WO1999061575A1 - Verfahren zur herstellung von wasch- und reiningungsmitteln - Google Patents

Verfahren zur herstellung von wasch- und reiningungsmitteln Download PDF

Info

Publication number
WO1999061575A1
WO1999061575A1 PCT/EP1999/003329 EP9903329W WO9961575A1 WO 1999061575 A1 WO1999061575 A1 WO 1999061575A1 EP 9903329 W EP9903329 W EP 9903329W WO 9961575 A1 WO9961575 A1 WO 9961575A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
zeolite
weight
anionic surfactant
mixer
Prior art date
Application number
PCT/EP1999/003329
Other languages
English (en)
French (fr)
Inventor
Andreas Lietzmann
Rene-Andres Artiga Gonzalez
Wilfried Rähse
Wilfried RÖHL
Markus Semrau
Mario Sturm
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO1999061575A1 publication Critical patent/WO1999061575A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds

Definitions

  • the present invention relates to a method for producing detergents and cleaning agents.
  • it relates to a method which makes it possible to produce detergent and cleaning agent compositions without or with reduced use of spray drying steps.
  • Granular detergent and cleaning agent compositions are largely produced by spray drying.
  • the ingredients such as surfactants, builders etc. are mixed with about 35 to 50% by weight of water to form an aqueous slurry, the so-called slurry, and atomized in spray towers in a hot gas stream, the detergents and cleaning agents being atomized - Form particles.
  • Both the plants for this process and the implementation of the process are costly since approximately 30 to 40% by weight of the slurry water must be evaporated.
  • the granules produced by spray drying usually have excellent solubility, but only have low bulk densities, which leads to higher packaging volumes and transport and storage capacities.
  • Spray drying processes have a further series of disadvantages, so that there has been no lack of attempts to carry out the production of detergents and cleaning agents completely without spray drying or to have at least the smallest possible proportion of spray drying products in the finished product.
  • European patent application EP-A-0 678 573 (Procter & Gamble) describes a process for producing free-flowing surfactant granules with bulk densities above 600 g / 1, in which anionic surfactant acids with an excess of neutralizing agent form a paste with at least 40% by weight of surfactant are reacted and this paste is mixed with one or more powder (s), at least one of which must be spray-dried and which contains anionic polymer and cationic surfactant, the resulting granules optionally being able to be dried.
  • this document reduces the proportion of spray-dried granules in the washing and cleaning agents, it does not completely avoid spray drying.
  • European patent application EP-A-0 438 320 discloses a batch process for the production of surfactant granules with bulk densities above 650 g / l.
  • Anionic surfactant acid is added to a solution of an alkaline inorganic substance in water, possibly with the addition of other solids, and granulated in a high-speed mixer / granulator with a liquid binder. Neutralization and granulation take place in the same apparatus, but in separate process steps, so that the process can only be operated in batches.
  • ABS acid contains at least 62% NaOH is neutralized and then granulated with the addition of auxiliaries, for example ethoxylated alcohols or alkylphenols or a polyethylene glycol melting above 48.9 ° C. with a molar mass between 4000 and 50,000.
  • auxiliaries for example ethoxylated alcohols or alkylphenols or a polyethylene glycol melting above 48.9 ° C. with a molar mass between 4000 and 50,000.
  • EP-A-0 508 543 (Procter & Gamble) mentions a process in which a surfactant acid is neutralized with an excess of alkali to form an at least 40% by weight surfactant paste which is then conditioned and granulated.
  • German laid-open specification DE-A-42 32 874 (Henkel KGaA) discloses a process for producing washable and cleaning-active anionic surfactant granules by neutralizing anionic surfactants in their acid form. However, only solid, powdery substances are disclosed as neutralizing agents. The granules obtained have surfactant contents of around 30% by weight and bulk densities of less than 550 g / l.
  • EP 642 576 (Henkel KGaA) describes a two-stage granulation in two consecutive mixers / granulators, wherein in a first, low-speed granulator 40-100 wt and in a second, high-speed granulator, the pre-granules are mixed with the remaining constituents, if necessary, and converted into granules.
  • the present invention was based on the object of providing a method which makes it possible to produce detergents and cleaning agents without or with reduced use of spray drying steps.
  • the detergents and cleaning agents obtained should not lag behind spray-dried detergents and cleaning agents with regard to their solubility and their residue behavior, even though they have high bulk densities.
  • the process should be significant with regard to spray drying. lent more energy-efficient and if possible can do without energy-intensive drying steps.
  • the problem is solved in a multi-stage mixing and granulating process which is carried out in such a way that no drying steps are necessary during or at the end of the process.
  • the invention thus relates to a method for producing detergents and cleaning agents, which comprises the steps
  • an anionic surfactant acid is neutralized and granulated, a zeolite-containing anionic surfactant granulate being obtained.
  • the decomposition of the acid-sensitive zeolite is avoided by previously mixing the zeolite with aqueous sodium hydroxide solution. All representatives of this substance class can be used as zeolites in process step i) a).
  • the fine crystalline, synthetic and bound water-containing zeolite used can be, for example, A and / or P.
  • Zeolite MAP® commercial product from Crosfield
  • Zeolite X and mixtures of A, X and / or P are also suitable and preferred in the context of the present invention.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension which is still moist from its production.
  • the zeolites to be mixed with the sodium hydroxide solution in step i) a) have the general formula M 2 / n O "Al 2 O 3 'x SiO 2 ' y H 2 O, in which M is a cation of valence n, x for Values that are greater than or equal to 2 and y can assume values between 0 and 20.
  • the zeolite structures are formed by linking AlO 4 tetrahedra with SiO 4 tetrahedra, this network being occupied by cations and water molecules, the cations in these Structures are relatively mobile and can be exchanged for other cations in different degrees.
  • the intercrystalline "zeolitic" water can be released continuously and reversibly depending on the type of zeolite, while for some types of zeolite structural changes are also associated with the water release or uptake.
  • the "primary binding units” AlO 4 tetrahedra and SiO 4 tetrahedra
  • secondary binding units which have the form of one or more rings.
  • 4-, 6- and 8-membered rings appear in various zeolites (referred to as S4R, S6R and S8R), other types are connected via four- and six-membered double ring prisms (most common types: D4R as a square prism or D6R as a hexagonal prism ).
  • S4R, S6R and S8R zeolites
  • D4R most common types: D4R as a square prism or D6R as a hexagonal prism
  • These "secondary subunits" connect different polyhedra, which are denoted by Greek letters.
  • the best known zeolite, zeolite 4 A is a cubic combination of ß-cages that are linked by D4R subunits. It belongs to the zeolite structure group 3 and its three-dimensional network has pores of 2.2 ⁇ and 4.2 ⁇ size, the formula unit in the unit cell can be with Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ] ' 27 H 2 O describe.
  • Zeolites of the faujasite type are particularly preferably used in accordance with the invention.
  • the mineral belongs together with the zeolites X and Y. Faujasite to the faujasite types within the zeolite structure group 4, which is characterized by the double six-ring subunit D6R (compare Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974 , Page 92).
  • the zeolite structure group 4 also includes the minerals chabazite and gmelinite as well as the synthetic zeolites R (chabazite type), S (gmelinite type), L and ZK-5. The latter two synthetic zeolites have no mineral analogues.
  • Faujasite-type zeolites are made up of ß-cages which are tetrahedral linked by D6R subunits, the ß-cages being arranged similar to the carbon atoms in the diamond.
  • the three-dimensional network of the faujasite-type zeolites used in the process according to the invention has pores of 2.2 and 7.4 ⁇ , the unit cell also contains 8 cavities with a diameter of approximately 13 ⁇ and can be determined using the formula Na 86 [(AlO 2 ) 86 (SiO 2 ), 06 ] '264 H 2 O describe.
  • the network of zeolite X contains a void volume of approximately 50%, based on the dehydrated crystal, which represents the largest empty space of all known zeolites (zeolite Y: approx. 48% void volume, faujasite: approx. 47% void volume). (All data from: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, pages 145, 176, 177).
  • zeolite of the faujasite type denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4.
  • zeolite Y and faujasite and mixtures of these compounds can also be used according to the invention, pure zeolite X being preferred.
  • Mixtures or cocrystallizates of zeolites of the faujasite type with other zeolites which do not necessarily have to belong to the zeolite structure group 4 can also be used according to the invention, it being advantageous if at least 50% by weight of the zeolite from a zeolite of faujasite -Type exist.
  • the aluminum silicates used in the process according to the invention are commercially available and the methods for their preparation are described in standard monographs.
  • x can have values between 0 and 276 and the pore sizes range from 8.0 to 8.4 ⁇ .
  • zeolite X and zeolite A (ca. 80 wt .-% zeolite X) which is marketed by CONDEA Augusta SpA under the trade name VEGOBOND AX ® and through the formula
  • Y-type zeolites are also commercially available and can be expressed, for example, by the formulas
  • x stands for numbers between 0 and 276 and have a pore size of 8.0 ⁇ .
  • the particle sizes of the faujasite-type zeolites used in the process according to the invention are in the range from 0.1 to 100 ⁇ m, preferably between 0.5 and 50 ⁇ m and in particular between 1 and 30 ⁇ m, in each case measured using standard particle size determination methods.
  • the amount of zeolite which is introduced into the process according to the invention in step i) a) is usually 5 to 50% by weight, preferably 10 to 45% by weight and in particular 15 to 40% by weight, based on the Process end product of process step i).
  • the sodium hydroxide solution used to neutralize the anionic surfactant acid added in the subsequent step can be of any concentration, higher concentrations being preferred because of the correspondingly lower water content with a view to avoiding additional drying steps. It is particularly preferred in the process according to the invention if the sodium hydroxide solution used contains at least 30% by weight, preferably at least 40% by weight and in particular at least 50% by weight of NaOH.
  • step i) a it is possible to introduce further solids in a mixture with the zeolite and the sodium hydroxide solution in step i) a).
  • alkaline solids in particular alkali carbonates
  • the alkali metal carbonates additionally introduced into the process additionally introduce alkalinity into the mixture, so that the sodium hydroxide solution in the premix of process step i) a) can be reduced, if this is desired.
  • anhydrous alkali carbonates which, by converting to hydrate, act as an "internal desiccant".
  • a zeolite / carbonate powder mixture does not solve the problems of decomposing the acid-sensitive zeolite. If, in addition to the aqueous sodium hydroxide solution, alkali metal carbonates are also to be present in step a), it is preferred that their neutralization potential, ie their molar share in the neutralization of the anionic surfactant acid (s) added in step i) b), based on all the neutralizing agents present, is at a maximum 50%, preferably a maximum of 20% and in particular a maximum of 10%.
  • the sodium hydroxide solution carries at least 50%, preferably at least 80% and in particular at least 90% of the neutralization potential.
  • step i) a) all substances can be added which are capable of absorbing free water, preferably salts capable of hydrate formation.
  • phosphates, in particular sodium tripolyphosphate, and over-dried silicates have the greatest significance as “internal drying agents” in the process according to the invention.
  • Zeolites which are not completely hydrated, that is to say over-dried, can also be used. These over-dried zeolites are commercially available. So-called over-dried tower powders can also be used, e.g. detergent base powder produced by spray drying and over-dried in the spray drying step.
  • step i) b) the mixture of zeolite and sodium hydroxide solution, as well as further optional constituents, introduced in the mixer is granulated with the addition of anionic surfactant acid (s).
  • anionic surfactant acids are mainly alkylbenzenesulfonic acids (ABSS), alkylsulfonic acids or alkylsulfuric acids.
  • ABSS alkylbenzenesulfonic acids
  • the amount of anionic surfactant acid used in the process according to the invention is preferably selected so that the resulting granulate contains> 20% by weight anionic surfactant (s).
  • the ABSS in the process according to the invention is preferably C 9 . 13 - Alkylbenzenesulfonic acids, olefin sulfonic acids, that is to say mixtures of alkene and hydroxyalkanesulfonic acids and disulfonic acids, of the kind obtained, for example, from C 8 monoolefins with terminal or internal double bond by sulfonation with gaseous or liquid sulfur trioxide.
  • the alkane sulfonic acids which can be obtained from C 12 -C 18 alkanes by sulfochlorination and sulfoxidation and by subsequent hydrolysis or by bisulfite addition to olefins.
  • alkyl sulfuric acids which are obtained, for example, by reacting fatty alcohols with H 2 SO 4 , can also be used as anionic surfactant acid.
  • Suitable alkyl sulfuric acids are, for example, the sulfuric acid monoesters from primary alcohols of natural and synthetic origin, in particular from fatty alcohols, e.g. B. coconut fatty alcohols, tallow fatty alcohols, oleyl alcohol, lauryl, myristyl, palmityl or stearyl alcohol, or the C 10 -C 20 oxo alcohols, and those secondary alcohols of this chain length.
  • the sulfuric acid monoesters of alcohols ethoxylated with 1 to 6 moles of ethylene oxide such as 2-methyl-branched C 9 -C u alcohols with an average of 3.5 moles of ethylene oxide, are also suitable.
  • ethylene oxide such as 2-methyl-branched C 9 -C u alcohols with an average of 3.5 moles of ethylene oxide
  • saturated and unsaturated fatty acids with C 8 -C I8 chain lengths in the form of their mixtures and / or ⁇ -sulfofatty acids saturated C 8 -C 18 fatty acids is possible in the inventive method.
  • an alkylbenzenesulfonic acid (ABSS) is used as the anionic surfactant acid.
  • the concentration of the anionic surfactant acids can vary due to the production process.
  • the end products of the sulfonation, sulfation or sulfoxidation process usually contain water and minor amounts of impurities such as salts, for example sodium sulfate.
  • the anionic surfactant acid has an active substance content of at least 60% by weight, preferably at least 75% by weight and in particular at least 85% by weight.
  • the anionic surfactant acids can also be used in a mixture with other substances. It is preferred to add further acidic ingredients in step i) b).
  • further acidic ingredients for example ABSS and fatty acids, phosphonic acids or organic polycarboxylic acids such as citric acid or polyacrylic acids are particularly suitable.
  • further aqueous solutions together with the anionic surfactant acid as the granulating liquid, with the addition of aqueous polymer carboxylate solutions being particularly preferred.
  • Mixtures which, based on the mixture, contain more than 30% by weight, preferably wise contain more than 40 wt .-% and in particular more than 50 wt .-% anionic surfactant in its acid reform and more than 10 wt .-%, preferably more than 20 wt .-% and in particular more than 30 wt .-% nonionic surfactants .
  • the ratio of anionic to nonionic surfactants can vary widely in such mixtures and is preferably between 10: 1 and 1:10, preferably between 5: 1 and 1: 5 and in particular between 3: 1 and 1: 1.
  • Process stage i) can be carried out in a wide variety of mixing and granulating devices.
  • a suitable mixing and granulating device for example in appropriate systems of the type of an Eirich mixer, a Lödige mixer, for example a ploughshare mixer from the Lödige company, or a mixer from the Schugi company, at peripheral speeds of the mixing elements, preferably between 2 and 7 m / s (ploughshare mixer) or 3 to 50 m / s (Eirich, Schugi), in particular between 5 and 20 m / s of the zeolite and the sodium hydroxide solution and further optionally used constituents and subsequently granulated with the addition of the anionic surfactant acid.
  • a predetermined grain size of the granules can be set in a manner known per se.
  • the neutralization and mixing process requires only a very short period of time, for example, about 0.5 to 10 minutes, in particular about 0.5 to 5 minutes (Eirich mixer, Lödige mixer) to homogenize the mixture with formation of the free-flowing granules.
  • a residence time of 0.5 to 10 seconds is usually sufficient to obtain a free-flowing granulate.
  • the granules formed in the first process step i) can now be left in the mixer in which they were manufactured until process step iii). lerdings also be transferred to a second mixer, where they are later combined with the granules from process step ii).
  • the latter procedure has the advantage that the mixer of process stage i) can now be used to carry out process stage ii).
  • a mixer will be provided in each case for carrying out process steps i) and ii), the respective end products of these process steps then being discharged into a third mixer.
  • zeolite and bleaching agent are placed in a mixer and granulated with the addition of nonionic surfactant.
  • the aluminum silicates already described in detail in process step i) can be used as zeolites.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • Sodium perborate tetrahydrate is preferably used as the bleaching agent in step ii) a).
  • Process stage ii) a) can take place with the addition of further solids which are mixed with the zeolite and the bleaching agent.
  • all the solids normally used in washing and cleaning agents can be added, with substances from the group of sulfates, phosphates and silicates being particularly preferred as additives.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x +! ⁇ 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and are preferred values for x 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • M represents sodium
  • x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na j S ⁇ O j - f O are preferred. moves, whereby ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO-A-91/08171.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • nonionic surfactant s
  • Preferred nonionic surfactants are alkoxylated, advantageously ethoxylated, in particular primary alcohols with chain lengths of 8 to 28, preferably 12 to 22 and in particular 16 to 18 carbon atoms and degrees of alkoxylation of average
  • alkylene oxide 1 to 40, preferably 3 to 20 and in particular 5 to 10 moles of alkylene oxide (AO) are used per mole of alcohol, in which the alcohol radical can be linearly or preferably methyl-branched in the 2-position or can contain linear and methyl-branched radicals in the mixture, as they are usually in oxo alcohol residues.
  • alcohol ethoxylates with linear residues from alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • Preferred ethoxylated alcohols include, for example, C 12 _ 14 - alcohols with 3 EO or 4 EO, C.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl esters as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R * for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic Alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, where C,. 4 -alkyl or phenyl radicals are preferred and [Z] represents a linear polyhydroxyalkyl radical, the alkyl chain of which is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated, derivatives of this radical.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants mentioned are preferably introduced into the process in flowable form, i.e. either liquid to pasty nonionic surfactants are used at room temperature, or the nonionic surfactants are added at elevated temperature.
  • nonionic surfactants which are solid even at elevated temperature, it is preferred to use them in a mixture with liquid or flowable nonionic surfactants in order to facilitate the addition and subsequent granulation.
  • step ii) b) of the process according to the invention can also be added in step ii) b) of the process according to the invention, it being preferred to add these ingredients dissolved in the nonionic surfactant or in a mixture with the nonionic surfactant.
  • Preferred compounds which can be introduced into the process according to the invention via the nonionic surfactant are those from the group of dyes, fragrances, foam inhibitors and optical brighteners.
  • Dyes and fragrances are used in the process according to the invention in order to improve the aesthetic impression of the products and, in addition to the washing and cleaning performance, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • perfume oils or fragrances individual fragrance compounds, for example the synthetic products of the ester, ether, aldehyde, ketone, Alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, AUylcyclohexyl benzylatepylpionate, benzylate propionate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyd, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, and the ketones include, for example, the jonones, oc-isomethylionone and methyl -cedryl ketone, the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • Perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouli, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the dye content of the process end products according to the invention is usually less than 0.01% by weight, while fragrances can make up up to 2% by weight of the total formulation.
  • Derivatives of diamino-stilbenedisulfonic acid or its alkali metal salts can be used as optical brighteners in the process according to the invention.
  • Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which are used instead of Morpholino group carry a diethanolamino group, a methylamino group, anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyls. Mixtures of the aforementioned brighteners can also be used.
  • foam inhibitors for example, soaps of natural or synthetic origin come into consideration which have a high proportion of C ! 8 . 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica or bistearylethylenediamide. Mixtures of different foam inhibitors are also used with advantages, for example those made of silicone, paraffins or waxes.
  • the foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • Process stage ii) can be carried out in the mixers already mentioned in process step i).
  • the last process step comprises combining the surfactant-containing granules formed in steps i) and ii), it being possible to add further substances and to set a bulk density> 500 g / l.
  • Further ingredients optionally to be added in step iii) preferably originate from the group of bleach activators, enzymes, foam inhibitors, dyes and fragrances and polymers.
  • bleach activators can be introduced into the process according to the invention.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular l, 5-diacetyl-2,4-dioxohexahydro-l, 3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetoxy and 2,5-diacetyloxy and 2,5-glycolacetyl, ethylene glycol 2,5-dihydrofur
  • bleach catalysts can also be incorporated in step iii).
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with nitrogen-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example of protease and amylase or protease and lipase or protease and cellulase or of cellulase and lipase or of protease, amylase and lipase or protease, lipase and cellulase, but in particular mixtures containing cellulase, are of particular interest.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules in the process end products according to the invention can be, for example, approximately 0.1 to 5% by weight, preferably 0.1 to approximately 2% by weight.
  • the process end products can also contain components that have a positive influence on the oil and fat washability from textiles (so-called soil repel lents). This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight, in each case based on the nonionic cellulose ether, and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • polymers that can be added in process step iii) are organic builders such as polycarboxylates.
  • Suitable polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 10 to 50% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on the free acids is usually 5,000 to 200,000, preferably 10,000 to 120,000 and more preferably 50,000 to 100,000 polymers of the type mentioned are for example marketed by BASF under the name Sokalan ®.
  • polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons, and mixtures of these this.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the process according to the invention has the advantage that the complex equipment for spray drying is not required.
  • the process according to the invention saves energy, since no additional water has to be evaporated: neither the end products of intermediate steps i) and ii) nor the end product of the process according to the invention require drying to remove excess water components.
  • the end product of process step iii) can rather be used directly as a washing and cleaning agent and can be fed to the filling and packaging.
  • the detergents and cleaning agents obtained by the process according to the invention have a substantially higher bulk density than spray-dried granules, which is> 500 g / 1, but is preferably more than 600 g / 1 and in particular more than 700 g / 1.
  • the particle size of the end products of the process can also be varied by the process control.
  • the mean particle size of the end products of the process is below 600 ⁇ m, the upper and lower limits in the range from 50 to 1200 ⁇ m, preferably in the range from 75 to 1000 ⁇ m and in particular in the range 100 to 800 ⁇ m lie.
  • a soda-silicate compound, a bleach activator, enzyme granules, foam inhibitor and perfume were added to the surfactant granules from process steps i) and ii) added to the second mixer and the mixture was mixed until homogeneous ⁇ process stage iii) ⁇ .
  • the composition of the mixture in the second mixer is shown in Table 3.
  • Table 1 Composition of the anionic surfactant granules [% by weight]
  • composition 50% by weight acrylic acid-maleic acid copolymer (BASF) 36.3% by weight sodium carbonate 10% by weight sodium sulfate balance water, salts
  • composition 3% by weight alkyl benzene sulfonate
  • the granules were then sieved to remove coarse particles to particle sizes below 1600 microns.
  • the bulk weight and the residue values were determined from the screened quality.
  • the bulk density of the finished product was 750 g / 1
  • the Residue test was carried out with a laundry item made of 4 black leotards made of textured polymaid with a weight of approx. 320 g.
  • the following devices were used:
  • Grade 3 recognizable residues that are already annoying when viewed critically

Abstract

Die vorliegende Erfindung stellt ein Verfahren zur Herstellung von Wasch- und Reinigungsmitteln bereit, das die Schritte i)a) Vermischen von Zeolith und wäßriger Natronlauge in einem Mischer, i)b) Granulation unter Zugabe von Aniontensidsäure(n); ii)a) Vermischen von Zeolith und Bleichmittel(n) in einem Mischer, ii)b) Granulation unter Zugabe von Niotensid; iii) Vereinigung der in den Verfahrensschritten i) und ii) gebildeten Granulate unter Zugabe weiterer optional einzusetzender Inhaltsstoffe von Wasch- und Reinigungsmitteln umfaßt, wobei ein Schüttgewicht ≥500 g/l eingestellt wird.

Description

"Verfahren zur Herstellung von Wasch- und Reinigungsmitteln"
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasch- und Reinigungsmitteln. Sie betrifft insbesondere ein Verfahren, das es gestattet, Wasch- und Reinigungsmittelzusammensetzungen ohne oder mit vermindertem Einsatz von Sprühtrocknungsschritten herzustellen.
Granuläre Wasch- und Reinigungsmittelzusammensetzungen werden zu einem Großteil durch Sprühtrocknung hergestellt. Bei der Sprühtrocknung werden die Inhaltsstoffe wie Tenside, Gerüststoffe usw. mit ca. 35 bis 50 Gew.-% Wasser zu einer wäßrigen Auf- schlämmung, dem sogenannten Slurry, vermischt und in Sprühtürmen in einem Heißgasstrom zerstäubt, wobei sich die Wasch- und Reinigungsmittel-Partikel ausbilden. Sowohl die Anlagen für dieses Verfahren als auch die Durchführung des Verfahrens sind kostenaufwendig, da ca. 30 bis 40 Gew.-% des Slurry- Wassers verdampft werden müssen. Zudem haben die durch Sprühtrocknung hergestellten Granulate zwar meist eine ausgezeichnete Löslichkeit, weisen aber nur geringe Schüttgewichte auf, was zu höheren Verpackungsvolumina sowie Transport- und Lagerkapazitäten führt. Auch die Fließfähigkeit sprühgetrockneter Granulate ist aufgrund ihrer unregelmäßigen Oberflächenstruktur nicht optimal, was sich auch auf ihr optisches Erscheinungsbild auswirkt. Sprühtrocknungsver- fahren weisen eine weitere Reihe von Nachteilen auf, so daß es nicht an Versuchen gefehlt hat, die Herstellung von Wasch- und Reinigungsmitteln völlig ohne Sprühtrocknung durchzuführen oder zumindest möglichst geringe Anteile an Sprühtrocknungsprodukten im Fertigprodukt zu haben.
So beschreibt W.Hermann de Groot, I. Adami, G.F. Moretti "The Manufacture of Modern Detergent Powders ' ', Hermann de Groot Academic Publisher, Wassenaar, 1995, Seite 102 ff. verschiedene Misch- und Granulierverfahren zur Herstellung von Wasch- und Reinigungsmitteln. Diese Verfahren haben die Gemeinsamkeit, daß vorgemischte Feststoffe unter Zusatz der flüssigen Inhaltsstoffe granuliert und gegebenenfalls nachgetrocknet werden.
Auch in der Patentliteratur existiert ein breiter Stand der Technik zur Non-Tower- Herstellung von Wasch- und Reinigungsmitteln. Viele dieser Verfahren gehen von der Säureform der anionischen Tenside aus, da diese Tensidklasse mengenmäßig den größten Anteil an waschaktiven Substanzen darstellt und die Aniontenside im Verlauf ihrer Herstellung in Form der freien Säuren anfallen, die zu den entsprechenden Salzen neutralisiert werden müssen.
So beschreibt die europäische Patentanmeldung EP-A-0 678 573 (Procter & Gamble) ein Verfahren zur Herstellung rieselfähiger Tensidgranulate mit Schüttgewichten oberhalb 600 g/1, in dem Anionentensidsäuren mit einem Überschuß an Neutralisationsmittel zu einer Paste mit mindestens 40 Gew.-% Tensid umgesetzt werden und diese Paste mit einem oder mehreren Pulver(n), von denen mindestens eines sprühgetrocknet sein muß und das anionisches Polymer und kationisches Tensid enthält, vermischt wird, wobei das entstehende Granulat optional getrocknet werden kann. Diese Schrift verringert zwar den Anteil sprühgetrockneter Granulate in den Wasch- und Reinigungsmitteln, vermeidet die Sprühtrocknung aber nicht gänzlich.
Die europäische Patentanmeldung EP-A-0 438 320 (Unilever) offenbart ein batchweise ausgeführtes Verfahren zur Herstellung von Tensidgranulaten mit Schüttgewichten oberhalb von 650 g/1. Hierbei wird eine Lösung eines alkalischen anorganischen Stoffes in Wasser unter eventuellem Zusatz anderer Feststoffe mit der Anionentensidsäure versetzt und in einem Hochgeschwindigkeitsmischer/Granulator mit einem flüssigen Binder granuliert. Neutralisation und Granulation erfolgen zwar in den gleichen Apparatur, aber in voneinander getrennten Verfahrensschritten, so daß das Verfahren nur chargenweise betrieben werden kann. Aus der europäischen Patentanmeldung EP-A-0 402 112 (Procter & Gamble) ist ein kontinuierliches Neutralisations-/Granulationsverfahren zur Herstellung von FAS- und/oder ABS-Granulaten aus der Säure bekannt, in dem die ABS-Säure mit mindestens 62%iger NaOH neutralisiert und dann unter Zusatz von Hilfsstoffen, zum Beispiel ethoxylierten Alkoholen oder Alkylphenolen oder eines oberhalb von 48,9°C schmelzenden Polyethy- lenglykols mit einer Molmasse zwischen 4000 und 50000 granuliert wird.
Die europäischen Patentanmeldung EP-A-0 508 543 (Procter & Gamble) nennt ein Verfahren, in dem eine Tensidsäure mit einem Überschuß an Alkali zu einer mindestens 40 Gew.- %igen Tensidpaste neutralisiert wird, die anschließend konditioniert und granuliert wird.
Die deutsche Offenlegungsschrift DE-A- 42 32 874 (Henkel KGaA) offenbart ein Verfahren zur Herstellung wasch- und reinigungsaktiver Anionentensidgranulate durch Neutralisation von Anionentensiden in ihrer Säureform. Als Neutralisationsmittel werden allerdings nur feste, pulverformige Stoffe offenbart. Die erhaltenen Granulate haben Tensidge- halte um 30 Gew.-% und Schüttgewichte von unter 550 g/1.
Die europäische Offenlegungsschrift EP 642 576 (Henkel KGaA) beschreibt eine zweistufige Granulierung in zwei hintereinander geschalteten Mischer/Granulatoren, wobei in einem ersten, niedertourigen Granulator 40-100 Gew.%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, der festen und flüssigen Bestandteile vorgranuliert und in einem zweiten, hochtourigen Granulator das Vorgranulat ggf. mit den restlichen Bestandteilen vermischt und in ein Granulat überführt wird.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein Verfahren bereitzustellen, das es gestatttet, Wasch- und Reinigungsmittel ohne oder mit reduziertem Einsatz von Sprühtrocknungsschritten herzustellen. Insbesondere sollten die erhaltenen Wasch- und Reinigungsmittel hinsichtlich ihrer Löslichkeit und ihres Rückstandsverhaltens nicht hinter sprühgetrockneten Wasch- und Reinigungsmitteln zurückstehen, obwohl sie hohe Schüttgewichte aufweisen. Das Verfahren sollte dabei im Hinblick auf die Sprühtrocknung deut- lieh energiegünstiger durchführbar sein und nach Möglichkeit ohne energieintensive Trocknungsschritte auskommen können.
Die Lösung der Aufgabe gelingt in einem mehrstufigen Misch- und Granulierprozeß, der so geführt wird, daß keine Trocknungsschritte während oder am Ende des Verfahrens notwendig sind. Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von Wasch- und Reinigungsmitteln, das die Schritte
i)a) Vermischen von Zeolith und wäßriger Natronlauge in einem Mischer i)b) Granulation unter Zugabe von Aniontensidsäure(n)
ii)a) Vermischen von Zeolith und Bleichmittel(n) in einem Mischer ii)b) Granulation unter Zugabe von Niotensid
iii) Vereinigung der in den Verfahrensschritten i) und ii) gebildeten Granulate unter Zugabe weiterer optional einzusetzender Inhaltsstoffe von Wasch- und Reinigungsmitteln
umfaßt, wobei ein Schüttgewicht > 500 g/1 eingestellt wird.
Im Verfahrensschritt i) wird eine Aniontensidsäure neutralisiert und granuliert, wobei ein zeolithhaltiges Aniontensidgranulat erhalten wird. Die Zersetzung des säureempfindlichen Zeoliths wird dabei vermieden, indem der Zeolith vorher mit wäßriger Natronlauge vermischt wird. Als Zeolithe können im Verfahrenschritt i)a) sämtliche Vertreter dieser Substanzklasse eingesetzt werden. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith kann beispielsweise A und/oder P sein. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet und im Rahmen der vorliegenden Erfindung bevorzugt sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Die in Schritt i)a) mit der Natronlauge zu vermischenden Zeolithe weisen die allgemeine Formel M2/nO " Al2O3 ' x SiO2 ' y H2O auf, in der M ein Kation der Wertigkeit n ist, x für Werte steht, die größer oder gleich 2 sind und y Werte zwischen 0 und 20 annehmen kann. Die Zeolithstrukturen bilden sich durch Verknüpfung von AlO4-Tetraedern mit SiO4- Tetraedern, wobei dieses Netzwerk von Kationen und Wassermolekülen besetzt ist. Die Kationen in diesen Strukturen sind relativ mobil und können in unterschiedlichen Graden durch andere Kationen ausgetauscht sein. Das interkristalline "zeolithische" Wasser kann je nach Zeolithtyp kontinuierlich und reversibel abgegeben werden, während bei einigen Zeolithtypen auch strukturelle Änderungen mit der Wasserabgabe bzw. -aufnähme einhergehen.
In den strukturellen Untereinheiten bilden die "primären Bindungseinheiten" (AlO4- Tetraeder und SiO4-Tetraeder) sogenannte "sekundäre Bindungseinheiten", die die Form ein- oder mehrfacher Ringe besitzen. So treten in verschiedenen Zeolithen beispielsweise 4-, 6- und 8-gliedrige Ringe auf (als S4R, S6R und S8R bezeichnet), andere Typen werden über vier- und sechsgliedrige Doppelringprismen verbunden (häufigste Typen: D4R als viereckiges bzw. D6R als sechseckiges Prisma). Diese "sekundären Untereinheiten" verbinden unterschiedliche Polyhedra, die mit griechischen Buchstaben bezeichnet werden. Am verbreitetsten ist hierbei ein Vielflächner, der aus sechs Quadraten und acht gleichseitigen Sechsecken aufgebaut ist und der als "ß" bezeichnet wird. Mit diesen Baueinheiten lassen sich mannigfaltige unterschiedliche Zeolithe realisieren. Bislang sind 34 natürliche Zeolith-Mineralien sowie ungefähr 100 synthetische Zeolithe bekannt.
Der bekannteste Zeolith, Zeolith 4 A, stellt eine kubische Zusammenstelling von ß-Käfigen dar, die durch D4R-Untereinheiten verknüpft sind. Er gehört der Zeolith-Strukturgruppe 3 an und sein dreidimensionales Netzwerk weist Poren von 2,2 Ä und 4,2 Ä Größe auf, die Formeleinheit in der Elementarzelle läßt sich mit Na12[(AlO2)12(SiO2)12] ' 27 H2O beschreiben.
Erfindungsgemäß besonders bevorzugt eingesetzt werden im erfindungsgemäßen Verfahren Zeolithe vom Faujasit-Typ. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves ", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus ß-Käfigen aufgebaut, die tetrahedral über D6R- Untereinheiten verknüpft sind, wobei die ß-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Ä auf, die Elementarzelle enthält darüberhinaus 8 Kavitäten mit ca. 13 Ä Durchmesser und läßt sich durch die Formel Na86[(AlO2)86(SiO2),06] ' 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisier- ten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: "Zeolite Molecular Sieves ", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit- Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfm- dungsgemäß einsetzbar, wobei es vorteilhaft ist, wenn mindestens 50 Gew.-% des Zeoliths aus einem Zeolithen vom Faujasit-Typ bestehen. Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien beschrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden:
Na86[(AlO2)86(SiO2)106] x H2O,
K86[(AlO2)86(SiO2)106] x H2O,
Ca40Na6[(AlO2)86(SiO2)106] x H2O,
Sr21Ba22[(AlO2)86(SiO2)106] x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Ä aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa.O ' (l-n)K2O Al2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich uns lassen sich beispielsweise durch die Formeln
Na56[(AlO2)56(SiO2)136] ' x H2O, K56[(AlO2)56(SiO2)I36] x H2O,
in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 Ä aufweisen, beschreiben.
Die Teilchengrößen der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ liegt dabei im Bereich von 0,1 bis zu 100 μm, vorzugsweise zwischen 0,5 und 50 μm und insbesondere zwischen 1 und 30 μm, jeweils mit Standard- Teilchengrößebestimmungsmethoden gemessen. Die Menge des Zeoliths, der in Schritt i)a) in das erfindungsgemäße Verfahren eingebracht wird, beträgt üblicherweise 5 bis 50 Gew.- %, vorzugsweise 10 bis 45 Gew.-% und insbesondere 15 bis 40 Gew.-%, bezogen auf das Verfahrensendprodukt des Verfahrensschritts i).
Die zur Neutralisation der im nachfolgenden Schritt zugefügten Aniontensidsäure zur Verwendung kommende Natronlauge kann beliebiger Konzentration sein, wobei höhere Konzentrationen wegen des dementsprechend niedrigeren Wassergehaltes im Hinblick auf die Vermeidung zusätzlicher Trocknungsschritte bevorzugt sind. Insbesondere ist es im erfindungsgemäßen Verfahren bevorzugt, wenn die eingesetzte Natronlauge mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% NaOH enthält.
Es ist im erfindungsgemäßen Verfahren möglich, in Schritt i)a) weitere Feststoffe im Gemisch mit dem Zeolith und der Natronlauge vorzulegen. So ist es insbesondere bevorzugt, alkalisch reagierende Feststoffe, insbesondere Alkalicarbonate, mit dem Zeolith in einem Mischaggregat vorzulegen und dieses Gemisch mit Natronlauge zu vermischen. Die zusätzlich in das Verfahren eingebrachten Alkalicarbonate bringen hierbei zusätzlich Alkali- tät in das Gemisch ein, so daß der Gehalt der Vormischung des Verfahrensschritts i)a) an Natronlauge gesenkt werden kann, sofern man dies wünscht. Hier ist es bevorzugt, wasserfreie Alkalicarbonate zu verwenden, die durch Umwandlung zum Hydrat als "inneres Trockenmittel" fungieren. Eine vollständige Substitution der Natronlauge durch Alkalicar- bonate, die einer Trockenneutralisation der Aniontensidsäure mit Alkalicarbonat gleichkäme, ist nicht Gegenstand des erfindungsgemäßen Verfahrens. Durch eine Zeolith/Carbonat- Pulvergemisch werden die Probleme der Zersetzung des säureempfindlichen Zeoliths nicht gelöst. Sollen also zusätzlich zur wäßrigen Natronlauge auch Alkalicarbonate im Schritt a) vorhanden sein, ist es bevorzugt, daß ihr Neutralisationspotential, d.h. ihr molarer Anteil an der Neutralisation der in Schritt i)b) zugegebenen Aniontensidsäure(n), bezogen auf sämtliche vorhandenen Neutralisationsmittel, maximal 50 %, vorzugsweise maximal 20 % und insbesondere maximal 10 % beträgt.
Es ist erfindungsgemäß bevorzugt, daß die Natronlauge mindestens 50 %, vorzugsweise mindestens 80 % und insbesondere mindestens 90 % des Neutralisationspotentials trägt.
Es ist erfindungsgemäß ebenfalls problemlos möglich, die oben durch die Verwendung wasserfreien Natriumcarbonats geschilderte "innere Trocknung" mit Hilfe anderer Feststoffe zu ermöglichen. Hierzu können im Schritt i)a) sämtliche Stoffe zugesetzt werden, die zur Aufnahme von freiem Wasser befähigt sind, vorzugsweise also zur Hydratbildung befähigte Salze. Unter diesen Stoffen haben Phosphate, insbesondere das Natriumtripoly- phosphat, sowie übertrocknete Silikate im Rahmen des erfindungsgemäßen Verfahrens die größte Bedutung als "innere Trocknungsmittel". Weiterhin einsetzbar sind auch Zeolithe, die nicht vollständig hydratisiert, also übertrocknet, sind. Diese übertrockneten Zeolithe sind kommerziell erhältlich. Einsetzbar sind aber beispielsweise auch sogenannte übertrocknete Turmpulver, d.h. durch Sprühtrocknung hergestellte und im Sprühtrocknungs- schritt übertrocknete Waschmittel-Basispulver.
Es ist aber erfmdungsgemäß auch ohne weiteres möglich, andere Feststoffe zusammen mit dem Zeolith und der Natronlauge vorzulegen, die keine Neutralisationsfunktion für die Aniontensidsäure haben. Hierzu eignen sich sämtliche in Wasch- und Reinigungsmitteln üblicherweise einzusetzenden festen Inhaltsstoffe.
Auch in der Natronlauge, die zweckmäßigerweise auf den Zeolith oder die Zeolith- Feststoff-Mischung aufgesprüht wird, bevor man mit Verfahrensschritt i)b) beginnt, kön- nen weitere Inhaltsstoffe gelöst sein. Als solche Additive, die über die Natronlauge in das erfindungsgemäße Verfahren eingebracht werden, eignen sich insbesondere sogenannte Kleinkomponenten wie optische Aufheller, Schauminhibitoren, Polymere etc.
In Schritt i)b) wird die im Mischer vorgelegte Mischung aus Zeolith und Natronlauge sowie weiteren optionalen Bestandteilen unter Zugabe von Aniontensidsäure(n) granuliert. Als Aniontensidsäuren kommen im Rahmen der vorliegenden Erfindung hauptsächlich Alkylbenzolsulfonsäuren (ABSS), Alkylsulfonsäuren oder Alkylschwefelsäuren in Betracht. Bezogen auf das in Verfahrensschritt i) entstehende Granulat, wird die Menge an Aniontensidsäure, die im erfmdungsgemäßen Verfahren eingesetzt wird, bevorzugt so gewählt, daß das entstehende Granulat > 20 Gew.-% Aniontensid(e) enthält.
Als ABSS kommen im erfindungsgemäßen Verfahren vorzugsweise C9.13- Alkylbenzolsulfonsäuren, Olefmsulfonsäuren, das heißt Gemische aus Alken- und Hy- droxyalkansulfonsäuren sowie Disulfonsäuren, wie man sie beispielsweise aus C 8- Monoolefmen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem oder flüssigem Schwefeltrioxid erhält, in Betracht. Geeignet sind auch die Alkan- sulfonsäuren, die aus C12-C18-Alkanen durch Sulfochlorierung und Sulfoxidation und durch eine anschließende Hydrolyse bzw. durch Bisulfitaddition an Olefine erhältlich sind. Auch die Alkylschwefelsäuren, die beispielsweise durch Umsetzung von Fettalkoholen mit H2SO4 gewonnen werden, sind als Aniontensidsäure einsetzbar. Geeignete Alkylschwefelsäuren sind beispielsweise die Schwefelsäuremonoester aus primären Alkoholen natürlichen und synthetischen Ursprungs, insbesondere aus Fettalkoholen, z. B. Kokosfettalkoholen, Taigfettalkoholen, Oleylalkohol, Lauryl-, Myristyl-, Palmityl- oder Stearylalkohol, oder den C10-C20-Oxoalkoholen, und diejenigen sekundärer Alkohole dieser Kettenlänge. Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten Alkohole, wie 2-Methyl-verzweigte C9-Cu-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid sind geeignet. An der Stelle von reiner ABSS kann im erfindungsgemäßen Verfahren auch ein Gemisch aus ABSS und Niotensid verwendet werden, wobei der Gehalt an Niotensid im Bereich von 1 bis 10 Gew.-%, vorzugsweise von 3 bis 8 Gew.-%, bezogen auf das fertige Granulat, betragen kann.
Auch der Einsatz von gesättigten und ungesättigten Fettsäuren mit C8-CI8-Kettenlängen in Form ihrer Gemische und/oder der α-Sulfofettsäuren gesättigter C8-C18-Fettsäuren ist im erfindungsgemäßen Verfahren möglich. Mit besonderem Vorteil können auch Mischungen der genannten Fettsäuren und α-Sulfofettsäuren mit weiteren Sulfonsäuren und Alkylschwefelsäuren, beispielsweise Alkylbenzolsulfonsäuren und Fettalkylschwefelsäuren, eingesetzt werden.
In bevorzugten Verfahrensvarianten des erfmdungsgemäßen Verfahrens wird als Aniontensidsäure eine Alkylbenzolsulfonsäure (ABSS) eingesetzt.
Die Aniontensidsäuren können in ihrer Konzentration herstellungsbedingt variieren. Neben den Tensidsäuren enthalten die Verfahrensendprodukte der Sulfonierung, Sulfierung oder Sulfoxidation in der Regel Wasser und untergeordnete Mengen an Verunreinigungen wie Salzen, beispielsweise Natriumsulfat. Es ist im Rahmen der vorliegenden Erfindung bevorzugt, daß die Aniontensidsäure einen Aktivsubstanzgehalt von mindestens 60 Gew.-%, vorzugsweise von mindestens 75 Gew.-% und insbesondere von mindestens 85 Gew.-%, aufweist.
Die Aniontensidsäuren lassen sich auch in Mischung mit anderen Stoffen einsetzen. Es ist hierbei bevorzugt, in Schritt i)b) weitere saure Inhaltsstoffe zuzugeben. Neben den Mischungen verschiedener Aniontensidsäuren, beispielsweise ABSS und Fettsäuren, kommen hierfür insbesondere Phosphonsäuren oder organische Polycarbonsäuren wie Citronensäure oder Polyacrylsäuren in Betracht. Es können aber auch weitere wäßrige Lösungen mit der Aniontensidsäure zusammen als Granulierflüssigkeit zugegeben werden, wobei insbesondere der Zusatz von wäßrigen Polymercarboxylatlösungen bevorzugt ist. Es ist erfindungsgemäß auch möglich und bevorzugt, im Verfahrensschritt i)b) die ABSS in Mischung mit nichtionischen Tensiden auf die Mischung aus Zeolith und Natronlauge zu geben. Hierbei sind Mischungen bevorzugt, die bezogen auf die Mischung mehr als 30 Gew.-%, Vorzugs- weise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% Aniontensid in seiner Säuzreform und mehr als 10 Gew.-%, vorzugsweise mehr als 20 Gew.-% und insbesondere mehr als 30 Gew.-% nichtionische Tenside enthalten. Das Verhältnis von anionischen zu nichtionischen Tensiden kann in solchen Mischungen breit variieren und liegt bevorzugt zwischen 10:1 und 1:10, vorzugsweise zwischen 5:1 und 1:5 und insbesondere zwischen 3:1 und 1:1.
Die Verfahrensstufe i) kann in den unterschiedlichsten Misch- und Granuliervorrichtungen durchgeführt werden. In einer geeigneten Misch- und Granuliervorrichtung, beispielsweise in entsprechenden Anlagen vom Typ eines Eirich-Mischers, eines Lödige-Mischers, beispielsweise eines Pflugscharmischers der Firma Lödige, oder eines Mischers der Firma Schugi, werden bei Umfangsgeschwindigkeiten der Mischorgane vorzugsweise zwischen 2 und 7 m/s (Pflugscharmischer) beziehungsweise 3 bis 50 m/s (Eirich, Schugi), insbesondere zwischen 5 und 20 m/s der Zeolith und die Natronlauge sowie weitere optional einzusetzende Bestandteile vorgelegt und nachfolgend unter Zusatz der Aniontensidsäure granuliert. Dabei kann gleichzeitig in an sich bekannter Weise eine vorbestimmte Korngröße des Granulats eingestellt werden. Der Neutralisations- und Mischprozeß benötigt nur einen sehr kurzen Zeitraum von beispielsweise etwa 0,5 bis 10 Minuten, insbesondere etwa 0,5 bis 5 Minuten (Eirich-Mischer, Lödige-Mischer) zur Homogenisierung des Gemisches unter Ausbildung des rieselfähigen Granulates. Im Schugi-Mischer hingegen reicht normalerweise eine Verweilzeit von 0,5 bis 10 Sekunden aus, um ein rieselfähiges Granulat zu erhalten. Für die Durchführung des Verfahrensschritts i) geeignete Mischer sind beispielsweise Eirich®-Mischer der Serien R oder RV (Warenzeichen der Maschinenfabrik Gustav Eirich, Hardheim), der Schugi® Flexomix, die Fukae® FS-G-Mischer (Warenzeichen der Fukae Powtech, Kogyo Co., Japan), die Lödige® FM-, KM- und CB-Mischer (Warenzeichen der Lödige Maschinenbau GmbH, Paderborn) oder die Drais®-Serien T oder K-T (Warenzeichen der Drais- Werke GmbH, Mannheim).
Die im ersten Verfahrensschritt i) gebildeten Granulate können nun in dem Mischer, in dem sie hergestellt wurden, bis zum Verfahrensschritt iii) belassen werden, sie können al- lerdings auch in einen zweiten Mischer überführt werden, wo sie später mit den Granulaten aus Verfahrensschritt ii) vereinigt werden. Letztgenannte Vorgehensweise hat den Vorteil, daß der Mischer der Verfahrensstufe i) nun zur Durchführung der Verfahrensstufe ii) verwendet werden kann.
Wenn das erfindungsgemäße Verfahren kontinuierlich durchgeführt wird (was bevorzugt ist), wird für die Durchführung der Verfahrensschritte i) und ii) jeweils ein Mischer bereitgestellt werden, wobei die jeweiligen Endprodukte dieser Verfahrensschritte dann in einen dritten Mischer abgelassen werden.
In der Verfahrensstufe ii) werden Zeolith und Bleichmittel in einem Mischer vorgelegt und unter Zugabe von Niotensid granuliert. Als Zeolithe können dabei die bereits bei der Verfahrensstufe i) ausführlich beschriebenen Aluminiumsilikate verwendet werden. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natrium- perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Bevorzugt wird in Schritt ii)a) als Bleichmittel Natriumperborat-Tetrahydrat eingesetzt.
Die Verfahrensstufe ii)a) kann dabei unter Zusatz weiterer Feststoffe erfolgen, die mit dem Zeolith und dem Bleichmittel verrmischt werden. Auch in dieser Stufe können sämtliche in Wasch- und Reinigungsmitteln üblicherweise eingesetzten Feststoffe zugegeben werden, wobei Stoffe aus der Gruppe der Sulfate, Phosphate und Silikate als Zuschlagstoffe besonders bevorzugt sind. Geeignete kristalline, schichtfbrmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+! Η2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate NajS^Oj- f O bevor- zugt, wobei ß-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na^ : SiO2 von 1 :2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor- phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44
00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Im Verfahrensschritt ii)b) wird die im Mischer vorgelegte Mischung aus Zeolith, Bleichmittel und optionalen Inhaltsstoffen unter Zugabe von Niotensid(en) granuliert. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit Kettenlängen von 8 bis 28, vorzugsweise von 12 bis 22 und insbesondere von 16 bis 18 C- Atomen und Alkoxylierungsgraden von durchschnittlich
1 bis 40, vorzugsweise 3 bis 20 und insbesondere 5 bis 10 Mol Alkylenoxid (AO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alko- holethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Ato- men, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12_14- Alkohole mit 3 EO oder 4 EO, C9.π-Alkohol mit 7 EO, C13.15- Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12.18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.14- Alkohol mit 3 EO und C12.18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alko- holethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C- Atomen bedeutet und G das Symbol ist, das für eine Glykose- einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs- grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro- poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl- kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka- nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
Rl
I
R-CO-N-[Z] (I)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R* für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuk- kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie- rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
R^O-R2
R-CO-N-[Z] (II)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl- rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C,.4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Poly- hydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Die genannten nichtionischen Tenside werden vorzugsweise in fließfähiger Form in das Verfahren eingebracht, d.h. es werden entweder bei Raumtemperatur flüssige bis pastöse nichtionische Tenside eingesetzt, oder die Niotenside werden bei erhöhter Temperatur zugegeben. Bei der auch bei erhöhter Temperatur festen Niotensiden ist es bevorzugt, sie in Mischung mit flüssigen bzw. fließfähigen Niotensiden einzusetzen, um die Zugabe und nachfolgende Granulation zu erleichtern.
Auch in Schritt ii)b) des erfindungsgemäßen Verfahrens können weitere Inhaltsstoffe zugegeben werden, wobei es bevorzugt ist, diese Inhaltsstoffe im Niotensid gelöst bzw. in Mischung mit dem Niotensid zuzugeben. Bevorzugte Verbindungen, die über das Niotensid in das erfindungsgemäße Verfahren eingebracht werden können, sind solche aus der Gruppe der Farbstoffe, der Duftstoffe, der Schauminhibitoren und der optischen Aufheller.
Färb- und Duftstoffe werden im erfindungsgemäßen Verfahren eingesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Wasch- und Reinigungssleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffver- bindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzyl- formiat, Ethylmethylphenyl-glycinat, AUylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C- Atomen, Citral, Citronellal, Citronellyloxyacetalde- hyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citro- nellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Pat- chouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Ka- millenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Verfahrensendprodukte an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
Als optische Aufheller können im erfindungsgemäßen Verfahren Derivate der Diamino- stilbendisulfonsäure bzw. deren Alkalimetallsalze eingesetzt werden. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-l,3,5-triazinyl-6-amino)stilben-2,2'-disulfo- nsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2- Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)- diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Als Schauminhibitoren kommen beispielsweise Seifen natürlicher oder synthetischer Herkunft in Betracht, die einen hohen Anteil an C!8.24-Fettsäuren aufweisen. Geeignete nicht- tensidische Schauminhibitoren sind z.B. Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, beispielsweise solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Die Verfahrensstufe ii) läßt sich in den bereits bei Verfahrensschritt i) genannten Mischern durchführen.
Der letzte Verfahrensschritt umfaßt das Vereinigen der in den Schritten i) und ii) gebildeten tensidhaltigen Granulate, wobei weitere Stoffe zugegeben werden können und ein Schüttgewicht > 500 g/1 eingestellt wird. Weitere optional in Schritt iii) hinzuzufügende Inhaltsstoffe stammen dabei vorzugsweise aus der Gruppe der Bleichaktivatoren, Enzyme, Schauminhibitoren, der Färb- und Duftstoffe sowie der Polymere.
Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in das erfindungsgemäße Verfahren eingebracht werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedin- gungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C- Atomzahl und/oder gegebenenfalls substituierte Benzoylgrappen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere l,5-Diacetyl-2,4-dioxohexahydro-l,3,5- triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N- Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in Schritt iii) eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit stickstoffhaltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Verfahrensendprodukten kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Verfahrensendprodukte auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repel- lents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Me- thylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Weitere Polymere, die im Verfahrensschritt iii) zugesetzt werden können, sind organische Gerüststoffe wie beispielsweise Polycarboxylate. Geeignete Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (bezogen auf Säure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Cpolymere der Acrylsäure mit der Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 10 bis 50 Gew.-% Maleinsäure enthalten. Ihre relative Molmasse, bezogen auf die freien Säuren, beträgt üblicherweise 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Polymere der genannten Art werden beispielsweise von der BASF unter dem namen Sokalan® vertrieben.
In Verfahrensschritt iii) hinzufügbar sind auch die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Das erfindungsgemäße Verfahren weist den Vorteil auf, daß die aufwendige apparative Ausstattung der Sprühtrocknung nicht benötigt wird. Zusätzlich spart das erfindungsgemäße Verfahren Energie, da kein zusätzliches Wasser verdampft werden muß: Weder die Endprodukte der Zwischenschritte i) und ii) noch das Verfahrensendprodukt des erfm- dungsgenäßen Gesamtprozesses bedürfen einer Trocknung zur Entfernung überschüssiger Wasseranteile. Das Endprodukt des Verfahrensschritts iii) ist vielmehr direkt als Wasch- und Reinigungsmittel einsetzbar und kann der Abfüllung und Verpackung zugeleitet werden. Die Wasch- und Reinigungsmittel, die nach dem erfindungsgemäßen Verfahren erhalten werden, weisen gegenüber sprühgetrockneten Granulaten ein wesentlich höheres Schüttgewicht auf, das > 500 g/1 liegt, bevorzugt aber mehr als 600 g/1 und insbesondere mehr als 700 g/1 beträgt.
Auch die Teilchengröße der Verfahrensendprodukte kann durch die Prozeßführung variiert werden. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß die mittlere Partikelgröße der Verfahrensendprodukte unterhalb von 600 μm liegt, wobei Ober- und Untergrenze im Bereich von 50 bis 1200 μm, vorzugsweise im Bereich von 75 bis 1000 μm und insbesondere im Bereich 100 bis 800 μm liegen.
Beispiele:
In einem Mischer wurden Natriumcarbonat und pulverförmiger Zeolith vorgelegt und bei laufenden Mischwerkzeugen mit wäßriger 50 %-iger Natronlauge, in der optischer Aufheller gelöst war, besprüht {Verfahrensschritt i)a)} . Diese Mischung wurde mit einem Gemisch aus Alkylbenzolsulfonsäure, Fettsäure und Phosphonsäure granuliert {Verfahrensschritt i)b)}. Das entstehende Aniontensidgranulat wurde in einen zweiten Mischer überführt, die Zusammensetzung zeigt Tabelle 1.
In der zweiten Verfahrensstufe wurden pulverförmiger Zeolith und Natriumperborat- Tetrahydrat in einem Mischer vorgelegt. Bei laufenden Mischwerkzeugen wurden als optionale Feststoffkomponenten Natriumsulfat und ein Polycarboxylat-Compound zugegeben {Verfahrensstufe ii)a)} . Diese Mischung wurde durch Zugabe von Niotensid, in dem Farbstoff gelöst war, granuliert {Verfahrensschritt ii)b)}. Das entstehende Niotensidgranulat wurde ebenfalls in den zweiten Mischer überführt, die Zusammensetzung zeigt Tabelle 2.
Zu den in den zweiten Mischer gegebenen Tensidgranulaten aus den Verfahrensschritten i) und ii) wurden ein Soda-Silikat-Compound, ein Bleichaktivator, Enzymgranulat, Schauminhibitor und Parfüm gegeben und die Mischung bis zur Homogenität vermischt {Verfahrensstufe iii)}. Die Zusammensetzung des Gemischs im zweiten Mischer zeigt Tabelle 3.
Tabelle 1 : Zusammensetzung des Aniontensidgranulats [Gew.-%]
Figure imgf000025_0001
Tabelle 2: Zusammensetzung des Niotensidgranulats [Gew.-%]
Figure imgf000026_0001
*: Zusammensetzung: 50 Gew.-% Acrylsäure-Maleinsäure-Copolymer (BASF) 36,3 Gew.-% Natriumcarbonat 10 Gew.-% Natriumsulfat Rest Wasser, Salze
**. Zusammensetzung: 3 Gew.-% Alkylbenzolsulfonat
53,4 Gew.-% Natriumcarbonat, wasserfrei
28,2 Gew.-% Natriumsilikat
15,4 Gew.-% Wasser
Die Granulate wurden anschließend zur Entfernung von Grobanteilen auf Teilchengrößen unterhalb 1600 μm abgesiebt. Von der gesiebten Qualität wurden das Schüttgewicht und die Rückstandswerte bestimmt. Das Schüttgewicht des Fertigprodukts lag bei 750 g/1, der Test auf Rückstände wurde mit einem Wäscheposten aus 4 schwarzen Turnanzügen aus texturierten Polymaid mit einem Gewicht von ca. 320g durchgeführt. Als Geräte wurden verwendet:
Waschflügel-Bottichwaschmaschine Typ Arcelik ohne Schleudergang
Zentrifuge mit einer Geschwindigkeit von 1400 U/min
Polyethylen-Schüsseln
In die Bottichwaschmachme wurden 30 1 Stadtwasser (16 °dH) eingelassen, anschließend wurden 80g Pulver durch Rühren aufgelöst. Der Wäscheposten wurde hinzugegeben und die Maschine auf 30°C aufgeheizt. Nach Erreichen dieser Temperatur wurde die Wäsche 10 Minuten durch Betätigen des Bewegers gewaschen, im Anschluß daran die Waschflotte abgelassen und dreimal gespült. Beim Spülen wurden jeweils 30 1 Wasser zugelassen, 30 sec geschlagen und dann das vorhandene Spülwasser abgelassen. Nach dem Spülen wurde die Wäsche 15 sec geschleudert, in ein Polyethylenschüssel gelegt und über Nacht getrocknet.
Anschließend wurden die Rückstände auf den Textilien durch mindestens 5 Prüfer visuell beurteilt. Dabei wurden folgende Noten vergeben:
Note 1 : einwandfrei, keine störenden Rückstände
Note 2: tolerierbare, vereinzelte, noch nicht besonders auffallende Rückstände
Note 3: erkennbare, bei kritischer Betrachtung bereits störende Rückstände
Note 4: deutlich erkennbare, störende Rückstände
Note 5: störende, in Vielzahl auftretende, jedem Betrachter auffallende Rückstände
Note 6: sehr große Mengen störender, gut sichtbarer Rückstände
Die Noten der einzelnen Prüfer wurden zu einem Mittelwert zusammengefaßt, wobei die Prüfer auch Zwischennoten vergeben können. Das Verfahrensendprodukt erhielt in diesem Test die Note 2,9. Handelsübliche zeolithhaltige Normalwaschmittel erreichen in diesem Test Rückstandsnoten von 2,5 bis 3,0.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von Wasch- und Reinigungsmitteln, gekennzeichnet durch die Schritte
i)a) Vermischen von Zeolith und wäßriger Natronlauge in einem Mischer i)b) Granulation unter Zugabe von Aniontensidsäure(n)
ii)a) Vermischen von Zeolith und Bleichmittel(n) in einem Mischer ii)b) Granulation unter Zugabe von Niotensid
iii) Vereinigung der in den Verfahrensschritten i) und ii) gebildeten Granulate unter Zugabe weiterer optional einzusetzender Inhaltsstoffe von Wasch- und Reinigungsmitteln, wobei ein Schüttgewicht > 500 g/1 eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt i)a) zusätzlich weitere Feststoffe, vorzugsweise Alkalicarbonate, zugegeben werden.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß in Schritt i)b) zusätzlich weitere saure Inhaltsstoffe, vorzugsweise Phosphonsäuren, zugegeben werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in Schritt i)b) zusätzlich nichtionische Tenside zugegeben werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in Schritt ii)a) zusätzlich weitere Feststoffe, vorzugsweise aus der Gruppe der Sulfate, Phosphate, Silikate und der Polymere, zugegeben werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in Schritt ii)b) weitere Inhaltsstoffe, vorzugsweise aus der Gruppe der Farbstoffe, Duftstoffe, Schauminhibitoren und optischen Aufheller, im Gemisch mit dem Niotensid zugegeben werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in Schritt iii) weitere Inhaltsstoffe, vorzugsweise aus der Gruppe der Bleichaktivatoren, Enzyme, Schauminhibitoren, Färb- und Duftstoffe und Polymere, zugegeben werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in Schritt i)a) als Zeolith ein Zeolith vom Faujasit-Typ, vorzugsweise Zeolith X, eingesetzt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die in Schritt i)a) eingesetzte Natronlauge mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% und insbesondere mindestens 50 Gew.-% NaOH enthält.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in Schritt i)b) als Aniontensidsäure eine Alkylbenzolsulfonsäure (ABSS) eingesetzt wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die in Schritt i)b) eingesetzte Aniontensidsäure einen Aktivsubstanzgehalt von mindestens 60 Gew.-%, vorzugsweise von mindestens 75 Gew.-% und insbesondere von mindestens 85 Gew.-%, aufweist.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Granulation in Schritt i)b) unter Zugabe von Aniontensidsäure und weiteren wäßrigen Lösungen, insbesondere Lösungen von Polycarboxylaten, erfolgt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß als Bleichmittel in Schritt ii)a) Natriumperborat-Tetrahydrat eingesetzt wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß in Schritt ii)b) als nichtionische Tenside alkoxylierte, vorzugsweise ethoxylierte, Alkohole mit Kettenlängen von 8 bis 28, vorzugsweise von 12 bis 22 und insbesondere von 16 bis 18 C-Atomen und Alkoxylierungsgraden von 1 bis 40, vorzugsweise von 3 bis 20 und insbesondere von 5 bis 10, eingesetzt werden.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine mit- telre Partikelgröße unterhalb von 600 μm eingestellt wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Verfahrensendprodukte Teilchengrößen im Bereich von 50 bis 1200 μm, vorzugsweise im Bereich von 75 bis 1000 μm und insbesondere im Bereich 100 bis 800 μm aufweisen.
PCT/EP1999/003329 1998-05-22 1999-05-14 Verfahren zur herstellung von wasch- und reiningungsmitteln WO1999061575A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998122943 DE19822943A1 (de) 1998-05-22 1998-05-22 Verfahren zur Herstellung von Wasch- und Reinigungsmitteln
DE19822943.7 1998-05-22

Publications (1)

Publication Number Publication Date
WO1999061575A1 true WO1999061575A1 (de) 1999-12-02

Family

ID=7868618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003329 WO1999061575A1 (de) 1998-05-22 1999-05-14 Verfahren zur herstellung von wasch- und reiningungsmitteln

Country Status (2)

Country Link
DE (1) DE19822943A1 (de)
WO (1) WO1999061575A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10212169A1 (de) * 2002-03-19 2003-10-02 Sued Chemie Ag Waschmittelzusatz mit hohem Gehalt an nichtionischen Tensiden und schnellem Auflösevermögen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2046291A (en) * 1979-04-06 1980-11-12 Colgate Palmolive Co Process for making high solids content zeolite alkylbenzene sulphonate compositions suitable for use in making spray dried detergent compositions
EP0508543A1 (de) * 1991-04-12 1992-10-14 The Procter & Gamble Company Chemische Strukturierung von oberflächenaktiven Pasten zwecks Herstellung hochwirksamer Tensidgranulate
DE4232874A1 (de) * 1992-09-30 1994-03-31 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
WO1995002036A1 (en) * 1993-07-05 1995-01-19 Unilever Plc Detergent composition or component containing anionic surfactant and process for its preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2046291A (en) * 1979-04-06 1980-11-12 Colgate Palmolive Co Process for making high solids content zeolite alkylbenzene sulphonate compositions suitable for use in making spray dried detergent compositions
EP0508543A1 (de) * 1991-04-12 1992-10-14 The Procter & Gamble Company Chemische Strukturierung von oberflächenaktiven Pasten zwecks Herstellung hochwirksamer Tensidgranulate
DE4232874A1 (de) * 1992-09-30 1994-03-31 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
WO1995002036A1 (en) * 1993-07-05 1995-01-19 Unilever Plc Detergent composition or component containing anionic surfactant and process for its preparation

Also Published As

Publication number Publication date
DE19822943A1 (de) 1999-11-25

Similar Documents

Publication Publication Date Title
EP0595946B1 (de) Verfahren zur herstellung von waschmitteln mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
WO1993015180A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
DE3545947A1 (de) Phosphatfreies, granulares waschmittel
WO1995022592A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
EP1123382B1 (de) Granulationsverfahren
EP1117759B1 (de) Granulationsverfahren
DE19501269A1 (de) Amorphes Alkalisilikat-Compound
WO1993023520A1 (de) Verfahren zur herstellung aniontensidhaltiger wasch- und reinigungsmittel
DE60213399T2 (de) Körnige zusammensetzung
DE19941934A1 (de) Detergentien in fester Form
WO1994022993A1 (de) α-SULFOFETTSÄUREALKYLESTER ENTHALTENDES GRANULAT
WO1999061575A1 (de) Verfahren zur herstellung von wasch- und reiningungsmitteln
WO1999061576A1 (de) Verfahren zur herstellung von wasch- und reinigungsmitteln
WO2000032738A1 (de) Granulationsverfahren
DE69736323T2 (de) Modifiziertes aluminosilikat
EP0853117B1 (de) Granulares Waschmittel mit verbessertem Fettauswaschvermögen
DE19600466A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln bzw. Komponenten hierfür
WO1993005133A1 (de) Wasch- und/oder reinigungsverfahren
EP1086202B1 (de) Herstellung alkylpolyglycosid-haltiger granulate
DE19529908A1 (de) Verfahren zur Herstellung eines amorphen Alkalisilikats mit Imprägnierung
DE19923626A1 (de) Verfahren zur Herstellung von Tensidgranulaten
DE19923627A1 (de) Verfahren zur Herstellung von Tensidgranulaten
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
EP0936267A2 (de) Alkalimetallsilicat/Niotensid-Compound
DE19928923A1 (de) Schaumkontrollierte feste Waschmittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase