WO1999031467A1 - Debitmetre - Google Patents

Debitmetre Download PDF

Info

Publication number
WO1999031467A1
WO1999031467A1 PCT/JP1998/004688 JP9804688W WO9931467A1 WO 1999031467 A1 WO1999031467 A1 WO 1999031467A1 JP 9804688 W JP9804688 W JP 9804688W WO 9931467 A1 WO9931467 A1 WO 9931467A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow
sensor
small
sensors
Prior art date
Application number
PCT/JP1998/004688
Other languages
English (en)
French (fr)
Inventor
Kazumitsu Nukui
Hideo Kato
Ken Tashiro
Mitunori Komaki
Masahiko Matushita
Kazuhiro Yamada
Original Assignee
Tokyo Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP34459597A external-priority patent/JP3874515B2/ja
Priority claimed from JP10203516A external-priority patent/JP2000035349A/ja
Application filed by Tokyo Gas Co., Ltd. filed Critical Tokyo Gas Co., Ltd.
Priority to KR1020007000406A priority Critical patent/KR20010021842A/ko
Priority to CA002310050A priority patent/CA2310050A1/en
Priority to EP98947909A priority patent/EP1041367A4/en
Publication of WO1999031467A1 publication Critical patent/WO1999031467A1/ja
Priority to US09/577,882 priority patent/US6446503B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Definitions

  • the present invention relates to a flow meter for measuring a flow rate of a fluid such as a gas, and more particularly to a flow meter capable of accurately measuring a flow rate in a wide flow rate range.
  • a flow rate sensor is arranged in the flow path, and the flow rate obtained by this flow rate sensor is multiplied by the cross-sectional area of the flow path to calculate the flow rate. There is something.
  • FIG. 29 shows a specific configuration of such a conventional flow meter.
  • one flow rate sensor 1 is disposed at the center of the fluid flow path in the pipe 2, and the flow rate calculation section 3 determines the flow rate at the flow path central section obtained by the flow rate sensor 1 in the pipe 2.
  • the flow rate is calculated by multiplying the cross-sectional area of the above, and the flow rate is displayed on the display unit 4.
  • the flow rate sensor 1 needs to be arranged in the most stable flow of the fluid.
  • the conventional flowmeter has a problem that it is difficult to determine the mounting position of the flow velocity sensor 1 because a drift occurs in the pipe 2 depending on the flow rate.
  • the drift means that the flow velocity varies depending on the location, and the flow area means the range of the flow rate. The same applies to the following description.
  • the flow rate measurement range is divided into, for example, a large flow rate area and a small flow rate area, and each range is divided into a flow rate sensor for the large flow rate area and a flow rate sensor for the small flow rate area.
  • a method of calculating the flow rate by switching the output signal from each of these flow sensors can be considered.
  • the flow of the fluid is disturbed by the presence of one of the flow sensors, and this disturbance adversely affects the measurement accuracy of the other flow sensor.
  • This disturbance adversely affects the measurement accuracy of the other flow sensor.
  • a household gas meter equipped with a microcomputer and added with a safety function has been put into practical use.
  • this safety function for example, when a gas flow rate equal to or more than a predetermined amount is detected or when a predetermined gas flow rate is detected for a predetermined time or more, the gas shutoff valve is driven to shut off the gas flow path.
  • these functions it is possible to detect leaks in pipes and unnatural gas leaks, prevent accidents before they occur, and ensure safety.
  • accurate measurement of the gas flow rate in a wide flow rate range is desired. Disclosure of the invention
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a flow meter capable of accurately measuring a flow rate of a fluid such as a gas in a wide flow rate range.
  • the flow meter according to the present invention includes a pipe having a flow path through which a fluid passes, and a measurement area for small flow rate and a measurement area for large flow rate provided along a longitudinal direction of the flow path; Provided in the small flow rate measurement area, divided into flow paths to form a plurality of small flow paths having a smaller cross-sectional area, and provided in the large flow rate measurement area in the pipe flow path A first flow velocity sensor that outputs a signal corresponding to the flow velocity of the fluid passing through the large flow rate measurement area, and a fluid that is provided in the small flow path formed by the flow path dividing member and passes through the small flow path.
  • a second flow rate sensor that outputs a signal corresponding to the flow rate of the first flow rate, and a flow rate calculation that calculates the flow rate based on at least one of the output signal of the first flow rate sensor and the output signal of the second flow rate sensor according to the flow rate Means.
  • a signal corresponding to the flow velocity of the fluid passing through this area is output from the first flow rate sensor in the large flow rate measurement area.
  • the second flow velocity sensor in the small flow rate measurement area passes through the small flow path formed by the flow path dividing member.
  • a signal corresponding to the flow velocity of the passing fluid is output.
  • the flow rate calculating means calculates the flow rate based on at least one of the output signal of the first flow rate sensor and the output signal of the second flow rate sensor according to the flow rate.
  • the magnitude of the flow velocity distribution in the cross section of each small flow path is determined by the flow velocity in the cross section of the entire flow path without the flow path dividing means
  • the flow velocity in the small flow path near the flow path wall is increased as compared with the case where the flow path dividing means is not provided. You may make it detachable with respect to a wall surface. Further, the second flow rate sensor may be detachable from the wall surface of the pipe.
  • the second flow rate sensor may be arranged in a small flow path closest to a wall surface of the pipe among the plurality of small flow paths.
  • the first flow rate sensor may be arranged near the wall of the pipe.
  • a plurality of first flow velocity sensors are provided, and an average value of the flow velocity in the large flow rate measurement region is calculated based on output signals of the plurality of first flow velocity sensors.
  • Means for calculating the average flow velocity of the large flow rate measurement area to be output to the means may be provided.
  • a plurality of second flow velocity sensors are provided, and an average value of flow velocity in the measurement area for small flow rate is calculated based on output signals of the plurality of second flow velocity sensors to calculate the flow rate.
  • Means for calculating the average flow velocity of the measurement area for small flow rate to be output to the means may be provided.
  • a mesh rectifying member may be further provided in the flow path.
  • Another flow meter according to the present invention further includes a flow rate increasing means for increasing the flow rate of the fluid passing through the small flow path provided with the second flow rate sensor.
  • the flow velocity of the fluid passing through the small flow path provided with the second flow velocity sensor is accelerated by the flow velocity increasing means.
  • the flow rate increasing means can be configured to increase the flow rate of the fluid passing through the small flow path by reducing the space volume around the small flow path provided with the second flow rate sensor. It is. Also, increase the flow velocity
  • the step can be constituted by a pair of columnar members erected on both sides of the second flow rate selector.
  • the pair of columnar members constituting the flow velocity increasing means may be erected on both sides of the second flow velocity sensor so that the width of each of the columnar members increases toward the upstream of the flow path.
  • a pair of columnar members constituting the flow rate increasing means and the second flow rate sensor are integrated to form a sensor unit, and the sensor unit is configured to be detachable from a wall surface of the pipe. Is also good.
  • at least a part of the pair of columnar members constituting the flow velocity increasing means may have a streamline shape along the direction of the fluid flow.
  • the pair of pillar-shaped members constituting the flow velocity increasing means may be configured by standing upright columns having a wing-shaped cross section.
  • a plurality of first flow velocity sensors are provided, and an average value of the flow velocity in the large flow rate measurement region is calculated based on the output signals of the plurality of first flow velocity sensors, and the flow rate is calculated by the flow rate calculation means.
  • Means for calculating the average flow velocity of the large flow rate measurement area to be output may be provided.
  • a plurality of second flow rate sensors are provided, and an average value of flow rates in the measurement area for small flow rate is calculated based on output signals of the plurality of second flow rate sensors, and the average value is output to the flow rate calculation means.
  • Means for calculating the average flow velocity in the measurement area may be provided.
  • the second flow velocity sensor may be arranged in a small flow passage closest to a wall surface of the pipe among the plurality of small flow passages.
  • the first flow rate sensor may be arranged near the wall surface of the pipe.
  • a mesh rectifying member may be further provided in the flow path.
  • Still another flow meter of the present invention is provided in a flow path through which a fluid passes, a plurality of flow rate sensors that output a signal according to a flow rate of the fluid, and at least an output signal of the plurality of flow rate sensors according to the flow rate.
  • Flow rate calculating means for calculating a flow rate based on one of the flow rate sensors, so that each of the plurality of flow rate sensors is not affected by the turbulent flow of the fluid caused by the presence of another flow rate sensor. .
  • each of the plurality of flow velocity sensors is not affected by the turbulent flow of the fluid caused by the presence of the other flow velocity sensor, so that a stable output signal can be obtained from each of the flow velocity sensors. And based on at least one of these output signals Since the flow rate is calculated, stable flow rate measurement is possible.
  • the flowmeter it is possible to eliminate the influence of the turbulent flow of the fluid by arranging the plural flow velocity sensors not on one straight line along the direction of the flow of the fluid. In this case, the turbulence of the flow caused by the presence of the upstream flow velocity sensor does not reach the downstream flow velocity sensor, and the output signal from the downstream flow velocity sensor is stabilized. Further, in this flowmeter, when the flow velocity distribution in the flow path cross section in the direction orthogonal to the direction of the flow of the fluid is not uniform in the direction along the peripheral surface of the flow path wall forming the flow path, It is preferable that any one of the plurality of flow velocity sensors be arranged at the maximum flow velocity position in the flow velocity distribution in the direction along the peripheral surface of the flow path wall.
  • the flow velocity sensor arranged at the maximum flow velocity position can detect the flow velocity with high sensitivity.
  • the generation of turbulent flow of the fluid is suppressed by burying the holding portions for holding the plurality of flow velocity sensors in the flow path wall forming the flow path smoothly without any gap or step. Is possible. In this case, since the space between the holding portion of the flow velocity sensor and the flow path wall is smoothed, turbulence is unlikely to occur when the gas passes therethrough. Less is.
  • the flow path between the respective flow velocity sensors is further placed in the first flow path. It is preferable to dispose the net-like rectifying member.
  • the flow of the fluid after passing through the flow velocity sensor is adjusted by the action of the first mesh rectifying member provided in the flow path between the flow velocity sensors, so that the other flow velocity sensors Are less susceptible to turbulence.
  • a part of the plurality of flow rate sensors is arranged on the upstream side of the flow path, and the other flow rate sensors are arranged on the downstream side of the flow path.
  • the flow rate in the large flow rate region is calculated based on the output signals of some of the flow rate sensors on the upstream side, and the other flow rate sensors on the downstream side are calculated.
  • the flow rate in the small flow rate range may be calculated based on the output signal of the sensor.
  • the flow rate in the large flow rate area is calculated based on the output signal from the flow rate sensor arranged on the upstream side, and the flow rate in the small flow rate area is calculated from the flow rate sensor arranged on the downstream side. Is calculated based on the output signal of. In the small flow rate region, the influence of the turbulence caused by the presence of the upstream flow velocity sensor is unlikely to reach the downstream flow velocity sensor, so that the output signal from the downstream flow velocity sensor does not become unstable.
  • a flow path dividing means for dividing the flow path to form a plurality of small flow paths having a smaller cross-sectional area may be arranged in the flow path.
  • a second mesh rectifying member may be arranged in the flow path on the upstream side of the plurality of flow velocity sensors.
  • the flow of the fluid passing at least through the flow velocity sensor on the most upstream side is adjusted by the action of the second net-like flow regulating member.
  • at least a part of the plurality of flow velocity sensors may be arranged near the wall surface of the flow channel.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a flow meter according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the flow meter of FIG. 1 in a direction orthogonal to the longitudinal direction.
  • FIG. 3 is a block diagram showing a circuit configuration of the flow meter of FIG.
  • FIG. 4 is an explanatory diagram showing a simplified flow velocity distribution in a flow path when a flow straightening strainer is installed in a flow meter.
  • FIG. 5 is an explanatory diagram showing a simplified flow velocity distribution in a flow path when a flow straightening strainer is not installed in the flow meter.
  • FIG. 6 is a longitudinal sectional view showing a schematic configuration of a flow meter according to a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the flow meter of FIG. 6 in a direction orthogonal to the longitudinal direction.
  • FIG. 8 is a perspective view showing an example of a detailed configuration of a nozzle in the flow meter shown in FIG.
  • FIG. 9 is a plan view showing the operation of the nozzle shown in FIG.
  • FIG. 10 is an explanatory diagram showing an example of a relationship between a sensor output value and a measurement condition in the small flow rate sensor of the flow meter shown in FIG.
  • FIG. 11 is a plan view showing a modified example of the nozzle in the flow meter shown in FIG.
  • FIG. 12 is a plan view showing another modified example of the nozzle in the flow meter shown in FIG.
  • FIG. 13 is a plan view showing still another modified example of the nozzle in the flow meter shown in FIG.
  • FIG. 14 is an explanatory diagram exemplifying the relationship between the installation position of the small flow rate flow sensor in the flow meter shown in FIG. 6 and the sensor output.
  • FIG. 15 is a longitudinal sectional view of a flow meter according to a third embodiment of the present invention.
  • FIG. 16 is a plan view of the flow meter shown in FIG.
  • FIG. 17 is a cross-sectional view of the flow meter shown in FIG. 15 in a direction perpendicular to the longitudinal direction.
  • FIG. 18 is a block diagram showing a circuit configuration of the flow meter shown in FIG.
  • FIG. 19 is a plan view of a flow meter according to a fourth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of the flow meter shown in FIG. 19 in a direction orthogonal to the longitudinal direction.
  • FIG. 21 is a plan view of a flow meter as a modification according to the fourth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the flow meter shown in FIG. 21 in a direction orthogonal to the longitudinal direction.
  • FIG. 23 shows a flowmeter as another modification according to the fourth embodiment of the present invention. It is sectional drawing of the direction orthogonal to a longitudinal direction.
  • FIG. 24 is a cross-sectional view in a direction orthogonal to the longitudinal direction of a flow meter as yet another modification according to the fourth embodiment of the present invention.
  • FIG. 25 is a longitudinal sectional view of a flow meter according to a fifth embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of the flow meter shown in FIG. 25 in a direction orthogonal to the longitudinal direction.
  • FIG. 27 is a longitudinal sectional view of a flow meter according to a sixth embodiment of the present invention.
  • FIG. 28 is a plan view of the flow meter shown in FIG.
  • FIG. 29 is a sectional view showing a schematic configuration of a conventional flow meter.
  • FIG. 1 shows a cross-sectional configuration in a longitudinal direction of a flow meter according to an embodiment of the present invention
  • FIG. 2 shows a cross-sectional structure in a direction indicated by arrows in FIG.
  • the flow meter according to the present embodiment is used as a gas meter.
  • the flow meter 10 A includes a pipe 10 having an inlet 11 for receiving gas 20 and an outlet 12 for discharging gas 20.
  • the diameter of the flow path 13 in the pipe 10 is, for example, 50 mm.
  • a measurement area 15 for a small flow rate which is an upstream side and a measurement area 16 for a large flow rate which is a downstream side are provided in the flow path 13, along the longitudinal direction.
  • the measurement area 15 for small flow is provided with a rectifying strainer 14 for regulating the flow of the gas 20 and suppressing the occurrence of drift.
  • the rectifying strainer 14 is used in the present invention.
  • the flow straightening strainer 14 is divided into flow paths 13 in the small flow rate measurement area 15 by a plurality of small flow paths 1 having a smaller cross-sectional area. Divided into 4 A. Gas 20 flows through these divided small flow paths 14A.
  • the cross-sectional shape of the small flow path 14A may be other shapes such as a rectangular shape, a waveform, a hexagonal shape, etc., in addition to the triangular shape shown in FIG.
  • the pipe 10 in the small flow rate measurement area 15 is provided so as to oppose each other (at the upper and lower positions in the figure) so as to oppose each other to the flow rate sensor inlets 17a and 17b for the small flow rate.
  • These small flow velocity sensor insertion sections 17a and 17b have small flow velocity sensors 15a and 15b held by sensor holding sections 15la and 151b, respectively.
  • the detection part (not shown) at the tip of the flow rate sensor for small flow rate 15 a, 15 b is a small flow path closest to the wall surface among a plurality of small flow paths 14 A formed by the rectifying strainer 14. It faces the center of 14 A.
  • the pipe 10 in the large flow rate measurement area 16 is provided with a large flow rate sensor insertion part 18a.
  • These flow rate sensors for large flow rates 18a and 18b are provided with flow rate sensors for large flow rates 16a and 16b as first flow rate sensors, respectively, as sensor holding sections 16 la and 16b. Mounted while being held by 1b.
  • the flow rate sensors 15a and 15b for small flow rate are used to measure the flow rate in a small flow rate area
  • the flow rate sensors 16a and 16b for large flow rate are used to measure the flow rate in a large flow rate area. It is used for Here, the small flow rate sensors 15a and 15b correspond to the "second flow rate sensor” in the present invention, and the large flow rate sensors 16a and 16b correspond to the "first flow rate sensor” in the present invention.
  • Flow sensor ”.
  • the flow rate sensors 15a, 15b for the small flow rate and the flow rate sensors 16a, 16b for the large flow rate are, for example, not shown, but are disposed on the heat generating portion and on the upstream and downstream sides of the heat generating portion. And two temperature sensors.
  • the flow rate corresponding to the flow velocity is obtained from the supplied electric power to the heat generating portion necessary to keep the difference between the temperatures detected by these two temperature sensors constant, or a constant current or constant power
  • the flow velocity can be obtained from the difference between the temperatures detected by the two temperature sensors.
  • a wire mesh 19a for rectification is provided in the flow path 13 upstream of the flow sensors 15a and 15b for small flow, and the flow sensors 15a and 15b for small flow and large flow Flow sensor 1 6 In a flow path 13 between a and 16b, a wire mesh 19b for rectification is provided.
  • these wire meshes 19a and 19b for example, meshes of about # 100 mesh are used.
  • FIG. 3 shows a circuit configuration of a gas meter to which the flow meter 10A is applied.
  • This circuit calculates the average value of the flow velocity in the small flow path 14A formed by the rectifying strainer 14 based on the output signals of the small flow velocity sensors 15a and 15b.
  • a flow velocity calculation unit 41 and an average flow velocity calculation unit 42 that calculates the average value of the flow velocity in the large flow measurement area 16 based on the output signals of the large flow velocity sensors 16a and 16b are provided.
  • This circuit also includes a signal switching unit 43 for selecting and outputting one of the output of the average flow velocity computing unit 41 and the output of the average flow velocity computing unit 42 according to the flow rate.
  • a display unit 45 for displaying the gas flow rate and the integrated flow rate based on the output, and an external output terminal 46 for outputting the flow rate and the integrated flow rate calculated by the flow rate calculation unit 44 to the outside are provided.
  • the average flow velocity calculation section 41, the average flow velocity calculation section 42, and the flow rate calculation section 44 mainly correspond to "flow rate calculation means" in the present invention.
  • the signal switching section 43 When the flow rate calculated by the flow rate calculation section 44 is within the preset small flow rate range, the signal switching section 43 outputs the output of the average flow rate calculation section 41 to the flow rate calculation section 44 to calculate the flow rate.
  • the output of the average flow rate calculation section 42 is output to the flow rate calculation section 44.
  • the flow rate calculation section 44 corresponds to the average value of the flow velocity output from the average flow rate calculation section 41 and corresponds to the small flow path 14 A in the rectifying strainer 14. The flow rate is calculated by multiplying the calculated pipe shape factor.
  • the flow rate calculation section 44 calculates the average value of the flow velocity, which is the output of the average flow rate calculation section 42, as the flow path 1 downstream of the rectifying strainer 14.
  • the flow rate is calculated by multiplying the pipe shape factor corresponding to 3.
  • the average flow rate calculation unit 4 (2) When the flow rate is increased by partially overlapping the small flow rate area and the large flow rate area, when the flow rate reaches the upper limit of the overlap area, the average flow rate calculation unit 4 (2) If the flow rate decreases, the output of the average flow velocity calculation section (42) is switched to the output of the average flow velocity calculation section (41) when the flow rate reaches the lower limit of the overlap area. Alternatively, the flow rate may be calculated.
  • the average flow velocity calculating sections 41, 42, the signal switching section 43, and the flow rate calculating section 44 can be constituted by, for example, a microcomputer.
  • the gas 20 introduced from the inlet 11 passes through a plurality of small flow paths 14 A in the straightening strainer 14 in the small flow rate measurement area 15.
  • the small flow rate sensors 15a and 15b output signals corresponding to the flow rate of the gas 20.
  • the gas 20 that has passed through the small flow rate measurement area 15 passes through the large flow rate measurement area 16 and is discharged from the outlet 12.
  • the large flow velocity sensors 16a and 16b output signals corresponding to the flow velocity of the gas 20 passing through the large flow measurement area 16.
  • the average flow velocity calculating section 41 generates a small flow rate in the small flow path 14 A based on the output signals of the flow rate sensors for small flow rate 15 a and 15 b in the small flow path 14 A in the rectifying strainer 14.
  • the average value of the flow velocity is calculated, and the average flow velocity calculation unit 42 calculates the large flow velocity measurement area 1 based on the output signals of the large flow velocity sensors 16 a and 16 b in the large flow measurement area 16. Calculate the average value of the flow velocity at 6.
  • the signal switching section 43 outputs the output of the average flow rate calculating section 41 to the flow rate calculating section 44, and
  • the output of the average flow velocity calculating section 42 is output to the flow rate calculating section 44.
  • the flow rate calculation section 44 calculates the flow rate and the integrated flow rate based on the average value of the flow velocity output from the average flow velocity calculation section 41, and the flow rate is set in advance.
  • the flow rate and the integrated flow rate are calculated based on the average value of the flow velocity, which is the output of the average flow velocity calculation unit 42.
  • the integrated flow rate calculated by the flow rate calculation section 44 is displayed on the display section 45.
  • the small flow rate area and the large flow rate area are partially overlapped. In the overlapping area, the flow rate calculation unit 44 calculates the flow rate and the average calculated based on the average value of the flow velocity output from the average flow rate calculation unit 41. An average value with the flow rate calculated based on the average value of the flow velocity output from the flow velocity calculation unit 42 may be obtained, and this average value may be used as the measured flow rate.
  • an operation characteristic of the present invention will be described.
  • FIGS. 4 and 5 are intended to explain the difference in flow velocity distribution depending on the presence / absence of the rectifying strainer 14.
  • FIG. 4 shows a flow velocity distribution 30 when a rectifying strainer 14 is installed as in the present embodiment
  • FIG. 5 shows, as a comparative example, a flow path without a rectifying strainer. It represents the flow velocity distribution 31 in 13.
  • the flow velocity is distributed so that the flow velocity is the fastest in the center of the flow path, and becomes slower as it gets closer to the wall.
  • the degree of drift is remarkable in a small flow rate region, and even if a flow is detected at the center of the flow channel, the flow may not be detected near the wall surface of the flow channel.
  • the flow velocity distribution in the flow path 13 when the flow straightening strainer 14 is not provided in the small flow rate measurement area 15 is, for example, as shown in FIG.
  • the length of the arrow 31 indicates the magnitude of the flow velocity.
  • the central portion is faster and the peripheral portion is smaller for each small flow path 14 A formed by the rectifying strainer 14.
  • the average flow velocity in the small flow path 14 A closest to the wall of the pipe 10 when the rectifying strainer 14 is provided (Fig. 4) is obtained when the rectifying strainer 14 is not provided (Fig. 4).
  • This is considerably faster than the average flow velocity near the wall of the pipe 10 in Fig. 5).
  • the measurement sensitivity of the small flow rate sensors 15a and 15b in FIG. 4 is larger than the measurement sensitivity of the small flow rate sensors 15a and 15b in FIG. Therefore, the measurable range of the flow rate on the lower limit side is expanded.
  • the flow rate sensors 15a and 15b for small flow rate were arranged such that the detection portions at the tips were located near the center of the small flow path 14A closest to the wall of the pipe 10. In this case, the peak value of the flow velocity distribution 30 in the small flow path will be detected. Therefore, the measurement sensitivity is further improved, and the flow rate measurable range on the lower limit side is further expanded.
  • the flow velocity sensors 15a and 15b for small flow rate are placed on the wall surface of the piping 10 or Even if it is placed in the vicinity, sufficient measurement sensitivity can be obtained, and a sufficient flow measurement range can be secured.
  • a rectifying wire mesh 19b is located immediately upstream of the large flow rate measurement area 16 to suppress turbulence. Therefore, a rectifying strainer is not particularly required in the large flow measurement area 16. However, if necessary, it is possible to arrange a rectifying strainer also in the large flow rate measurement area 16.
  • the small flow velocity sensors 15a and 15b face the small flow path 14A divided by the rectifying strainer 14, respectively.
  • the detection units at the tips thereof are located at the center of the small flow path 14 A, the flow velocity measurement with high sensitivity can be performed even in a small flow rate region. Therefore, even in a small flow rate region where drift is inherently likely to occur, the installation location of the flow velocity sensor is not limited to the vicinity of the center of the flow path as in the past, and the installation location can be arbitrarily selected. That is, even if the flow velocity sensor is arranged near the pipe wall where it can be easily mounted, the small flow rate cannot be detected, and the flow rate measurable range can be substantially expanded.
  • the rectification of the flow straightening strainer 14 and the wire mesh 19a suppresses the generation of turbulence in the space where the small flow velocity sensors 15a and 15b are arranged, so that the accuracy of the flow velocity measurement is improved. improves.
  • this flow meter when this flow meter is applied to a gas meter, highly accurate measurement can be performed over a wide flow range from a small flow range to a large flow range.
  • this flowmeter when this flowmeter is applied to a gas meter that has a safety function that detects an abnormality in the gas usage state and prevents an accident before it occurs, it is possible to ensure the correct operation of the safety function. is there.
  • the flow rate measurement is performed by providing the rectifying strainer 14.
  • the flow rate sensors 15a and 15b for small flow rate can be located on or near the wall surface of the pipe 10 while ensuring the sensitivity. Therefore, it is relatively easy to make each of these sensors detachable.
  • connection between each sensor and the measurement circuit section of the gas meter main body is facilitated, and further, for example, a flow rate sensor for small flow rate 15a, 15 b ⁇ If an abnormality occurs in the flow rate sensor for large flow 16a, 16b, etc., only the sensor unit needs to be replaced without disassembling the entire flow path 13, thereby improving maintainability. This is the same for the large flow rate sensors 16a and 16b.
  • FIG. 6 a second embodiment of the present invention will be described with reference to FIGS. 6 to 14.
  • FIG. 6 a second embodiment of the present invention will be described with reference to FIGS. 6 to 14.
  • FIG. 6 shows a cross-sectional configuration in a longitudinal direction of a flow meter according to a second embodiment of the present invention
  • FIG. 7 shows a cross-sectional structure taken along line W-Vn in FIG.
  • the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will not be repeated.
  • the flow rate sensors for small flow rates 17 a and 17 include flow rate sensors for small flow rates 15 a and 15 b as second flow rate sensors.
  • Sensor units 150a and 150Ob are detachably mounted.
  • the part corresponding to the mounting part of the sensor unit 150a.150b is, for example, a mounting groove 2la having a depth of about 15mm and a longitudinal length of about 27mm. , 21b are provided.
  • the sensor unit 150a includes a nozzle 22a as a flow rate increasing means for increasing the flow rate of the gas 20 passing through the small flow path 14A provided with the flow rate sensor for small flow rate 15a, and a nozzle 2a. It includes a nozzle holder 23 a for holding 2 a and a sensor holder 15 1 a for holding the flow rate sensor 15 a for small flow rate. Further, the sensor unit 150b is provided with a nozzle 22b as a flow velocity increasing means for increasing the flow velocity of the gas 20 passing through the small flow path 14A provided with the small flow velocity sensor 15b. A nozzle holding portion 23 b for holding the nozzle 22 b and a sensor holding portion 151 b for holding the flow rate sensor 15 b for small flow rate are included.
  • sensor unit 150a In sensor unit 150a, nozzle 22a, nozzle holding part 23a, small
  • the flow rate sensor 15a for flow rate and the sensor holding section 15 1a are all integrated, and in the sensor unit 150b, the nozzle 22b, the nozzle holding section 23b, the flow rate for small flow rate
  • the sensor 15b and the sensor holding section 151b are all integrated.
  • the above-described components are integrated to form the sensor units 150a and 150b, and the sensor units 150a and 150b are connected to the flow rate sensor inlet 17 for the small flow rate.
  • the components of the sensor units 150a and 150b may not be all integrated and may be configured to be separable.
  • the flow rate sensors 15a and 15b for small flow rate have a detection section at each end of the flow path sensors 15a and 15b. It is configured to face the center of 4 A.
  • the nozzles 22a and 22b are configured to be located in the mounting grooves 21a and 21b provided in the straightening strainer 14. As shown in Fig. 8 described later, the nozzles 22a and 22b are designed so that the space volume in the mounting grooves 21a and 21b gradually decreases from the upstream side to the downstream side. It has such a shape. That is, the spatial volume of the peripheral portion of the small flow path 14 A provided with the small flow velocity sensors 15 a and 15 b gradually decreases from the upstream side to the downstream side. The flow rate of the gas 20 passing through the flow path 14 A can be increased.
  • FIG. 8 and FIG. 9 are explanatory diagrams showing an example of a detailed configuration of the nozzles 22a.22b.
  • the nozzles 22a and 22b are constituted by a pair of columnar members erected on both sides of the small flow rate sensors 15a and 15b.
  • the pair of columnar members constituting the nozzles 22a and 22b are arranged so that the mutual interval between their tips 51 becomes gradually wider toward the upstream of the small flow path 14A, so that a flow rate sensor for small flow rate is used. It stands on both sides of 15a and 15b. This facilitates the passage of the gas 20 having the increased flow velocity between the pair of columnar members.
  • the height of the nozzles 22a and 22b is, for example, about 10 mm, and as a constituent material thereof, for example, a metal such as aluminum or stainless steel or a resin is applied.
  • the nozzles 22a and 22b should be at least inside the front end 51 or the rear end 52 (small It is desirable that the flow rate sensors 15a and 15b) have a streamlined shape.
  • the distal end portion 51 in a streamline shape, as shown in FIG. 9, the gas 20 is easily guided between the nozzles 22a and 22b, and the flow velocity of the gas 20 also decreases. Easy to add.
  • the rear end portion 52 in a streamlined shape, the gas 20 introduced between the nozzles 22a and 22b can easily pass through the rear end portion 52. At the end 52, the gas 20 is prevented from stagnating.
  • Other configurations of the flow meter 10B are the same as those of the first embodiment.
  • the configuration of the circuit part of the gas meter to which the flow meter 10B according to the present embodiment is applied is the same as the circuit configuration (FIG. 3) in the first embodiment.
  • the flow rate calculation unit 44 compares the average value of the flow velocity output from the average flow rate calculation unit 41 with the rectification storage. The flow rate is calculated by multiplying the pipe shape factor corresponding to the small flow path 14 A in the nozzle 14 and the correction coefficient corresponding to the shape of the nozzles 22 a and 22 b.
  • the gas 20 introduced from the inlet 11 passes through a plurality of small flow paths 14 A in the straightening strainer 14 in the small flow rate measurement area 15.
  • the rectifying strainer 14 operates in the same manner as in the first embodiment (FIG. 4) to increase the flow velocity near the pipe wall.
  • Part of gas 20 passing through a plurality of small flow paths 14 A reaches nozzles 22 a and 22 b set up on both sides of small flow velocity sensors 15 a and 15 b .
  • the gas 20 reaches the nozzles 22a and 22b, its flow velocity is increased by the action of the nozzles 22a and 22b.
  • the gas 20 whose flow velocity has been increased is located at the center of the nozzles 22 a and 22 b, and flows through the small flow velocity sensors 15 a and 15 b provided on the inner wall surface of the flow path 13. pass. At this time, the small flow rate sensors 15a and 15b output a signal corresponding to the flow rate of the gas 20 whose flow rate has been increased by the nozzles 22a and 22b.
  • the gas 20 that has passed through the small flow measurement area 15 is discharged from the outlet 12 through the large flow measurement area 16. At this time, the large flow velocity sensors 16a and 16b output signals corresponding to the flow velocity of the gas 20 passing through the large flow measurement area 16.
  • the subsequent operations related to signal processing are described above. The description is omitted because it is the same as that of the first embodiment.
  • FIG. 10 is an explanatory diagram showing an example of a sensor output value observed by changing measurement conditions in the flow rate sensors for small flow rates 15a and 15b.
  • the measurement conditions B to D are when the flow velocity was measured by providing the above-mentioned nozzles 22a and 22b in the vicinity of the small flow velocity sensors 15a and 15b, and the measurement condition A was The figure shows the case where the flow velocity was measured without the nozzles 22a and 22b (corresponding to the case where the height of the nozzles 22a and 22b is 0).
  • the mounting grooves 21 a and 21 b with a depth of about 11.5 mm for the detection part of the flow rate sensor for small flow 15 a and 15 b This figure shows the case where nozzles 22a and 22b with a height of about 10 mm and 7 mm with respect to the detection unit of the flow rate sensors 15a and 15b for small flow rate are attached. That is, under the measurement conditions B to D, a nozzle 22 a having a height of about 1 O mm is attached near the small flow rate sensor 15 a, and the nozzle 22 a near the small flow rate sensor 15 b is provided near the small flow rate sensor 15 b. The nozzle 22b with a height of about 7 mm is installed.
  • the sensor output values of both the small flow velocity sensors 15a and 15b are observed simultaneously.
  • the flow rate sensor for small flow rate 15 b to which the nozzle 22 b was attached was closed with a closing lid, so that the flow rate sensor for small flow rate to which the nozzle 22 a having a height of about 10 mm was attached.
  • the sensor output value from sensor 15a is observed.
  • the small flow rate sensor 15 a with the nozzle 22 b was attached by closing the small flow rate sensor 15 a with the nozzle 22 a with the closing lid.
  • the sensor output values from 15 are observed.
  • the gas 20 used for the measurement was air, and the diameter of the flow path 13 in the pipe 10 was about 56 mm.
  • the sensor output value shown in Fig. 10 is the output from the small flow velocity sensor 15a.15b when a small flow rate of gas (flow rate equivalent to 5 liters per hour) is introduced. It shows the value of the net (NE T) pulse.
  • the sensor output value of the flow rate sensor for small flow rate 15a to which the nozzle 22a of about 1 O mm height is attached (measurement condition C) and the nozzle 22b of about 7 mm height are The value is about twice as large as the sensor output value (measurement condition B) of the attached small flow velocity sensor 15b. This is true even when the flow rate sensor for small flow rate 15a and the flow rate sensor for small flow rate 15b are separately observed (measurement conditions B and D), but the flow rate sensor for small flow rate 15a, 15b The same applies to the case where the observations are made simultaneously (measurement condition D).
  • the height (size) of the nozzles 22a and 22b is increased, and the peripheral portion of the small flow path 14A provided with the small flow velocity sensors 15a and 15b is provided. It can be seen that the actual measurement sensitivity of the small flow velocity sensors 15a and 15b can be further improved when the spatial volume of the small flow rate is greatly reduced.
  • the nozzles 22a and 22b are provided near the small flow velocity sensor 15a.15b.
  • the flow rate of the gas 20 passing through the small flow path 14 A is increased, and the flow rate of the gas 20 with the increased flow rate is measured by the flow rate sensors for small flow rates 15 a and 15 b.
  • the front end 51 and the rear end 52 of the nozzles 22a and 22b are formed in a streamlined shape, so that the gas 20 can easily flow between the nozzles 22a and 22b.
  • the gas 20 introduced between the nozzles 22 a and 22 b can be easily discharged from the rear end 52, and the rear end The gas 20 can be prevented from stagnating in the step 52.
  • a sensor unit 150 a, 15 which is integrally configured including the flow rate sensors for small flow 15 a, 15 b and the nozzles 22 a, 22 b is provided.
  • 0 b can be attached to and detached from the flow rate sensor for small flow rate.
  • the attachment and detachment of the small flow rate sensors 15a, 15b and the nozzles 22a, 22b to and from the pipe 10 can be simplified.
  • the configuration of the nozzles 22a and 22b is not limited to the configuration in which a pair of columnar members having a shape as shown in FIGS. 8 and 9 are erected, and may be configured in other shapes. Good. For example, as shown in Fig.
  • the nozzles 22a and 22b may be constituted by knife-shaped nozzles 22a, 22b having a streamlined tip. Good. Further, as shown in the first 2 FIG For example, the nozzle 2 2 a, 2 2 b, constituted by the entire nozzles 2 2 a 2 a blade shape of an airplane which forms a streamlined Fushimi, 2 2 b 2 You may. Furthermore, as shown in the first 3 FIG Invite example embodiment, the nozzle 2 2 a, 2 2 b a nozzle 2 2 a 3 a narrower teardrop shape of the area as buy toward the rear end from the tip. 2 2 it may be constituted by b 3.
  • the nozzles 22a and 22b are individually provided for each of the small flow rate sensors 15a and 15b, but these two nozzles are used instead.
  • a single nozzle that completely penetrates the straightening strainer 14 may be provided. By doing so, it is not necessary to separately attach the nozzles 22a and 22b to the straightening strainer 14 as in the case of the nozzles 22a and 22b, so that the installation is facilitated. It becomes possible.
  • the small flow velocity sensors 15a and 15b are attached to the inner wall surface of the pipe 10 and the small flow velocity sensors 15a and 15b are respectively attached.
  • the outermost small flow path of the small flow path 14 A divided by the rectifying strainer 14 was made to face, but these small flow velocity sensors 15 a and 15 b were arranged.
  • the position of the rectification is not limited to the inner wall surface of the pipe 10 and may be inside the rectifying strainer 14.
  • FIG. 14 is a diagram showing sensor output characteristics when the positions at which the small flow velocity sensors 15a and 15b are installed in the flow meter shown in FIG. 1 are changed.
  • the position where the flow rate sensor for small flow rate 15a, 15b is installed is changed in the direction of the inside of the rectifying strainer 14 (the direction perpendicular to the traveling direction of the gas 20). 3 shows the relationship between the flow rate and the sensor output value.
  • this characteristic diagram This is the result obtained for the case where the nozzles 22a.22b were not provided in the vicinity of the flow rate sensors 15a and 15b for volume, and air was used for the gas 20 for measurement.
  • the diameter of the flow path 13 in the pipe 10 is about 56 mm.
  • reference numerals 91, 92, 93, and 94 indicate flow sensors 15a and 15b for small flow rate, respectively, from the inner wall surface of the pipe 10 to the inside of the straightening strainer 14 by 8 mm,
  • the graph shows sensor output characteristics when the sensors are arranged at positions 16 mm, 17 mm and 24 mm apart.
  • the small flow velocity sensors 15a, 15b can be arbitrarily set even if the small flow velocity sensors 15a, 15b are not necessarily located in the outermost small flow path 14A.
  • the detection section at the tip of each is located at the center of the corresponding small flow path 14 A, which is affected by the turbulence of the gas 20 flow. It is clear that accurate and highly sensitive measurement can be performed.
  • two small flow rate flow sensors 15a and 15b and two large flow rate flow sensors 16a and 16b are provided.
  • the measurement can be performed with another flow velocity sensor. It is desirable to do.
  • the large flow rate measurement area 16 may be formed on the upstream side, and the small flow rate measurement area 15 may be formed on the downstream side.
  • the cross-sectional shape of the flow path 13 is not limited to a circle, but may be a semicircle, an ellipse, a rectangle, or the like.
  • FIG. 15 to FIG. 17 show the structure of a flow meter according to a third embodiment of the present invention.
  • FIG. 15 shows a cross-sectional structure along the flow path direction (longitudinal direction) of the flow meter
  • FIG. 16 shows an external structure viewed from the direction of arrow X in FIG.
  • FIG. 17 shows a cross-sectional structure taken along the line XVII-XW in FIGS. 15 and 16.
  • FIG. 15 corresponds to a cross section taken along line XV-XV in FIG.
  • the same parts as those in the above embodiment are denoted by the same reference numerals.
  • the flow meter 10C has an inlet 11 1 for receiving the gas 20 and an outlet 1 12 for discharging the gas 20, and is provided with a pipe 110 having a rectangular cross section.
  • the length of the diagonal line of the cross section of the pipe 110 is, for example, about 5 O mm.
  • a flow rate sensor 1 15 for small flow rate and a flow rate sensor 1 16 for large flow rate are provided at the flow rate sensor inlets 1 17 a and 1 18 a on one side wall of the pipe 110, respectively. .
  • the flow rate sensor for small flow rate 115 is provided on the upstream side of the flow of the gas 20, and the flow rate sensor for large flow rate 116 is provided on the downstream side.
  • these two flow velocity sensors are arranged so as not to be on one straight line along the flow direction of the gas 20.
  • the flow rate sensor for small flow rate 115 is located closer to the left side than the center of the flow path cross section, and the flow rate sensor for large flow rate 116 is located on the right side of the flow path cross section center. It is arranged near.
  • the flow rate sensor 115 for small flow rate and the flow rate sensor 116 for large flow rate correspond to the “flow rate sensor” in the present invention.
  • the flow rate sensor for small flow rate 115 is a sensor holding part provided on the pipe wall of the pipe 110 via a seal member 152 for keeping the inside and outside of the pipe 110 airtight. Thus, it is held facing the flow path 113.
  • the flow sensor for large flow rate 1 16 is provided with a sensor holding portion 1 provided on the pipe wall of the pipe 110 via a sealing member 16 2 for maintaining airtightness inside and outside the pipe 110. It is held facing the flow path 1 13 by 6 1. There are no gaps or steps between the sensor holder 15 1 and the sealing member 15 2 and between the sealing member 15 2 and the inner wall of the pipe 110, and their boundaries are smooth. It is in a state. Only the small flow rate sensor 1 115 protrudes slightly from the inner wall of the pipe 110.
  • the sensor holder 161 and the sealing member 162 and between the sealing member 162 and the inner wall of the pipe 110 there is a gap or a step between the sensor holder 161 and the sealing member 162 and between the sealing member 162 and the inner wall of the pipe 110. There are no cuts and their boundaries are smooth. Only the large flow velocity sensor 1 16 protrudes slightly from the inner wall of the pipe 110.
  • the sensor holding section 15 1 and the sensor holding section 16 1 correspond to the “holding section” in the present invention.
  • the flow rate sensor for small flow rate 115 is used to measure the flow rate in a small flow rate range
  • the flow rate sensor for large flow rate 116 is used to measure the flow rate in a large flow rate range.
  • a flow mesh 1 19 a for rectification is provided in the flow path 1 13 upstream of the flow rate sensor 1 15 for small flow rate, and the flow rate sensor 1 15 for small flow rate and the flow rate sensor 1 16 for large flow rate are provided.
  • a wire mesh 1 19 b for rectification is provided in the flow path 1 13 between them.
  • these wire meshes 119a and 119b for example, a mesh of about # 100 mesh is used.
  • the wire mesh 119 a corresponds to the “second mesh rectifying member” of the present invention
  • the wire mesh 119 b corresponds to the “first mesh rectifying member” of the present invention.
  • the configurations of the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 116 include, for example, the flow rate sensor for small flow rate 115a and the flow rate sensor for large flow rate 1 in the first and second embodiments. Same as 16a etc.
  • the flow meter 10C having such a configuration can be handled as one unit, and is inserted and arranged at an arbitrary portion in the gas pipe to measure the flow rate of the gas 20. .
  • FIG. 18 shows a circuit configuration of a gas meter to which the flow meter 10 C according to the present embodiment is applied.
  • the circuit shown in FIG. 18 is composed of a flow rate calculation unit 14 1 that calculates the flow rate of the gas 20 in the small flow rate range based on the output signal of the small flow rate flow rate sensor 115, A flow velocity calculating unit that calculates a flow velocity of the gas in a large flow rate region based on an output signal of the sensor.
  • This circuit also includes a signal switching unit 43 for selecting and outputting one of the output of the flow velocity computing unit 14 1 and the output of the flow velocity computing unit 12 according to the flow rate, and an output of the signal switching unit 43.
  • the flow rate calculation unit 4 calculates the flow rate and the integrated flow rate of the gas 20 based on the flow rate, the display unit 45 displaying the flow rate and the integrated flow rate calculated by the flow rate calculation unit 44, and the flow rate calculation unit 4.
  • To output the flow rate and integrated flow rate to the outside An external output terminal 46 is provided.
  • the flow velocity calculation section 141, the flow velocity calculation section 144, and the flow rate calculation section 44 correspond to “flow rate calculation means” in the present invention.
  • Other circuit configurations are the same as those in FIG. 3 in the above embodiment. The same is true, and the description is omitted.
  • the gas 20 introduced from the inlet 11 1 is rectified through the wire mesh 1 19 a, and a part of it is passed through the small flow rate sensor 1 15.
  • the small flow velocity sensor 115 outputs a signal corresponding to the flow velocity of the gas 20 passing therethrough.
  • the gas 20 that has passed through the flow rate sensor for small flow rate 115 is discharged from the outlet 112 as it is. At that time, as described later, the presence of the small flow rate flow sensor 115 causes turbulence on the downstream side.
  • a part of the gas 20 which is taken in from the inlet portion 11 1 and passed through the wire meshes 11 9 a and 11 9 b and rectified passes through the flow rate sensor for high flow rate 11 16.
  • the large flow velocity sensor 1 16 outputs a signal corresponding to the flow velocity of the gas 20 passing therethrough.
  • the gas 20 that has passed through the large flow rate sensor 1 16 is discharged from the outlet 1 12 as it is.
  • the gas 20 passing through the flow rate sensor for small flow rate 115 is rectified by the wire mesh 119a, so that the output signal from the flow rate sensor for small flow rate 115 is relatively stable. It will be.
  • the small flow rate sensor 115 generates a turbulent flow in the gas 20 passing therethrough.
  • the flow rate sensor for large flow rate 1 16 on the downstream side is not located on a straight line along the flow direction of the gas 20 passing through the flow rate sensor for small flow rate 115, so that the flow rate sensor for small flow rate The turbulence generated by the sensor 115 does not reach the large flow velocity sensor 116.
  • the gas 20 passing through the flow rate sensor for large flow rate 1 16 has a steady flow that is kept rectified by the wire meshes 119 a and 19 b. Therefore, the output signal from the flow sensor for large flow rate 116 becomes stable without being affected by the turbulence described above.
  • the flow rate calculation unit 14 1 of the gas meter is based on the output signal of the flow rate sensor 1 15 for small flow rate.
  • the flow velocity calculating section 142 calculates the flow velocity value of the gas 20 based on the output signal of the large flow velocity flow sensor 1 16.
  • the signal switching section 43 converts the flow velocity value output from the flow rate calculating section 41 into the flow rate calculating section 4.
  • the flow velocity value output from the flow rate calculation section 14 4 is input to the flow rate calculation section 4 4. To enter.
  • the flow rate calculation unit 44 calculates the flow rate and the integrated flow rate based on the flow velocity value input from the signal switching unit 43. That is, when the flow rate is in the preset small flow rate range, the flow rate and the integrated flow rate are calculated based on the flow rate value from the flow rate calculating section 141, and when the flow rate is in the preset large flow rate range, the flow rate calculation is performed. The flow rate and the integrated flow rate are calculated based on the flow rate value from the section 142. The flow rate calculated by the flow rate calculating section 44 and the integrated flow rate are displayed on the display section 45.
  • the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 116 are arranged so as not to be on one straight line along the flow direction of the gas 20.
  • the flow rate sensor for large flow rate can be effectively prevented from being affected by the turbulence generated by the flow rate sensor for small flow rate.
  • the accuracy of detecting the flow velocity in 16 is improved.
  • the wire mesh 1 19 b is arranged in the flow path 1 13 between the flow rate sensor 1 15 for small flow rate and the flow rate sensor 1 16 for large flow rate.
  • the flow of the gas 20 after passing through the flow velocity sensor 1 15 is adjusted, and the flow state near the large flow velocity sensor 116 is further stabilized. Can further enhance the stability of the output signal.
  • the wire mesh 1 19 a is also arranged in the flow path 1 13 on the upstream side of the flow rate sensor 1 15 for small flow arranged on the upstream side.
  • the state of the flow near the flow velocity sensor 115 is also good, and the stability of the output signal of the small flow velocity sensor 115 can be improved.
  • the flow rate sensor for large flow rate is arranged by arranging the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 116 so as not to be on the same straight line along the flow direction. Turbulence caused by the presence of flow sensor 1 15 for small flow sensor 1 16 In addition to this, the wire mesh between the two flow rate sensors is also taken into account without considering the positional relationship between the flow rate sensor for small flow rate and the flow rate sensor for large flow rate. It is also possible to eliminate the effects of turbulence only by arranging b.
  • the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 116 are arranged on the same straight line along the flow direction, the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 1
  • the flow of gas 20 after passing through the flow rate sensor for small flow rate 1 15 by arranging a wire mesh 1 19 b with an appropriate mesh shape in the flow path 1 13 between It is possible to arrange.
  • the flow rate sensor 115 for small flow rate and the flow rate sensor 116 for large flow rate can be arranged on the same straight line, so the width of the flow path and, consequently, the width of the sensor mounting surface of the pipe 110 are reduced. can do.
  • wire meshes 1 19a and 1 19b may be provided.
  • a wire mesh is relatively likely to cause a pressure loss, it is preferable to determine the mesh roughness, the shape, the number of installed wires, and the like in consideration of this.
  • FIG. 19 and FIG. 20 show the structure of a flow meter according to a fourth embodiment of the present invention.
  • FIG. 19 and FIG. 20 correspond to FIG. 16 and FIG. 17 in the third embodiment, respectively.
  • FIG. 9 shows a cross-sectional structure taken along line XX-XX in FIG.
  • FIGS. 19 and 20 the same components as those in FIGS. 16 and 17 are denoted by the same reference numerals, and description thereof will be omitted.
  • the illustration of a longitudinal sectional view corresponding to FIG. 15 in the above third embodiment is omitted.
  • the flow meter 10D has a flow rate sensor for small flow rate 115 and a flow rate sensor for large flow rate 116 along the flow direction of the gas 20 as shown in FIG. 1 4688
  • the center of the cross section is faster, and the farther away from the center, the more In other words, the velocity distribution becomes slower (as it gets closer to the pipe wall).
  • the curve indicated by the symbol S represents a constant velocity line connecting points having the same flow velocity. Therefore, looking at the flow velocity distribution in the vicinity of the pipe wall in the above cross section of the flow path 113, the flow velocity is the largest at the center in the width direction of the flow path on each pipe wall, and the flow velocity becomes smaller toward the corner. .
  • one of the two flow rate sensors (the flow rate sensor for large flow rate 1 16 on the downstream side in the example of FIGS. 19 and 20) is connected to the flow path width direction. It is located on the central wall of the tube to maximize the sensitivity of flow velocity detection. Moreover, in this case, as in the case of the third embodiment, the large flow velocity sensor 116 is affected by the turbulence generated by the small flow velocity sensor 115 on the upstream side. Since there is no output signal is stable.
  • the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 116 are arranged so as not to be on one straight line along the flow direction of the gas 20.
  • the flow rate sensor for large flow rate 1 16 on the downstream side of the two flow rate sensors is located on the central pipe wall in the width direction of the pipe 110, so that flow rate measurement in a wide flow rate area can be performed stably.
  • the flowmeter 10E may be configured by arranging the sensor 115 on the pipe wall at the center of the pipe 110 in the channel width direction. In this case, while increasing the flow velocity detection sensitivity in the small flow area, the large flow velocity sensor 116 is not affected by the turbulence generated by the small flow velocity sensor 115 on the upstream side. be able to.
  • FIG. 21 and FIG. 22 correspond to FIG. 16 and FIG. 17, respectively, of which FIG. FIG. 2 shows a cross-sectional structure taken along the line XX--XX in FIG.
  • FIGS. 21 and 22 the same components as those in FIGS. 16 and 17 are denoted by the same reference numerals, and description thereof is omitted.
  • the flow rate sensor for small flow rate 1 15 and the flow rate sensor for large flow rate 1 1 1 are respectively provided on two pipe walls facing each other across the flow path 113 in the pipe 110. 6 may be provided to constitute the flow meter 10F.
  • each flow sensor can be arranged at the center of each pipe wall in the channel width direction. Even in such an arrangement, the flow rate sensor 115 for small flow rate and the flow rate sensor 116 for large flow rate do not lie on one straight line along the flow direction of the gas 20. Turbulence generated by the flow sensor does not affect the other.
  • one of the two flow velocity sensors may be arranged on the upstream side and the other may be arranged on the downstream side, or both of the flow velocity sensors may be connected to the flow path 1. It may be arranged in the same cross section orthogonal to the longitudinal direction of 13 (the direction along the flow direction of the gas 20).
  • a flow rate sensor for small flow rate 115 and a flow rate sensor for large flow rate 116 are provided on two pipe walls orthogonal to each other in the pipe 110, respectively.
  • a total of 10 G may be configured.
  • each flow rate sensor can be arranged at the center of each pipe wall in the flow channel width direction.
  • the flow rate sensor 115 for small flow rate and the flow rate sensor 116 for large flow rate do not lie on one straight line along the flow direction of the gas 20. Does not affect the other.
  • one of the two flow velocity sensors may be arranged on the upstream side and the other may be arranged on the downstream side.
  • both flow velocity sensors may be arranged in the same cross section orthogonal to the longitudinal direction of the flow path 113 (the direction along the flow direction of the gas 20).
  • the wire meshes 119 a and 119 b are provided at appropriate positions in the flow channel 113.
  • FIGS. 25 and 26 a fifth embodiment of the present invention will be described. Will be explained.
  • FIG. 25 shows a cross-sectional structure in a flow direction (longitudinal direction) of a flow meter according to a fifth embodiment of the present invention
  • FIG. 26 shows a line XXVI—XXVI of FIG. It shows the cross-sectional structure in the direction of the arrow in FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the flow meter 10H of the present embodiment has a flow path region including a position where the small flow velocity sensor 115 is arranged (that is, a small flow area).
  • the flow measurement area is provided with a rectifying strainer 114 having a function of adjusting the flow of the gas 20 and increasing the flow velocity particularly near the pipe wall.
  • the flow straightening strainer 114 has a plurality of partition walls.
  • the flow passage 113 has a plurality of small passages 114 having a smaller cross-sectional area along the longitudinal direction. divided into a. Then, the gas 20 is diverted and flows into these divided small flow paths 114a.
  • the cross-sectional shape of the small flow path 114a may be a rectangle as shown in FIG. 26, or may be other shapes such as a triangle, a waveform, a hexagonal shape, or the like.
  • the flow rate sensor for small flow rate 115 is arranged in one small flow path 114a along the pipe wall.
  • the flow straightening strainer 114 corresponds to the “flow path dividing member” in the present invention.
  • FIGS. 15 and 17 Other configurations are the same as those of the third embodiment (FIGS. 15 and 17). The appearance of the flow meter 10H of the present embodiment from the side is not different from that of FIG. 16, and therefore is not shown.
  • FIGS. 25 and 26 the same components as those in FIGS. 15 and 17 of the third embodiment are denoted by the same reference numerals, and will be described as appropriate. Is omitted.
  • the flow meter 10H of the present embodiment has the same operation as that described in the first embodiment with reference to FIGS. 4 and 5. That is, since a plurality of small flow passages 114a are formed by the rectifying strainer 114, the flow velocity of the gas passing through the small flow velocity sensor 115 is equal to the rectifying strainer 114. Therefore, the measurement sensitivity of the small flow velocity sensor 115 increases. In addition, the presence of the rectifying strainer 114 suppresses turbulence near the small flow velocity sensor 115. For this reason, compared to the third and fourth embodiments, a higher Sensitive and highly accurate flow measurement is possible.
  • the force for providing the wire nets 119 a and 119 b may be omitted.
  • FIG. 27 and FIG. 28 show the structure of the flow meter according to the sixth embodiment of the present invention.
  • FIG. 27 shows a cross-sectional structure in a flow direction (longitudinal direction) of the flowmeter 10 I according to the present embodiment
  • FIG. 28 shows a direction of an arrow Y in FIG. It shows the external configuration viewed from the side.
  • the same components as those of the flow meter according to the third embodiment are denoted by the same reference numerals, and description thereof will not be repeated.
  • illustration of a cross-sectional view corresponding to FIG. 17 in the third embodiment is omitted.
  • the flow meter 10I of the present embodiment has a large flow rate on the upstream side, contrary to the above-described third to fifth embodiments.
  • a flow rate sensor 1 16 is arranged on the downstream side, and a flow rate sensor 1 15 for small flow rate is arranged on the downstream side, and both are arranged on one straight line in the direction of the flow of the gas 20.
  • the wire mesh 1 19 b is not arranged between the flow sensor for large flow rate 1 16 and the flow rate sensor for small flow rate 1 15, and the upstream side of the flow rate sensor for large flow rate 1 16 is not provided.
  • Wire mesh 1 1 9a is placed only in Other configurations are the same as those in the third embodiment (FIGS. 15 and 16).
  • the flow rate sensor for large flow rate 116 is arranged on the upstream side, so when measuring the flow rate in the large flow rate area using the flow rate sensor for large flow rate 116, the downstream side The turbulent flow generated by the small flow velocity sensor 115 cannot affect the output signal of the large flow velocity sensor 116 on the upstream side.
  • the turbulence generated by the large flow rate sensor 116 on the upstream side is It hardly affects the output signal of 115.
  • the flow rate sensor for large flow rate 116 is arranged on the upstream side, and the flow rate sensor 115 for small flow rate is arranged on the downstream side. Even if a rectifying member such as a wire mesh is not arranged between the two sensors, the turbulence generated by the large flow velocity sensor 116 in the large flow area on the upstream side causes the flow velocity sensor for small flow on the downstream side to be small. 5 is not affected. Therefore, stable flow rate measurement can be performed over a wide flow rate range. Moreover, in the present embodiment, the upstream large flow velocity sensor 116 and the downstream small flow velocity sensor 115 are connected directly to the gas flow 20 without providing a wire mesh.
  • the large flow velocity sensor 116 on the upstream side and the small flow velocity sensor 115 on the downstream side are arranged in a straight line along the flow of the gas 20.
  • the present invention is not limited to this, and the upstream large flow velocity sensor 116 and the downstream small flow velocity sensor 115 should not be in a straight line along the flow of gas 20. It may be arranged. In this case, the mutual positional relationship between the two can be formed so as to correspond to, for example, the third and fourth embodiments (FIGS. 16 and 17, FIGS. 19 to 24). It is possible.
  • the wire mesh 1 19 a is disposed only in the flow path on the upstream side of the high flow velocity sensor 1 16 on the upstream side.
  • the flow sensor for large flow on the upstream side and the flow sensor for small flow on the downstream side are similar to the case of Fig. 15.
  • the wire mesh 119b may be arranged also in the flow path between and.
  • the present invention has been described with reference to some embodiments, the present invention is not limited to these embodiments and can be variously modified.
  • the third In the sixth embodiment the flow area is divided into a large flow rate area and a small flow rate area, and the flow rate sensor for small flow rate 115 and the flow rate sensor for large flow rate 11 6 is arranged, but the flow area is divided into three or more, for example, small flow area, medium flow area and large flow area, and the flow rate sensor for small flow rate, the flow rate sensor for middle flow rate and And a flow rate sensor for a large flow rate may be provided.
  • each flow sensor can be prevented from being affected by turbulence generated by another flow sensor. Highly stable flow measurement can be performed over a wide flow rate range.
  • the flow rate may be divided into four or more flow areas, and the flow rate sensors of the corresponding measurement ranges may be provided.
  • the cross-sectional shape of the flow path 113 is circular or rectangular.
  • the present invention is not limited to this, and for example, a semicircle, ellipse, triangle, or pentagon may be used.
  • the above polygonal shape and the like may be used.
  • the flow velocity sensor is not limited to the thermal flow velocity sensor of the type having the heat generating part and the two temperature sensors as described above.
  • the flow velocity sensor has one heat generating part and the temperature (resistance) of the heat generating part is determined.
  • a thermal flow sensor that calculates the flow velocity from the electric power supplied to the heat-generating part necessary to keep it constant, or heats the heat-generating part with a constant current or constant power and calculates the flow velocity from the temperature (resistance) of the heat-generating part Good.
  • the flow velocity sensor is not limited to a thermal flow velocity sensor, and may be, for example, an ultrasonic sensor using ultrasonic waves.
  • the present invention can be applied to a flow meter that measures the flow rate of a gas other than a gas, and a liquid as well as a gas.
  • a flow path that divides a flow path to form a plurality of small flow paths having a smaller cross-sectional area in a measurement area for small flow rate in a flow path of a pipe
  • a dividing member is provided, a first flow rate sensor that outputs a signal corresponding to a flow velocity of a fluid passing therethrough is provided in a large flow rate measurement area in the flow path of the pipe, and a small flow rate sensor formed by the flow path dividing member is provided.
  • a second flow sensor is provided in the flow path for outputting a signal corresponding to the flow velocity of the fluid passing therethrough.
  • the output signal of the first flow sensor and the output signal of the second flow sensor are provided in accordance with the flow rate. Since the flow rate is calculated based on at least one, Even in the flow rate region, high-precision flow measurement can be performed without being affected by the fluid drift. Specifically, even in a small flow rate region where drift is inherently likely to occur, the location of the second flow velocity sensor is not limited and can be arranged at any location. For example, even if the second flow rate sensor is arranged near the channel wall where it can be easily mounted, it is possible to detect a minute flow rate.
  • the limitation of the flow rate range applicable to the second flow rate sensor is substantially relaxed, and as a result, the measurable range of the flow rate is expanded.
  • the first flow rate sensor or the second flow rate sensor can be attached to and detached from the wall surface of the pipe, so that it is easy to perform installation work and to deal with abnormalities in the flow rate sensor. This has the effect of good maintainability.
  • the second flow velocity sensor is arranged in the small flow path closest to the pipe wall surface among the plurality of small flow paths, so that the attachment and detachment work and the like are further facilitated. This has the effect of further improving maintainability.
  • a plurality of first flow velocity sensors are provided, and the flow rate is obtained based on the average value of the output of each flow velocity sensor. improves. Further, for example, when an abnormality occurs in one of the plurality of first flow velocity sensors, the flow rate measurement can be continued by another first flow velocity sensor in which no abnormality has occurred. This has the effect of improving reliability, especially in large flow rates.
  • a plurality of second flow velocity sensors are installed, and the flow rate is obtained based on the average value of the output of each flow velocity sensor. improves. Further, for example, when an abnormality occurs in one of the plurality of second flow rate sensors, the flow rate measurement can be continued by another second flow rate sensor having no abnormality. Therefore, there is an effect that reliability is improved particularly in a small flow rate region.
  • the flow rate increasing means for increasing the flow rate of the fluid passing through the small flow path provided with the second flow rate sensor is provided, the flow rate measurement sensitivity is reduced. The effect that it can be increased and the measurable range of the flow rate is further expanded To play.
  • a pair of columnar members constituting the flow velocity increasing means are provided upright on both sides of the second flow velocity sensor so that the width of each of the columnar members increases toward the upstream of the flow path.
  • a pair of columnar members constituting the flow velocity increasing means and the second flow velocity sensor are integrated to constitute a sensor unit, and the sensor unit is configured to be detachable from a wall surface of the pipe. Therefore, the work of attaching the pair of columnar members and the second flow rate sensor to the pipe is simplified, and the effect of maintaining good is achieved.
  • the flow rate increasing means is constituted by a pair of columnar members erected on both sides of the second flow rate sensor, and at least a part of the pair of columnar members extends along the direction of the fluid flow. Since it is configured to have a streamlined shape, the flow of the fluid passing through the flow velocity increasing means can be smoothly performed.
  • the fluid is easily guided between the pair of columnar members, and the flow velocity of the fluid can be easily increased.
  • the fluid guided between the pair of pillar-shaped members can be easily discharged from the rear end, and the fluid stagnates at the rear end. Can be prevented.
  • each of the plurality of flow rate sensors is excluded from being affected by the turbulent flow of the fluid caused by the presence of the other flow rate sensor. Stabilizes. Therefore, there is an effect that stable flow measurement can be performed.
  • the plurality of flow velocity sensors are arranged so as not to be on one straight line along the flow direction of the fluid, the turbulence of the flow caused by the presence of the flow velocity sensor on the upstream side is reduced. This is effective in stabilizing the output signal from the downstream flow velocity sensor, unlike the downstream flow velocity sensor.
  • one of the flow velocity sensors is arranged at the maximum flow velocity position in the flow velocity distribution in the direction along the peripheral surface of the flow path wall.
  • the flow velocity sensor placed at the position can detect the flow velocity with high sensitivity. Therefore, when this is applied to, for example, a flow rate sensor for measuring a small flow rate, it becomes possible to measure a minute flow rate with high sensitivity.
  • the holding portions for holding the plurality of flow velocity sensors are buried smoothly in the flow path wall without any gap or step, turbulence occurs when the gas passes therethrough. And the effect of turbulent flow on other flow velocity sensors can be reduced.
  • the first flow path is provided between the respective flow rate sensors. Since the influence of the turbulent flow of the fluid is eliminated by arranging the net-shaped rectifying member, the flow of the fluid after passing through the flow velocity sensor is adjusted by the action of the first net-shaped rectifying member, and the other flow velocity is adjusted.
  • the sensor has the effect of being less susceptible to turbulence.
  • the flow rate measurement in the large flow rate area where large turbulence is likely to occur is performed using the upstream flow rate sensor, whereas the flow rate measurement in the small flow rate area where large turbulence is unlikely to occur is downstream. Since the measurement is performed using the flow velocity sensor, the output signal of each flow velocity sensor is less affected by the turbulence generated by the other flow velocity sensor.
  • the flow path dividing member that divides the flow path to form a plurality of small flow paths is disposed, the small flow path near the flow path wall is compared with a case where the flow path dividing member is not provided.
  • the flow velocity in the water can be increased. Therefore, even when a flow velocity sensor is provided near the flow path wall, an effect that the sensitivity of the flow velocity measurement can be increased is achieved.
  • the second net-shaped flow regulating member is arranged in the flow path on the upstream side of the plurality of flow velocity sensors. This has the effect of regulating the flow of fluid passing through the flow velocity sensor on the side, and stabilizing the output signal therefrom.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

明細書 流量計
技術分野
本発明は、 ガス等の流体の流量を測定するための流量計に係り、 特に広い流量 範囲で正確に流量を測定することができるようにした流量計に関する。 背景技術
ガス等の流体の流量を計測する流量計には、 流速センサを流路中に配置し、 こ の流速センサによって得られた流速に流路の断面積を乗算して流量を算出するよ うにしたものがある。
第 2 9図はそのような従来の流量計の具体的な構成を表すものである。 この流 量計では、 1つの流速センサ 1を配管 2内の流体流路の中央部に配設し、 流量演 算部 3において、 流速センサ 1によって得られた流路中央部の流速に配管 2の断 面積を乗算して流量を算出し、 この流量を表示部 4に表示するようになっている 。 ここで、 流速センサによる流量測定の精度を高く維持するためには、 流速セン サ 1が流体の最も安定した流れの中に配置されている必要がある。
しかしながら、 従来の流量計においては、 配管 2中で、 流量によっては偏流が 発生するために流速センサ 1の取り付け位置の決定が困難であるという問題があ つた。 また、 流速センサ 1を偏流の少ない流量域に限定して設置する必要があり 、 そのため流量の測定可能範囲が狭くなり、 広い流量範囲で精度良くガス流量を 測定することが困難であった。 ここで、 偏流とは、 場所によって流速が異なるこ とを意味し、 流量域とは、 流量の範囲を意味するものとする。 以下の説明におい ても同義である。
このように、 従来の流量計では、 単一の流速センサを用いて流量測定範囲を十 分広くとることが困難であった。 この問題を解決するためには、 流量測定範囲を 例えば大流量域と小流量域の 2つに分けて、 各範囲を大流量域用の流速センサと 小流量域用の流速センサとに分担させ、 これらの各流量センサからの出力信号を 切り替えて流量を算出するという方法が考えられる。 しかしながら、 上記したような複数の流速センサを用いて構成した流量計にお いては、 一方の流速センサの存在によって流体の流れに乱れが生じ、 この乱れが 他方の流速センサの測定精度に悪影響を及ぼす可能性がある。 したがって、 結局 のところ、 広い流量測定範囲にわたって高精度に流量を測定することは困難であ る。
ところで、 家庭用のガスメータとして、 通過するガスの流量を計測する機能の 他に、 マイクロコンピュータを搭載して安全機能を付加したものが実用化されて いる。 この安全機能は、 例えば、 所定量以上のガス流量を検出した場合や所定の ガス流量を所定時間以上検出した場合に、 ガス遮断弁を駆動してガス流路を遮断 させるようにしたものである。 これらの機能により配管中の漏洩や、 不自然なガ スの流出などを検出して、 事故を未然に防止し、 安全性を担保することができる 。 しかしながら、 このような機能が正確に作動するためには、 広い流量範囲での ガス流量の正確な測定が望まれる。 発明の開示
本発明はかかる問題点に鑑みてなされたもので、 その目的は、 広い流量範囲で 正確なガス等の流体流量を測定することができる流量計を提供することにある。 本発明の流量計は、 流体が通過する流路を有すると共に、 流路の長手方向に沿 つて小流量用計測領域および大流量用計測領域が設けられた配管と、 この配管の 流路内の小流量用計測領域に設けられ、 流路を分割してより小さな断面積を有す る複数の小流路を形成する流路分割部材と、 配管の流路内の大流量用計測領域に 設けられ、 大流量用計測領域を通過する流体の流速に応じた信号を出力する第 1 の流速センサと、 流路分割部材により形成された小流路内に設けられ、 小流路を 通過する流体の流速に応じた信号を出力する第 2の流速センサと、 流量に応じて 、 第 1の流速センサの出力信号と第 2の流速センサの出力信号の少なくとも一方 に基づいて流量を算出する流量演算手段とを備えている。
本発明の流量計では、 大流量用計測領域における第 1の流速センサからは、 こ の領域を通過する流体の流速に応じた信号が出力される。 一方、 小流量用計測領 域における第 2の流速センサからは、 流路分割部材により形成された小流路を通 過する流体の流速に応じた信号が出力される。 流量演算手段では、 流量に応じて 、 第 1の流速センサの出力信号と第 2の流速センサの出力信号の少なくとも一方 に基づいて流量が算出される。 この流量計では、 各小流路の断面内流速分布の大 きさ (場所による流速の差) 、 すなわち、 偏流の程度は、 流路分割手段を配置し ない場合における流路全体の断面内流速分布の大きさに比べて小さくなり、 流路 壁近傍の小流路における流速は、 流路分割手段を設けない場合と比べて増加する 本発明の流量計では、 第 1の流速センサが配管の壁面に対して着脱可能である ようにしてもよい。 また、 第 2の流速センサが配管の壁面に対して着脱可能であ るようにしてもよい。
また、 本発明の流量計では、 第 2の流速センサを、 複数の小流路のうち配管の 壁面に最も近い小流路内に配置するようにしてもよい。 第 1の流速センサを、 配 管の壁面近傍に配置するようにしてもよい。
また、 本発明の流量計では、 第 1の流速センサを複数設けると共に、 さらに、 複数の第 1の流速センサの出力信号を基に大流量用計測領域における流速の平均 値を算出して流量演算手段に出力する大流量用計測領域の平均流速演算手段を備 えるようにしてもよい。
また、 本発明の流量計では、 第 2の流速センサを複数設けると共に、 さらに、 複数の第 2の流速センサの出力信号を基に小流量用計測領域における流速の平均 値を算出して流量演算手段に出力する小流量用計測領域の平均流速演算手段を備 えるようにしてもよい。
また、 本発明の流量計では、 流路中に、 さらに、 網状整流部材を設けるように してもよい。
本発明の他の流量計は、 さらに、 第 2の流速センサが設けられた小流路を通過 する流体の流速を増加させる流速増加手段を備えている。
この流量計では、 流速増加手段によって、 第 2の流速センサが設けられた小流 路を通過する流体の流速が加速される。 ここで、 流速増加手段は、 第 2の流速セ ンサが設けられた小流路周辺の空間容積を減少させることにより小流路を通過す る流体の流速を増加させるものであるように構成可能である。 また、 流速増加手 段は、 第 2の流速セレサの両脇に立設した一対の柱状部材によつて構成可能であ る。 ここで、 流速増加手段を構成する一対の柱状部材は、 流路の上流に向かうに 従って互いの幅が広くなるように第 2の流速センサの両脇に立設されるものであ つてよい。 また、 流速増加手段を構成する一対の柱状部材と第 2の流速センサと を一体化してセンサュニッ トを構成すると共に、 このセンサュニッ 卜が配管の壁 面に対して着脱可能となるように構成してもよい。 また、 流速増加手段を構成す る一対の柱状部材の少なくとも一部が、 流体の流れの方向に沿った流線形状を成 すようにしてもよい。 あるいは、 流速増加手段を構成する一対の柱伏部材は、 翼 形状の断面を有する柱を立設して構成したものであってもよい。
また、 この流量計では、 第 1の流速センサを複数設けると共に、 さらに、 複数 の第 1の流速センサの出力信号を基に大流量用計測領域における流速の平均値を 算出して流量演算手段に出力する大流量用計測領域の平均流速演算手段を備える ようにしてもよい。 また、 第 2の流速センサを複数設けると共に、 さらに、 複数 の第 2の流速センサの出力信号を基に小流量用計測領域における流速の平均値を 算出して流量演算手段に出力する小流量用計測領域の平均流速演算手段を備える ようにしてもよい。
また、 この流量計では、 第 2の流速センサを、 複数の小流路のうち配管の壁面 に最も近い小流路内に配置するようにしてもよい。 第 1の流速センサを、 配管の 壁面近傍に配置するようにしてもよい。
また、 この流量計では、 流路中に、 さらに、 網状整流部材を設けるようにして もよい。
本発明のさらに他の流量計は、 流体が通過する流路に設けられ、 流体の流速に 応じた信号を出力する複数の流速センサと、 流量に応じて、 複数の流速センサの 出力信号の少なくとも 1つに基づいて流量を算出する流量演算手段とを備え、 複 数の流速センサの各々が他の流速センサの存在によって生ずる流体の乱流の影響 を受けるのを排除するようにしたものである。
この流量計では、 複数の流速センサは、 それぞれ、 他の流速センサの存在によ つて生ずる流体の乱流の影響を受けることがないので、 各流速センサからは安定 した出力信号が得られる。 そして、 これらの出力信号の少なくとも 1つに基づい て流量が算出されるので、 安定した流量計測が可能となる。
この流量計では、 複数の流速センサが流体の流れの方向に沿った 1直線上にの らない配置とすることにより、 流体の乱流の影響を排除するようにすることが可 能である。 この場合、 上流側の流速センサの存在により生じた流れの乱れは下流 側の流速センサには及ばず、 下流側の流速センサからの出力信号が安定化する。 また、 この流量計では、 流体の流れの方向と直交する方向の流路断面内におけ る流速分布が、 流路を形成する流路壁の周面に沿った方向において不均一である 場合には、 複数の流速センサのうちのいずれか 1つを、 流路壁の周面に沿った方 向の流速分布における最大流速位置に配置するようにするのが好適である。 この 場合には、 最大流速位置に配置された流速センサは、 高い感度で流速を検知でき る。 ここで、 「流体の流れの方向と直交する方向の流路断面内における流速分布 力 流路を形成する流路壁の周面に沿った方向において不均一である場合」 とは 、 通常は、 流路断面形状が円形以外である場合が該当する。
また、 この流量計では、 複数の流速センサをそれぞれ保持する保持部を流路を 形成する流路壁に隙間も段差もなく平滑に埋設することにより、 流体の乱流の発 生を抑制することが可能である。 この場合には、 流速センサの保持部と流路壁と の間が平滑化されているので、 ガスがここを通過するときに乱流が生じにく く、 他の流速センサに対する乱流の影響が少ない。
また、 この流量計では、 複数の流速センサの相互の位置関係が、 一方が上流側 で他方が下流側となるものである場合には、 さらに、 各流速センサの相互間の流 路に第 1の網状整流部材を配置するのが好適である。 この流量計では、 各流速セ ンサの相互間の流路にそれぞれ設けられた第 1の網状整流部材の作用により、 流 速センサを通過したあとの流体の流れが整えられるので、 他の流速センサは乱流 の影響を受けにくい。
また、 この流量計では、 複数の流速センサのうちの一部の流速センサを流路に おける上流側に配置すると共に、 その他の流速センサを流路における下流側に配 し、 流量演算手段により、 上流側における上記一部の流速センサの出力信号に基 づいて大流量域での流量を算出すると共に、 下流側における上記その他の流速セ ンサの出力信号に基づいて小流量域での流量を算出するように構成してもよい。 この流量計では、 大流量域での流量は、 上流側に配置された流速センサからの出 力信号に基づいて算出され、 小流量域での流量は、 下流側に配置された流速セン ザからの出力信号に基づいて算出される。 小流量域では、 上流側の流速センサの 存在に起因して生ずる乱流の影響は下流側の流速センサに及びにくいので、 下流 側に配置された流速センサからの出力信号は不安定にならない。
また、 この流量計では、 さらに、 流路中に、 流路を分割してより小さい断面積 を有する複数の小流路を形成する流路分割手段を配置してもよい。
また、 この流量計では、 さらに、 複数の流速センサの上流側の流路中に、 第 2 の網状整流部材を配置してもよい。 この流量計では、 第 2の網状整流部材の作用 により、 少なくとも最上流側の流速センサを通過する流体の流れが整えられる。 また、 この流量計では、 前記複数の流速センサの少なくとも一部を、 流路の壁 面近傍に配置するようにしてもよい。
本発明の他の目的、 特徴および効果は、 以下の説明によってさらに明らかにな るであろう。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る流量計の概略構成を表す長手方向 の断面図である。
第 2図は、 第 1図の流量計における長手方向と直交する方向の断面図である。 第 3図は、 第 1図の流量計の回路構成を表すプロック図である。
第 4図は、 流量計内に整流ストレーナを取り付けた場合の流路内の流速分布を 簡略化して表す説明図である。
第 5図は、 流量計内に整流ストレーナを取り付けていない場合の流路内の流速 分布を簡略化して表す説明図である。
第 6図は、 本発明の第 2の実施の形態に係る流量計の概略構成を表す長手方向 の断面図である。
第 7図は、 第 6図の流量計における長手方向と直交する方向の断面図である。 第 8図は、 第 6図に示した流量計におけるノズルの詳細な構成の一例を表す斜 視図である。
第 9図は、 第 8図に示したノズルの作用を表す平面図である。
第 1 0図は、 第 6図に示した流量計の小流量用流速センサにおけるセンサ出力 値と測定条件との関係の一例を示す説明図である。
第 1 1図は、 第 6図に示した流量計におけるノズルの変形例を示す平面図であ る。
第 1 2図は、 第 6図に示した流量計におけるノズルの他の変形例を示す平面図 である。
第 1 3図は、 第 6図に示した流量計におけるノズルのさらに他の変形例を示す 平面図である。
第 1 4図は、 第 6図に示した流量計における小流量用流速センサの設置位置と センサ出力との関係を例示する説明図である。
第 1 5図は、 本発明の第 3の実施の形態に係る流量計の長手方向の断面図であ る。
第 1 6図は、 第 1 5図に示した流量計の平面図である。
第 1 7図は、 第 1 5図に示した流量計の、 長手方向と直交する方向の断面図で ある。
第 1 8図は、 第 1 5図に示した流量計における回路構成を表すブロック図であ る。
第 1 9図は、 本発明の第 4の実施の形態に係る流量計の平面図である。
第 2 0図は、 第 1 9図に示した流量計の、 長手方向と直交する方向の断面図で ある。
第 2 1図は、 本発明の第 4の実施の形態に係る変形例としての流量計の平面図 である。
第 2 2図は、 第 2 1図に示した流量計の、 長手方向と直交する方向の断面図で ある。
第 2 3図は、 本発明の第 4の実施の形態に係る他の変形例としての流量計の、 長手方向と直交する方向の断面図である。
第 2 4図は、 本発明の第 4の実施の形態に係るさらに他の変形例としての流量 計の、 長手方向と直交する方向の断面図である。
第 2 5図は、 本発明の第 5の実施の形態に係る流量計の長手方向の断面図であ る。
第 2 6図は、 第 2 5図に示した流量計の、 長手方向と直交する方向の断面図で ある。
第 2 7図は、 本発明の第 6の実施の形態に係る流量計の、 長手方向の断面図で ある。
第 2 8図は、 第 2 7図に示した流量計の平面図である。
第 2 9図は、 従来の流量計の概略構成を表す断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照して詳細に説明する。
[第 1の実施の形態]
まず、 第 1図ないし第 5図を参照して、 本発明の第 1の実施の形態について説 明する。
第 1図は本発明の一実施の形態に係る流量計の長手方向の断面構成を表し、 第 2図は第 1図の Π - Π線における矢視方向の断面構造を表すものである。 なお、 本実施の形態に係る流量計は、 ガスメータとして使用されるものである。 この流 量計 1 0 Aは、 ガス 2 0を受け入れる入口部 1 1とガス 2 0を排出する出口部 1 2とを有する配管 1 0を備えている。 配管 1 0内の流路 1 3の径は例えば 5 0 m mである。 流路 1 3内には、 その長手方向に沿って、 上流側である小流量用計測 領域 1 5および下流側である大流量用計測領域 1 6が設けられている。 小流量用 計測領域 1 5にはガス 2 0の流れを整えたり偏流の発生を抑制するための整流ス トレーナ 1 4が設けられている。 ここで、 整流ス卜レーナ 1 4が本発明における
「流路分割部材」 に対応する。
第 2図に示したように、 整流ストレーナ 1 4は、 仕切壁により、 小流量用計測 領域 1 5における流路 1 3を、 それよりも小さな断面積を有する複数の小流路 1 4 Aに分割している。 これらの分割された小流路 1 4 Aをガス 2 0が流れるよう になっている。 小流路 1 4 Aの断面形状は、 第 2図に示したような三角形状の他 、 矩形、 波形、 六角形状等、 他の形状であってもよい。
小流量用計測領域 1 5における配管 1 0には、 小流量用流速センサ揷入部 1 7 a, 1 7 b力 互いに対向するようにして (図では上下位置に) 設けられている 。 これらの小流量用流速センサ挿入部 1 7 a, 1 7 bには、 それぞれ、 センサ保 持部 1 5 l a, 1 5 1 bによって保持された小流量用流速センサ 1 5 a, 1 5 b が取り付けられている。 小流量用流速センサ 1 5 a, 1 5 bの先端の検出部 (図 示せず) は、 整流ストレーナ 1 4により形成された複数の小流路 1 4 Aのうち、 最も壁面に近い小流路 1 4 Aの中央部に臨む状態となっている。
一方、 大流量用計測領域 1 6における配管 1 0には、 大流量用流速センサ挿入 部 1 8 a. 1 8 b力 <、 互いに対向するようにして (図では上下位置に) 設けられ ている。 これらの大流量用流速センサ揷入部 1 8 a, 1 8 bには、 それぞれ、 第 1の流速センサとしての大流量用流速センサ 1 6 a, 1 6 bがセンサ保持部 1 6 l a, 1 6 1 bによって保持された状態で取り付けられている。
小流量用流速センサ 1 5 a , 1 5 bは小流量域での流量を計測するために使用 され、 大流量用流速センサ 1 6 a, 1 6 bは大流量域での流量を計測するために 使用されるものである。 ここで、 小流量用流速センサ 1 5 a, 1 5 bが本発明に おける 「第 2の流速センサ」 に対応し、 大流量用流速センサ 1 6 a, 1 6 bが本 発明における 「第 1の流速センサ」 に対応する。
小流量用流速センサ 1 5 a, 1 5 bおよび大流量用流速センサ 1 6 a, 1 6 b は、 例えば、 図示しないが、 発熱部と、 この発熱部の上流側および下流側に配設 された 2つの温度センサとを有するように構成される。 この場合、 これらの 2つ の温度センサによって検出される温度の差を一定に保っために必要な発熱部に対 する供袷電力から流速に対応する流量を求めたり、 あるいは、 一定電流もしくは 一定電力で発熱部を加熱して 2つの温度センサによって検出される温度の差から 流速を求めることができるようになっている。
小流量用流速センサ 1 5 a, 1 5 bの上流側の流路 1 3には、 整流用の金網 1 9 aが設けられ、 小流量用流速センサ 1 5 a, 1 5 bと大流量用流速センサ 1 6 a , 1 6 bとの間の流路 1 3には、 整流用の金網 1 9 bが設けられている。 これ らの金網 1 9 a , 1 9 bとしては、 例えば # 1 0 0メッシュ程度のものが用いら れる。
第 3図は、 流量計 1 0 Aが適用されるガスメータの回路構成を表すものである 。 この回路は、 小流量用流速センサ 1 5 a , 1 5 bの各出力信号に基づいて、 整 流ストレーナ 1 4により形成された小流路 1 4 A内の流速の平均値を算出する平 均流速演算部 4 1と、 大流量用流速センサ 1 6 a , 1 6 bの各出力信号に基づい て、 大流量用計測領域 1 6における流速の平均値を算出する平均流速演算部 4 2 と備えている。 この回路はまた、 流量に応じて、 平均流速演算部 4 1の出力と平 均流速演算部 4 2の出力の一方を選択して出力する信号切換部 4 3と、 この信号 切換部 4 3の出力に基づいてガスの流量および積算流量を表示する表示部 4 5と 、 流量演算部 4 4によって算出された流量および積算流量を外部に出力するため の外部出力端子 4 6とを備えている。 ここで、 主として、 平均流速演算部 4 1、 平均流速演算部 4 2および流量演算部 4 4が本発明における 「流量演算手段」 に 対応する。
信号切換部 4 3は、 流量演算部 4 4によって算出された流量が予め設定された 小流量域にあるときは、 平均流速演算部 4 1の出力を流量演算部 4 4に出力し、 流量演算部 4 4によって算出された流量が予め設定された大流量域内にあるとき は、 平均流速演算部 4 2の出力を流量演算部 4 4に出力するようになっている。 流量演算部 4 4は、 流量が予め設定された小流量域内にあるときには、 平均流速 演算部 4 1の出力である流速の平均値に、 整流ストレーナ 1 4内の小流路 1 4 A に対応した配管形状係数を乗算して、 流量を算出する。 また、 流量演算部 4 4は 、 流量が予め設定された大流量域内にあるときには、 平均流速演算部 4 2の出力 である流速の平均値に、 整流ストレ一ナ 1 4の下流の流路 1 3に対応した配管形 状係数を乗算して流量を算出するようになっている。
なお、 小流量域と大流量域とを一部重複させて、 流量が増加する場合には流量 が重複領域の上限値に達したときに平均流速演算部 4 1の出力から平均流速演算 部 4 2の出力へ切り換え、 流量が減少する場合には流量が重複領域の下限値に達 したときに平均流速演算部 4 2の出力から平均流速演算部 4 1の出力へ切り換え て流量を算出するようにしてもよい。 平均流速演算部 4 1 , 4 2、 信号切換部 4 3および流量演算部 4 4は、 例えばマイクロコンピュータによって構成すること ができる。
次に、 以上のような構成の流量計 1 0 Aおよびそれが適用されるガスメータの 作用について説明する。
入口部 1 1から取り入れられたガス 2 0は、 まず、 小流量用計測領域 1 5にお いて、 整流ストレーナ 1 4内の複数の小流路 1 4 Aをそれぞれを通過する。 その 際、 小流量用流速センサ 1 5 a , 1 5 bは、 ガス 2 0の流速に応じた信号を出力 する。 小流量用計測領域 1 5を通過したガス 2 0は、 大流量用計測領域 1 6を通 過して出口部 1 2より排出される。 その際、 大流量用流速センサ 1 6 a , 1 6 b は、 大流量用計測領域 1 6を通過するガス 2 0の流速に応じた信号を出力する。 平均流速演算部 4 1は、 整流ストレ一ナ 1 4内の小流路 1 4 Aにおける小流量 用流速センサ 1 5 a , 1 5 bの各出力信号に基づいて小流路 1 4 A内における流 速の平均値を算出し、 平均流速演算部 4 2は、 大流量用計測領域 1 6における大 流量用流速センサ 1 6 a , 1 6 bの各出力信号に基づいて大流量用計測領域 1 6 における流速の平均値を算出する。 信号切換部 4 3は、 流量演算部 4 4によって 算出された流量が予め設定された小流量域にあるときには平均流速演算部 4 1の 出力を流量演算部 4 4に出力し、 流量演算部 4 4によって算出された流量が予め 設定された大流量域にあるときには平均流速演算部 4 2の出力を流量演算部 4 4 に出力する。 流量演算部 4 4は、 流量が予め設定された小流量域にあるときは平 均流速演算部 4 1の出力である流速の平均値に基づいて流量および積算流量を算 出し、 流量が予め設定された大流量域にあるときには平均流速演算部 4 2の出力 である流速の平均値に基づいて流量および積算流量を算出する。 流量演算部 4 4 によって算出された積算流量は表示部 4 5によって表示される。 なお、 小流量域 と大流量域を一部重複させて、 重複領域では、 流量演算部 4 4により、 平均流速 演算部 4 1の出力である流速の平均値に基づいて算出される流量と平均流速演算 部 4 2の出力である流速の平均値に基づいて算出される流量との 均値を求め、 この平均値を計測された流量としてもよい。 次に、 本発明に特徴的な作用について説明する。
第 4図および第 5図は、 整流ス卜レーナ 1 4の有無による流速分布の違いを説 明するためのものである。 ここで、 第 4図は、 本実施の形態のように整流ストレ —ナ 1 4を設置した場合の流速分布 3 0を表し、 第 5図は、 比較例として、 整流 ストレーナがない場合の流路 1 3における流速分布 3 1を表すものである。
一般的に、 流速は、 流路の中心部が最も速く、 壁面に近くになるにつれて遅く なるように分布し、 いわゆる偏流が生ずる。 特に、 小流量域においては偏流の程 度が著しく、 流路中央部では流れが検知されても、 流路の壁面近傍では流れが検 知されないこともある。 具体的には、 小流量用計測領域 1 5に整流ストレーナ 1 4を設けない場合の流路 1 3における流速分布は、 例えば第 5図のようになる。 なお、 この図で、 矢印 3 1の長さが流速の大きさを表している。 この図に示した ように、 小流量用流速センサ 1 5 a , 1 5 bを壁面に取り付けた場合には、 これ らの小流量用流速センサ 1 5 a , 1 5 bは、 流速分布 3 1における最も遅い部分 の流速を計測することとなり、 流量によっては、 流速検知不可能となることもあ る。 したがって、 特に下限側における流量計測可能範囲が狭くなる。
これに対して、 第 4図に示したように整流ストレーナ 1 4を設けた場合には、 整流ストレーナ 1 4によって形成された各小流路 1 4 Aごとに、 中央部が速く周 辺部が遅くなるような流速分布 3 0が存在し、 し力、も、 流路 1 3の中心部の小流 路 1 4 Aにおける平均流速と周辺部の小流路 1 4 Aにおける平均流速との間には 、 ほとんど差がない。 すなわち、 整流ストレーナ 1 4を設けた場合 (第 4図) に おける配管 1 0の壁面に最も近い小流路 1 4 A内での平均流速は、 整流ストレ一 ナ 1 4を設けない場合 (第 5図) における配管 1 0の壁面近傍における平均流速 に比べて、 相当速いものとなる。 このため、 第 4図における小流量用流速センサ 1 5 a . 1 5 bの計測感度は、 第 5図における小流量用流速センサ 1 5 a , 1 5 bの計測感度よりも増大する。 したがって、 下限側における流量計測可能範囲が 拡大するのである。
特に、 上記したように、 小流量用流速センサ 1 5 a , 1 5 bの先端の検出部が 配管 1 0の壁面に最も近い小流路 1 4 Aの中央部付近に位置するように配置した 場合には、 その小流路における流速分布 3 0のピーク値が検出されることとなる ので、 計測感度はさらに向上し、 下限側における流量計測可能範囲は、 さらに拡 大する。
したがって、 従来のように流速センサ 1 (第 2 9図) を流路の中央部に配置す るのではなく、 小流量用流速センサ 1 5 a , 1 5 bを配管 1 0の壁面位置もしく はその近傍に配置したとしても、 十分な計測感度を得ることができ、 流量計測範 囲を十分確保することができる。
なお、 大流量用計測領域 1 6に配置された大流量用流速センサ 1 6 a , 1 6 b は、 大流量域のガスの流速を計測するためのものなので、 計測感度は担保されて いる。 また、 大流量用計測領域 1 6のすぐ上流側には、 整流用の金網 1 9 bが配 置されており、 乱流の抑制も行われている。 したがって、 大流量用計測領域 1 6 では特に整流ストレーナを必要としない。 但し、 必要に応じて、 大流量用計測領 域 1 6にも整流ストレーナを配置することは可能である。
以上のように、 本実施の形態に係る流量計によれば、 小流量用流速センサ 1 5 a , 1 5 bを、 それぞれ、 整流ストレーナ 1 4により分割された小流路 1 4 Aに 臨ませ、 それらの先端の検出部が小流路 1 4 A内の中心部に位置するようにした ので、 小流量域においても感度の高い流速計測を行うことができる。 したがって 、 本質的に偏流が発生しやすい小流量域においても、 流速センサの設置場所が従 来のように流路中心近傍に制限されるということはなく、 任意に設置場所を選定 可能である。 すなわち、 流速センサを、 取り付けの容易な配管壁近傍に配置した としても、 小流量が検知不可能となることがなく、 実質的に、 流量計測可能範囲 を拡大することができる。 また、 整流ストレーナ 1 4および金網 1 9 aの整流作 用により、 小流量用流速センサ 1 5 a , 1 5 bが配置された空間における乱流の 発生が抑制されるので、 流速計測の精度が向上する。
したがって、 この流量計をガスメータに適用した場合には、 小流量域から大流 量域までの広い流量範囲にわたって高精度の計量を行うことができる。 特に、 こ の流量計を、 ガス使用状態の異常を感知して事故を未然に防止する安全機能を有 するガスメータに適用した場合には、 その安全機能の正確な作動を担保すること が可能である。
また、 本実施の形態では、 整流ストレーナ 1 4を設けたことにより、 流速計測 感度を担保しつつ小流量用流速センサ 1 5 a , 1 5 bを配管 1 0の壁面またはそ のごく近傍に位置させるようにすることができる。 このため、 これらのセンサを それぞれ着脱可能にユニッ ト化することが比較的容易である。 そして、 このよう に着脱可能なセンサュニッ トとした場合には、 各センサとガスメータ本体側の計 測回路部との間の結線が容易化し、 さらに、 例えば小流量用流速センサ 1 5 a , 1 5 bゃ大流量用流速センサ 1 6 a, 1 6 b等に異常が発生した場合には、 流路 1 3全体を分解せずにセンサュニッ トのみを交換すればよいので、 保守性が向上 する。 この点は、 大流量用流速センサ 1 6 a , 1 6 bについても同様である。
[第 2の実施の形態]
次に、 第 6図ないし第 1 4図を参照して、 本発明の第 2の実施の形態について 説明する。
第 6図は本発明の第 2の実施の形態に係る流量計の長手方向の断面構成を表し 、 第 7図は第 6図の W— Vn線における矢視方向の断面構造を表している。 これら の図において、 第 1図および第 2図に示した構成要素と同一部分には同一の符号 を付し、 適宜説明を省略する。 本実施の形態に係る流量計 1 0 Bでは、 小流量用 流速センサ揷入部 1 7 a, 1 7 に、 第 2の流速センサとしての小流量用流速セ ンサ 1 5 a , 1 5 bを含むセンサユニッ ト 1 5 0 a , 1 5 O bが着脱可能に取り 付けられている。 整流ストレーナ 1 4における、 センサュニッ ト 1 5 0 a . 1 5 0 bの取り付け部に対応した部分には、 例えば、 深さ 1 5 m m前後、 長手方向の 長さ 2 7 m m前後の取付溝 2 l a , 2 1 bが設けられている。
センサュニッ ト 1 5 0 aは、 小流量用流速センサ 1 5 aが設けられた小流路 1 4 Aを通過するガス 2 0の流速を增加させる流速増加手段としてのノズル 2 2 a と、 ノズル 2 2 aを保持するためのノズル保持部 2 3 aと、 小流量用流速センサ 1 5 aを保持するためのセンサ保持部 1 5 1 aとを含んでいる。 また、 センサュ ニッ ト 1 5 0 bは、 小流量用流速センサ 1 5 bが設けられた小流路 1 4 Aを通過 するガス 2 0の流速を增加させる流速増加手段としてのノズル 2 2 bと、 ノズル 2 2 bを保持するためのノズル保持部 2 3 bと、 小流量用流速センサ 1 5 bを保 持するためのセンサ保持部 1 5 1 bとを含んでいる。
センサュ二ッ ト 1 5 0 aにおいては、 ノズル 2 2 a, ノズル保持部 2 3 a , 小 流量用流速センサ 1 5 aおよびセンサ保持部 1 5 1 aが全て一体化されて構成さ れ、 センサュニッ 卜 1 5 0 bにおいては、 ノズル 2 2 b, ノズル保持部 2 3 b, 小流量用流速センサ 1 5 bおよびセンサ保持部 1 5 1 bが全て一体化されて構成 されている。 このように、 上記各要素を一体化してセンサュニッ ト 1 5 0 a, 1 5 0 bを構成すると共に、 このセンサュニッ 卜 1 5 0 a, 1 5 0 bを小流量用流 速センサ揷入部 1 7 a, 1 7 bに対して着脱可能に構成することにより、 上記各 構成要素の配管 1 0への取り付けおよび取り外しが簡略化される。 但し、 センサ ユニッ ト 1 5 0 a, 1 5 0 bの各構成要素を、 全て一体化せず、 各構成要素を分 離可能に構成するようにしてもよい。
小流量用流速センサ 1 5 a, 1 5 bは、 それらの各先端の検出部が整流ストレ —ナ 1 4により形成された複数の小流路 1 4 Aのうち最も壁面に近い小流路 1 4 Aの中央部に臨むように構成されている。 ノズル 2 2 a. 2 2 bは、 整流ストレ —ナ 1 4に設けられた取付溝 2 l a, 2 1 b内に位置するように構成されている 。 ノズル 2 2 a, 2 2 bは、 後述する第 8図に示すように、 取付溝 2 1 a, 2 1 b内の空間容積が、 上流側から下流側に行くに従つて次第に減少することとなる ような形状を有している。 すなわち、 小流量用流速センサ 1 5 a, 1 5 bが設け られた小流路 1 4 Aの周辺部分の空間容積が、 上流側から下流側に行くに従って 次第に減少し、 これによつて、 小流路 1 4 Aを通過するガス 2 0の流速を增加さ せることができるようになつている。
第 8図および第 9図は、 ノズル 2 2 a. 2 2 bの詳細な構成の一例を表す説明 図である。 これらの図に示したように、 ノズル 2 2 a, 2 2 bは、 小流量用流速 センサ 1 5 a, 1 5 bの両脇に立設した一対の柱状部材により構成されている。 ノズル 2 2 a, 2 2 bを構成する一対の柱状部材は、 それらの先端部 5 1の相互 間隔が小流路 1 4 Aの上流に向かうに従って次第に広くなるように、 小流量用流 速センサ 1 5 a, 1 5 bの両脇に立設している。 これにより、 一対の柱状部材の 間に流速が增加されたガス 2 0を通過させ易くなつている。 ノズル 2 2 a, 2 2 bの高さは、 例えば 1 0 mm前後であり、 その構成材料としては、 例えば、 アル ミ二ゥムゃステンレス等の金属または樹脂等が適用される。
ノズル 2 2 a, 2 2 bは、 少なくとも先端部 5 1または後端部 5 2の内側 (小 流量用流速センサ 1 5 a , 1 5 bが設けられた側) が流線形状を成していること が望ましい。 先端部 5 1を流線形状に構成することにより、 第 9図に示したよう に、 ガス 2 0がノズル 2 2 a , 2 2 bの間に容易に導かれ、 ガス 2 0の流速も增 加し易くなる。 また、 後端部 5 2を流線形状に構成することにより、 ノズル 2 2 a , 2 2 bの間に導かれたガス 2 0が容易に後端部 5 2を通過するようになり、 後端部 5 2においてガス 2 0が澱んでしまうことが防止されるようになる。 流量計 1 0 Bにおけるその他の構成は、 上記第 1の実施の形態の場合と同様で ある。 また、 本実施の形態に係る流量計 1 0 Bが適用されるガスメータの回路部 分の構成は、 上記第 1の実施の形態における回路構成 (第 3図) と同様である。 但し、 本実施の形態では、 流量演算部 4 4は、 流量が予め設定された小流量域に あるときには、 平均流速演算部 4 1の出力である流速の平均値に対して、 整流ス トレ一ナ 1 4内の小流路 1 4 Aに対応した配管形状係数のほかに、 ノズル 2 2 a , 2 2 bの形状に対応した補正係数を乗算して流量を算出するようになっている 次に、 本実施の形態に係る流量計 1 0 Bの作用について説明する。
入口部 1 1から取り入れられたガス 2 0は、 まず、 小流量用計測領域 1 5にお いて、 整流ストレーナ 1 4内の複数の小流路 1 4 Aをそれぞれを通過する。 この とき、 整流ストレ—ナ 1 4は、 上記第 1の実施の形態 (第 4図) の場合と同様に 作用して、 管壁近傍の流速を增加させる。 複数の小流路 1 4 Aを通過するガス 2 0のうち、 一部分は、 小流量用流速センサ 1 5 a , 1 5 bの両脇に立設したノズ ル 2 2 a , 2 2 bに達する。 ガス 2 0は、 ノズル 2 2 a , 2 2 bに達すると、 ノ ズル 2 2 a , 2 2 bの作用により、 その流速が増加させられる。 流速が増加させ られたガス 2 0は、 ノズル 2 2 a , 2 2 bの中央部に位置し、 流路 1 3の内壁面 に設けられた小流量用流速センサ 1 5 a, 1 5 bを通過する。 その際、 小流量用 流速センサ 1 5 a , 1 5 bは、 ノズル 2 2 a , 2 2 bによって流速が増加させら れたガス 2 0の流速に応じた信号を出力する。 小流量用計測領域 1 5を通過した ガス 2 0は、 大流量用計測領域 1 6を通過して出口部 1 2より排出される。 その 際、 大流量用流速センサ 1 6 a , 1 6 bが大流量用計測領域 1 6を通過するガス 2 0の流速に応じた信号を出力する。 これ以降の信号処理に関する動作は、 上記 第 1の実施の形態の場合と同様であるので、 説明を省略する。
第 1 0図は、 小流量用流速センサ 1 5 a , 1 5 bにおいて、 測定条件を変化さ せて観測したセンサ出力値の一例を示す説明図である。 この図では、 測定条件を 4通り変化させた場合について得られた測定結果を示している。 測定条件 B~D は、 小流量用流速センサ 1 5 a, 1 5 bの近傍に上記したノズル 2 2 a, 2 2 b を設けるようにして流速を測定した場合であり、 測定条件 Aは、 ノズル 2 2 a, 2 2 bを設けずに流速を測定した場合 (ノズル 2 2 a, 2 2 bの高さが 0である 場に相当) について示している。
また、 測定条件 B〜Dにおいては、 小流量用流速センサ 1 5 a, 1 5 bの検出 部に対して深さが約 1 1. 5 mmの取付溝 2 1 a, 2 1 bに、 それぞれ小流量用 流速センサ 1 5 a, 1 5 bの検出部に対する高さが約 1 0 mm, 7 mmのノズル 2 2 a, 2 2 bを取り付けた場合について示している。 すなわち、 測定条件 B〜 Dにおいては、 小流量用流速センサ 1 5 aの近傍に、 高さ約 1 O mmのノズル 2 2 aを取り付け、 一方の小流量用流速センサ 1 5 bの近傍には、 高さ約 7 mmの ノズル 2 2 bを取り付けている。 測定条件 Dにおいては、 小流量用流速センサ 1 5 a, 1 5 bの双方のセンサ出力値を同時観測している。 測定条件 Cにおいては 、 ノズル 2 2 bが取り付けられた小流量用流速センサ 1 5 bを閉止蓋で閉止する ことにより、 高さ約 1 0 mmのノズル 2 2 aが取り付けられた小流量用流速セン サ 1 5 aからのセンサ出力値を観測している。 測定条件 Bにおいては、 ノズル 2 2 aが取り付けられた小流量用流速センサ 1 5 aを閉止蓋で閉止することにより 、 高さ約 7 mmのノズル 2 2 bが取り付けられた小流量用流速センサ 1 5 から のセンサ出力値を観測している。 なお、 測定条件 A〜Dのいずれの場合において も、 測定に用いたガス 2 0は空気であり、 配管 1 0内の流路 1 3の径は約 5 6 m mである。 また、 第 1 0図に示したセンサ出力値は、 微小流量 (毎時 5 リッ トル に相当する流量) のガス 2 0を導入した場合に、 小流量用流速センサ 1 5 a. 1 5 bから出力されたネッ ト (NE T) パルスの値を示している。
第 1 0図に示した測定結果から、 ノズル 2 2 a, 2 2 bを設けなかった場合に は (測定条件 A) 、 小流量用流速センサ 1 5 a, 1 5 bにおいて微小流量のガス 2 0の検知ができなかった (センサ出力値が 0であった) のに対し、 ノズル 2 2 a. 2 2 bを設けた場合には (測定条件 B〜D) 、 少なくとも 7パルスを越える センサ出力があり、 微小流量のガス 2 0であっても流速の検知が可能となってい ることが分かる。 このことから、 ノズル 2 2 a, 2 2 bを設けることにより、 小 流量用流速センサ 1 5 a, 1 5 bにおける事実上の測定感度が上がっていること が分かる。
また、 高さ約 1 O mmのノズル 2 2 aが取り付けられた小流量用流速センサ 1 5 aのセンサ出力値の方が (測定条件 C) 、 高さ約 7 mmのノズル 2 2 bが取り 付けられた小流量用流速センサ 1 5 bのセンサ出力値 (測定条件 B) よりも、 約 2倍の値となっている。 これは、 小流量用流速センサ 1 5 aと小流量用流速セン サ 1 5 bとを別々に観測した場合においても (測定条件 B, D) 、 小流量用流速 センサ 1 5 a, 1 5 bを同時に観測した場合においても同様である (測定条件 D ) 。 このことから、 ノズル 2 2 a, 2 2 bの高さ (大きさ) を大きく して、 小流 量用流速センサ 1 5 a, 1 5 bが設けられた小流路 1 4 Aの周辺部分の空間容積 を大幅に減少させた場合の方が、 小流量用流速センサ 1 5 a, 1 5 bにおける事 実上の測定感度をさらに向上できるようになることが分かる。
以上説明したように、 本実施の形態における流量計によれば、 整流ストレーナ 1 4を設けるほかに、 小流量用流速センサ 1 5 a. 1 5 bの近傍にノズル 2 2 a , 2 2 bを設けて小流路 1 4 Aを通過するガス 2 0の流速を増加させ、 この流速 が增加させられたガス 2 0の流速を小流量用流速センサ 1 5 a, 1 5 bにおいて 測定するようにしたので、 上記第 1の実施の形態の場合のように整流ストレーナ 1 4のみを用いた場合よりも、 さらに正確かつ感度の高い流量計測を行うことが できる。 また、 ノズル 2 2 a , 2 2 bの先端部 5 1および後端部 5 2を流線形状 に構成するようにしたので、 ガス 2 0がノズル 2 2 a. 2 2 bの間に容易に導か れ、 ガス 2 0の流速を増加させ易くできると共に、 ノズル 2 2 a, 2 2 bの間に 導かれたガス 2 0を容易に後端部 5 2から排出させることができ、 後端部 5 2に おいてガス 2 0が澱んでしまうことを防止できる。
さらに、 本実施の形態における流量計によれば、 小流量用流速センサ 1 5 a, 1 5 bおよびノズル 2 2 a, 2 2 bを含んで一体構成されたセンサュニッ ト 1 5 0 a, 1 5 0 bを小流量用流速センサ揷入部 1 7 a, 1 7 bに対して着脱可能に 構成するようにしたので、 小流量用流速センサ 1 5 a, 1 5 bおよびノズル 2 2 a, 2 2 bの配管 1 0への取り付けおよび取り外しを簡略化することができる。 なお、 ノズル 2 2 a, 2 2 bの構成は、 第 8図および第 9図に示したような形 状の一対の柱状部材を立設したものに限らず、 他の形状で構成してもよい。 例え ば、 第 1 1図に示したように、 ノズル 2 2 a, 2 2 bを、 先端部が流線形伏を成 したナイフ形状のノズル 2 2 a , , 2 2 b , により構成してもよい。 また、 例え ば第 1 2図に示したように、 ノズル 2 2 a, 2 2 bを、 全体が流線形伏を成した 飛行機の翼形状のノズル 2 2 a 2 , 2 2 b2 により構成してもよい。 さらに、 例 えば第 1 3図に示したように、 ノズル 2 2 a, 2 2 bを、 先端部から後端部に向 かうにつれて面積の狭くなる涙滴形状のノズル 2 2 a3 . 2 2 b3 により構成し てもよい。
また、 上記実施の形態においては、 小流量用流速センサ 1 5 a, 1 5 bの各々 について個別にノズル 2 2 a, 2 2 bを設けるようにしたが、 これらの 2つのノ ズルに代えて、 整流ストレーナ 1 4を完全に貫通するような単体のノズルを設け るようにしてもよい。 このようにすることで、 ノズル 2 2 a, 2 2 bの場合のよ うに、 ノズル 2 2 a, 2 2 bを別々に整流ストレーナ 1 4に取り付ける必要がな いので、 その取り付けを容易にすることが可能となる。
以上の 2つの実施の形態においては、 小流量用流速センサ 1 5 a . 1 5 bを配 管 1 0の内壁面に取り付けると共に、 小流量用流速センサ 1 5 a, 1 5 bを、 そ れぞれ、 整流ストレーナ 1 4により分割された小流路 1 4 Aのうちの最も外側の 小流路に臨ませるようにしたが、 これらの小流量用流速センサ 1 5 a, 1 5 bを 配置する位置は、 配管 1 0の内壁面に限らず、 整流ス卜レーナ 1 4の内部であつ てもよい。
第 1 4図は、 第 1図に示した流量計において小流量用流速センサ 1 5 a, 1 5 bを設置する位置を変化させた場合におけるセンサ出力特性を示した図である。 この特性図では、 小流量用流速センサ 1 5 a, 1 5 bを設置する位置を、 整流ス トレ一ナ 1 4の内部方向 (ガス 2 0の進行方向に垂直な方向) に変化させた場合 における流量とセンサ出力値との関係を示している。 但し、 この特性図は、 小流 量用流速センサ 1 5 a , 1 5 bの近傍にノズル 2 2 a . 2 2 bを設けなかった塲 合について得られた結果であり、 測定用のガス 2 0には空気を用いている。 また 、 配管 1 0内の流路 1 3の径は約 5 6 m mである。 この図において、 符号 9 1 , 9 2 , 9 3, 9 4は、 それぞれ小流量用流速センサ 1 5 a , 1 5 bを配管 1 0の 内壁面から整流ストレーナ 1 4の内部方向に 8 mm, 1 6 mm, 1 7 mm. 2 4 m mだけ離した位置に配置した場合におけるセンサ出力特性を示している。
第 1 4図に示した特性図から分かるように、 整流ストレーナ 1 4の内部であれ ば、 小流量用流速センサ 1 5 a , 1 5 bを設置する位置を変化させたとしても、 その出力値は、 ほぼ同一である。 このことから、 必ずしも小流量用流速センサ 1 5 a , 1 5 bの配置位置を最も外側の小流路 1 4 A内にしなくとも、 小流量用流 速センサ 1 5 a , 1 5 bを任意の小流路 1 4 Aに臨ませ、 それぞれの先端部の検 出部を、 対応する小流路 1 4 A内の中心部に位置させることで、 ガス 2 0の流れ の乱れの影響を受けず、 正確で感度の高い計測を行うことができるようになるこ とが分かる。 但し、 上記したように、 小流量用流速センサ 1 5 a , 1 5 bを最も 外側の小流路 1 4 A内に取り付けた方が、 例えば、 計測装置本体との間の結線の 容易性ゃセンサ異常時における保守の容易性では優れているため、 この観点から 、 小流量用流速センサ 1 5 a , 1 5 bを配管 1 0の内壁面に取り付けた方が望ま しい。
なお、 本実施の形態においては、 2つの小流量用流速センサ 1 5 a , 1 5 bお よび 2つの大流量用流速センサ 1 6 a , 1 6 bを設けるようにしたが、 これらの 数は任意である。 但し、 各流速センサを複数設けた場合には、 1の流速センサに 異常が発生した場合でも他の流速センサで計測を行うことができるため、 信頼性 上、 各流速センサの数は 2以上とすることが望ましい。
また、 後述する第 6の実施の形態で説明するように、 大流量用計測領域 1 6を 上流側に、 小流量用計測領域 1 5を下流側に形成してもよい。 さらに、 流路 1 3 の断面形状は円形に限らず、 半円、 楕円、 矩形等の形状であってもよい。
[第 3の実施の形態]
次に、 第 1 5図ないし第 1 8図を参照して、 本発明の第 3の実施の形態につい て説明する。 第 1 5図〜第 1 7図は、 本発明の第 3の実施の形態に係る流量計の構造を表す ものである。 ここで、 第 1 5図は流量計の流路方向 (長手方向) に沿った断面構 造を表し、 第 1 6図は第 1 5図における矢印 Xの方向から見た外観構成を表し、 第 1 7図は第 1 5図および第 1 6図の X VII— X W線における矢視方向の断面構造 を表す。 なお、 第 1 5図は、 第 1 6図の X V— X V線における矢視方向の断面に 対応する。 これらの図で、 上記実施の形態と同一部分には同一符号を付すものと する。 この流量計 1 0 Cは、 ガス 2 0を受け入れる入口部 1 1 1とガス 2 0を排 出する出口部 1 1 2とを有すると共に、 断面が矩形をなす配管 1 1 0を備えてい る。 配管 1 1 0の断面の対角線の長さは、 例えば 5 O m m程度である。
配管 1 1 0の一側壁における流速センサ揷入部 1 1 7 a , 1 1 8 aには、 それ ぞれ、 小流量用流速センサ 1 1 5および大流量用流速センサ 1 1 6が設けられて いる。 小流量用流速センサ 1 1 5は、 ガス 2 0の流れの上流側に設けられ、 大流 量用流速センサ 1 1 6は下流側に設けられている。 これらの 2つの流速センサは 、 第 1 6図, 第 1 7図に示したように、 ガス 2 0の流れの方向に沿った 1直線上 にのらないように配置されている。 すなわち、 第 1 7図において、 小流量用流速 センサ 1 1 5は流路断面の中央よりも左側に寄せて配置され、 大流量用流速セン サ 1 1 6は流路断面の中央よりも右に寄せて配置されている。 ここで、 小流量用 流速センサ 1 1 5および大流量用流速センサ 1 1 6が本発明における 「流速セン サ」 に対応する。
小流量用流速センサ 1 1 5は、 配管 1 1 0の内外の気密を保持するためのシー ル部材 1 5 2を介して配管 1 1 0の管壁に揷設されたセンサ保持部 1 5 1によつ て流路 1 1 3に面して保持されている。 同様に、 大流量用流速センサ 1 1 6は、 配管 1 1 0の内外の気密を保持するためのシール部材 1 6 2を介して配管 1 1 0 の管壁に揷設されたセンサ保持部 1 6 1によって流路 1 1 3に面して保持されて いる。 センサ保持部 1 5 1とシール部材 1 5 2との間、 およびシール部材 1 5 2 と配管 1 1 0の内壁との間には、 隙間や段差が一切存在せず、 それらの境界部は 平滑な状態となっている。 小流量用流速センサ 1 1 5のみが配管 1 1 0の内壁面 からわずかに突出している。 同様に、 センサ保持部 1 6 1とシール部材 1 6 2と の間、 およびシール部材 1 6 2と配管 1 1 0の内壁との間には、 隙間や段差が一 切存在せず、 それらの境界部は平滑な状態となっている。 大流量用流速センサ 1 1 6のみが配管 1 1 0の内壁面からわずかに突出している。 ここで、 センサ保持 部 1 5 1およびセンサ保持部 1 6 1が本発明における 「保持部」 に対応する。 小流量用流速センサ 1 1 5は小流量域での流量を計測するために使用され、 大 流量用流速センサ 1 1 6は大流量域での流量を計測するために使用されるもので ある。
小流量用流速センサ 1 1 5の上流側の流路 1 1 3には整流用の金網 1 1 9 aが 設けられ、 小流量用流速センサ 1 1 5と大流量用流速センサ 1 1 6との間の流路 1 1 3には整流用の金網 1 1 9 bが設けられている。 これらの金網 1 1 9 a , 1 1 9 bとしては、 例えば # 1 0 0メッシュ程度のものが用いられる。 ここで、 金 網 1 1 9 aが本発明における 「第 2の網状整流部材」 に対応し、 金網 1 1 9 bが 本発明における 「第 1の網状整流部材」 に対応する。
小流量用流速センサ 1 1 5および大流量用流速センサ 1 1 6の構成は、 例えば 、 上記第 1および第 2の実施の形態における小流量用流速センサ 1 1 5 aおよび 大流量用流速センサ 1 1 6 a等と同様である。
このような構成の流量計 1 0 Cは、 1つのュニッ トとして取り扱いが可能であ り、 ガス配管における任意の部分に挿入配置されて、 ガス 2 0の流量計測が行わ れるようになっている。
第 1 8図は本実施の形態に係る流量計 1 0 Cが適用されるガスメータの回路構 成を表すものである。 なお、 この図で、 上記第 1の実施の形態における回路 (第 3図) と同一部分には同一符号を付し、 適宜説明を省略する。 この第 1 8図に示 した回路は、 小流量用流速センサ 1 1 5の出力信号に基づいて小流量域でのガス 2 0の流速を算出する流速演算部 1 4 1と、 大流量用流速センサ 1 1 6の出力信 号に基づいて大流量域でのガス 2 0の流速を算出する流速演算部 1 4 2とを備え ている。 この回路はまた、 流量に応じて、 流速演算部 1 4 1の出力と流速演算部 1 2の出力の一方を選択して出力する信号切換部 4 3と、 この信号切換部 4 3 の出力に基づいてガス 2 0の流量および積算流量を演算する流量演算部 4 と、 この流量演算部 4 4で算出された流量および積算流量を表示する表示部 4 5と、 流量演算部 4 によって算出された流量および積算流量を外部に出力するための 外部出力端子 4 6とを備えている。 ここで、 主として流速演算部 1 4 1、 流速演 算部 1 4 2および流量演算部 4 4が本発明における 「流量演算手段」 に対応する その他の回路構成は上記実施の形態における第 3図と同様であり、 説明を省略 する。
次に、 本実施の形態に係る流量計 1 0 Cおよびこの流量計 1 0 Cが適用された ガスメータの作用について説明する。
入口部 1 1 1から取り入れられたガス 2 0は、 金網 1 1 9 aを通過して整流さ れ、 その一部は小流量用流速センサ 1 1 5の部分を通過する。 小流量用流速セン サ 1 1 5は、 そこを通過するガス 2 0の流速に応じた信号を出力する。 小流量用 流速センサ 1 1 5の部分を通過したガス 2 0は、 そのまま出口部 1 1 2より排出 される。 その際、 後述するように、 小流量用流速センサ 1 1 5の存在によって、 その下流側に乱流が生ずる。 一方、 入口部 1 1 1から取り入れられて金網 1 1 9 aおよび 1 1 9 bを通過して整流されたガス 2 0の一部は、 大流量用流速センサ 1 1 6の部分を通過する。 大流量用流速センサ 1 1 6は、 そこを通過するガス 2 0の流速に応じた信号を出力する。 大流量用流速センサ 1 1 6の部分を通過した ガス 2 0は、 そのまま出口部 1 1 2より排出される。
ここで、 小流量用流速センサ 1 1 5の部分を通過するガス 2 0は、 金網 1 1 9 aによって整流されているので、 小流量用流速センサ 1 1 5からの出力信号は比 較的安定したものとなる。
このとき、 小流量用流速センサ 1 1 5は、 そこを通過したガス 2 0に乱流を生 じさせる。 ところが、 下流側の大流量用流速センサ 1 1 6は、 小流量用流速セン サ 1 1 5を通るガス 2 0の流れの方向に沿った直線上には位置していないので、 小流量用流速センサ 1 1 5により生じた乱流は大流量用流速センサ 1 1 6の部分 には差し掛からない。 すなわち、 大流量用流速センサ 1 1 6の部分を通過するガ ス 2 0は金網 1 1 9 a , 1 9 bによって整流されたままの整った伏態の流れとな つている。 したがって、 大流量用流速センサ 1 1 6からの出力信号は、 上記の乱 流の影響を受けることなく、 安定したものとなる。
ガスメータの流速演算部 1 4 1は、 小流量用流速センサ 1 1 5の出力信号に基 づいてガス 2 0の流速値を算出し、 流速演算部 1 4 2は、 大流量用流速センサ 1 1 6の出力信号に基づいてガス 2 0の流速値を算出する。 信号切換部 4 3は、 流 量演算部 4 4によって前回算出された流量が予め設定された小流量域にあるとき には、 流速演算部 1 4 1から出力される流速値を流量演算部 4 4に入力し、 流量 演算部 4 4によつて前回算出された流量が予め設定された大流量域にあるときに は、 流速演算部 1 4 2から出力される流速値を流量演算部 4 4に入力する。 流量 演算部 4 4は、 信号切換部 4 3から入力された流速値に基づいて、 流量および積 算流量を算出する。 すなわち、 流量が予め設定された小流量域にあるときは流速 演算部 1 4 1からの流速値に基づいて流量および積算流量を算出し、 流量が予め 設定された大流量域にあるときには流速演算部 1 4 2からの流速値に基づいて流 量および積算流量を算出する。 流量演算部 4 4によって算出された流量および積 算流量は表示部 4 5によって表示される。
このように、 本実施の形態によれば、 小流量用流速センサ 1 1 5および大流量 用流速センサ 1 1 6を、 ガス 2 0の流れの方向に沿った 1直線上にのらないよう に配置するようにしたので、 小流量用流速センサ 1 1 5により生じた乱流の影響 が大流量用流速センサ 1 1 6に及ぶのを効果的に防止することができ、 大流量用 流速センサ 1 1 6における流速の検出精度が向上する。
また、 本実施の形態では、 小流量用流速センサ 1 1 5と大流量用流速センサ 1 1 6との間の流路 1 1 3中に金網 1 1 9 bを配置するようにしたので、 小流量用 流速センサ 1 1 5を通過した後のガス 2 0の流れが整えられ、 大流量用流速セン サ 1 1 6の近傍の流れの状態がさらに安定するので、 大流量用流速センサ 1 1 6 の出力信号の安定性をさらに高めることができる。
さらに、 本実施の形態では、 上流側に配置された小流量用流速センサ 1 1 5の 上流側の流路 1 1 3中にも金網 1 1 9 aを配置するようにしたので、 小流量用流 速センサ 1 1 5の近傍の流れの状態も良好となり、 小流量用流速センサ 1 1 5の 出力信号の安定性をも高めることができる。
なお、 本実施の形態では、 小流量用流速センサ 1 1 5および大流量用流速セン サ 1 1 6を流れ方向に沿った同一直線上にのらないように配置することにより、 大流量用流速センサ 1 1 6が小流量用流速センサ 1 1 5の存在により生ずる乱流 の影響を受けなくなるようにしたが、 このほか、 小流量用流速センサ 1 1 5と大 流量用流速センサ 1 1 6との位置関係を考慮せずに、 2つの流速センサ間に金網 1 1 9 bを配置することのみによって乱流の影響を排除することも可能である。 すなわち、 たとえ小流量用流速センサ 1 1 5および大流量用流速センサ 1 1 6を 流れ方向に沿った同一直線上に配置したとしても、 小流量用流速センサ 1 1 5と 大流量用流速センサ 1 1 6との間の流路 1 1 3中に適切なメッシュ形状の金網 1 1 9 bを配置することで、 小流量用流速センサ 1 1 5の部分を通過したあとのガ ス 2 0の流れを整えることは可能である。 これにより、 下流側の大流量用流速セ ンサ 1 1 6の部分を通過するガス 2 0の流れを安定化させて大流量用流速センサ 1 1 6の出力信号の安定性を高めることが可能である。 この場合には、 小流量用 流速センサ 1 1 5と大流量用流速センサ 1 1 6とを同一直線上に配置できること から、 流路の幅、 ひいては配管 1 1 0のセンサ取付面の幅を縮小することができ る。
なお、 金網 1 1 9 a , 1 1 9 bは、 それぞれ、 2枚以上設けるようにしてもよ い。 但し、 金網は、 比較的、 圧力損失を生じやすいので、 これを考慮して金網の メッシュ粗さや形状および設置枚数等を決定するのが好ましい。
[第 4の実施の形態]
次に、 第 1 9図ないし第 2 4図を参照して、 本発明の第 4の実施の形態につい て説明する。
第 1 9図および第 2 0図は本発明の第 4の実施の形態に係る流量計の構造を表 すものである。 ここで、 第 1 9図および第 2 0図は、 それぞれ、 上記第 3の実施 の形態における第 1 6図, 第 1 7図に対応するものであり、 このうち、 第 2 0図 は第 1 9図の X X— X X線における矢視方向の断面構造を表す。 なお、 これらの 第 1 9図および第 2 0図で、 上記の第 1 6図および第 1 7図における構成要素と 同一部分には同一の符号を付し、 説明を省略する。 また、 本実施の形態では、 上 記第 3の実施の形態における第 1 5図に対応する長手方向の断面図の図示を省略 する。
本実施の形態の流量計 1 0 Dは、 第 1 9図に示したように、 小流量用流速セン サ 1 1 5および大流量用流速センサ 1 1 6がガス 2 0の流れの方向に沿った 1直 4688
2 6
線上にのらないように配置されている点では上記第 3の実施の形態の流量計 (第 1 6図, 第 1 7図) と同様であるが、 2つの流速センサのうち下流側の大流量用 流速センサ 1 1 6を配管 1 1 0内の流路幅方向の中央部の管壁に配置した点で異 なる。 その他の構成は上記第 3の実施の形態の場合と同様である。
第 2 0図に示したように、 配管 1 1 0内の流路 1 1 3におけるガスの流れ方向 と直交する方向の断面内では、 断面の中心部が速く、 中心部から離れるほど (す なわち、 管壁に近づくほど) 遅くなる流速分布となる。 この図で、 符号 Sで示し た曲線は、 流速が等しい点を結んだ等速線を表す。 したがって、 流路 1 1 3の上 記断面内における管壁近傍領域の流速分布を見ると、 各管壁面における流路幅方 向の中央部が最も流速が大きく、 隅にいくほど流速が小さくなる。
そこで、 本実施の形態では、 2つの流速センサのうちのいずれか一方 (第 1 9 図, 第 2 0図の例では下流側の大流量用流速センサ 1 1 6 ) を、 流路幅方向の中 央部の管壁に配置し、 流速の検出感度が最大となるようにしている。 しかも、 こ の場合には、 上記第 3の実施の形態の場合と同様に、 大流量用流速センサ 1 1 6 は上流側の小流量用流速センサ 1 1 5で生じた乱流の影響を受けないので、 その 出力信号も安定している。
このように、 本実施の形態では、 小流量用流速センサ 1 1 5および大流量用流 速センサ 1 1 6をガス 2 0の流れの方向に沿った 1直線上にのらないように配置 すると共に、 2つの流速センサうち下流側の大流量用流速センサ 1 1 6を配管 1 1 0の流路幅方向の中央部の管壁に配置したので、 広い流量域における流量計測 を安定して行うことができると共に、 特に大流量域での計測をより高い感度で行 うことが可能となる。
なお、 第 1 9図および第 2 0図に示した位置関係とは逆に、 例えば第 2 1図お よび第 2 2図に示したように、 2つの流速センサうち上流側の小流量用流速セン サ 1 1 5を配管 1 1 0の流路幅方向の中央部の管壁に配置して流量計 1 0 Eを構 成するようにしてもよい。 この場合には、 小流量域での流速検出感度を高めつつ 、 大流量用流速センサ 1 1 6が上流側の小流量用流速センサ 1 1 5で生じた乱流 の影響を受けないようにすることができる。 なお、 第 2 1図および第 2 2図は、 それぞれ、 上記の第 1 6図および第 1 7図に対応するものであり、 このうち第 2 2図は第 2 1図の X X Π— X X Π線における矢視方向の断面構造を表す。 なお、 これらの第 2 1図および第 2 2図で、 第 1 6図および第 1 7図における構成要素 と同一部分には同一の符号を付し、 説明を省略している。
また、 例えば第 2 3図に示したように、 配管 1 1 0における流路 1 1 3を挟ん で対向する 2つの管壁にそれぞれ小流量用流速センサ 1 1 5および大流量用流速 センサ 1 1 6を配設して、 流量計 1 0 Fを構成するようにしてもよい。 この場合 には、 各流速センサを、 各管壁における流路幅方向の中央部に配置することが可 能である。 このような配置関係にした場合においても、 小流量用流速センサ 1 1 5および大流量用流速センサ 1 1 6はガス 2 0の流れの方向に沿った 1直線上に のらないので、 一方の流速センサによって生じた乱流が他方に影響を与えること がない。 なお、 このような対向配置とする場合には、 2つの流速センサのうちの 一方を上流側に、 他方を下流側に配置するようにしてもよいし、 あるいは双方の 流速センサを、 流路 1 1 3の長手方向 (ガス 2 0の流れの方向に沿った方向) と 直交する同一断面内に配置するようにしてもよい。
さらに、 第 2 4図に示したように、 配管 1 1 0における互いに直交する 2つの 管壁にそれぞれ小流量用流速センサ 1 1 5および大流量用流速センサ 1 1 6を配 設して、 流量計 1 0 Gを構成するようにしてもよい。 この場合も、 各流速センサ を、 各管壁における流路幅方向の中央部に配置することが可能である。 このよう な配置関係にした場合においても、 小流量用流速センサ 1 1 5および大流量用流 速センサ 1 1 6はガス 2 0の流れの方向に沿った 1直線上にのらないので、 一方 の流速センサによって生じた乱流が他方に影響を与えることがない。 なお、 この ような直交配置とする場合にも、 上記の第 2 3図の場合と同様に、 2つの流速セ ンサのうちの一方を上流側に、 他方を下流側に配置するようにしてもよいし、 あ るいは双方の流速センサを流路 1 1 3の長手方向 (ガス 2 0の流れの方向に沿つ た方向) と直交する同一断面内に配置するようにしてもよい。
なお、 第 2 3図, 第 2 4図に示した例においても、 金網 1 1 9 a , 1 1 9 bを 流路 1 1 3中の適宜の位置に設けるのが好適である。
[第 5の実施の形態]
次に、 第 2 5図および第 2 6図を参照して、 本発明の第 5の実施の形態につい て説明する。
第 2 5図は、 本発明の第 5の実施の形態に係る流量計の流路方向 (長手方向) の断面構造を表し、 第 2 6図は、 第 2 5図の X X VI— X X VI線における矢視方向 の断面構造を表すものである。 これらの図で、 上記第 1の実施の形態 (第 1図等 ) と同一構成部分には同一の符号を付し、 適宜説明を省略する。
第 2 5図および第 2 6図に示したように、 本実施の形態の流量計 1 0 Hには、 小流量用流速センサ 1 1 5が配置された位置を含む流路領域 (すなわち、 小流量 用計測領域) に、 ガス 2 0の流れを整えると共に特に管壁近傍の流速を増加させ る作用を有する整流ストレーナ 1 1 4が設けられている。
整流ストレーナ 1 1 4は、 第 2 5図に示したように、 多数の仕切壁により、 流 路 1 1 3を、 長手方向に沿って、 より小さな断面積を有する複数の小流路 1 1 4 aに分割している。 そして、 ガス 2 0は、 これらの分割された小流路 1 1 4 aに 分流して流れるようになつている。 小流路 1 1 4 aの断面形状は、 第 2 6図に示 したような矩形のほか、 三角形、 波形、 六角形伏等、 他の形状であってもよい。 小流量用流速センサ 1 1 5は、 管壁に沿った 1つの小流路 1 1 4 a内に配置され ている。 ここで、 整流ストレーナ 1 1 4が本発明における 「流路分割部材」 に対 応する。
その他の構成は、 上記第 3の実施の形態 (第 1 5図, 第 1 7図) と同様である 。 なお、 本実施の形態の流量計 1 0 Hにおける側面方向からの外観は第 1 6図と 異ならないので、 その図示を省略している。 また、 第 2 5図および第 2 6図にお いて、 上記第 3の実施の形態の第 1 5図および第 1 7図における構成要素と同一 構成要素には同一の符号を付し、 適宜説明を省略する。
本実施の形態の流量計 1 0 Hは、 上記第 1の実施の形態における第 4図および 第 5図で説明したのと同様の作用を有する。 すなわち、 整流ストレーナ 1 1 4に よって複数の小流路 1 1 4 aが形成されているので、 小流量用流速センサ 1 1 5 の部分を通過するガスの流速は、 整流ス卜レーナ 1 1 4を設けない場合よりも大 きくなり、 小流量用流速センサ 1 1 5の計測感度は高くなる。 また、 整流ス卜レ —ナ 1 1 4の存在により、 小流量用流速センサ 1 1 5の近傍の乱流が抑制されて いる。 このため、 上記第 3および第 4の実施の形態の場合と比べて、 さらに、 高 感度かつ高精度での流量計測が可能である。
その他の作用は、 上記第 3および第 4の実施の形態と同様である。
なお、 本実施の形態では、 金網 1 1 9 a , 1 1 9 bを設けている力 <、 設けなく てもよい。
[第 6の実施の形態]
次に、 第 2 7図および第 2 8図を参照して、 本発明の第 6の実施の形態につい て説明する。
第 2 7図および第 2 8図は本発明の第 6の実施の形態に係る流量計の構造を表 すものである。 ここで、 第 2 7図は、 本実施の形態に係る流量計 1 0 Iの流路方 向 (長手方向) の断面構造を表し、 第 2 8図は、 第 2 7図における矢印 Yの方向 から見た外観構成を表すものである。 これらの図で、 上記第 3の実施の形態の流 量計の構成要素と同一構成部分には同一の符号を付し、 適宜説明を省略する。 な お、 本実施の形態では、 上記第 3の実施の形態における第 1 7図に対応する断面 図の図示を省略する。
本実施の形態の流量計 1 0 Iは、 第 2 7図および第 2 8図に示したように、 上 記第 3ないし第 5の実施の形態の場合とは逆に、 上流側に大流量用流速センサ 1 1 6を配置し、 下流側に小流量用流速センサ 1 1 5を配置すると共に、 両者を、 ガス 2 0の流れの方向に' った 1直線上に配置したものである。 また、 本実施の 形態では、 大流量用流速センサ 1 1 6と小流量用流速センサ 1 1 5との間に金網 1 1 9 bを配置せず、 大流量用流速センサ 1 1 6の上流側にのみ金網 1 1 9 aを 配置している。 その他の構成は、 上記第 3の実施の形態 (第 1 5図および第 1 6 図) の場合と同様である。
本実施の形態では、 大流量用流速センサ 1 1 6を上流側に配置したので、 大流 量用流速センサ 1 1 6を用いて大流量域での流量計測を行う場合には、 下流側の 小流量用流速センサ 1 1 5により生ずる乱流が上流側の大流量用流速センサ 1 1 6の出力信号に影響を及ぼすことはあり得ない。 一方、 小流量用流速センサ 1 1 5を用いて小流量域での流量計測を行う場合には、 上流側の大流量用流速センサ 1 1 6により生ずる乱流が下流側の小流量用流速センサ 1 1 5の出力信号に影響 を及ぼすことは殆どない。 小流量域においては流速が小さいため、 2つの流速セ ンサ間の距離をある程度確保しておけば、 上流側の大流量用流速センサ 1 1 6に よって生じた乱流が下流側の小流量用流速センサ 1 1 5にまで達することは殆ど ないからである。
このように、 本実施の形態の流量計によれば、 上流側に大流量用流速センサ 1 1 6を配置し、 下流側に小流量用流速センサ 1 1 5を配置するようにしたので、 2つのセンサ間に金網等の整流部材を配置しなくても、 上流側の大流量域におけ る大流量用流速センサ 1 1 6により生じた乱流によって下流側の小流量用流速セ ンサ 1 1 5が影響を受けることがない。 したがって、 広い流量域にわたって安定 した流量計測を行うことができる。 しかも、 本実施の形態では、 金網を設けるこ となく、 上流側の大流量用流速センサ 1 1 6と下流側の小流量用流速センサ 1 1 5とを、 ガス 2 0の流れに沿った一直線上に配置することができるので、 上記第 3の実施の形態 (第 1 5図, 第 1 6図) や第 4の実施の形態のうちの第 1 9図〜 第 2 2図に示した流量計に比べて、 2つの流速センサの配置面における無駄スぺ —スが少なくて済み、 この結果、 配管 1 1 0の幅 W (第 2 8図) を縮小すること も可能である。
なお、 本実施の形態では、 上流側の大流量用流速センサ 1 1 6と下流側の小流 量用流速センサ 1 1 5とを、 ガス 2 0の流れに沿った一直線上に配置するように したが、 これには限定されず、 上流側の大流量用流速センサ 1 1 6および下流側 の小流量用流速センサ 1 1 5がガス 2 0の流れに沿った一直線上にのらないよう に配置してもよい。 その場合の両者の相互位置関係は、 例えば上記第 3および第 4の実施の形態 (第 1 6図, 第 1 7図, 第 1 9図〜第 2 4図) に対応するように 成すことが可能である。
また、 本実施の形態では、 第 2 7図に示したように、 上流側の大流量用流速セ ンサ 1 1 6の上流側の流路にのみ金網 1 1 9 aを配置しており、 2つの流速セン サの間には金網を設けていないが、 さらに、 第 1 5図の場合と同様に、 上流側の 大流量用流速センサ 1 1 6と下流側の小流量用流速センサ 1 1 5との間の流路に も金網 1 1 9 bを配置するようにしてもよい。
以上いくつかの実施の形態を挙げて本発明を説明したが、 本発明はこれらの実 施の形態に限定されるものではなく、 種々変形可能である。 例えば、 上記第 3な いし第 6の実施の形態においては、 流量域を大流量域と小流量域とに 2分し、 そ れぞれに対応して小流量用流速センサ 1 1 5および大流量用流速センサ 1 1 6を 配設するようにしたが、 流量域を 3以上、 例えば小流量域、 中流量域および大流 量域に分けて、 それぞれに対応して小流量用流速センサ、 中流量用流速センサお よび大流量用流速センサを設けるようにしてもよい。 この場合にも、 各流速セン ザの位置設定や金網の配置を適切に行うことにより、 各流速センサが他の流速セ ンサにより生じた乱流の影響を受けないようにすることができ、 より広い流量域 にわたつて、 安定性の高い流量計測を行うことが可能である。 もちろん、 4以上 の流量域に区分して、 それぞれに対応した測定レンジの流速センサを設けるよう にしてもよい。
また、 上記各実施の形態では、 流路 1 1 3の断面形状が円形または矩形である 場合について説明したが、 本発明はこれに限定されず、 ほかに例えば半円、 楕円 、 三角形、 あるいは五角形以上の多角形の形状等であってもよい。
また、 流速センサは、 上記のように発熱部と 2つの温度センサを有するタイプ の熱式流速センサには限られず、 例えば、 1つの発熱部を有し、 この発熱部の温 度 (抵抗) を一定に保っために必要な発熱部に対する供袷電力から流速を求めた り、 一定電流または一定電力で発熱部を加熱し、 発熱部の温度 (抵抗) から流速 を求めるタイプの熱式流速センサでもよい。 さらに、 流速センサは、 熱式流速セ ンサには限定されず、 例えば、 超音波を利用した超音波センサ等であってもよい 。 また、 本発明は、 ガス以外の気体、 および気体のみならず液体の流量を計測す る流量計にも適用することが可能である。 以上説明したように、 本発明の流量計によれば、 配管の流路内の小流量用計測 領域に、 流路を分割してより小さな断面積を有する複数の小流路を形成する流路 分割部材を設け、 配管の流路内の大流量用計測領域にそこを通過する流体の流速 に応じた信号を出力する第 1の流速センサを設け、 さらに、 流路分割部材により 形成された小流路内にそこを通過する流体の流速に応じた信号を出力する第 2の 流速センサを設け、 流量に応じて、 第 1の流速センサの出力信号と第 2の流速セ ンサの出力信号の少なくとも一方に基づいて流量を算出するようにしたので、 小 流量域においても、 流体の偏流の影響をあまり受けることなく、 高精度の流量測 定を行うことができる。 具体的には、 本質的に偏流が発生しやすい小流量域にお いても、 第 2の流速センサの設置場所に制限が課されることがなく、 任意の場所 に配置可能である。 例えば、 第 2の流速センサを、 取り付けの容易な流路壁近傍 に配置したとしても、 微小流量の検知が可能である。 このように、 本発明の流量 計によれば、 第 2の流速センサの適用可能な流量範囲の制限が実質的に緩和され ることとなり、 結果的に、 流量の測定可能範囲が拡大されるという効果を奏する また、 本発明によれば、 第 1の流速センサまたは第 2の流速センサが配管の壁 面に対して着脱可能となっているので、 取り付け作業および流速センサの異常時 の対応が容易であり、 保守性がよいという効果を奏する。
また、 本発明によれば、 第 2の流速センサを、 複数の小流路のうち、 配管の壁 面に最も近い小流路内に配置するようにしたので、 取り付けおよび取り外し作業 等がさらに容易となり、 保守性が一層向上するという効果を奏する。
また、 本発明によれば、 第 1の流速センサを複数個設置して、 それぞれの流速 センサの出力の平均値を基に流量を求めるようにしたので、 特に大流量域におけ る測定精度が向上する。 また、 例えば、 複数の第 1の流速センサのうちの 1部に 異常が発生した場合には、 異常が発生していない他の第 1の流速センサにより流 量の測定を続行することもできるので、 特に大流量域における信頼性が向上する という効果を奏する。
また、 本発明によれば、 第 2の流速センサを複数個設置して、 それぞれの流速 センサの出力の平均値を基に流量を求めるようにしているので、 特に小流量域に おける測定精度が向上する。 また、 例えば、 複数の第 2の流速センサのうちの 1 部に異常が発生した場合には、 異常が発生していない他の第 2の流速センサによ り流量の測定を続行することもできるので、 特に小流量域における信頼性が向上 するという効果を奏する。
また、 本発明の他の流量計によれば、 さらに、 第 2の流速センサが設けられた 小流路を通過する流体の流速を増加させる流速増加手段を設けるようにしたので 、 流速計測感度が高められ、 流量の測定可能範囲がさらに拡大されるという効果 を奏する。
また、 本発明によれば、 流速増加手段を構成する一対の柱状部材を、 流路の上 流に向かうに従って互いの幅が広くなるように第 2の流速センサの両脇に立設さ せるようにしたので、 一対の柱状部材の間を流体が通過し易くなり、 流体の流速 を増加させ易くなるという効果を奏する。
また、 本発明によれば、 流速増加手段を構成する一対の柱状部材と第 2の流速 センサとを一体化してセンサュニッ トを構成すると共に、 センサュニッ トを配管 の壁面に対して着脱可能に構成したので、 一対の柱状部材と第 2の流速センサと を配管に取り付ける作業が簡単になり、 保守性がよいという効果を奏する。 また、 本発明によれば、 流速増加手段を第 2の流速センサの両脇に立設した一 対の柱状部材により構成し、 この一対の柱状部材の少なくとも一部が流体の流れ の方向に沿った流線形状を成すように構成したので、 流速増加手段の部分を通過 する流体の流れを円滑化できるという効果を奏する。 具体的には、 例えば先端部 を流線形状にした場合には、 流体が一対の柱状部材の間に容易に導かれ、 流体の 流速を増加させ易くできる。 一方、 例えば、 後端部を流線形状にした場合には、 一対の柱伏部材の間に導かれた流体を容易に後端部から排出させることができ、 後端部において流体が澱んでしまうことを防止できる。
本発明のさらに他の流量計によれば、 複数の流速センサの各々が他の流速セン サの存在によって生ずる流体の乱流の影響を受けるのを排除するようにしたので 、 流速センサの出力信号が安定化する。 したがって、 安定した流量計測が可能に なるという効果を奏する。
また、 本発明によれば、 複数の流速センサが流体の流れの方向に沿った 1直線 上にのらない配置とするようにしたので、 上流側の流速センサの存在により生じ た流れの乱れは下流側の流速センサに及びにく く、 下流側の流速センサからの出 力信号が安定化するという効果を奏する。
また、 本発明によれば、 流体の流れの方向と直交する方向の流路断面内におけ る流速分布が、 流路を形成する流路壁の周面に沿った方向において不均一である 場合には、 複数の流速センサのうちのいずれか 1つを、 流路壁の周面に沿った方 向の流速分布における最大流速位置に配置するようにしたので、 この最大流速位 置に配置された流速センサは、 高い感度で流速を検知できる。 したがって、 これ を例えば小流量計測用の流速センサに適用した場合には、 微小な流量を感度良く 計測することも可能となる。
また、 本発明によれば、 複数の流速センサをそれぞれ保持する保持部を、 流路 壁に隙間も段差もなく平滑に埋設するようにしたので、 ガスがここを通過すると きに乱流が生じにくく、 他の流速センサに対する乱流の影響を低減できるという 効果を奏する。
また、 本発明によれば、 複数の流速センサの相互の位置関係が、 一方が上流側 で他方が下流側となるものである場合には、 各流速センサの相互間の流路に第 1 の網状整流部材を配置することにより、 流体の乱流の影響を排除するようにした ので、 第 1の網状整流部材の作用によって、 流速センサを通過したあとの流体の 流れが整えられ、 他の流速センサは乱流の影響を受けにく くなるという効果を奏 する。
また、 本発明によれば、 大きい乱流が生ずるおそれのある大流量域の流量計測 を上流側の流速センサを用いて行う一方、 大きい乱流が生じにくい小流量域の流 量計測は下流側の流速センサを用いて行うようにしたので、 いずれの流速センサ の出力信号も他方の流速センサにより生じた乱流の影響を受けにく くなるという 効果を奏する。
また、 本発明によれば、 流路を分割して複数の小流路を形成する流路分割部材 を配置したので、 流路分割部材を設けない場合と比べて流路壁近傍の小流路にお ける流速を增加させることができる。 したがって、 さらに、 流路壁近傍に流速セ ンサを配設した場合でも流速計測の高感度化が可能になるという効果を奏する。 また、 本発明によれば、 複数の流速センサの上流側の流路中に、 第 2の網状整 流部材を配置するようにしたので、 第 2の網状整流部材の作用によって、 少なく とも最上流側の流速センサを通過する流体の流れが整えられ、 そこからの出力信 号が安定化するという効果を奏する。
以上の説明に基づき、 本発明の種々の態様や変形例を実施可能であることは明 らかである。 したがって、 以下のクレームの均等の範囲において、 上記の詳細な 説明における態様以外の態様で本発明を実施することが可能である。

Claims

請求の範囲
1 . 流体が通過する流路を有すると共に、 前記流路の長手方向に' って小流量 用計測領域および大流量用計測領域が設けられた配管と、
この配管の流路内の小流量用計測領域に設けられ、 前記流路を分割してより小 さな断面積を有する複数の小流路を形成する流路分割部材と、
前記配管の流路内の大流量用計測領域に設けられ、 前記大流量用計測領域を通 過する流体の流速に応じた信号を出力する第 1の流速センサと、
前記流路分割部材により形成された小流路内に設けられ、 前記小流路を通過す る流体の流速に応じた信号を出力する第 2の流速センサと、
流量に応じて、 前記第 1の流速センサの出力信号と前記第 2の流速センサの出 力信号の少なくとも一方に基づいて流量を算出する流量演算手段と
を備えたことを特徴とする流量計。
2 . 前記第 1の流速センサは、 前記配管の壁面に対して着脱可能となっている ことを特徴とする請求項 1記載の流量計。
3 . 前記第 2の流速センサは、 前記配管の壁面に対して着脱可能となっている ことを特徴とする請求項 1記載の流量計。
4 . 前記第 2の流速センサは、 前記複数の小流路のうち前記配管の壁面に最も 近い小流路内に配置されていることを特徴とする請求項 1記載の流量計。
5 . 前記第 1の流速センサは、 前記配管の壁面近傍に配置されていることを特 徵とする請求項 1記載の流量計。
6 . 前記第 1の流速センサが複数設けられると共に、
さらに、 前記複数の第 1の流速センサの出力信号を基に大流量用計測領域にお ける流速の平均値を算出して前記流量演算手段に出力する大流量用計測領域の平 均流速演算手段を備えたことを特徴とする請求項 1記載の流量計。
7 . 前記第 2の流速センサが複数設けられると共に、
さらに、 前記複数の第 2の流速センサの出力信号を基に小流量用計測領域にお ける流速の平均値を算出して前記流量演算手段に出力する小流量用計測領域の平 均流速演算手段を備えたことを特徴とする請求項 1記載の流量計。
8 . 前記流路中に、 さらに、 網状整流部材を備えたことを特徴とする請求項 1 記載の流量計。
9 . さらに、 前記第 2の流速センサが設けられた小流路を通過する流体の流速 を増加させる流速増加手段を備えたことを特徴とする請求項 1記載の流量計。
1 0 . 前記流速増加手段は、 前記第 2の流速センサが設けられた小流路周辺の 空間容積を減少させることにより、 前記小流路を通過する流体の流速を増加させ ることを特徴とする請求項 9記載の流量計。
1 1 . 前記流速増加手段は、 前記第 2の流速センサの両脇に立設した一対の柱 状部材により構成されていることを特徴とする請求項 9記載の流量計。
1 2 . 前記流速増加手段を構成する一対の柱状部材は、 前記流路の上流に向か うに従って互いの幅が広くなるように前記第 2の流速センサの両脇に立設して構 成されていることを特徴とする請求項 1 1記載の流量計。
1 3 . 前記流速増加手段を構成する一対の柱状部材と前記第 2の流速センサと が一体化されてセンサュニッ 卜が構成されていると共に、 前記センサュニッ 卜が 前記配管の壁面に対して着脱可能となっていることを特徴とする請求項 1 1記載 の流量計。
1 4 . 前記流速増加手段を構成する一対の柱状部材の少なくとも一部が、 流体 の流れの方向に沿った流線形状を成していることを特徴とする請求項 1 1記載の 流量計。
1 5 . 前記流速増加手段を構成する一対の柱状部材は、 翼形状の断面を有する 柱が立設して構成されていることを特徴とする請求項 1 1記載の流量計。
1 6 . 前記第 1の流速センサが複数設けられると共に、
さらに、 前記複数の第 1の流速センサの出力信号を基に大流量用計測領域にお ける流速の平均値を算出して前記流量演算手段に出力する大流量用計測領域の平 均流速演算手段を備えたことを特徴とする請求項 9記載の流量計。
1 7 . 前記第 2の流速センサが複数設けられると共に、
さらに、 前記複数の第 2の流速センサの出力信号を基に小流量用計測領域にお ける流速の平均値を算出して前記流量演算手段に出力する小流量用計測領域の平 均流速演算手段を備えたことを特徴とする請求項 9記載の流量計。
1 8 . 前記第 2の流速センサは、 前記複数の小流路のうち前記配管の壁面に最 も近い小流路内に配置されていることを特徴とする請求項 9記載の流量計。
1 9 . 前記第 1の流速センサは、 前記配管の壁面近傍に配置されていることを 特徴とする請求項 9記載の流量計。
2 0 . 前記流路中に、 さらに、 網状整流部材を備えたことを特徴とする請求項
9記載の流量計。
2 1 . 流体が通過する流路に設けられ、 流体の流速に応じた信号をそれぞれ出 力する複数の流速センサと、
流量に応じて、 前記複数の流速センサの出力信号の少なくとも 1つに基づいて 流量を算出する流量演算手段と
を備え、
前記複数の流速センサの各々が他の流速センサの存在によつて生ずる流体の乱 流の影響を受けるのを排除するようにしたことを特徴とする流量計。
2 2 . 前記複数の流速センサが流体の流れの方向に沿った 1直線上にのらない 配置とすることにより、 前記流体の乱流の影響を排除するようにしたことを特徴 とする請求項 2 1記載の流量計。
2 3 . 流体の流れの方向と直交する方向の流路断面内における流速分布が、 前 記流路を形成する流路壁の周面に沿った方向において不均一である場合において 前記複数の流速センサのうちのいずれか 1つを、 前記流路壁の周面に沿った方 向の流速分布における最大流速位置に配置したことを特徴とする請求項 2 2記載 の流量計。
2 4 . 前記複数の流速センサをそれぞれ保持する保持部を前記流路を形成する 流路壁に隙間も段差もなく平滑に埋設することにより、 前記流体の乱流の発生を 抑制するようにしたことを特徴とする請求項 2 1記載の流量計。
2 5 . 前記複数の流速センサの相互の位置関係が、 一方が上流側で他方が下流 側となるものである場合において、
さらに、 各流速センサの相互間の流路に第 1の網状整流部材を配置することに より、 前記流体の乱流の影響を排除するようにしたことを特徴とする請求項 2 1 記載の流量計。
2 6 . 前記複数の流速センサのうちの一部の流速センサを前記流路における上 流側に配置すると共に、 その他の流速センサを前記流路における下流側に配置し 前記流量演算手段が、 前記一部の流速センサの出力信号に基づいて大流量域で の流量を算出すると共に、 前記他の流速センサの出力信号に基づいて小流量域で の流量を算出することにより、 前記流体の乱流の影響を排除するようにしたこと を特徴とする請求項 2 1記載の流量計。
2 7 . さらに、 前記流路中に、 前記流路を分割してより小さい断面積を有する 複数の小流路を形成する流路分割部材を配置したことを特徴とする請求項 2 1記 載の流量計。
2 8 . さらに、 前記複数の流速センサの上流側の流路中に、 第 2の網状整流部 材を配置したことを特徴とする請求項 2 1記載の流量計。
2 9 . 前記複数の流速センサの少なくとも一部が、 前記流路の壁面近傍に配置 されていることを特徴とする請求項 2 1記載の流量計。
補正書の請求の範囲
[ 1 9 9 9年 4月 1 3日 (1 3 . 0 4 . 9 9 ) 国際事務局受理:新しい請求の範囲 3 0— 4 4が加えられた;他の請求の範囲は変更なし。 (2頁) ]
2 6 . 前記複数の流速センサのうちの一部の流速センサを前記流路における上 流側に配置すると共に、 その他の流速センサを前記流路における下流側に配匱し、 前記流量演算手段が、 前記一部の流速センサの出力信号に基づいて大流量域で の流量を算出すると共に、 前記他の流速センサの出力信号に基づいて小流量域で の流量を算出することにより、 前記流体の乱流の影響を排除するようにしたこと を特徴とする請求項 2 1記載の流量計。
2 7 . さらに、 前記流路中に、 前記流路を分割してより小さい断面積を有する 複数の小流路を形成する流路分割部材を配匱したことを特徴とする請求項 2 1記 載の流量計。
2 8 . さらに、 前記複数の流速センサの上流側の流路中に、 第 2の網状整流部 材を配置したことを特徴とする請求項 2 1記載の流量計。
2 9 . 前記複数の流速センサの少なくとも一部が、 前記流路の壁面近傍に配置 されていることを特徴とする請求項 2 1記載の流量計。
(追加)
3 0 . 前記第 1の流速センサは大流量域での流速計測に適した感度を有する一 方、 前記第 2の流速センサは小流量域での流速計測に適した感度を有し、
前記流量演算手段は、 前記第 1の流速センサの出力信号に基づいて大流量域で の流量を演算すると共に、 前記第 2の流速センサの出力信号に基づいて小流量域 での流量を演算する
ことを特徴とする請求項 1記載の流量計。
3 1 . 前記配管内の流路は、 直線状に延びているものであることを特徴とする 請求項 1記載の流量計。
3 2 . 前記配管は、 直管形状をなしていることを特徴とする請求項 1記載の流 量計。
3 3 . 前記第 1の流速センサおよび前記第 2の流速センサは、 それぞれ、 熱式 流速センサにより構成されていることを特徴とする請求項 1記載の流量計。
3 4 . 前記小流量用計測領域と前記大流量用計測領域とは互いに空間的に異な る領域をなしていることを特徴とする請求項 1記載の流量計。
3 5 . 前記第 1の流速センサは大流量域での流速計測に適した感度を有する一 補正された用紙 (条約第 19条) 方、 前記第 2の流速センサは小流量域での流速計測に適した感度を有し、 前記流量演算手段は、 前記第 1の流速センサの出力信号に基づいて大流量域で の流量を演算すると共に、 前記第 2の流速センサの出力信号に基づいて小流量域 での流量を演算する
ことを特徴とする請求項 9記載の流量計。
3 6 . 前記配管内の流路は、 直線状に延びているものであることを特徴とする 請求項 9記載の流量計。
3 7 . 前記配管は、 直管形状をなしていることを特徴とする請求項 9記載の流 量計。
3 8 . 前記第 1の流速センサおよび前記第 2の流速センサは、 熱式流速センサ により構成されていることを特徴とする請求項 9記載の流量計。
3 9 . 前記小流量用計測領域と前記大流量用計測領域とは互いに空間的に別の 領域をなしていることを特徴とする請求項 9記載の流量計,
4 0 . 前記流速増加手段は、 前記流路分割部材と一体化されて前記小流路内に 配匱されていることを特徴とする請求項 9または請求項 1 0に記載の流量計。
4 1 . 前記配管内の流路は、 直線状に延びているものであることを特徴とする 請求項 2 1または請求項 2 2に記載の流量計。
4 2 . 前記配管は、 直管形状をなしていることを特徴とする請求項 2 1または 請求項 2 2に記載の流量計。
4 3 . 前記第 1の流速センサおよび前記第 2の流速センサは、 熱式流速センサ により構成されていることを特徴とする請求項 2 1または請求項 2 2に記載の流 量計。
4 4 . 前記複数の流速センサのうちの一部の流速センサを前記流路における上 流側に配置すると共に、 その他の流速センサを前記流路における下流側に配置し、 前記流量演算手段が、 前記一部の流速センサの出力信号に基づいて大流量域で の流量を算出すると共に、 前記他の流速センサの出力信号に基づいて小流量域で の流量を算出することにより、 前記流体の乱流の影響を排除するようにしたこと を特徴とする請求項 2 2記載の流量計。 補正された用紙 (条約第 19条)
PCT/JP1998/004688 1997-12-15 1998-10-16 Debitmetre WO1999031467A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020007000406A KR20010021842A (ko) 1997-12-15 1998-10-16 유량계
CA002310050A CA2310050A1 (en) 1997-12-15 1998-10-16 Flowmeter
EP98947909A EP1041367A4 (en) 1997-12-15 1998-10-16 FLOW METER
US09/577,882 US6446503B1 (en) 1997-12-15 2000-05-25 Flow velocity measuring apparatus and methods using sensors for measuring larger and smaller flow quantities

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP34459597A JP3874515B2 (ja) 1997-12-15 1997-12-15 流量計
JP9/344595 1997-12-15
JP10203516A JP2000035349A (ja) 1998-07-17 1998-07-17 流量計
JP10/203516 1998-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/577,882 Continuation US6446503B1 (en) 1997-12-15 2000-05-25 Flow velocity measuring apparatus and methods using sensors for measuring larger and smaller flow quantities

Publications (1)

Publication Number Publication Date
WO1999031467A1 true WO1999031467A1 (fr) 1999-06-24

Family

ID=26513961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004688 WO1999031467A1 (fr) 1997-12-15 1998-10-16 Debitmetre

Country Status (8)

Country Link
US (1) US6446503B1 (ja)
EP (1) EP1041367A4 (ja)
KR (1) KR20010021842A (ja)
CN (1) CN1135366C (ja)
CA (1) CA2310050A1 (ja)
RU (1) RU2222784C2 (ja)
TW (1) TW432200B (ja)
WO (1) WO1999031467A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042174B1 (ko) 2009-03-10 2011-06-20 김도경 관로세척장치
KR101042175B1 (ko) 2009-03-10 2011-06-20 김도경 원통형 관로세척장치

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355792B2 (ja) * 2002-08-29 2009-11-04 東京瓦斯株式会社 熱式流量計
JP2004093170A (ja) * 2002-08-29 2004-03-25 Tokyo Gas Co Ltd 整流装置
NL1023405C2 (nl) * 2003-05-13 2004-11-18 Berkin Bv Massadebietmeter.
JP4034251B2 (ja) * 2003-09-26 2008-01-16 株式会社ケーヒン 内燃機関の吸気装置及び吸入空気量測定方法
DE102007045101B4 (de) * 2007-09-20 2009-07-02 Hydrometer Gmbh Verfahren zur Ultraschallmessung von Durchflussmengen sowie Ultraschallzähler
JP5014178B2 (ja) * 2008-01-24 2012-08-29 アズビル株式会社 ガスメータ
CN101354273B (zh) 2008-07-17 2010-07-07 美新半导体(无锡)有限公司 复合式气体流量测量方法及其装置
JP5277911B2 (ja) * 2008-11-28 2013-08-28 パナソニック株式会社 流体計測用流路装置
DE102010055115B4 (de) 2010-11-16 2018-07-19 Diehl Metering Gmbh Durchflusssensor zum Einsetzen in eine Messstrecke
CN102853867A (zh) * 2012-09-18 2013-01-02 黑龙江省电力科学研究院 均流自稳型风量测量装置
DE102012109234A1 (de) * 2012-09-28 2014-04-03 Endress + Hauser Flowtec Ag Durchflussmessgerät, sowie Verwendung dieses Durchflussgerätes und Verfahren zur Ermittlung der Fließgeschwindigkeit
CN104819751A (zh) * 2015-04-01 2015-08-05 宁波杭州湾新区祥源动力供应有限公司 压缩空气流量测试装置
CN106257370B (zh) * 2015-06-19 2019-07-02 株式会社Posco 偏流控制装置及偏流控制方法
JP2017015475A (ja) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 計測ユニットおよび流量計
CN105277238A (zh) * 2015-11-16 2016-01-27 新疆中元天能油气科技股份有限公司 一体式差压式流量计
CN105737921A (zh) * 2016-02-02 2016-07-06 新疆中元天能油气科技股份有限公司 一种宽范围气液两相流量计
JP2017173200A (ja) * 2016-03-25 2017-09-28 矢崎エナジーシステム株式会社 直管型ガスメータ
US10444107B1 (en) * 2016-06-17 2019-10-15 United Services Automobile Association (Usaa) Systems and methods for detecting water leaks
EP3537112A1 (de) * 2018-03-08 2019-09-11 Energoflow AG Fluiddurchflussmesser
CN113029261A (zh) * 2018-03-28 2021-06-25 株式会社木幡计器制作所 流量计测装置
JP7067789B2 (ja) * 2018-07-02 2022-05-16 サーパス工業株式会社 熱式流量計およびその重み付け係数の決定方法
JP7198029B2 (ja) * 2018-10-02 2022-12-28 株式会社堀場製作所 流量測定装置及び流量測定方法
CN113188617A (zh) * 2021-04-14 2021-07-30 陕西延长石油金石钻采设备有限公司 一种井口三相流体计量装置
CN114545025A (zh) * 2022-03-18 2022-05-27 南方电网数字电网研究院有限公司 宽量程风速及流量测量方法、装置、计算机设备、介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262210A (ja) * 1991-02-18 1992-09-17 Takenaka Seisakusho:Kk マイクロフローセンサ付フルイディック流量計
JPH06129884A (ja) * 1992-10-15 1994-05-13 Ricoh Co Ltd フルイディック流量計
JPH08240469A (ja) * 1995-01-06 1996-09-17 Tokyo Gas Co Ltd 流量計

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089218A (en) * 1976-12-29 1978-05-16 Cushing Vincent J Electromagnetic water current meter with staggered stick out electrodes
DE2965615D1 (en) * 1978-08-05 1983-07-14 Nissan Motor Flowmeter of hot wire type
US4599895A (en) * 1984-07-12 1986-07-15 Wiseman Donald F Method and apparatus for measuring fluid flow
CA1272661A (en) * 1985-05-11 1990-08-14 Yuji Chiba Reaction apparatus
US4688432A (en) * 1986-02-27 1987-08-25 Marsh Lawrence B Averaging velocity sensor for measuring fluid flow in a conduit
JPH0682062B2 (ja) * 1988-12-15 1994-10-19 山武ハネウエル株式会社 複合流量計
JPH0758212B2 (ja) * 1989-06-28 1995-06-21 日産自動車株式会社 流量センサ
JP2787785B2 (ja) * 1990-07-02 1998-08-20 山武ハネウエル株式会社 流量計および流量測定方法
JP3169733B2 (ja) * 1993-03-12 2001-05-28 株式会社竹中製作所 フルイディック流量計
WO1995033979A1 (en) * 1994-06-03 1995-12-14 Tokyo Gas Co., Ltd. Flowmeter
JPH08240468A (ja) * 1995-01-06 1996-09-17 Tokyo Gas Co Ltd 流量計
JPH08240460A (ja) * 1995-03-07 1996-09-17 Tokyo Gas Co Ltd 流量計及びその製造方法
JP2867125B2 (ja) * 1995-06-21 1999-03-08 東京瓦斯株式会社 流量計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262210A (ja) * 1991-02-18 1992-09-17 Takenaka Seisakusho:Kk マイクロフローセンサ付フルイディック流量計
JPH06129884A (ja) * 1992-10-15 1994-05-13 Ricoh Co Ltd フルイディック流量計
JPH08240469A (ja) * 1995-01-06 1996-09-17 Tokyo Gas Co Ltd 流量計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1041367A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042174B1 (ko) 2009-03-10 2011-06-20 김도경 관로세척장치
KR101042175B1 (ko) 2009-03-10 2011-06-20 김도경 원통형 관로세척장치

Also Published As

Publication number Publication date
EP1041367A1 (en) 2000-10-04
TW432200B (en) 2001-05-01
EP1041367A4 (en) 2005-08-17
CN1135366C (zh) 2004-01-21
RU2222784C2 (ru) 2004-01-27
KR20010021842A (ko) 2001-03-15
CA2310050A1 (en) 1999-06-24
US6446503B1 (en) 2002-09-10
CN1282417A (zh) 2001-01-31

Similar Documents

Publication Publication Date Title
WO1999031467A1 (fr) Debitmetre
US20180120139A1 (en) Flow meter
GB2161941A (en) Mass flow meter
JP2806602B2 (ja) フルイディック流量計
JP4719075B2 (ja) 流量計
WO2013157990A1 (ru) Ультразвуковой расходомер
JP3874515B2 (ja) 流量計
JP2003185477A (ja) 流量計
US20040231430A1 (en) Purge type vortex flowmeter
JPH0968448A (ja) 流量計
JP2009186429A (ja) ガスメータ
JP3192989B2 (ja) 流量計
JP2733717B2 (ja) 二相流流量計
JP2000035349A (ja) 流量計
JP2001194193A (ja) 流量計
JPH06137914A (ja) 流量測定装置
JP3398251B2 (ja) 流量計
JP3705689B2 (ja) 流量計およびガスメータ
RU118744U1 (ru) Ультразвуковой расходомер
JP3921518B2 (ja) 電子化ガスメータの脈動吸収構造
JPS61253424A (ja) 渦流量計
JPH075022U (ja) オリフィス流量検出端
JP2002214002A (ja) 流量計
JP2003329212A (ja) 蒸気減温装置
JP2004170346A (ja) 流量計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98812252.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007000406

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2310050

Country of ref document: CA

Ref document number: 2310050

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09577882

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998947909

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998947909

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007000406

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998947909

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007000406

Country of ref document: KR