処理 A 123、 S i〇2、 pH6. 5〜8. 0) 85部 をオープン二一ダ一で 10分間粉碎し、 次いで塩化ビニル /酢酸ビニル グリシジルメタクリ レート = 86/9/5の共 重合体にヒ ドロキシェチルスルフォネートナト リウム塩を付加した化合物 (SO 3N a = 6 10"5 e q/g, エポキシ = 10— 3 e q/g, 重量平均分子量 Mw 30, 000) を 7. 5部及び表 2— 2に記載のポリウレタン 2— 1 10部 (固形分) 、 シク αへキサノン 60部で 60分間混練し、 次いでメチルェチルケ トン/シクロへキサノン = 6Z4 (重量比) 200部を加えてサンドミルで 12 0分間分散した。 これに
プチルステアレート 2部
ステアリン酸 1部
メチルェチルケ ト ン 50部 を加え、 さらに 20分間撹拌混合したあと、 1 mの平均孔径を有するフィルタ —を用いて濾過し、 下層用非磁性塗料を調製した。
次いで接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが 0. 1 〃mになるようにコイルバーを用いて厚さ 1 0 mのァラミ ド支持体の表面に塗 布した。
次いで得られた下層用非磁性塗料を 1. 5 mに、 さらにその直後に上層用磁 性塗料を乾燥後の厚さが 0. 1 mになるように、 リバースロールを用いて同時 重層塗布した。 磁性塗料が塗布された非磁性支持体を、 磁性塗料が未乾燥の状態 で 5000ガウスの C o磁石と 4000ガウスのソレノィ ド磁石で磁場配向を行 ない、 塗布したものを金属ロール—金属ロール一金属ロール—金属ロール—金属 ロール—金属ロール—金属ロールの組み合せによる力レンダ一処理を (速度 1 0 0 m/分、 線圧 300 k g Z c m、 温度 90 °C) で行なつた後 3. 8 mm幅に裁 断して磁気テープを作製した。
実施例 2— 2〜 2— 6、 および比較例 2― 1
実施例 2 _ 1における上層ポリウレタン 2— 1— 1及び下層用ポリウレタン 2 — 2— 1を表 2— 3に示したポリウレタンに変更して、 実施例 1 ― 1と同様の方 法で実施例 2— 2〜 2 _ 6及び比較例 2— 1の磁気テープを作製した。
実施例 2— 7、 および比較例 2— 2
下層液の a— F e23 (平均粒径 0. 1 5 m、 S BET52mVg, 表面処理 A l 23、 S i〇2 、 pH6. 5-8. 0) を酸化チタン (平均粒径 0. 035 wm、 結晶型ルチル、 T i 02 含量 90%以上、 表面処理層アルミナ、 SBET35 〜42m2/g 、 真比重 4. 1、 pH6. 5〜8. 0) とした以外は実施例 2— 1、 比較例 2— 1の方法と同様に実施例 2— 7および比較例 2— 2の磁気記録媒 体を作製した。
作製した実施例 2— 1〜2— 7、 比較例 2— 1〜2— 2の磁気テープを、 以下 の測定方法によって測定し、 測定結果を表 2— 3に示す。
測定方法
( 1 ) 塗膜平滑性
走査プロ一ブ顕微鏡 (D i g i t a l I n s t r ume n t社製 N a n o s c o p e I I ) を用い、 トンネル電流 1 0 n A、 バイアス電流 40 OmVで 30 30 mの範囲を走査して 1 0 n m以上の突起数を求めた比較例 2— 1を 1 0としたときの相対値で示した。
(2) 電磁変換特性
DD S 3 ドライブ (HP社製 Mo d e l C 1 537 ) にて 4. 7 MH zの 単一周波数信号を最適記録電流で記録し、 その再生出力を測定した。 比較例 2— 1の再生出力を 0 d Bとした相対値で示した。
(3) 繰り返し走行耐久性
60°C90%RH環境下に 1週間保存したテ一プを 40°C80%RH環境下で 磁性層面を DDS 3 ドライブに使用されているガイ ド棒に接触させて荷重 1 0 g (T 1 ) を加え、 8mmZ秒になるように張力 (T2) を加えて引っ張り T2Z T 1より下式によりガイ ド棒に対する磁性面の摩擦係数を求めた。
摩擦係数 = l/π - 1 η (Τ2/Τ 1 )
測定後のガイ ドポールの汚れを微分干渉光学顕微鏡で観察し、 以下の基準で評 価した。
:汚れが全くみられない。
良好 :汚れが見られるが、 汚れのない部分の方が多い。 不良:汚れがない部分よりも汚れがある部分の方が多い。
表 2— 3
Figure imgf000037_0001
実施例 3
(ポリウレタン樹脂 3— 1の合成) 表 3— 1に示した組成のジオールを還流式冷却器、 撹拌機を具備し、 予め窒素 置換した容器にシクロへキサノン 30%溶液に窒素気流下 60°Cで溶解した。 次 いで触媒として、 ジブチルスズジラウレート 60 p pmを加え、 更に 15分間溶 解した。 次いで表 3— 1に示したジィソシァネートを加え 90°Cにて 6時間加熱 反応し、 ポリウレタン樹脂溶液 3— 1— 1を得た。
表 3— 1
Figure imgf000038_0001
ただし表 3— 1において、
DD: ダイマージオール
H B p A:水素化ビスフエノール A
NPG: ネオペンチルグリコール
DMH: ジメチロールヘプタン
PES : ポリエステルポリオール (水添ダイマ一酸/イソフタル酸 Zネオペン チルダリコール = 1. 8/2. 7/5. 4mo W= 2020)
DE I S : ビス (ヒ ドロキシェチル) 5—スルホイソフタレートナト リウム塩
MD I : ジフエニルメ夕ンジイソシァネート
TD I : ト リ レンジイソシァネート
をそれぞれ表し、 また配合量は重量部を表す。
(ポリエステルポリオールの合成)
表 3— 2に記載のジカルボン酸とジオール成分を常法により脱水、 縮合して合 成した。 得られたポリエステルポリオールの重量平均分子量 (Mw) を表 3— 2 に示す。 表 3— 2 ジカルボン酸 ジオール成分
ホ°リエステルホ。リオ-ル Mw 量 (モ) W0 種 類 量 (モル) ホ。リエス ϊルホ。リオ -ル A アジピン酸 100 2.2 -シメチル -1,3-プ ΠΛ。ンシ "オール 70
2100
1,3-プ ΠΛ。ンシ "オール 30 ホ°リヱステルホ "リオ-ル B アジピン酸 100 2, 2-シ"州レ- 1.3 -プ ϋΛ°ンシ "オ-ル 100 2045 ホ。リエステルホ。リオ -)レ C アジピン酸 100 2-ェチ)ト 2 -フ"チル- 1 , 3-7° ΠΑ°ンシ"オール 70
2050
1,3 -アロハ。ンシ、'オール 30 ホ。リエステルホ。リオ - ) イソフタル酸 100 2 -ェチ)ト 2-フ"チル- 1.3 -プ 0ハ。ンシ"オール 70
2200
1,3 -フ。 ΠΛ。ンシ "オ-ル 30 ホ。リエステルホ°リオール E ィソフタル酸 70 2, 2-シ"メチル -1,3-フ。 0Λ。ンシ "オ-ル 70
2150 スルホイソフタル 30 1.3—プ ϋハ。ンシ'オール 30
(ポリウレタン樹脂 3— 2の合成)
ポリウレタン 1— 1と同様の方法で表 3— 2に記載のポリエステルポリオール および表 3 - 3に示した材料を用いてポリウレタン樹脂 3— 2を調製した。 得ら れたポリウレタン樹脂 3— 2の重量平均分子量 (Mw) を表 3— 3に示す。
表 3— 3
Figure imgf000040_0001
ただし表 3— 3において、
MD I : ジフエニルメタンジイソシァネート
を表す。
実施例 3— 1
(上層用磁性塗料の調製)
強磁性合金粉末 (組成 : F e 89原子%, C o 5原子%, Y 6原子% He 2000〇 e, 結晶子サイズ 1 5 nm, B E T比表面積 59 m2/ g , 長 軸径 0. 1 2 wm, 針状比 7, σ s 1 50 emu/g) 1 00部 をオープン二 —ダ一で 1 0分間粉砕し、 次いで表 3— 1に記載のポリウレタン 3— 1— 1 2 0部 (固形分) 、 シクロへキサノン 60部で 60分間混練し、 次いで
研磨剤 (アルミナ 粒子サイズ 0. 3 m) 2部
力一ボンブラック (粒子サイズ 40 nm) 2部 メチルェチルケトン トルエン = 1 1 (重量比) 200部 を加えてサンドミルで 1 20分間分散した。 これに
ポリイソシァネート 5部 (固形分)
(日本ポリウレタン製 コロネート 3041)
プチルステアレート 2部 ステアリン酸 1部 メチルェチルケトン 50部 を加え、 さらに 20分間撹拌混合したあと、 1 〃mの平均孔径を有するフィル ターを用いて濾過し、 上層用磁性塗料を調製した。
(下層用非磁性塗料の調製)
ひ一 F e23 (平均粒径 0. 1 5 m、 SBET5 Srr^Zg、 表面処理 A 123、 S i〇2、 pH6. 5-8. 0) 85部 をオープンニーダ一で 1 0分間粉碎し、 次 V、で塩化ビ二ル /酢酸ビニル Zグリシジルメタクリ レート = 86 9 / 5の共 重合体にヒ ドロキシェチルスルホネートナト リゥム塩を付加した化合物 (S03N a = 6 x l 0— 5e q/g. エポキシ = 1 0— 3 e q g . w 30, 000) を 7. 5部及び表 3に記載のポリウレタン 3— 2— 1 1 0部 (固形分) 、 シクロ へキサノン 60部を加えて 60分間混練し、 次いで
メチルェチルケトン シクロへキサノン = 6/4 200部 を加えてサンドミルで 1 20分間分散した。 これに
プチルステアレート 2部 ステアリン酸 1部 メチルェチルケトン 50部 を加え、 さらに 20分間撹拌混合したあと、 1 mの平均孔径を有するフィル ターを用いて濾過し、 下層用非磁性塗料を調製した。
次いで接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが 0. 1 mになるようにコイルバーを用いて厚さ 1 0〃mのァラミ ド支持体の表面に塗 布した。
次いで得られた下層用非磁性塗料を 1. 5 に、 更にその直後に上層磁性塗 料を乾燥後の厚さが 0. l 〃mになるように、 リバースロールを用いて同時重層 塗布した。 磁性塗料塗布された非磁性支持体を、 磁性塗料が未乾燥の状態で 50 00ガウスの C 0磁石と 4000ガウスのソレノィ ド磁石で磁場配向を行ない、 塗布したものを金属口一ルー金属ロール—金属ロール一金属ロール—金属ロール —金属ロール—金属ロールの組み合せによる力レングー処理を (速度 1 0 OmZ 分、 線圧 S O O kgZcrru 温度 90°C) で行なった後、 3. 8 mm幅に裁断し て磁気テープとした。
実施例 3— 2〜 3— 6及び比較例 3— 1
上層ポリウレタン 3— 1 — 1及び下層用ポリウレタン 3— 2— 1を表 3— 4に 示したポリゥレタンに変更した点を除き実施例 3— 1と同様の方法で実施例 3— 2〜 3— 6及び比較例 3— 1の磁気テープを作製した。
実施例 3— 7および比較例 3— 2
下層用非磁性塗料中のひ— F e23 (平均粒径 0. 1 5 m、 SBET52mV g、 表面処理 A l 23、 S i〇2、 pH6. 5〜8. 0) を酸化チタン (平均粒径 0. 035 m、 結晶型ルチル、 T i 02含量 90%以上、 表面処理層アルミナ、 SBET35〜42m2/g、 真比重 4. 1、 p H 6. 5〜8. 0) とした以外の点 は実施例 3— 1および比較例 3— 1と同様の方法で実施例 3— 7および比較例 3 —2の磁気テープを作製した。
作製した実施例 3— 1〜3— 7、 比較例 3— 1〜3— 2の磁気テープを以下の 測定方法によつて測定し、 測定結果を表 3— 4に示す。
測定方法
(1) 塗膜平滑性
走査プローブ顕微鏡 (D i g i t a l I n s t r ume n t社製 N a n o s c o p e I I ) を用い、 トンネル電流 1 0 n A、 バイアス電流 40 OmVで 3 0 〃mx 3 0〃mの範囲を走査して 1 0 n m以上の突起数を求めた比較例 3— 1を 1 0としたときの相対値で示した。 (2) 電磁変換特性
DDS 3ドライブ (HP社製 Mo d e l C 1537) にて 4. 7 MHzの 単一周波数信号を最適記録電流で記録し、 その再生出力を測定した。 比較例 3— 1の再生出力を 0 dBとした相対値で示した。
(3) 繰り返し走行耐久性
60 C 90%RH環境下に 1週間保存したテープを 40 °C 80%RH環境下 で磁性層面を DDS 3ドライブに使用されているガイ ド棒に接触させて荷重 10 g (T 1 ) を加え、 8mmZ秒になるように張力 (T2) を加えて引っ張り T2 ZT 1よりガイ ド棒に対する磁性面の摩擦係数を下記の式で求めた。
摩擦係数 = 1ΖΤΓ · I n (T2/T1)
測定は繰り返し 500パスまで行い、 1パス目と 500パス目の摩擦係数を求 めた。
測定後のガイ ドポールの汚れを微分干渉光学顕微鏡で観察し、 以下の基準で評 価した。
優秀 汚れが全くみられない。
良好 汚れが見られるが、 汚れのない部分の方が多い。 不良 汚れがない部分よりも汚れがある部分の方が多い
表 3— 4
Figure imgf000043_0001
実施例 4
以下;こ実施例、 比較例を示し、 本発明をさらに詳細に説明する。 実施例中の 「部 _ の表示は 「重量部」 を示す。 (ポリゥレタン樹脂の合成)
表 4— 1において配合量とともに示す原料を、 シクロへキサノン : トルエン = 1 / 1 (重量比) の混合溶媒中で仕込み、 ワンショッ ト法でポリウレタンを重合 した。 得られた重合体のガラス転移温度、 重量平均分子量 (Mw) を表 4一 1に 示す。
表 4—1
Figure imgf000044_0001
ただし表 4一 1において、
DD: ダイマージオール
EEP r : 2, 2—ジェチルー 1, 3—プロパンジオール
EBP r : 2—ェチル— 2—ブチル一 1 , 3—プロパンジオール
HBP A: 水素化ビスフヱノール A
NPG: ネオペンチルグリコール
PES : ポリエステルポリオ一ル (水添ダイマー酸 Zイソフタル酸 /1, 6 - へキサンジオール = 1. 8/2. 7/5. 4mo MW= 2020)
DE I S : ビス (ヒ ドロキシェチル) 5—スルホイソフタレートナトリゥム塩
MD I : ジフエニルメタンジイソシァネート
をそれぞれ表し、 また配合量は重量部を表す。
実施例 4一 1〜4ー 10、 および比較例 4一 1〜 4— 2
(上層用磁性塗料の調製)
強磁性合金粉末(組成: F e 92%、 Zn4%、 X i 4%、 Hc 2000Oe、 結晶子サイズ 1 5nm、 8£丁比表面積591112/8、 長軸径 0. 12 m、 針状 比 7、 σ s 140 emu/g) 100部 をオープンニーダ一で 10分間粉砕し、 次いでフエニルリン酸 1部、 メチルェチルケトン 10部、 シクロへキサノン 3部、 トルエン 3部を添加してさらに 30分間混合、 混練した。 次に塩化ビニル系バイ ンダー (日本ゼオン製 MR 1 10) 5重量部及び表 4一 2のポリウレタン樹脂 5 部、 およびメチルェチルケトン 15部、 メチルイソプチルケトン 10部を加えて 60分間混練し、 次いで
研磨剤 (A l 23 粒子サイズ 0. 3 wm) 2部
カーボンブラック (粒子サイズ 40nm ) 2部
メチルェチルケトン 250部
を加えてサンドミルで 120分間分散した。
これに
ポリイソシァネート 5部 (固形分)
(日本ポリウレタン製 コロネート 3041)
表 4一 3の潤滑剤 2部
ステアリン酸 1部
メチルェチルケトン 50部
を加え、 さらに 20分間撹拌混合したあと、 1 mの平均孔径を有するフィル ターを用いて濾過し、 磁性塗料を調製した。 得られた磁性塗料を乾燥後の厚さが 2. 0〃mになるように、 厚さ 6 のァラミ ド支持体の表面にリバースロール を用いて塗布した。 磁性塗料が塗布された非磁性支持体を、 磁性塗料が未乾燥の 状態で 3000ガウスの磁石で磁場配向を行ない、 さらに乾燥後、 金属ロール一 金属ロール—金属ロール一金属ロール—金属口一ルー金属ロール—金属ロールの 組み合せによるカレンダ一処理を (速度 l O OmZ分、 線圧 S O OkgZcrru 温度 90°C) で行なった後 6. 35mm幅にスリッ ト しディジタルビデオテープ レコーダ (D VC) 用の実施例 4一 1〜4— 10、 および比較例 4— 1〜4 _ 2 テープを作製した。
実施例 4— 1 1〜4一 14、 および比較例 4一 3
上層用磁性液の調製 · · · 実施例 4一 1と同様に表 4一 3の素材を用いて磁性 塗料を調製して用いた。
(下層用非磁性塗料の調製)
酸化チタン (平均粒径 0. 0 3 5 m、 結晶型ルチル、 T i 02 含有量 9 0 % 以上、 表面処理層; アルミナ、 S BET 3 5〜4 2 m2/ g、 真比重 4 . 1、 p H 6. 5〜8. 0 ) 8 5部とフエニルリン酸 1部をオープンニーダ一で 1 0分間粉砕混 合し、 次いで塩化ビニル系バインダー (日本ゼオン製 MR 1 1 0 ) 5重量部及び 表 4— 1のポリウレタン樹脂、 メチルェチルケトン 1 0部、 シクロへキサノン 3 部、 トルエン 3部を添加してさらに 3 0分間混合、 混練した。 次に、 及びメチル ェチルケトン 1 5部、 メチルイソブチルケトン 1 0部を加えて 6 0分間混練し、 次いで
カーボンブラック (粒子サイズ 4 0 n m) 2部
メチルェチルケトン 2 0 0部
を加えてサンドミルで 1 2 0分間分散した。 これに
表 4一 2の潤滑剤 2部
ステアリン酸 1部
メチルェチルケ トン 5 0部
を加え、 さらに 2 0分間撹拌混合したあと、 1 〃mの平均孔径を有するフィル ターを用いて濾過し、 非磁性塗料を調製した。
得られた非磁性塗料を 1 . O w mに、 さらにその直後に磁性塗料を乾燥後の厚 さが 0. 1 mになるように、 厚さ 6 mのァラミ ド支持体の表面にリバース口 ールを用いて同時重層塗布した。
磁性塗料が塗布された非磁性支持体を、 磁性塗料が未乾燥の状態で 3 0 0 0ガ ウスの磁石で磁場配向を行ない、 さらに乾燥後、 金属ロール一金属ロール一金属 ロール一金属口一ルー金属 口一ルー金属ロール—金属ロールの組み合せによる カ レンダ一処理を (速度 1 0 0 mZ分、 線圧 3 0 0 k gノ c m、 温度 9 0 °C) で 行なった後、 6. 3 5 mm幅に裁断し、 実施例 4一 1 1〜4一 1 4、 および比較 例 4一 3の磁気テープを作製した。
得られたテープの特性を以下の測定方法によって測定し、 その結果を表 4— 2、 4— 3に示す。 〔測定方法〕
(1) 電磁変換特性
試料テープにドラムテスタ一を用いて記録波長 0. 5 m、 ヘッ ド速度 1 0m/秒の条件で記録し再生した。 基準テープ (比較例 4一 1) CZNを d Bとしたときのテープの相対的な CZNを評価した。
(2) 磁性層表面粗さ R a
デジタルォプチカルプロフィメータ一 (WYKO製) を用いた光干渉法に より、 カットオフ 0. 25 mmの条件で中心線平均粗さを R aとした。
(3) 耐久性
a) スチル耐久性
40 °C 80 % R H環境下でデジタルビデオテープレコーダ (松下電器製 NV-B J 1) を用いてスチル状態にし、 再生出力が 50%になるまでの 時間を測定して、 スチル耐久性として示した。
b) 摩擦係数
60分長のテープをデジタルビデオデ一プレコーダ (松下電器製 NV— B J 1 ) を用いて 40°C、 10%RH環境下で 100回連続繰り返し走行さ せ、 走行前後のテープ磁性層表面の摩擦係数を 23°C、 50%RH環境で 測定した。
表 4— 2
Figure imgf000048_0001
産業上の利用可能性
本発明の磁気記録媒体のポリゥレタン樹脂からなる結合剤は、 磁性体をバイン ダー、 溶剤中で分散するときに、 磁性体に吸着したバインダー分子鎖の広がりを 大きくするような構造をとりやすいため分散性を向上することができた。 これに よつて磁気記録媒体の電磁変換特性を向上させることができた。
また、 本発明のポリゥレタン樹脂では従来よく用いられてきたポリエステルポ リウレタン (ポリエステルポリオールをジイソシァネー卜で重合したポリウレタ ン) やポリエーテルポリウレタン (ポリエーテルポリオールをジイソシァネート で重合したウレタン) と違って基本的にエステル結合、 エーテル結合を持たない ので、 高温、 高湿環境下での劣化、 分解を受けにくく し、 磁気記録媒体の長期保 存性を大きく向上させる。 特に従来のポリエステルポリオールを用いたポリゥレ タンではエステル結合部分の加水分解やポリエーテルウレタンのエーテル結合の 熱分解が問題となっていたが、 本願のポリウレタンでは本質的にこの問題を解決 することができる。
また、 ポリエステルポリオールの酸成分に水添ダイマー酸を使用してポリマ一 全体の疎水性を高め耐加水分解性を向上させる従来のポリウレタンは、 エステル 結合を含有するポリエステル系のウレタンである以上本質的にこの問題を解決す ることはできない。 とくに、 最近の微粒子金属磁性体を用いた磁気記録媒体では 磁性体の表面の触媒活性は高くバインダ一の分解反応も促進されるため重要な問 題であつたが、 本発明のポリゥレタンはこのような問題点も解決することができ た。

Claims

請求の範囲
1 . 支持体上に強磁性粉末と結合剤を分散した磁性層を有ずる磁気記録媒体にお いて、 前記結合剤が環状構造および長鎖アルキル鎖を有するジォール化合物とジ ィソシァネート化合物を重合して得られるポリウレタン樹脂 1を含有することを 特徴とする磁気記録媒体。
2. 前記支持体と前記磁性層の間に無機粉体または磁性粉体の少なくともいずれ か一方と結合剤とを分散させてなる下層を設けた磁気記録媒体において、 前記磁 性層または下層の少なくともいずれか一方の結合剤がポリウレタン樹脂 1を含有 することを特徴とする請求項 1記載の磁気記録媒体。
3. ポリウレタン樹脂 1がダイマージオール及び中鎖アルキル分岐鎖を有する脂 肪族ジオールをジオール成分として含むポリゥレタン樹脂であることを特徴とす る請求項 1または 2記載の磁気記録媒体。
4. 前記ポリウレタン樹脂が一 S〇3M、 _ S 04M、 一 C〇〇M、 一 P 03M2、 - P O 4M2 , スルホベタイン基、 ホスホべタイン基、 スルファミン酸、 スルファ ミン酸塩基から選ばれる少なくとも 1種以上の極性基を 1 X 1 0 _ 6~ 2 x l 0 _4 e q / g含有することを特徴とする請求項 3記載の磁気記録媒体。
5. 中鎖アルキル分岐鎖を有する脂肪族ジオールの分岐アルキル基の炭素数が 2 ないし 1 8であることを特徴とする請求項 3記載の磁気記録媒体。
6. 前記ポリゥレタン樹脂 1と環状構造を有するポリエーテルポリオールからな るポリウレタン樹脂 2を含むことを特徴とする請求項 2記載の磁気記録媒体。
7. 前記ジオール化合物が式 1または式 2から選ばれる少なくとも 1種であるこ とを特徴とする請求項 1記載の磁気記録媒体。 式 1
R5
HO-R3-Z— R4-OH
式 2
HO-R3-Z— R4-OH
I
R6 ただし、 Zはベンゼン環、 ナフタレン環、 シクロへキサン環から選ばれる。
R3、 R4は、 炭素数 1〜 18のアルキレン基
R5、 R6は、 炭素数 2〜 18のアルキル基
8. ジオール化合物が式 3〜式 6から選ばれる少なくとも 1種であることを特徴 とする請求項 6記載の磁気記録媒体。 式 3 式 4
HO-R3
Figure imgf000051_0001
式 5 式 6
HO-R3 Γ 4-OH HO-R3 R4-OH
ん\
R6 \ _ '、R5 R6 R5 ただし、 R3、 R4は、 炭素数 1〜18のアルキレン基
R5、 R6は、 炭素数 2〜 18のアルキル基
9. 前記ジォ一ル化合物が式 7で示されるダイマージオールであることを特徴と する請求項 6記載の磁気記録媒体。
OH
Figure imgf000051_0002
1 0. 前記ポリゥレタン樹脂 2がポリゥレタン中に 1〜6 mm_ gのエーテル基 を有するポリオール 1 0〜5 0重量%と環状構造を有するジオールからなる鎖延 長剤 1 5〜5 0重量%と有機ジイソシァネートからなるからなるポリゥレ夕ン樹 脂であることを特徴とする請求項 6記載の磁気記録媒体。
1 1 . 前記磁性層の結合剤としてポリウレタン樹脂 1を含み、 前記下層の結合剤 としてポリウレタン樹脂 2を含むことを特徴とする請求項 6記載の磁気記録媒体。
1 2. 前記結合剤が前記ポリウレタン樹脂 1と、 ポリエステルポリオールと鎖延 長剤とジィソシァネート化合物を重合して得られるポリゥレン樹脂 3を含み、 該 ポリエステルポリオールは、 二塩基酸として脂肪族二塩基酸を含み、 アルキル分 岐側鎖を有する環状構造を持たない脂肪族ジオールをジオール成分として含み、 該鎖延長剤はアルキル分岐側鎖を持つ脂肪族ジオールを鎖延長剤として含むこと を特徴とする請求項 2記載の磁気記録媒体。
1 3. 前記ジオール化合物が前記式 1または前記式 2から選ばれる少なくとも 1 種であることを特徴とする請求項 1 2記載の磁気記録媒体。
1 4. 前記ジオール化合物が前記式 3〜前記式 6から選ばれる少なくとも 1種で あることを特徴とする請求項 1 2記載の磁気記録媒体。
1 5. 前記ジオール化合物が前記式 7で示されるダイマージオールであることを 特徴とする請求項 1 2記載の磁気記録媒体。
1 6. 前記磁性層の結合剤として前記ポリウレタン樹脂 1を含み、 前記下層の結 合剤として前記ポリウレタン樹脂 3を含むことを特徴とする請求項 1 2記載の磁 気記録媒体。
1 7. 前記ポリウレタン樹脂 1は、 ポリウレタン中にダイマージオールを 1 0重 量%以上含むポリゥレタン樹脂であることを特徴とする請求項 1 2記載の磁気記 録媒体。
1 8. 前記ポリウレタン樹脂 3のポリウレタン中のウレタン基濃度が 2. 5〜4. 5 mm o 1 gであることを特徴とする請求項 1 2記載の磁気記録媒体。
1 9. 非磁性支持体上に強磁性粉末と結合剤を分散した磁性層を有する磁気記録 媒体において、 該結合剤が前記ポリウレタン樹脂 1を含有するとともに、 該磁性 層に式 8あるいは式 9から選ばれるジエステル化合物を含むことを特徴とする請 求項 1または 2記載の磁気記録媒体。
式 8
R11— X— R22
式 9
R33 - Y— R44
ただし、 R11, R22:炭素数 5〜21の脂肪酸残基
R33, R44:炭素数 5〜21の 2価アルコール基
X:炭素数 2~ 10の 2価アルコール残基
Y:炭素数 3〜 10のジカルボン酸残基
20. 前記ポリウレタン樹脂 1を形成するジォール化合物が式 1または式 2から 選ばれる少なくとも 1種であることを特徴とする請求項 19記載の磁気記録媒体。
21. 前記ジオール化合物が式 3〜式 6から選ばれる少なくとも 1種であること を特徴とする請求項 18記載の磁気記録媒体。
22. 前記ジオール化合物が式 7で示されるダイマージオールであることを特徴 とする請求項 19記載の磁気記録媒体。
23. 前記ポリウレタン樹脂 1はジオール成分として分子量 800以上のポリエ ステルポリオ一ルを含有しないポリウレタン樹脂であることを特徴とする請求項 19記載の磁気記録媒体。
24. 前記ポリウレタン樹脂 1力 — S03M、 一 S〇4M、 一 C〇〇M、 一 P〇3 M2、 — P〇4M2から選ばれる少なくとも 1種の極性基を l x l 0_6e q/g〜 2 X 10_4e q/g 含有するポリゥレタン樹脂であることを特徴とする請求項 1 または請求項 19記載の磁気記録媒体。
PCT/JP1999/003842 1998-07-21 1999-07-16 Support magnetique d'enregistrement WO2000005714A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99929870A EP1022726A4 (en) 1998-07-21 1999-07-16 MAGNETIC RECORD CARRIER
US09/509,024 US6500551B1 (en) 1998-07-21 1999-07-16 Magnetic recording medium
KR1020007002956A KR100654322B1 (ko) 1998-07-21 1999-07-16 자기기록매체

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10/205338 1998-07-21
JP20533898 1998-07-21
JP36688598 1998-12-24
JP10/366887 1998-12-24
JP36688698 1998-12-24
JP36688798 1998-12-24
JP10/366886 1998-12-24
JP10/366885 1998-12-24

Publications (1)

Publication Number Publication Date
WO2000005714A1 true WO2000005714A1 (fr) 2000-02-03

Family

ID=27476251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003842 WO2000005714A1 (fr) 1998-07-21 1999-07-16 Support magnetique d'enregistrement

Country Status (4)

Country Link
US (1) US6500551B1 (ja)
EP (1) EP1022726A4 (ja)
KR (1) KR100654322B1 (ja)
WO (1) WO2000005714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134921A (ja) * 1999-11-05 2001-05-18 Fuji Photo Film Co Ltd 磁気記録媒体
US6767613B2 (en) * 2001-10-09 2004-07-27 Fuji Photo Film Co., Ltd. Magnetic recording medium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101646A (ja) * 1999-09-30 2001-04-13 Sony Corp 磁気記録媒体及びその製造方法
JP2001126230A (ja) 1999-10-29 2001-05-11 Sony Corp 磁気記録媒体及びその製造方法
EP1207522A1 (en) * 2000-11-16 2002-05-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2004047009A (ja) * 2002-07-15 2004-02-12 Sony Corp 磁気記録媒体および磁気記録媒体の製造方法
JP2004319001A (ja) 2003-04-16 2004-11-11 Fuji Photo Film Co Ltd 磁気記録媒体
JP2005018821A (ja) * 2003-06-23 2005-01-20 Fuji Photo Film Co Ltd 磁気記録媒体および磁気記録再生方法
US9862910B2 (en) * 2015-08-20 2018-01-09 H R D Corporation System and process for recovering algal oil
CN110183615B (zh) * 2019-07-02 2021-05-28 东北林业大学 一种含木质素的环境友好型聚氨酯弹性体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223623A (ja) * 1988-03-02 1989-09-06 Hitachi Maxell Ltd 磁気記録媒体
JPH02276811A (ja) * 1989-04-19 1990-11-13 Hitachi Maxell Ltd ポリウレタン樹脂
JPH08167137A (ja) * 1994-12-13 1996-06-25 Fuji Photo Film Co Ltd 磁気記録媒体
JPH10320747A (ja) * 1997-05-21 1998-12-04 Fuji Photo Film Co Ltd 磁気記録媒体
JPH1196539A (ja) * 1997-09-26 1999-04-09 Fuji Photo Film Co Ltd 磁気記録媒体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804416B2 (ja) * 1992-11-02 1998-09-24 大日精化工業株式会社 塗料組成物
JP3669521B2 (ja) * 1995-03-31 2005-07-06 富士写真フイルム株式会社 磁気記録媒体
DE19644347C2 (de) * 1995-11-02 1999-08-12 Emtec Magnetics Gmbh Polyurethane
JP3815748B2 (ja) * 1996-05-13 2006-08-30 富士写真フイルム株式会社 磁気記録媒体
JP4123538B2 (ja) * 1997-03-04 2008-07-23 ソニー株式会社 磁気記録媒体
JP3922664B2 (ja) * 1997-05-21 2007-05-30 富士フイルム株式会社 磁気記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223623A (ja) * 1988-03-02 1989-09-06 Hitachi Maxell Ltd 磁気記録媒体
JPH02276811A (ja) * 1989-04-19 1990-11-13 Hitachi Maxell Ltd ポリウレタン樹脂
JPH08167137A (ja) * 1994-12-13 1996-06-25 Fuji Photo Film Co Ltd 磁気記録媒体
JPH10320747A (ja) * 1997-05-21 1998-12-04 Fuji Photo Film Co Ltd 磁気記録媒体
JPH1196539A (ja) * 1997-09-26 1999-04-09 Fuji Photo Film Co Ltd 磁気記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1022726A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134921A (ja) * 1999-11-05 2001-05-18 Fuji Photo Film Co Ltd 磁気記録媒体
US6767613B2 (en) * 2001-10-09 2004-07-27 Fuji Photo Film Co., Ltd. Magnetic recording medium

Also Published As

Publication number Publication date
EP1022726A1 (en) 2000-07-26
KR100654322B1 (ko) 2006-12-07
KR20010024185A (ko) 2001-03-26
US6500551B1 (en) 2002-12-31
EP1022726A4 (en) 2000-12-20

Similar Documents

Publication Publication Date Title
WO2000005714A1 (fr) Support magnetique d&#39;enregistrement
EP1035145A2 (en) Magnetic recording media and thermoplastic polyurethane resins therefor
US6074724A (en) Magnetic recording medium
JP3922664B2 (ja) 磁気記録媒体
US5747157A (en) Magnetic recording medium
US6221468B1 (en) Magnetic recording medium
JP2003030814A (ja) 磁気記録媒体
JP3815748B2 (ja) 磁気記録媒体
JP3825151B2 (ja) 磁気記録媒体
JP3638360B2 (ja) 磁気記録媒体
JP3824282B2 (ja) 磁気記録媒体
JPH11259850A (ja) 磁気記録媒体
JP2001331922A (ja) 磁気記録媒体
JPH09204639A (ja) 磁気記録媒体
JPH0620255A (ja) 磁気記録媒体
JP3841367B2 (ja) 磁気記録媒体
JP2007042268A (ja) 磁気記録媒体
JP2007026650A (ja) 磁気記録媒体
JP2003123222A (ja) 磁気記録媒体
JP3638379B2 (ja) 磁気記録媒体
JP2001134921A (ja) 磁気記録媒体
JPH11283239A (ja) 磁気記録媒体
JPH113516A (ja) 磁気記録媒体
JP2003123224A (ja) 磁気記録媒体
JPH11283238A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007002956

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999929870

Country of ref document: EP

Ref document number: 09509024

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999929870

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002956

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007002956

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999929870

Country of ref document: EP