WO1999062908A2 - Cell adhesion-inhibiting antinflammatory compounds - Google Patents

Cell adhesion-inhibiting antinflammatory compounds Download PDF

Info

Publication number
WO1999062908A2
WO1999062908A2 PCT/US1999/012419 US9912419W WO9962908A2 WO 1999062908 A2 WO1999062908 A2 WO 1999062908A2 US 9912419 W US9912419 W US 9912419W WO 9962908 A2 WO9962908 A2 WO 9962908A2
Authority
WO
WIPO (PCT)
Prior art keywords
thieno
pyridine
carboxamide
chlorophenoxy
methyl
Prior art date
Application number
PCT/US1999/012419
Other languages
English (en)
French (fr)
Other versions
WO1999062908A3 (en
Inventor
Andrew O. Stewart
Steven A. Boyd
David L. Arendsen
Pramila Bhatia
Kevin R. Condroski
Jennifer C. Freeman
Indrani W. Gunawardana
Gui-Dong Zhu
Kraig Lartey
Catherine M. Mccarty
Nicholas A. Mort
Meena V. Patel
Michael A. Staeger
David M. Stout
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA002333770A priority Critical patent/CA2333770A1/en
Priority to KR1020007013739A priority patent/KR20010052570A/ko
Priority to JP2000552119A priority patent/JP2002517396A/ja
Priority to BR9910864-0A priority patent/BR9910864A/pt
Priority to AU42312/99A priority patent/AU4231299A/en
Priority to HU0102366A priority patent/HUP0102366A2/hu
Priority to EP99926157A priority patent/EP1090009A2/en
Priority to PL99345906A priority patent/PL345906A1/xx
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Priority to IL13981199A priority patent/IL139811A0/xx
Priority to SK1854-2000A priority patent/SK18542000A3/sk
Publication of WO1999062908A2 publication Critical patent/WO1999062908A2/en
Publication of WO1999062908A3 publication Critical patent/WO1999062908A3/en
Priority to NO20006157A priority patent/NO20006157L/no
Priority to BG105109A priority patent/BG105109A/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to compounds that are useful for treating inflammatory diseases, to pharmaceutical compositions comprising these compounds, and to methods of inhibiting inflammation in a mammal.
  • Inflammation results from a cascade of events that includes vasodilation accompanied by increased vascular permeability and exudation of fluid and plasma proteins. This disruption of vascular integrity precedes or coincides with an infiltration of inflammatory cells.
  • Inflammatory mediators generated at the site of the initial lesion serve to recruit inflammatory cells to the site of injury. These mediators (chemokines such as IL-8, MCP-1, MIP-1, and RANTES, complement fragments and lipid mediators) have chemotactic activity for leukocytes and attract the inflammatory cells to the inflamed lesion.
  • chemokines chemokines such as IL-8, MCP-1, MIP-1, and RANTES, complement fragments and lipid mediators
  • chemotactic mediators which cause circulating leukocytes to localize at the site of inflammation require the cells to cross the vascular endothelium at a precise location. This leukocyte recruitment is accomplished by a process called cell adhesion.
  • the first step consists of leukocyte rolling along the vascular endothelial cell lining in the region of inflammation.
  • the rolling step is mediated by an interaction between leukocyte surface oligosaccharides (such as Sialylated Lewis-X antigen (Slex)) and a selectin molecule expressed on the surface of the endothelial cell in the region of inflammation.
  • leukocyte surface oligosaccharides such as Sialylated Lewis-X antigen (Slex)
  • a selectin molecule expressed on the surface of the endothelial cell in the region of inflammation.
  • the selectin molecule is not normally expressed on the surface of endothelial cells but rather is induced by the action of inflammatory mediators such as TNF- ⁇ and interleukin- 1.
  • Rolling decreases the velocity of the circulating leukocyte in the region of inflammation and allows the cells to more firmly adhere to the endothelial cell.
  • the firm adhesion is accomplished by the interaction of integrin molecules that are present on the surface of the rolling leukocytes and their counter-receptors-the Ig superfamily molecule- on the surface of the endothelial cell.
  • the Ig superfamily molecules or CAMs are either not expressed or are expressed at low levels on normal vascular endothelial cells.
  • the CAM's like the selectins, are induced by the action of inflammatory mediators like TNF-alpha and IL-1.
  • the final event in the adhesion process is the extravasation of the leukocyte through the endothelial cell barrier and the migration of the leukocyte along the chemotactic gradient to the site of inflammation.
  • This transmigration is mediated by the conversion of the leukocyte integrin from a low avidity state to a high avidity state.
  • the adhesion process relies on the induced expression of selectins and CAM's on the surface of vascular endothelial cells to mediate the rolling and firm adhesion of leukocytes to the vascular endothelium.
  • the induced expression of e-selectin and CAM's is mediated by the transcription factor NFkB.
  • NFkB is a family of dimeric transcription factors made from monomers containing the 300 amino acid Rel domain.
  • IkB inhibitor molecule
  • NFkB is found in the cytoplasm complexed with IkB. Activation of NFkB occurs in response to inflammatory mediators such as TNF- ⁇ , EL-1, and lipopolysaccharide. Activation of NFkB requires phosphorylation of IkB followed by ubiquitinylation of the IkB molecule and subsequent degradation by proteosomes. Release of NFkB from association with IkB results in translocation of the dimer to the nucleus where it can associate with specific DNA sequences.
  • the e-selectin gene and CAM's contain NFkB-recognition sequences upstream from their coding regions.
  • the DNA- bound NFkB acting with other proteins in the transcription complex directs the expression of the e-selectin and CAM genes among others controlled by this transcription factor.
  • the present invention discloses compounds that inhibit the expression of e-selectin and ICAM- 1 relative to VCAM- 1. These compounds are useful for the treatment or prophylaxis of diseases caused by expression of adhesion molecules. These diseases include those in which leukocyte trafficking plays a role, notably acute and chronic inflammatory diseases, autoimmune diseases, tumor metastasis, allograft rejection, and reperfusion injury.
  • E, F, and G are independently selected from
  • N + -O " nitrogen, and (3) N + -O " , provided that at least one of E, F or G is nitrogen or N + -0 ⁇ , and further provided that at least one of E, F or G is carbon;
  • Y and Z are independently selected from (1) carbon
  • L A is selected from
  • R 6 is selected from
  • X A is selected from
  • alkyl of one to ten carbons optionally substituted with 1 , or 2 substituents independently selected from aryl and cycloalkyl of three to ten carbons,
  • RA and RB are independently selected from hydrogen and alkyl of one to six carbons optionally substituted with 1 or 2 substituents selected from -OH, (iii) alkanoyl where the alkyl part is of one to to ten carbons, (iv) cycloalkyl of three to ten carbons, (v) alkoxy,
  • alkyl of one to ten carbons optionally substituted with 1 , or 2 substituents independently selected from aryl and cycloalkyl of three to ten carbons, (iii) -NR 8 R 9 , and (iv) -OR 7 , (f) -OH,
  • alkyl of one to ten carbons optionally substituted with 1 or 2 substituents independently selected from alkoxy of one to ten carbons and -OH,
  • R 12 is selected from alkyl of one to ten carbons, cycloalkyl of three to ten carbons, aryl, and heterocycle, and heterocycle optionally substituted with 1, 2, 3, or 4 substituents independently selected from -OH and alkyl of one to six carbons optionally substituted with 1 or 2 substituents selected from -OH, (ii) alkoxy of one to ten carbons optionally substituted with 1 or 2 substituents independently selected from alkoxy and alkoxy alkoxy, (iii) spiroalkyl of three to ten carbons, and (iv) halo,
  • L B is selected from
  • Rj 4 is selected from (i) hydrogen, (ii) aryl, and
  • R1 5 is selected from hydrogen
  • X B is selected from (1) hydrogen, (2) alkyl of one to ten carbons optionally substituted with 1, 2, or 3 substituents independently selected from
  • R A is previously defined and R 2 ⁇ is selected from (i) alkyl of one to ten carbons optionally substituted with 1 or 2 substituents selected from aryl and cycloalkyl of three to ten carbons, (ii) aryl, and (iii) cycloalkyl of three to ten carbons,
  • R 1 ⁇ R 2 , R 3 , Rt, and R are hydrogen or absent, -L A - is a covalent bond, and -L B - is a covalent bond, then one of X A or X B is other than hydrogen;
  • Ri, R 2 , R , R , and R 5 are absent or independently selected from (1) hydrogen, (2) alkyl of one to six carbons optionally substituted with 1 or 2 substituents independently selected from (a) -OC(O)R 22 , where R 22 is selected from (i) alkyl, (ii) alkoxy, and (iii) NR A RB, (b) alkoxy,
  • alkanoyl refers to an alkyl group attached to the parent molecular group through a carbonyl group.
  • alkenyl refers to a monovalent straight or branched chain group of 2-12 carbon atoms containing at least one carbon-carbon double bond derived from an alkene by the removal of one hydrogen atom.
  • alkenylene refers to a divalent straight or branched chain group of 2-10 carbon atoms containing a carbon-carbon double bond derived from an alkene by the removal of two hydrogen atoms.
  • alkoxy refers to an alkyl group attached to the parent molecular group through an oxygen atom.
  • alkoxy alkoxy refers to an alkoxy group attached to the parent molecular group through another alkoxy group.
  • alkoxycarbonyloxy refers to an alkoxy group, as defined herein, appended to the parent molecular moiety through a carbonyloxy group, as defined herein.
  • alkoxycarbonyloxymethylene refers to an alkoxycarbonyloxy group, as defined herein, appended to the parent molecular moiety through a methylene group, as defined herein.
  • alkyl refers to a saturated straight or branched chain group of 1-20 carbon atoms derived from an alkane by the removal of one hydrogen atom.
  • alkylcarbonyl refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group.
  • alkylcarbonyloxy refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyloxy group, as defined herein.
  • alkylcarbonyloxymethylene refers to an alkylcarbonyloxy group, as defined herein, appended to the parent molecular moiety through a methylene group, as defined herein.
  • alkylene denotes a divalent group derived from a straight or branched chain hydrocarbon of from 1 to 10 carbon atoms. Representative examples of alkylene include, but are not limited to, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH(CH 3 )CH 2 -, and the like.
  • amino refers to a-NR 8 oR 8 ⁇ group, where R 8 o and R 8[ are independently selected from hydrogen and alkyl.
  • aminocarbonyl refers to an amino group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
  • aminocarbonyloxy refers to an aminocarbonyl group, as defined herein, appended to the parent molecular moiety through an oxy group, as defined herein.
  • aminocarbonyloxymethylene refers to an aminocarbonyloxy group, as defined herein, appended to the parent molecular moiety through a methylene group, as defined herein.
  • aryl refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings. The aryl group can also be fused to a cyclohexane, cyclohexene, cyclopentane or cyclopentene ring. The aryl groups of this invention can be optionally substituted.
  • carbonyl refers to a -C(O)- group.
  • carbonyloxy refers to a carbonyl group as defined herein, appended to the parent molecular moiety through an oxy group, as defined herein.
  • cycloalkyl refers to a monovalent saturated cyclic hydrocarbon group of 3-12 carbons derived from a cycloalkane by the removal of a single hydrogen atom.
  • ethylenedioxy refers to a -O(CH 2 ) 2 O- group wherein the oxygen atoms of the ethylenedioxy group are attached to the parent molecular moiety through one carbon atom forming a 5 membered ring or the oxygen atoms of the ethylenedioxy group are attached to the parent molecular moiety through two adjacent carbon atoms forming a six membered ring.
  • heterocycle represents a represents a 4-, 5-, 6- or 7-membered ring containing one, two or three heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur.
  • the 4- and 5-membered rings have zero to two double bonds and the 6- and 7-membered rings have zero to three double bonds.
  • heterocycle also includes bicyclic, tricyclic and tetracyclic groups in which any of the above heterocyclic rings is fused to one or two rings independently selected from an aryl ring, a cyclohexane ring, a cyclohexene ring, a cyclopentane ring, a cyclopentene ring or another monocyclic heterocyclic ring.
  • Heterocycles include acridinyl, benzimidazolyl, benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, biotinyl, cinnolinyl, dihydrofuryl, dihydroindolyl, dihydropyranyl, dihydrothienyl, dithiazolyl, furyl, homopiperidinyl, imidazolidinyl, imidazolinyl, imidazolyl, indolyl, isoquinolyl, isothiazolidinyl, isothiazolyl, isoxazolidinyl, isoxazolyl, morpholinyl, oxadiazolyl, oxazolidinyl, oxazolyl, oxadiazolyl, piperazinyl, piperidinyl, pyranyl, pyrazolidinyl, pyrazinyl, pyrazolyl, pyrazol
  • Heterocyclics also include bridged bicyclic groups where a monocyclic heterocyclic group is bridged by an alkylene group such as
  • yclics also include compounds of the formula
  • heterocycles include 1,3-benzodioxolyl, 1,4-benzodioxanyl, and the like.
  • the heterocycle groups of this invention can be optionally substituted.
  • oxy refers to -O-.
  • methylene refers to a -CH 2 - group.
  • perfluoroalkyl refers to an alkyl group in which all of the hydrogen atoms have been replaced by fluoride atoms.
  • phenyl refers to a monocyclic carbocyclic ring system having one aromatic ring.
  • the aryl group can also be fused to a cyclohexane or cyclopentane ring.
  • the phenyl groups of this invention can be optionally substituted.
  • prodrugs as used herein represents those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention.
  • prodrug represents compounds which are rapidly transformed in vivo to the parent compound of the above formula, for example, by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro- drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, both of which are inco ⁇ orated herein by reference.
  • spiroalkyl refers to an alkylene group wherein two carbon atoms of the alkylene group are attached to one carbon atom of the parent molecular group thereby forming a carbocyclic ring of three to eleven carbon atoms.
  • tautomer refers to a proton shift from one atom of a molecule to another atom of the same molecule wherein two or more structurally distinct compounds are in equilibrium with each other.
  • thioalkoxy refers to an alkyl group attached to the parent molecular group through a sulfur atom.
  • Stereoisomers include enantiomers and diastereomers, and mixtures of enantiomers or
  • diastereomers are designated (I I).
  • Individual stereoisomers of compounds of the present invention can be prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution well-known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary or (2) direct separation of the mixture of optical enantiomers on chiral chromatographic columns.
  • Geometric isomers can exist in the compounds of the present invention.
  • the present invention contemplates the various geometric isomers and mixtures thereof resulting from the arrangement of substituents around a carbon-carbon double bond or arrangement of substituents around a carbocyclic ring.
  • Substituents around a carbon- carbon double bond are designated as being in the Z or E configuration wherein the term “Z” represents substituents on the same side of the carbon-carbon double bond and the term “E” represents substituents on opposite sides of the carbon-carbon double bond.
  • the arrangement of substituents around a carbocyclic ring are designated as cis or trans wherein the term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring.
  • Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated cis/trans.
  • Tautomers can also exist in the compounds of the present invention.
  • the present invention contemplates tautomers due to proton shifts from one atom to another atom of the same molecule generating two distinct compounds that are in equilibrium with each other.
  • Compounds of the present invention include, but are not limited to methyl 2-[(6-ethylthieno[2,3-d]pyrimidin-4-yl)thio]acetate, 6-ethyl-4-[(4-methylphenyl)thio]thieno[2,3-d]pyrimidine, 6-ethyl-4-(2-pyridinylthio)thieno[2,3-d]pyrimidine,
  • TNF (Gibco BRL) in 10 ⁇ L/well medium was added to a final concentration of 5 ng/mL, and the cells were incubated an additional 6 hours at 37 °C. Then media was removed, and the plates were washed once with D-PBS (Gibco/BRL) and treated with primary antibodies (Becton Dickinson, City), 100 ⁇ L/well in D-PBS/2% BSA (Sigma)/0.01% azide. Primary antibodies at an initial concentration of 1 mg/mL were used at the following dilutions: anti-ELAM-1, 1:2000, anti-ICAM-1, 1:2000 and anti- VCAM-1, 1:3000.
  • the compounds of the present invention act as antiinflammatory agents with potencies below 1 ⁇ M and are therefore useful for treating inflammatory diseases.
  • compositions and Methods of Treatment also provides pharmaceutical compositions which comprise compounds of the present invention formulated together with one or more non-toxic pharmaceutically acceptable carriers.
  • the pharmaceutical compositions may be specially formulated for oral administration in solid or liquid form, for parenteral injection, or for rectal administration.
  • the pharmaceutical compositions of this invention can be administered to humans and other animals orally, rectally, parenterally , intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, or as an oral or nasal spray.
  • parenteral administration refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
  • compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use.
  • suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservative, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like, Prolonged abso ⁇ tion of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay abso ⁇ tion such as aluminum monostearate and gelatin. In some cases, in order to prolong the effect of the drug, it is desirable to slow the abso ⁇ tion of the drug from subcutaneous or intramuscular injection.
  • adjuvants such as preservative, wetting agents, emulsifying agents, and dispersing agents.
  • Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides) Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
  • biodegradable polymers such as polylactide-polyglycolide.
  • Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
  • the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by inco ⁇ orating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) abso ⁇ tion accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and
  • the dosage form may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.
  • the active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such
  • the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • Suspensions in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, and tragacanth, and mixtures thereof.
  • suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, and tragacanth, and mixtures thereof.
  • compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non- irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • suitable non- irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • Liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used.
  • the present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like.
  • the preferred lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art. See, for example, Prescott, Ed.,
  • the compounds of the present invention may be used in the form of pharmaceutically acceptable salts derived from inorganic or organic acids.
  • pharmaceutically acceptable salt is meant those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well-known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66: 1 et seq.
  • the salts may be prepared in situ during the final isolation and purification of the compounds of the invention or separately by reacting a free base function with a suitable acid.
  • Representative acid addition salts include, but are not limited to acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsufonate, digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethansulfonate (isethionate), lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, phosphate, glutamate, bicarbonate, p-toluenesulfonate and undecanoate.
  • the basic nitrogen-containing groups can be quaternized with such agents as lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl and diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; arylalkyl halides like benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chlorides, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl and diamyl sulfates
  • long chain halides such as decyl
  • Basic addition salts can be prepared in situ during the final isolation and purification of compounds of this invention by reacting a carboxylic acid-containing moiety with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine.
  • a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia or an organic primary, secondary or tertiary amine.
  • Pharmaceutically acceptable salts include, but are not limited to, cations based on alkali metals or alkaline earth metals such as lithium, sodium, potassium, calcium, magnesium and aluminum salts and the like and nontoxic quaternary ammonia and amine cations including ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine and the like.
  • Other representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, piperazine and the like.
  • Preferred salts of the compounds of the invention include phosphate, tris and acetate.
  • Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants.
  • the active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers, or propellants which may be required.
  • Opthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
  • dosage levels of active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active compound(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions, and mode of administration.
  • the selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required for to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
  • the effective daily dose may be divided into multiple doses for pu ⁇ oses of administration, e.g. two to four separate doses per day.
  • BH 3 for borane
  • BH 3 DMS for borane dimethylsulfide complex
  • BINAP for 2,2'-bis(diphenylphosphino)- 1 , 1 '-binaphthyl
  • BF 3 OEt 2 for boron trifluoride diethyl ether complex
  • n-BuLi for n-butyllithium
  • CC1 4 for carbon tetrachloride
  • Cs 2 CO 3 for cesium carbonate
  • DBU for l,8-diazabicyclo[5.4.0]undec-7-ene
  • DMA for N,N- dimethylacetamide
  • DIBAL for diisobutylaluminum hydride
  • DME for dimethoxyethane
  • DMF for N,N-dimethylformamide
  • DMSO for dimethylsulfoxide
  • DIPEA for diisopropylethylamine
  • DPPA for diisopropyle
  • Scheme 1 shows the preparation of thieno[2,3-d]pyrimidines from esters of general formula 1 by published procedures.
  • 4-Chlorothieno[2,3-d]pyrimidines of general formula 3 were substituted with thiols to provide 4-thioethers of general formula 4 or substituted with amines to provide 4-aminothieno[2,3-d]pyrimidines of general formula 5.
  • Scheme 2 shows the preparation of 2-carboxy-substituted thieno[2,3- d]pyrimidines.
  • Pyrimidinones of general formula 1 weres reacted with phosphoryl chloride to produce 4-chloro pyrimidines of general formula 6, which were then substituted with thiols to provide thioethers of general formula 7.
  • Scheme 3 shows the preparation of thieno[3,2-d]pyrimidines derived from chloropyrimidines of general formula 8. Substitution of the chlorides with thiols provided thioethers of general formula 9, and substitution of the chlorides with amines provided aminopyrimidines of general formula 10.
  • Scheme 5 shows the preparation of 6-alkyl substituted thieno[2,3-d]pyrimidines with alkylthio groups at the 4-position.
  • 2-aminothiophene 13 was acylated to provide amide 14 which was cyclized to provide thienopyrimidinone 15.
  • the pyrimidinone was converted to chloride 16 and further to thioether 17 by standard procedures.
  • aicds 21 may be converted to amides 22 or 23 by other coupling methods, such as carbodiimide (for example, N-ethyl-N'-(3- dimethylamino)propyl carbodiimide hydrochloride (EDC)), mixed anhydrides (derived from pivaloyl chloride or isobutyl chloroformate treatment), and active esters (for example, derived from N-hydroxysuccinimide, p-nitrophenol).
  • carbodiimide for example, N-ethyl-N'-(3- dimethylamino)propyl carbodiimide hydrochloride (EDC)
  • EDC N-ethyl-N'-(3- dimethylamino)propyl carbodiimide hydrochloride
  • mixed anhydrides derived from pivaloyl chloride or isobutyl chloroformate treatment
  • active esters for example, derived from N-hydroxysuccinimide, p-nitrophenol
  • Scheme 7 illustrates the analogous preparation of 4-ether-substituted thienopyridines of general formula 30.
  • esters of general formula 25 may be reacted with mono or disubstituted amines in polar solvents such as dimethylformamide or methanol.
  • Esters of general formula 25 were hydrolyzed to carboxylic acids of general formula 28 by basic hydrolysis with sodium or lithium hydroxide in aqueous methanol or tetrahydrofuran. The acids were then converted to amides of general formula 30 by reaction of the corresponding acid chlorides of general formula 29 with amines.
  • the acids 30 were coupled to amines by standard peptide-coupling conditions as described in Scheme 6 for amides 22 or 23.
  • Esters of general formula 33 were converted to amides of general formula 34 by the procedures described for 26, 27 or 30 in Scheme 7.
  • Scheme 9 shows the conversion of acids of general formula 21 to aldehyde or ketone-derived compounds.
  • aldehydes of general formula 36 were produced by reduction of the N-methyl-N-methoxylamides of general formula 35.
  • the amides of general formula 35 were also reacted with Grignard reagents to produce unsymmetrical ketones of general formula 39.
  • Aldehydes of general formula 36 and Ketones of general formula 39 were utilized for the production of oximes of general formula 37 or 40 by reaction with hydroxylamine derivatives.
  • Aldehyde of general formula 36 were reacted with phosphoranes (or phosphonoacetate salts) to produce 2-alkenyl substituted derivatives of general formula 38.
  • Ketones of general formula 39 were reduced to the corresponding alkanes of general formula 41 by treatment with hydrazine and strong base, such as potassium hydroxide.
  • Analogous 2-position derivatives of thienopyridine ethers of general formula 28 in Scheme 7 would follow similar synthetic routes as described in Scheme 9.
  • acids 28 may be converted to aldehydes, ketones, oximes, alkenes, or alkanes substitutions at the 2-position.
  • Amides of general formula 34 may be converted to the corresponding thionoamides of general formula 42 by treatment with Lawesson's reagent as shown in Scheme 10.
  • 4-sulfoxides of general formula 43 were produced by reaction of thioethers of general formula 20 with an oxidant such as m-chloroperoxybenzoic acid under controlled conditions.
  • Scheme 13 illustrates an alternative method for the preparation of 2-carboxaldehydes of general formula 36 or 47.
  • the alcohols were then oxidized to the aldehydes using Swern conditions.
  • the aldehydes were then reacted with Wittig reagents (for example phosphoranes to produce the acrylate derivatives of general formula 48 (Jung, M. E. and Kiankarami, M. J. Org. Chem. 1998, 63, 2968-2974).
  • thienopyridines of general formula 27 or 30 were alkylated on the pyridine nitrogen using alkyl iodides (or alkyl bromides or triflates) to produce the pyridinium salts of general formula 49.
  • R may be alkylcarbonyloxymethylene, aminocarbonyloxymethylene, alkoxycarbonyloxymethylene, or alkyl.
  • Such derivatives may serve as prodrug forms of the thienopyridine amides 27 or 30.
  • 50 may be reacted with alkyl or arylmagnesium halides, or alkyl lithium salts, to provide amides of general formula 53.
  • Isocyanate 50 was hydrolyzed under aqueous conditions to produce 2-amino derivatives of general formula 54.
  • Amines of general formula 54 were reacted with appropriate electrophiles to further derivatize this position.
  • Scheme 17
  • styryl derivative 56 was converted to the 1,2-diol 57 by treatment with osmium tetroxide under standard conditions.
  • the 4-(4-bromophenoxy) derivative 58 underwent fascile substitution with aryl boronic acids under palladium catalysis under Suzuki conditions to provide biaryl derivatives of general formula 59.
  • alkoxycarbonylation under palladium catalysis efficiently provides esters of general formula 61.
  • Scheme 19 shows the use of boronic acid derivatives to functionalize the 4- position of the thieno[2,3-cJpyridines.
  • the chemistry depicted may be applied to a broad range of aryl olefins analogous to bromostyrene 62.
  • bromostyrene 62 was converted to the boronic acid 63 under standard conditions, and the boronic acid was coupled to 4-bromothienopyridine 32 under Suzuki conditions, affording the styryl analog 64.
  • the ester 64 was converted to the amide 65 by the previously described method (Miyara, N and Suzuki, A. Chem. Rev. 1995, 95, 2457-2463).
  • the olefinic group may then be converted to the epoxide 66, which can undergo reactions with nucleophilic reagents at the less-hindered position of the epoxide to producing analogs of general formula 67.
  • styryl derivative 65 may be converted to the diol 68 by standard methods.
  • Bromide 32 may be converted to the corresponding cuprate through the intermediate zinc bromide reagent, which then may be reacted with appropriate electrophiles (acid chlorides, alkyl halides, aldehydes, ketones) to afford the substituted compounds of general formula 69 (Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445-1453).
  • Scheme 21 depicts the preparation of 5-halo thienopyridine derivatives, as exemplified by the preparation of the 5-chloro analog 75.
  • Formylation of lithiated 2,3,5- trichloropyridine with methyl formate gave aldehyde 72.
  • Displacement of the 3 and 5 chlorines with excess 4-bromophenol and reaction with methylthioglycolate gave the 5-chlorothienopyridine 74 in low yield, together with the major product 73.
  • the 5-chloro isomer was treated with ammonia in methanol in a pressure tube to generate the amide 75. It should be noted that this chemistry may be applied using a range of phenols or hydroxy heterocyclic compounds in place of 4-bromophenol.
  • Scheme 22 depicts the preparation of 5-halo thienopyridine derivatives, as exemplified by the preparation of the 5-chloro analog 75.
  • Scheme 23 illustrates the preparation of 4-acyl derivatives of thieno[2,3- cjpyridines.
  • Carboxylic acid 85 was converted to amide 86 via the acid chloride, then the hydroxyamide 86 underwent thionyl chloride-mediated cyclization to the oxazoline 87 (Meyers, A. I.; Stoianova, D. J. Org. Chem. 1997, 62, 5219-5221). Palladium mediated alkoxycarbonylation of 87 yielded ester 88 (Heck, R. F.; et al. J. Org. Chem. 1974, 39, 3318). Ester 88 may be converted to the Weinreb amide 89 by standard methods.
  • Scheme 24 depicts a proposed method for the formation of 4-hydroxy substituted thieno[2,3-c]pyridine.
  • Reaction of phenol 92 with dihydropyran under acidic conditions yields tetrahydropyranyl ether 93 (Grant, H. N., et al. Helv. Chim. Acta. 1963, 46, 41).
  • Lithiation of 93 and subsequent quench with methyl formate gives aldehyde 94.
  • Displacement of the halide with methyl thioglycolate and subsequent cyclization with cesium carbonate yields the ester 95.
  • Removal of the tetrahydropyranyl ether with aqueous HCl gives hydroxypyridine 96, which may be converted to the amide as described previously.
  • Scheme 25 proposes the use of the 4-hydroxy group for introduction of functionality to the 4-position of the thieno[2,3-cJpyridines.
  • the 2-carboxylic acid group is first protected as the oxazoline 99 (through the intermediate amide 98), then the hydroxy group is converted to the aryl triflate 100 by standard conditions.
  • Triflate 100 may then be converted to the N-methyl-N-methoxy amide 89 under conditions similar to that for bromide 87.
  • 4-triflate 100 may serve as a coupling partner in a variety of transition-metal mediated couplings with appropriate nucleophilic partners (for example, boronic acids, boranes, alkyl or aryl-zinc reagents).
  • Scheme 27 illustrates additional derivatives which can be derived from amino esters of general formula 108 or amino amides of general formula 109.
  • amino amides of general formula 109 may be treated with l,r-carbonyldiimidazole to produce cyclic imides of general formula 110.
  • the 3-amino group was acylated (for example, with acid chlorides and weak base, or by coupling with acids using carbodiimides) to give the diamides of general formula 111.
  • the 3-amino group may be alkylated under reductive conditions using aldehydes and a reducing agent (such as triacetoxyborohydride), to provide alkylated amines of general formula 112.
  • Scheme 28 shows the preparation of compounds bearing alkyl substituents at the 3- position of the thieno[2,3-cJpyridines.
  • 3,5-dichloropyridine was deprotonated with strong base (for example, lithium dusopropylamide), and then reacted with an acylating reagent (ester, N-methyl-N- methoxyamide, acyl pyrazole, or others) to provide ketone 113.
  • an aldehyde for example, acetaldehyde
  • the product may be oxidized (for example, with tetrapropylammonium perruthenate) to provide ketone 113.
  • Scheme 29 describes a similar strategy used to obtain derivatives with alkoxy groups at the 3-position of thieno[2,3-c]pyridines.
  • Ester 116 was substituted and cyclized to provide 3-hydroxy analogs of general formula 117.
  • the hydroxy group may be left unsubstituted, leading to amides of general formula 118 (or other derivatives).
  • hydroxy esters of general formula 117 may be alkylated by standard procedures to produce 3-alkoxy derivates of general formula 119, followed by amide formation to provide compounds of general formula 120.
  • Scheme 30 shows the procedure used for the transformation of a commercially available furo[2,3-b]pyridine 121 into an amide 122.
  • Scheme 31 proposes the preparation of thienopyridine derivatives containing an amide group at the 3-position.
  • Thienopyridines of general formula 44 are halogenated using electophilic halide sources (for example, N-bromosuccinimide, I2), to produce
  • 3-halothienopyridines of general formula 123 Metal-halogen exchange, followed by trapping with carbon dioxide, provides acids of general formula 124.
  • the acids are converted into amides of general formula 125 by standard procedures, or may be homologated to esters of general formula 126 (for example, by the Arndt-Eisert procedure).
  • Esters of general formula 126 may then be converted to amides or other functionality by the methods described above.
  • Scheme 32 describes the methods used for the preparation of a variety of thieno[2,3-bJpyridines starting from the known 4-chloro-5-ester 127. Displacement of the chlorine of 127 proceeded with thiols in the presence of potassium carbonate to provide 4-thioethers of general formula 128. Ester 127 was also hydrolyzed to the acid 129, which was converted to amides of general formula 130 by standard coupling conditions.
  • Scheme 33 shows the conversion of thioethers of general formula 128 to 2,4-disubstituted analogs.
  • the corresponding acids of general formula 131 may be thermally decarboxylated to provide the 5-unsubstituted analogs of general formula 132.
  • Compounds of general formula 132 were treated with strong base (for example, n- butyllithium), and reacted with carbon dioxide to provide the 2-carboxylic acids of general formula 133.
  • the acids were then transformed into amides of general formula 134 by previously described procedures.
  • Scheme 34 illustrates the preparation of thieno[3,2-b]pyridines. Chloride 135 was transformed by a similar set of conditions to that described in Scheme 33 to produce acids of general formula 139 and amides of general formula 140.
  • Scheme 35 depicts the preparation of thieno[3,2-c]pyridines.
  • thienopyridone 141 4-oxo-4,5-dihydrothieno[3,2-c]pyridine-2-nitrile 144 was prepared according to literature methods (Eloy, F.; Deryckere, A. Bui. Soc. Chim. Belg. 1970, 79, 301; Troxler, F.; Wiskott. E. US Patent 3,998,835).
  • Treatment of thienopyridone 144 with phosphoryl chloride at 130 °C provided chloride 145, which upon exposure to thiols under basic conditions afforded thioethers of general formula 146.
  • Hydrolysis of the nitrile group with polyphosphoric acid gave the corresponding amides of general formula 147.
  • Scheme 37 shows the preparation of intermediates of general formula 151 useful for the preparation of alternative 2-derivatives.
  • Scheme 38 depicts an example of the preparation of a related class of inhibitors based on an oxazolopyridine structure.
  • Commercially available 3-chloropyridine is oxidized to the N-oxide 152 with peracetic acid, which is then nitrated in a mixture of concentrated nitric, concentrated sulfuric, and fuming sulfuric acids to give the 4-nitro derivative 153.
  • the chlorine in 153 is then displaced with the sodium salt of p-cresol, and the resulting biaryl ether 154 is hydrogenated (Raney nickel catalysis) to reduce both the nitro functional group and the N-oxide to give 155.
  • the amino group of 155 is protected with an N-trimethylacetyl group, and the 5-hydroxyl group is introduced according the procedure of Chu-Moyer and Berger (J. Org. Chem. 1995, 60, 5721) by formation of the dianion of 156, quenching with trimethyl borate, and oxidation of the intermediate boronate ester followed by hydrolysis with basic hydrogen peroxide to give hydroxypyridine 157.
  • the amide is hydrolyzed with hydrochloric acid to give 158, which is condensed with methyl oxalyl chloride to give the oxazolopyridine 158.
  • the methyl ester in 159 was then converted to the primary amide by treatment with ammonia in methanol to give the target compound 160.
  • Scheme 39 illustrates an example of the preparation of an analogous thiazolopyridine-based inhibitor.
  • the scheme illustrates the use of para-cresol substituted pyridine as starting material, but the synthesis may be generalized to other aryl, heterocyclic, or alkyl ethers.
  • the dianion of 4-(N-trimethylacetyl)-amino-3-(4- methylphenoxy)-pyridine is quenched with tetramethylthiuram disulfide to introduce the 5- mercapto group into the substituted pyridine ring as dithiocarbamate 161.
  • a related imidazopyridine class of compounds may be prepared from intermediates shown in Scheme 40.
  • 5-Hydroxypyridine 157 may be converted to the corresponding aniline 166 by heating in ammonium hydroxide saturated with sulfur dioxide in a pressure vessel (Newman and Gait, J. Org. Chem. 1960, 25, 214).
  • the resulting diaminopyridine 167 may be condensed with methyl oxalyl chloride to give the imidazopyridine 168.
  • the ester functionality may then be converted to amide 169 by treatment with ammonia in methanol, as described previously.
  • Scheme 41 is an illustration of the preparation of thienopyridazine-containing inhibitors.
  • the protected thiophene acid 170 was deprotonated with strong base (e.g. n- butyllithium), and reacted with a formylating reagent.
  • strong base e.g. n- butyllithium
  • the resultant oxazoline aldehyde 171 was hydrolyzed and cyclized with hydrazine to provide the hydroxy thienopyridazine 172.
  • the hydroxy group was converted to the chloride 173 by the action of phosphorous oxychloride and subsequent substitution by alkoxides produced the ethers 174.
  • the amide group is introduced in a manner analogous to that described above for the thienopyridines, providing amide 176.
  • Scheme 43 outlines the preparation of 4-(4-aminophenoxy)thieno[2,3-c]pyridine-2- carboxamide using a modification of the route described in Scheme 7.
  • a two step sequence was adopted for assembling the thienopyridine core in the synthesis of 182.
  • Treatment of the dichloropyridine aldehyde with one equivalent of N-BOC-protected 4- hydroxyaniline afforded compound 179, which was cyclized to give ester 180. Transformation to the amide 181 followed the previously described procedure, and the Boc-group was removed by treatment with trifluoroacetic acid.
  • aniline 182 also serves as starting material for Sandmeyer reactions via the diazonium salt, in which the amino group may be converted to a variety of functional groups, including halo, hydroxy, cyano, among other standard Sandmeyer products.
  • Scheme 44 exemplifies a general method for the preparation of 4-substituted aminophenoxythieno[2,3-c]pyridines using methodology described by Buchwald, et al. (Wolfe, John; Buchwald, Stephen L. J. Org. Chem. 1997, 62, 6066).
  • Iodide 183 prepared by the previously described methods, was coupled with disubstituted amines (such as mo ⁇ holine in the above example) in the presence of bis(dibenzylideneacetone)dipalladium and BINAP to provide the substituted aniline 184.
  • Scheme 45 describes the preparation of 4-(4-hydroxymethylphenyl)thieno[2,3- cjpyridine 188, utilizing a modification of the route shown in Scheme 7. Starting with mono-tritylated 4-hydroxybenzyl alcohol, condensation with dichloroaldehyde 18, followed by cyclization with methyl thioglycolate, provided protected benzyl alcohol 188. Standard transformations provided alcohol 188.
  • Scheme 46 describes the preparation of a protected benzyl alcohol 190, starting from mono-tetrahydropyran-protected hydroxybenzyl alcohol 189. Standard acid- catalyzed hydrolysis of the THP group can also yield the benzyl alcohol analog 188.
  • benzyl alcohol 188 may be further derivatized to esters, using standard coupling procedures, for example by carbodiimide conditions shown above, or by use of acid chloride.
  • Glycosides of benzyl alcohol 187 may be produced using the procedure outlined in Scheme 48. Treatment of the alcohol 187 and tri-O-acetyl-D-glucal with stoichiometric scandium triflate afforded stereo-specifically protected glycoside 192, which was deprotected with methyl amine to give the free glycoside 193.
  • Scheme 51 exemplifies the preparation of 4-heterocyclephenoxy thienopyridines.
  • Cyano derivative 202 was transformed into imidazoline 205 under the conditions described above.
  • Inco ⁇ oration of other heterocycles was accomplished using known Stille, Suzuki, or Heck conditions as exemplified by the Stille coupling of iodo compound 194 and tributylstannylthiophene to provide compound 205A.
  • the aryl coupling reactions described above may be applied to compounds with a variety of substituents at C-2 of the thienopyridine, in addition to the methyl amides exemplified in Scheme 51.
  • Cyclopropylcarbinyl alcohol derivatives of the 4-phenyl ethers may be prepared according to the procedure described in Schemes 52 and 53.
  • Commercially available phenylcyclopropane carboxylic acid is converted to the corresponding alcohol 206 by LAH reduction, then demethylation and selective protection of the hydroxymethyl group affords phenol 207.
  • phenol 207 was condensed with dichloroaldehyde 18 and then methyl thioglycolate, to produce thienopyridine 208. Standard transformations led to the desired compounds 209 and 210.
  • alcohol 206 was alkylated to produce the polyether phenol 211 which was converted into cyclopropylcarbinyl polyether 212 using similar procedures described in Scheme 52.
  • alkylation chemistry may be broadly applied by replacement of the diether tosylate shown with other alkyl halides or sulfonate esters.
  • difluoroacetic acid derivative 213 was synthesized by a copper mediated coupling between iodide 194 and ethyl iododifluoroacetate in the presence of phenol, which was found to remarkably inhibit side reactions. Reduction of the ester 213 gave difluoroethyl alcohol 214. Alkylation of alcohol 214 with ethoxyethyl tosylate in the presence of sodium hydride and 15-crown-5 afforded polyether 215.
  • Esters 218 were then converted to other active derivatives such as amides using previously described procedures. Benzyl ether 218 was hydrogenolyzed to phenol 219, which was converted to the corresponding amide 220 by standard procedures. Phenol 219 also serves as a partner in Mitsunobu reactions with a variety of primary or secondary alcohols, to provide alkyl ethers of general formula 221 (Huang, F., et al. J. Med. Chem. 1998, 41, 4216-4223). Esters of general formula 221 were converted to amides of general formula 222 by treatment under the standard conditions of reflux with methanolic amine solutions.
  • Thienopyridine analogs bearing a 4-carbonyl group may be prepared by the procedures described in Scheme 56.
  • Dichloropyridine aldehyde 18 was treated with methyl thioglycolate under previously described conditions to produce the
  • ester 228 may be transformed to various 2- substituted thienopyridine analogs directly, or oxidized to the corresponding 4-keto derivative 230. Standard transformation of ester 230 to amide 231 completes the synthesis. It should be noted that ester 226 may be selectively converted to amide derivatives by initial alkaline hydroysis of the ethyl ester, coupling to an amine, then acidic hydrolysis of the tert-butyl ester, and finally coupling to another amine to produce 308.
  • Scheme 58 illustrates the conversion of aldehyde 233 to the acrylate 236, which was accomplished by Horner-Emmons condensation with trimethyl phosphonoacetate (Jung, M. E. and Kiankarami, M. J. Org. Chem. 1998, 63, 2968-2974).
  • the described methods may be extended to analogs bearing a wide variety of C-4 substituents, including aryloxy, alkoxy, arylamino, aryl, alkyl.
  • the derived ester 236 was then subjected to hydrolysis to provide acid 237.
  • Carboxylic acid 237 was subjected to standard coupling conditions to produce amide 238.
  • the derived acrylates of general formula 239 may be oxidized to the corresponding diols of general formula 240 with catalytic osmium tetroxide in the presence of 4-methy lmo ⁇ holine-N-oxide.
  • the strategy outlined is generally applicable to analogs with a variety of L A X A substituents.
  • Aldehydes of general formula 233 were also reacted with organomagnesium (or organolithium) reagents to produce secondary alcohols which were oxidized to the corresponding ketones of general formula 242.
  • Oxidation is preferably accomplished by standard Swern conditions (DMSO and oxalyl chloride in CH 2 C1 2 solution at low temperature, followed by treatment with tertiary amines such as ethyldiisopropyl amine), but other conditions (tetra- n-propyl perruthenate, manganese dioxide) may be employed.
  • DMSO and oxalyl chloride in CH 2 C1 2 solution at low temperature followed by treatment with tertiary amines such as ethyldiisopropyl amine), but other conditions (tetra- n-propyl perruthenate, manganese dioxide) may be employed.
  • tertiary amines such as ethyldiisopropyl amine
  • manganese dioxide tetra- n-propyl perruthenate, manganese dioxide
  • Nitriles of general formula 244 were also converted to cyanoamidines of general formula 248 when subjected to excess cyanamide in THF with DBU as the base.
  • the 3-amino- 1,2,4-oxadiazoles of general formula 249 were then generated by treatment of cyanoamidines of general formula 248 with hydroxylamine hydrochloride and triethy amine in methanol.
  • Scheme 61 depicts the preparation of 2-arylcarbonylthienopyridines.
  • Thienopyridines of general formula 44 were deprotonated with alkyllithium base and condensed with nitrobenzaldehdyes to produce the benzyl alcohols of general formula 250.
  • Tin(II) -induced reduction of the nitrophenyls to the anilines of general formula 251 were followed by selective alcohol oxidation with pyridinium chlorochromate.
  • the nitro benzyl alcohols of general formula 250 were also converted to the corresponding ketones of general formula 253 under Swern conditions (for example, oxalyl chloride/DMSO/CH 2 Cl 2 at low temperature, followed by treatment with amine bases).
  • Scheme 62 depicts the preparation of 2-carbamatethienopyridines and 2- ureathienopyridines.
  • Alcohols of general formula 232 were converted to the amines of general formula 254 by Mitsunobu reaction with phthalimide, followed by deprotection with hydrazine.
  • the amines of general formula 254 were converted to the corresponding ureas of general formula 255 by reaction with potassium isocyanate under acidic conditions.
  • the alcohols of general formula 232 were converted to the corresponding carbamates of general formula 256.
  • This chemistry is generally applicable to the use of substituted isocyanates or carbamoyl chlorides, leading to mono or disubstituted carbamates or ureas.
  • Scheme 63 illustrates the preparation of 2-thioureathienopyridines, starting from 2-aminothienpyridines of general formula 54. Reaction of 54 with substituted isothiocyanates in pyridine at reflux provided the thioureas of general formula 257.
  • Scheme 64 exemplifies the synthesis of sulfonamides at the 2-position of the thienopyridines.
  • An improved procedure for decarboxylation of thienopyridine-2- carboxylic acids is shown, wherein acids of general formula 21 were heated in diphenylether at 210 °C to provide thienopyridines of general formula 44 in high yield.
  • Compounds 44 were deprotonated with strong base, then treated with sulfur dioxide to produce intermediate sulfinic acids.
  • N-chlorosuccinimide produced sulfonyl chlorides of general formula 258, from which a variety of sulfonamides of general formula 259 were prepared by reaction with ammonia, primary or secondary amines in the presence of diisopropylethylamine in protic solvents such as methanol (Prugh, J. D., et al. J. Med. Chem. 1991, 34, 1805-1818; Davidsen, S. K., et al. J. Med. Chem. 1998, 41, 74-95).
  • protic solvents such as methanol
  • Scheme 65 provides the outline of the synthesis of additional 2-arylthienopyridines with amino or hydroxy groups on the aryl ring.
  • Suzuki coupling of boronic acids of general formula 79 with nitro-substituted aryl iodides produced biaryls of general formula 260.
  • Biaryls of general formula 260 were reduced to the aminophenyl derivatives of general formula 261 with tin(II) chloride.
  • Methyl ethers of general formula 262 were prepared from boronic acids 79 by coupling with methoxy iodobenzenes, and were converted to the hydroxy derivatives of general formula 263 through the use of boron tribromide to demethylate the methyl ethers.
  • Scheme 67 indicates a method of preparing 1,3,4-triazoles from methyl esters of general formula 20 or 25. Condensation with aminoguanidine under basic conditions (for example sodium methoxide in methanol) produced the 2-amino- 1,3,4-triazoles of general formula 267. Nonspecific methylation was performed on 1,3,4 triazoles of general formula 267 using sodium hydride and methyl iodide, which provided mono-methyl triazoles of general formula 268, dimethyl triazoles of general formula 269, and trimethyl triazoles of general formula 270, which were chromatographically separable.
  • aminoguanidine under basic conditions (for example sodium methoxide in methanol) produced the 2-amino- 1,3,4-triazoles of general formula 267.
  • Nonspecific methylation was performed on 1,3,4 triazoles of general formula 267 using sodium hydride and methyl iodide, which provided mono-methyl triazoles of general formula 268, dimethyl triazoles of general formula 269,
  • Scheme 68 indicates a method for the preparation of 1,3,4-thiadiazoles of general formula 272.
  • the acid chlorides derived from acids of general formula 21 or 28 were reacted with thiosemicarbazide or substituted thiosemicarbazides to give intermediate acylated thiosemicarbazides of general formula 271, which were cyclized under acid catalysis (for example methanesulfonic acid in refluxing toluene) to provide thiadiazoles of general formula 272.
  • acid catalysis for example methanesulfonic acid in refluxing toluene
  • Scheme 69 provides a method for the preparation of l,3,4-oxadiazol-2-thiones and the derived alkylthio-substituted oxadiazoles of general formula 274.
  • Hydrazides of general formula 264 were treated with carbon disulfide in potassium hydroxide in aqueous ethanol solution to give the cyclic thiocarbamates of general formula 273.
  • the thiocarbonyl group was alkylated in low yield with alkyl halides to give the alkylthio 1,3,4-oxadiazoles of general formula 274.
  • Scheme 70 shows the preparation of tetrazoles at the 2-position of thienopyridines.
  • 2-Cyano derivatives of general formula 244 were converted to tetrazoles of general formula 275 using trimethylsilyl azide in the presence of catalytic dibutyltin oxide.
  • the tetrazoles were converted to the N-methyl derivatives of general formula 276 by use of a solution of diazomethane in methanol.
  • Scheme 71 illustrates the syntheses of 2-oxazole and 2-imidazole thienopyridines.
  • Chloroethyl amides of general formula 277 were prepared by chlorination of the corresponding hydroxyethyl amides and then cyclized to oxazolines of general formula 278 under basic catalysis (for example, diazabicycloundecane in dichloromethane).
  • the oxazolines of general formula 278 may be converted to the oxazoles of general formula 278 by dehydrogenation according to the procedure of Meyers (Meyers, A. I., et al. J. Amer. Chem. Soc. 1975, 97, 7383).
  • Aminoethyl amides of general formula 280 were cyclized to the imidazolines of general formula 281 by treatment with calcium oxide at high temperature in diphenyl ether. Imidazolines of general formula 281 may be converted to imidazoles of general formula 282 by literature methods (Hughey, J. L., et al. Synthesis [SYNTBF] 1980, (6), 489).
  • Scheme 73 provides a synthesis for 3-carboxythienopyridines.
  • 3,5- dichloropyridine was treated with strong base such as lithium dusopropylamide in anhydrous ethereal solvent at low temperature, followed by the addition of t-butyl chlorooxoacetate to provide the 4-tert-butyl-2-ketoester of 3,5-dichloropyridine 283.
  • the ester 283 was then reacted with 1.25 equivalents of preformed potassium phenoxides at ambient temperature, to give the monoaryloxy derivatives as the main product.
  • the monoaryloxy esters were treated with methyl thioglycolate and base such as potassium t-butoxide or cesium carbonate to provide the desired thienopyridine diesters of general formula 284.
  • the diesters of general formula 284 were then treated with methanolic amines to give the corresponding 3-tert-butyl ester amides of general formula 285.
  • the tert-butyl ester amides of general formula 285 were converted to the corresponding acid amides of general formula 287 by solvolysis with trifluoroacetic acid. Diesters of general formula 284 may also be converted to the acids of general formula 286 by a similar solvolysis reaction.
  • Scheme 74 describs the use of 4-bromothienopyridine 32 to prepare 4-amino substituted thienopyridine derivatives.
  • Ester 32 was converted to amides of general formula 288 by standard procedures, and then coupled to a variety of amines using palladium(O) catalysis, as described by Buchwald (J. Org. Chem. 1997, 62, 6066-6068), producing 4-amino derivatives of general formula 289.
  • Scheme 75 outlines the preparation and reactions of 7-chloro and 7- bromothienopyridine derivatives.
  • the analogs are useful for preparing active derivatives as well as serving as synthetic intermediates for a variety of 7-substituted thienopyridines.
  • Esters of general formula 25 were oxidized to the pyridine-N-oxides of general formula 290 with meta-chloroperbenzoic acid.
  • the N-oxides were rearranged to the 7-halo derivatives of general formula 291 by warming in phosphorous oxychloride or phosphorous oxybromide.
  • the resultant 7-halides could be converted to the amide derivatives of general formula 292 by standard methods without reaction of the 7-chloro or 7-bromo moieties.
  • the chloro or bromo groups could be substituted with amines or alcohols to provide 7-amino derivatives of general formula 293 and 7-alkoxy derivatives of general formula 294 respectively.
  • Esters of general formula 294 were converted to amides of general formula 295 using standard methods.
  • 7-Hydroxy analogs of general formula 296 were prepared from 291 derivatives using acetic anhydride followed by hydrolysis with water.
  • the 7-halo derivatives 291 in particular the 7-bromo derivatives, were effective educts in Suzuki reactions with aryl boronic acids, similar to those described in Scheme 19 and 65.
  • Scheme 77 illustrates the preparation N-alkyl 5-amino-l,3,4,-oxadiazoles.
  • the treatment of 265 in refluxing trimethylorthoformate followed by reduction of the eneamine intermediate with sodium borohydride in refluxing ethanol provides the N-alkylated 5- amino-l,3,4,-oxadiazoles of general formula 301.
  • Scheme 78
  • Scheme 78 exemplifies the synthesis of substituted vinyl moieties at the 4-position of thienopyridines.
  • Treatment of aldehyde 227 with the appropriate diethylphosphonate in the presence of potassium bis(trimethylsilyl)amide provided 302.
  • Compound 302 was then treated with sulfuric acid in methanol to yield the methyl ester 303, followed by standard amide formation with ammonia and methanol to produce 4-vinylsubstituted thienopyridines of general formula 304.
  • Installation of a substituted vinyl can also be accomplished by using Wittig phosphorane chemistry.
  • Scheme 79 demonstrates the preparation of 4-substituted alkyl thienopyridines.
  • Alcohol 228 was subjected to palladium on carbon in acetic acid to generate the methylene derivative 305.
  • Treatment of 305 with sulfuric acid in methanol yields 306.
  • Formation of the amide is accomplished by treatment of 306 with ammonia in methanol to yield 307
  • Scheme 80 illustrates the preparation of thiazole derivatives at the 2-position of thienopyridines.
  • Thioamides of general formula 309 were alkylated and cyclized with ethyl bromopyruvate, providing thiazole esters of general formula 310.
  • Standard amide formation led to amides of general formula 311.
  • Other amines may be used to produce a variety of substituted amides.
  • esters of general formula 310 may be converted to carbamates of general formula 312 through Curtius rearrangement of the intermediate acid.
  • the tert-butyl carbamates of general formula 312 were converted to the primary amines of general formula 313 by the action of trifluoroacetic acid.
  • Aldehyde 18 was reacted with the appropriate organomagnesium halide, to give an intermediate secondary alcohol, which was oxidized to the corresponding ketone 314.
  • the method of oxidation was the Swern procedure, although other standard oxidations of this type may be employed (e.g PCC, TPAP).
  • the procedure then follows that previously described for the 3 -unsubstituted analogs, leading to ester 315. Ester 315 then served as starting material for the preparation of amides, or other heterocyclic derivatives at the 2-position of the thienopyridines.
  • Scheme 82 describes a method for producing cyclic derivatives between the 2- and 3-positions of thienopyridines.
  • Compound 316 can then be reacted with a primary amine, through alkylation and acylation, leading to the tricyclic lactam 317.
  • These esters in turn can be reacted with substituted amines to yield the corresponding amides 319.
  • Example 1A methyl 6-ethyl-3,4-dihvdro-4-oxothieno[2,3-d1pyrimidine-2-carboxylate
  • the desired compound was prepared as described in J. Heterocylic Chem. 1987, 24, 581-587.
  • Example 1A (35 g, 140 mmol) and LiCl (6.5 g, 153 mmol) in DMSO (80 mL) and water (8 mL) was heated to 150 °C for 18 hours, cooled to room temperature, diluted with water, and extracted with ethyl acetate. The extract was dried (MgSO/ , filtered, and concentrated to provide the designated compound.
  • Example 1C 4-chloro-6-ethylthieno[2,3-d]pyrimidine
  • Example IB (3.97 g, 22.0 mmol) in POCl 3 (22 mL) was heated to reflux for 2 hours, cooled, poured onto ice, diluted with water, made basic with concentrated ammonium hydroxide, and extracted with ethyl acetate. The extract was dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 10% ethyl acetate-hexane to provide the designated compound.
  • Example 1C (0.25 g, 1.26 mmol) in DMF (1.2 mL) was treated sequentially with methyl thioglycolate (0.134 g, 1.26 mmol) and potassium carbonate (0.174 g, 1.26 mmol), stirred at room temperature for 18 hours, cooled, poured into water, diluted with brine, and extracted with dichloromethane. The extract was washed with water and brine, dried (MgSO4), filtered, and concentrated. The residue was triturated then washed with 10% ethyl acetate/hexanes to provide the title compound. mp 36-58 °C;
  • Example 2 6-ethyl-4-r(4-methylphenyl)thio1thieno[2,3-d]pyrimidine
  • Example 1C was processed as in Example ID but substituting thiocresol for methyl thioglycolate to provide the title compound. mp 56-58 °C;
  • Example 3 6-ethyl-4-(2-pyridiny lthio)thieno [2 , 3 -d] pyrimidine
  • Example 1C was processed as in Example ID but substituting 2-mercaptopyridine for methyl thioglycolate to provide the title compound, mp 76.5-79 °C;
  • Example 4 6-ethyl-4-[(2-methylethyl)thiolthieno[2,3-d]pyrimidine
  • Example 1C was processed as in Example ID but substituting isobutyl mercaptan for methyl thioglycolate to provide the title compound.
  • MS (DCI/NH3) m/z 253 (M+H)+;
  • Example 5 6-ethyl -4- [(phenylmethyl) thio] thieno [2 , 3 -dip yrimidine
  • Example 1C was processed as in Example ID but substituting benzyl mercaptan for methyl thioglycolate to provide the title compound, mp 54-60 °C;
  • Example 6 6-ethyl-4-[(5-methyl-l,3,4-thiadiazol-2-yl)thio]thieno[2,3-d1pyrimidine
  • Example 1C was processed as in Example ID but substituting 5 -methyl- 1,3,4- thiadiazol-2-thiol for methyl thioglycolate to provide the title compound. mp 132-135 °C;
  • Example 7 ethyl 6-ethyl-4-[(4-methylphenyl)thiolthieno[2,3-d]pyrimidine-6-carboxylate
  • Example 1A was processed as in examples 1C and 2 and to provide the title compound. mp 87.5-90 °C;
  • Example 8 6-ethyl-N-(phenylmethyl)thieno[2,3-d1pyrimidin-4-amine
  • Example 1C (0.27 g, 1.37 mmol) in isopropanol (1.5 mL) was treated with benzylamine (0.19 mL, 1.71 mmol) and sodium carbonate (0.24 g, 2.3 mmol), stirred at room temperature overnight, filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 25% ethyl acetate/hexanes to provide the title compound, mp 128-131 °C; MS (DCI/NH3) m/z 270 (M+H) + ;
  • Example 9 6-ethyl-N-(5-methyl- 3,4-thiadiazol-2-yl)thieno[2,3-dJpyrimidin-4-amine
  • a solution of Example 1C (0.20 g, 1.01 mmol) in isopropanol (2 mL) was treated with 2-amino-5-methyl-l,3,4-thiadiazole (0.15 g, 1.26 mmol) and sodium carbonate (0.18 g, 1.7 mmol), stirred at room temperature for 48 hours, treated with cesium carbonate (0.55 g, 1.7 mmol), stirred at reflux for 24 hours, concentrated, treated with water, and extracted with dichlorome thane. The extract was dried (MgSO 4 ), filtered, and concentrated. The residue was recrystallized with ethanol/water to provide the title compound. mp 277-280 °C;
  • Example 10A was processed as in Bull. Soc. Chim. France 1975, p 815 to provide the designated compound.
  • Example 10B was stirred in dioxane/water in the presence of 10% Na2CO3 to provide the designated compound.
  • Example IOC was processed as in Example 1C to provide the designated compound.
  • Example 10E 4-[(5-amino-l,3,4-thiadiazol-2-yl)thio1-6-ethyl-2-(phenylmethyl)thieno 2,3-d]pyrimidine
  • Example 10D and 5-amino-l,3,4-thiadiazole-2-thiol were processed as in Example ID to provide the title compound.
  • 'H NMR 300 MHz, DMSO-d 6 ) ⁇ 1.31 (t, 3H), 2.97 (q, 2H), 4.17 (s, 2H), 7.17-7.30 (m, 6H), 7.70 (br s, 2H);
  • the extract was concentrated, and the residue was purified by flash chromotograpy on silica gel with 7% methanol/dichloromethane to provide the designated compound.
  • Example 16B 7-methyl-4-[(4-methylphenyl)thio1thieno[3,2-d]pyrimidine-2-carboxamide
  • a suspension of Example 16A in dichloromethane (3.3 mL) was treated sequentially with oxalyl chloride (0.03 mL, 0.33 mmol) and DMF (1 drop), and concentrated after formation of the acid chloride.
  • the residue was suspended in THF (10 mL), transferred to a vigorously stirred solution of 1:1 ammonium hydroxide/water (10 mL), and extracted with dichloromethane. The extract was dried (MgSO4), filtered, and concentrated. The residue was recrystallized from ethyl acetate/hexanes to provide the title compound, mp 243-246 °C;
  • Example 17 A 3.5-dichloropyridine-4-carboxaldehvde Diisopropyl amine (15.6 mL, 0.111 mol) in dry THF (25 mL) at 0 °C was treated with n-BuLi (44.6 mL, 2.5 M in hexane, 0.111 mol) over 35 minutes, stirred for 30 minutes, cooled to -78 °C, diluted with THF (100 mL), and a solution of 3,5- dichloropyridine (15.0 g, 0.101 mol) in THF (175 mL) was added slowly over 3.5 hours in order to maintain an internal temperature ⁇ -74 °C.
  • Example 17B 3-(4-methylphenylthio)-5-chloro-4-pyridinecarboxyaldehyde
  • Example 17A (5.05 g, 28.7 mmol) in DMF (70 mL) was treated with p-thiocresol (3.56 g, 28.7 mmol) and potassium carbonate (4.36 g, 31.6 mmol), stirred for 0.5 hours at 0 °C then for 1 hour at room temperature, poured into water, diluted with brine, and extracted with dichloromethane. The extract was washed sequentially with water and brine, dried (MgSO4), filtered, and concentrated to provide the designated compound.
  • Example 17B A solution of Example 17B was processed as in Example ID to provide the title compound, mp 116-119 °C;
  • Example 17C 4-[(4-methylphenyl)thio1thienor2,3-cJpyridine-2-carboxylic acid
  • isopropanol 25 mL
  • water 15 mL
  • the aqueous layer was cooled in an ice bath and adjusted to pH 2 with 10% HCl.
  • the resulting solid was collected, washed with water, dried, and recrystallized from ethanol/water to provide the title compound, mp 272-274 °C;
  • Example 19 4-[(4-methylphenyl)thio1thieno[2,3-c1pyridine-2-carboxamide A suspension of Example 18 (0.535 g, 1.78 mmol) in dichloromethane (25 mL) at
  • Example 17A 4-(2-pyridinylthio)thieno[2,3-clpyridine-2-carboxamide
  • Example 17A was processed as in examples 17B, 17C, 18, and 19 but substituting 2-mercaptopyridine for p-thiocresol in Example 17B to provide the title compound, mp 239-242 °C; MS (DCI/NH3) m/z 305 (M+NH 4 )+; IH NMR (300 MHz, DMSO-d 6 ) ⁇ 6.99 (d, IH), 7.17 (dd, IH), 7.65 (dt, IH), 7.85 (br s,
  • Example 21 4-[(4-chlorophenyl)thio]thieno[2,3-c1pyridine-2-carboxamide
  • Example 17A was processed as in examples 17B, 17C, 18, and 19 but substituting 4-chlorothiophenol for p-thiocresol in Example 17B to provide the title compound. mp 239-241 °C;
  • Example 22 N-methoxy-N-methyl-4-[(4-methylphenyl)thio1thieno[2,3-c]pyridine-2-carboxamide
  • a solution of Example 18 (0.66 g, 2.2 mmol) in dichloromethane was treated sequentially with oxalyl chloride (0.29 mL, 3.3 mmol) and DMF (1 drop), stirred for 30 minutes, and concentrated. The residue was suspended in THF, transferred to a solution of N,O-dimethylhydroxylamine hydrochloride (0.32 g, 3.3 mmol) and triethylamine (0.92 mL, 6.6 mmol) in 1:1 THF water, and stirred for 5 minutes.
  • Example 23 N-methoxy-4-[(4-methylphenyl)thioJthieno[2,3-c1pyridine-2-carboxamide
  • Example 18 was processed as in Example 22 but substituting O-methylhydroxyl- aminehydrochloride for N,O-dimethylhydroxylamine hydrochloride to provide the title compound, mp 200-203 °C;
  • Example 24 N-(4-chlorophenyl)-4-[(4-methylphenyl)thio1thieno[2,3-c]pyridine-2-carboxamide
  • oxalyl chloride (0.03 mL, 0.33 mmol)
  • DMF 1 drop
  • the residue was suspended in (3: 1) benzene/dichloromethane (4 mL), treated with triethylamine (0.5 mL) and 4-chloroaniline (46 mg, 0.36 mmol), stirred at reflux overnight, and concentrated.
  • the residue was treated with water and extracted with dichloromethane.
  • the extract was dried (MgSO 4 ), filtered, and concentrated.
  • the residue was purified by flash chromatography on silica gel with ethyl acetate/hexanes to provide the title compound. mp 208-211 °C;
  • Example 25 4-r(4-methylphenyl)thio1thienor2,3-c1pyridine-2-carboxaldehvde
  • a solution of Example 22 (3.33 g, 9.6 mmol) in THF at -5 °C was treated dropwise with 1M DIBA1-H in THF (14.5 mL, 14.5 mmol), stirred for 45 minutes, poured into ice/HCl with constant stirring, and extracted with dichloromethane. The extract was dried (MgSO 4 ), filtered, and concentrated to provide the title compound.
  • Example 25 A solution of Example 25 (0.22 g, 0.76 mmol) in 1: 1 pyridine: ethanol (8 mL) was treated with methoxylamine hydrochloride (0.51 mL, 1.52 mmol), stirred at room temperature for 3 hours, concentrated, treated with water and extracted with dichloromethane. The extract was washed with IN HCl, dried (MgSO 4 ) ; filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 20% ethyl acetate/hexanes to provide the title compound. mp 95-98 °C;
  • Example 26 but for 18 hours instead of 3 hours to provide the title compound. mp 127-133 °C; MS (DCI/NH3) m/z 391 (M+H)+;
  • Example 28 2-[[[4-[(4-methylphenyl)thio1thieno[2,3-c]pyridin-2-ylmethylene1amino1oxy1acetic acid
  • Example 25 was processed as in Example 26 but substituting carboxymethoxyl- amine hemihydrochloride for methoxylamine hydrochloride to provide the title compound, mp 227-230 °C; MS (DCI/NH3) m/z 359 (M+H) + ;
  • Example 29 4-[(4-methylphenyl)thio1thieno[2,3-c1pyridine-2-carboxaldehyde, O-phenyloxime Example 25 was processed as in Example 26 but substituting O-phenylhydroxyl- amine hydrochloride for methoxylamine-hydrochloride to provide the title compound. mp 94-97 °C;
  • Example 25 was processed as in Example 26 but substituting hydroxylamine hydrochloride for methoxylamine hydrochloride to provide the title compound. mp 209-210 °C;
  • Example 28 was processed as in Example 19 to provide the title compound, mp 152-156 °C; MS (DCI/NH3) m/z 358 (M+H)+; IH NMR (300 MHz, DMSO-d 6 ) ⁇ 2.27 (s, 3H), 4.52 (s, 0.6H), 4.66 (s, 0.4H), 7.19 (m, 2H), 7.25 (m, 2H), 7.32 (br s, IH), 7.40 (br s, IH), 7.84 (s, 0.6H), 7.97 (s, 0.4H), 8.32 (s, 0.4H), 8.37 (s, 0.6H), 8.40 (s, 0.4H), 8.75 (s, 0.6H), 9.21 (s, 0.6H), 9.32 (s, 0.4H); Anal, calcd for Ci 7 H ⁇ 5 N3 ⁇ 2 S 2 -(1.25 H 2 ⁇ ): C, 57.12; H, 4.23; N, 11.76. Found C, 56.19; H, 4.
  • Example 32 (E)-3-[(4-methylphenyl)thio]thieno[2,3-clpyridin-2-ylJ-2-propenamide
  • Example 25 (0.23 g, 1.27 mmol) in chloroform (10 mL) was treated with carbamoylmethylenetriphenylphosphorane (0.41 g, 1.27 mmol), heated to reflux for 30 minutes, cooled, and concentrated. The residue was purified with flash chromatography on silica gel with 2% methanol/dichloromethane to provide the title compound, mp 171-174 °C;
  • Example 33 l-[4-[(4-methylphenyl)thio]thieno[2,3-c]pyridin-2-yl]ethanone
  • THF 25 mL
  • methyl magnesium bromide 1.85 mL, 2.6 mmol
  • methylmagnesiumbromide 1.15M in toluene/THF, 0.7 mL, 1.3 mmol
  • stirred for 1 hour poured with constant swirling onto ice/NH4 ⁇ , and extracted with ethyl acetate. The extract was dried (MgSU 4 ), filtered, and concentrated.
  • Example 34 2-benzoyl-4-[(4-methylphenyl)thiolthieno[2,3-c1pyridine
  • Example 22 and phenyl lithium were processed as in Example 33 to provide the title compound, mp 103-107 _C;
  • Example 35 2-ethyl-4-[(4-methylphenyl)thio1thieno[2,3-c]pyridine
  • ethylene glycol 10 mL
  • hydrazine hydrate (0.18 mL, 5.8 mmol)
  • potassium hydroxide stirred at 150 °C for 45 minutes, cooled to room temperature, treated with water, and extracted with ethyl acetate.
  • the extract was washed with water, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 10% ethyl acetate/hexanes to provide the title compound.
  • MS (DCI/NH3) m/z 286 (M+H)+;
  • Example 36 l-[4-[(4-methylphenyl)thio1thieno[2,3-cJpyridin-2-ylJethanone, oxime Example 33 and hydroxylamine hydrochloride were processed as in Example 26 to provide the title compound. mp 209-213 °C;
  • Example 37 N-(2,3-dihvdroxypropyl)-4-[(4-methylphenyl)thio1thienor2,3-c1pyridine-2-carboxamide
  • a solution of Example 18 (2.5 g, 8.3 mmol) and N-hydroxysuccinimide (0.95 g, 8.3 mmol) in dichloromethane (35 mL) was treated with DCC (1.882 g, 9.13 mmol) in methylene chloride (15 mL), stirred at room temperature for 18 hours, and concentrated. The residue was dissolved in ethyl acetate, washed with water, dried (MgSO4), filtered, and concentrated.
  • Example 38 4-[(4-methylphenyl)thio1thieno[2,3-c1pyridine-2-carboxylic acid, hydrazide
  • Example 18 was processed as in Example 37 but substituting hydrazine for 3- amino-l,2-propanediol to provide the title compound. mp 176-178 °C;
  • Example 39 N 2 -4-[(4-methylphenyl)thio]thieno[2,3-c1pyridin-2-ylJcarbonyl1-N 6 - [(nitroamino)iminomethyl]-L-lysine, methyl ester N- ⁇ -nitroarginine methyl ester hydrochloride and NaHCO3 were processed as in Example 37. The residue was purified by flash chromotograpy on silica gel with 5% methanol/dichloromethane to provide the title compound, mp 84-87 °C; MS (DCI/NH3) m/z 517 (M+H) + ;
  • Example 40 N-(aminoiminomethyl)-4-[(4-methylphenyl)thio1thieno[2,3-cJpyridine-2-carboxamide A solution of guanidine hydrochloride (0.095 g, 1 mmol) in methanol was treated with potassium t-butoxide (0.112 g, 1 mmol), stirred at room temperature for 30 minutes, treated with Example 17 (0.1 g, 0.3 mmol), warmed to room temperature for 16 hours and concentrated. The concentrate was dissolved in ethyl acetate (100 mL), washed with water, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromotograpy on silica gel with 6% methanol/dichloromethane to provide the title compound. mp 202-205 °C;
  • Example 41 4-[(4-methylphenyl)thio]thieno[2,3-c1pyridine-2-carbothioamide A solution of Example 19 (190 mg, 0.63 mmol) and Lawsesson's reagent (383 mg,
  • Boiling Dowtherm A (2 mL) was treated sequentially with Example 18 (0.6 g, 1.99 mmol) and copper powder (0.3 g), stirred for 5 minutes, cooled, diluted with hexanes, and purified by flash chromatography on silica gel with 15% ethyl acetate/hexanes. The product was then recrystallized from hexanes to provide the title compound. mp 94-95 °C;
  • Example 43 methyl 4-[(2-methoxy-2-oxoethyl)thioJthieno[2,3-c1pyridine-2-carboxylate
  • Example 93 A was processed as in examples 17B and 17C, but substituting methyl thioglycolate for p-thiocresol in Example 17B to provide the title compound.
  • MS (DCI/NH3) m/z 298 (M+H)+;
  • Example 43 4-[(2-amino-2-oxoethyl)thio1thieno[2,3-c1pyridine-2-carboxamide
  • Example 43 was dissolved in 2M methanolic ammonia and warmed to 45 °C in a sealed tube for 18 hours. The precipitate was filtered, washed with methanol-diethyl ether (1: 1) and dried under vacuum to provide the title compound.
  • Example 45 4-[(4-bromophenyl)thio]thieno[2,3-clpyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting 4-bromothiophenol for p-thiocresol in Example 17B to provide the title compound.
  • MS (DCI/NH3) m/z 365 (M+H)+; *H NMR (300 MHz, DMSO-d 6 ) ⁇ 7.20 (dt, 2H), 7.53 (dt, 2H), 7.87 (br s, IH), 8.21 (s, IH), 8.51 (br s, IH), 8.54 (s, IH), 9.36 (s, IH);
  • Example 17A was processed as in examples 17B, 17C, and 44 but substituting thiophenol for p-thiocresol in Example 17B to provide the title compound.
  • MS (DCI/NH3) m/z 287 (M+H) + ; !H NMR (300 MHz, DMSO-d 6 ) ⁇ 7.29-7.40 (m, 5H), 7.86 (br s, IH), 8.25 (s, IH), 8.46 (s, IH), 8.52 (br s, IH), 9.31 (s, IH);
  • Example 17A was processed as in examples 17B, 17C, and 44 but substituting ⁇ , ⁇ , ⁇ -trifluorothiocresol for p-thiocresol in Example 17B to provide the title compound.
  • MS (DCI/NH3) m/z 355 (M+H) + ; *H NMR (300 MHz, DMSO-d 6 ) ⁇ 7.31 (d, 2H), 7.65 (d, 2H), 7.85 (br s, IH), 8.19 (s, IH), 8.50 (br s, IH), 8.68 (s, IH), 9.44 (s IH);
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting 2-methylthiophenol for p-thiocresol in Example 17B. The residue was purified by column chromatography, eluting with 5% methanol in dichloromethane to provide the title compound. mp 170-172 °C;
  • Example 49 4-r(3-methylphenyl)thio1thieno[2,3-c1pyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting 3-methylthiophenol for p-thiocresol in Example 17B. The residue was purified by flash chromatography with 5% methanol/dichloromethane to provide the title compound, mp 171-173 °C;
  • Example 50 4-[(3,4-dimethylphenyl)thio1thieno[2,3-cJpyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting
  • Example 17A 4-r(3,5-dimethylphenyl)thio1thieno[2,3-c1pyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting 3,5-dimethylthiophenol for p-thiocresol in Example 17B. The residue was purified by flash chromatography with 5% methanol /dichloromethane to provide the title compound. mp 177-179 °C;
  • Example 52 4-[(2,4-dimethylphenyl)thio]thieno[2,3-c1pyridine-2-carboxamide
  • Example 17 A was processed as in examples 17B and 17C, and 44, but substituting 2,4-dimethylthiophenol for p-thiocresol in Example 17B. The residue was purified by flash chromatography with 5% methanol/dichloromethane to provide the title compound, mp 193-195 °C; MS (APCI) m/z 315 (M+H)+;
  • Example 53 4-[(2-methyl-3-furanyl)thio1thienor2.3-c1pyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting
  • Example 17A 4-[[(4-chlorophenyl)methyl1thio1thieno[2,3-c]pyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting 4-chlorobenzylmercaptan for p-thiocresol in Example 17B. The residue was purified by flash chromatography with 5% methanol/dichloromethane to provide the title compound. mp 198-199 °C;
  • Example 55 4-r(3,4-dichlorophenyl)thio1thieno[2,3-cJpyridine-2-carboxamide
  • Example 17 A was processed as in examples 17B and 17C, and 44, but substituting 3,4-dichlorothiophenol for p-thiocresol in Example 17B. The residue was purified by flash chromatography with 5% methanol/dichloromethane to provide the title compound.
  • MS (ESI) m/z 355 (M+H)+; iH NMR (300 MHz, DMSO-d 6 ) ⁇ 7.10 (dd, IH), 7.55 (d, IH), 7.59 (d, IH), 7.91 (br s,
  • Example 56 4-r(4-methoxyphenyl)thioJthienor2,3-cJpyridine-2-carboxamide
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting 4-methoxythiophenol for p-thiocresol in Example 17B.
  • Example 17A was processed as in examples 17B and 17C, and 44, but substituting cyclohexylmercaptan for p-thiocresol in Example 17B. The residue was purified by flash chromatography with 5% methanol/dichloromethane to provide the title compound, mp 205-207 °C; MS (ESI) m/z 293 (M+H)+; iH NMR (300 MHz, DMSO-d 6 ) ⁇ 1.14-1.43 (br m, 6H), 1.51-1.61 (br m, IH), 1.66-1.78 (br m, 2H), 1.83-1.98 (br m, 2H), 7.90 (br s, IH), 8.33 (s, IH), 8.52 (s, IH), 8.57 (br s, IH), 9.22 (s, IH); Anal, calcd for Ci4H ⁇ 6 N 2 OS 2 : C, 57.50; H, 5.51; N,
  • Example 58 4-r(4-methylphenyl)thio]-N-r3-(4-morpholinyl)propynthienor2,3-clpyridine-2- carboxamide.trifluoromethylacetate (salt)
  • Example 17C (200 mg, 0.635 mmol) in 9: 1 4-(3-aminopropyl)morpholine/acetic acid (2 mL) was warmed at 70 °C for 4 hours, diluted with acetonitrile (6 mL), and purified by C-18 reverse phase HPLC with a gradient of 20% acetonitrile/water to 100% CH3CN containing 0.1% trifluoroacetic acid to provide the title compound.
  • Example 59A Methyl 4-[(4-methylphenyl)sulfinyl]thieno[2,3-cJpyridine-2-carboxylate
  • dichloromethane (10 mL) at 0 °C was treated with 3-chloroperoxybenzoic acid (57-86%, 82 mg), warmed to room temperature over 4 hours, treated with dichloromethane (50mL), washed sequentially with IN NaOH, water, and brine, dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 50% ethyl acetate/hexane to provide the title compound.
  • Example 59A was processed as in Example 44 to provide the title compound. MS (DCI/NH3) m/z 317 (M+H) + ;
  • Example 60A methyl 4-(4-methylphenoxy)thienor2,3-c]pyridine-2-carboxylate
  • Example 17A was processed as in examples 17B and 17C, but substituting p-cresol for p-thiocresol in Example 17B to provide the title compound, mp 96-98 °C;
  • Example 60A was processed as in examples 18 and 19 to provide the title compound, mp 196-197 °C;
  • Example 61 A methyl 4-(4-chlorophenoxy)thieno[2,3-cJpyridine-2-carboxylate
  • a solution of 4-chlorophenol (2.63 g, 20.5 mmol) in THF (20 mL) at 0 °C was treated dropwise with a solution of potassium tert-butoxide (1.0 M solution in THF, 20.4 mL, 20.5 mmol), stirred at 25 °C for 1 hour, cooled to 0 °C, treated with a solution of Example 17A (3.54 g, 20.23 mmol) in THF (40 mL), warmed at 60 °C for 0.5 hours, cooled to 0 °C, treated with methylthioglycolate (1.989 mL, 22.25 mmol) and Cs 2 CO 3
  • Example 6 IB 4-(4-chlorophenoxy)thieno 2,3-clpyridine-2-carboxamide
  • Example 61 A was processed as in Example 44 to provide the title compound, mp 176-177 °C;
  • Example 62 4-[4-(trifluoromethyl)phenoxylthienor2,3-cJpyridine-2-carboxamide
  • Example 17A was processed as in Example 61 but substituting
  • Example 63 4- (4-octylphenoxy)thieno [2.3 -cl pyridine-2-carboxamide Example 17A and 4-octylphenol were processed as in Example 61 to provide the title compound.
  • Example 64 4- [4-( 1 -methylethvDphenoxyJthieno [2,3-clpyridine-2-carboxamide Example 17A and 4-(l-methylethyl)phenol were processed as in Example 61 to provide the title compound. MS (DCI/NH3) m/z 313 (M+H)+;
  • Example 65 4-(2-bromo-4-chlorophenoxy)thieno[2,3-c1pyridine-2-carboxamide
  • Example 17A and 2-bromo-4-chlorophenol were processed as in Example 61 to provide the title compound.
  • Example 66 4-(4-ethylphenoxy)thieno[2,3-c1pyridine-2-carboxamide
  • Example 17 A and 4-ethylphenol were processed as in Example 61 to provide the title compound.
  • MS (DCI/NH3) m/z 299 (M+H)+;
  • IH NMR 300 MHz, DMSO-d 6 ) ⁇ 1.19 (t, 3H), 2.62 (q, 2H), 7.05 (dt, 2H), 7.26 (dt, 2H),
  • a solution of 4-vinylphenol in propylene glycol was treated with water and extracted with diethyl ether in order to remove the propylene glycol and provide the designated compound in diethyl ether.
  • Example 17A and Example 67 A were processed as in Example 61 to provide the title compound.
  • Example 67B 35 mg, 0.118 mmol in pyridine (5 mL) was treated with OSO4 (90 mg, 0.354 mmol), stirred for 5 hours, treated with 10% aqueous NaHSO3, stirred for 5 hours, treated with brine, and extracted with ethyl acetate. The extract was dried (MgSO4), filtered, and concentrated. The residue was purified by flash chromatography on silica gel with 1:10 methanol/dichloromethane to provide the title compound.
  • Example 17 A and 2-allylphenol were processed as in Example 61 to provide the title compound.
  • Example 69 4-[2-(2,3-dihvdroxypropyl)phenoxylthieno[2,3-clpyridine-2-carboxamide
  • Example 69 was processed as in Example 68 to provide the title compound.
  • Example 62 4-[4-(trifluoromethyl)phenoxy1thieno[2,3-c]pyridine-2-carboxamide, 1-oxide
  • m-CPBA 80-85%, 30 mg, 0.14 mmol
  • HPLC analysis of the material (C-18, reverse phase) showed a mixture of desired sulfoxide and starting thiephene in a 8:1 ratio. The mixture was recrystallized from DMF/methanol/dichloromethane to provide the title compound (97.5% pure by HPLC analysis).
  • Example 17A and 3-pentadecylphenol were processed as in Example 61 to provide the title compound.
  • the cooled reaction mixture was diluted with ethyl acetate (300 mL) and partitioned with an ice cold solution of 1 N NaOH (3x75 mL). The organic layer was washed with brine (3x100 mL), dried (MgSO 4 ) and solvents were removed under reduced pressure to obtain the crude product (4.2 g). This was purified by flash chromatography on silica gel eluting with 10% acetone-hexane to obtain the title compound (1.81 g) in 44% yield.
  • Example 74 4-(3-chlorophenoxy)thieno[2,3-c]pyridine-2-carboxamide
  • Example 17A and 3-chlorophenol were processed as in Example 61 to provide the title compound.
  • Example 17A and 4-tert-butylphenol were processed as in Example 61 to provide the title compound.
  • Example 76 4-(4-chloro-3-methylphenoxy)thieno[2,3-c1pyridine-2-carboxamide
  • Example 17A and 4-chloro-3-methylphenol were processed as in Example 61 to provide the title compound.
  • Example 17A and 4-chloro-2-methylphenol were processed as in Example 61 to provide the title compound.
  • Example 78 4-(4-methoxyphenoxy)thieno[2,3-c]pyridine-2-carboxamide
  • Example 17A and 4-methoxyphenol were processed as in Example 61 to provide the title compound.
  • Example 79 ethyl 3-[r2-(aminocarbonyl)thieno[2,3-c]pyridin-4-yl]oxy1benzoate
  • Example 17A and ethyl 3-hydroxybenzoate were processed as in Example 61 to provide the title compound.
  • Example 80 4-phenoxythieno[2,3-cJpyridine-2-carboxamide Example 17A and phenol were processed as in Example 61 to provide the title compound.
  • Example 81 4-(3-bromophenoxy)thieno[2,3-c]pyridine-2-carboxamide
  • Example 17A and 3-bromophenol were processed as in Example 61 to provide the title compound.
  • MS (DCI/NH3) m/z 349, 351 (M+H) + ;
  • Example 82 4-(4-fluorophenoxy)thieno[2,3-c]pyridine-2-carboxamide
  • Example 17A and 4-fluorophenol were processed as in Example 61 to provide the title compound.
  • Example 83 4-(3,5-dimethylphenoxy)thienor2,3-c1pyridine-2-carboxamide
  • Example 17A and 3,5-dimethylphenol were processed as in Example 61 to provide the title compound.
  • MS (DCI/NH3) m/z 299 (M+H) + ;
  • Example 84 4-(3-chloro-4-methylphenoxy)thieno[2,3-c]pyridine-2-carboxamide
  • Example 17A and 3-chloro-4-methylphenol were processed as in Example 61 to provide the title compound.
  • Example 17 A and 4-iodophenol were processed as in Example 61 to provide the title compound.
  • Example 17A and 4-(methoxymethyl)phenol were processed as in Example 61 to provide the title compound, mp 168-168.5 °C MS (DCI/NH3) m/z 315 (M+H)+;
  • Example 87 2-(aminocarbonyl)-4-(4-chlorophenoxy)thienor2,3-c]pyridinium, iodide
  • Example 61 (0.1 lg, 0.0033 mole) was treated with methyl iodide (0.2 mL, 0.0033 mmol) at reflux for 2 hours and filtered. The precipitate was washed with ether, dried, and recrystallized from acetonitrile to provide the title compound.
  • Example 88 4-(4-chlorophenoxy)thieno[2,3-c]pyridine-2-carboxylic acid
  • Example 61A (354 mg, 1.11 mmol), lithium hydroxide monohydrate (98 mg, 2.33 mmol) in 3: 1 methanol/water (4 mL) was stirred at room temperature for 20 hours, acidified with 90% formic acid (0.13 mL), and filtered to provide the title compound.
  • IH NMR 300 MHz, DMSO-d 6 ) ⁇ 7.26 (m, 2H), 7.47 (m, 2H), 7.83 (s, IH), 8.23 (s, IH), 9.21 (s, IH);
  • Example 88 A suspension of Example 88 (100 mg, 0.327 mmol) in toluene (2 mL) was treated with ethyldiisopropylamine (63 mg, 0.49 mmol) and diphenylphosphorylazide (109 mg,
  • Example 91 A 4-(4-chlorophenoxy)thieno[2,3-c1pyridine-2-carboxaldehvde
  • DMSO 1.7 mL dichloromethane at -78 °C
  • oxalyl chloride 109 mg, 0.86 mmol
  • Example 90 123 mg, 0.420 mmol
  • ethyldiisopropylamine warmed to -20 °C
  • Example 91 A (138 mg, 0.42 mmol) and methyl triphenylphosphoranylidene acetate (210 mg, 0.628 mmol) in dichloroethane (2 mL) was stirred at 65 °C for 3 hours and concentrated. The residue was purified by flash chromatography on silica gel with 25% ethyl acetate/hexane to provide the title compound. MS (APCI) m/z 346, 348 (M+H) + ; IH NMR (300 MHz, CDCI3) ⁇ 3.83 (s, 3H), 6.43 (d, IH), 7.00 (dt, 2H), 7.35 (dt, 2H), 7.48
  • Example 91C (E)-3-[4-(4-chlorophenoxy)thieno[2,3-c1pyridin-2-vn-2-propenoic acid
  • Example 9 IB was processed as in Example 88 to provide the title compound.
  • IH NMR 300 MHz, DMSO-d 6 ) ⁇ 6.46 (d, IH), 7.14 (dt, 2H), 7.46 (dt, 2H), 7.83 (s, IH),
  • Example 93A 3,5-dibromopyridine-4-carboxaldehyde A solution of diisopropylamine (6.6 mL, 46.43 mmol) in THF (40 mL) at 0 °C was treated with n-butyllithium in hexanes (2.50 M solution, 18.6 mL, 46.43 mmol) over 15 minutes, stirred at 0 °C for 30 minutes, diluted with THF (200 mL), cooled to -78 °C, treated with 3,5-dibromopyridine (10 g, 42.21 mmol) in THF (110 mL) over 95 minutes, stirred at -78 °C for 30 minutes, treated dropwise with methylformate (5.2 mL, 84.42 mmol), stirred at -78 °C for 2 hours, transferred to ice-cold saturated NaHCU3 solution, stirred for 15 minutes, and extracted with diethyl ether.
  • Example 93B methyl 4-bromothieno[2,3-c]pyridine-2-carboxylate
  • Example 93 A was processed as in Example 17C except at 0- 25 °C to provide the title compound.
  • Example 93B 4-bromothieno[2,3-c1pyridine-2-carboxamide
  • Example 93B was processed as in Example 44 to provide the title compound.
  • Example 94 4-chlorothieno[2,3-c1pyridine-2-carboxamide 3,5-Dichloropyridine was processed as in Example 93 to provide the title compound.
  • Example 95A methyl 4-[4-(trifluoromethyl)phenyl1thieno[2,3-c]pyridine-2-carboxamide
  • Example 95B methyl 4-[4-(trifluoromethyl)phenyllthieno[2,3-clpyridine-2-carboxylate
  • DME dimethyl sulfoxide
  • Example 95B methyl 4-[4-(trifluoromethyl)phenyl boronic acid (209 mg, 1.1 mmol) and cesium fluoride (347 mg, 2.1 mmol) in DME (5 mL) was degassed for 15 minutes, treated with tetrakis(triphenylphosphine)palladium(0) (35 mg, 0.03 mmol), warmed at 80 °C for 6 hours, stirred at room temperature for 12 hours, filtered through Celite®, and concentrated. The residue was purified by flash chromatography on silica gel with 5% acetone/hexane to provide the title compound. MS (DCI/NH3)
  • Example 95A was processed as in Example 44 to provide the title compound.
  • MS (APCI) m/z 323 (M+H) +, 321 (M-H) ⁇ and 357 (M+Cl)-;
  • Example 96 N-methyl-4-[4-(trifluoromethyl)phenyl1thieno[2,3-c]pyridine-2-carboxamide
  • Example 95A was processed as in Example 44 but substituting methylamine (2.0 M in methanol) for methanolic ammonia to provide the title compound.
  • MS (APCI) m/z 337 (M+H) +, 335 (M-H) ⁇ and 371 (M+Cl)-; l H NMR (400 MHz, DMSO-d 6 ) ⁇ 2.82 (d, 3H), 7.90 (d, 2H), 7.94 (d, 2H), 8.17 (s, IH), 8.58 (s, IH), 8.93 (br d, IH), 9.36 (s, IH);

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rheumatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Pain & Pain Management (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
PCT/US1999/012419 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds WO1999062908A2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP99926157A EP1090009A2 (en) 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds
JP2000552119A JP2002517396A (ja) 1998-06-04 1999-06-03 細胞接着阻害抗炎症性化合物
BR9910864-0A BR9910864A (pt) 1998-06-04 1999-06-03 Compostos anti-inflamatórios para inibição de aderência celular
AU42312/99A AU4231299A (en) 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds
HU0102366A HUP0102366A2 (hu) 1998-06-04 1999-06-03 Sejttapadást gátló, gyulladáscsökkentő hatású vegyületek
CA002333770A CA2333770A1 (en) 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds
PL99345906A PL345906A1 (en) 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds
KR1020007013739A KR20010052570A (ko) 1998-06-04 1999-06-03 세포 유착을 억제하는 소염성 화합물
IL13981199A IL139811A0 (en) 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds
SK1854-2000A SK18542000A3 (sk) 1998-06-04 1999-06-03 Protizápalové zlúčeniny inhibujúce bunkovú adhéziu
NO20006157A NO20006157L (no) 1998-06-04 2000-12-04 Celleadhesjons-inhiberende anti-inflammatoriske forbindelser
BG105109A BG105109A (en) 1998-06-04 2001-01-03 Cell adhesion-inhibiting anti-inflammatory compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9070198A 1998-06-04 1998-06-04
US09/090,701 1998-06-04

Publications (2)

Publication Number Publication Date
WO1999062908A2 true WO1999062908A2 (en) 1999-12-09
WO1999062908A3 WO1999062908A3 (en) 2000-03-30

Family

ID=22223903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/012419 WO1999062908A2 (en) 1998-06-04 1999-06-03 Cell adhesion-inhibiting antinflammatory compounds

Country Status (15)

Country Link
EP (1) EP1090009A2 (tr)
JP (1) JP2002517396A (tr)
KR (1) KR20010052570A (tr)
CN (1) CN1332743A (tr)
AU (1) AU4231299A (tr)
BG (1) BG105109A (tr)
BR (1) BR9910864A (tr)
CA (1) CA2333770A1 (tr)
HU (1) HUP0102366A2 (tr)
IL (1) IL139811A0 (tr)
NO (1) NO20006157L (tr)
PL (1) PL345906A1 (tr)
SK (1) SK18542000A3 (tr)
TR (1) TR200100189T2 (tr)
WO (1) WO1999062908A2 (tr)

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075145A1 (en) * 1999-06-03 2000-12-14 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
US6232320B1 (en) 1998-06-04 2001-05-15 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
US6239142B1 (en) 1999-03-09 2001-05-29 Pharmacia & Upjohn Company 4-oxo-4,7-dihydro-thieno[2,3-b]pyridine-5carboxamides as antiviral agents
WO2001058878A1 (en) * 2000-02-09 2001-08-16 The Procter & Gamble Company 2-carboxamide-benzimidazoles useful in the treatment and prevention of ischemic reperfusion injury
US6369227B1 (en) * 1998-12-23 2002-04-09 Bristol-Myers Squibb Pharma Company Thrombin or factor Xa inhibitors
JP2003503400A (ja) * 1999-06-23 2003-01-28 アベンティス・ファーマ・ドイチユラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 置換されたベンゾイミダゾール
US6620810B2 (en) 2001-08-30 2003-09-16 Pharmacia & Upjohn Company 4-thioxo-4,7-dihydro-thieno[2,3-b]pyridine-5-carboxamides as antiviral agents
US6689883B1 (en) 1999-09-28 2004-02-10 Bayer Pharmaceuticals Corporation Substituted pyridines and pyridazines with angiogenesis inhibiting activity
WO2004058753A1 (en) 2002-05-06 2004-07-15 Vertex Pharmaceuticals Incorporated Thiadiazoles or oxadiazoles and their use as inhibitors of jak protein kinase
US6852731B2 (en) 2002-01-14 2005-02-08 Pfizer Antiviral compounds
US6861438B2 (en) 2002-01-14 2005-03-01 Pfizer Antiviral agents
US6878705B2 (en) 2002-01-14 2005-04-12 Pfizer 4-oxo-4,7-dihydrofuro[2,3-b]pyridine-5-carboxamide antiviral agents
US6924283B2 (en) 2001-08-30 2005-08-02 Pfizer 4-thioxo-4,7-dihydro-thieno[2,3-b]pyridine-5-carbothioamides as antiviral agents
EP1753428A2 (en) * 2004-05-14 2007-02-21 Abbott Laboratories Kinase inhibitors as therapeutic agents
US7335667B2 (en) 2004-12-22 2008-02-26 Incyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-4-yl-amines as Janus kinase inhibitors
US7427616B2 (en) 2002-08-06 2008-09-23 Astrazeneca Ab Condensed pyridines and pyrimidines with tie2 (TEK) activity
US7465726B2 (en) 2004-08-02 2008-12-16 Osi Pharmaceuticals, Inc. Substituted pyrrolo[2.3-B]pyridines
US7531542B2 (en) 2005-05-18 2009-05-12 Wyeth Benzooxazole and benzothiazole antagonists of gonadotropin releasing hormone receptor
US7534796B2 (en) 2005-02-18 2009-05-19 Wyeth Imidazo[4,5-b]pyridine antagonists of gonadotropin releasing hormone receptor
US7538113B2 (en) 2005-02-18 2009-05-26 Wyeth 4-substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor
US7582634B2 (en) 2005-02-18 2009-09-01 Wyeth 7-substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor
US7582636B2 (en) 2005-05-26 2009-09-01 Wyeth Piperazinylimidazopyridine and piperazinyltriazolopyridine antagonists of Gonadotropin Releasing Hormone receptor
US7598248B2 (en) 2006-08-02 2009-10-06 Cytokinetics, Inc. Certain 1H-imidazo[4,5-b]pyrazin-2(3H)-ones and 1H-imidazo[4,5-b]pyrazin-2-ols, compositions thereof, and methods for their use
US7598257B2 (en) 2005-12-13 2009-10-06 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
US7674822B2 (en) 2004-11-24 2010-03-09 Wyeth PTP1b inhibitors
US7696210B2 (en) 2004-06-17 2010-04-13 Wyeth Gonadotropin releasing hormone receptor antagonists
US7714130B2 (en) 2004-06-17 2010-05-11 Wyeth Processes for preparing gonadotropin releasing hormone receptor antagonists
WO2010085597A1 (en) 2009-01-23 2010-07-29 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
US7772247B2 (en) 2004-07-30 2010-08-10 Methylgene Inc. Substituted thieno[3,2-d]pyridines as inhibitors of the VEGF receptor and HGF receptor
US7790729B2 (en) 2005-05-20 2010-09-07 Methylgene Inc. Inhibitors of VEGF receptor and HGF receptor signaling
US7834022B2 (en) 2007-06-13 2010-11-16 Incyte Corporation Metabolites of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US7851484B2 (en) 2007-03-30 2010-12-14 Cytokinetics, Inc. Certain chemical entities, compositions, and methods
US7879844B2 (en) 2005-12-28 2011-02-01 Astellas Pharma Inc. Heterocyclic janus kinase 3 inhibitors
EP2308852A1 (de) 2005-08-21 2011-04-13 Abbott GmbH & Co. KG 5-Ring-Heteroaromaten-Verbindungen und ihre Verwendung als Bindungspartner für 5-HT5-Rezeptoren
US7977333B2 (en) 2000-04-20 2011-07-12 Bayer Healthcare Llc Substituted pyridines and pyridazines with angiogenesis inhibiting activity
US8093264B2 (en) 2005-05-20 2012-01-10 Methylgene Inc. Fused heterocycles as inhibitors of VEGF receptor and HGF receptor signaling
US8101623B2 (en) 2007-10-11 2012-01-24 Astrazeneca Ab Substituted pyrrolo[2,3-d]pyrimidine as a protein kinase B inhibitor
US8158616B2 (en) 2008-03-11 2012-04-17 Incyte Corporation Azetidine and cyclobutane derivatives as JAK inhibitors
US8163767B2 (en) 2005-07-14 2012-04-24 Astellas Pharma Inc. Heterocyclic Janus Kinase 3 inhibitors
US8217176B2 (en) 2008-02-26 2012-07-10 Takeda Pharmaceutical Company Limited Fused heterocyclic derivative and use thereof
US8227603B2 (en) 2006-08-01 2012-07-24 Cytokinetics, Inc. Modulating skeletal muscle
US8252937B2 (en) 2007-09-14 2012-08-28 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US8299248B2 (en) 2006-08-02 2012-10-30 Cytokinetics, Incorporated Certain 1H-imidazo[4,5-b]pyrazin-2(3H)-ones and 1H-imidazo[4,5-b]pyrazin-2-ols and methods for their use
US8299101B2 (en) 2007-03-07 2012-10-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mGluR2-receptor modulators
US8309718B2 (en) 2007-11-16 2012-11-13 Incyte Corporation 4-pyrazolyl-N-arylpyrimidin-2-amines and 4-pyrazolyl-N-heteroarylpyrimidin-2-amines as janus kinase inhibitors
US8354397B2 (en) 2001-07-27 2013-01-15 Curis, Inc. Mediators of hedgehog signaling pathways, compositions and uses related thereto
US8399493B2 (en) 2004-09-17 2013-03-19 Janssen Pharmaceuticals, Inc. Pyridinone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US8513270B2 (en) 2006-12-22 2013-08-20 Incyte Corporation Substituted heterocycles as Janus kinase inhibitors
US8546407B2 (en) 2004-10-25 2013-10-01 Astex Therapeutics Limited Ortho-condensed pyridine and pyrimidine derivatives (e.g., purines) as protein kinases inhibitors
US8563541B2 (en) 2005-09-22 2013-10-22 Incyte Corporation Azepine inhibitors of Janus kinases
US8624040B2 (en) 2009-06-22 2014-01-07 Millennium Pharmaceuticals, Inc. Substituted hydroxamic acids and uses thereof
US8729268B2 (en) 2008-03-05 2014-05-20 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US8778931B2 (en) 2010-12-22 2014-07-15 Millennium Pharmaceuticals, Inc. Substituted hydroxamic acids and uses thereof
US8796293B2 (en) 2006-04-25 2014-08-05 Astex Therapeutics Limited Purine and deazapurine derivatives as pharmaceutical compounds
US8871753B2 (en) 2008-04-24 2014-10-28 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
US9012450B2 (en) 2011-12-28 2015-04-21 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US9018210B2 (en) 2011-12-28 2015-04-28 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US9096518B2 (en) 2009-06-22 2015-08-04 Millennium Pharmaceuticals, Inc. Substituted hydroxamic acids and uses thereof
US9233111B2 (en) 2011-07-08 2016-01-12 Novartis Ag Pyrrolo pyrimidine derivatives
US9358229B2 (en) 2011-08-10 2016-06-07 Novartis Pharma Ag JAK PI3K/mTOR combination therapy
US9402847B2 (en) 2011-04-01 2016-08-02 Astrazeneca Ab Combinations comprising (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide
US9422279B2 (en) 2013-03-15 2016-08-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9458139B2 (en) 2013-03-15 2016-10-04 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9487525B2 (en) 2012-04-17 2016-11-08 Astrazeneca Ab Crystalline forms of (s)-4-amino-n-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7h-pyrrolo[2,3-d]pyrimidin-4-yl) piperidine-4-carboxamide
US9512161B2 (en) 2009-10-09 2016-12-06 Incyte Corporation Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US9604999B2 (en) 2013-03-15 2017-03-28 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9611269B2 (en) 2011-06-20 2017-04-04 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9623029B2 (en) 2009-05-22 2017-04-18 Incyte Holdings Corporation 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US9714233B2 (en) 2013-03-06 2017-07-25 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9718834B2 (en) 2011-09-07 2017-08-01 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9737540B2 (en) 2011-11-30 2017-08-22 Astrazeneca Ab Combination treatment of cancer
US9737533B2 (en) 2009-05-12 2017-08-22 Janssen Pharmaceuticals. Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US9776960B2 (en) 2013-03-15 2017-10-03 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9957250B2 (en) 2013-03-15 2018-05-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9981939B2 (en) 2013-03-15 2018-05-29 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9993480B2 (en) 2011-02-18 2018-06-12 Novartis Pharma Ag mTOR/JAK inhibitor combination therapy
US9999619B2 (en) 2010-03-10 2018-06-19 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US10004725B2 (en) 2015-03-30 2018-06-26 Global Blood Therapeutics, Inc. Methods of treatment
US10016429B2 (en) 2007-06-13 2018-07-10 Incyte Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US10077249B2 (en) 2016-05-12 2018-09-18 Global Blood Therapeutics, Inc. Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde
US10100043B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10137118B2 (en) 2014-02-07 2018-11-27 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10154992B2 (en) * 2016-07-12 2018-12-18 The Regents Of The University Of California Compounds and methods for treating HIV infection
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10266551B2 (en) 2013-03-15 2019-04-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10272082B2 (en) 2011-07-13 2019-04-30 Cytokinetics, Inc. Combination ALS therapy
US10328053B2 (en) 2016-08-26 2019-06-25 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US10450269B1 (en) 2013-11-18 2019-10-22 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10493035B2 (en) 2016-10-12 2019-12-03 Global Blood Therapeutics, Inc. Tablets comprising 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10617692B2 (en) 2016-06-16 2020-04-14 Centaurus Biopharma Co. Pyrrolopyrimidine comprising cyclopentyl substituent
US10640506B2 (en) 2010-11-19 2020-05-05 Incyte Holdings Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors
US10709714B2 (en) 2013-11-22 2020-07-14 Clifton Life Sciences LLC Gastrin antagonists for treatment and prevention of osteoporosis
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US10836769B2 (en) 2018-02-26 2020-11-17 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US11014884B2 (en) 2018-10-01 2021-05-25 Global Blood Therapeutics, Inc. Modulators of hemoglobin
US11020382B2 (en) 2015-12-04 2021-06-01 Global Blood Therapeutics, Inc. Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11053195B2 (en) 2013-03-15 2021-07-06 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11071729B2 (en) 2007-09-14 2021-07-27 Addex Pharmaceuticals S.A. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US11168093B2 (en) 2018-12-21 2021-11-09 Celgene Corporation Thienopyridine inhibitors of RIPK2
US11236109B2 (en) 2013-03-15 2022-02-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL154306A0 (en) * 2003-02-05 2003-09-17 Rimonyx Pharmaceuticals Ltd Pharmaceutical compositions comprising thieno [2,3-c] pyridine derivatives and use thereof
KR100822681B1 (ko) * 2004-05-04 2008-04-17 에프. 호프만-라 로슈 아게 Ikk 억제제로서의 티에노피리다진
RU2006142741A (ru) * 2004-05-04 2008-06-10 Ф.Хоффманн-Ля Рош Аг (Ch) Тиенопиридины как ингибиторы ikk
BRPI0516242B1 (pt) * 2004-10-21 2014-10-07 Dow Agrosciences Llc Compostos tieno-pirimidina com atividade fungicida, bem como composição fungicida e método para o controle ou prevenção de ataque fúngico
TWI417095B (zh) 2006-03-15 2013-12-01 Janssen Pharmaceuticals Inc 1,4-二取代之3-氰基-吡啶酮衍生物及其作為mGluR2-受體之正向異位性調節劑之用途
TW200845978A (en) 2007-03-07 2008-12-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
CA2735764C (en) 2008-09-02 2016-06-14 Ortho-Mcneil-Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
WO2010060589A1 (en) 2008-11-28 2010-06-03 Ortho-Mcneil-Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
MY153913A (en) 2009-05-12 2015-04-15 Janssen Pharmaceuticals Inc 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
SG176018A1 (en) 2009-05-12 2011-12-29 Janssen Pharmaceuticals Inc 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
EA025520B1 (ru) 2009-05-22 2017-01-30 Инсайт Холдингс Корпорейшн N-(ГЕТЕРО)АРИЛПИРРОЛИДИНОВЫЕ ПРОИЗВОДНЫЕ ПИРАЗОЛ-4-ИЛ-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ И ПИРРОЛ-3-ИЛ-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ В КАЧЕСТВЕ ИНГИБИТОРОВ ЯНУС-КИНАЗЫ
TW201113285A (en) 2009-09-01 2011-04-16 Incyte Corp Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
CN102260270A (zh) * 2010-05-28 2011-11-30 中国科学院上海药物研究所 N-(2-甲基呋喃[2,3-d]嘧啶-4-基)丙烯酰胺、其制备方法及其用途
ES2536433T3 (es) 2010-11-08 2015-05-25 Janssen Pharmaceuticals, Inc. Derivados de 1,2,4-triazolo[4,3-a]piridina y su uso como moduladores alostéricos positivos de receptores mGluR2
PL2649069T3 (pl) 2010-11-08 2016-01-29 Janssen Pharmaceuticals Inc Pochodne 1,2,4-triazolo[4,3-a]pirydyny i ich zastosowanie jako dodatnich allosterycznych modulatorów receptorów mGluR2
JP5852666B2 (ja) 2010-11-08 2016-02-03 ジヤンセン・フアーマシユーチカルズ・インコーポレーテツド 1,2,4−トリアゾロ[4,3−a]ピリジン誘導体およびmGluR2受容体のポジティブアロステリックモジュレーターとしてのそれらの使用
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
TW201313721A (zh) 2011-08-18 2013-04-01 Incyte Corp 作為jak抑制劑之環己基氮雜環丁烷衍生物
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
WO2015184305A1 (en) 2014-05-30 2015-12-03 Incyte Corporation TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2330109A1 (de) * 1972-06-14 1974-01-03 Merck & Co Inc Oxazol- und thiazolpyridine
US3903095A (en) * 1972-02-18 1975-09-02 Merck & Co Inc Certain substituted-thieno{8 3,2-c{9 -pyridines
FR2334356A1 (fr) * 1975-12-10 1977-07-08 Parcor Medicament a base de thieno-pyridine
FR2336132A1 (fr) * 1975-12-23 1977-07-22 Parcor Thieno (2,3-g) et (3,2-g) indolizines, leur procede de preparation et leurs applications
GB2010249A (en) * 1977-12-19 1979-06-27 Parcor Process for the preparation of thieno(2,3-c)and(3,2-c)pyridines new thieno(2,3-c)pyridine derivatives obtained thereby and their therapeutic applications
FR2452490A1 (fr) * 1979-03-30 1980-10-24 Sanofi Sa Nouveaux derives des thieno(2,3-c) et 3,2-c) pyridines, leur procede de preparation et leur application therapeutique
DE3533331A1 (de) * 1985-09-18 1987-03-26 Heumann Ludwig & Co Gmbh Pyridothiazolderivate, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
EP0260613A2 (en) * 1986-09-15 1988-03-23 G.D. Searle & Co. Imidazopyridine derivatives, their preparation and their use as PAF-antagonists
EP0294074A1 (en) * 1987-05-30 1988-12-07 Pfizer Limited Dihydropyridine anti-allergic and anti-inflammatory agents
EP0310386A2 (en) * 1987-09-30 1989-04-05 Pfizer Limited 4-Aryl-5-carbamoyl-1,4-dihydropyridines
WO1989008653A1 (en) * 1988-03-15 1989-09-21 G.D. Searle & Co. 1H/3H-[4-(N,N-DICYCLOALKYL/BRANCHED-ALKYLCARBOXAMIDO)-BENZYL]IMIDAZO[4,5-c]PYRIDINES AS PAF ANTAGONISTS
EP0388909A2 (en) * 1989-03-22 1990-09-26 Fujisawa Pharmaceutical Co., Ltd. Thiazole compounds, processes for the preparation thereof and pharmaceutical composition comprising the same
US4988707A (en) * 1989-09-13 1991-01-29 G. D. Searle & Co. Pharmacologically active phenylalkanoyl substituted imidazo (4,5-C) pyridines
US5227384A (en) * 1988-03-14 1993-07-13 G. D. Searle & Co. 5-substituted [4,5-c] imidazopyridines and pharmaceutical use thereof
WO1996011192A1 (en) * 1994-10-11 1996-04-18 G.D. Searle & Co. Lta4 hydrolase inhibitors
WO1998020007A1 (en) * 1996-11-06 1998-05-14 Darwin Discovery Limited Quinolines and their therapeutic use

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903095A (en) * 1972-02-18 1975-09-02 Merck & Co Inc Certain substituted-thieno{8 3,2-c{9 -pyridines
DE2330109A1 (de) * 1972-06-14 1974-01-03 Merck & Co Inc Oxazol- und thiazolpyridine
FR2334356A1 (fr) * 1975-12-10 1977-07-08 Parcor Medicament a base de thieno-pyridine
FR2336132A1 (fr) * 1975-12-23 1977-07-22 Parcor Thieno (2,3-g) et (3,2-g) indolizines, leur procede de preparation et leurs applications
GB2010249A (en) * 1977-12-19 1979-06-27 Parcor Process for the preparation of thieno(2,3-c)and(3,2-c)pyridines new thieno(2,3-c)pyridine derivatives obtained thereby and their therapeutic applications
FR2452490A1 (fr) * 1979-03-30 1980-10-24 Sanofi Sa Nouveaux derives des thieno(2,3-c) et 3,2-c) pyridines, leur procede de preparation et leur application therapeutique
DE3533331A1 (de) * 1985-09-18 1987-03-26 Heumann Ludwig & Co Gmbh Pyridothiazolderivate, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
EP0260613A2 (en) * 1986-09-15 1988-03-23 G.D. Searle & Co. Imidazopyridine derivatives, their preparation and their use as PAF-antagonists
EP0294074A1 (en) * 1987-05-30 1988-12-07 Pfizer Limited Dihydropyridine anti-allergic and anti-inflammatory agents
EP0310386A2 (en) * 1987-09-30 1989-04-05 Pfizer Limited 4-Aryl-5-carbamoyl-1,4-dihydropyridines
US5227384A (en) * 1988-03-14 1993-07-13 G. D. Searle & Co. 5-substituted [4,5-c] imidazopyridines and pharmaceutical use thereof
WO1989008653A1 (en) * 1988-03-15 1989-09-21 G.D. Searle & Co. 1H/3H-[4-(N,N-DICYCLOALKYL/BRANCHED-ALKYLCARBOXAMIDO)-BENZYL]IMIDAZO[4,5-c]PYRIDINES AS PAF ANTAGONISTS
EP0388909A2 (en) * 1989-03-22 1990-09-26 Fujisawa Pharmaceutical Co., Ltd. Thiazole compounds, processes for the preparation thereof and pharmaceutical composition comprising the same
US4988707A (en) * 1989-09-13 1991-01-29 G. D. Searle & Co. Pharmacologically active phenylalkanoyl substituted imidazo (4,5-C) pyridines
WO1996011192A1 (en) * 1994-10-11 1996-04-18 G.D. Searle & Co. Lta4 hydrolase inhibitors
WO1998020007A1 (en) * 1996-11-06 1998-05-14 Darwin Discovery Limited Quinolines and their therapeutic use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A.. D. DUNN ET AL.: J. PRAKT. CHEM. / CHEM.-ZTG., vol. 334, no. 6, 1992, pages 483-6, XP002125296 *
J. M. BARKER ET AL.: J. CHEM. RES. (S), no. 4, 1986, pages 122-3, XP000566528 *
L. H. KLEMM ET AL.: J. HETEROCYCLIC CHEM., vol. 13, no. 6, 1976, pages 1197-1200, XP002125299 *
L. H. KLEMM ET AL.: J. HETEROCYCLIC CHEM., vol. 16, no. 6, 1979, pages 1289-91, XP002125298 *
M. A. KHAN ET AL.: J. HETEROCYCLIC CHEM., vol. 14, no. 5, 1977, pages 807-12, XP002125297 *

Cited By (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232320B1 (en) 1998-06-04 2001-05-15 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
US6579882B2 (en) 1998-06-04 2003-06-17 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
US6369227B1 (en) * 1998-12-23 2002-04-09 Bristol-Myers Squibb Pharma Company Thrombin or factor Xa inhibitors
US6239142B1 (en) 1999-03-09 2001-05-29 Pharmacia & Upjohn Company 4-oxo-4,7-dihydro-thieno[2,3-b]pyridine-5carboxamides as antiviral agents
US6495683B2 (en) 1999-03-09 2002-12-17 Pharmacia And Upjohn Company 4-oxo-4,7-dihydro-thieno[2,3-b]pyridine-5-carboxamides as antiviral agents
WO2000075145A1 (en) * 1999-06-03 2000-12-14 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
JP4763949B2 (ja) * 1999-06-23 2011-08-31 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 置換されたベンゾイミダゾール
JP2003503400A (ja) * 1999-06-23 2003-01-28 アベンティス・ファーマ・ドイチユラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 置換されたベンゾイミダゾール
US6689883B1 (en) 1999-09-28 2004-02-10 Bayer Pharmaceuticals Corporation Substituted pyridines and pyridazines with angiogenesis inhibiting activity
WO2001058878A1 (en) * 2000-02-09 2001-08-16 The Procter & Gamble Company 2-carboxamide-benzimidazoles useful in the treatment and prevention of ischemic reperfusion injury
US7977333B2 (en) 2000-04-20 2011-07-12 Bayer Healthcare Llc Substituted pyridines and pyridazines with angiogenesis inhibiting activity
US8772275B2 (en) 2001-07-27 2014-07-08 Curis, Inc. Mediators of hedgehog signaling pathways, compositions and uses related thereto
US8354397B2 (en) 2001-07-27 2013-01-15 Curis, Inc. Mediators of hedgehog signaling pathways, compositions and uses related thereto
US6620810B2 (en) 2001-08-30 2003-09-16 Pharmacia & Upjohn Company 4-thioxo-4,7-dihydro-thieno[2,3-b]pyridine-5-carboxamides as antiviral agents
US6924283B2 (en) 2001-08-30 2005-08-02 Pfizer 4-thioxo-4,7-dihydro-thieno[2,3-b]pyridine-5-carbothioamides as antiviral agents
US6861438B2 (en) 2002-01-14 2005-03-01 Pfizer Antiviral agents
US6878705B2 (en) 2002-01-14 2005-04-12 Pfizer 4-oxo-4,7-dihydrofuro[2,3-b]pyridine-5-carboxamide antiviral agents
US6852731B2 (en) 2002-01-14 2005-02-08 Pfizer Antiviral compounds
US7271179B2 (en) 2002-05-06 2007-09-18 Vertex Pharmaceuticals Incorporated Inhibitors of JAK protein kinase
EP2316834A1 (en) * 2002-05-06 2011-05-04 Vertex Pharmaceuticals Incorporated Thiadiazoles or oxadiazoles and their use as inhibitors of JAK protein kinase
JP2006513192A (ja) * 2002-05-06 2006-04-20 バーテックス ファーマシューティカルズ インコーポレイテッド チアジアゾールまたはオキサジアゾール、およびこれらの、jakプロテインキナーゼのインヒビターとしての使用
WO2004058753A1 (en) 2002-05-06 2004-07-15 Vertex Pharmaceuticals Incorporated Thiadiazoles or oxadiazoles and their use as inhibitors of jak protein kinase
US7427616B2 (en) 2002-08-06 2008-09-23 Astrazeneca Ab Condensed pyridines and pyrimidines with tie2 (TEK) activity
EP1753428A2 (en) * 2004-05-14 2007-02-21 Abbott Laboratories Kinase inhibitors as therapeutic agents
EP1753428A4 (en) * 2004-05-14 2010-09-15 Abbott Lab INHIBITORS OF KINASES AS THERAPEUTIC AGENTS
US7714130B2 (en) 2004-06-17 2010-05-11 Wyeth Processes for preparing gonadotropin releasing hormone receptor antagonists
US7696210B2 (en) 2004-06-17 2010-04-13 Wyeth Gonadotropin releasing hormone receptor antagonists
US7772247B2 (en) 2004-07-30 2010-08-10 Methylgene Inc. Substituted thieno[3,2-d]pyridines as inhibitors of the VEGF receptor and HGF receptor
US8470850B2 (en) 2004-07-30 2013-06-25 Methylgene Inc. Inhibitors of VEGF receptor and HGF receptor signalling
US7465726B2 (en) 2004-08-02 2008-12-16 Osi Pharmaceuticals, Inc. Substituted pyrrolo[2.3-B]pyridines
US8399493B2 (en) 2004-09-17 2013-03-19 Janssen Pharmaceuticals, Inc. Pyridinone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US8546407B2 (en) 2004-10-25 2013-10-01 Astex Therapeutics Limited Ortho-condensed pyridine and pyrimidine derivatives (e.g., purines) as protein kinases inhibitors
US7674822B2 (en) 2004-11-24 2010-03-09 Wyeth PTP1b inhibitors
US9879010B2 (en) 2004-12-22 2018-01-30 Incyte Holdings Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b] pyrimidin-5-yl-amines as Janus kinase inhibitors
US8741895B2 (en) 2004-12-22 2014-06-03 Incyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-5-yl-amines as Janus kinase inhibitors
US8445488B2 (en) 2004-12-22 2013-05-21 Incyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-5-yl-amines as Janus kinase inhibitors
US9090611B2 (en) 2004-12-22 2015-07-28 Incyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-5-yl-amines as janus kinase inhibitors
US9580419B2 (en) 2004-12-22 2017-02-28 Incyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-5-yl-amines as Janus kinase inhibitors
US8053433B2 (en) 2004-12-22 2011-11-08 Ineyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-5-yl-amines as janus kinase inhibitors
US7335667B2 (en) 2004-12-22 2008-02-26 Incyte Corporation Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-4-yl-amines as Janus kinase inhibitors
US7538113B2 (en) 2005-02-18 2009-05-26 Wyeth 4-substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor
US7534796B2 (en) 2005-02-18 2009-05-19 Wyeth Imidazo[4,5-b]pyridine antagonists of gonadotropin releasing hormone receptor
US7582634B2 (en) 2005-02-18 2009-09-01 Wyeth 7-substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor
US7531542B2 (en) 2005-05-18 2009-05-12 Wyeth Benzooxazole and benzothiazole antagonists of gonadotropin releasing hormone receptor
US8329726B2 (en) 2005-05-20 2012-12-11 Methylgene Inc. Inhibitors of VEGF receptor and HGF receptor signaling
US8093264B2 (en) 2005-05-20 2012-01-10 Methylgene Inc. Fused heterocycles as inhibitors of VEGF receptor and HGF receptor signaling
US7790729B2 (en) 2005-05-20 2010-09-07 Methylgene Inc. Inhibitors of VEGF receptor and HGF receptor signaling
US7582636B2 (en) 2005-05-26 2009-09-01 Wyeth Piperazinylimidazopyridine and piperazinyltriazolopyridine antagonists of Gonadotropin Releasing Hormone receptor
US8163767B2 (en) 2005-07-14 2012-04-24 Astellas Pharma Inc. Heterocyclic Janus Kinase 3 inhibitors
US8921406B2 (en) 2005-08-21 2014-12-30 AbbVie Deutschland GmbH & Co. KG 5-ring heteroaromatic compounds and their use as binding partners for 5-HT5 receptors
EP2308852A1 (de) 2005-08-21 2011-04-13 Abbott GmbH & Co. KG 5-Ring-Heteroaromaten-Verbindungen und ihre Verwendung als Bindungspartner für 5-HT5-Rezeptoren
US8835423B2 (en) 2005-09-22 2014-09-16 Incyte Corporation Azepine inhibitors of janus kinases
US8563541B2 (en) 2005-09-22 2013-10-22 Incyte Corporation Azepine inhibitors of Janus kinases
US10639310B2 (en) 2005-12-13 2020-05-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
EP2455382A1 (en) 2005-12-13 2012-05-23 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9974790B2 (en) 2005-12-13 2018-05-22 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
EP2343299A1 (en) 2005-12-13 2011-07-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
EP2426129A1 (en) 2005-12-13 2012-03-07 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US11331320B2 (en) 2005-12-13 2022-05-17 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9662335B2 (en) 2005-12-13 2017-05-30 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
EP3838903A1 (en) 2005-12-13 2021-06-23 Incyte Holdings Corporation Pyrrolo[2,3-d]pyrimidine derivative as janus kinase inhibitor
EP2343298A1 (en) 2005-12-13 2011-07-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9079912B2 (en) 2005-12-13 2015-07-14 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors
EP3184526A1 (en) 2005-12-13 2017-06-28 Incyte Holdings Corporation Pyrrolo[2,3-d]pyrimidine derivatives as janus kinase inhibitor
EP3466953A1 (en) 2005-12-13 2019-04-10 Incyte Holdings Corporation Pyrrolo[2,3-d]pyrimidine derivative as janus kinase inhibitor
US9814722B2 (en) 2005-12-13 2017-11-14 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US10398699B2 (en) 2005-12-13 2019-09-03 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
US11744832B2 (en) 2005-12-13 2023-09-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
EP2348023A1 (en) 2005-12-13 2011-07-27 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US7598257B2 (en) 2005-12-13 2009-10-06 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
EP2474545A1 (en) 2005-12-13 2012-07-11 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US7879844B2 (en) 2005-12-28 2011-02-01 Astellas Pharma Inc. Heterocyclic janus kinase 3 inhibitors
US8796293B2 (en) 2006-04-25 2014-08-05 Astex Therapeutics Limited Purine and deazapurine derivatives as pharmaceutical compounds
US8227603B2 (en) 2006-08-01 2012-07-24 Cytokinetics, Inc. Modulating skeletal muscle
US8716291B2 (en) 2006-08-02 2014-05-06 Cytokinetics, Inc. Certain 1H-imidazo[4,5-b]pyrazin-2(3H)-ones and 1H-imidazo[4,5-b]pyrazin-2-ols and methods for their use
US7598248B2 (en) 2006-08-02 2009-10-06 Cytokinetics, Inc. Certain 1H-imidazo[4,5-b]pyrazin-2(3H)-ones and 1H-imidazo[4,5-b]pyrazin-2-ols, compositions thereof, and methods for their use
US7956056B2 (en) 2006-08-02 2011-06-07 Cytokinetics, Inc. Certain 1H-imidazo[4,5-B]pyrazin-2(3H)-ones and 1H-imidazo[4,5-B]pyrazin-2-ols, compositions thereof, and methods for their use
US8299248B2 (en) 2006-08-02 2012-10-30 Cytokinetics, Incorporated Certain 1H-imidazo[4,5-b]pyrazin-2(3H)-ones and 1H-imidazo[4,5-b]pyrazin-2-ols and methods for their use
US8293761B2 (en) 2006-08-02 2012-10-23 Cytokinetics, Inc. Certain chemical entities, compositions and methods
US8841318B2 (en) 2006-12-22 2014-09-23 Incyte Corporation Substituted heterocycles as janus kinase inhibitors
US8513270B2 (en) 2006-12-22 2013-08-20 Incyte Corporation Substituted heterocycles as Janus kinase inhibitors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US8299101B2 (en) 2007-03-07 2012-10-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mGluR2-receptor modulators
US7851484B2 (en) 2007-03-30 2010-12-14 Cytokinetics, Inc. Certain chemical entities, compositions, and methods
US10016429B2 (en) 2007-06-13 2018-07-10 Incyte Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US10463667B2 (en) 2007-06-13 2019-11-05 Incyte Incorporation Metabolites of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11213528B2 (en) 2007-06-13 2022-01-04 Incyte Holdings Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8889697B2 (en) 2007-06-13 2014-11-18 Incyte Corporation Metabolites of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US10610530B2 (en) 2007-06-13 2020-04-07 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US7834022B2 (en) 2007-06-13 2010-11-16 Incyte Corporation Metabolites of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11071729B2 (en) 2007-09-14 2021-07-27 Addex Pharmaceuticals S.A. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US8252937B2 (en) 2007-09-14 2012-08-28 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US9492453B2 (en) 2007-10-11 2016-11-15 Astrazeneca Ab Protein kinase B inhibitors
US10059714B2 (en) 2007-10-11 2018-08-28 Astrazeneca Ab Protein kinase B inhibitors
US11760760B2 (en) 2007-10-11 2023-09-19 Astrazeneca Ab Protein kinase B inhibitors
US10654855B2 (en) 2007-10-11 2020-05-19 Astrazeneca Ab Protein kinase B inhibitors
US11236095B2 (en) 2007-10-11 2022-02-01 Astrazeneca Ab Protein kinase B inhibitors
US8101623B2 (en) 2007-10-11 2012-01-24 Astrazeneca Ab Substituted pyrrolo[2,3-d]pyrimidine as a protein kinase B inhibitor
US8309718B2 (en) 2007-11-16 2012-11-13 Incyte Corporation 4-pyrazolyl-N-arylpyrimidin-2-amines and 4-pyrazolyl-N-heteroarylpyrimidin-2-amines as janus kinase inhibitors
US8399449B2 (en) 2008-02-26 2013-03-19 Takeda Pharmaceutical Company Limited Fused heterocyclic derivative and use thereof
US8217176B2 (en) 2008-02-26 2012-07-10 Takeda Pharmaceutical Company Limited Fused heterocyclic derivative and use thereof
US8759522B2 (en) 2008-03-05 2014-06-24 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US8729268B2 (en) 2008-03-05 2014-05-20 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US8420629B2 (en) 2008-03-11 2013-04-16 Incyte Corporation Azetidine and cyclobutane derivatives as JAK inhibitors
US8158616B2 (en) 2008-03-11 2012-04-17 Incyte Corporation Azetidine and cyclobutane derivatives as JAK inhibitors
US8871753B2 (en) 2008-04-24 2014-10-28 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
WO2010085597A1 (en) 2009-01-23 2010-07-29 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
US8765727B2 (en) 2009-01-23 2014-07-01 Incyte Corporation Macrocyclic compounds and their use as kinase inhibitors
US10071095B2 (en) 2009-05-12 2018-09-11 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of neurological and psychiatric disorders
US9737533B2 (en) 2009-05-12 2017-08-22 Janssen Pharmaceuticals. Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US9623029B2 (en) 2009-05-22 2017-04-18 Incyte Holdings Corporation 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors
US8624040B2 (en) 2009-06-22 2014-01-07 Millennium Pharmaceuticals, Inc. Substituted hydroxamic acids and uses thereof
US9096518B2 (en) 2009-06-22 2015-08-04 Millennium Pharmaceuticals, Inc. Substituted hydroxamic acids and uses thereof
US9512161B2 (en) 2009-10-09 2016-12-06 Incyte Corporation Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11285140B2 (en) 2010-03-10 2022-03-29 Incyte Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9999619B2 (en) 2010-03-10 2018-06-19 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US10695337B2 (en) 2010-03-10 2020-06-30 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US11590136B2 (en) 2010-05-21 2023-02-28 Incyte Corporation Topical formulation for a JAK inhibitor
US10869870B2 (en) 2010-05-21 2020-12-22 Incyte Corporation Topical formulation for a JAK inhibitor
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US11571425B2 (en) 2010-05-21 2023-02-07 Incyte Corporation Topical formulation for a JAK inhibitor
US11219624B2 (en) 2010-05-21 2022-01-11 Incyte Holdings Corporation Topical formulation for a JAK inhibitor
US10640506B2 (en) 2010-11-19 2020-05-05 Incyte Holdings Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors
US8778931B2 (en) 2010-12-22 2014-07-15 Millennium Pharmaceuticals, Inc. Substituted hydroxamic acids and uses thereof
US9993480B2 (en) 2011-02-18 2018-06-12 Novartis Pharma Ag mTOR/JAK inhibitor combination therapy
US9402847B2 (en) 2011-04-01 2016-08-02 Astrazeneca Ab Combinations comprising (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide
US10513522B2 (en) 2011-06-20 2019-12-24 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9611269B2 (en) 2011-06-20 2017-04-04 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US11214573B2 (en) 2011-06-20 2022-01-04 Incyte Holdings Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9233111B2 (en) 2011-07-08 2016-01-12 Novartis Ag Pyrrolo pyrimidine derivatives
US10272082B2 (en) 2011-07-13 2019-04-30 Cytokinetics, Inc. Combination ALS therapy
US9358229B2 (en) 2011-08-10 2016-06-07 Novartis Pharma Ag JAK PI3K/mTOR combination therapy
US9718834B2 (en) 2011-09-07 2017-08-01 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9737540B2 (en) 2011-11-30 2017-08-22 Astrazeneca Ab Combination treatment of cancer
US9012450B2 (en) 2011-12-28 2015-04-21 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US10806733B2 (en) 2011-12-28 2020-10-20 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US9018210B2 (en) 2011-12-28 2015-04-28 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US10034879B2 (en) 2011-12-28 2018-07-31 Global Blood Therapeutics, Inc. Substituted benzaldehyde compounds and methods for their use in increasing tissue oxygenation
US10377741B2 (en) 2011-12-28 2019-08-13 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US10822326B2 (en) 2011-12-28 2020-11-03 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
US10039766B2 (en) 2012-04-17 2018-08-07 Astrazeneca Ab Crystalline forms of (s)-4-amino-n-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7h-pyrrolo[2,3-d] pyrimidin-4-y1) piperidine-4-carboxamide
US9487525B2 (en) 2012-04-17 2016-11-08 Astrazeneca Ab Crystalline forms of (s)-4-amino-n-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7h-pyrrolo[2,3-d]pyrimidin-4-yl) piperidine-4-carboxamide
US11337927B2 (en) 2012-11-15 2022-05-24 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11576865B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11576864B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10874616B2 (en) 2012-11-15 2020-12-29 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11896717B2 (en) 2012-11-15 2024-02-13 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US9714233B2 (en) 2013-03-06 2017-07-25 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US11053195B2 (en) 2013-03-15 2021-07-06 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10315991B2 (en) 2013-03-15 2019-06-11 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9422279B2 (en) 2013-03-15 2016-08-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9458139B2 (en) 2013-03-15 2016-10-04 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10100040B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9604999B2 (en) 2013-03-15 2017-03-28 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10266551B2 (en) 2013-03-15 2019-04-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10100043B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation
US11236109B2 (en) 2013-03-15 2022-02-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9776960B2 (en) 2013-03-15 2017-10-03 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10017491B2 (en) 2013-03-15 2018-07-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10435393B2 (en) 2013-03-15 2019-10-08 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10829470B2 (en) 2013-03-15 2020-11-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9957250B2 (en) 2013-03-15 2018-05-01 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10858317B2 (en) 2013-03-15 2020-12-08 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US11530191B2 (en) 2013-03-15 2022-12-20 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9981939B2 (en) 2013-03-15 2018-05-29 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US11045421B2 (en) 2013-08-07 2021-06-29 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US10561616B2 (en) 2013-08-07 2020-02-18 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US10450269B1 (en) 2013-11-18 2019-10-22 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10709714B2 (en) 2013-11-22 2020-07-14 Clifton Life Sciences LLC Gastrin antagonists for treatment and prevention of osteoporosis
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11103506B2 (en) 2014-01-21 2021-08-31 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10137118B2 (en) 2014-02-07 2018-11-27 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10722502B2 (en) 2014-02-07 2020-07-28 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11452720B2 (en) 2014-02-07 2022-09-27 Global Blood Therapeutics, Inc. Crystalline polymorphs of the free base of 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10004725B2 (en) 2015-03-30 2018-06-26 Global Blood Therapeutics, Inc. Methods of treatment
US10695330B2 (en) 2015-03-30 2020-06-30 Global Blood Therapeutics, Inc. Methods of treatment
US11944612B2 (en) 2015-12-04 2024-04-02 Global Blood Therapeutics, Inc. Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US11020382B2 (en) 2015-12-04 2021-06-01 Global Blood Therapeutics, Inc. Dosing regimens for 2-hydroxy-6-((2-(1-isopropyl-1h-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10077249B2 (en) 2016-05-12 2018-09-18 Global Blood Therapeutics, Inc. Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde
US10577345B2 (en) 2016-05-12 2020-03-03 Global Blood Therapeutics, Inc. Process for synthesizing 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)-pyridin-3-yl)methoxy)benzaldehyde
US10617692B2 (en) 2016-06-16 2020-04-14 Centaurus Biopharma Co. Pyrrolopyrimidine comprising cyclopentyl substituent
US10154992B2 (en) * 2016-07-12 2018-12-18 The Regents Of The University Of California Compounds and methods for treating HIV infection
US10874640B2 (en) 2016-08-26 2020-12-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US10328053B2 (en) 2016-08-26 2019-06-25 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US10493035B2 (en) 2016-10-12 2019-12-03 Global Blood Therapeutics, Inc. Tablets comprising 2-hydroxy-6-((2-(1-isopropyl-1H-pyrazol-5-yl)pyridin-3-yl)methoxy)benzaldehyde
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US11278541B2 (en) 2017-12-08 2022-03-22 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US10836769B2 (en) 2018-02-26 2020-11-17 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US11420974B2 (en) 2018-02-26 2022-08-23 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US11014884B2 (en) 2018-10-01 2021-05-25 Global Blood Therapeutics, Inc. Modulators of hemoglobin
US11168093B2 (en) 2018-12-21 2021-11-09 Celgene Corporation Thienopyridine inhibitors of RIPK2
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms

Also Published As

Publication number Publication date
IL139811A0 (en) 2002-02-10
SK18542000A3 (sk) 2001-12-03
WO1999062908A3 (en) 2000-03-30
JP2002517396A (ja) 2002-06-18
CN1332743A (zh) 2002-01-23
PL345906A1 (en) 2002-01-14
HUP0102366A2 (hu) 2001-11-28
EP1090009A2 (en) 2001-04-11
AU4231299A (en) 1999-12-20
CA2333770A1 (en) 1999-12-09
NO20006157D0 (no) 2000-12-04
TR200100189T2 (tr) 2001-05-21
BG105109A (en) 2001-11-30
BR9910864A (pt) 2002-02-05
KR20010052570A (ko) 2001-06-25
NO20006157L (no) 2001-02-02

Similar Documents

Publication Publication Date Title
US6232320B1 (en) Cell adhesion-inhibiting antiinflammatory compounds
WO1999062908A2 (en) Cell adhesion-inhibiting antinflammatory compounds
EP1181296A1 (en) Cell adhesion-inhibiting antiinflammatory compounds
CA2390948A1 (en) Cell adhesion-inhibiting antiinflammatory compounds
ES2378704T3 (es) Activadores de la glucocinasa
CA2647208C (en) Glucokinase activators
US7902203B2 (en) Anti-infective agents
AU2004220234C1 (en) Novel 2-pyridinecarboxamide derivatives
EP2727910B1 (en) Pyridin-2-yl-thiourea and Pyridin-2-yl-amine derivatives as intermediates for the preparation of Pyridin-2yl-amino-1,2,4-thiadiazole glucokinase activators
US20100016401A1 (en) 3-aza-bicyclo[3.1.0]hexane derivatives
US20050075331A1 (en) Anti-infective agents
EP2034997A1 (en) Antibacterial compositions
AU2003291670A1 (en) Anti-infective agents
KR20080059112A (ko) Vegf 수용체 및 hgf 수용체 신호전달의 억제제
CA2681695A1 (en) 2-aminopyridine analogs as glucokinase activators
US20100099713A1 (en) 2-aminopyridine derivatives as glucokinase activators
AU2010250055A1 (en) Tri-cyclic pyrazolopyridine kinase inhibitors
RU2684635C1 (ru) Производные тетрагидроимидазопиридина в качестве модуляторов активновти tnf
JP5250649B2 (ja) 抗感染薬
WO2009015897A1 (en) Novel heterocyclic compounds as mglu5 antagonists
MXPA00011994A (en) Cell adhesion-inhibiting antinflammatory compounds
CZ20004500A3 (cs) Protizánětové sloučeniny inhibující buněčnou adhesi
MXPA01012443A (es) Compuestos antiinflamatorios inhibidores de adhesion de celula.
AU2012200669B2 (en) Antibacterial compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809253.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 139811

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 508385

Country of ref document: NZ

Ref document number: 200006883

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/00668/MU

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2333770

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV2000-4500

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2000 552119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999926157

Country of ref document: EP

Ref document number: 1020007013739

Country of ref document: KR

Ref document number: 18542000

Country of ref document: SK

Ref document number: PA/a/2000/011994

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 42312/99

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 1999 105109

Country of ref document: BG

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001/00189

Country of ref document: TR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999926157

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2000-4500

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020007013739

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV2000-4500

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1999926157

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007013739

Country of ref document: KR