AU2012200669B2 - Antibacterial compositions - Google Patents

Antibacterial compositions Download PDF

Info

Publication number
AU2012200669B2
AU2012200669B2 AU2012200669A AU2012200669A AU2012200669B2 AU 2012200669 B2 AU2012200669 B2 AU 2012200669B2 AU 2012200669 A AU2012200669 A AU 2012200669A AU 2012200669 A AU2012200669 A AU 2012200669A AU 2012200669 B2 AU2012200669 B2 AU 2012200669B2
Authority
AU
Australia
Prior art keywords
pyridin
optionally substituted
ethyl
benzothiazol
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2012200669A
Other versions
AU2012200669A1 (en
Inventor
John Frederick Atherall
Lloyd George Czaplewski
David Haydon
Tamara Ladduwahetty
Dale Robert Mitchell
Nicholas John Palmer
Christopher Richard Steele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biota Europe Ltd
Original Assignee
Biota Europe Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007262791A external-priority patent/AU2007262791B2/en
Priority claimed from AU2008334425A external-priority patent/AU2008334425A1/en
Application filed by Biota Europe Ltd filed Critical Biota Europe Ltd
Priority to AU2012200669A priority Critical patent/AU2012200669B2/en
Publication of AU2012200669A1 publication Critical patent/AU2012200669A1/en
Application granted granted Critical
Publication of AU2012200669B2 publication Critical patent/AU2012200669B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Compounds of formula (1) have antibacterial activity: R2 N X- [Alk]m-Q wherein: m is 0 or 1; Q is hydrogen or cyclopropyl; Alk is an optionally substituted, divalent Cr1C6 alkylene, alkenylene or alkynylene radical which may contain an ether (-0-), thioether (-S-) or amino (-NR)- link, wherein R is hydrogen, -CN or Cr1C3 alkyl; X is -C(=0)NR-, -S(O)NR6-, -C(=0)O- or -S(=O)O- wherein R6 is hydrogen, optionally substituted Cr1C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, -Cyc, or-( C-C3 alkyl)-Cyc wherein Cyc is optionally substituted monocyclic carbocyclic or heterocyclic having 3-7 ring atoms; Z is N; R2 and R3 are as defined in the description.

Description

AUSTRALIA Patents Act 1990 BIOTA EUROPE LTD COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Antibacterial compositions The following statement is a full description of this invention including the best method of performing it known to us:lA Antibacterial Compositions Related Applications This application is a divisional application of Patent Application Nos. 2007262791 and 2008334425, of which the contents are incorporated herein by reference. 5 This invention relates to substituted benzothiazoles and thiazolopyridines that are useful as antibacterial agents. Background to the invention Type 11 topoisomerases catalyse the interconversion of DNA topoisomers by transporting 10 one DNA segment through another. Bacteria encode two type 11 topoisomerase enzymes, DNA gyrase and DNA topoisomerase IV. Gyrase controls DNA supercoiling and relieves topological stress. Topoisomerase IV decatenates daughter chromosomes following replication and can also relax supercoiled DNA. Bacterial type 11 topoisomerases form a heterotetrameric complex composed of two 15 subunits. Gyrase forms an A 2
B
2 complex comprised of GyrA and GyrB whereas topoisomerase forms a C 2
E
2 complex comprised of ParC and ParE. In contrast eukaryotic type i topoisomerases are homodimers. Ideally, an antibiotic based on the inhibition of bacterial type II topoisomerases would be selective for the bacterial enzymes and be relatively inactive against the eukaryotic type 11 isomerases. 20 The type 11 topoisomerases are highly conserved enzymes allowing the design of broad spectrum inhibitors. Furthermore, the GyrB and ParE subunits are functionally similar, having an ATPase domain in the N-terminal domain and a C-terminal domain that interacts with the other subunit (GyrA and ParC respectively) and the DNA. The conservation between the gyrase and topoisomerase IV active sites suggests that 25 inhibitors of the sites might simultaneously target both type 11 topoisomerases. Such dual targeting inhibitors are attractive because they have the potential to reduce the development of target-based resistance. Type il topoisomerases are the target of a number of antibacterial agents. The most 30 prominent of these agents are the quinolones. The original quinolone antibiotics included nalidixic acid, cinoxacin and oxolinic acid. The addition of fluorine yielded a new class of drugs, the fluoroquinolones, which have a broader antimicrobial spectrum and improved pharmacokinetic properties. The fluoroquinolones include norfloxacin, ciprofloxacin, and fourth generation quinolones gatifloxacin and moxifloxacin. The coumarins and the 35 cyclothialidines are further classes of antibiotics that inhibit type 1| topoisomerases, however they are not widely used because of poor permeability in bacteria, eukaryotic toxicity, and low water solubility. Examples of such antibiotics include novobiocin and coumermycin Al, cyclothialidine, cinodine, and clerocidin.
2 The continuous emergence of antibiotic resistance demands that novel classes of antibiotics continue to be developed. Brief Summary of the Context of the invention 5 This invention is based on the finding that a class of substituted benzothiazoles and thiazolopyridines has antibacterial activity, as evidenced by inhibition of bacterial growth by members of that class. The compounds exhibit activity against strains of Gram-positive, Gram-negative and atypical bacteria, such as staphylococci, enterococci, streptococci, haemophili, moraxellas, chlamydophilas, legionellas and 10 mycoplasmas for example Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, Moraxella catarrhalis, Chlamydophila pneumonia, Legionella pneumophila and Mycoplasma pneumoniae. The compounds with which the invention is concerned are therefore useful for the 15 treatment of bacterial infection or contamination, for example in the treatment of, inter alia, Gram-positive infections and community acquired pneumonias. Whilst the invention is not limited by any particular hypothesis as to the mechanism of action of the compounds, it is presently believed that such activity is due, at least in 20 part, to the compounds inhibiting the type II bacterial topoisomerases. The invention therefore encompasses the antibacterial use of the class of substituted benzothiazole and thiazolopyridine compounds defined herein, and to novel members of that class of compounds. 25 International Patent Application No. WO 2001057008 relates to benzothiazoles said to be useful for treatment of cancer and conditions in which angiogenesis is a contributory mechanism. That document does not state or imply that the compounds with which it is concerned have antibacterial activity, nor does it disclose the substituted benzothiazole 30 and thiazolopyridine compounds claimed herein. Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge 35 in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.
2a Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, 5 integer or step, or group of elements, integers or steps. 10 3 Description of the Invention According to the invention, there is provided the use of a compound of formula (1), or a salt, hydrate, solvate or N-oxide thereof, in the preparation of an antibacterial composition: R2 N X--[Alk]M-Q z S N 3(I) 5 wherein: mis 0 or1; Q is hydrogen or cyclopropyl; 10 Alk is an optionally substituted, divalent C1-C6 alkylene, alkenylene or alkynylene radical which may contain an ether (-0-), thioether (-S-) or amino (-NR)- link, wherein R is hydrogen, -CN or C1-C3 alkyl; 15 X is -C(=0)NR 6 -, -S(O)NR 6 -, -C(=0)O- or -S(=0)O- wherein R 6 is hydrogen, optionally substituted C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, -Cyc, or -( C1-C3 alkyl)-Cyc wherein Cyc is optionally substituted monocyclic carbocyclic or heterocyclic having 3-7 ring atoms; 20 Zis NorCHorCF;
R
2 is a group Q'-[Alk']q-Q 2 -, wherein q is 0 or 1; Alk' is an optionally substituted, divalent, straight chain or branched C1-C6 25 alkylene, or C2-C6 alkenylene or C2-Ce alkynylene radical which may contain or terminate in an ether (-0-), thioether (-S-) or amino (-NR)- link;
Q
2 is an optionally substituted divalent monocyclic carbocyclic or heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic carbocyclic or heterocyclic radical having 9 or 10 ring atoms; 30 Q 1 is hydrogen, an optional substituent, or an optionally substituted carbocyclic or heterocyclic radical having 3-7 ring atoms; 4
R
3 is a group Q 4 -[Alk 2 ] P[Q 3 ]q- other than hydrogen wherein p and q are independently 0 or 1; Alk 2 is optionally substituted divalent C-C 6 alkylene or C 2
-C
6 alkenylene or
C
2
-C
6 alkynylene radical; 5 Q 3 is an optionally substituted divalent monocyclic carbocyclic or heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic carbocyclic or heterocyclic radical having 9 or 10 ring atoms;
Q
4 is hydrogen, an optional substituent, or optionally substituted carbocyclic or heterocyclic having 3-7 ring atoms. 10 In other broad aspects, the invention includes: (i) a method of treatment of a subject suffering a bacterial infection, or preventing bacterial infection in a subject, comprising administering to the subject an amount of a compound (1) as defined above, sufficient to inhibit bacterial growth; 15 (ii) a method treating or preventing bacterial contamination of a substrate comprising applying to the site of such contamination or potential contamination an amount of a compound (1) as defined above, sufficient to inhibit bacterial growth; (iii) a compound (1) as defined above for use in a method of treatment of the human body; 20 (iv) a compound (1) as defined above for use in treating or preventing bacterial infection. Compounds of formula (1) as defined above but wherein q is 1 in substituent R 3 , and salts, hydrates, solvates and N-oxides thereof, are believed to be novel per se, and 25 thus form another aspect of the invention. Specifically, such compounds wherein Q 2 is an optionally substituted pyridine, pyrimidine, or pyrazine ring or an optionally substituted pyridine-2-one ring form an aspect of the invention. The present invention further provides a compound according to formula (11) which is 30 of formula (11), or a salt, or N-oxide thereof, in the preparation of an antibacterial composition: R2 X - [Alk]m-Q 35 H
R
3 (11) 4A wherein: m is 0 or 1; 5 Q is hydrogen or cyclopropyl; Alk is an optionally substituted, divalent C1-C3 alkylene, C2-C3 alkenylene or C2-C3 alkynylene radical; 10 X is -C(=0)NH- or -C(=O)O-;
R
2 is a group Q'-[Alk']q-Q 2 -, wherein q is 0 or 1; 15 Alk' is an optionally substituted, divalent, straight chain or branched C 1
-C
6 alkylene, or C2-C6 alkenylene or C2-C6 alkynylene radical which may contain or terminate in an ether (-0-), thioether (-S-) or amino (-NR)- link;
Q
2 is an optionally substituted divalent monocyclic heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic heterocyclic 20 radical having 9 or 10 ring atoms; Q' is hydrogen, an optional substituent, or an optionally substituted heterocyclic radical having 3-7 ring atoms; R is hydrogen, -CN or C1-C3 alkyl; 25 R 3 is a group Q 4 -[Alk 2
]PQ
3 - other than hydrogen wherein p is 0 or 1; Alk 2 is optionally substituted divalent C1-C6 alkylene or C2-C6 alkenylene or C2-C6 alkynylene radical;
Q
3 is an optionally substituted divalent monocyclic heterocyclic radical having 30 5 or 6 ring atoms or an optionally substituted divalent bicyclic heterocyclic radical having 9 or 10 ring atoms;
Q
4 is hydrogen, an optional substituent, or optionally substituted heterocyclic ring having 3-7 ring atoms. 35 In other broad aspects, the invention includes: (i) the use of a compound (II) as defined above in the preparation of an antibacterial composition; 4B (ii) a method of treatment of a subject suffering a bacterial infection, or preventing bacterial infection in a subject, comprising administering to the subject an amount of a compound (11) as defined above, sufficient to inhibit bacterial growth; 5 (iii) a method treating or preventing bacterial contamination of a substrate comprising applying to the site of such contamination or potential contamination an amount of a compound (II) as defined above, sufficient to inhibit bacterial growth; (iv) a compound (1l) as defined above for use in a method of treatment of the human body; 10 (v) a compound (II) as defined above for use in treating or preventing bacterial infection. Terminology As used herein, the term "(Ca-Cb)alkyl" wherein a and b are integers refers to a 15 straight or branched chain alkyl radical having from a to b carbon atoms. Thus when a is 1 and b is 6, for example, the term includes methyl, ethyl, n-propyl, isopropyl, n butyl, isobutyl, sec-butyl, t-butyl, n-pentyl and n-hexyl. As used herein the term "divalent (Ca-Cb)alkylene radical" wherein a and b are 20 integers refers to a saturated hydrocarbon chain having from a to b carbon atoms 5 and two unsatisfied valences. The term includes, for example, methylene, ethylene, n-propylene and n-butylene. As used herein the term "(Ca-Cb)alkenyl" wherein a and b are integers refers to a 5 straight or branched chain alkenyl moiety having from a to b carbon atoms having at least one double bond of either E or Z stereochemistry where applicable. The term includes, for example, vinyl, allyl, 1- and 2-butenyl and 2-methyl-2-propenyl. As used herein the term "divalent (Ca-Cb)alkenylene radical" means a hydrocarbon 10 chain having from a to b carbon atoms, at least one double bond, and two unsatisfied valences. The term includes, for example, -CH=CH- (vinylene), -CH=CH-CH 2 -, -CH 2 CH=CH-, -CH=CH-CH 2
-CH
2 -, -CH=CH-CH 2
-CH
2
-CH
2 -, -CH=CH-CH=CH-,
-CH=CH-CH=CH-CH
2 -, -CH=CH-CH=CH-CH 2
-CH
2 -, -CH=CH-CH 2 -CH=CH-, and
-CH=CH-CH
2
-CH
2 -CH=CH-. 15 As used herein the term "Ca-Cb alkynyl" wherein a and b are integers refers to straight chain or branched chain hydrocarbon groups having from a to b carbon atoms and having in addition at least one triple bond. This term would include for example, ethynyl, 1-propynyl, 1- and 2-butynyl, 2-methyl-2-propynyl, 2-pentynyl, 3 20 pentynyl, 4-pentynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl and 5-hexynyl. As used herein the term "divalent (Ca-Cb)alkynylene radical" wherein a and b are integers refers to a divalent hydrocarbon chain having from a to b carbon atoms, and at least one triple bond. The term includes, for example, -C-C-, -C-C-CH 2 -, and 25 -CH 2 -C-CH-. As used herein the term "carbocyclic" refers to a mono-, bi- or tricyclic radical having up to 16 ring atoms, all of which are carbon, and includes aryl and cycloalkyl. 30 As used herein the term "cycloalkyl" refers to a monocyclic saturated carbocyclic radical having from 3-8 carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl. cyclooctyl and bicyclo[2.2.1 ]hept-1 -yl. As used herein the unqualified term "aryl" refers to a mono-, bi- or tri-cyclic 35 carbocyclic aromatic radical, and includes radicals having two monocyclic carbocyclic 6 aromatic rings which are directly linked by a covalent bond. Illustrative of such radicals are phenyl, biphenyl and naphthyl. As used herein the unqualified term "heteroaryl" refers to a mono-, bi- or tri-cyclic 5 aromatic radical containing one or more heteroatoms selected from S, N and 0, and includes radicals having two such monocyclic rings, or one such monocyclic ring and one monocyclic aryl ring, which are directly linked by a covalent bond. Illustrative of such radicals are thienyl, benzothienyl, furyl, benzfuryl, pyrrolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, pyrazolyl, 10 oxazolyl, benzoxazolyl, isoxazolyl, benzisoxazolyl, isothiazolyl, triazolyl, benztriazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl and indazolyl. As used herein the unqualified term "heterocyclyl" or "heterocyclic" includes 15 "heteroaryl" as defined above, and in its non-aromatic meaning relates to a mono-, bi- or tri-cyclic non-aromatic radical containing one or more heteroatoms selected from S, N and 0, and to groups consisting of a monocyclic non-aromatic radical containing one or more such heteroatoms which is covalently linked to another such radical or to a monocyclic carbocyclic radical. Illustrative of such radicals are 20 azetidinyl, pyrrolyl, furanyl, thienyl, piperidinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrimidinyl, morpholinyl, piperazinyl, indolyl, morpholinyl, benzfuranyl, pyranyl, isoxazolyl, benzimidazolyl, methylenedioxyphenyl, ethylenedioxyphenyl, maleimido and succinimido groups. 25 Unless otherwise specified in the context in which it occurs, the term "substituted" as applied to any moiety herein means substituted with up to four compatible substituents, each of which independently may be, for example, (C 1
-C
6 )alkyl, (C 2 C 6 )alkenyl, (C 2
-C
6 )alkynyl, (C-C)alkoxy, hydroxy, hydroxy(C-C 6 )alkyl, (C
C
3 )alkoxy(C-C 3 )alkyl, mercapto, mercapto(C-C 6 )alkyl, (C-C 6 )alkylthio, halo 30 (including fluoro, bromo and chloro), fully or partially fluorinated (C-C 3 )alkyl, (C
C
3 )alkoxy or (C-C 3 )alkylthio such as trifluoromethyl, trifluoromethoxy, and trifluoromethylthio, nitro, nitrile (-CN), oxo (=O), phenyl, phenyl(C-C 3 )alkyl-, phenoxy, monocyclic heteroaryl, heteroaryl(C-C 3 )alkyl-, or heteroaryloxy with 5 or 6 ring atoms, cycloalkyl having 3 to 6 ring carbon atoms, -COOR^, -CORA, -OCORA, 35 -SO 2 RA, -CONRARB, -CONHNH 2 , -SO 2 NRARB, -NRARB, - NHNH 2 , -OCONRARB, -NRBCORA, -NRBCOORA, -NRBSO 2 ORA or -NRACONRARB wherein RA and RB are independently hydrogen or a (CrC 6 )alkyl, hydroxy(C-C 6 )alkyl, or (C 1
-C
3 )alkoxy(C- 7
C
3 )alkyl group or, in the case where RA and RB are linked to the same N atom, RA and RB taken together with that nitrogen may form a cyclic amino ring such as morpholinyl, piperidinyl. piperazinyl, or 4-(C 1
-C
6 )alkyl-piperizinyl such as 4-methyl piperazinyl. Where the substituent is phenyl, phenyl(C 1
-C
3 )alkyl-, phenoxy or 5 monocyclic heteroaryl, heteroaryl(C 1
-C
3 )alkyl-, or heteroaryloxy with 5 or 6 ring atoms, the phenyl or heteroaryl ring thereof may itself be substituted by any of the above substituents except phenyl, phenyl(C 1
-C
3 )alkyl-, phenoxy, heteroaryl, heteroaryl(C 1
-C
3 )alkyl-, or heteroaryloxy. An "optional substituent" or "substituent" may be one of the foregoing specified groups. 10 As used herein the term "salt" includes base addition, acid addition and quaternary salts. Compounds of the invention which are acidic can form salts, including pharmaceutically acceptable salts, with bases such as alkali metal hydroxides, e.g. sodium and potassium hydroxides; alkaline earth metal hydroxides e.g. calcium, 15 barium and magnesium hydroxides; with organic bases e.g. N-methyl-D-glucamine, choline tris(hydroxymethyl)amino-methane, L-arginine, L-lysine, N-ethyl piperidine, dibenzylamine and the like. Those compounds (I) which are basic can form salts, including pharmaceutically acceptable salts with inorganic acids, e.g. with hydrohalic acids such as hydrochloric or hydrobromic acids, sulphuric acid, nitric acid or 20 phosphoric acid and the like, and with organic acids e.g. with acetic, tartaric, succinic, fumaric, maleic, malic, salicylic, citric, methanesulphonic, p-toluenesulphonic, benzoic, benzenesunfonic, glutamic, lactic, and mandelic acids and the like. For a review on suitable salts, see Handbook of Pharmaceutical Salts: Properties, Selection, and Use by Stahl and Wermuth (Wiley-VCH, Weinheim, Germany, 2002). 25 The term 'solvate' is used herein to describe a molecular complex comprising the compound of the invention and a stoichiometric amount of one or more pharmaceutically acceptable solvent molecules, for example, ethanol. The term 'hydrate' is employed when said solvent is water. 30 Compounds of the invention that contain one or more actual or potential chiral centres, because of the presence of asymmetric carbon atoms, can exist as a number of diastereoisomers with R or S stereochemistry at each chiral centre. The invention includes all such diastereoisomers and mixtures thereof. 35 Some compounds of formula (1) may be administered as prodrugs, which are considered to be derivatives of compounds of formula (1) which may have little or no 7A pharmacological activity themselves but which, when administered into or onto the body, are converted into compounds of formula (1) having the desired activity, for example, by hydrolytic cleavage. Further information on the use of prodrugs may be found in Pro-drugs as Novel Delivery Systems, Vol. 14, ACS Symposium Series (T. 5 Higuchi and W. Stella) and Bioreversible Carriers in Drug Design, Pergamon Press, 1987 (ed. E. B. Roche, American Pharmaceutical Association). Prodrugs can, for example, be produced by replacing appropriate functionalities present in the compounds of formula (I) with certain moieties known to those skilled 10 in the art as 'pro-moieties' as described, for example, in Design of Prodrugs by H. Bundgaard (Elsevier, 1985). Metabolites of compounds of formula (1), that is, compounds formed in vivo upon administration of the drug may also have antibacterial activity. Some examples of 15 metabolites include: (i) where the compound of formula (1) contains a methyl group, an hydroxymethyl derivative thereof (-CH 3 -> -CH 2 OH): 20 (ii) where the compound of formula (1) contains an alkoxy group, an hydroxy derivative thereof (-OR -> -OH); (iii) where the compound of formula (I) contains a tertiary amino group, a secondary amino derivative thereof (-NR'R 2 -> -NHR' or -NHR 2 ); 25 (iv) where the compound of formula (1) contains a secondary amino group, a primary derivative thereof (-NHR 1 -> -NH 2 ); (v) where the compound of formula (1) contains a phenyl moiety, a phenol 30 derivative thereof (-Ph -> -PhOH); and (vi) where the compound of formula (1) contains an amide group, a carboxylic acid derivative thereof (-CONH 2 -> COOH).
8 Structuralfeatures The compounds with which the invention is concerned may have, for example, the following features, in any compatible combination: 5 Z is N or CH, or CF. Presently it is preferred that Z be CH, so that the compounds (1) are substituted benzothiazoles. X may be, for example, -C(0)0- or -C(O)NH-. Within this subclass, m may be 0 and Q may be, for example, hydrogen, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. 10 Also within this subclass, m may be 1 and Q hydrogen, with Alk being, for example CH 2 -, -(CH 2
)
2 - or -(CH 2
)
3 -. Presently, when m is 1 it is preferred that X be -C(O)NH-, Alk be -(CH 2
)
2 - and Q be hydrogen.
R
3 is a group Q 4 -[Alk 2 ] p[Q 3 ]q- other than hydrogen. In some embodiments q is 1 and 15 p is 0 or 1. In other embodiments, q is 0 and p is 0 or 1. Alk 2 when present (ie p is 1) is an optionally substituted divalent C1-C6 alkylene or C2 C6 alkenylene or C2-C6 alkynylene radical, for example optionally substituted -CH 2 -, CH(OH)-, -CH 2
CH
2 -, -CH 2
CH
2
CH
2 -, -CH=CH-, -C-C-, -CH 2 CH=CH-, -CH 2 C-C-. 20 Presently preferred are optionally substituted divalent C1-C3 alkylene radicals
Q
3 when present is an optionally substituted divalent monocyclic carbocyclic radical, or an optionally substituted heterocyclic radical having 5 or 6 ring atoms, or an optionally substituted divalent bicyclic carbocyclic or heterocyclic radical having 9 or 25 10 ring atoms. Examples of such radicals include those having optionally substituted thienyl, benzothienyl, furyl, benzfuryl, pyrrolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, pyrazolyl, oxazolyl, benzoxazolyl, isoxazolyl, benzisoxazolyl, isothiazolyl, triazolyl, benztriazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, indazolyl. 30 azetidinyl, pyrrolyl, furanyl, thienyl, piperidinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrimidinyl, piperidinyl, piperazinyl, indolyl, morpholinyl, benzfuranyl, pyranyl, isoxazolyl, benzimidazolyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, and naphthyl rings. 35 Q 4 is hydrogen, an optional substituent, or optionally substituted carbocyclic or heterocyclic ring having 3-7 ring atoms. Optional substituents include those 9 particularised above in the discussion of the term "optional substituent". Carbocyclic or heterocyclic rings having 3-7 ring atoms include those monocyclic rings listed in the preceding paragraph, as well as cyclopentyl and homopiperazinyl rings. 5 Presently it is preferred that Q 3 be present (ie q is 1), and in such cases Q' may be, for example, an optionally substituted pyridine ring, an optionally substituted pyrimidine ring or an optionally substituted pyrazine ring, such as an optionally substituted pyridine-2-yl ring, an optionally substituted pyrimidine-2-yl ring or an optionally substituted pyrazine-2-yl ring. Optional substituents in Q 3 include CH 3 0-, 10 -NH 2 , -CN, Cl, CH 3 -, and -CF 3 . In embodiments wherein p and q are each 0, Q 4 may be one of the optional substituents particularised above, for example, halo such as chloro or bromo, -CONHRA, -NHCONHR 8 , wherein RA and RB are hydrogen or a (C-C 6 )alkyl, 15 hydroxy(C-C 6 )alkyl, or (C-C 3 )alkoxy(C-C 3 )alkyl group. Currently preferred R 3 groups include the following: O N N N 2 N F N H NS 10
R
2 is a group Ql-[Alk']q-Q 2 _. Alk' when present is an optionally substituted, divalent, straight chain or branched
C
1
-C
6 alkylene, or C2-C6 alkenylene or C 2
-C
6 alkynylene radical which may contain or 5 terminate in an ether (-0-), thioether (-S-) or amino (-NR)- link. Examples of such radicals include -CH 2 -, -CH(OH)-, -CH 2
CH
2 -, -CH 2
CH
2
CH
2 -, -CH=CH-, -C=C-,
-CH
2 CH=CH-, -CH 2 C=C-, -CH 2 NH-, -C(=0)NH-, -CH 2 0CH 2 -, -CH 2
CH
2 C(=0)NH-. Q2 is an optionally substituted divalent monocyclic carbocyclic or heterocyclic radical 10 having 5 or 6 ring atoms or an optionally substituted divalent bicyclic carbocyclic or heterocyclic radical having 9 or 10 ring atoms. Examples of such radicals include those specified above in the discussion of radical Q 3 . Q' is hydrogen, an optional substituent, or an optionally substituted carbocyclic or 15 heterocyclic radical having 3-7 ring atoms. Examples of such radicals include those specified above in the discussion of radical Q 4 . In the group R 2 , Q 2 may be an optionally substituted divalent nitrogen-containing heterocyclic radical having 5 or 6 ring atoms, such as an optionally substituted 20 divalent pyridonyl, pyridyl, pyrazolyl, pyrimidinyl, thiazolyl, or pyrrolyl radical, or Q 2 when present may be a divalent nitrogen-containing bicyclic carbocyclic or heterocyclic radical having 9 or 10 ring atoms, such as quinolinyl, isoquinolinyl, benzimidazolyl or 5-azaindolyl. Presently preferred Q 2 rings include optionally substituted pyridine, pyrimidine, pyrazine or pyridine-2-one rings, such as an 25 optionally substituted pyridine-3-yl ring, an optionally substituted pyrimidine-5-yl ring, an optionally substituted pyrazine-2-yl ring or an optionally substituted pyridine-2 one-4-yl ring. Presently preferred optional substituents in Q 2 include CH 3 -, CH 3 0-, CN, and -NH 2 . 30 In the group R 2 , q is 0 or 1. When q is 1, Alk' is present and may be, for example, an optionally substituted divalent C1-C3 alkylene radical which may optionally include an -NH- link, or optionally terminate in an -NH- link to Q 2 . In a particular case, Alk' is a divalent C2-C3 alkylene radical which terminates in an -NH- link to Q 2 , and which is oxo-substituted on the C atom adjacent that -NH- link, whereby Alk' has the formula 35 -(CH 2
)
0 -2C(=0)NH-. In other cases Alk' has the formula -(CH 2
)
1
-
2 NHC(=O)-, with the (C=0) being linked to Q 2
.
ll In the group R 2 , Q' may be, for example, hydrogen, or an optional substituent as particularised above. In some embodiments Q' is a group of formula -NRARB, wherein RA and RB are independently hydrogen or a (C1-C 6 )alkyl, hydroxy(C 1 C 6 )alkyl, or (C 1
-C
3 )alkoxy(C 1
-C
3 )alkyl group, or RA and RB taken together with that 5 nitrogen form a cyclic amino ring, for example, a piperidine, morpholine, thiomorpholine, azetidine, pyrrolidine or piperazine ring, the latter being optionally N substituted by C 1
-C
3 alkyl. Currently preferred R 2 groups include the following: A H oN Y. N H H NH, Ho% - -- 10 When the compound of formula I is a compound of formula (11) then the compounds may have, for example, the following features, in any compatible combination: m may be 0 and Q may be hydrogen or cyclopropyl. 15 m may be 1 and Q hydrogen, with Alk being, for example -CH 2 -,
-(CH
2
)
2 - or -(CH 2
)
3 -. Presently, when m is 1 it is preferred that X be -C(O)NH-, Alk be -(CH 2
)
2 - and Q be hydrogen. 20 R 3 is a group Q 4 -[Alk 2
]PQ
3 - other than hydrogen. Alk 2 when present (ie p is 1) is an optionally substituted divalent C1-C6 alkylene or C2 C6 alkenylene or C2-C6 alkynylene radical, for example optionally substituted -CH 2 -, - IIA CH(OH)-, -CH 2
CH
2 -, -CH 2
CH
2
CH
2 -, -CH=CH-, -C-C-, -CH 2 CH=CH-, -CH 2 C=C-. Presently preferred are optionally substituted divalent C-C 3 alkylene radicals
Q
3 is an optionally substituted heterocyclic radical having 5 or 6 ring atoms, or an 5 optionally substituted divalent bicyclic heterocyclic radical having 9 or 10 ring atoms. Examples of such radicals include those having optionally substituted thienyl, benzothienyl, furyl, benzfuryl, pyrrolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, pyrazolyl, oxazolyl, benzoxazolyl, isoxazolyl, benzisoxazolyl, isothiazolyl, triazolyl, benztriazolyl, thiadiazolyl, 10 oxadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, indazolyl. azetidinyl, pyrrolyl, furanyl, thienyl, piperidinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrimidinyl, piperidinyl, piperazinyl, indolyl, morpholinyl, benzfuranyl, pyranyl, isoxazolyl, and benzimidazolyl, rings. 15
Q
4 is hydrogen, an optional substituent, or optionally substituted heterocyclic ring having 3-7 ring atoms. Optional substituents include those particularised above in the discussion of the term "optional substituent". Heterocyclic rings having 3-7 ring atoms include those monocyclic rings listed in the preceding paragraph, as well as 20 cyclopentyl and homopiperazinyl rings. Currently it is preferred that Q 3 be an optionally substituted pyridine ring, an optionally substituted pyrimidine ring or an optionally substituted pyrazine ring, such as an optionally substituted pyridine-2-yl ring, an optionally substituted pyrimidine-2 25 yl ring or an optionally substituted pyrazine-2-yl ring. Optional substituents in Q 3 include CH 3 0-, -NH 2 , -CN, Cl, CH 3 -, and -CF 3 . Examples of radicals R 3 include the following: l 1B OH NH NN H R2 is a group Q -[Alk]gQ2 Alk' when present is an optionally substituted, divalent, straight chain or branched 5 C1-C6 alkylene, or C2-C6 alkenylene or C2-Ce alkynylene radical which may contain or terminate in an ether (-O-), thioether (-S-) or amino (-NR)- link. Examples of such radicals include -CH2-, -CH(OH)-, -CH2CH2-, -CH2CH2CH2-, -CH=CH-, -C=-C-, -CH2CH=CH-, -CH2C=C-, -CH2NH-, -C(=O)NH-, -CH20CH2-, -CH2CH2C(=0)NH-. 10 Q2 is an optionally substituted divalent monocyclic heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic heterocyclic radical having 9 or 10 ring atoms. Examples of such radicals include those specified above in the discussion of radical Q3. 15 Q1 is hydrogen, an optional substituent, or an optionally substituted heterocyclic radical having 3-7 ring atoms. Examples of such radicals include those specified above in the discussion of radical Q4.
11C In the group R 2 , Q 2 may be an optionally substituted divalent nitrogen-containing heterocyclic radical having 5 or 6 ring atoms, such as an optionally substituted divalent pyridonyl, pyridyl, pyrazolyl, pyrimidinyl, thiazolyl, or pyrrolyl radical, or Q 2 5 when present may be a divalent nitrogen-containing bicyclic or heterocyclic radical having 9 or 10 ring atoms, such as quinolinyl, isoquinolinyl, benzimidazolyl or 5 azaindolyl. Presently preferred Q 2 rings include optionally substituted pyridine, pyrimidine, pyrazine or pyridine-2-one rings, such as an optionally substituted pyridine-3-yl ring, an optionally substituted pyrimidine-5-yl ring, an optionally 10 substituted pyrazine-2-yl ring or an optionally substituted pyridine-2-one-4-yl ring. Presently preferred optional substituents in Q 2 include CH 3 -, CH 3 0-, -CN, and -NH 2 . In the group R 2 , q is 0 or 1. When q is 1, Alk' is present and may be, for example, an optionally substituted divalent Cr1C3 alkylene radical which may optionally include an 15 -NH- link, or optionally terminate in an -NH- link to Q 2 . In a particular case, Alk' is a divalent C2-C3 alkylene radical which terminates in an -NH- link to Q 2 , and which is oxo-substituted on the C atom adjacent that -NH- link, whereby Alk' has the formula
-(CH
2
)
0
-
2 C(=O)NH-. In other cases Alk' has the formula -(CH 2
)
1
-
2 NHC(=0)-, with the (C=0) being linked to Q 2 . 20 In the group R 2 , Q' may be, for example, hydrogen, or an optional substituent as particularised above. In some embodiments Q 1 is a group of formula -NRARB, wherein RA and RB are independently hydrogen or a (C-C)alkyl, hydroxy(C
C
6 )alkyl, or (C-C 3 )alkoxy(C-C 3 )alkyl group, or RA and RB taken together with that 25 nitrogen form a cyclic amino ring, for example, a piperidine, morpholine, thiomorpholine, azetidine, pyrrolidine or piperazine ring, the latter being optionally N substituted by CrC3 alkyl. Examples of radicals R 2 include the following: lID Nt NH I CI ""0 I 2 N, Utilities and Compositions As mentioned above, the compounds with which the invention are concerned are antimicrobially active, and may therefore be of use as topical antibacterial 5 disinfectants, or in the treatment of microbial infection in humans and non-human animals e.g. other mammals, birds and fish. Since the type 11 topoisomerase target of the compounds of the invention is a universal bacterial enzyme, the compounds of the invention inhibit growth of a variety of bacterial species, of the Gram-positive and/or Gram negative classes and atypical bacteria, such as staphylococci, 10 enterococci, streptococci, haemophili, moraxellas, chlamydophilas, legionellas and myco plasmas for exam ple Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenza, Moraxella catarrhalis, 12 Chlamydophila pneumonia, Legionella pneumophila and Mycoplasma pneumoniae. The compounds with which the invention is concerned are therefore useful for the treatment of bacterial infection or contamination, for example in the treatment of, inter alia, Gram-positive infections and community acquired pneumonias. 5 It will be understood that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular 10 disease undergoing therapy. Optimum dose levels and frequency of dosing will be determined by clinical trial as is required in the art. The compounds with which the invention is concerned may be prepared for administration by any route consistent with their pharmacokinetic properties. The 15 orally administrable compositions may be in the form of tablets, capsules, powders, granules, lozenges, liquid or gel preparations, such as oral, topical, or sterile parenteral solutions or suspensions. Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or 20 polyvinyl-pyrrolidone; fillers for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricant, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants for example potato starch, or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical practice. Oral 25 liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, glucose syrup, gelatin hydrogenated edible 30 fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and if desired conventional flavouring or colouring agents. 35 For topical application to the skin, the drug may be made up into a cream, lotion or ointment. Cream or ointment formulations which may be used for the drug are 13 conventional formulations well known in the art, for example as described in standard textbooks of pharmaceutics such as the British Pharmacopoeia. For topical application to the eye, the drug may be made up into a solution or 5 suspension in a suitable sterile aqueous or non aqueous vehicle. Additives, for instance buffers such as sodium metabisulphite or disodium edeate; preservatives including bactericidal and fungicidal agents such as phenyl mercuric acetate or nitrate, benzalkonium chloride or chlorhexidine, and thickening agents such as hypromellose may also be included. 10 The active ingredient may be inhaled using a suitable device such as a dry powder inhaler, a nebuliser, a metered dose inhaler or a liquid spray system. The active ingredient may also be administered parenterally in a sterile medium. 15 Depending on the vehicle and concentration used, the drug can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as a local anaesthetic, preservative and buffering agents can be dissolved in the vehicle. Synthesis and Example Compounds 20 There are multiple synthetic strategies for the synthesis of the compounds (1) with which the present invention is concerned, but all rely on known chemistry, known to the synthetic organic chemist. Thus, compounds according to formula (1) can be synthesised according to procedures described in the standard literature and are well-known to the one skilled in the art. Typical literature sources are "Advanced 25 organic chemistry", 4 th Edition (Wiley), J March, "Comprehensive Organic Transformation", 2 "d Edition (Wiley), R.C. Larock , "Handbook of Heterocyclic Chemistry", 2 nd Edition (Pergamon), A.R. Katritzky), review articles such as found in "Synthesis", "Acc. Chem. Res.", "Chem. Rev", or primary literature sources identified by standard literature searches online or from secondary sources such as "Chemical 30 Abstracts" or "Beilstein". Examples of synthetic approaches and schemes for the preparation of compounds (1) are given in the Examples herein. 35 The invention will now be illustrated by reference to the following Examples: 13A Abbreviations DMF - N,N-dimethylformamide DMSO - dimethylsulfoxide 5 HPLC-MS - high performance liquid chromatography-mass spectrometry 14 NMR - nuclear magnetic resonance Rt - retention time THF - tetrahydrofuran 5 Scheme I Br N NO 2 step 1 Br NO 2 step Br NO 2 N H 2
NH
2 step 3 Br NHCSNHCOPh Br q NH 2 step 4 Step 5 Br NHCSNH 2 ep 6NH 2 Br N step 7 F i . ~NHCONHEt .i Br NHCONHEtj Br I step 8 N N NHCONHEt sS Br N Step 1. 4-Bromo-2-iodo-6-nitroaniline. 4-Bromo-2-nitroaniline (14.3g, 0.0659 mol) was added in one portion to iodine (17.6g, 10 0.0692 mol) dissolved in ethanol (300ml), followed by silver (1) sulphate (20.4g 0.0659 mol). After stirring at ambient temperature for 18 hours the reaction was 15 filtered and the solid obtained was washed with dichloromethane until all the orange product had dissolved. The combined filtrates were evaporated in vacuo and the resulting solid was washed with diethyl ether/ 40-60 Petroleum ether (1:1) and filtered to give 4-bromo-2-iodo-6-nitroaniline as an orange solid (19.8 g, 88%), which was 5 used without further purification. 1 H NMR (400MHz,6,CDCl 3 ): 6.15(2H,br s), 8.00(1H,s), 8.42(1H,s). Step 2. 3-Bromo-5-iodonitrobenzene. 4-bromo-2-iodo-6-nitroaniline (5 g, 0.0145 mol) was added in portions to stirred 10 concentrated sulfuric acid (60 ml) keeping the temperature at 0-5*C. After stirring in the cold for 1 h, sodium nitrite (2.3 g, 0.0326 mol) was added and the reaction mixture stirred in the cold for a further 2 h. The reaction mixture was then poured into ice (250 ml). The resultant mixture was added, in portions, to a boiling solution of copper (II) sulfate (0.36 g, 0.00145 mol) in ethanol (150 ml) and boiled for a further 2 15 h. The reaction mixture was cooled to ambient temperature and extracted with ethyl acetate (300 ml) which was washed with saturated sodium hydrogen carbonate solution (250 ml) and dried (MgSO 4 ). The solvent was removed in vacuo to give 3 Bromo-5-iodonitrobenzene as a yellow solid (4.21 g, 88 %) which was used without further purification. 20 'H NMR (400MHz,6,CDCl 3 ): 8.18(1H,s), 8.34(1H,s), 8.50(1H,s) Step 3. 3-Bromo-5-iodoaniline. A mixture of 3-Bromo-5-iodonitrobenzene (4.21 g, 0.0128 mol) and iron powder (3.6g, 0.0642 mol) in glacial acetic acid (50 ml) was stirred at ambient temperature 25 for 16 h. The reaction mixture was then filtered through a pad of celite and washed through with ethyl acetate. The filtrate was evaporated in vacuo to give a brown oil. This was re-dissolved in ethyl acetate, loaded onto a large pad of silica and eluted with ethyl acetate. The filtrate was evaporated in vacuo to afford 3-Bromo-5 iodoaniline as a brown solid (3.67g, 96%) which was used without further purification. 30 'H NMR (400MHz,6,CDCl 3 ): 3.72(2H,br s), 6.77(1H,s), 6.95(1H,s), 7.21(1H,s). Step 4. 1-Benzoyl-3-(3-bromo-5-iodophenyl)-thiourea. A solution of ammonium thiocyanate (4.45g, 0.0585 mol) in anhydrous acetone (48 ml) was treated dropwise with benzoyl chloride (6.47 ml, 0.05583 mol) and stirred at 35 ambient temperature for 1h. A solution of 3-Bromo-5-iodoaniline (15.85g, 0.05319 mol) in anhydrous acetone (48 ml) was then added in one portion and the mixture stirred at ambient temperature for 16 h. The resultant suspension was poured into 16 water (300 ml) and stirred for 0.5 h. The precipitated solid was collected by filtration washed with water followed by 40-60* petroleum ether and dried in vacuo to afford 1 Benzoyl-3-(3-bromo-5-iodo-phenyl)-thiourea (20.70 g, 84 %). 1 H NMR (400MHz,6,CDCl 3 ): 7.56(2H,m), 7.67(1H,m), 7.76(1H,s), 7.90(2H,d), 5 7.99(1 H,s), 8.05(1 H,s), 9.17(1 H,br s), 12.70(1 H,br s). Step 5. (3-Bromo-5-iodo-phenyl)-thiourea. A stirred suspension of 1-Benzoyl-3-(3-bromo-5-iodophenyl)-thiourea (20.70 g, 0.0449 mol) in methanol (303 ml) was treated with sodium methoxide (2.42g, 0.0449 10 mol) and stirred at ambient temperature for 4 h. The resultant suspension was evaporated to dryness at reduced pressure. The residue was mixed with water (500 ml) and extracted with ethyl acetate (3x200ml) which was dried (MgSO 4 ) and the solvent removed in vacuo to give a residue which was triturated with 40-60* petroleum ether/diethyl ether (1:1) to afford (3-Bromo-5-iodophenyl)-thiourea as an 15 off-white solid (14.35 g, 89 %). 1 H NMR (400MHz,6,D 6 DMSO): 7.67(1H,s), 7.83(1H,s), 7.89(1H,s), 9.87(1H,br s). Step 6. 7-Bromo-5-iodo-benzothiazol-2-ylamine and 5-Bromo-7-iodo benzothiazol-2-ylamine. 20 A stirred suspension of (3-Bromo-5-iodo-phenyl)-thiourea (2.83g, 0.00723 mol) in chloroform (65 ml) was treated with bromine (1.16g, 0.4 ml, 0.00723 mol) and boiled under reflux for 5 h. After cooling to ambient temperature, the mixture was diluted with ether (200 ml). The solid material was collected by filtration, washed with aqueous sodium hydrogen carbonate solution (200 ml) followed by water (200 ml) 25 and dried in vacuo to give a 1:1 mixture of 7-Bromo-5-iodo-benzothiazol-2-ylamine and 5-Bromo-7-iodo-benzothiazol-2-ylamine (2.87g, 100 %) which was used without further purification. 1 H NMR (400MHz,6,D 6 DMSO): 3.40(2H,br s), 7.50-7.95(2H,m). 30 Step 7. 1-(7-Bromo-5-iodo-benzothiazol-2-yl)-3-ethyl-urea and 1-(5-Bromo-7 iodo-benzothiazol-2-yl)-3-ethyl-urea. A stirred mixture of the product from Step 6 (2.87g, 0.00808 mol), anhydrous 1,4 dioxane (95 ml), ethyl isocyanate (2.87g, 3.2 ml, 0.0404 mol) and dibutyltindiacetate (0.2 ml) was heated at 100 "C for 16 h. After cooling to ambient temperature, the 35 reaction mixture was evaporated to dryness and the residue triturated with diethyl ether (250 ml). The solid material was collected by filtration and dried in vacuo to give a 1:1 mixture of 1-(7-Bromo-5-iodo-benzothiazol-2-yl)-3-ethyl-urea and 1-(5-Bromo-7- 17 iodo-benzothiazol-2-yl)-3-ethyl-urea as a white solid (2.17 g, 63 %) which was used without further purification. 1 H NMR (400MHz,6,D 6 DMSO): 1.12(3H,m), 3.23(2H,m), 6.77(1H,br t), 7.72 8.00(2H,m). 5 Step 8. 1-(5-Bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea [Example 2] and 1-(7-Bromo-5-pyridin-3-yI-benzothiazol-2-yI)-3-ethyl-urea. [Example 3] A stirred mixture of the product from Step 7 (3.66g, 0.00859 mol), 3-pyridineboronic acid (1.06g, 0.00859 mol), powdered potassium phosphate tribasic (2.18g, 0.0103 10 mol), anhydrous 1,4-dioxane (58 ml) and anhydrous methanol (117ml) was purged with nitrogen for 15 min. 1,1'-bis(diphenylphosphino)ferrocene palladium (11) chloride complex (0.70g, 0.000859 mol) was added and the mixture heated at 80*C for 16 h under an atmosphere of nitrogen. After cooling to ambient temperature, the mixture was filtered through celite and washed through with methanol. The filtrate was 15 evaporated in vacuo and the resultant residue was purified by "flash" silica chromatography using ethyl acetate to elute 1-(5-Bromo-7-pyridin-3-yl-benzothiazol 2-yl)-3-ethyl-urea (1.0g, 30%) and 5 % methanol in ethyl acetate to elute 1-(7-Bromo 5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.857g, 26%). 1-(5-Bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea: 'H NMR 20 (400MHz,6,DeDMSO): 1.10(3H,t), 3.20(2H,m), 6.76(1H,br t), 7.56(1H,s), 7.62(1H,m), 7.90(1H,s), 8.17(1H,d), 8.71(1H,d), 8.92(1H,s). 1-(7-Bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea: 1H NMR (400MHz,6,D 6 DMSO): 1.1 5(3H,t), 3.23(2H,m), 6.78(1 H,br t), 7.53(1 H,m), 7.81(1 H,s), 8.00(1 H,s), 8.20(1 H,d), 8.62(1 H,d), 9.00(1 H,s). 25 LC-MS m/z 377[M+H]* Rt=2.63min. The following were prepared similarly: ID NAME LC-MS DATA Example 1 1-[7-(6-Amino-pyridin-3- m/z 392[M+H]* yl)-5-bromo-benzothiazol- Rt=2.22min. 2-yl]-3-ethyl-urea 1-[5-(2-Amino-pyrimidin-5- m/z 395[M+H]* yl)-7-bromo-benzothiazol- Rt=2.91 min. 2-yl]-3-ethyl-urea 1-[7-(2-Amino-pyrimidin-5- m/z 395[M+H]* yl)-5-bromo-benzothiazol- Rt=2.90min.
18 2-yl]-3-ethyl-urea Scheme 1A Br r Br
H
2 N ep1 step step step N Br NO 2 ' Br NO 2 Br NH 2 Br & NH S NH S NH 2 Ph O Brp I -NH 2 s Br N step 7 Br Br B ~ N -N Br~~ Np-N 0O B r -N H N HN NH N N S +- I >NH +' Br 5 N Step 1. 1,3-Dibromo-5-nitro-benzene. To an ice-cold solution of 2,6-dibromo-4-nitro-aniline (100 g, 0.34 mol) in 1.50 L of ethanol was added dropwise conc. H 2
SO
4 (116 ml, 2.15 mol) over 30-45 min with 10 constant stirring. The reaction mixture was heated to 60 0 C and sodium nitrite (72 g, 1.09 mol) was added to the reaction mixture portion wise. The resulting yellow colored reaction mixture was heated slowly to 90 0 C and refluxed for 2 to 2.5 h. After cooling to room temperature, the mixture was poured into ice water. The reddish brown solid thus obtained was filtered, washed with water and dried to give the 15 desired compound as a brown solid (85.0 g, 90%). 'H-NMR (400 MHz, DMSO-d 6 ): 8 8.38 (d, J= 1.20 Hz, 1 H) and 8.40 Hz, br s, 2H). Step 2. 3,5-Dibromoaniline. To a solution of 1,3-dibromo-5-nitro-benzene (85.0 g, 0.30 mol) in 1 L of ethanol was 20 added SnC1 2 .2H 2 0 (341.0 g, 1.50 mol) portion wise at room temperature. The reaction mixture was heated under reflux at 80 0 C for 1.5 h. After cooling to room temperature, the solvent was evaporated under reduced pressure and the crude white solid thus obtained was basified with 4N NaOH solution to pH 12. The mixture was extracted with ethyl acetate (x 3) and the combined organic layer was washed 25 with brine solution and dried over Na 2
SO
4 . The solvent was removed under reduced pressure, to give the desired compound as a brown solid (65.0 g, 86%). 'H-NMR (400 MHz, DMSO-d 6 ): 65.71 (br s, 2H), 6.71 (s, 2H) and 6.77 (s, 1H).
19 Step 3. 1-Benzoyl-3-(3,5-dibromo-phenyl)-thiourea. To the solution of 3,5-dibromoaniline (65.0 g, 0.26 mol) in anhydrous acetone (1.6 L) was added benzoylisothiocyanate (46.4 g, 0.28 mol) and the reaction mixture was 5 stirred at room temperature for 30 min. Acetone was distilled off and the crude residue was washed with hexane to obtain desired compound as yellow solid (96.5 g, 90 %). 1 H-NMR (400 MHz, DMSO-d): 6 7.56 (t, J= 7.60 Hz, 2H), 7.67 (t, J= 7.20 Hz, 1H), 7.75 (s, 1 H), 7.96-7.98 (m, 4H), 11.76 (br s, 1 H) and 12.54 (br s, 1 H). 10 Step 4. (3,5-Dibromo-phenyl)-thiourea. A solution of NaOH (46.30 g, 1.16 mol) dissolved in 480 mL of H 2 0 was added to a solution of 1-benzoyl-3-(3,5-dibromo-phenyl)-thiourea (96.0 g, 0.23 mol) in 1.20 L of THF. The resulting reaction mixture was stirred at 70'C for 12 hours. THF was 15 distilled off and extracted with ethyl acetate (x 3). The combined organic layer was dried over Na 2
SO
4 , filtered and distilled off to get the crude residue that was washed with hexane to obtain the desired compound as a grey solid (68 g, 95 %). 1 H-NMR (400 MHz, DMSO-d 6 ): 8 7.49 (s, 1H), 7.84 (s, 2H), 7.98 (br s, 2H) and 10.48 (br s, 1H). MS: 310.88 (M+H)*. 20 Step 5. 5,7-Dibromo-benzothiazol-2-ylamine. To a solution of (3,5-dibromo-phenyl)-thiourea (35 g, 0.11 mol) in CHC1 3 (600 mL) at -55-60'C was added dropwise a solution of Br 2 (40.40 g, 0.25 mol, in 100 ml of
CHCI
3 ) over a period of 1 h. The reaction mixture was stirred at -55-60 0 C for 15 min 25 followed by refluxing at 70-75*C for 3 h. The reaction mixture was cooled to room temperature and filtered to get the crude residue that was washed with hexane and diethyl ether. The solid thus obtained was dissolved in H 2 0, basified with aqueous ammonia solution to pH 10-12 and stirred for 30 min. The solid thus obtained was filtered and washed with water to get the desired product (34.0 g, 98%). 30 1 H-NMR (400 MHz, DMSO-d 6 ): 5 7.39 (s, 1H), 7.48 (s, 1H) and 7.95 (br s, 2H). MS: 308.96 (M+H)*. Step 6. 1-(5,7-Dibromo-benzothiazol-2-y)-3-ethyl-urea. To a solution of 5,7-dibromo-benzothiazol-2-ylamine (20.0 g, 0.65 mol) in dioxane 35 (400 mL) was added ethylisocyante (27.83 g, 0.39 mol) and the reaction mixture was stirred at 75-80 0 C for 15 h. After the completion of the reaction (TLC monitoring) the 20 solvent was evaporated and the residue was taken in H 2 0 and stirred at 70-75 0 C for 15 h. The solid was filtered and washed with hot water and dried under high vacuum to get the desired product (19.65 g, 80%). 1 H-NMR (400 MHz, DMSO-d 6 ): 8 1.08 (t, J= 6.80 Hz, 3H), 3.18 (m, 2H), 6.76 (br s, 5 1H), 7.62 (s, 1H), 7.82 (s, 1H) and 11.10 (br s, 1H). MS: 379.90 (M+H)*. Step 7. 1-(5-Bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea. [Example 2] 1-(7-Bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea. [Example 3] 1-(5,7-Di-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea. [Example 4] 10 To a solution of 1-(5,7-dibromo-benzothiazol-2-yl)-3-ethyl-urea (1.60 g, 0.40 mmol) in
DMF-H
2 0 (2:1, 48 mL) was added pyridine-3-boronic acid (0.51 g, 0.42 mmol) and
K
3
PO
4 (0.90 g, 0.42 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was then degassed for 30 min followed by addition of [1,1' bis(diphenylphosphino)ferrocene] dichloropalladium(II) complex with CH 2
CI
2 (0.35 g, 15 0.042 mmol). The reaction mixture was then again degassed for 30 min and heated at 120'C for 1h under nitrogen atmosphere. DMF was distilled off, water was added into reaction mixture and extracted with ethyl acetate (x 3). The combined organic layer was dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The compound was purified over silica (230-400 M) using ethyl 20 acetate/hexane (gradient) to provide the desired compounds. 1-(5-Bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea. 60% EtOAc-Hexane (14% yield). 1 H-NMR (400 MHz, DMSO-d 6 ): 6 1.07 (t, J= 7.20 Hz, 3H), 3.14 (m, 2H), 6.73 (br s, 1H), 7.52-7.60 (m, 2H), 7.87 (s, 1H), 8.11-8.13 (m, 1H), 8.67-8.69 (m, 1H), 8.89 (m, 1 H), and 10.99 (br s, 1 H). MS: 378.99 (M+H)*. 25 1-(7-Bromo-5-pyridin-3-yI-benzothiazol-2-yl)-3-ethyl-urea. 80% EtOAc-Hexane (17% yield), m.p. 345 0 C. 1 H NMR (DMSO-d 6 , 400 MHz): 6 1.11 (t, J= 7.20 Hz, 3H), 3.20 (m, 2H), 6.75 (br s, 1H), 7.48-7.51 (m, 1H), 7.63 (s, 1H), 7.79 (s, 1H), 8.18 (m, 1H), 8.60 (m, 1H), 8.97 (s, 1H) and 11.01 (br s, 1H). MS: 377.17 (M+H*). 1-(5,7-Di-pyridin-3-yl-benzothiazol-2-yI)-3-ethyl-urea. 95% EtOAc-MeOH (25% 30 yield). 1 H NMR (DMSO-d 6 , 400 MHz): 6 1.08 (t, J= 7.20 Hz, 3H), 3.15-3.22 (m, 2H), 6.57 (s, 3H), 6.75 (br s, 1 H), 7.49-7.53 (m, 1 H), 7.59-7.62 (m, 1 H), 7.70 (s, 1 H), 8.02 (s, 1H), 8.21-8-26 (m, 2H), 8.34 (s, 1H), 8.59 (d, J=4.8 Hz, 1H), 8.68 (d, J=4.8 Hz, 1H), 9.00 (s, 1H), and 11.0 (br s, 1H). MS: 376.07 (M+H*).
21 The following were prepared similarly: ID NAME LC/MS or 1HNMR DATA N-{5-[7-Bromo-2-(3-ethyl- 'H NMR (400MHz, 6, ureido)-benzothiazol-5-yl]- D 6 DMSO): 1.14(3H,t), pyridin-2-yl}-acetamide 2.16(3H,s), 3.25(2H,m), 6.78(1H,br s), 7.81(1H,d), 7.98(1H,s), 8.20(2H,m), 8.76(1H,s), 10.66(1H,s), 11.00(1 H,br s). 1-[5-(6-Amino-pyridin-3- m/z 394[M+H]* yl)-7-bromo-benzothiazol- Rt=2.25min. 2-yl]-3-ethyl-urea Example 5 1-[5-Bromo-7-(1-methyl- (400MHz,6,D 6 DMSO): 1H-pyrazol-4-yl)- 1.09 (t, J=7.2 Hz, 3H), 3.18 benzothiazol-2-yl]-3-ethyl- (q, J=7.2 Hz, 2H), 3.94 (s, urea 3H), 6.74 (br s, 1H), 7.56 (s, 1H), 7.68 (s, 1H), 7.97 (s, 1H), 8.26 (s, 1H), 10.95 (br s, 1H). m/z 380.06 [M+H]*. Example 6 1-[7-Bromo-5-(1-methyl- (DMSO-d 6 , 400 MHz): 6 1H-pyrazol-4-yl)- 1.09 (t, J=7.2 Hz, 3H), 3.19 benzothiazol-2-yl]-3-ethyl- (q, J=7.6 Hz, 2H), 3.85 (s, urea 3H), 7.41 (m, 1H), 7.65 (s, 1H), 7.81 (s, 1H), 7.98 (s, 1H), 8.27 (s, 1H) and 10.91 (br s, 1 H). m/z 380.07 [M+H]*. Example 7 1-[5,7-Bis-(1-methyl-1H- (DMSO-d 6 , 400 MHz): S pyrazol-4-yl)-benzothiazol- 1.09 (t, J=7.20 Hz, 3H), 2-yl]-3-ethyl-urea 3.19 (q, J=7.2 Hz, 2H), 3.87 (s, 3H), 3.95 (s, 3H), 6.73 (br s, 1H), 7.65 (s, 1H), 7.69 (s, 1H), 7.99 (s, 2H), 8.22 (s, 1H), 8.26 (s, 22 1 H), 10.73 (br s, 1 H). m/z 382.20 (M+H]*, Scheme 1B. H2 N Step i N Step2 N Step 4 b , 1 NH I NO, NO 2 1fI NH 2 1I NH S NH S NH 2 Ph-ko O O N StNH NH rNH Step 7 N -NH + NN frNH SN NN N N N/\S--NH StepS8 N6 N 0
N
N NHN S-NH S NH N N 5 Step 1. 1,3-Diiodo-5-nitro-benzene. To an ice-cold solution of 2,6-diiodo-4-nitro-aniline (25.0 g, 0.06 mol) in ethanol (625 mL) was added dropwise conc. H 2
SO
4 (50.0 ml, 0.90 mol) over 30-45 min with constant stirring. The reaction mixture was heated to 60"C and sodium nitrite (9.70 g, 10 0.14 mol) was added to the reaction mixture portion wise. The resulting yellow colored reaction mixture was heated slowly to 90 0 C and refluxed for 2 to 2.5 h. After cooling to room temperature, the mixture was poured into ice water. The reddish brown solid thus obtained was filtered, washed with water and dried to give the desired compound as a yellow solid (17.0 g, 72%). 15 'H NMR (DMSO-d 6 , 400 MHz): 6 8.48 (s, 2H) and 8.56 (s, 1H). Step 2. 3,5-Diiodoaniline. To a solution of 1,3-diiodo-5-nitro-benzene (15.80 g, 0.042 mol) in ethanol (200 mL) was added SnC1 2 .2H 2 0 (28.50 g, 0.13 mol) portion wise at room temperature. The 20 reaction mixture was heated under reflux at 80 0 C for 1.5 h. After cooling to room temperature, the solvent was evaporated under reduced pressure and the crude solid thus obtained was basified with 4N NaOH solution to pH 12. The mixture was extracted with ethyl acetate (x 3) and the combined organic layer was washed with 23 brine solution and dried over Na 2
SO
4 . The solvent was removed under reduced pressure, to give the desired compound as a yellow solid (11.0 g, 75%). Step 3. 1-Benzoyl-3-(3,5-diiodo-phenyl)-thiourea. 5 To the solution of 3,5-diiodoaniline (5.0 g, 0.01 mol) in anhydrous acetone (150 mL) was added benzoylisothiocyanate (2.81 g, 0.012 mol) and the reaction mixture was stirred at room temperature for 30 min. Acetone was distilled off and the crude residue was washed with hexane to obtain desired compound as a yellow solid (6.35 g, 91%). 10 Step 4. (3,5-Diiodo-phenyl)-thiourea. A solution of NaOH (1.30 g, 0.033 mol) dissolved in 35 mL of H 2 0 was added to a solution of 1-benzoyl-3-(3,5-diiodo-phenyl)-thiourea (6.30 g, 0.013 mol) in 75 mL of THF. The resulting reaction mixture was stirred at 70 0 C for 12 hours. THF was 15 distilled off and extracted with ethyl acetate (x 3). The combined organic layer was dried over Na 2
SO
4 , filtered and distilled off to get the crude residue that was washed with hexane to obtain the desired compound (4.0 g, 75 %). MS: 405.06 (M+H*). 20 Step 5. 5,7-Diiodo-benzothiazol-2-ylamine. To a solution of (3,5-diiodo-phenyl)-thiourea (4.0 g, 0.01 mol) in CHC1 3 (160 mL) at 55-60 0 C was added dropwise a solution of Br 2 (4.72 g, 0.02 mol, in 25 ml of CHC 3 ) over a period of 15 min. The reaction mixture was stirred at -55-60'C for 15 min followed by refluxing at 70-75'C for 3 h. The reaction mixture was cooled to room 25 temperature and filtered to get the crude residue that was washed with hexane and diethyl ether. The solid thus obtained was dissolved in H 2 0, basified with aqueous ammonia solution to pH 10-12 and stirred for 30 min. The solid thus obtained was filtered and washed with water to get the desired product (3.50 g, 88%). 1 H NMR (DMSO-d 6 , 400 MHz): 6 7.59 (d, J= 1.0 Hz, 1H), 7.62 (d, J= 1.0 Hz, 1H) and 30 7.85 (br s, 2H). MS: 403.06 (M+H*). Step 6. 1-(5,7-Diiodo-benzothiazol-2-yl)-3-ethyl-urea. To a solution of 5,7-diiodo-benzothiazol-2-ylamine (8.0 g, 0.02 mol) in dioxane (160 mL) was added ethylisocyante (10.70 g, 0.15 mol) and the reaction mixture was 35 stirred at 75-80'C for 15 h. After the completion of the reaction (TLC monitoring) the solvent was evaporated and the residue was taken in H 2 0 and stirred at 70-75"C for 24 15 h. The solid was filtered and washed with hot water and dried under high vacuum to get the desired product (5.0 g, 53%). 'H NMR (DMSO-d 6 , 400 MHz): 8 1.08 (t, J= 7.20 Hz, 3H), 3.16-3.19 (m, 2H), 6.73 (br s, 1 H), 7.82 (s, 1 H), 7.94 (s, 1 H) and 10.97 (br s, 1 H). MS: 474.12 (M+H*). 5 Step 7. 1-Ethyl-3-(5-iodo-7-pyridin-3-yI-benzothiazol-2-yI)-urea [Example 8] and I-Ethyl-3-(7-iodo-5-pyridin-3-yI-benzothiazol-2-y)-urea [Example 9]. To a solution of 1-(5,7-diiodo-benzothiazol-2-yl)-3-ethyl-urea (0.20 g, 0.42 mmol) in DMF (5 mL) was added pyridine 3-boronic acid (0.076 g, 0.63 mmol) and K 3 PO4 10 (0.133 g, 0.63 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was degassed for half an hour followed by the addition of bis(triphenylphosphine)palladium(II) dichloride (0.0044 g, 0.063 mmol). The reaction mixture was again degassed for half an hour and then heated at 120*C for 1h under nitrogen atmosphere. DMF was distilled off, added water and extracted with ethyl 15 acetate (x 3). The combined organic layer was dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The residue was purified by chromatography on silica (230-400 M) using DCM/Methanol (99:1) to provide 1-Ethyl 3-(5-iodo-7-pyridin-3-yl-benzothiazol-2-yl)-urea as an off white solid (0.025 g, 14%) and DCM/Methanol (98:2) to provide 1-Ethyl-3-(7-iodo-5-pyridin-3-yl-benzothiazol-2 20 yl)-urea as an off white solid (0.025 g, 14%). 1-Ethyl-3-(5-iodo-7-pyridin-3-yI-benzothiazol-2-yl)-urea: 1 H NMR (DMSO-d 6 , 400 MHz): 5 1.07 (t, J= 7.20 Hz, 3H), 3.16 (m, 2H), 6.76 (br s, 1H), 7.56-7.59 (m, 1H), 7.64 (d, J= 8.0 Hz, 1H), 8.03 (s, 1H), 8.11 (dd, J=1.6 and 8.0 Hz, 1H), 8.69 (d, J= 4.40 Hz, 1 H), 8.88 (s, 1 H), 11.01 (br s, 1 H). MS: 425.00 (M+H*). 25 1-Ethyl-3-(7-iodo-5-pyridin-3-yl-benzothiazol-2-yl)-urea: 1 H NMR (DMSO-d 6 , 400 MHz): 8 1.09 (t, J= 7.20 Hz, 3H), 3.19 (m, 2H), 6.77 (br s, 1H), 7.47-7.50 (m, 1H), 7.88 (s, 1H), 7.94 (s, 1H), 8.12-8.15 (m, 1H), 8.58 (br s, 1H), 8.93 (s, 1H) and 10.96 (br s, 1 H). MS: 425.0 (M+H*). 30 Step 8. 1-(5,7-Di-pyrazin-2-yl-benzothiazol-2-yl)-3-ethyl-urea [Example 10] To a solution of 1-(5,7-diiodo-benzothiazol-2-yl)-3-ethyl-urea (0.50 g, 1.0 mmol) in DMF (5.0 mL) was added 2-tributylstannyl-pyrazine (0.78 g, 2.0 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was degassed for half an hour followed by the addition of tetrakis(triphenylphosphine)palladium(0) (0.18 35 g, 0.10 mmol). The reaction mixture was again degassed for half an hour and then heated at 120*C for 2h under nitrogen atmosphere. After the completion of the 25 reaction (TLC monitoring), DMF was distilled off, added water and extracted with ethyl acetate (x 3). The combined organic layer was dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The compound was purified by chromatography on silica (230-400 M) using ethyl acetate/Methanol) (95:5) to provide 5 the title compound as off white solid (0.025 g, 6.5%). 'H NMR (DMSO-d 6 , 400 MHz): 8 1.11 (t, J= 7.2 Hz, 3H), 3.22 (q, J= 8.4 Hz, 2H), 6.79 (br s, 1H), 8.52 (s, 1H), 8.68 (s, 1H), 8.72 (s, 1H), 8.79 (s, 1H), 8.86 (s, 1H), 8.90 (s, 1H), 9.60 (s, 1H), 9.78 (s, 1H) and 10.83 (br s, 1H). MS: 378.18 (M+H*). 10 Step 9. 1-Ethyl-3-[7-(I-methyl-1H-pyrrol-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl] urea [Example 11] To a solution of 1-ethyl-3-(7-iodo-5-pyridin-3-yl-benzothiazol-2-yl)-urea (0.10 g, 0.24 mmol) in DMF (2.0 mL) was added N-methyl-2-tributylstannyl-1H-pyrrole (0.18 g, 0.47 mmol) under nitrogen atmosphere at room temperature. The reaction mixture 15 was degassed for half an hour followed by the addition of tetrakis(triphenylphosphine)palladium(0) (0.027 g, 0.024 mmol). The reaction mixture was again degassed for half an hour and then heated at 120 0 C for 20 h under nitrogen atmosphere. After the completion of the reaction (TLC monitoring), DMF was distilled off, added water and extracted with ethyl acetate (x 3). The combined 20 organic layer was dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified by prep-HPLC to provide the title compound as off white solid (0.005 g, 6.0%). 1H NMR (DMSO-d6, 400 MHz): 8 1.08 (t, J= 6.80 Hz, 3H), 3.17 (q, J= 6.0 Hz, 2H), 3.68 (s, 3H), 6.19 (s, 1H), 6.41 (m, 1H), 6.77 (br s, 1H), 6.96 (s, 1H), 7.48-7.53 (m, 25 2H), 7.89 (s, 1H), 8.19 (d, J= 8.0 Hz, 1H), 8.59 (m, 1H), 9.00 (s, 1H) and 10.80 (br s, 1 H). MS: 378.15 (M-H+). Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 275 nm): 98.22% (Rt = 14.25 min). 30 26 Scheme IC Step 1" Step2 S 0 Step 3 Br NH 2 2 N NH 2 N Step 4 N2 Step 5 O0 / Step 6 "& ' N N N N 5 N- NN Step 1. 3-Bromo-5-pyrazol-1-yl-phenylamine. 5 To a solution of 3,5-dibromoaniline (0.50 g, 1.99 mmol) in DMSO (2.0 mL) was added sequentially L-Proline (0.041 g, 0.36 mmol), Cs 2
CO
3 (1.16 g, 3.58 mmol), Cul (0.038 g, 0.20 mmol) and pyrazole (0.12 g, 1.80 mmol). The reaction mixture was degassed for 10 min and then heated to 110*C for 48 h. After the completion of reaction (TLC monitoring), the reaction mixture was cooled to room temperature, added water and 10 extracted with ethyl acetate (x 3). The combined organics was washed with water, dried (Na 2 SO4), filtered and concentrated. The residue was purified over silica gel (230-400 M, 15% EtOAc-Hexane) to get the desired compound (0.18 g, 37%). Step 2. 1-Benzoyl-3-(3-bromo-5-pyrazol-1-yI-phenyl)-thiourea. 15 To the solution of 3-bromo-5-pyrazol-1-yl-phenylamine (0.18 g, 0.76 mmol) in anhydrous acetone (5.0 mL) was added benzoylisothiocyanate (0.14 g, 0.83 mmol) and the reaction mixture was stirred at room temperature for 30 min. Acetone was distilled off and the crude residue was washed with hexane to obtain desired compound (0.27 g, 89%). 20 Step 3. (3-Bromo-5-pyrazol-1-yl-phenyl)-thiourea. A solution of NaOH (0.13 g, 3.35 mmol) dissolved in 1.0 mL of H 2 0 was added to a solution of 1-Benzoyl-3-(3-bromo-5-pyrazol-1-yl-phenyl)-thiourea 3 (0.27 g, 0.67 mmol) in 5.0 mL of THF. The resulting reaction mixture was stirred at 70 0 C for 12 25 hours. THF was distilled off and extracted with ethyl acetate (x 3). The combined organic layer was dried over Na 2
SO
4 , filtered and distilled off to get the crude residue that was washed with 2% Ethyl acetate-hexane to obtain the desired compound (0.17 g, 85%).
27 Step 4. 7-Bromo-5-pyrazol-1-yI-benzothiazol-2-ylamine. To a solution of (3-bromo-5-pyrazol-1-yl-phenyl)-thiourea (1.0 g, 3.0 mmol) in DCM (17.0 mL) at 00C was added dropwise a solution of Br 2 (1.07 g, 6.0 mmol, in 3.0 ml of DCM) over a period of 15 min. The reaction mixture was stirred at 0*C for 15 min 5 followed by refluxing for 2 h. The reaction mixture was cooled to room temperature and filtered to get the crude residue that was washed with hexane and diethyl ether. The solid thus obtained was dissolved in H 2 0, basified with aqueous ammonia solution to pH 10-12 and extracted with ethyl acetate (x 3). The combined organic was washed with water, dried (Na 2 SO4, filtered and concentrated. The residue was 10 purified over silica gel (230-400 M, 25% EtOAc-Hexane) to get the desired product (0.30 g, 30%). Step 5. 1-(7-Bromo-5-pyrazol-1-yl-benzothiazol-2-yl)-3-ethyl-urea. To a solution of 7-bromo-5-pyrazol-1-yl-benzothiazol-2-ylamine (0.10 g, 0.34 mmol) 15 in dioxane (5.0 mL) was added ethylisocyante (0.24 g, 3.34 mmol) and the reaction mixture was stirred at 550C for 15 h. After the completion of the reaction (TLC monitoring) the solvent was evaporated and the residue was washed with hexane to get the desired product (0.11 g, 88%). 20 Step 6. 1-Ethyl-3-(5-pyrazol-1-yI-7-pyridin-3-yI-benzothiazol-2-yl)-urea. [Example 12] To a solution of 1-(7-bromo-5-pyrazol-1-yl-benzothiazol-2-yl)-3-ethyl-urea (0.27 g, 0.74 mmol) in DMF: H 2 0 (2:1, 15 mL) was added 3-pyridyl boronic acid (0.11 g, 0.88 mmol) and K 3
PO
4 (0.17 g, 0.81 mmol) under nitrogen atmosphere at room 25 temperature. The reaction mixture was then degassed for half an hour followed by the addition of bis(triphenylphosphine)paladium(I1) dichloride (0.077 g, 0.11 mmol). The reaction mixture was then again degassed for half an hour and heated at 1200C for 2 h under nitrogen atmosphere. After the completion of the reaction (TLC monitoring), DMF was distilled off; water was added to the reaction mixture and 30 extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified over silica gel (230-400 M) using EtOAc-Hexane (70:30) to provide the title compound (0.066 g, 22%). 1 H NMR (DMSO-d 6 , 400 MHz): 6 1.08 (t, J= 7.2 Hz, 3H), 3.17 (m, 2H), 6.57 (s, 1H), 35 6.75 (br s, 1H), 7.60-7.63 (m, 1H), 7.78 (s, 1H), 7.86 (s, 1H), 8.13-8.20 (m, 2H), 8.70 (s, 1 H), 8.97 (s, 1 H) and 11.0 (br s, 1 H). MS: 365.24 (M+H*).
28 Scheme 2A N Br NN N N NHCONHEt I -NHCONHEt S -S N N I -Ethyl-3-(7-pyrid in-3-yl-5-pyrimid in-5-yl-benzoth iazol-2-yl)-urea. [Example 13] A stirred mixture of 1-(5-Bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea 5 (250 mg, 0.663 mmol), pyrimidine-5-boronic acid (86 mg, 0.696 mmol), powdered potassium phosphate tribasic (167 mg, 0,796 mmol) and 1,1' bis(diphenylphosphino)ferrocene palladium(II)chloride complex (81 mg, 0,0995 mmol) in anhydrous 1,4-dioxane (5 ml) and anhydrous methanol (10 ml) was purged with nitrogen for 5 min and heated in a sealed vessel for 16 h at 80 0 C. After cooling 10 to ambient temperature, the mixture was filtered through kieselguhr. The kieselguhr was thoroughly washed with methanol and the combined filtrates evaporated to dryness in vacuo to give the crude 1-Ethyl-3-(7-pyridin-3-yl-5-pyrimidin-5-yl benzothiazol-2-yl)-urea which was purified by "flash" silica chromatography eluting with 0 to 5% methanol in ethyl acetate. 57 mg (22%) of an off-white solid was 15 obtained. 1 H NMR (400MHz,6,D 6 DMSO): 1.13(3H,t), 3.22(2H,m), 6.79(1H,br t), 7.66(1H,m), 7.85(1H,s), 8.18(1H,s), 8.28(1H,d), 8.74(1H,d), 9.07(1H,s), 9.25(1H,s), 9.36(2H,s), 10.95(1H,br s). LC-MS m/z 377[M+H]* Rt=2.59min. 20 The following were prepared similarly: ID NAME LC-MS DATA Example 14 1-[5-(2-Amino-pyrimidin-5- m/z 392[M+H]* yl)-7-pyridin-3-yl- Rt=2.14min benzothiazol-2-yl]-3-ethyl urea Example 15 1-Ethyl-3-[5-(2-methoxy- m/z 407[M+H]* pyrimidin-5-yl)-7-pyridin-3- Rt=2.51 min yl-benzothiazol-2-yl]-urea Example 16 1-Ethyl-3-[5-(6-hydroxy- m/z 392[M+H]* pyridin-3-yl)-7-pyridin-3-yl- Rt=2.13min 29 benzothiazol-2-yl]-urea Example 17 1-[5-(6-Amino-pyridin-3-yl)- m/z 391 [M+H]* 7-pyridin-3-yl- Rt=2.61 min benzothiazol-2-yl]-3-ethyl urea Example 18 1-Ethyl-3-[5-(4- m/z 405[M+H]* hydroxymethyl-phenyl)-7- Rt=2.45min pyridin-3-yl-benzothiazol 2-yl]-urea Example 19 1 -Ethyl-3-[5-(6- m/z 406[M+H]* hydroxymethyl-pyridin-3- Rt=2.01 min yl)-7-pyridin-3-yl benzothiazol-2-yl]-urea Example 20 N-{5-[2-(3-Ethyl-ureido)-7- m/z 433[M+H]* pyridin-3-yl-benzothiazol- Rt=2.30min 5-yl]-pyridin-2-yl} acetamide Example 21 1-Ethyl-3-[5-(4-morpholin- m/z 474[M+H]* 4-ylmethyl-phenyl)-7- Rt=2.03min pyridin-3-yl-benzothiazol 2-yl]-urea Example 22 1-Ethyl-3-(5-imidazo[1,2- m/z 415[M+H]* a]pyridin-6-yl-7-pyridin-3- Rt=1.93min yl-benzothiazol-2-yl)-urea Example 23 1 -Ethyl-3-{5-[6-(4-methyl- m/z 474[M+H]* piperazin-1-yl)-pyrdin-3- Rt=1.98min yl]-7-pyridin-3-yl benzothiazol-2-yl}-urea Example 24 1-[5-(5-Cyano-pyridin-3- m/z 401 [M+H]* yl)-7-pyridin-3-yl- Rt=2.93min benzothiazol-2-yl]-3-ethyl urea Example 25 1-[5-(2-Dimethylamino- m/z 420[M+H]* pyrimidin-5-yl)-7-pyridin-3- Rt=3.01 min yl-benzothiazol-2-yl]-3 ethyl-urea 30 Example 26 5-[2-(3-Ethyl-ureido)-7- m/z 434[M+H]* pyridin-3-yl-benzothiazol- Rt=2.82min 5-yl]-pyridine-2-carboxylic acid methyl ester Example 27 1-[5-(6-Cyano-pyridin-3- m/z 401 [M+H]* yl)-7-pyridin-3-yl- Rt=2.75min benzothiazol-2-yl]-3-ethyl urea Example 28 1-Ethyl-3-[5-(3-fluoro- m/z 393[M+H]* phenyl)-7-pyridin-3-yl- Rt=3.20min benzothiazol-2-yl]-urea Example 29 1 -Ethyl-3-[5-(6-methoxy- m/z 406[M+H]* pyridin-3-yl)-7-pyridin-3-yl- Rt=2.76min benzothiazol-2-yl]-urea Example 30 1-Ethyl-3-(5-pyridin-4-yl-7- m/z 376[M+H]* pyridin-3-yl-benzothiazol- Rt=1.93min 2-yl)-urea Example 31 1 -Ethyl-3-[5-(5-methoxy- m/z 404[M+H]* pyridin-3-yl)-7-pyridin-3-yl- Rt=2.35min benzothiazol-2-yl]-urea Example 32 1-[5-(2-Cyano-pyrimidin-5- m/z 402[M+H]* yl)-7-pyridin-3-yl- Rt=2.95min benzothiazol-2-yl]-3-ethyl urea The following were prepared similarly using 1-(5-Bromo-7-pyridin-2-yl-benzothiazol 2-yl)-3-ethyl-urea (Scheme 10): Example 33 1-[5-(6-Cyano-pyridin-3- m/z 401 [M+H]* yl)-7-pyridin-2-yl- Rt=3.56min benzothiazol-2-yl]-3-ethyl urea Example 34 1-Ethyl-3-[5-(6- m/z 406[M+H]* hydroxymethyl-pyridin-3- Rt=2.38min yl)-7-pyridin-2-yl benzothiazol-2-yl]-urea 31 Example 35 1-Ethyl-3-(7-pyridin-2-yl-5- m/z 377[M+H]* pyrimidin-5-yl- Rt=3.02min benzothiazol-2-yl)-urea Example 36 1-Ethyl-3-[5-(5-methyl- m/z 390[M+H]* pyridin-3-yI)-7-pyridin-2-yl- Rt=2.47min benzothiazol-2-yl]-urea Example 37 1-Ethyl-3-(5-furan-3-yl-7- m/z 365[M+H]* pyridin-2-yl-benzothiazol- Rt=3.68min 2-yl)-urea Example 38 1-[5-(6-Dimethylamino- m/z 419[M+H]* pyridin-3-yl)-7-pyridin-2-yl- Rt=2.34min benzothiazol-2-yl]-3-ethyl urea Example 39 1-Ethyl-3-[5-(4-methyl- m/z 390[M+H]* pyridin-3-yl)-7-pyridin-2-yl- Rt=2.35min benzothiazol-2-yl]-urea Example 40 1-Ethyl-3-[5-(2-methoxy- m/z 406[M+H]* pyridin-4-yl)-7-pyridin-2-yl- Rt=3.65min benzothiazol-2-yl]-urea Example 41 1-Ethyl-3-[5-(6-methyl- m/z 390[M+H]* pyridin-3-yl)-7-pyridin-2-yl- Rt=2.33min benzothiazol-2-yl]-urea The following was prepared similarly using 1-[7-(2-Amino-pyrimidin-5-yl)-5-bromo benzothiazol-2-yl]-3-ethyl-urea (Scheme 1): Example 42 1-[7-(2-Amino-pyrimidin-5- m/z 392[M+H]* yl)-5-pyridin-3-yl- Rt=1.99min benzothiazol-2-yl]-3-ethyl urea 32 Scheme 2B Br N B N I 'XNHCONHEt Step 1 0 >NHCONHEt N N I Step 2 N N -NHCONHEt Z-N Step 1. 1-[5-(5,5-Dimethyl-[1,3,2]dioxaborinan-2-yI)-7-pyridin-3-yI-benzothiazol 2-yi]-3-ethyl-urea. 5 A mixture of1-(5-bromo-7-(pyridine-3-yl)benzo[d]thiazol-2-yl)-3-ethylurea (100mg, 0.265mmol), bis(neopentyl)glycolato diboron (120mg, 0.530mmol) and potassium acetate (78mg, 0.796mmol) in dimethyl sulfoxide (4ml) was purged with nitrogen for 5 minutes. Bis(diphenylphosphino)ferrocene palladium(Il)chloride complex (22mg, 0.0265mmol) was added, the reaction mixture sealed and heated at 80 0 c for 16h. 10 Step 2. 1-Ethyl-3-(5-pyrazin-2-yl-7-pyridin-3-yl-benzothiazol-2-yl)-urea. [Example 43] The reaction mixture from step 1 was cooled to ambient temperature. 2 Chloropyrazine (46mg, 0.405mmol) was added followed by aqueous cesium 15 carbonate solution (3.7M, 0.1ml, 0.405mmol). The reaction mixture was purged with nitrogen for 5 minutes, treated with tetrakistriphenylphosphine palladium (0) (21mg, 0.0265mmol), sealed and heated at 80*C for 8h. The reaction mixture was cooled to ambient temperature, diluted with dichloromethane (50ml), washed with water (3X1Oml) followed by brine (25ml) and dried (MgSO4).The solvent was removed in 20 vacuo and the residue purified by flash silica chromatography eluting with 5% methanol in ethyl acetate to give -Ethyl-3-(5-pyrazin-2-yl-7-pyridin-3-yl-benzothiazol 2-yl)-urea as a pale brown solid (15mg, 15% over 2 steps). 'H NMR (400MHz,6,CDCl 3 = CD 3 0D): 1.26(3H,t), 3.37(2H,m), 7.51(1H,m), 7.99(1H,s), 8.14(1H,d), 8.30(1H,s), 8.56(1H,s), 8.66(1H,d), 8.70(1H,s), 8.93(1H,s), 25 9.14(1H,s).
33 LC-MS m/z 377[M+H]* Rt=2.36min. The following were prepared similarly: ID NAME LC-MS DATA Example 44 1-[5-(4-Amino-pyridin-3- m/z 391[M+H]* yl)-7-pyridin-3-yl- Rt=1.93min. benzothiazol-2-yl]-3-ethyl urea Example 45 1-[5-(6-Amino-pyrazin-2- m/z 392[M+H]* yl)-7-pyridin-3-yl- Rt=2.26min. benzothiazol-2-yl]-3-ethyl urea Example 46 1-Ethyl-3-[5-(6-methyl- m/z 391[M+H]* pyridazin-3-yl)-7-pyridin-3- Rt=2.26min. yl-benzothiazol-2-yl]-urea Example 47 1-Ethyl-3-[5-(1-methyl-2- m/z 404[M+H]* oxo-1,2-dihydro-pyridin-4- Rt=2.25min. yl)-7-pyridin-3-yl benzothiazol-2-yl]-urea Example 48 1-[5-(5-Chloro-pyridin-3- m/z 41 O[M+H]* yl)-7-pyridin-3-yl- Rt=2.90min. benzothiazol-2-yl]-3-ethyl urea Example 49 1 -Ethyl-3-[7-pyridin-3-yl-5- m/z 415[M+H]* (1 H-pyrrolo[2,3-b]pyridin- Rt=2.44min. 5-yl)-benzothiazol-2-yl] urea Example 50 1-[5-(1,6-Dimethyl-2-oxo- m/z 420[M+H]* 1,2-dihydro-pyridin-4-yl)-7- Rt=2.34min. pyridin-3-yl-benzothiazol 2-yl]-3-ethyl-urea 5 34 The following were prepared similarly using 1-(5-Bromo-7-pyridin-2-yl-benzothiazol 2-yl)-3-ethyl-urea (Scheme 10): Example 51 1-Ethyl-3-[5-(1-methyl-2- m/z 406[M+H]* oxo-1,2-dihyd ro-pyridin-4- Rt=2.86min. yl)-7-pyridin-2-yl benzothiazol-2-yl]-urea Example 52 1-Ethyl-3-[5-(2-methyl- m/z 390[M+H]* pyridin-3-yl)-7-pyridin-2-yl- Rt=2.30min. benzothiazol-2-y)-urea Example 53 1-[5-(6-Amino-pyrazin-2- m/z 392[M+H]* yl)-7-pyridin-2-yl- Rt=2.93min. benzothiazol-2-yl]-3-ethyl urea Example 54 1-Ethyl-3-[5-(2-oxo-2,3- m/z 447[M+H]* dihydro-1 H-pyrido[2,3- Rt=2.93min. b][1,4]oxazin-7-yl)-7 pyridin-2-yl-benzothiazol-2 yl]-urea Example 55 2-tert-Butylamino-N-{5-[2- m/z 504[M+H]* (3-ethyl-ureido)-7-pyridin- Rt=2.33min. 2-yl-benzothiazol-5-yl] pyridin-2-yl}-acetamide Example 56 1-Ethyl-3-[5-(2-hydroxy- m/z 392[M+H]* pyridin-4-yl)-7-pyridin-2-yl- Rt=2.72min. benzothiazol-2-yl]-urea Example 57 1 -Ethyl-3-{5-[1-(2-hydroxy- m/z 436[M+H]* ethyl)-2-oxo-1,2-dihydro- Rt=2.64min. pyridin-4-yl]-7-pyridin-2-yl benzothiazol-2-yl}-urea Example 58 1-Ethyl-3-{5-[6-(2-hydroxy- m/z 420[M+H]* ethyl)-pyridin-3-yl]-7- Rt=2.30min. pyridin-2-yl-benzothiazol-2 yl}-urea Example 59 1-Ethyl-3-[5-(6-morpholin- m/z 475[M+H] 4-ylmethyl-pyridin-3-yl)-7- Rt=2.30min. pyridin-2-yl-benzothiazol-2- 35 yI]-urea Example 60 1-[5-(6-{[Bis-(2-methoxy- m/z 521 [M+H]+ ethyl)-amino]-methyl}- Rt=2.42min. pyridin-3-yI)-7-pyridin-2-y benzothiazol-2-yl]-3-ethyl urea Example 61 1 -{5-[6-(2-Dimethylamino- m/z 462[M+H]+ ethylamino)-pyridin-3-y]-7- Rt=2.O9min. pyridin-2-yI-benzothiazol-2 yI}-3-ethyl-urea Example 62 1 -Ethyl-3-{5-[5-(4-methyl- m/z 474[M+H]+ piperazin-1 -yI)-pyridin-3- Rt=2.O4min. yI]-7-pyridin-2-y benzothiazol-2-yl)-urea Example 63 1 -Ethyl-3-{5-[1 -(2- m/Z 505 [M+H]+ morpholin-4-yl-ethyi)-2- Rt=2.26min. oxo-1 ,2-dihydro-pyridin-4 yl]-7-pyridin-2-yl benzothiazol-2-yl}-urea Example 64 N-(2-Dimethylamino-ethyl)- m/z 490 [M+H]f 5-[2-(3-ethyi-ureido)-7- Rt=2.2 1 min. pyrid in-2-yl-benzothiazol-5 yI]-nicotinamide Example 65 1 -Ethyl-3-[7-pyridin-2-yl-5- m/z 431 [M+H]+ (5,6,7,8-tetrahydro- Rt=2.63min. [1 ,6]naphthyridin-3-yl) benzoth iazol-2-yl]-urea Example 66 2-Dimethylamino-N-{5-[2- m/z 476 [M+H]F (3-ethyl-ureido)-7-pyridin- Rt=2.30min. 2-yl-benzothiazol-5-yl] pyridin-2-yl}-acetamide Example 67 1 -Ethyl-3-[5-(6- M/Z 419 [M+H]+ methylaminomethyl- Rt=2.27min. pyridin-3-yl)-7-pyridin-2-yl benzothiazol-2-yl]-urea Example 68 5-[2-(3-Ethyl-ureido)-7- M/Z 532 [M+H]+ 36 pyrdin-2-yl-benzothiazol-5- Rt=2.25min. yl]-N-(2-morpholin-4-yl ethyl)-nicotinamide Example 69 {5-[2-(3-Ethyl-ureido)-7- m/z 448 [M+H]* pyridin-2-yl-benzothiazol-5- Rt=3.1 0min. yl]-pyridin-2-yl}-acetic acid methyl ester Example 70 2-{5-[2-(3-Ethyl-ureido)-7- m/z 447 [M+H]* pyridin-2-yl-benzothiazol-5- Rt=2.53min. yl]-pyridin-2-yl}-N-methyl acetamide Example 71 1-Ethyl-3-[5-(7-oxo-5,6,7,8- m/z 445 [M+H]* tetrahydro- Rt=3.01 min. (1,8]naphthyridin-3-yl)-7 pyridin-2-yl-benzothiazol-2 yl]-urea Example 72 1-{5-[1-(2-Dimethylamino- m/z 463 [M+H]* ethyl)-2-oxo-1,2-dihydro- Rt=2.24min. pyridin-4-yl]-7-pyridin-2-yl benzothiazo-2-yl}-3-ethyl urea The following were prepared similarly using 1-[7-(2-Amino-pyrimid in-5-yl)-5-bromo benzothiazol-2-yl]-3-ethyl-urea (Scheme 1): Example 73 1-[7-(2-Amino-pyrimidin-5- m/z 393[M+H]* yl)-5-pyrazin-2-yl- Rt=2.45min. benzothiazol-2-yl]-3-ethyl urea Example 74 1-[7-(2-Amino-pyrimidin-5- m/z 392[M+H]* yl)-5-pyridin-2-yl- Rt=2.19min. benzothiazol-2-yl]-3-ethyl urea 37 Scheme 3A N IN I _NHCONHEt I >NHCONHEt S S Br F 1-Ethyl-3-[7-(2-fluoro-phenyl)-5-pyridin-3-yl-benzothiazol-2-yI]-urea. [Example 75] 5 A stirred mixture of 1-(7-Bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (50 mg, 0.133 mmol), 2-fluorobezeneboronic acid (19 mg, 0.139 mmol), powdered potassium phosphate tribasic (34 mg, 0.160 mmol) and 1,1'-bis(diphenylphosphino)ferrocene palladium(II)chloride complex (16 mg, 0.01995 mmol) in anhydrous 1,4-dioxane (1 ml) and anhydrous methanol (2 ml) was purged with nitrogen for 5 min and heated in 10 a sealed vessel for 16 h at 80*C. After cooling to ambient temperature, the mixture was filtered through kieselguhr. The kieselguhr was thoroughly washed with methanol and the combined filtrates evaporated to dryness in vacuo to give the crude -Ethyl-3-[7-(2-fluoro-phenyl)-5-pyridin-3-yl-benzothiazol-2-yl]-urea which was purified by "flash" silica chromatography eluting with 0 to 30% methanol in ethyl 15 acetate. 12 mg of a pale-brown solid was obtained. 1 H NMR (400MHz,6,D 6 DMSO): 1.12(3H,t), 3.21(2H,m), 6.77(1H,br t), 7.46(2H,m), 7.55(2H,m), 7.62(1H,s), 7.74(1H,t), 8.05(1H,s), 8.24(1H,d), 8.63(1H,d), 9.05(1H,s), 10.88(1 H,br s). LC-MS m/z 393[M+H]* Rt=2.79min. 20 The following were prepared similarly: ID NAME LC-MS DATA Example 76 1-Ethyl-3-[7-(2-fluoro- m/z 394[M+H]* pyridin-3-yl)-5-pyridin-3-yl- Rt=2.41 min. benzothiazol-2-yl]-urea Example 77 1-Ethyl-3-(5-pyridin-3-yl-7- m/z 381[M+H]* thiophen-3-yl- Rt=2.66min. benzothiazol-2-yl)-urea The following were prepared similarly but using the alternative conditions shown below: 38 A. Solvent: DMF: Water (2:1). Base: potassium phosphate. Catalyst: bis(triphenylphosphine)palladium(ll) dichloride.Temperature: 120'C. B. Solvent: Toluene: Water (9:1). Base: potassium phosphate Catalyst: Palladium(II) acetate and tricyclohexylphosphine. Temperature: 110"C. 5 C. Solvent: DMF: Water (2:1). Base: potassium phosphate. Catalyst: 1,1' bis(diphenylphosphino)ferrocene palladium(II)chloride complex. Temperature: 1200C. D. Solvent: DMF: Water (2:1). Base: Sodium carbonate. Catalyst: 1,1' bis(diphenylphosphino)ferrocene palladium(II)chloride complex. Temperature: 10 120 0 C. E. Solvent: DMF: Water (2:1). Base: potassium phosphate. Catalyst: tetrakis(triphenylphosphine)palladium(0). Temperature: 120*C. F. Solvent: DMF: Water (2:1). Base: Sodium carbonate. Catalyst: tetrakis(triphenylphosphine)palladium(0). Temperature: 1200C. 15 ID CONDITIONS NAME LC-MS / NMR DATA Example 78 A 1-Ethyl-3-(7-phenyl- 'H-NMR (400 MHz, DMSO 5-pyridin-3-yl- d 6 ): 6 1.08 (t, J= 7.20 Hz, 3H), benzothiazol-2-yl)- 3.15 (m, 2H), 6.75 (br s, 1H), urea 7.46-7.50 (m, 2H), 7.52-7.62 (m, 3H), 7.81 (d, J= 7.60 Hz, 2H), 7.96 (s, 1H), 8.23 (d, J= 8.0 Hz, 1 H), 8.59 (in, 1 H), 9.03 (s, 1H) and 10.84 (br s, 1 H). MS: 375.31 (M+H)*. Example 79 B 1-(7-Cyclopropyl-5- 'H NMR (DMSO-d 6 , 400 pyridin-3-yl- MHz): 6 0.92-0.95 (m, 2H), benzothiazol-2-yl)-3- 1.02-1.05 (m, 2H), 1.10 (t, ethyl-urea J=7.2 Hz, 3H), 2.03-2.08 (m, 1H), 3.19 (q, J=7.2 Hz, 2H), 6.90 (br s, 1H), 7.15 (s, 1H), 7.45-7.49 (m, 1H), 7.75 (s, 1H), 8.10-8.13 (m, 1H), 8.55 (m, 1H), 8.92 (s, 1H) and 39 10.91 (br s, 1H). MS: 339.07, (M+H*). Example 80 A 1-Ethyl-3-{7-(1H- 'H NMR (DMSO-d 6 , 400 pyrazol-4-yl)-5- MHz): 5 1.08 (t, J=7.20 Hz, pyrdin-3-yl- 3H), 3.15-3.25 (m, 2H), 6.85 benzothiazol-2-yl]- (br s, 1H), 7.49-7.52 (m, 1H), urea 7.60 (s, 1H), 7.84 (s, 1H), 8.10-8.40 (m, 3H), 8.58-8.59 (m, 1H), 9.03 (s, 1H), 10.92 (br s, 1H) and 13.24 (br s, 1 H). MS: 365.11 (M+H)*. Example 81 A 1-Ethyl-3-{7-[1-(2- 1H NMR (DMSO-d 6 , 400 morpholin-4-yl- MHz): 6 1.10 (t, J=7.2 Hz, 3H), ethyl)-1H-pyrazol-4- 2.45 (m, 4H), 2.76-2.79 (m, yl]-5-pyridin-3-yl- 2H), 3.18-3.22 (m, 2H), 3.57 benzothiazol-2-yl}- (m, 4H), 4.33-4.36 (m, 2H), urea 6.78 (br s, 1H), 7.49-7.52 (m, 1H), 7.77 (s, 1H), 7.84 (s, 1H), 8.08 (s, 1H), 8.21 (d, J=7.2 Hz, 1H), 8.59 (d, J=3.6 Hz, 1H), 9.03 (s, 2H), 10.89 (br s, 1H). MS: 478.37 (M+H*). Example 82 C 1-Ethyl-3-[7-(1H- 'H NMR (DMSO-d 6 , 400 pyrazol-3-yl)-5- MHz): 6 1.11 (t, J=7.2 Hz, 3H), pyrdin-3-yl- 3.20 (q, J=7.2 Hz, 2H), 6.83 benzothiazol-2-yl]- (br s, 1H), 7.15 (s, 1H), 7.50 urea 7.55 (m, 1H), 7.92 (d, J=8.40 Hz, 2H), 8.02 (s, 1H), 8.24 (d, J = 8.40 Hz, 1H), 8.60 (m, 1H), 9.06 (s, 1H) and 10.64 (brs, 1H). MS: 363.07 (M-H*). Example 83 A 1-Ethyl-3-[7-(1- 'H NMR (DMSO-d 6 , 400 methyl-1 H-pyrazol- MHz): 6 1.09 (t, J=7.20 Hz, 4-yl)-5-pyridin-3-yl- 3H), 3.20 (q, J=7.20 Hz, 2H), 40 benzothiazol-2-yl]- 3.96 (s, 3H), 6.76 (br s, 1H), urea 7.49-7.52 (m, 1H), 7.76 (s, 1H), 7.85 (s, 1H), 8.06 (s, 1H), 8.21 (m, 1H), 8.30 (s, 1H), 8.60 (br s, 1H), 9.03 (s, 1H) and 10.84 (br s, 1H). MS: 379.20 (M+H)*. Example 84 D 1-Ethyl-3-[7-(4- 'H NMR (DMSO-d 6 , 400 methoxy-phenyl)-5- MHz): 8 1.08 (t, J= 7.20 Hz, pyridin-3-yl- 3H), 3.18 (q, J= 7.20 Hz, 2H), benzothiazol-2-yl]- 3.84 (s, 3H), 6.76 (br s, 1H), urea 7.14 (d, J= 8.80 Hz, 2H), 7.48 7.52 (m, 1H), 7.56 (s, 1H), 7.73 (d, J= 8.40 Hz, 2H), 7.91 (br s, 1H), 8.21 (m, 1H), 8.58 (dd, J= 1.20 and 4.80 Hz respectively, 1H), 9.02 (s, 1H) and 10.81 (br s, 1H). MS: 405.29 (M+H*). Example 85 C 1-Ethyl-3-[7-(2- 'H NMR (DMSO-d 6 , 400 methoxy-pyridin-3- MHz): 8 1.07 (t, J= 7.20 Hz, yl)-5-pyridin-3-yl- 3H), 3.14-3.17 (m, 2H), 3.88 benzothiazol-2-yl]- (s, 3H), 6.74 (br s, 1H), 7.16 urea 7.19 (m, 2H), 7.48-7.51 (m, 1H), 7.54 (s, 1H), 7.91-7.94 (m, 1H), 7.97 (s, 1H), 8.18 8.20 (m, 1H), 8.31 (dd, J= 1.20 and 4.80 Hz respectively, 1H), 8.58-8.59 (m, 1H) and 8.99 (br s, 1H). MS: 404.04 (M+H*). Example 86 D 1-Ethyl-3-[7-(3- 1H NMR (DMSO-d 6 , 400 methoxy-phenyl)-5- MHz): 6 1.08 (t, J= 7.20 Hz, pyridin-3-yl- 3H), 3.18 (q, J=7.20 Hz, 2H), benzothiazol-2-yll- 3.85 (s, 3H), 6.75 (br s, 1H), urea 7.04-7.07 (m, 1H), 7.32 (s, 41 1H), 7.38 (d, J=7.60 Hz, 1H), 7.46-7.52 (m, 2H), 7.63 (s, 1H), 7.96 (s, 1H), 8.24 (d, J=8.0 Hz, 1H), 8.60 (m, 1H), 9.04 (s, 1H) and 10.83 (br s, 1H). MS: 403.05 (M-H). Example 87 E 1-Ethyl-3-[7-(2- 'H NMR (DMSO-d 6 , 400 methoxy-phenyl)-5- MHz): 8 1.07 (t, J= 7.20 Hz, pyridin-3-yl- 3H), 3.16 (q, J= 7.20 Hz, 2H), benzothiazol-2-yl]- 3.76 (s, 3H), 6.72 (br s, 1H), urea 7.09 (t, J= 7.20 Hz, 1H), 7.21 (d, J= 8.40 Hz, 1H), 7.44-7.50 (m, 4H), 7.92 (s, 1H), 8.18 (d, J= 8.0 Hz, 1H), 8.58 (m, 1H), 8.97 (s, 1H) and 10.74 (br s, 1H). MS: 405.27 (M+H*). Example 88 A 1-[7-(6-Chloro- 1H NMR (DMSO-d 6 , 400 pyridin-2-yl)-5- MHz): 8 1.11 (t, J= 6.80 Hz, pyridin-3-yl- 3H), 3.21 (m, 2H), 7.0 (br s, benzothiazol-2-yl]-3- 1H), 7.54-7.58 (m, 2H), 8.04 ethyl-urea 8.08 (m, 2H), 8.30-8.33 (m, 2H), 8.54 (d, J= 7.60 Hz, 1H), 8.62 (s, 1H), 9.13-9.15 (m, 1H) and 10.74 (br s, 1H). MS: 410.18 (M+H). Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 262 nm): 82.94% (Rt = 14.84 min). M.P. 249.90*C. Example 89 C 1-Ethyl-3-[5-pyridin- 'H NMR (DMSO-d 6 , 400 3-yl-7-(6- MHz): 5 1.12 (t, J= 6.40 Hz, trifluoromethyl- 3H), 3.21 (m, 2H), 6.82 (br s, pyridin-2-yl)- 1H), 7.55 (s, 1H), 7.95 (m, benzothiazol-2-yl]- 1H), 8.12 (s, 1H), 8.27-8.34 urea (m, 2H), 8.43 (s, 1H), 8.63 (s, 42 1H), 8.85 (d, J= 8.0 Hz, 1H), 9.15 (s, 1H) and 10.67 (br s, 1H). MS: 444.21 (M+H*). Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 263 nm): 96.86% (Rt = 15.07 min). M.P. 256.70*C. Example 90 F 1-Ethyl-3-[5-pyridin- 1H NMR (DMSO-d 6 , 400 3-yl-7-(1H-pyrrol-2- MHz): 5 1.10 (t, J= 7.20 Hz, yl)-benzothiazol-2- 3H), 3.18-3.23 (m, 2H), 6.28 yl]-urea (br s, 1H), 6.63 (s, 1H), 7.02 (m, 2H), 7.51-7.55 (m, 1H), 7.82 (s, 1H), 7.88 (s, 1H), 8.23 (d, J= 8.0 Hz, 1H), 8.35 (br s, 1H), 8.59 (m, 1H), 9.07 (s, 1H) and 11.64 (br s, 1H). MS: 364.18 (M+H)*. Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 278 nm): 98.28% (Rt = 13.94 min). M.P. 220.0"C.
43 Scheme 3B N N NN . N I NHCONHEt Step 1 -NHCONHEt S -S Br BsO Step 2 N N NHCONHEt F Step 1. 1-[7-(5,5-Dimethyl-[1,3,2]dioxaborinan-2-yl)-5-pyridin-3-yl-benzothiazol 2-yl]-3-ethyl-urea 5 A mixture of1-(7-bromo-5-(pyridine-3-yl)benzo[d]thiazol-2-yl)-3-ethylurea (41mg, 0.11mmol), bis(neopentyl)glycolato diboron (50mg, 0.22mmol) and potassium acetate (74mg, 0.33mmol) in dimethyl sulfoxide (2mL) was purged with nitrogen for 5 minutes. Bis(diphenylphosphino)ferrocene palladium(II)chloride complex (10mg, 0.011 mmol) was added and the reaction mixture was sealed and heated at 80*C for 10 16h. Step 2. 1-Ethyl-3-[7-(3-fluoro-pyridin-2-yI)-5-pyridin-3-yI-benzothiazol-2-yl]-urea. [Example 91] The reaction mixture from step 1 was cooled to ambient temperature and treated with 15 2-chloro-3-fluoro-pyridine (15mg, 0.11mmol) and cesium carbonate (53mg, 0.165mmol). The reaction mixture was purged with nitrogen for 5 minutes, treated with tetrakis triphenylphosphine palladium (0) (13mg, 0.011mmol), sealed and heated at 80"C for 8h. The reaction mixture was cooled to ambient temperature, diluted with dichloromethane (50ml), washed with water (3X1OmL) followed by brine (25 ml) and 20 dried (MgSO 4 ). The solvent was removed in vacuo and the residue purified by flash silica chromatography eluting with 5% methanol in ethyl acetate to give the 1-Ethyl-3 [7-(3-fluoro-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl]-urea as a white solid (7.5mg, 17%).
44 'H NMR (400MHz,6,DeDMSO): 1.15 (3H,t), 3.26(2H,m), 6.85(1H,br t), 7.58(1H,m), 7.65(1 H,m), 8.02(1 H,m), 8.12(1 H,s), 8.23(2Hm), 8.66(1 H,m), 8.75(1 H,d), 9.05(1 H,s), 10.74(1 H,br s). LC-MS m/z 394[M+H]* Rt=2.47min. 5 The following were prepared similarly: ID NAME LC-MS DATA Example 92 1-Ethyl-3-(5-pyridin-3-yl-7- m/z 382[M+H]* thiazol-2-yl-benzothiazol-2- Rt=2.49min. yl)-urea Example 93 1-Ethyl-3-(5-pyridin-3-yl-7- m/z 377[M+H]* pyrimidin-2-yl- Rt=2.29min. benzothiazol-2-yl)-urea Example 94 1-[7-(3-Amino-pyridin-2-yl)- m/z 391 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=2.63min. 2-yl]-3-ethyl-urea Example 95 1-[7-(3-Cyano-pyridin-2-yl)- m/z 401 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=2.42min. 2-yl]-3-ethyl-urea Example 96 1-Ethyl-3-[7-(5- m/z 406[M+H]* hydroxymethyl-pyridin-2- Rt=2.69min. yl)-5-pyridin-3-yl benzothiazol-2-yl]-urea Example 97 1-[7-(5-Aminomethyl- m/z 405[M+H]* pyridin-2-yl)-5-pyridin-3-yl- Rt=1.77min. benzothiazol-2-yl]-3-ethyl urea Example 98 6-[2-(3-Ethyl-ureido)-5- m/z 419[M+H]* pyridin-3-yl-benzothiazol-7- Rt=2.06min. yl]-nicotinamide Example 99 1-[7-(5-Amino-pyridin-2-yl)- m/z 391[M+H]* 5-pyridin-3-yl-benzothiazol- Rt=2.09min. 2-yl]-3-ethyl-urea Example 100 1-[7-(4-Amino-pyridin-2-yl)- m/z 391 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=1.74min. 2-yl]-3-ethyl-urea 45 Example 101 1-Ethyl-3-(7-pyrazin-2-yl-5- m/z 377[M+H]* pyridin-3-yl-benzothiazol-2- Rt=2.24min. yl)-urea Example 102 1-[7-(2,4-Dimethyl-thiazol- m/z 41 0[M+H]* 5-yl)-5-pyridin-3-yl- Rt=2.37min. benzothiazol-2-yl]-3-ethyl urea Example 103 1-[7-(3-Cyano-6-methyl- m/z 415[M+H]* pyridin-2-yl)-5-pyridin-3-yl- Rt=3. 1 0min. benzothiazol-2-yl]-3-ethyl urea Example 104 1-Ethyl-3-[7-(6- m/z 406[M+H]* hydroxymethyl-pyridin-2- Rt=2.19min. yl)-5-pyridin-3-yl benzothiazol-2-yl]-urea Example 105 1-Ethyl-3-[7-(6-methoxy- m/z 406[M+H]* pyridazin-3-yl)-5-pyridin-3- Rt=2.19min. yl-benzothiazol-2-yl]-urea Example 106 1-Ethyl-3-[7-(4- m/z 412[M+H]* hydroxymethyl-thiazol-2- Rt=2.23min. yl)-5-pyridin-3-yl benzothiazol-2-yl]-urea Example 107 1-[7-(5-Cyano-pyrdin-2-yl)- m/z 401 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=3.13min. 2-yl]-3-ethyl-urea Example 108 2-[2-(3-Ethyl-ureido)-5- m/z 419[M+H]* pyridin-3-yi-benzothiazol-7- Rt=2.60min. yl]-isonicotinamide Example 109 1-Ethyl-3-[7-(3- m/z 406[M+H]* hydroxymethyl-pyridin-2- Rt=2.00min. yl)-5-pyridin-3-yl benzothiazol-2-yl]-urea Example 110 1-[7-(4-Amino-pyrimidin-2- m/z 392[M+H]* yl)-5-pyridin-3-yl- Rt=1.90min. benzothiazol-2-yl]-3-ethyl urea 46 Example 111 1 -Ethyl-3-[5-pyridin-3-yl-7- m/z 415 [M+H]* (1 H-pyrrolo[2,3-b]pyridin-6- Rt=2.62min. yl)-benzothiazol-2-yl]-urea Example 112 1-Ethyl-3-[7-(4-methoxy- m/z 406 [M+H]* pyridin-2-yl)-5-pyridin-3-yl- Rt=2.41 min. benzothiazol-2-yl]-urea Example 113 1-[7-(6-Cyano-pyridin-2-yl)- m/z 401 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=3.22min. 2-yl]-3-ethyl-urea Example 114 1-[7-(2-Amino-pyrimidin-4- m/z 392 [M+H]* yl)-5-pyridin-3-yl- Rt=1.96min. benzothiazol-2-yl]-3-ethyl urea Example 115 1-Ethyl-3-[5-pyridin-3-yl-7- m/z 415 [M+H]* (1 H-pyrrolo[2,3-c]pyridin-7- Rt=1.79min. yl)-benzothiazol-2-yl]-urea Example 116 1-Ethyl-3-[5-pyridin-3-yl-7- m/z 416 [M+H]* (7H-pyrrolo[2,3- Rt=2.22min. d]pyrimidin-4-yl) benzothiazol-2-yl]-urea Example 117 1 -Ethyl-3-(5'-pyridin-3-yl- m/z 432 [M+H]* [2,7']bibenzothiazolyl-2'-yl)- Rt=3.21 min. urea Example 118 1-Ethyl-3-[7-(3-methoxy- m/z 406 [M+H]* pyridin-2-yl)-5-pyridin-3-yl- Rt=2.35min. benzothiazol-2-yl]-urea Example 119 1-[7-(4-Cyano-pyridin-2-yl)- m/z 401 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=3.15min. 2-yl]-3-ethyl-urea Example 120 1-Ethyl-3-[7-(5-morpholin- m/z 475 [M+H]* 4-ylmethyl-pyridin-2-yl)-5- Rt=2.75min. pyridin-3-yl-benzothiazol-2 yl]-urea Example 121 1-Ethyl-3-[7-(4- m/z 406 [M+H]* hydroxymethyl-pyridin-2- Rt=2.17min. yl)-5-pyridin-3-yl- 47 benzothiazol-2-yl]-urea Example 122 1-Ethyl-3-[7-(6-methoxy- m/z 407 [M+H]* pyrimidin-4-yl)-5-pyridin-3- Rt=2.55min. yl-benzothiazol-2-yl]-urea Example 123 1-[7-(6-Amino-pyrazin-2- m/z 392 [M+H]* yl)-5-pyridin-3-yl- Rt=2.13min. benzothiazol-2-yl]-3-ethyl urea Example 124 1 -Ethyl-3-[7-(4-methoxy- m/z 407 [M+H]* pyrimidin-2-yl)-5-pyridin-3- Rt=2.53min. yl-benzothiazol-2-yl]-urea Example 125 1-[7-(6-Amino-pyridin-2-yl)- m/z 391 [M+H]* 5-pyrdin-3-yl-benzothiazol- Rt=2.09min. 2-yl]-3-ethyl-urea Example 126 1-[7-(3-Chloro-pyrdin-2-yl)- m/z 410 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=2.53min. 2-yl]-3-ethyl-urea Example 127 1-[7-(4-Chloro-pyridin-2-yl)- m/z 410 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=2.87min. 2-yl]-3-ethyl-urea Example 128 1-Ethyl-3-[5-pyridin-3-y-7- m/z 444 [M+H]* (3-trifluoromethyl-pyridin-2- Rt=2.58min. yl)-benzothiazol-2-yl]-urea Example 129 1-Ethyl-3-[5-pyridin-3-yl-7- m/z 444 [M+H]* (5-trifluoromethyl-pyridin-2- Rt=3.04min. yl)-benzothiazol-2-yl]-urea Example 130 1-[7-(5-Chloro-pyridin-2-yl)- m/z 410 [M+H]* 5-pyridin-3-yl-benzothiazol- Rt=2.87min. 2-yl]-3-ethyl-urea Example 131 1-[7-(5-Amino-pyrazin-2- m/z 392 [M+H]* yl)-5-pyridin-3-yl- Rt=2.1 0min. benzothiazol-2-yl]-3-ethyl urea Example 132 1-[7-(5- m/z 433 [M+H]* Dimethylaminomethyl- Rt=1.87min. pyridin-2-yl)-5-pyrdin-3-yl- 48 benzothiazol-2-yl]-3-ethyl urea The following were prepared similarly using N-{5-[7-Bromo-2-(3-ethyl-ureido) benzothiazol-5-y]-pyridin-2-yl)-acetamide (Scheme 1A): Example 133 N-{5-[2-(3-Ethyl-ureido)-7- m/z 433 [M+H]* pyridin-2-yl-benzothiazol- Rt=3.00min. 5-yl]-pyridin-2-yl} acetamide Example 134 N-{5-[2-(3-Ethyl-ureido)-7- m/z 434 [M+H]* pyrazin-2-yl-benzothiazol- Rt=2.74min. 5-yl]-pyridin-2-yl} acetamide Example 135 N-{5-[7-(5-Amino-pyridin- m/z 448 [M+H]* 2-yl)-2-(3-ethyl-ureido)- Rt=2.48min. benzothiazol-5-yl]-pyridin 2-yl}-acetamide Example 136 N-{5-[7-(5-Cyano-pyridin- m/z 458 [M+H]* 2-yl)-2-(3-ethyl-ureido)- Rt=3.09min. benzothiazol-5-yl]-pyridin 2-yl}-acetamide Example 137 N-{5-[2-(3-Ethyl-ureido)-7- m/z 472 [M+H]* (1 H-pyrrolo[2,3-c]pyridin-7- Rt=2.08min. yl)-benzothiazol-5-yl] pyridin-2-yl}-acetamide 5 The following were prepared similarly using 1-[5-(6-Amino-pyridin-3-yl)-7-bromo benzothiazol-2-yl]-3-ethyl-urea (Scheme 1A): Example 138 1-[5-(6-Amino-pyridin-3- m/z 391 [M+H]* yl)-7-pyridin-2-yl- Rt=2.25min. benzothiazol-2-yl]-3-ethyl urea The following were prepared similarly using 1-[5-(2-Amino-pyrimidin-5-yl)-7-bromo benzothiazol-2-yl]-3-ethyl-urea (Scheme 1): Example 139 1-[5-(2-Amino-pyrimidin-5- m/z 393 [M+H]* 49 yl)-7-pyrazin-2-yl- Rt=2.53min. benzothiazol-2-yl]-3-ethyl urea Scheme 3C N N N N NHCONHEt Step 1 I -NHCONHEt Br 0B.O Step 2 N ". N I -NHCONHEt -S N N) Step 1. 1-[7-(5,5-Dimethyl-[1,3,2]dioxaborinan-2-yl)-5-pyridin-3-yl-benzothiazol 5 2-yi]-3-ethyl-urea. A stirred mixture of 1-(7-bromo-5-(pyridine-3-yl)benzo[d]thiazol-2-yl)-3-ethylurea (100 mg, 0.2652mmol), bis(neopentyl)glycolato diboron (120 mg, 0.5303 mmol) and potassium acetate (78 mg, 0.7957 mmol) in dimethyl sulfoxide (4 ml) was purged with nitrogen for 5 min, treated with 1,1'bis(diphenylphosphiono)ferrocene 10 palladium(II)chlorde complex (22 mg, 0.02653 mmol) and heated at 80C for 16 h. After cooling to ambient temperature, the mixture was diluted with dichloromethane (50mL), washed with water (3X1OmL), dried over MgSO 4 and the solvent removed in vacuo to give the crude 1-[7-(5,5-Dimethyl-[1,3,2]dioxaborinan-2-yl)-5-pyridin-3-yl benzothiazol-2-yl]-3-ethyl-urea which was used in the next step without further 15 purification. Step 2. 1-Ethyl-3-(7-pyrazol-1-yl-5-pyridin-3-yl-benzothiazol-2-yl)-urea. [Example 140] A mixture of the crude 1-[7-(5,5-Dimethyl-[1,3,2]dioxaborinan-2-yl)-5-pyridin-3-yl 20 benzothiazol-2-yl]-3-ethyl-urea (116 mg, 0.339 mmol), pyrazole (25 mg, 0.373 mmol), 50 copper(ll)acetate (71 mg, 0.39 mmol), anhydrous triethylamine (188 mg, 1.865 mmol) and powdered 4A molecular sieves (8 pellets) in anhydrous dichloromethane was stirred in an open vessel at ambient temperature for 2 days. The resultant mixture was filtered and the solvent removed in vacuo to give the crude 1 -Ethyl-3-(7-pyrazol 5 1-yl-5-pyridin-3-yl-benzothiazol-2-yl)-urea which was purified by preparative HPLC. The product was obtained as an off-white solid (8 mg). 1 H NMR (400MHz,6,D 6 DMSO): 1.13(3H,t), 3.23(2H,m), 6.71(1H,s), 7.06(1H,br s), 7.58(1H,br t), 7.93(1H,s), 7.96(1H,s), 8.08(1H,s), 8.33(1H,d), 8.66(1H,br s), 8.98(1H,s), 9.15(1 H,br s), 10.80(1H,br s). 10 LC-MS m/z 365[M+H]* Rt=2.41min. Scheme 3D Br N B N r N j NHCONHEt Step 1 O N> NHCONHEt S S N Step 2 O N I NHCONHEt -S N Step 1. 1-[5-(5,5-Dimethyl-[1,3,2]dioxaborinan-2-y)-7-pyridin-3-yl-benzothiazol 15 2-yl]-3-ethyl-urea A stirred mixture of 1-(5-bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (100 mg, 0.2652mmol), bis(neopentyl)glycolato diboron (120 mg, 0.5303 mmol) and potassium acetate (78 mg, 0.7957 mmol) in dimethyl sulfoxide (4 ml) was purged with nitrogen for 5 min, treated with 1,1'bis(diphenylphosphiono)ferrocene 20 palladium(II)chloride complex (22 mg, 0.02653 mmol) and heated at 80C for 16 h. After cooling to ambient temperature, the mixture was diluted with dichloromethane (50mL), washed with water (3X1OmL), dried over MgSO 4 and the solvent removed in vacuo to give the crude 1-[5-(5,5-dimethyl-[1,3,2]dioxaborinan-2-yl)-7-pyridin-3-yl- 51 benzothiazol-2-yl]-3-ethyl-urea which was used in the next step without further purification. Step 2. 1-Ethyl-3-[5-(2-oxo-2H-pyridin-1-yl)-7-pyridin-3-yl-benzothiazol-2-yl] 5 urea. [Example 141] A mixture of the crude 1-[5-(5,5-dimethyl-[1,3,2]dioxaborinan-2-yl)-7-pyridin-3-yl benzothiazol-2-yl]-3-ethyl-urea, 2-hydroxypyridine (88 mg, 0.292 mmol), copper(II)acetate (56 mg, 0.305 mmol), anhydrous triethylamine (147 mg, 1.458 mmol) and powdered 4A molecular sieves (6 pellets) in anhydrous dichloromethane 10 (21 ml) was stirred in an open vessel at ambient temperature for 5 days. The resultant mixture was filtered and the solvent removed in vacuo to give the crude 1-ethyl-3-[5 (2-oxo-2H-pyridin-1-yl)-7-pyridin-3-yl-benzothiazol-2-yl]-urea which was purified by preparative HPLC. The product was obtained as a brown solid (17mg). LC-MS m/z 392[M+H]* Rt=2.39min. 15 The following were prepared similarly using 1-(5-Bromo-7-pyridin-2-yl-benzothiazol 2-yl)-3-ethyl-urea (Scheme 10): ID NAME LC-MS DATA Example 142 1 -Ethyl-3-(5-imidazol-1 -yl-7- m/z 365[M+H]* Rt=2.21 min. pyridin-2-yl-benzothiazol-2 yl)-urea Scheme 4 Br N Step 1 N r-NHCONHEt I >NHCONHEt NOH S Br 20 0 N Step 1. 1-[5,7-Bis-(5-methoxy-pyridin-3-yI)-benzothiazol-2-yl]-3-ethyl-urea. [Example 143] A stirred mixture of 1-(5,7-dibromo-benzothiazol-2-yl-3-ethyl urea (100 mg, 0.264 mmol), powdered potassium phosphate tribasic (67 mg, 0.317 mmol), (1,1' 25 bis(diphenylphosphino)ferrocene)dichloro-palladium(II) chloride (32 mg, 0.0386 mmol), 3-methoxy-5-pyridineboronic acid pinacol ester (248 mg, 1.056 mmol) in anhydrous 1,4-dioxane (1.8 ml) and anhydrous methanol (3.6 ml) was purged with nitrogen for 5 min and heated at 80 *C for 16 h. The reaction mixture was filtered 52 through celite and washed through with ethyl acetate. The filtrate was evaporated in vacuo to afford the crude 1-[5,7-Bis-(5-methoxy-pyrdin-3-yl)-benzothiazol-2-yl]-3 ethyl-urea which was purified by preparative HPLC to give a dark brown solid (20 mg, 17%). 5 'HNMR(400MHz,6,D 6 DMSO) 1.12(3H,t), 2.58(6H,s), 3.22(2H,m) 7.03(1H,m), 7.77(1H,s), 7.80(1H, s), 7.84(1H, s), 8.08(1H,s), 8.25(1H,s) 8.46(1H d), 8.46(1H,d), 8.65(1H, s), 8.69(1H,s). LC-MS m/z 436[M+H]* Rt=2.52 min. 10 The following were prepared similarly: ID NAME LC-MS DATA Example 144 1-[5,7-Bis-(4- m/z 434[M+H]* Rt=2.90 min hydroxymethyl-phenyl) benzothiazol-2-yl]-3-ethyl urea Example 145 1-[5,7-Bis-(2-amino- m/z 408[M+H]* Rt=2.18 min pyrimidin-5-yl) benzothiazol-2-yl]-3-ethyl urea Example 146 1-[5,7-Bis-(4-morpholin-4- m/z 572[M+H]* Rt=1.90 min ylmethyl-phenyl) benzothiazol-2-yl]-3-ethyl urea Example 147 1-(5,7-Di-pyrimidin-5-yl- m/z 378[M+H]* Rt=2.47 min benzothiazol-2-yl)-3-ethyl urea Example 148 N-{5-[7-(6-Acetylamino- m/z 490[M+H]* Rt=2.58 min pyridin-3-yl)-2-(3-ethyl ureido)-benzothiazol-5-yl] pyridin-2-yl)-acetamide 53 Scheme 5 N 0 2 N NO 2 step 1 0 2 N N NO 2 step 2 NO 2
NH
2 Br
NO
2 I step 3 N N N 0N N NNNN N NO 2 I NHCONHEt \ NH 2 S - S step 4 SCN
NO
2 step 5 NO 2
NO
2 I step 6 N -NHCNH >-NHCONHEt NHCONHEt SS
NH
2 NHCONHEt Step 1. 4-Bromo-2,6-dinitroaniline. A stirred suspension of 2,6-dinitroaniline (5 g, 27.3 mmol) in glacial acetic acid (50 5 ml) was treated, dropwise, with bromine (1.5 ml, 30 mmol) and heated at 120 0 C for 2 h. After cooling to ambient temperature, the resultant mixture was poured into water (500 ml). The precipitated solid was collected by filtration, washed with water and dried in vacuo to give 4-Bromo-2,6-dinitroaniline as a yellow solid (6.5 g, 91%). 1 H NMR (400MHz,6,CDCl 3 ): 8.45(2H,br s), 8.65(2H,s). 10 Step 2. 2,6-Dinitro-4-pyridin-3-yI-aniline. A stirred solution of 4-Bromo-2,6-dinitroaniline (3 g, 11.45 mmol) in 1,2 dimethoxyethane (83 ml) was purged with nitrogen for 15 min and treated with aqueous sodium hydrogen carbonate solution (1M, 22.8 ml) followed by pyridine 3 15 boronic acid (2.1 g, 17.17 mmol) and 1,1-bis-(diphenylphosphino)ferrocene palladium (II) chloride complex (0.94 g, 1.15 mmol). The resultant mixture was boiled under reflux in a nitrogen atmosphere for 18 h. After cooling to ambient temperature, the dark mixture was diluted with saturated aqueous sodium hydrogen carbonate solution (300 ml) and extracted with ethyl acetate (3x250 ml). This was dried 54 (MgSO 4 ) and the solvent removed in vacuo to give a residue which was purified by flash chromatography (silica) eluting with 30% to 100% ethyl acetate in 40-60 petroleum ether. The 2,6-Dinitro-4-pyridin-3-yl-aniline was obtained as a yellow solid (1.46 g, 49%). 5 1 H NMR (400MHz,6,CDCl 3 ): 7.44(1H,m), 7.90(1H,m), 8.56(2H,br s), 8.68(1H,m), 8.80(2H,s), 8.87(1H,d). Step 3. 3-(3,5-Dinitro-4-thiocyanato-phenyl)-pyridine. A suspension of 2,6-Dinitro-4-pyridin-3-yl-aniline (1.24 g, 4.76 mmol) in aqueous 10 sulfuric acid (50% v/v, 12 ml) was stirred at ambient temperature for 1 h before being cooled in an ice bath and treated over 5 min with an aqueous sodium nitrite solution (20% w/v, 2.0 ml). The mixture was stirred in the cold for 1.5 h before being treated with a solution of potassium thiocyanate (0.6 g) in water (1.4 ml) in one portion. The resultant mixture was stirred in the cold for 15 min and then added to a suspension of 15 copper (1) thiocyanate (1.0 g) in water (4 ml) whilst cooling in an ice-bath. The mixture was stirred in the cold for 2 h and then heated to 70*C for 20 min. After cooling to ambient temperature, the mixture was poured into a saturated aqueous solution of sodium hydrogen carbonate (200 ml) and extracted with ethyl acetate (3x 100 ml) which was washed with brine (200 ml) and dried (MgSO 4 ). The solvent was 20 removed in vacuo to give a residue which was purified by flash chromatography (silica) eluting with 80% to 100% ethyl acetate in 40-60 petroleum ether. The 3-(3,5 Dinitro-4-thiocyanato-phenyl)-pyridine was obtained as a yellow solid (1.07 g, 74%). 1 H NMR (400MHz,6,CDCl 3 ): 7.54(1H,m), 7.99(1H,m), 8.49(2H,s), 8.82(1H,m), 8.95(1 H,d). 25 Step 4. 7-Nitro-5-pyridin-3-yl-benzothiazol-2-ylamine. A solution of 3-(3,5-Dinitro-4-thiocyanato-phenyl)-pyrdine (0.66 g, 2.19 mmol) in glacial acetic acid (15 ml) was treated with iron powder (0.61 g, 11.0 mmol) and stirred at ambient temperature for 16 h. The resultant mixture was diluted with water 30 (200 ml) and made alkaline by the addition of concentrated ammonia solution. The solid material was collected by filtration and washed with water followed by ethyl acetate. The filtered solid was then extracted with boiling ethanol (3x200 ml) which was removed in vacuo to give 7-Nitro-5-pyridin-3-yl-benzothiazol-2-ylamine as a pale yellow solid (0.57 g, 95%). 35 LC-MS m/z 273[M+H]* Rt=2.24min. Step 5. 1-Ethyl-3-(7-nitro-5-pyridin-3-yl-benzothiazol-2-y)-urea.
55 A stirred mixture of 7-Nitro-5-pyridin-3-yl-benzothiazol-2-ylamine (100 mg, 0.3676 mmol), ethyl isocyanate (0.18 ml, 1.831 mmol) and dibutyltindiacetate (10 drops) in anhydrous 1,4-dioxane (10 ml) was heated in a sealed vessel at 100*C for 16 h. After cooling to ambient temperature, the precipitated solid was collected by filtration, 5 washed with 1,4-doxane and dried in vacuo to give 1-Ethyl-3-(7-nitro-5-pyridin-3-yl benzothiazol-2-yl)-urea as a yellow solid (30 mg, 24%). LC-MS m/z 344[M+H]* Rt=2.59min. Step 6. 1-(7-Amino-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea. [Example 149] 10 A stirred suspension of 1-Ethyl-3-(7-nitro-5-pyrdin-3-yl-benzothiazol-2-yl)-urea (25 mg, 0.0728 mmol) in ethanol (0.5 ml) and concentrated hydrochloric acid (0.5 ml) was treated with tin (II) chloride (69 mg, 0.364 mmol) and heated at 800C for 5 h. After cooling to ambient temperature, the mixture was diluted with water ( 50 ml) and made alkaline (pH 11) by the addition of concentrated ammonia. The 1-(7-Amino-5 15 pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea was extracted with ethyl acetate (3x 50 ml) which was dried (MgSO4) and the solvent removed in vacuo to give an off-white solid (37 mg) which was used without further purification. 1 H NMR (400MHz,6,DrDMSO): 1.14(3H,t), 3.24(2H,m), 5.63(2H,br s), 6.79(1H,br t), 6.80(1H,s), 7.22(1H, br s), 7.50(1H,m), 8.03(1H,d), 8.58(1H,d), 8.86(1H,s), 20 10.62(1H,br s). Step 7.1 -Ethyl-3-[2-(3-ethyl-ureido)-5-pyridin-3-yl-benzothiazol-7-yl]-urea. [Example 150] A stirred mixture of 1-(7-Amino-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (15 mg, 25 0.048 mmol), ethyl isocyanate (0.03 ml) and dibutyltindiacetate (2 drops) in anhydrous 1,4-dioxane (2 ml) was heated in a sealed vessel at 100*C for 16 h. After cooling to ambient temperature, the 1-Ethyl-3-[2-(3-ethyl-ureido)-5-pyridin-3-yl benzothiazol-7-yl]-urea was isolated by Preparative HPLC as a white solid (5.4 mg, 29%). 30 1 H NMR (400MHz,6,CD 3 0D): 1.23(6H,m), 3.29(4H,m), 7.56(1H,m), 7.66(1H,s), 7.79(1 H,s), 8.16(1 H,d), 8.43(1 H,br s), 8.55(1 H,br s), 8.87(1 H,br s). LC-MS m/z 385[M+H]* Rt=2.00min.
56 Scheme 6
NH
2
NHCOCF
3
NH
2
NH
2 Co2Me 0 2 N [ CO 2 Me Step 2 0 2 N CO 2 Me 0 2 N CO 2 Me Step 3 Step 1 Br Br Br N Step 4 N N. N M NHCONHEt Step 6 -NH 2 Step 5 NO 2 - S
CO
2 Me CO 2 Me SCN
CO
2 Me Step 7 N ~ N I _NHCONHEt I NHCONHEt . S S CONHEt
CO
2 H Step 1. 5-Bromo-3-nitro-2-(2,2,2-trifluoro-acetylamino)-benzoic acid methyl ester. 5 Stirred trifluoroacetic anhydride (120 ml) was cooled in an ice-salt bath and treated, over 5 min, with methyl-2-amino-5-bromobenzoate (10 g, 43.5 mmol), keeping the temperature below 6 0 C. When the addition was complete, the resultant suspension was stirred in the cold for a further 15 min when potassium nitrate (5.27 g, 52.2 mmol) was added in one portion. The reaction mixture was allowed to come to 10 ambient temperature and stirred for 16 h. The resultant mixture was concentrated by evaporation, the residue diluted with saturated aqueous sodium hydrogen carbonate solution (300 ml) and extracted with ethyl acetate (3x250 ml) which was washed with brine (300 ml) and dried (MgSO 4 ). The solvent was removed in vacuo to give the crude product which was purified by flash chromatography (silica) eluting with 10% to 15 90% ethyl acetate in 40-60 petroleum ether. A byproduct (5-Bromo-2-(2,2,2-trifluoro acetylamino)-benzoic acid methyl ester) was eluted before the 5-Bromo-3-nitro-2 (2,2,2-trifluoro-acetylamino)-benzoic acid methyl ester which was obtained as a yellow solid (11.1 g, 69%). 'H NMR (400MHz,6,CDCl 3 ): 4.03(3H,s), 7.26(1H,s), 8.33(1H,d), 8.44(1H,d), 20 11.23(1 H,br s).
57 Step 2. 2-Amino-5-bromo-3-nitro-benzoic acid methyl ester. A stirred suspension of 5-Bromo-3-nitro-2-(2,2,2-trifluoro-acetylamino)-benzoic acid methyl ester (8 g, 21.56 mmol) in methanol (150 ml) was treated with hydrochloric acid (6M, 75 ml) and heated at 80 0 C for 16 h. After cooling to ambient temperature, 5 the yellow solid was collected by filtration and washed with cold water and dried in vacuo to give 2-Amino-5-bromo-3-nitro-benzoic acid methyl ester (5.0 g, 84%). 1 H NMR (400MHz,6,CDCl 3 ): 3.99(3H,s), 8.33(1H,d), 8.40(2H,br s), 8.51(1H,d). Step 3. 2-Amino-3-nitro-5-pyridin-3-yl-benzoic acid methyl ester. 10 A stirred solution of 2-Amino-5-bromo-3-nitro-benzoic acid methyl ester (2 g, 7.27 mmol) in 1,2 -dimethoxyethane (53 ml) was purged with nitrogen for 15 min and treated with aqueous sodium hydrogen carbonate solution (1M, 14.5 ml) followed by pyridine 3-boronic acid (1.33 g, 10.9 mmol) and 1,1-bis (diphenylphosphino)ferrocene palladium (11) chloride complex (0.6 g, 0.733 mmol). 15 The resultant mixture was boiled under reflux in a nitrogen atmosphere for 18 h. After cooling to ambient temperature, the dark mixture was diluted with saturated aqueous sodium hydrogen carbonate solution (300 ml) and extracted with ethyl acetate (3x250 ml). This was washed with brine (200ml), dried (MgSO 4 ) and the solvent removed in vacuo to give a residue which was purified by flash chromatography (silica) eluting 20 with 30% to 100% ethyl acetate in 40-60 petroleum ether. The 2-Amino-3-nitro-5 pyridin-3-yl-benzoic acid methyl ester was obtained as a yellow solid (1.1 g, 56%). 1 H NMR (400MHz,J,CDCl 3 ): 3.97(3H,s), 7.39(1H,m), 7.87(1H,m), 8.52(1H,d), 8.55(2H,br s), 8.62(1 H,m), 8.65(1 H,d), 8.84(1 H,m). 25 Step 4. 3-Nitro-5-pyridin-3-yl-2-thiocyanato-benzoic acid methyl ester. A suspension of 2-Amino-3-nitro-5-pyridin-3-yl-benzoic acid methyl ester (0.92 g, 3.37 mmol) in aqueous sulfuric acid (50% v/v, 9 ml) was stirred at ambient temperature for 1 h before being cooled in an ice bath and treated over 5 min with an aqueous sodium nitrite solution (20% w/v, 1.4 ml). The mixture was stirred in the cold 30 for 1.5 h before being treated with a solution of potassium thiocyanate (0.42 g) in water (1.0 ml) in one portion. The resultant mixture was stirred in the cold for 15 min and then added to a suspension of copper (1) thiocyanate (0.71 g) in water (2.8 ml) whilst cooling in an ice-bath. The mixture was stirred in the cold for 2 h and then heated to 700C for 20 min. After cooling to ambient temperature, the mixture was 35 poured into a saturated aqueous solution of sodium hydrogen carbonate (200 ml) and extracted with ethyl acetate (3x 100 ml) which was washed with brine (200 ml) and dried (MgSO4). The solvent was removed in vacuo to give a residue which was 58 purified by flash chromatography (silica) eluting with 80% to 100% ethyl acetate in 40-60 petroleum ether. The 3-Nitro-5-pyridin-3-yl-2-thiocyanato-benzoic acid methyl ester was obtained as a pale yellow solid (0.78 g, 74%). 'H NMR (400MHz,6,CDCl 3 ): 4.12(3H,s), 7.49(1H,m), 7.96(1H,m), 8.34(1H,d), 5 8.40(1H,d), 8.76(1H,m), 8.92(1H,d). Step 5. 2-Amino-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl ester. A solution of 3-Nitro-5-pyridin-3-yl-2-thiocyanato-benzoic acid methyl ester (1.1 g, 3.49 mmol) in glacial acetic acid (23 ml) was treated with iron powder (0.97 g, 17.5 10 mmol) and stirred at ambient temperature for 16 h. The resultant mixture was diluted with water (200 ml) and made alkaline by the addition of concentrated ammonia solution. The mixture was filtered and the filtrate extracted with ethyl acetate (3x200 ml). The filtered solid was extracted with boiling ethanol (3x250 ml) and the combined organic fractions evaporated to dryness to give 2-Amino-5-pyridin-3-yl-benzothiazole 15 7-carboxylic acid methyl ester as an off-white solid (0.46 g, 46%). 1 H NMR (400MHz,6,D 6 DMSO): 3.98(3H,s), 7.55(1H,m), 7.81(2H,br s), 7.95(2H,s), 8.18(1H,m), 8.64(1H,m), 8.98(1H,s). Step 6. 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl 20 ester. [Example 151] A stirred mixture of 2-Amino-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl ester (20 mg, 0.07 mmol), ethyl isocyanate (0.03 ml, 0.35 mmol) and dibutyltindiacetate (2 drops) in anhydrous 1,4-dioxane (1.5 ml) was heated by microwave irradiation in a CEM Discover reactor at 1250C for 1 h. After cooling to 25 ambient temperature, the 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl ester was isolated by Preparative HPLC as a white solid (7.4 mg, 30%). 1 H NMR (400MHz,6,CDCl 3
+CD
3 0D): 1.26(3H,t), 3.38(2H,m), 4.06(3H,s), 7.51(1H,m), 8.06(1 H,d), 8.08(1 H,m), 8.19(1 H,d), 8.59(1 H,m), 8.88(1 H,d). LC-MS m/z 357[M+H]* Rt=2.25min 30 Step 7. 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7-carboxylic acid ethylamide [Example 152] and 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7 carboxylic acid. A stirred mixture of 2-Amino-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl 35 ester (125 mg, 0.439 mmol), ethyl isocyanate (0.21 ml, 2.187 mmol) and dibutyltindiacetate (12 drops) in anhydrous 1,4-dioxane (10 ml) was heated in a sealed vessel at 100*C for 16 h. After cooling to ambient temperature, the solvent 59 was removed in vacuo to give 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7 carboxylic acid methyl ester which was used without further purification. A stirred mixture of 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl ester (78 mg, 0.22 mmol) and aqueous ethylamine solution (70% w/v, 3 ml) was 5 heated by microwave irradiation in a CEM Discover reactor at 100*C for 1 h. The reaction mixture was purified by Preparative HPLC to provide the 2-(3-Ethyl-ureido) 5-pyridin-3-yl-benzothiazole-7-carboxylic acid ethylamide as a white solid (8.7 mg, 5%). 1 H NMR (400MHz,6,CDCl 3
+CD
3 0D): 1.28(6H,m), 3.40(2H,m), 3.53(2H,m), 10 7.51(1 H,m), 7.99(2H,d), 8.12(1 H,d), 8.35(1 H,br d), 8.57(1 H,br s), 8.91(1 H,s). LC-MS m/z 370[M+H]* Rt=2.05min. 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7-carboxylic acid was also isolated as a white solid (2.5 mg, 2%). LC-MS m/z 343[M+H]* Rt=1.91min. 15 Scheme 7 N N NHCONHEt -NHCONHEt s
CO
2 Me
CONHNH
2 I-Ethyl-3-(7-hydrazinocarbonyl-5-pyridin-3-yI-benzothiazol-2-yl)-urea. [Example 20 153] A suspension of 2-(3-Ethyl-ureido)-5-pyridin-3-yl-benzothiazole-7-carboxylic acid methyl ester (319mg, 0.895mmol) in methanol (10 ml) was treated with hydrazine hydrate (2 ml) and stirred at ambient temperature for 16 h. HPLC indicated that the reaction mixture still contained a considerable amount of starter so a further 1ml of 25 hydrazine hydrate was added and the stirring continued for a further 24 h. The resultant mixture was diluted with water (50 ml) and the solid collected by filtration. This was washed with water (25 ml) followed by ethanol (25 ml) and dried in vacuo to give 1-Ethyl-3-(7-hydrazinocarbonyl-5-pyridin-3-yl-benzothiazol-2-yl)-urea as an off-white solid (312mg, 98%). 30 1 H NMR (400MHz,6, D 6 DMSO): 1.15(3H,t), 3.26(2H,m), 4.69(2H,br s), 6.86(1H,br t), 7.57(1H,m), 8.15(1H,s), 8.22(1H,s), 8.29(1H,d), 8.65(1H,d), 9.12(1H,s), 10.24(1H,br s), 10.71(1H,br s).
60 LC-MS m/z 357[M+H]* Rt=2.22min. Scheme 9 N Br HCON Step 1 MeO NHCONHEt I -NHCONHEt - NHO~ Brr Br B Step 2 N I MeO N Ie >NHCONHEt "'S 5 Step 1. 1-[7-Bromo-5-(5-methoxy-pyridin-3-yI)-benzothiazol-2-yI]-3-ethyl-urea A stirred mixture of 1-(5,7-dibromo-benzothiazol-2-yl-3-ethyl urea (300 mg, 0.79 mmol), sodium carbonate (167 mg, 1.58 mmol), (1,1' bis(diphenylphosphino)ferrocene)dichloro-palladium(II) (45 mg, 0.05 mmol), 3 methoxy-5-pyridineboronic acid pinacol ester (186 mg, 0.79 mmol) in dimethyl 10 formamide (8 ml) and water (2 ml), was purged with nitrogen for 5 min and heated at 100 *C for 1 h. The reaction mixture was concentrated in vacuo then partitioned between ethyl acetate and water. The organic phase was dried (MgSO 4 ), filtered and concentrated in vacuo. The crude material was purified by silica gel chromatography eluting with 0 to 5 % methanol in ethyl acetate to give 1-[7-Bromo-5-(5-methoxy 15 pyridin-3-yl)-benzothiazol-2-yl]-3-ethyl-urea 1 as a white solid (49 mg, 15%). 'HNMR(400MHz,6,CDCl 3 ) 1.25(3H,t), 3.39(2H,q), 3.98(3H,s), 7.42(1 H,s), 7.50(1H,m), 7.58(1H, s), 7.67(1H, m), 7.80(1H,s), 8.29(1H,s) 8.42(1H,s). LC-MS m/z 407 and 409[M+H]* (79 Br and 81 Br). Rt = 3.22 min 20 Step 2. 1-Ethyl-3-[5-(5-methoxy-pyridin-3-yl)-7-pyridin-2-yl-benzothiazol-2-yl] urea [Example 179] To a stirred solution of 1-[7-Bromo-5-(5-methoxy-pyridin-3-yl)-benzothiazol-2-yl]-3 ethyl-urea (90 mg, 0.22 mmol), and bis(triphenylphosphine)palladium(II) chloride (10 mg, 0.015 mmol), in tetrahydrofuran (4 ml), was added 2-pyridylzinc bromide (3.1 ml, 25 1.5 mmol, 0.5 M solution in THF). The reaction was purged with nitrogen then 61 heated at 60 0 C for 16 h. The reaction mixture was diluted with ethyl acetate and washed with saturated aqueous ammonium chloride solution followed by brine. The organic phase was dried (MgSO 4 ), filtered and concentrated in vacuo. The crude material was purified by preparative HPLC to give 1-Ethyl-3-[5-(5-methoxy-pyridin-3 5 yl)-7-pyridin-2-yl-benzothiazol-2-yl]-urea as a white solid (25 mg, 27%) 'HNMR(400MHz,6, CDCl 3 ) 1.31(3H,t), 3.48(2H,q), 3.90(3H,s), 7.21(1H,m), 7.50(1H,s), 7.80(1 H, m), 8.32(1H, s), 8.57(1 H, br s), 8.60(1H,s) 10.52(1H,br s). LC-MS m/z 406[M+H]*. Rt = 2.91 min. 10 The following were prepared similarly using 1 -[5-(2-Amino-pyrimidin-5-yl)-7-bromo benzothiazol-2-yl]-3-ethyl-urea (Scheme1): ID NAME LC/MS DATA Example 154 1-[5-(2-Amino-pyrimidin-5- m/z 392[M+H]* yl)-7-pyridin-2-yl- Rt=2.74min. benzothiazol-2-yl]-3-ethyl urea Scheme 9A Br NH N NH NNH NH N. S 15 1 -Ethyl-3-(5-pyridin-2-yl-7-pyridin-3-yl-benzothiazol-2-yl)-urea. [Example 155] To a solution of 1-(5-bromo-7-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.20 g, 0.53 mmol) in DMF (5 mL) was added 2-tributylstannyl pyridine (0.23 g, 0.53 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was then degassed for half an hour followed by the addition of 20 tetrakis(triphenylphosphine)palladium(0) (0.061 g, 0.053 mmol). The reaction mixture was then again degassed and heated at 120*C for 8h under nitrogen atmosphere. After the completion of the reaction (TLC monitoring), DMF was distilled off; water was added to the reaction mixture and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness under 25 reduced pressure. The crude residue was purified over silica gel (230-400 M) using EtOAc-Hexane (80:20) to provide the title compound as off white solid (0.012 g, 6%).
62 'H NMR (DMSO-d 6 , 400 MHz): 5 1.08 (t, J= 7.20 Hz, 3H), 3.10-3.20 (m, 2H), 6.73 (s, 3H), 7.37-7.40 (m, 1H), 7.60-7.63 (m, 1H), 7.87-.7.93 (m, 1H), 8.07 (s, 1H), 8.17-8.21 (m, 1H), 8.38 (s, 1H), 8.69-8.70 (m, 1H), 8.98 (m, 1H), and 10.78 (br s, 1H). MS: 376.09 (M+H*). 5 Scheme 9B N N N4 N -NHCONHEt 1 I -NHCONHEt S S Br 1-(7-Allyl-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea. [Example 156] To a solution of 1-(7-bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.14 g, 10 0.37 mmol) in DMF (2 mL) was added tributylallyltin (0.15 g, 0.45 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was then degassed for half an hour followed by the addition of tetrakis(triphenylphosphine)palladium(0) (0.043 g, 0.0371 mmol). The reaction mixture was then again degassed for half an hour and heated at 120C for 20 h under nitrogen atmosphere. After the completion 15 of the reaction (TLC monitoring), DMF was distilled off; water was added to the reaction mixture and extracted with ethyl acetate (x 3). The combined organic layer was dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified over silica gel (230-400 M) using EtOAc MeOH (95:5) to provide the title compound as off white solid (0.034 g, 27%). 20 1H NMR (DMSO-d6, 400 MHz): 6 1.09 (t, J=7.2 Hz, 3H), 3.12-3.28 (m, 2H), 3.65 (m, 2H), 5.14-5.23 (m, 2H), 5.97-6.07 (m, 1 H), 6.74 (br s, 1 H), 7.43 (s, 1 H), 7.47-7.50 (m, 1H), 7.83 (s, 1H), 8.12 (d, J=7.6 Hz, 1H), 8.56-8.57 (m, 1H), 8.93-8.94 (m, 1H) and 10.77 (br s, 1H). MS: 337.13 (M-H). The following were prepared similarly: ID NAME NMR / LC-MS DATA Example 157 1-Ethyl-3-[7-(2-methoxy- 1 H NMR (DMSO-d 6 , 400 thiazol-4-yl)-5-pyridin-3-yl- MHz): 8 1.10 (t, J=7.2 Hz, benzothiazol-2-yl]-urea 3H), 3.15-3.25 (m, 2H), 4.20 (s, 3H), 6.80 (br s, 1H), 7.51-7.54 (m, 1H), 63 7.91-2 (d, J=5.2 Hz, 1H), 7.94 (s, 1H), 7.99 (d, J=8.4 Hz, 1H), 8.13 (d, J=7.8 Hz, 1H), 8.56-8.57 (m, 1H), 8.94 (s, 1H), 10.79 (br s, 1H). MS: 410.10 (M-H). Example 158 1-Ethyl-3-(5-pyridin-3-yl-7- 1 H NMR (DMSO-d 6 , 400 thiazol-4-yl-benzothiazol- MHz): 6 1.11 (t, J=7.60 Hz, 2-yl)-urea 3H), 3.21 (q, J=7.20 Hz, 2H), 6.81 (br s, 1H), 7.52 7.55 (m, 1H), 7.96 (s, 1H), 8.21 (s, 1H), 8.28 (d, J = 7.60 Hz, 1H), 8.61 (m, 1H), 8.65 (s, 1H), 9.09 (s, 1H), 9.38 (s, 1H) and 10.69 (br s, 1H). MS: 382.25 (M+H)*. Example 159 1-Ethyl-3-(5-pyridin-3-yl-7- 1 H NMR (DMSO-d 6 , 400 pyrimidin-5-yl- MHz): 8 1.08 (t, J=7.2 Hz, benzothiazol-2-yl)-urea 3H), 3.14-3.18 (m, 2H), 6.77 (br s, 1H), 7.52-7.54 (m, 1H), 7.81 (s, 1H), 8.08 (s, 1H), 8.26-8.28 (m, 1H), 8.60-8.61 (m, 1H), 9.08 (s, 1H), 9.27 (s, 2H), 9.31 (s, 1 H) and 10.96 (br s, 1 H). MS: 377.14 (M+H*). Example 160 1-Ethyl-3-(7-pyridazin-3-yl- 1 H NMR (DMSO-d 6 , 400 5-pyridin-3-yl- MHz): 6 1.09 (t, J=7.2 Hz, benzothiazol-2-yl)-urea 3H), 3.18 (t, J=6.4 Hz, 2H), 6.79 (br s, 1H), 7.53 7.54 (m, 1H), 7.90 (s, 1H), 8.13-8.15 (m, 2H), 8.28 8.30 (m, 1H), 8.62 (s, 1H), 9.10 (s, 1H), 9.42-9.44 (m, 1H), 9.75 (s, 1H) and 64 11.01 (br s, 1H). MS: 375.07 (M-H). Example 161 1-Ethyl-3-(5-pyridin-3-yl-7- 1 H NMR (DMSO-d 6 , 400 thiazol-5-yl-benzothiazol- MHz): 5 1.10 (t, J=7.20 Hz, 2-yl)-urea 3H), 3.19 (q, J=7.20 Hz, 2H), 6.76 (br s, 1H), 7.51 7.54 (m, 1H), 7.89 (s, 1H), 8.00 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.54 (s, 1H), 8.60 (br s, 1H), 9.05 (s, 1H), 9.28 (s, 1H) and 10.96 (br s, 1H). MS: 382.11 (M+H)*. Example 162 1-Ethyl-3-[7-(1-methyl-1H- 1H NMR (DMSO-d 6 , 400 imidazol-2-yl)-5-pyridin-3- MHz): 8 1.08 (t, J= 7.2 Hz, yl-benzothiazol-2-yl]-urea 3H), 3.10-3.13 (m, 2H), 3.24 (s, 3H), 5.80 br s,1H), 6.80 (br s, 1H), 7.26 (s, 1H), 7.48-7.52 (m, 1H), 7.59 (s, 1H), 7.83 (s, 1H), 7.95 (s, 1H), 8.19-8.21 (d, J=7.2 Hz, 1H), 8.58-8.59 (d, J= 6.4 Hz, 1H) and 9.00 (s, 1H). MS: 379.18 (M+H*). Example 163 1-Ethyl-3-(5-pyridin-3-yl-7- 'H NMR (DMSO-d 6 , 400 pyridin-2-yi-benzothiazol- MHz): 6 1.11 (t, J= 7.20 2-yl)-urea Hz, 3H), 3.16-3.24 (m, 2H), 7.01 (br s, 1H), 7.44 7.47 (m, 1H), 7.52-7.55 (m, 1 H), 8.0 (t, J= 7.60 Hz, 1H), 8.04 (s, 1H), 8.30 (m, 2H), 8.51 (d, J= 8.0 Hz, 1H), 8.62 (m, 1H), 8.82 (m, 1H), 9.12 (s, 1H) and 65 10.78 (br s, 1H). MS: 376.09 (M+H*). Example 164 1-Ethyl-3-[7-(3-methyl-3H- 'H NMR (DMSO-d 6 , 400 imidazol-4-yl)-5-pyridin-3- MHz): 5 1.08 (t, J= 7.20 yl-benzothiazol-2-yl]-urea Hz, 3H), 3.17 (q, J= 6.40 Hz, 2H), 3.71 (s, 3H), 6.74 (s, 1H), 7.27 (s, 1H), 7.49 7.52 (m, 1H), 7.61 (s, 1H), 7.85 (s, 1H), 7.97 (s, 1H), 8.19-8.22 (m, 1H), 8.60 (m, 1H), 9.01(s, 1H) & 10.86 (br s, 1H). MS: 379.24 (M+H*). Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 257 nm): 93.82% (Rt = 13.40 min). Example 165 1-Ethyl-3-(7-oxazol-2-yl-5- MS: 366.24 (M+H)*. pyridin-3-yl-benzothiazol- Qualitative HPLC Purity 2-yl)-urea (Xbridge C18, 250 x 4.6 mm, 268 nm): 83.86% (Rt = 13.62 min). Scheme 9C. NO0 N SnBu 3 N N N >-NHCONHEt Step-1 Step-2 S CN N Step-3 O |' N N' Step-1. 4-Pyridin-2-yl-morpholine 5 Mixture of 2-chloropyridine (1.0 g, 8.78 mmol), morpholine (1.14 g, 13.18 mmol), NaO'Bu (1.27 g, 13.18 mmol), Pd(OAc)2 (0.098 g, 0.44 mmol) and BINAP (0.12 g, 0.18 mmol) in toluene (10 ml) was degassed for 20 minutes. The reaction mixture was refluxed at 120*C for 16h. After completion of reaction (TLC monitoring) toluene was distilled off, water was added to the reaction mass and extracted with ethyl 66 acetate (3x 30 mL). The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness. The crude residue was purified over silica gel (60-120 M) using EtOAc-Hexane (5:95) to provide the compound as yellow oil (1.10 g, 76%). 5 1 H NMR (DMSO-d 6 , 400 MHz): 5 3.48-350 (m, 4H), 3.81-3.83 (m, 4H), 6.62-6.67 (m, 2H), 7.47-7.52 (m, 1H), 8.20 (d, J= 8.80 Hz, 1H). MS: 165.15 (M+H)*. Step 2. 4-(6-Tributylstannanyl-pyridin-2-yl)-morpholine To a solution of 2-dimethylaminoethanol (0.46 mL, 4.56 mmol) in hexane (7.0 mL, 10 HPLC grade) cooled at -5'C was added drop wise n-BuLi (1.60 M, 5.70 mL, 9.12 mmol) under nitrogen atmosphere. After 30 min at 0 C, 4-pyridin-2-yl-morpholine (0.25 g, 1.52 mmol) in hexane (2.0 mL) was added drop wise. After stirring the reaction mixture for 1 h at 0-50C, the reaction medium was cooled to -78'C followed by drop wise addition of tributyl tin chloride (1.03 mL, 3.70 mmol). The resulting 15 reaction mixture was stirred at -78 0 C for 30 min and then allowed to stir at 0-5OC for 2h. The reaction mixture was then allowed to come to room temperature. After the completion of reaction (TLC monitoring), the reaction mass was cooled to 0"C and water was added slowly. The aqueous phase was extracted with diethyl ether (3x 20 mL). The combined organic layers were dried over anhydrous Na 2
SO
4 , and 20 evaporated to dryness. The crude residue was purified over silica gel (230-400 M) using EtOAc-Hexane (2:98) to provide the compound as yellow oil (0.050 g, 7.20%). MS: 455 (M+H)*. Step 3. 1-Ethyl-3-[7-(6-morpholin-4-yl-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2 25 yl]-urea: [Example 166] To a solution of 1-(7-iodo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.15 g, 0.35 mmol) in DMF (5 mL) was added 4-(6-tributylstannanyl-pyridin-2-yl)-morpholine (0.30 g, 0.70 mmol) under nitrogen atmosphere at room temperature. The reaction mixture 30 was then degassed for half an hour followed by the addition of tetrakis(triphenylphosphine)palladium(0) (0.020 g, 0.018 mmol). The reaction mixture was then again degassed for half an hour and heated at 1200C for 15 h under nitrogen atmosphere. After the completion of the reaction (TLC monitoring), DMF was distilled off; water was added to the reaction mixture and extracted with ethyl 35 acetate. The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified by prep HPLC to get the title compound (0.01 g, 6.0%) as white solid.
67 'H NMR (DMSO-d 6 , 400 MHz): 8 1.09 (t, J= 7.20 Hz, 3H), 3.21 (m, 2H), 3.70-3.71 (m, 4H), 3.78-3.79 (m, 4H), 6.89-6.91 (m, 1H), 7.07 (br s, 1H), 7.50-7.54 (m, 1H), 7.68 7.77 (m, 2H), 7.98 (s, 1H), 8.15 (s, 1H), 8.26-8.28 (m, 1H), 8.59 (m, 1H), 9.08 (s, 1H) and 10.64 (br s, 1H). MS: 461.24 (M+H)*. 5 Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 260 nm): 90.43% (Rt = 14.25 min). Scheme 9D. N N 0 N SnBu 3 NN H N -N N B NHCONHEt Step-1 Step-2 0 Step-3 S N 0 10 Step 1. 2-Methoxy-pyridine A mixture of 2-chloro pyridine (5.0 g, 44.0 mmol) and KOMe (3.10 g, 44.0 mmol) in MeOH (50.0 mL) was heated in a steel bomb at 1800C for 48 h. After the completion of the reaction (TLC monitoring), MeOH was distilled off and the residue was purified 15 over silca gel (60-120 M, 2% EtOAc-Hexane) to get the title compound (0.60 g, 12%). 1 H NMR (CDCI 3 , 400 MHz): 8 3.93 (s, 3H), 6.75 (8.80 Hz, 1H), 6.84-6.87 (m, 1H), 7.53-7.58 (m, 1 H) and 8.15 -8.17 (m,1H). Step 2. 2-Methoxy-6-tributylstannanyl-pyridine 20 To a solution of 2-dimethylaminoethanol (3.50 mL, 16.36 mmol) in hexane (20.0 mL, HPLC grade) cooled at -50C was added drop wise n-BuLi (3.60 M, 9.0 mL, 32.40 mmol) under nitrogen atmosphere. After 30 min at 0*C, 2-methoxy-pyridine (0.60 g, 5.45 mmol) in hexane (20.0 mL) was added drop wise. After stirring the reaction mixture for 1 h at 0-5*C, the reaction medium was cooled to -780C followed by drop 25 wise addition of tributyl tin chloride (3.70 mL, 13.62 mmol). The resulting reaction mixture was stirred at -780C for 30 min and then allowed to stir at 0-50C for 30 min. The reaction mixture was then allowed to come to room temperature. After the completion of reaction (TLC monitoring), the reaction mass was cooled to 00C and water was added slowly. The aqueous phase was extracted with diethyl ether (3x 50 30 mL). The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness. The crude residue (1.80 g, 72%) was carried forward to the next step without further purification.
68 Step 3. 1-Ethyl-3-[7-(6-methoxy-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl] urea: [example 167] To a solution of 1-(7-bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.50 g, 5 1.32 mmol) in DMF (5.0 mL) was added 2-methoxy-6-tributylstannanyl-pyrdine (1.05 g, 2.65 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was then degassed for half an hour followed by the addition of tetrakis(triphenylphosphine)palladium(0) (0.23 g, 0.20 mmol). The reaction mixture was then again degassed for half an hour and heated at 120*C for 6h under nitrogen 10 atmosphere. After the completion of the reaction (TLC monitoring), DMF was distilled off; water was added to the reaction mixture and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified by prep HPLC to get the title compound as white solid (0.06 g, 11%). M.P. 300.10*C. 15 1 H NMR (DMSO-d 6 , 400 MHz): 5 1.10 (t, J= 7.20 Hz, 3H), 3.21 (q, J= 7.20 Hz, 2H), 4.17 (s, 3H), 6.81 (br s, 1H), 6.89 (d, J= 8.40 Hz, 1H), 7.52-7.55 (m, 1H), 7.92 (t, J= 8.0 Hz, 1H), 8.03 (s, 1H), 8.07 (d, J= 8.0 Hz, 1H), 8.26 (s, 1H), 8.30 (d, J= 8.0 Hz, 1H), 8.61 (m, 1H), 9.10 (s, 1H) and 10.65 (br s, 1H). MS: 406.18 (M+H)*. Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 261 nm): 94.90% (Rt = 14.73 20 min). Scheme 9E. N
H
2 N Step-1 'N Step-2 NStep3 N N NN -NH Sn(Bu) 3 N N 25 Step-1. Dimethyl-pyridin-2-yl-amine To an ice-cold solution of 2-aminopyridine (5.0 g, 53.12 mmol) in acetonitrile (150.0 mL) was added sequentially water (33.0 mL) followed by formaldehyde (37% aq. solution, 50.0 mL) and sodium cyanoborohydride (10.0 g, 159.13 mmol). The resulting reaction mixture was stirred at 00C for 10 min followed by drop wise addition 30 of acetic acid (12.0 mL). The reaction mixture was then allowed to stir at room temperature for 15 h. After the completion of the reaction (TLC monitoring), the solvent was evaporated and the residue was treated with aqueous NaOH (2N, 50.0 69 mL) and extrated with hexane (3 x 50 .0 mL). The combined organics was washed with brine, dried (Na 2
SO
4 ), filtered and concentrated. The residue was purified over silica gel (100-200 M, 2% EtOAc-Hexane) to get the desired compound (3.50 g, 55%). 5 'H-NMR (400 MHz, DMSO-d 6 ): 5 2.99 (s, 6H), 6.52-6.55 (m, 1H), 6.61 (d, J= 8.80 Hz, 1H), 7.44-7.49 (m, 1H) and 8.07 (m, 1H). MS: 123.10 (M+H)*. Step-2. Dimethyl-(6-tributylstannany-pyridin-2-yl)-amine To a solution of 2-dimethylaminoethanol (0.65 mL, 9.60 mmol) in hexane (10.0 mL, 10 HPLC grade) cooled at -5'C was added drop wise n-BuLi (1.60 M, 11.38 mL, 18.20 mmol) under nitrogen atmosphere. After 30 min at 0 0 C, dimethyl-pyridin-2-yl-amine (0.40 g, 3.20 mmol) in hexane (5.0 mL) was added drop wise. After stirring the reaction mixture for 1 h at 0-5 0 C, the reaction medium was cooled to -78 0 C followed by drop wise addition of tributyl tin chloride (1.55 mL, 8.0 mmol). The resulting 15 reaction mixture was stirred at -78 0 C for 30 min and then allowed to stir at 0-5 0 C for 1h. The reaction mixture was then allowed to stir at room temperature for 16 h. After the completion of reaction (TLC monitoring), the reaction mass was cooled to 0*C and water was added slowly. The aqueous phase was extracted with diethyl ether (3x 20 mL). The combined organic layers were dried over anhydrous Na 2
SO
4 , and 20 evaporated to dryness. The crude residue was carried foreard to the next step without further purification. MS: 413.22. Step-3.1-[7-(6-Dimethylamino-pyridin-2-yl)-5-pyridin-3-yI-benzothiazol-2-y]-3 ethyl-urea [Example 168] 25 To a solution of 1-(7-bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.125 g, 0.33 mmol) in DMF (5 mL) was added dimethyl-(6-tributylstannanyl-pyridin-2-y) amine (0.14 g, 0.33 mmol) under nitrogen atmosphere at room temperature. The reaction mixture was then degassed for half an hour followed by the addition of bis(triphenylphosphine)palladium(lI) dichloride (0.023 g, 0.033 mmol). The reaction 30 mixture was then again degassed for half an hour and heated at 100 0 C for 15 h under nitrogen atmosphere. After the completion of the reaction (TLC monitoring), DMF was distilled off; water was added to the reaction mixture and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified by 35 prep HPLC to get the title compound (0.006 g, 5.0%) as off-white solid.
70 'H-NMR (400 MHz, DMSO-d 6 ): 8 1.10 (t, J= 6.80 Hz, 3H), 3.19 (m, 2H), 3.23 (s, 6H), 6.84 (d, J= 8.40 Hz, 1H), 6.97 (br s, 1H), 7.51 (m, 1H), 7.58 (d, J= 7.20 Hz, 1H), 7.67 (t, J= 7.60 Hz, 1H), 7.98 (s, 1H), 8.13 (s, 1H), 8.27 (m, 1H), 8.60 (m, 1H), 9.07 (s, 1H) and 11.03 (br s, 1H). MS: 419.24 (M+H)*. 5 HPLC: (Xbridge C18, 250 x 4.6 mm, 259 nm): 92.51% (Rt= 14.81 min). The following was also prepared by the same method starting from step-2. ID NAME 'H-NMR/ MS Data Example 169 1-[7-(4-Dimethylamino- 'H-NMR (400 MHz, pyridin-2-yl)-5-pyridin-3-yl- DMSO-d 6 ): 8 benzothiazol-2-yl]-3-ethyl- 1.10 (t, J= 6.80 Hz, 3H), urea 3.18(s, 6H), 3.21 (m, 2H), 6.86 (m, 1H), 7.07 (s, 1H), 7.46 (m, 1H), 7.55 (m, 1H), 8.02 (m, 1H), 8.26 (m, 1H), 8.33 (m, 1H), 8.62 (m, 1H), 8.80 (m, 1H), 9.10 (s, 1H) and 10.60 (br s, 1H). MS: 419.24 (M+H)*. HPLC: (Xbridge C18, 250 x 4.6 mm, 265 nm): 59.82% (Rt= 12.20 min).
71 Scheme 10 Br N Br N I )N +
N-
S N N ZnBr N Br N N N N s N o \ -S N \ N 1-(5-Bromo-7-pyridin-2-yl-benzothiazol-2-yI)-3-ethyl-urea. A stirred mixture of the 1-(5,7-dibromo-benzothiazol-2-yl-3-ethyl urea (2.62g, 0.00687 5 mol) and Dichlorobis(triphenylphosphine)-palladium (0.48g 0.000687 mol), under nitrogen , was treated in one portion, via a syringe, with 2-pyridyl zinc bromide solution (0.5M solution in THF, 7.66g, 0.0344 mol). The reaction mixture was heated, with stirring, at 55 0 C for 18 hours, allowed to cool and poured into 500ml of water containing -5 ml of conc hydrochloric acid. The suspension was stirred and the 10 solid filtered off, washed with water, followed by 20ml of 1:1 DCM/Methanol mixture to give the crude 1-(5-Bromo-7-pyridin-2-yl-benzothiazol-2-yl)-3-ethyl-urea (1.43g). This was purified by "flash" silica chromatography using 0 to 100% hexane/ethyl acetate followed by 0 to 100% methanol in ethyl acetate to elute the required product as a beige solid (1.1g). 15 1 H NMR (400MHz,6,D 6 DMSO): 1.13(3H,t), 3.23(2H,m), 6.83(1H,t), 7.50(1H,m), 7.91(1 H,s), 8.02(1 H,t), 8.20(1 H,s), 8.36(1 H,d), 8.84(1 H,dd), 10.76(1 H,br s). LC-MS m/z 377[M+H]* Rt=3.82min. 1-(4,6-Dipyridin-2-yl benzothiazol-2-yi) 3-ethylurea. [Example 170] 20 Also isolated during the purification was a sample of 1-(4,6-Dipyridin-2-yl benzothiazol-2-yl) 3-ethylurea as an off-white solid. 1 H NMR (400MHz,6,D 6 DMSO): 1.16(3H,t), 3.26(2H,m), 6.88(1H,t), 7.44(1H,m), 7.50(1 H,m), 7.97(1 H,m), 8.06(1 H,m), 8.29(1 H,d), 8.46(2H,d), 8.71(1 H,s), 8.77(1 H,d), 8.65(lh,d), 10.70 (1h,s). 25 LC-MS m/z 376[M+H]* Rt=2.90min.
72 No Example 171 5 Scheme 13 A. N N N >-NH N NH I -NH Step 1 NH S N S N N S SI 0 OH 1-Ethyl-3-[7-(2-hydroxy-thiazol-4-yl)-5-pyridin-3-yI-benzothiazol-2-yl]-urea: [Example 172] To a solution of 1-ethyl-3-[7-(2-methoxy-thiazol-4-yl)-5-pyridin-3-yl-benzothiazol-2-yl] 10 urea (0.05 g, 0.12mmol) in dry DCM (5 mL) was added BBr 3 (0.20 mL) under nitrogen atmosphere at 00C. The reaction mixture was then heated at 50 0 C for 24 h under nitrogen atmosphere. After the completion of the reaction (TLC monitoring), the reaction mixture was cooled to 00C and then quenched with ice-cold water followed by extraction with DCM. The combined organic layers were dried over 15 anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified over silica gel (230-400 M) using DCM-MeOH (96:4) to provide the title compound as light greenish solid (3.5 mg, 7%). 'H-NMR (400 MHz, DMSO-d 6 ): 8 1.10 (t, J= 7.20 Hz, 3H), 3.21 (q, J= 7.20 Hz, 2H), 6.77(br s, 1 H), 6.87(s, 1H), 7.51-7.56 (m, 1H), 7.79 (s, 1H), 8.01 (s, 1H), 8.26 (d, J= 20 8.0 Hz, 1H), 8.62 (br s, 1H), 9.09 (s, 1H), 10.95 ( s, 1H) and 11.99 (s, 1H). MS: 398.07 (M+H)*. Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 263 nm): 88.40% (Rt = 13.21 min). 25 Scheme 13 B. N N 0 N >-NH N I>NH Step 1 |iNHCONHt N O' OH 73 1 -Ethyl-3-[7-(6-hydroxy-pyridin-2-yI)-5-pyridin-3-yI-benzothiazol-2-yI]-urea: [Example 173] To a solution of 1-ethyl-3-[7-(6-methoxy-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl] urea (0.04 g, 0.098 mmol) in dry DCM was added BBr 3 (0.50 ml) under nitrogen 5 atmosphere at 0*C. The reaction mixture was then heated at 500C for 6 h under nitrogen atmosphere. Since the starting material was not consumed (TLC monitoring), toluene (5 mL) was added into the reaction mixture and heated at 120*C for 16 h. After the completion of the reaction (TLC monitoring), the reaction mixture was cooled to 00C and quenched with ice-cold water. Toluene was distilled off, added 10 water and extracted with DCM. The combined organic layers were dried over anhydrous Na 2
SO
4 , and evaporated to dryness under reduced pressure. The crude residue was purified over silica gel (100-200 M) using DCM-MeOH (96:4) to provide the title compound as off white solid (2.5 mg, 6%). 1 H NMR (DMSO-d 6 , 400 MHz): 8 1.10 (t, J= 7.20 Hz, 3H), 3.19 (q, J= 7.20 Hz, 2H), 15 6.60 (br s, 1 H), 7.0-7.06 (m, 1 H), 7.52-7.54 (m, 1 H), 7.62-7.72 (m, 2H), 8.0 (m, 2H), 8.28 (d, J= 7.60 Hz, 1H), 8.60 (m, 1H), 9.08 (s, 1H) and 10.91-11.02 ( br s, 2H). MS: 392.23 (M+H)*. Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 261 nm): 95.09% (Rt = 11.74 min). 20 Scheme 14. N N N -NHCONHEt -- NH 2 \>-NHCOOEt s Step-1 Step-2 N N N GyrJL1_01 Step 1. 5-Pyridin-3-yl-7-pyridin-2-yl-benzothiazol-2-ylamine 1-Ethyl-3-(5-pyridin-3-yl-7-pyridin-2-yl-benzothiazol-2-yl)-urea (0.19 g, 0.53 mmol) in 25 DMF (10 mL), was heated at 1200C for 10 h in pressure vessel. After the completion of the reaction (TLC monitoring), DMF was distilled off, added water and extracted with ethyl acetate. The crude solid (0.14 g, 90%) was used as such for the next step. Step 2. (5-Pyridin-3-yl-7-pyridin-2-yl-benzothiazol-2-yl)-carbamic acid ethyl 30 ester: [Example 174] To a solution of 5-pyridin-3-yl-7-pyridin-2-yl-benzothiazol-2-ylamine (0.10 g, 0.33 mmol) in toluene (5 mL) was added triethylamine (0.10 ml, 0.07 mmol) at room 74 temperature. The reaction mixture was heated to 400C followed by the addition of ethyl chloroformate (0.17 g, 0.16 mmol). The resulting reaction mixture was stirred under nitrogen atmosphere at 70*C for 16 h. After the completion of reaction (TLC monitoring) toluene was evaporated under reduced pressure. The crude solid residue 5 was washed with water and was purified by chromatography over silica gel (230-400 M) using ethyl acetate:hexane (60:40) to provide the title compound as white solid (0.046 g, 38%). M.P. 235*C. 'H NMR (DMSO-d 6 , 400 MHz): 8 1.31 (t, J=7.20 Hz, 3H), 4.25-4.30 (m, 2H), 7.45 7.48 (m, 1 H), 7.53-7.56 (m, 1 H), 8.02 (t, J= 7.60 Hz, 1 H), 8.11 (s, 1 H), 8.33 (d, J= 8.0 10 Hz, 1H), 8.39 (s, 1H, J=8.0 Hz), 8.56 (d, J= 8.0 Hz, 1H), 8.63 (d, J= 4.80 Hz, 1H), 8.84 (m, 1H), 9.13 (s, 1H) and 11.97 (br s, 1H). MS: 377.16 (M+H*). Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 260 nm): 96.88% (Rt = 14.77 min). 15 Scheme 16. N N 0 N NH Step-1 N " NH | -NH \ N S Br N Step-1. 1-Ethyl-3-[7-(5-methyl-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl]-urea [Example 175] To a solution of 1-(7-bromo-5-pyridin-3-yl-benzothiazol-2-yl)-3-ethyl-urea (0.25 g, 20 0.66 mmol) in anhydrous DMF (5.0 mL) was added K 2
CO
3 (0.28 g, 1.99 mmol) and the resulting solution was purged with nitrogen for 15 min. [1,1' Bis(diphenylphosphino)-ferrocene]dichloropalladium(l I), complex with dichloromethane (0.054 g, 0.066 mmol) was added to the reaction mixture, purged again with nitrogen for another 15 min followed by addition of 5-methyl-2-pyridyl zinc 25 bromide (3.32 mL, 1.66 mmol). The resulting reaction mixture was stirred at 1000C for 15 h followed by removal of DMF in vacuo. Water was added and extracted with EtOAc (3 x 20 mL). The combined organics was washed with brine, dried (Na 2
SO
4 ) and concentrated. The residue was purified through prep-HPLC to get the desired product (0.011 g, 4%) as an off-white solid. 30 1 H-NMR (400 MHz, DMSO-d 6 ): 5 1.13 (t, J= 6.80 Hz, 3H), 2.40 (s, 3H), 3.21 (m, 2H), 6.93 (br s, 1H), 7.53 (m, 1H), 7.83 (m, 1H), 8.01 (s, 1H), 8.27-8.31 (m, 2H), 8.41 (d, 75 J= 8.40 Hz, 1H), 8.61-8.65 (m, 2H), 9.11 (brs, 1H) and 10.71 (brs, 1H). MS: 390.19 (M+H)*. M.P. 231.0*C Qualitative HPLC Purity (Xbridge C18, 250 x 4.6 mm, 265nm): 98.58 (Rt = 14.41 min). 5 The following were prepared similarly: Prolysis ID. NAME NMR/MS/HPLC Data Example 176 1-Ethyl-3-[7-(4-methyl- 1 H-NMR (400 MHz, pyridin-2-yl)-5-pyridin-3-yl- DMSO-d 6 ): 6 1.13 (t, J= benzothiazol-2-yl]-urea 7.20 Hz, 3H), 2.46 (s, 3H), 3.21 (m, 2H), 6.89 (br s, 1H), 7.29 (d, J= 5.20 Hz, 1H), 7.53 (m, 1H), 8.03 (s, 1H), 8.30-8.32 (m, 2H), 8.38 (s, 1H), 8.61 (m, 1H), 8.66 (d, J= 4.80 Hz, 1H), 9.13 (s, 1H) and 10.64 (br s, 1H). MS: 390.21 (M+H)*. HPLC: (DHSC-18 (250 x 4.6 mm, 262 nm): 90.42% (Rt= 19.01 min). Example 177 1-Ethyl-3-[7-(6-methyl- 'H-NMR (400 MHz, pyridin-2-yl)-5-pyridin-3-yl- DMSO-de): 8 benzothiazol-2-yl]-urea 1.13 (t, J= 7.20 Hz, 3H), 2.66 (s, 3H), 3.30 (m, 2H), 6.88 (br s, 1H), 7.32 (d, J= 7.60 Hz, 1 H), 7.54 (m, 2H), 7.88 (t, J= 7.60 Hz, 1H), 8.02 (s, 1H), 8.29-8.31 (m, 2), 8.61 (m, 1H), 9.11 (s, 1H), 10.58 (br s, 1H). MS: 390.29 (M+H)*. HPLC: (Xbridge C18, 250 x 4.6 mm, 262 nm): 85.29% (Rt= 14.31 min).
76 No Example 178 Scheme 18 H NO 2 Step 1 NO 2 step Br NO2
H
2 N J H 2 N OH OH OH step 3 Br
NH
2 Br
NO
2 O step 4 Ph P Ph step 5 H Br H step 6 Br N NH 2 7 S 0 S O O Ph Ph I step 7 P h, 0 N H H step 8 Ph VO N Ph~ -NHCONHBt - 7 H Br Br step 9 Ph, O N HO N I -NHCONHEt O NHCONHEt step 10 S S 5 step 11 N N OTf N >-NHCONHEt I -NHCONHEt S step 12 S N N 77 Step 1. 2-Amino-3-bromo-5-nitro-phenol To an ice-cold solution of 2-amino-5-nitro phenol (40.0 g, 259.52 mmol) in DCM (1.0 L), was added bromine (13.38 mL, 259.52 mmol) drop wise. The resulting reaction 5 mixture was stirred at room temperature for 45 min. After the completion of the reaction (TLC monitoring), water was added and extracted with EtOAc (3 x 1.0 L). The combined organics was dried over anhydrous Na 2
SO
4 and concentrated under reduced pressure. The crude (55.0 g, 92%) was carried forward to the next step without further purification. 10 'H-NMR (400 MHz, DMSO-d 6 ): 6 6.06 (s, 2H), 7.48 (s, 1H), 7.85 (s, 1H) and 10.68 (s, 1 H). Step 2. 3-Bromo-5-nitro-phenol To an ice-cold solution of 2-amino-3-bromo-5-nitro-phenol (6.50 g, 27.89 mmol) in 15 EtOH (150.0 mL) was added concentrated H 2
SO
4 (9.40 mL, 177.13 mmol) portion wise. The reaction mixture was then heated to 50*C followed by portion wise addition of NaNO 2 (6.19 g, 89.82 mmol). The resulting solution was refluxed at 80*C for 2 h. The reaction mixture was then diluted with water and extracted with EtOAc (3 x 150.0 mL). The combined organics was dried over anhydrous Na 2
SO
4 and concentrated 20 under reduced pressure. The crude was purified over silica gel (100-200 M, 10% EtOAc-Hexane) to get the desired product (5.0 g, 82%). 1 H-NMR (400 MHz, DMSO-d 6 ): 6 7.37 (s, 1H), 7.53 (s, 1H), 7.77 (s, 1H) and 10.91 (s, 1 H). 25 Step 3. 3-Benzyloxy-5-bromo-nitrobenzene To an ice-cold solution of 3-bromo-5-nitro-phenol (21.0 g, 96.33 mmol) in acetone (420.0 mL) was added K 2
CO
3 (40.0 g, 289.41 mmol) followed by addition of benzyl bromide (17.20 mL, 144.40 mmol). The resulting reaction mixture was stirred at room temperature for 2 h. The reaction mixture was then diluted with water and extracted 30 with EtOAc (3 x 250.0 mL). The combined organics was dried over anhydrous Na 2
SO
4 and concentrated under reduced pressure. The crude was purified over silica gel (100-200 M, 5% EtOAc-Hexane) to get the desired product (27.0 g, 91%). 1 H-NMR (400 MHz, DMSO-d 6 ): 8 5.13 (s, 2H), 7.35-7.45 (m, 6H), 7.75 (s, 1H) and 7.98 (s, 1H). 35 Step 4. 3-Benzyloxy-5-bromo-phenylamine 78 To a solution of 3-benzyloxy-5-bromo-nitrobenzene (27.0 g, 87.60 mmol) in THF (800.0 mL) was added SnC1 2 .2H 2 0 (99.0 g, 438.30 mmol) and the resulting reaction mixture was heated to reflux at 65 0 C for 2 h. The reaction mass was then cooled to 0 5'C and basified with a saturated solution of NaHCO 3 till pH 8 and then extracted 5 with EtOAc (3 x 1.0 L). The combined organics was dried over anhydrous Na 2
SO
4 and concentrated under reduced pressure. The residue thus obtained (23.60 g, 95%) was carried forward to the next step without further purification. 1 H-NMR (400 MHz, CDCI 3 ): 6 3.70 (br s, 2H), 5.03 (s, 2H), 6.25 (s, IH), 6.46 (s, 1H), 6.65 (s, 1 H) and 7.33-7.52 (m, 5H). MS: 278.04 (M+H)*. 10 Step 5. 1-Benzoyl-3-(3-benzyloxy-5-bromo-phenyl)-thiourea To a solution of 3-benzyloxy-5-bromo-phenylamine (23.50 g, 84.40 mmol) in acetone (550.0 mL) was added benzoyl isothiocyanate (18.50 mL, 93.13 mmol) and the reaction mixture was stirred at room temperature for 30 min. After the completion of 15 the reaction (TLC monitoring), the solvent was evaporated and the residue thus obtained was washed with hexane to get the desired product (33.0 g, 89%). 'H-NMR (400 MHz, CDC 3 ): 6 5.05 (s, 2H), 7.05 (m, 1H), 7.38-7.50 (m, 6H), 7.52-7.55 (m, 3H), 7.57-7.67 (m, 1H), 7.90 (d, J= 7.60 Hz, 2H), 9.05 (br s, 1H) and 12.67 (br s, 1 H). 20 Step 6. (3-Benzyloxy-5-bromo-phenyl)-thiourea To an ice-cold solution of 1-benzoyl-3-(3-benzyloxy-5-bromo-phenyl)-thiourea (33.0 g, 74.70 mmol) in THF (500.0 mL) was added a solution of NaOH (15.0 g, 375.0 mmol) in H 2 0 (180.0 mL). The resulting reaction mixture was stirred at 65 0 C for 15 h. 25 The reaction mass was then cooled to room temperature, added water and extracted with EtOAc (3 x 1.0 L). The combined organics was washed with water, dried over anhydrous Na 2
SO
4 and concentrated under reduced pressure to get the desired compound (23.50 g, 94%) that was carried forward to the next step without further purification. 30 'H-NMR (400 MHz, CDC 3 ): 8 5.10 (s, 2H), 6.97 (s, 1H), 7.14 (s, 1H), 7.29 (s, 1H), 7.32-7.44 (m, 7H) and 9.78 (br s, 1 H). MS: 337.04 (M+H)*. Step 7. 5-Benzyloxy-7-bromo-benzothiazol-2-ylamine A solution of (3-benzyloxy-5-bromo-phenyl)-thiourea (2.0 g, 5.93 mmol) in CHC1 3 35 (80.0 mL) was cooled to -60'C followed by drop wise addition of a solution of bromine (0.30 mL, 5.93 mmol) in CHC1 3 (20.0 mL). The resulting reaction mixture 79 was stirred at room temperature for 15 minutes followed by refluxing at 70'C for 1 h. The reaction mass was then cooled and basified with 25% aqueous ammonia solution to pH 8-9 and then extracted with EtOAc (3 x 150.0 mL). The combined organics was dried over anhydrous Na 2
SO
4 and concentrated under reduced 5 pressure. The crude residue was purified over silica gel (60-120 M, 40% EtOAc Hexane) to get the desired compound (1.35 g, 68%). 1 H-NMR (400 MHz, DMSO-d 6 ): 5 5.12 (s, 2H), 6.93 (d, J= 2.0 Hz, 1H), 6.98 d, J= 2.0 Hz, 1 H), 7.30-7.45 (m, 5H) and 7.70 (br s, 2H). MS: 335.0 (M+H)*. 10 Step 8. 1-(5-Benzyloxy-7-bromo-benzothiazol-2-yl)-3-ethyl-urea To a solution of 5-benzyloxy-7-bromo-benzothiazol-2-ylamine (1.35 g, 4.02 mmol) in dioxane (50.0 mL) was added ethyl isocyanate (1.90 mL, 24.22 mmol) and the resulting reaction mixture was heated to 800C for 15 h. The solvent was then evaporated and the residue was stirred in water at 85 0 C for 5-6 h. The solution was 15 then filtered and the solid thus obtained was washed with hot water and hexane to get the desired product (1.50 g, 92%) as an off-white solid. M.P. 294.2 0 C. 1 H-NMR (400 MHz, DMSO-d 6 ): 6 1.08 (t, J= 7.20 Hz, 3H), 3.21 (m, 2H), 5.24 (s, 2H), 6.71 (br s, 1H), 7.15 (s, 1H), 7.21 (s, 1H), 7.26-7.47 (m, 5H) and 10.83 (br s, 1H). MS: 406.0 (M+H)*. 20 Step 9. 1-[5-Benzyloxy-7-(4-methyl-pyridin-2-yl)-benzothiazol-2-yl]-3-ethyl-urea A mixture of 1-[5-Benzyloxy-7-bromo-benzothiazol-2-yl]-3-ethyl-urea (406mg, 1.0mmol), bis(neopentyl)glycolato diboron (452mg, 2.Ommol) and potassium acetate (294mg, 3.Ommol) in dimethyl sulfoxide (7ml) was purged with nitrogen for 5 minutes. 25 Bis(diphenylphosphino)ferrocene palladium(II)chloride complex (82mg, 0.1mmol) was added, the reaction mixture sealed and heated at 80*c for 16h. The reaction mixture was cooled to ambient temperature. 2-Bromo-4-methylpyridine (258mg, 1.5mmol) was added followed by aqueous cesium carbonate solution (3.7M, 0.405ml, 1.5mmol). The reaction mixture was purged with nitrogen for 5 minutes, 30 treated with tetrakistriphenylphosphine palladium (0) (115mg, 0.1mmol), sealed and heated at 80*C for 8h. The reaction mixture was cooled to ambient temperature, diluted with ethylacetate (150ml), washed with water (3X20ml) followed by brine (25ml) and dried (MgSO4).The solvent was removed in vacuo and the residue purified by flash silica chromatography eluting with 1:1 ethyl acetate:petrol ether to 35 give 1-[5-Benzyloxy-7-(4-methyl-pyridin-2-yl)-benzothiazol-2-yl]-3-ethyl-urea as an off white solid (290mg, 69%).
80 LC-MS m/z 419[M+H]* Rt=4.11min. Step 10. 1-Ethyl-3-[5-hydroxy-7-(4-methyl-pyridin-2-yI)-benzothiazol-2-yI]-urea. A stirred solution of 1-[5-Benzyloxy-7-(4-methyl-pyridin-2-yl)-benzothiazol-2-yl]-3 5 ethyl-urea (100mg, 0.239mmol) in anhydrous dichloromethane (2ml) was treated with methanesulfonic acid (0.25ml ) and kept at ambient temperature for 2h. The dichloromethane was then evaporated off and the residue treated with water (3ml). The resultant mixture was extracted with ethyl acetate (3x20ml) and the aqueous portion basified with sodium hydrogen carbonate. The resultant mixture was 10 extracted with ethyl acetate (3x30ml), dried (MgSO 4 ) and the solvent removed in vacuo to give the crude 1-Ethyl-3-[5-hydroxy-7-(4-methyl-pyridin-2-yl)-benzothiazol-2 yl]-urea (38mg, 46%) as an off-white solid which was used without further purification. LC-MS m/z 329[M+H]* Rt=2.86min. 15 Step 11. Trifluoro-methanesulfonic acid 2-(3-ethyl-ureido)-7-(4-methyl-pyridin-2 yl)-benzothiazol-5-yl ester. A stirred suspension of the crude 1-Ethyl-3-[5-hydroxy-7-(4-methyl-pyridin-2-yl) benzothiazol-2-yl]-urea (38mg, 0.11 6mmol) in anhydrous dichloromethane (3ml) was 20 treated with anhydrous pyridine (31mg, 0.394mmol). The resultant solution was cooled in an ice-bath and treated with trifluoromethanesulfonic anhydride (111mg, 0.394mmol). After stirring at ambient temperature for 2h, the solution was diluted with dichloromethane(75ml), washed with water (4x25ml), dried (MgSO 4 ) and the solvent removed to give the crude Trifluoro-methanesulfonic acid 2-(3-ethyl-ureido)-7-(4 25 methyl-pyridin-2-yl)-benzothiazol-5-yl ester (44mg, 100%) which was used without further purification. Step 12. 1-Ethyl-3-[7-(4-methyl-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl] urea. [Example 176] 30 A stirred mixture of the crude Trifluoro-methanesulfonic acid 2-(3-ethyl-ureido)-7-(4 methyl-pyridin-2-yl)-benzothiazol-5-y ester (44mg, 0.096mmol), 3-pyridineboronic acid (13mg, 0.106mmol), powdered potassium phosphate tribasic (25mg, 0.115mmol), anhydrous 1,4-dioxane (0.7 ml) and anhydrous methanol (1.2ml) was purged with nitrogen for 15 min. 1,1'-bis(diphenylphosphino)ferrocene palladium (II) 35 chloride complex (12mg, 0.01 44mmol) was added and the mixture heated at 80*C for 16 h under an atmosphere of nitrogen. After cooling to ambient temperature, the mixture was filtered through celite and washed through with methanol. The filtrate 81 was evaporated in vacuo to give the crude 1-Ethyl-3-[7-(4-methyl-pyrdin-2-yl)-5 pyridin-3-yl-benzothiazol-2-yl]-urea. LC-MS m/z 390[M+H]* Rt=2.63min. 5 Scheme 18b Ph NCO N step 9 Ph._,O N NHCONHEt stepNHCONHEt S s Br CN I step 10 TfO N step 11 HO CNH-NHCONHEt S : N CN CN step 12 N r4 -NHCONHEt N CN Steps I to 8 as scheme 18 Step 9. 1-[5-Benzyloxy-7-(5-cyano-pyridin-2-yl)-benzothiazol-2-yI]-3-ethyl-urea 10 A mixture of 1-[5-Benzyloxy-7-bromo-benzothiazol-2-yl]-3-ethyl-urea (406mg, 1.0mmol), bis(neopentyl)glycolato diboron (452mg, 2.Ommol) and potassium acetate (294mg, 3.Ommol) in dimethyl sulfoxide (7ml) was purged with nitrogen for 5 minutes. Bis(diphenylphosphino)ferrocene palladium(II)chloride complex (82mg, 0.1 mmol) was added, the reaction mixture sealed and heated at 80*c for 16h. 15 The reaction mixture was cooled to ambient temperature. 2-chloro-4-cyanopyridine (208mg, 1.5mmol) was added followed by aqueous cesium carbonate solution (3.7M, 0.405ml, 1.5mmol). The reaction mixture was purged with nitrogen for 5 minutes, treated with tetrakistriphenylphosphine palladium (0) (115mg, 0.1mmol), sealed and heated at 80*C for 8h. The reaction mixture was cooled to ambient temperature, 20 diluted with ethylacetate (150ml), washed with water (3X20ml) followed by brine (25ml) and dried (MgSO4). The solvent was removed in vacuo and the residue 82 purified by flash silica chromatography eluting with 1:1 ethyl acetate:petrol ether to give 1-[5-Benzyloxy-7-(5-cyano-pyridin-2-yl)-benzothiazol-2-yl]-3-ethyl-urea as a pale yelow solid (140mg, 32%). LC-MS m/z 430[M+H]* Rt=3.92min. 5 Step 10. 1-[7-(5-Cyano-pyridin-2-yl)-5-hydroxy-benzothiazol-2-yl]-3-ethyl-urea. A stirred solution of 1-[5-Benzyloxy-7-(5-cyano-pyrdin-2-yl)-benzothiazol-2-yl]-3 ethyl-urea (110mg, 0.26mmol) in anhydrous dichloromethane (3ml) was treated with methanesulfonic acid (1 ml ) and kept at ambient temperature for 2h. The organic 10 layer was diluted with ethyl acetate then washed with water (3x30ml), dried (MgSO 4 ) and the solvent removed in vacuo to give the crude 1-[7-(5-Cyano-pyridin-2-yl)-5 hydroxy-benzothiazol-2-yl]-3-ethyl-urea (80mg, 90%) as an off-white solid which was used without further purification. LC-MS m/z 340[M+H]* Rt=2.96min. 15 Step 11. Trifluoro-methanesulfonic acid 7-(5-cyano-pyridin-2-yl)-2-(3-ethyl ureido)-benzothiazol-5-yi ester A stirred suspension of the crude 1-[7-(5-Cyano-pyridin-2-yl)-5-hydroxy-benzothiazol 2-yl]-3-ethyl-urea (80mg, 0.23mmol) in anhydrous dimethylformamide (3ml) was 20 treated with N-phenylbis(trifluoromethanesulfonimide) (99mg, 0.276mmol) and anhydrous triethylamine (32pl, 0.23mmol). After stirring at ambient temperature for 2h, the solution was diluted with ethylacetate (1 00ml), washed with water (3x30ml), dried (MgSO 4 ) and the solvent removed to give the crude trifluoro-methanesulfonic acid 7-(5-cyano-pyridin-2-yl)-2-(3-ethyl-ureido)-benzothiazol-5-y ester (108mg, 25 100%) which was used without further purification. Step 12. 1-[7-(5-Cyano-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yI]-3-ethyl urea [Example 107] A stirred mixture of the crude trifluoro-methanesulfonic acid 7-(5-cyano-pyridin-2-yl) 30 2-(3-ethyl-ureido)-benzothiazol-5-yl ester (108mg, 0.23mmol), 3-pyridineboronic acid (56mg, 0.46mmol), aqueous caesium carbonate (0.155ml, 0.57mmol, 3.7M), dimethylformamide (2.4ml) and water (0.4ml) was purged with nitrogen for 15 min. treated with tetrakistriphenylphosphine palladium (0) (27mg, 0.023mmol), sealed and heated at 80*C for 8h. After cooling to ambient temperature, the mixture was filtered 35 through celite and washed through with methanol. The filtrate was evaporated in vacuo to give the crude 1-[7-(5-Cyano-pyridin-2-yl)-5-pyridin-3-yl-benzothiazol-2-yl] 3-ethyl-urea as a brown solid.
83 LC-MS m/z 401 [M+H]* Rt=2.61min. 5 Analytical Methods Used in the Above Syntheses The typical analytical and preparative methods used are described below: 10 Standard acidic LC-MS conditions (3cmmodeformic) Analytical HPLC Setup Solvents: - Acetonitrile (Far UV grade) with 0.1% (VN) formic acid Water (High purity via Elga UHQ unit) with 0.1% formic acid 15 Column: - Phenomenex Luna 5 p C18 (2), 30 x 4.6mm. Flow Rate: - 2ml/min Gradient: - A: Water / formic B: MeCN/formic Time A% B% 0.00 80 20 20 2.50 0.00 100 3.50 0.00 100 3.60 80 20 4.50 80 20 25 UV detection via HP or Waters DAD Start Range (nm) 210 End Range (nm) 400 Range interval (nm) 4.0 Other wavelength traces are extracted from the DAD data. MS detection: Either Micromass Platform or ZQ, Both single quadrapole LC-MS 30 instruments. Flow splitter gives approximately 300pl/min to mass spec Scan range for MS Data (m/z) Start (m/z) 100 End (m/z) 650 or 1000 when required 35 With +ve / -ve switching 84 lonisation is either electrospray or APCI dependent on compound types (the ZQ has an ESCI option which can give both ESI and APCI data from a single run). Typical ESI voltages and temperatures are: Source 120-150C 3.5KV capillary 25V cone 5 Typical APCI voltages and temperatures are: Source 140-160C 17uA corona 25V cone Desolvation (Platform) 350C HPLC Purification conditions. 10 Trilution Standard Conditions - (Samples with analytical Ret Time 0 to 2 min, Acidic) Preparative HPLC Setup 1 Solvents: - Acetonitrile with 0.1% Formic Acid (Far UV grade) Water with 0.1% Formic Acid 15 Column: - Waters Sunfire C18 , 100 x 19 mm. (Plus guard cartridge) Flow Rate: - 1Oml/min Gradient: - A: Water / Formic B: MeCN / Formic Time A% B% 0.00 95 5 20 10 80 20 22 0 100 25 0 100 26 95 5 33 95 5 25 Typical Injections 100-600ul (10-50mg/ml) UV detection via Gilson Dual Wavelength Detector Collection and 'observation' wavelengths selected from the LC-MS DAD results. 30 Trilution Standard Conditions - (Samples with analytical Ret Time 2 to 3 min, Acidic) Preparative HPLC Setup 2 Solvents: - Acetonitrile with 0.1% Formic Acid (Far UV grade) Water with 0.1% Formic Acid 35 Column: - Waters Sunfire C18, 100 x 19 mm. (Plus guard cartridge) Flow Rate: - 1Oml/min Gradient: - A: Water / Formic B: MeCN / Formic 85 Time A% B% 0.00 95 5 6 90 10 18 0 100 5 23 0 100 23.5 95 5 30 95 5 Typical Injections 100-600ul (10-50mg/ml) in compatible solvent UV detection via Gilson Dual Wavelength Detector 10 Collection and 'observation' wavelengths selected from the LC-MS DAD results. NMR. 1H NMR spectra were recorded on a 400MHz NMR machine.
86 Table 1. Structures of the examples described herein Example Structure Example Structure Example Structure number _________________number _________________number 1 61 121 2 62 122 3 63 123 4 64 124 0 5 65 125 6 66 126 7 67 127 8 68 128 9 69 129 10 70 130 87 11 71 131 12 72 132 13 73 133 14 134 15 75 135 16 76 136 17 77 137 18 78 138 o 19 79 139 20 80140 88 21 81 141 22 82 142 23 83 143 24 84 144 25 85 145 26 86 146 27 87 147 28 88 148 29 89 149 30 90 150 89 30 90 150 31 91 151 32 92 152 33 93 153 34 94 154 35 95 155 36 96 156 37 97 157 38 98 158 39 99 159 40 100 180 90 41 101 161 42 102 162 43 103 163 46 104 164 45 105 165 46 106 166 47 I107 167 48 108 168 49 109 169 50 110 170 91 51 111 171 no example 171 52 112 172 53 H1 7 55 115 175 56 116 176 __ O 57 117 177 58 118 178 no example 178 59 119 179 60 120 Biological Data 5 Minimum Inhibitory Concentration (MIC) Testing Compounds of this invention were tested for antimicrobial activity by susceptibility testing in liquid or on solid media. MICs for compounds against each strain were determined by the broth microdilution or agar dilution method according to the guidelines of the Clinical Laboratories and Standards Institute, formerly the National 10 Committee for Clinical Laboratory Standards (Clinical Laboratories and Standards 92 Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard-Seventh Edition. Document M7-A7. CLSI, Wayne, Pa, 2006; Clinical Laboratories and Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard-Sixth 5 Edition. Document M1 1-A6. CLSI, Wayne, Pa, 2004). MICs against Chlamydia trachomatis and Chlamydophila pneumoniae were measured using the microtitre tissue culture incorporation technique with demonstration of inclusions by immunofluorescence straining. 10 Compounds of the current invention were found to have antimicrobial activity in the MIC assays described above. Gyrase ATPase Assay Gyrase converts ATP into ADP and inorganic phosphate. The released phosphate 15 can be detected by the addition of malachite green solution and measured by monitoring the increase in absorbance at 600nm. The ATPase assay is carried out in a buffer containing 4.8 pg/ml Gyrase enzyme
(A
2
B
2 complex from Escherichia cohl), 0.08 pg/ml ssDNA, 35 mM Tris pH 7.5, 24 mM KCI, 2 mM MgCl 2 , 6.5% Glycerol, 2 mM DTT, 1.8 mM Spermidine, 0.5 mg/ml BSA, 20 and 5% DMSO solution containing the inhibitor. The reaction is started by adding ATP to a final concentration of 1mM and allowed to incubate at 30*C for 60 minutes. The reaction is stopped by adding 200 pl of malachite green solution (0.034% malachite green, 10 mM ammonium molybdate, 1 M HCI, 3.4% ethanol, 0.01% tween 20). Colour is allowed to develop for 5 minutes and the absorbance at 600 nm is 25 measured spectrophotometrically. The IC 50 values are determined from the absorbance readings using no compound and no enzyme controls. All Example compounds above of the current invention were found to inhibit the gyrase ATPase assay described above, with 50% inhibitory concentrations (IC5o) of 30 less than 0.75 micro molar. All of the Examples inhibited the growth of bacteria. Table 2 shows the MIC value for each Example against Enterococcus faecalis ATCC 29212 in the MIC Assay described above. Examples with activity "C" demonstrate MICs of 2-16 pg/mI. 35 Examples with activity "B" demonstrate MICs of 0.25-1 pg/ml. Examples with activity "A" demonstrate MICs of <0.25 pg/ml.
93 Table 2. MICs against Enterococcus faecalis Example Activity Example Activity Example Activity Example Activity number number number number 1 C 46 C 91 A 136 A 2 C 47 B 92 A 137 B 3 B 48 B 93 B 138 A 4 B 49 B 94 C 139 A 5 C 50 B 95 A 140 B 6 B 51 A 96 A 141 C 7 B 52 B 97 B 142 A 8 C 53 A 98 B 143 B 9 B 54 B 99 A 144 B 10 A 55 B 100 A 145 C 11 B 56 B 101 A 146 C 12 C 57 B 102 B 147 C 13 B 58 A 103 A 148 B 14 B 59 A 104 A 149 C 15 B 60 B 105 B 150 C 16 C 61 B 106 B 151 B 17 B 62 B 107 A 152 C 18 C 63 B 108 B 153 C 19 B 64 C 109 C 154 A 20 B 65 B 110 A 155 C 21 C 66 B 111 A 156 B 22 B 67 B 112 A 157 B 23 C 68 B 113 A 158 B 24 B 69 A 114 A 159 B 25 B 70 A 115 A 160 C 26 B 71 A 116 A 161 A 27 A 72 B 117 A 162 C 28 B 73 C 118 A 163 A 29 B 74 C 119 A 164 C 30 B 75 B 120 B 165 B 31 B 76 B 121 A 166 B 32 C 77 B 122 A 167 A 33 A 78 B 123 A 168 B 34 A 79 B 124 A 169 B 35 A 80 B 125 A 170 B 36 A 81 C 126 A No 171 37 B 82 B 127 A 172 C 38 B 83 B 128 B 173 C 39 B 84 B 129 B 174 A 40 B 85 B 130 A 175 A 41 A 86 B 131 A 176 A 42 B 87 B 132 C 177 A 43 B 88 A 133 A No 178 44 C 89 A 134 A 179 A 45 B 90 B 135 B 94 Some of the Example compounds were also tested for activity against other bacterial species. For example, Table 3 shows the MICs of Example 163 against various bacterial species. Activity "C" demonstrates an MIC of 2-16 Lg/ml. Activity "B" 5 demonstrates an MIC of 0.25-1 ig/ml. Activity "A" demonstrates an MIC of <0.25 pg/ml. Table 3. MICs against various bacteria Species Isolate ID Activity Bacteroides fragilis ATCC 25285 C Chlamydia trachomatis T71214 B Chlamydophila pneumoniae 10L207 A Clostridium difficile NQS 84 B Clostridium perfringens IV306001 B Enterococcus faecalis (VRE) ATCC 51299 A Enterococcus faecium (VRE) ATCC 700221 A Enterococcus faecium (VSE) ATCC 19434 B Escherichia coli N43 C Haemophilus influenzae ATCC 49247 C Helicobacter pylori DJ F 11 A Lactococcus lactis ATCC 11454 A Legionella pneumophila LP NCTC 11192 B Listeria monocytogenes ATCC 19115 A Moraxella catarrhalis ATCC 25240 A Mycoplasma hominis MH NCTC 10111 B Mycoplasma hominis MH 10 B Mycoplasma pneumoniae MP 9 B Mycoplasma pneumoniae MP NCTC 10119 B Neisseria gonorrhoeae NG ATCC 49226 B Propionibacterium acnes ATCC 11821 A Staphylococcus aureus ATCC 29213 B Staphylococcus aureus VRS1 A Staphylococcus aureus VRS2 A Staphylococcus aureus VRS3 A Staphylococcus epidermidis ATCC 12228 A Staphylococcus haemolyticus ATCC 29970 A Streptococcus mutans ATCC 35668 A Streptococcus pneumoniae ATCC 700671 A Streptococcus pneumoniae SP 051430 A Streptococcus pneumoniae (FQR) SP 26054 A Streptococcus pneumoniae (FQR) SP 25058 A Streptococcus pneumoniae (MacR) SP 051431 A Streptococcus pyogenes ATCC 51339 B 10 Some of the Example compounds were also tested for activity in a mouse Staphylococcus aureus septicaemia model of infection. For example, Table 4 shows 95 the survival at day 7 of infected mice treated as indicated with one or two intraperitoneal doses of each of the compounds of Examples 4, 91 and 163 at 1 hour or 1 and 6 hours after intraperitoneal inoculation with a lethal dose of Staphylococcus aureus. 5 Table 4. Murine Survival Example Dose Percent survival Vehicle control n/a 0 Example 4 2 x 100 mg/kg 100 Example 163 2 x 30 mg/kg 100 Example 91 2 x 30 mg/kg 100 Example 163 1 x 30 mg/kg 100 Example 163 1 x 10 mg/kg 60 The invention will now be further illustrated by reference to the following Example: Abbreviations 10 DMF - N,N-dimethylformamide DMSO - dimethylsulfoxide HPLC - high performance liquid chromatography MS - mass spectrometry NMR - nuclear magnetic resonance 15 Rt - retention time THF - tetrahydrofuran TLC - thin layer chromatography Scheme-1: (a) Glacial acetic acid, Fe powder, 900C, 30 min; (b) 20 benzoylisothiocyanate, THF, 65*C, overnight; (c) NaOH, THF-H 2 0; (d) Br 2 -THF; (e) Ethylisocyanate, 1,4-dioxane, 80'C, overnight; (f) pyridine-3-boronic acid, K 3
PO
4 , Pd(PPh 3
)
4 (for VII-A) and 2-tributylstannylpyrazine, Pd(PPh 3
)
4 , DMF (for VII-B).
95A Br Br Br Br N a N" b N S 0 c N"' Br NO 2 Br NH 2 Br N N Br NH HHl IIl NI NH 2 Br Br R - N' S e N"' S> N NS Br- Br HN O R HN o HN HN V VI / VII (A-B) R= ( N Nr VII-A V1I-B Example i180 Example 181 Preparation of 2,6-Dibromo-pyridin-4-ylamine: il 5 To a solution of 2,6-dibromo-4-nitro-pyridine (1.0 g, 3.54 mmol) in glacial acetic acid (20 mL) was added Fe-powder (1.0 g, 17.74 mmol) at room temperature. The reaction mixture was refluxed for 900C for 30 min. After completion of reaction (TLC monitoring), water was added (100 mL), basified with 2N NaOH (pH 12-14). The resulting mixture was filtered through celite-bed and extracted with ethyl acetate (2 x 10 50 mL). The combined organic layers were washed with water, dried (Na 2
SO
4 ), filtered and evaporated to dryness to get the desired product as an off white solid (0.80 g, 90%). 'H NMR (DMSO-d 6 , 400 MHz): 8 6.67 (s, 2H) and 6.71 (br s, 2H). 15 Preparation of 1-Benzoyl-3-(2,6-dibromo-pyridin-4-yI)-thiourea: III To a solution of 2,6-dibromo-pyridin-4-ylamine (0.80 g, 3.17 mmol) in THF (50 mL) was added benzoylisothiocyanate (0.47 mL, 3.49 mmol). The reaction mixture was heated to 650C overnight. After completion of reaction (TLC monitoring), THF was distilled off and the crude solid was filtered and washed with hexane (2 x 50 mL) to 20 get the desired product as a pale-yellow solid (1.20 g, 91%). 'H NMR (DMSO-d 6 , 400 MHz): 5 7.55 (m, 2H), 7.68(m, 1 H), 7.96 (d, J=1.20 Hz, 2H), 8.27 (s, 2H), 11.93 (br s, 1H) and 12.75 (br s, 1H). Preparation of (2,6-Dibromo-pyridin-4-yI)-thiourea: IV To a solution of 1-benzoyl-3-(2,6-dibromo-pyridin-4-yl)-thiourea (1.0 g, 2.14 mmol) in 25 THF (50 mL) was added NaOH solution (0.48 in 20 mL H 2 0) at room temperature.
95B The reaction mixture was heated up to 60-65"C overnight. After completion of reaction (TLC monitoring) THF was distilled off followed by addition of water, and extraction with ethyl acetate (2 x 50 mL). The combined organic layers were dried over anhydrous Na 2
SO
4 , filtered and evaporated to dryness under reduced pressure. 5 The crude residue was washed with mixture of ethyl acetate: hexane (30:70) and dried under high vacuum to get the desired product as a white solid (0.58 g, 78%). 'H NMR (DMSO-d 6 , 400 MHz): 6 7.75 (br s, 1 H), 7.97 (s, 2H), 8.64 (br s, 1 H) and 10.35 (br s, 1H). MS: 309.9 (M+H*). 10 Preparation of 4,6-Dibromo-thiazolo[5,4-c]pyridin-2-ylamine: V To a cooled (-60-65*C) solution of 2,6-dibromo-pyridin-4-yl-thiourea (0.50 g, 1.61 mmol) in THF (100 mL) was added bromine solution (0.20 mL in 45 mL THF, 3.69 mmol) drop wise over a period of 30 min maintaining the temperature to -60-650C. The reaction mixture was stirred for 15 min at the same temperature and then slowly 15 allowed to come to room temperature. The resulting mixture was heated up to 400C for 5 h. After completion of reaction (TLC monitoring), THF was distilled off, basified with aq. NH 3 (25% solution, pH 10-12) and then extracted with ethyl acetate (3 x 50 mL). The combined organics was washed with water, dried (Na 2 SO4), filtered and concentrated. The crude residue was purified over silica gel (100-200 M, 10% ethyl 20 acetate:hexane) to get the desired product as a white solid (0.10 g, 20%). 'H NMR (DMSO-d 6 , 400 MHz): 6 7.52 (s, 1 H) and 8.60 (s, 2H). Preparation of 1-(4,6-Dibromo-thiazolo[5,4-c]pyridin-2-yl)-3-ethyl-urea: VI To a solution of 4,6-dibromo-thiazolo[5,4-c]pyridin-2-ylamine (0.10 g, 0.33 mmol) in 25 1,4-dioxane (15 mL) was added ethylisocyanate (0.15 mL, 1.94 mmol) and the reaction mixture was heated up to 78-80*C overnight. After completion of reaction (TLC monitoring) 1,4-dioxane was distilled off and co evaporated with hexane. The solid residue was treated with water to 60-70*C for 3-5 h. The resulting solid was filtered off and again washed with hot water, dried under high vacuum, purified 30 through column chromatography (ethyl acetate: hexane, 15: 85) to obtain the desired product as a pale-yellow solid (0.066 g, 54%). 'H NMR (DMSO-d 6 , 400 MHz): 6 1.09 (t, J= 7.20 Hz, 3H), 3.20 (m, 2H), 6.87 (br s, 1 H), 7.88 (s, 1 H) and 11.55 (br s, 1 H). 35 Preparation of 1-(4,6-Di-pyridin-3-yl-thiazolo[5,4-c]pyridin-2-yl)-3-ethyl-urea: VII-A (Example 180 ) 95C To a solution of 1-(4,6-dibromo-thiazolo[5,4-c]pyridin-2-yl)-3-ethyl-urea (0.07 g, 0.17 mmol) in DMF:H 2 0 (3:1, 4 mL) was added pyridine-3-boronic acid (0.08 g, 0.68 mmol) and potassium phosphate tribasic (0.09 g, 0.43 mmol) at room temperature 5 under nitrogen atmosphere. The reaction mixture was degassed by bubbling nitrogen for 15-20 min followed by addition of Pd(PPh 3
)
4 (0.04 g, 0.07 mmol). The resulting solution was again degassed for 15-20 min followed by heating up to 90*C overnight. After completion of reaction (TLC monitoring), the reaction mixture was cooled, water was added and extracted with ethyl acetate, dried over Na 2
SO
4 and evaporated to 10 dryness under high vacuum. The crude residue was purified by Prep HPLC to get the desired product (0.015 g, 23%). 'H NMR (DMSO-d 6 , 400 MHz): 8 1.10 (t, J= 7.20 Hz, 3H), 3.20 (m, 2H), 6.90 (br s, 1H), 7.54 (m, 1H), 7.68 (m, 1H), 8.31 (s, 1H), 8.49 (m, 1H), 8.61 (m, 2H), 8.74 (m, 1 H), 9.30 (d, J= 2.0 Hz, 1 H), 9.44 (d, J= 1.6 Hz, 1 H) and 11.46 (br s, 1 H). MS: 377.11 15 (M+H*). Qualitative HPLC Purity (Acquity BEH C-18, 2.1 x 100mm, 1.7 pm): 99.24% (Rt = 3.05 min). Preparation of 1-(4,6-di(pyrazin-2-yl)thiazolo[5,4-c]pyridin-2-yl)-3-ethylurea: Vll 20 B (Example 181) To a solution of 1-(4,6-dibromo-thiazolo[5,4-c]pyridin-2-yl)-3-ethyl-urea (0.06 g, 0.16 mmol) in DMF (3 mL) was added 2-(tributylstannyl)pyrazine (0.10 mL, 0.32 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was degassed by bubbling nitrogen for 10-15 min followed by addition of Pd(PPh 3
)
4 (0.018 g, 0.015 25 mmol). The resulting solution was again degassed for 15-20 min followed by heating up to 95 0 C overnight. After completion of reaction (TLC monitoring), the reaction mixture was cooled, added water (30 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organics was dried over Na 2
SO
4 and evaporated to dryness under high vacuum. The crude residue was purified over silica-gel (100-200 M, 30 2%MeOH-DCM) to get the desired product (0.004 g, 7%). 'H NMR (DMSO-d 6 , 400 MHz-Partially soluble): 6 1.12 (t, J= 7.20 Hz, 3H), 3.24 (m, 2H), 6.85 (br s, 1 H), 8.56 (s, 1 H), 8.77 (d= 2.40 Hz, 1 H), 8.80 (s, 1 H), 8.84 (d, J=2.80 Hz, 1H), 8.94 (s, 1H), 9.94 (s, 1H), 10.10 (s, 1H), and 11.27 (br s, 1H). MS: 378.95
(M+H*).
95D Biological Data Minimum Inhibitory Concentration (MIC) Testing 5 Compounds of this invention were tested for antimicrobial activity by susceptibility testing in liquid or on solid media. MICs for compounds against each strain were determined by the broth microdilution or agar dilution method according to the guidelines of the Clinical Laboratories and Standards Institute, formerly the National Committee for Clinical Laboratory Standards (Clinical Laboratories and Standards 10 Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard-Seventh Edition. Document M7-A7. CLSI, Wayne, Pa, 2006; Clinical Laboratories and Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard-Sixth Edition. Document M1 1-A6. CLSI, Wayne, Pa, 2004). 15 Compounds of the current invention were found to have antimicrobial activity in the MIC assays described above. Gyrase ATPase Assay 20 Gyrase converts ATP into ADP and inorganic phosphate. The released phosphate can be detected by the addition of malachite green solution and measured by monitoring the increase in absorbance at 600nm. The ATPase assay is carried out in a buffer containing 4.8 pg/ml Gyrase enzyme
(A
2
B
2 complex from Escherichia coli), 0.08 pg/ml ssDNA, 35 mM Tris pH 7.5, 24 mM 25 KCI, 2 mM MgCl 2 , 6.5% Glycerol, 2 mM DTT, 1.8 mM Spermidine, 0.5 mg/ml BSA, and 5% DMSO solution containing the inhibitor. The reaction is started by adding ATP to a final concentration of 1mM and allowed to incubate at 30 0 C for 60 minutes. The reaction is stopped by adding 200 pl of malachite green solution (0.034% malachite green, 10 mM ammonium molybdate, 1 M HCI, 3.4% ethanol, 0.01% tween 30 20). Colour is allowed to develop for 5 minutes and the absorbance at 600 nm is measured spectrophotometrically. The IC 50 values are determined from the absorbance readings using no compound and no enzyme controls. All Example compounds above of the current invention were found to inhibit the 35 gyrase ATPase assay described above, with 50% inhibitory concentrations (IC 50 ) of less than 0.75 micro molar.
95E The Examples inhibited the growth of bacteria. Table 5 shows the MIC value for each Example against Enterococcus faecalis ATCC 29212 in the MIC Assay described above. Examples with activity "C" demonstrate MICs of 2-16 pg/ml. Examples with 5 activity "B" demonstrate MICs of 0.25-1 pg/ml. Examples with activity "A" demonstrate MICs of <0.25 pg/ml. Table 5. MICs against Enterococcus faecalis Example Activity Example Activity number number 180 B 181 B 10 Example compounds were also tested for activity against other bacterial species. For example, Table 6 shows the MICs of Example 180 against various bacterial species. Activity "C" demonstrates an MIC of 2-16 pg/ml. Activity "B" demonstrates an MIC of 0.25-1 pg/ml. Activity "A" demonstrates an MIC of <0.25 pg/ml. 15 Table 6. MICs against various bacteria Species Isolate ID Activity Enterococcus faecalis (VRE) ATCC 51299 B Enterococcus faecium (VRE) ATCC 700221 C Enterococcus faecium (VSE) ATCC 19434 C Moraxella catarrhalis ATCC 25240 B Staphylococcus aureus ATCC 29213 C Staphylococcus epidermidis ATCC 12228 B Staphylococcus haemolyticus ATCC 29970 B Streptococcus agalactiae ATCC 13813 B Streptococcus mutans ATCC 35668 B Streptococcus pneumoniae ATCC 49619 B Streptococcus pyogenes ATCC 51339 C 20

Claims (20)

1. A method of treating an antibacterial infection comprising administering a compound of formula (1), or a salt, hydrate, solvate or N-oxide thereof: R2 N X--[Alk]m-Q I _N Z /- s H R 3 5 wherein: mis 0 or 1; Q is hydrogen or cyclopropyl; 10 Alk is an optionally substituted, divalent C 1 -C 6 alkylene, alkenylene or alkynylene radical which may contain an ether (-0-), thioether (-S-) or amino (-NR)- link, wherein R is hydrogen, -CN or C 1 -C 3 alkyl; 15 X is -C(=0)NR 6 -, -S(O)NR 6 -, -C(=0)O- or -S(=0)O- wherein R 6 is hydrogen, optionally substituted C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, -Cyc, or -( C 1 -C 3 alkyl)-Cyc wherein Cyc is optionally substituted monocyclic carbocyclic or heterocyclic having 3-7 ring atoms; 20 Z is N; R 2 is a group Q'-[Alk 1 ]q-Q 2 -, wherein q is 0 or 1; Alk' is an optionally substituted, divalent, straight chain or branched C 1 -C 25 alkylene, or C 2 -C 6 alkenylene or C 2 -C 6 alkynylene radical which may contain or terminate in an ether (-0-), thioether (-S-) or amino (-NR)- link; Q 2 is an optionally substituted divalent monocyclic carbocyclic or heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic carbocyclic or heterocyclic radical having 9 or 10 ring atoms; 30 Q' is hydrogen, an optional substituent, or an optionally substituted carbocyclic or heterocyclic radical having 3-7 ring atoms; 97 R 3 is a group Q 4 -[Alk 2 ]p_[Q 3 ]q- other than hydrogen wherein p and q are independently 0 or 1; Alk 2 is optionally substituted divalent C-C 6 alkylene or C 2 -C 6 alkenylene or 5 C 2 -C 6 alkynylene radical; Q 3 is an optionally substituted divalent monocyclic carbocyclic or heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic carbocyclic or heterocyclic radical having 9 or 10 ring atoms; Q 4 is hydrogen, an optional substituent, or optionally substituted carbocyclic 10 or heterocyclic ring having 3-7 ring atoms.
2. A compound of formula (I) as defined in claim 1, or a salt, hydrate, solvate or N-oxide thereof, wherein, in the substituent R 3 , q is 1. 15
3. A compound according to claim 2 of formula (II) or a salt or N-oxide thereof: R2 X - [Alk]m-Q N /H 20 wherein: R 3 m is 0 or 1; Q is hydrogen or cyclopropyl; 25 Alk is an optionally substituted, divalent C-C 3 alkylene, C 2 -C 3 alkenylene or C 2 -C 3 alkynylene radical; X is -C(=0)NH- or -C(=O)O-; 30 R 2 is a group Q'-[Alk']q-Q 2 -, wherein q is 0 or 1; Alk' is an optionally substituted, divalent, straight chain or branched C-C 6 alkylene, or C 2 -C 6 alkenylene or C 2 -C 6 alkynylene radical which may contain 35 or terminate in an ether (-0-), thioether (-S-) or amino (-NR)- link; 98 Q 2 is an optionally substituted divalent monocyclic heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic heterocyclic radical having 9 or 10 ring atoms; Q1 is hydrogen, an optional substituent, or an optionally substituted 5 heterocyclic radical having 3-7 ring atoms; R is hydrogen, -CN or Cr1C3 alkyl; R 3 is a group Q 4 -[Alk 2 ]PQ 3 - other than hydrogen wherein p is 0 or 1; 10 Alk 2 is optionally substituted divalent C1C6 alkylene or C2-C6 alkenylene or C2-C6 alkynylene radical; Q 3 is an optionally substituted divalent monocyclic heterocyclic radical having 5 or 6 ring atoms or an optionally substituted divalent bicyclic heterocyclic radical having 9 or 10 ring atoms; 15 Q 4 is hydrogen, an optional substituent, or optionally substituted heterocyclic ring having 3-7 ring atoms.
4. A compound as claimed in claim 3 wherein, in the substituent R 2 , Q2 is an 20 optionally substituted pyridine, pyrimidine, pyrazine, pyran-2-one or pyridine-2-one ring.
5. A compound as claimed in claim 3 or claim 4 wherein, in the substituent R 3 , Q 3 is an optionally substituted pyridine ring, an optionally substituted pyrimidine ring 25 or an optionally substituted pyrazine ring.
6. A compound as claimed in any one of claims 3 to wherein m is 1 and Q is hydrogen. 30
7. A compound as claimed in claim 3 wherein X is -C(O)NH-.
8. A compound as claimed in claim 3 wherein m is 1, Q is hydrogen, Alk is CH 2 CH 2 -, and X is -C(O)NH-. 35
9. A compound as claimed in claim 3 wherein, in the substituent R 2 , Q2 is an optionally substituted pyridine-3-yl ring, an optionally substituted pyrimidine-5-yl ring, 99 an optionally substituted pyrazine-2-yl ring, an optionally substituted pyran-2-one-4-yl ring or an optionally substituted pyridine-2-one-4-yl ring.
10. A compound as claimed in claim 3 wherein, in the substituent R 2 , Alk' is 5 present and is an optionally substituted divalent CI-C 3 alkylene radical
11. A compound as claimed in claim 9 wherein, in the substituent R 2 , Q, is a group of formula -NRARB, wherein RA and RB are independently hydrogen or a (CI-C 6 )alkyl, hydroxy(CI-C 6 )alkyl, or (CI-C 3 )alkoxy(Ci-C 3 )alkyl group. 10
12. A compound as claimed in claim 9 wherein, in the substituent R 2 , Q, is a group of formula -NRARB, wherein R^ and RB taken together with that nitrogen form a cyclic amino ring. 15
13. A compound as claimed in claim 12 wherein the cyclic amino ring is a morpholinyl, piperidinyl, or piperazinyl ring.
14. A compound as claimed in claim 3 wherein, in the substituent R 3 , p is 1. 20
15. A compound as claimed in claim 14 wherein, in the substituent R 3 , Alk2 is an optionally substituted divalent CI-C 3 alkylene radical.
16. A compound as claimed in claim 3 wherein, in the substituent R 3 , Q 4 is hydrogen and p is 0. 25
17. A compound as claimed in claim 3 wherein, in the substituent R 3 , Q 3 is an optionally substituted pyridine-2-yl ring, an optionally substituted pyrimidine-2-yl ring or an optionally substituted pyrazine-2-yl ring. 30
18. An antibacterial composition comprising a compound as claimed in claim 2, together with one or more pharmaceutically acceptable carriers and/or excipients.
19. A method of treating or preventing bacterial contamination of a substrate comprising applying to the site of such contamination or potential contamination an 35 amount of a compound (I) as defined in claim 2, sufficient to inhibit bacterial growth 100
20. A method of treatment of a subject suffering a bacterial infection, or preventing bacterial infection in a subject, comprising administering to said subject an antibacterially effective amount of a compound as defined in claim 2.
AU2012200669A 2006-06-22 2012-02-06 Antibacterial compositions Ceased AU2012200669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012200669A AU2012200669B2 (en) 2006-06-22 2012-02-06 Antibacterial compositions

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0612428.3 2006-06-22
AU2007262791A AU2007262791B2 (en) 2006-06-22 2007-06-21 Antibacterial compositions
GB0724349.6 2007-12-13
AU2008334425A AU2008334425A1 (en) 2007-12-13 2008-12-12 Antibacterial compositions
AU2012200669A AU2012200669B2 (en) 2006-06-22 2012-02-06 Antibacterial compositions

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
AU2007262791A Division AU2007262791B2 (en) 2006-06-22 2007-06-21 Antibacterial compositions
AU2008334425A Division AU2008334425A1 (en) 2006-06-22 2008-12-12 Antibacterial compositions

Publications (2)

Publication Number Publication Date
AU2012200669A1 AU2012200669A1 (en) 2012-03-01
AU2012200669B2 true AU2012200669B2 (en) 2012-11-01

Family

ID=45812466

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012200669A Ceased AU2012200669B2 (en) 2006-06-22 2012-02-06 Antibacterial compositions

Country Status (1)

Country Link
AU (1) AU2012200669B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060879A2 (en) * 2000-12-15 2002-08-08 Vertex Pharmaceuticals Incorporated Bacterial gyrase inhibitors and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060879A2 (en) * 2000-12-15 2002-08-08 Vertex Pharmaceuticals Incorporated Bacterial gyrase inhibitors and uses thereof

Also Published As

Publication number Publication date
AU2012200669A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
AU2007262791B2 (en) Antibacterial compositions
AU2008334427B2 (en) Antibacterial condensed thiazoles
US8481544B2 (en) Antibacterial compositions
AU2007330600B2 (en) Antibacterial polycyclic urea compounds
KR100929942B1 (en) Pyridine-2-carboxamide derivatives as mglur5 antagonists
US8431713B2 (en) 2-aminopyridine derivatives as glucokinase activators
EP1181296A1 (en) Cell adhesion-inhibiting antiinflammatory compounds
AU2012200669B2 (en) Antibacterial compositions
MXPA00011994A (en) Cell adhesion-inhibiting antinflammatory compounds

Legal Events

Date Code Title Description
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE PRIORITY DETAILS TO CLAIM DIVISIONAL FROM 2007262791 AND 2008334425

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired