WO1999029604A1 - Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung - Google Patents

Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung Download PDF

Info

Publication number
WO1999029604A1
WO1999029604A1 PCT/DE1998/003531 DE9803531W WO9929604A1 WO 1999029604 A1 WO1999029604 A1 WO 1999029604A1 DE 9803531 W DE9803531 W DE 9803531W WO 9929604 A1 WO9929604 A1 WO 9929604A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
winding
parameter
paper winding
force
Prior art date
Application number
PCT/DE1998/003531
Other languages
English (en)
French (fr)
Inventor
Willfried Wienholt
Clemens SCHÄFFNER
Helmut Liepold
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DK98965599T priority Critical patent/DK1037842T3/da
Priority to EP98965599A priority patent/EP1037842B1/de
Priority to US09/581,002 priority patent/US6363297B1/en
Priority to AT98965599T priority patent/ATE218493T1/de
Priority to CA002313461A priority patent/CA2313461A1/en
Priority to DE59804370T priority patent/DE59804370D1/de
Priority to BR9813509-0A priority patent/BR9813509A/pt
Publication of WO1999029604A1 publication Critical patent/WO1999029604A1/de
Priority to NO20002995A priority patent/NO317470B1/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/26Mechanisms for controlling contact pressure on winding-web package, e.g. for regulating the quantity of air between web layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4148Winding slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/13Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/14Diameter, e.g. of roll or package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/30Forces; Stresses
    • B65H2515/31Tensile forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/30Forces; Stresses
    • B65H2515/34Pressure, e.g. fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/20Calculating means; Controlling methods
    • B65H2557/264Calculating means; Controlling methods with key characteristics based on closed loop control
    • B65H2557/2644Calculating means; Controlling methods with key characteristics based on closed loop control characterised by PID control

Definitions

  • this paper web goes through a slitter for assembly according to customer-specific specifications, on which it is cut into paper web widths of different widths and wound onto cores that can be delivered to customers.
  • the winding hardness or the winding hardness is usually used as a measure for assessing the quality of the resulting roll.
  • the average layer thickness during the reeling process, the number of layers wound and the increase in radius are determined here. Averaged over typically 100 layers, the average layer thickness is obtained in this way. In order to be able to better compare the average layer thickness between individual types of paper, this size is related to the paper thickness in the relaxed state of the respective type. You get a key figure that is usually less than 1. The smaller it is, the harder the roll is wound; in this context one speaks of a high winding hardness. In the other case, the average normalized layer thickness is relatively large, which corresponds to a low winding hardness.
  • a reel hardness is defined with respect to the reel. It can be seen from the curves in FIG. 2 that the roll-up winding curve (AU) and the roll-off roll curve (AB) influence one another, and despite the force relationships which are constantly regulated during the winding process, the roll-up curve follows the roll-up curve of the reel in its course. Such behavior of the paper roll during the reeling process, however, is not desired, as described at the beginning.
  • the problem underlying the invention therefore consists in specifying a method and an arrangement by means of which a paper winding parameter which is decisive in the paper winding process can be predicted or regulated.
  • the behavior of the paper and the associated paper winding parameters are similar when unwinding and winding up different paper rolls. This fact can be used to train a predictor or to impress this behavior on him in order to be able to predict the behavior of the paper wrap parameter for future winding processes.
  • the result of the prediction of the paper winding parameter can advantageously be used to influence the forces that are usually kept constant in paper winding devices in accordance with the desired target paper winding parameter by impressing the influence-dependent behavior of the paper winding parameter on a controller and one of the target winding parameter and the predicted current one Paper winding parameter formed control difference is supplied, from which it determines a compensation force that is superimposed on a decisive force during the winding process.
  • the method and the arrangement can also be used advantageously if the paper is wound from a larger roll to a smaller roll and the paper is thereby cut into webs.
  • simple measured variables such as the radius of the paper or the angular velocity of the different paper rolls, are advantageously detected in order to predict the current paper winding parameter or to determine the layer thickness from these variables.
  • the proposed methods and arrangements can be used particularly advantageously both for regulating the line force and for regulating the web tensile force as an influencing force.
  • Neural networks can advantageously be used as a predictor and PID controllers can be used as controllers, since there is sufficient experience with these devices and no great effort is required to train or adapt these devices to the specific problems associated with paper winding.
  • the proposed arrangements can advantageously be used in paper roll cutters, since there are high quality requirements and an improvement can be achieved by means of the proposed methods.
  • the proposed method and the proposed arrangement can also be used advantageously with paper-like materials that have similar mechanical properties, ie. H. exhibit viscoelastic behavior and elastic / plastic deformation, such as paper.
  • Figure 1 shows a schematic representation of a
  • FIG 2 shows roll-up and roll-off curves.
  • Figures 3 and 4 show force-layer thickness relationships
  • Figure 5 shows a control loop for a winding
  • FIG. 6 shows a control loop for several winding stations.
  • Figure 1 shows schematically the structure of a backup roller winder with the radius r as the winding radius, F as the web tension in front of the backup roller St and the web speed v.
  • the paper web is denoted by P and F ⁇ is the wrapped-in web tensile force or also the web force on the reel.
  • MJJ denotes the driving torque of the center drive of the winding tube
  • Mg denotes the driving torque of the back-up roll, the winding being designated Wi and the tube being Hui.
  • a line force Lin occurs which can be influenced by mechanical devices.
  • Several paper webs are already wound on top of each other on the wrap Wi, which is indicated by concentric circles.
  • the first paper roll which represents the drum, is not shown, but only the second paper roll Wi on which the paper web P is wound.
  • the first paper roll from which it is unwound is located in front of it in the direction of the force F and corresponds essentially to the second roll, whereby it can differ from it by its width.
  • the web force F ⁇ depends on the control variables and other influencing variables such. B. the paper and the environment.
  • Control variables are, for example, the drive torques Mg of the support roller St and the center drive M ⁇ , the line force Lin with which the winding Wi is pressed onto the support roller St the web tension in front of the nip F, as well as occasional friction damper settings, with which vertical movements of the angle Wi on the support roller St are damped by hydraulic dampers or by eddy current brakes.
  • Influencing variables are, for example, the paper properties, such as the modulus of elasticity, the weight per unit area in relation to the density, the roughness, the smoothness, the moisture, the porosity and the elongation at break of the paper. as well as geometry data such as the paper web widths are taken into account.
  • the course of a roll-up layer thickness curve AU follows the course of the roll-off layer thickness curve AB of the tambour.
  • the normalized roll-up layer thickness or roll-off layer thickness to the right is the diameter of the paper roll on which the roll is applied.
  • the roll-up thickness curve AU emulates the course of the roll-off thickness curve of the spool, although with conventional methods the influencing force, which can be the line force or the web tensile force, is kept constant.
  • Paper winding devices that are particularly common in practice are reel cutters on which produced paper that has been stored on reels is customized. Such machines have a large number of setting options and parameters, which are shown below.
  • Machine data Edge trimming, curve number web train, braking time, number of reel machine, basis weight, maximum speed, throw number, paper type, curve number friction damper, curve number speed, trim.
  • Reel data core diameter, reel diameter, average winding hardness, curve number, length of reel, knife number, reel number, station number, width of the reel • Reel data: reel diameter, reel length, reel number
  • Curve telegrams (basic / target and actual curves) station-independent curves: web tension, speed, friction damper pressure, compensation pressure (inside / outside), current main drive, current brake generator, winding hardness drum,
  • the machine data contain general information for the winding process.
  • the role data are preferably provided for each role produced.
  • Curve telegrams provide information about target and actual curves. These are essentially the web tension, speed and line force curves. In particular, for slitter reels with several stations distinguish between curves that are the same for all stations and those that are station-specific.
  • the measurable data on these paper winding devices are currently made available as a function of the diameter, but it is also conceivable to provide them as a function of the time or other measured quantities of the device.
  • Figures 3 and 4 show, for example, the courses of different stations of a paper roll cutter.
  • the influencing force is the web tension and upwards the average layer thickness.
  • a relationship Z10 or Z20 results from these surveys, which can be used to control the paper winding parameter, in this case the mean normalized layer thickness, using an influencing force.
  • the individual Roll-up curves determined for different train sets are examples of the individual Roll-up curves determined for different train sets.
  • the first approximation is a trend line that characterizes the decrease in the average layer thickness with increasing web tension, which corresponds to the observation that the winding hardness increases with increasing web tension.
  • These trend lines are designated here with Z10 and Z20. The following relationship results:
  • Y (F) means the average roll-up layer thickness for web tension F.
  • the increase a x is negative. It should be noted that this functional relationship is independent of the diameter. For later use in a controller, the reverse relationship is required, which indicates the dependence of the web tension on the average roll-up layer thickness:
  • these measuring points are fed to a neural network or another function approximator depending on the influence force and this is trained with the corresponding relationship.
  • the neural network NN X learns by adapting its parameters w on the basis of this data and by means of known learning methods the relationship between force and average layer thickness or other paper winding parameter, based on the equation:
  • a predictor in particular a neuronal predictor, can be defined which, based on the curve data of the reeling and unrolling, has a current diameter or another measurable one Characteristic d (n) predicts the value rewinding to diameter d (n + ⁇ ).
  • the predictor can also use other / further characteristic data as input variables. That is, it predicts the current roll thickness as a paper winding parameter.
  • x (n) as the roll layer thickness to the diameter d (n) and y (n) as the roll layer thickness
  • z (n) as the state variable
  • w (1 means the parameters of the neural network NN.
  • the index ⁇ means an estimate, i the number of the station if several take-up stations are used and ⁇ a value correlated with time. Studies have shown that a simpler approximation is also possible lets use:
  • y (i) (n + ⁇ ) w 1 (i) x (n) + w ⁇ i) y (i) (n) + 3 + z (i) (n + ⁇ ) (6)
  • z (i) (n + ⁇ ) z (i) (n) + w ⁇ [y (i) (n) - y (i) (n)] (7)
  • the parameters W j 1 'must be determined for the respective stations i. This is usually done by minimizing a cost function with the aid of a gradient method and the values from the measured roll-off and roll-up curves to the different throws, ie roll-up processes. These data are preferably sorted according to paper types and within the paper types according to the stations used. net.
  • the special structure of the neural network enables a simplified, two-stage procedure.
  • z (n) is set to 0 for all n and the parameters W j ... W 3 are calculated by solving the resulting (over-determined) multilinear system of equations. Known standard methods such as singular value decomposition can be used for this purpose.
  • the parameter wj ' is now determined in such a way that the remaining residual error of the multilinear model is minimized.
  • the individual predictions y (,) (n + ⁇ ) are preferably combined with the aid of a further neural network NN 3 to form a parameter if several paper winding stations are used in the reeling process.
  • Each predictor represents a station-specific neuronal expert with regard to the roll thickness or another paper wrap parameter and an input variable for the controller is formed from the contributions of all experts In a winding process, not all stations are always active, or in extreme cases only one station is operated, only the contributions of the active stations are preferably taken into account.
  • the prediction value y serves as an estimate of the roll-up value for the diameter d or another time-corrected variable.
  • this is preferably processed during the control process. tet.
  • time is used as the argument here and a time delay T t for the stages of the control loop concerned has been assumed to simplify the illustration.
  • T t time delay
  • the regulator R is intended to y from the setpoint, for example, a control difference and supplied to the estimate y (t).
  • y for example, it is designed as a PID controller and uses the relationship between force and average layer thickness as the paper winding parameter that was determined at the input.
  • a motor controller KS predetermined target force F should be corrected '(t). Accordingly, by varying the impact force F soll (t) or achieves the force controller KS at the individual winding stations Sl to Sll of the winding apparatus WV a desired winding layer thickness, a desired winding layer thickness profile during the winding process.
  • measured values are recorded at the individual stations S1 to S11 for the winding and at the unwinding station of the reel AB and a layer thickness is determined from this as a function of a dead time T t , this dead time being necessary for determining or calculating the influencing variable from the measured variables is.
  • predictors PI to Pll are provided, to which these specific influencing variables are supplied, and which predict a current layer thickness at the current time. That is, the dead time that elapses to determine the influencing variables from the measured variables is compensated for by the predictors.
  • a combination unit KOM is used, which in a suitable manner superimposes the individual prediction results to an estimated value y (t).
  • the force controller KS is in common paper winding devices already prior art and serves to keep constant the set force F so i ⁇ (fc) •
  • In the proposed regulator R is a correcting force to the force F '(t).
  • the controller uses the relationship from formula 3, which can be represented as follows:
  • F MU (n) F, oU (n) + ⁇ F (n) (13)
  • the web tension correction or the correction of the line force as an influencing force, compensates for the observed fluctuations in the roll-up curve, because the web tension increases with an increasing value of the roll-up layer thickness, and the web tension is reduced with a decreasing roll-up layer thickness compared to the nominal value. Because of the mechanical properties of the paper, i. H. Depending on the process, the web tension correction must not exceed or fall below certain values. For this reason, it is preferable to provide a limitation, for example by hard limits according to:
  • a target paper winding parameter is thus determined by a predicted paper winding parameter corrected and in the controller R, which regulates the dependence of the influencing force on the paper winding parameter, a target correction force is generated which corresponds to the control difference from the predicted current paper winding parameter and target paper winding parameter.
  • a corrected target force F soll (t) is specified in order to regulate the paper winding parameter at the individual winding stations or second paper windings Sl to Sll.
  • more or fewer winding stations can also be provided on the winding device.
  • predictors do not have to be provided for each winding device, but in some cases only the measured values of such winding stations can be recorded and predicted to an estimate which is known to be at the upper or lower end of the spread of the quality parameters of the winding process. That is, a particularly good or a particularly bad station is preferably selected.
  • the influencing force is regulated in the same way for all winding stations.
  • the influencing forces can be regulated separately for each winding station.
  • the control arrangement from FIG. 5 can be used in such arrangements. It should be emphasized again that here the line force as well as the
  • Web tension can be used to control the winding device.
  • Figure 5 shows the control of the line force in a winding device.
  • the web tensile force can also be regulated in a corresponding manner without restricting the invention, provided that the web tensile forces of individual winding stations F1 to F1 can be regulated separately.
  • the representation in FIG. 5 differs from that in FIG. 6 only in that a line force L is entered instead of the web tensile force F and in that reel-specific regulators RI or KSI are provided. Analogous to the known mode of operation from FIG.
  • this controller or this control arrangement regulates a predetermined nominal paper winding parameter by means of a correction force influencing the default force for the force controller KSI, which is derived from a predicted estimated value y (l) (t) to form the control difference , which is fed to the controller, was derived.
  • the individual individual winding device is designated by WVI in FIG. 5. It is conceivable that in addition to the described regulation of the roll-up layer thickness as a paper roll influencing variable, a further improvement can be achieved by the web tensile force if the line force is also regulated, or in combination with the web tensile force.
  • the nominal line force L ' is influenced and corrected by the controller RI and that the force control loop already present on the winding device, which regulates the influence force L ) (t), can be used without change, so that no change occurs existing paper winding devices is required. These are usually able to regulate a constant influence during the winding process.
  • the dependence of the mean roll thickness as a paper roll influencing variable on the line force as an influencing force is first determined and approximated by a linear trend line, or the relationship is learned by a function approximator.
  • the predictor PI is shaped on the basis of the known relationships between the processing of the reel and the winding of the paper wrap. That is, Measurements with different forces must also be carried out in advance and in an analogous manner to that for FIG
  • Line force can be applied.

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Paper (AREA)
  • Handling Of Continuous Sheets Of Paper (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Replacement Of Web Rolls (AREA)
  • Winding Of Webs (AREA)

Abstract

Zur Erzielung einer konstanten Aufrollagendicke beim Wickeln einer Papierbahn, die einen wesentlichen Güteparameter im Produktionsprozeß von Papier darstellt, wird als Einflußkraft die Linienkraft (L), bzw. die Bahnzugkraft des Papiers korrigiert. Anhand von Messungen wird der Zusammenhang zwischen Kraft und Lagendicke bestimmt und einem Regler aufgeprägt. Bei Wickelvorrichtungen wird in der Regel vom Tambour auf eine Wickelstation aufgewickelt, so daß die Erfindung den Zusammenhang zwischen Aufwickel- und Abwickelvorgang dahingehend ausnutzt, daß die Veränderung der Lagendicke gemessen wird und mit diesen Meßwerten ein Prädiktor (Pi) trainiert wird. Im laufenden Betrieb wird zur Regelung einer Papierwickelvorrichtung eine erfaßbare Meßgröße gemessen und mit dieser Meßgröße wird die Lagendickenänderung oder ein anderer korrelierter Qualitätsparameter bestimmt. Um die Totzeit, die durch die Messung auftritt, zu kompensieren, wird der Prädiktor mit den bestimmten Qualitätsparametern versorgt und sagt exakt die Größe voraus, die sich nach Ablauf der Totzeit ergeben wird, so daß in Bezug auf die Messung der prädizierte Wert dem aktuellen Meßwert entspricht. Mit dieser Größe wird die Regeldifferenz gebildet und dem Regler zugeführt, der daraus die Korrekturkraft errechnet, mit der die aktuelle Solleinflußkraft der Papierwickelvorrichtung korrigiert wird. Auf diese Weise können konstante, bzw. beliebig vorgebbare Wickellagenverläufe, beim Papierwickelvorgang erzeugt werden.

Description

Beschreibung
Verfahren und Anordnung zur Vorhersage und Regelung einer Papierwickelkenngröße bei einer Papierwickelvorrichtung.
Bei der Herstellung von Papier wird dieses in bis zu 10 Meter breiten Bahnen auf einem Tambour zur Zwischenspeicherung und Weiterverarbeitung aufgewickelt . Der Durchmesser des Tambours kann dabei bis zu 3 Meter und mehr betragen. Bei ihrer weite- ren Verarbeitung durchläuft diese Papierbahn einen Rollenschneider zur Konfektionierung nach kundenspezifischen Vorgaben, auf dem sie in Papierbahnbreiten unterschiedlicher Breite geschnitten und auf Hülsen aufgewickelt wird, welche an Kunden ausgeliefert werden können.
Bei der Herstellung dieser Kundenwickel treten einige papierspezifische Probleme auf: das Aufrollen des Papiers auf den Tambour erfolgte unter Zugspannung in horizontaler Richtung und durch Anpressung in radialer Richtung zur Hülse. Dabei kommen viskoelastische Effekte des Papiers zum tragen. Durch den Aufrollmechanismus können dem Papier bereits verschiedenste Eigenschaften aufgeprägt worden sein, da die dabei angewendeten Kräfte in den Lagen des Tambours gespeichert werden.
Beim Abrollen des Papiers vom Tambour auf eine Rolle wird dies wiederum tangentialen und radialen Kräften ausgesetzt. Das Ziel bei diesem Wickelvorgang ist es, die entstehende Papierrolle in einer optimalen Wickelhärte aufzurollen, so daß insbesondere kein teleskopieren der Papierrolle entsteht und auch keine plastische Verformung des Papiers innerhalb der Rolle eintritt. Da die Materialeigenschaften des gewickelten Papiers sortenspezifisch variieren, handelt es sich dabei um ein sehr komplexes Problem.
Üblicherweise dient als Maß für die Beurteilung der Qualität des entstehenden Wickels die Wickelhärte oder die Aufwickel- härte. Für diese Papierwickelkenngröße existieren unter- schiedliche Definitionen, von denen eine beispielsweise die mittlere Lagendicke ist : während des AufrollVorganges wird hier die Anzahl aufgewickelter Lagen und die Radiuszunahme bestimmt. Gemittelt über üblicherweise 100 Lagen erhält man so die mittlere Lagendicke. Um die mittlere Lagendicke zwischen einzelnen Papiersorten besser vergleichen zu können, bezieht man diese Größe auf die Papierdicke im entspannten Zustand der jeweiligen Sorte. Man erhält eine Kennzahl, die in der Regel kleiner als 1 ist. Je kleiner sie ist, um so härter ist die Rolle gewickelt; man spricht in diesem Zusammenhang auch von einer hohen Wickelhärte. Im anderen Fall ist die mittlere normierte Lagendicke relativ groß, was mit einer niedrigen Wickelhärte korrespondiert . Üblicherweise trägt man diese Größen über den Durchmesser auf, wie z. B. in Figur 2 dargestellt. Je nachdem, ob es sich dabei um eine Aufrollung oder Abrollung handelt, spricht man von Aufroll- bzw. Abrollkurven, oder auch von Aufrollagendickekurven. Der Verlauf einer solchen Kurve gibt Aufschluß über die Qualität der produzierten Wickel. Sie zeigt in der Regel starke Schwankungen, die eine Interpretation bezüglich der Qualität erheblich erschweren. In der Praxis wird ein Wickel als optimal gewickelt bezeichnet, wenn die Aufrollkurve mit Ausnahme von Begin und Ende des Wickelvorganges einen sonst nahezu konstanten Verlauf hat. Zur Beurteilung zieht man den Mittelwert der Kurve heran.
Analog zur Aufrollwickelhärte ist eine Abrollwickelhärte bezüglich des Tambours definiert. Aus den Kurven in Figur 2 kann erkannt werden, daß die Aufrollwickelkurve (AU) und die Abrollwiekelkurve (AB) einander beeinflussen und das trotz der beim Wickelvorgang konstant geregelten Kraftverhältnisse, die Aufrollkurve in ihrem Verlauf der Abrollkurve des Tambours folgt. Ein solches Verhalten des Papierwickels beim AufrollVorgang ist aber wie Eingangs geschildert, nicht ge- wünscht. Das der Erfindung zugrunde liegende Problem besteht deshalb darin, ein Verfahren und eine Anordnung anzugeben, womit eine beim Papierwickelvorgang maßgebliche Papierwickelkenngröße vorhergesagt bzw. geregelt werden kann.
Diese Aufgabe wird für die Verfahren gemäß den Patentansprüchen 1 und 2 und für die Anordnungen gemäß den Patentansprüchen 7 und 8 gelöst. Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Vorteilhaft wird ausgenutzt, daß sich beim Abwickeln und beim Aufwickeln verschiedener Papierrollen das Verhalten des Papiers und der damit verbundenen Papierwickelkenngrößen ähnelt. Dieser Sachverhalt läßt sich ausnutzen, um einen Prä- diktor zu trainieren, bzw. ihm dieses Verhalten aufzuprägen, um für künftige Wickelvorgänge das Verhalten der Papierwik- kelkenngröße vorhersagen zu können.
Vorteilhaft läßt sich das Ergebnis der Vorhersage der Papier- wickelkenngröße dazu ausnutzen, um die üblicherweise bei Papierwickelvorrichtungen konstantgehaltenen Kräfte gemäß der gewünschten Sollpapierwickelkenngröße zu beeinflussen, indem einem Regler das einflußkraftabhängige Verhalten der Papierwickelkenngröße aufgeprägt wird und diesem eine aus der Soll- wickelkenngröße und der prädizierten aktuellen Papierwickel- kenngröße gebildete Regeldifferenz zugeführt wird, woraus er eine Kompensationskraft bestimmt, die einer beim Wickelvorgang maßgeblichen Einflußkraft überlagert wird.
Vorteilhaft läßt sich das Verfahren und die Anordnung auch dann einsetzen, wenn die Papierwicklung von einem größeren Wickel auf kleinere Wickel erfolgt und das Papier dabei in Bahnen geschnitten wird.
Vorteilhaft läßt sich für den Fall, daß eine breite Papierbahn zerschnitten wird und auf schmalere Papierwickel aufgewickelt wird, das Ergebnis der verschiedenen prädizierten ak- tuellen Papierwickelkenngrößen zu einer gemeinsamen Größe überlagern, um den Regler anzusteuern.
Vorteilhaft werden bei Anwendung des vorgeschlagenen Verfahrens bzw. Einsatz der vorgeschlagenen Anordnungen einfache Meßgrößen, wie der Radius des Papiers, bzw. die Winkelgeschwindigkeit der unterschiedlichen Papierrollen erfaßt, um die aktuelle Papierwickelkenngröße zu prädizieren, bzw. aus diesen Größen die Lagendicke zu bestimmen.
Besonders vorteilhaft lassen sich die vorgeschlagenen Verfahren bzw. Anordnungen sowohl zur Regelung der Linienkraft, als auch der Regelung der Bahnzugkraft als Einflußkraft einsetzen.
Vorteilhaft lassen sich als Prädiktor neuronale Netze und als Regler PID-Regler verwenden, da mit diesen Einrichtungen hinreichende Erfahrungen bestehen und kein großer Aufwand zum Training bzw. zur Anpassung dieser Einrichtungen an die spezielle Problematik beim Papierwickeln erforderlich ist.
Vorteilhaft lassen sich die vorgeschlagenen Anordnungen bei Papierrollenschneidern einsetzen, da dort hohe Qualitätsanforderungen bestehen und mittels der vorgeschlagenen Verfahren eine Verbesserung erzielbar ist .
Vorteilhaft kann das vorgeschlagene Verfahren und die vorgeschlagene Anordnung aber auch bei papierähnlichen Materialien eingesetzt werden, die ähnliche mechanische Eigenschaften, d. h. viskoelastisches Verhalten und elastisch/plastische Ver- formung, wie Papier aufweisen.
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand von Figuren weiter erläutert :
Figur 1 zeigt eine schematische Darstellung eines
Stützwalzenwicklers Figur 2 zeigt Aufroll- und Abrollkurven. Figuren 3 und 4 zeigen Kraf -Lagendickenzusammenhänge Figur 5 zeigt einen Regelkreis für eine Wickel-
Station Figur 6 zeigt einen Regelkreis für mehrere Wik- kelstationen.
Figur 1 zeigt schematisch den Aufbau eines Stützwalzenwicklers mit dem Radius r als Wickelradius, F als der Bahnzugkraft vor der Stützwalze St und der Bahngeschwindigkeit v. Die Papierbahn ist mit P bezeichnet mit F^ ist die eingewik- kelte Bahnzugkraft oder auch die Bahnkraft auf dem Wickel bezeichnet. Mit MJJ ist das Antriebsmoment des Zentrumsantriebs der Wickelhülse bezeichnet und mit Mg das Antriebsmoment der Stützwalze, wobei der Wickel mit Wi und die Hülse mit Hui be- zeichnet ist. Im Berührungspunkt der beiden Walzen, der auch als Nip Ni bezeichnet wird, tritt eine Linienkraft Lin auf, die mit mechanischen Einrichtungen beeinflußt werden kann. Auf dem Wickel Wi sind bereits mehrere Papierbahn übereinan- dergewickelt , was durch konzentrische Kreise angedeutet ist. In Figur 1 ist der erste Papierwickel, der den Tambour darstellt nicht dargestellt, sondern lediglich der zweite Papierwickel Wi auf den die Papierbahn P aufgewickelt wird. Der erste Papierwickel von dem abgewickelt wird, befindet sich davor in Richtung der Kraft F und entspricht im wesentlichen dem zweiten Wickel, wobei er sich von diesem durch seine Breite unterscheiden kann.
Bei Papierwickelvorrichtungen, wie sie insbesondere auch bei Rollenschneidern von Papierrollen eingesetzt werden, spielen für die Kriterien der erzielbaren Qualität die Bedingungen im sogenannten Nip, in dem die beiden Papierseiten von den verschiedenen Walzen berührt werden, eine besondere Rolle. Die Bahnkraft F^ hängt dabei von den Steuergrößen sowie von weiteren Einflußgrößen z. B. des Papiers und der Umgebung ab. Steuergrößen sind beispielsweise die Antriebsmomente Mg der Stützwalze St und des Zentrumsantriebs M^, die Linienkraft Lin, mit welcher der Wickel Wi auf die Stützwalze St gepreßt wird, die Bahnzugkraft vor dem Nip F, sowie fallweise Reibdämpfereinstellungen, mit welchen vertikalen Bewegungen des Winkels Wi auf der Stützwalze St durch Hydraulikdämpfer oder durch Wirbelstrombremsen bedämpft werden. Einflußgrößen stel- len beispielsweise die Papiereigenschaften, wie der Elastizitätsmodul, das Flächengewicht bezogen auf die Dichte, die Rauhigkeit, die Glätte, die Feuchte, die Porosität und die Bruchdehnung des Papiers dar. Ebenso müssen beispielsweise von den Stützwalzeneigenschaften deren Rauhigkeit und Reib- wert, sowie Geometriedaten wie beispielsweise die Papierbahnbreiten berücksichtigt werden.
Wie Figur 2 zeigt, folgt der Verlauf einer Aufrollagendicken- kurve AU dem Verlauf der Abrollagendickenkurve AB des Tam- bours. Nach oben ist die normierte Aufrollagendicke bzw. Abrollagendicke nach rechts der Durchmesser des Papierwickels, auf den aufgerollt wird, aufgetragen. Deutlich kann erkannt werden, daß die Aufrollagendickekurve AU den Verlauf der Abrollagendickenkurve des Tambours nachempfindet, obwohl bei gängigen Verfahren die Einflußkraft, welche die Linienkraft, bzw. in der Bahnzugkraft sein kann, konstant gehalten wird. Es gibt Abhandlungen, die den Einfluß der Kräfte während des Wickelvorgangs beschreiben: W. Wolfermann „Mathematischer Zusammenhang zwischen Bahnzugkraft und inneren Spannungen an Wickeln von elastischen Bahnen.", Dissertation der technischen Universität München 1976; H.-J. Schaffrath „Über das Kompressions-Reibverhalten von Papier vor dem Hintergrund des Rollenwickelns", Dissertation der technischen Universität Darmstadt, 1993. Dort wird ein mathemaitsch funktionaler Zu- sammenhang zwischen Bahnzug und physikalischen Größen hergestellt, die den Zustand des aufgewickelten Papiers, wie beispielsweise mittleren Lagendicke, Wickelhärte, Tangential- und RadialSpannungen beschreiben. Bei diesen Arbeiten wird jedoch von idealisierten Voraussetzungen ausgegangen, weshalb eine Prognose der Wickelhärte im realen Betrieb mit Hilfe dieser Modelle allein nicht möglich ist. Insbesondere werden die Effekte am Nip, das ist die Stelle, an der Andruckrollen etc. das Papier auf die Hülse des Wickels drücken, vernachlässigt. Durch Einsatz der Verfahren und Anordnungen soll deshalb möglichst ein konstanter Verlauf dieser Papierwickel- kenngröße erzielt werden, bzw. ein aufgeprägter gewünschter Verlauf dieser Papierwickelkenngröße vorgebbar sein. In der Praxis besonders häufig vorkommende Papierwickelvorrichtungen sind Rollenschneider, auf denen hergestelltes Papier, das auf Tambours gespeichert wurde, kundenspezifisch konfektioniert wird. Solche Maschinen weisen eine Vielzahl von Ξinstellmög- lichkeiten und Parametern auf, die im folgenden dargestellt sind.
• Maschinendaten: Randbeschnitt, Kurvennummer Bahnzug, Bremszeit, Nummer Rollenmaschine, Flächengewicht, Maximale Geschwindigkeit, Wurfnummer, Papiersorte, Kurvennummer Reibdämpfer, Kurvennummer Geschwindigkeit, Trimm.
• Rollendaten: Hülsendurchmesser, Durchmesser der Rolle, mittlere Wickelhärte, Kurvennummer, Länge der Rolle, Messernummer, Rollennummer, Stationsnummer, Breite der Rolle • Tambourdaten: Tambourrestdurchmesser, Tambourrestlänge, Tambournummer
• Kurventelegramme: (Grund-/Soll-und Istkurven) stationsunabhängige Kurven: Bahnzug, Geschwindigkeit, Reibdämpferdruck, Kompensationsdruck (innen/außen) , Strom Hauptantrieb, Strom Bremsgenerator, Wickelhärte Tambour,
Anpreßdruck Andruckrollen (innen/außen) . stationsspezifische Kurven: Zylinderdruck Aufrollstation,
Anpreßdruck Andruckrollen, Drehmoment Zentrumsantrieb, Wik- kelhärte • Datum, Fehler, Zustandsmeldungen, Uhrzeit
Die Maschinendaten enthalten generelle Angaben für den Wik- kelvorgang. Die Rollendaten werden vorzugsweise für jede produzierte Rolle bereitgestellt. Kurventelegramme geben dabei Auskunft über Soll- und Istkurven. Im wesentlichen sind dies die Bahnzug-, Geschwindigkeits- und Linienkraftkurven. Dabei wird für Rollenschneider mit mehreren Stationen insbesondere zwischen Kurven, die für alle Stationen gleich sind und solchen, die stationsspezifisch sind, unterschieden. Die meßbaren Daten an diesen Papierwickelvorrichtungen werden derzeit in Abhängigkeit des Durchmessers bereitgestellt, es ist je- doch auch die Bereitstellung in Abhängigkeit von der Zeit oder von anderen Meßgrößen der Vorrichtung denkbar.
In Vorbereitungsschritten zur Erstellung der vorgeschlagenen Anordnung, bzw. des vorgeschlagenen Verfahrens müssen von in Betrieb befindlichen Papierwickelvorrichtungen Daten erfaßt und gesammelt werden. Falls die Kurven für die Abrollung und die Aufrollung dabei durchmesserdiskret gemessen wurden, wird mit
d(n)=d0+n-Δd (1)
der Durchmesser zum Sample n definiert . Δd bezeichnet das Durchmesserinkrement . Analog bedeutet dann z. B. y(n) den Wert der Aufrollkurve zum Durchmesser d(n) . Wie die Figuren 3 und 4 zeigen, besteht eine Abhängigkeit zwischen der Einflußkraft und der Aufrollagendicke. In diesem Fall wurde als Einflußkraft der Bahnzug untersucht. Ähnliche Verläufe sind jedoch auch mit der Linienkraft als Einflußkraft denkbar.
Figuren 3 und 4 zeigen beispielsweise die Verläufe von unterschiedlichen Stationen eines Papierrollenschneiders. Nach rechts ist die Einflußkraft also der Bahnzug und nach oben die mittlere Lagendicke aufgetragen. Durch Untersuchungen an realen Papierwickelvorrichtungen, d. h. Messungen und Aufnah- me der Werte ergeben sich Meßpunkte MP1, MP2, MP7 und MP9. Der Übersichtlichkeit halber sind hier nicht alle Meßpunkte bezeichnet. Aus diesen Erhebungen ergibt sich ein Zusammenhang Z10, bzw. Z20, der für die Regelung der Papierwickel- kenngröße, in diesem Fall der mittleren normierten Lagendicke unter Verwendung einer Einflußkraft herangezogen werden kann. Insbesondere werden dazu in Abhängigkeit von verschiedenen Papiersorten bzw. für verschiedene Stationen individuell die Aufrollkurven zu verschiedenen Bahnzügen ermittelt. Trägt man dabei den Mittelwert dieser Kurven in Abhängigkeit des Bahnzuges auf, so ergibt sich in erster Approximation eine Trendgerade, die die Abnahme der mittleren Lagendicke mit zuneh- menden Bahnzug charakterisiert, was der Beobachtung entspricht, das mit zunehmendem Bahnzug die Wickelhärte steigt. Diese Trendgeraden sind hier mit Z10 und Z20 bezeichnet. Es ergibt sich dabei folgender Zusammenhang:
Ϋ(¥) = a1Ε+ a2 (2)
Darin bedeutet Y(F) die gemittelte Aufrollagendicke zum Bahnzug F. Die Steigerung ax ist negativ. Dabei ist zu beachten, daß dieser funktionale Zusammenhang unabhängig vom Durchmes- ser ist. Für die spätere Verwendung in einem Regler benötigt man den umgekehrten Zusammenhang, der die Abhängigkeit des Bahnzuges von der gemittelten Aufrollagendicke angibt :
Figure imgf000011_0001
Im allgemeinen Fall und insbesondere für den Fall, daß kein linearer Zusammenhang erkennbar und damit auch keine einfache Bildung der Umkehrfunktion möglich ist, werden diese Meßpunkte in Abhängigkeit der Einflußkraft einem neuronalen Netz oder einem anderen Funktionsapproximator zugeführt und dieses mit dem entsprechenden Zusammenhang trainiert . Das neuronale Netz NNX lernt dabei durch Anpassen seiner Parameter w auf Grundlage dieser Daten und mittels bekannter Lernverfahren den Zusammenhang zwischen Kraft und mittlerer Lagendicke oder anderer Papierwickelkenngröße, auf Basis der Gleichung:
F(Ϋ)= N1(Ϋ,w) (4)
Dieser Zusammenhang ist auch die Grundlage für das Regelver- halten des später beschriebenen Reglers. Aus der bereits in Figur 2 dargelegten Beobachtung, daß sich die Eigenschaften der Abrollung in der Aufrollung widerspiegeln, läßt sich ein Prädiktor, insbesondere ein neuronaler Prädiktor definieren, der aus den Kurvendaten der Auf- und Abrollung zu einem aktuellen Durchmesser, bzw. einer anderen meßbaren Kenngröße d(n) den Wert Aufrollung zum Durchmesser d(n+Δ) prädiziert. Der Prädiktor kann durchaus auch andere/weitere Kenndaten als Eingangsgrößen nutzen. D. h. er prädiziert die aktuelle Aufrollagendicke als Papierwickelkenn- große. Mit x(n) als Abrollagendicke zum Durchmesser d(n) und y(n) als der Aufrollagendicke, sowie z (n) als Zustandsvaria- ble, läßt sich ein neuronales Netz mit diesem nichtlinearen Zusammenhang der Form:
y(i)(n+Δ)=NN2(x(n),y(i)(n),z(i)(n),w(i)) (5)
zwischen zukünftiger Aufrollagendicke zum Durchmesser d(n+Δ) und dem aktuellen Durchmesser d(n) zur Station i erstellen.
Darin bedeuten w(1 die Parameter des neuronalen Netzes NN Der Index Λ bedeutet dabei einen Schätzwert, i die Nummer der Station, falls mehrere Aufwickelstationen eingesetzt werden und Δ einen mit der Zeit korrelierten Wert. Aus Untersuchungen ergibt sich, daß sich auch eine einfachere Approximation verwenden läßt :
y(i)(n +Δ )= w1 (i)x(n)+w<i)y(i)(n)+ 3 +z(i)(n +Δ ) (6) z(i)(n +Δ )= z(i)(n)+w^[y(i)(n)- y(i)(n)] (7) z(i)(0)=...= z(i)(Δ-l)=0 (8)
Hieraus müssen für die jeweiligen Stationen i die Parameter Wj 1' bestimmt werden. Dies geschieht in der Regel durch Minimieren einer Kostenfunktion mit Hilfe eines Gradientenverfahrens und der Werte von den gemessenen Abroll- und Aufrollkur- ven zu den unterschiedlichen Würfen, d. h. Aufwiekel orgängen. Vorzugsweise werden diese Daten nach Papiersorten und innerhalb der Papiersorten nach verwendeten Stationen geord- net. Die besondere Struktur des neuronalen Netzes ermöglicht jedoch dabei ein vereinfachtes, zweistufiges Vorgehen. In einem ersten Schritt wird dabei z (n) für alle n identisch 0 gesetzt und durch Lösen des sich ergebenden (überbestimmten) multilinearen Gleichungssystems die Parameter Wj ... W3 berechnet . Hierzu können beispielsweise bekannte Standardverfahren, wie die SingulärwertZerlegung eingesetzt werden. In einem weiteren Schritt wird nun der Parameter wj' derartig bestimmt, daß der verbleibende Restfehler des multilinearen Modells minimiert wird.
Die einzelnen Prädiktionen y(,) (n+Δ) werden vorzugsweise mit Hilfe eines weiteren neuronalen Netzes NN3 zu einer Kenngröße zusammengefaßt, falls mehrere Papierwickelstationen beim Auf- rollvorgang eingesetzt werden.
y(n+Δ)=NN3(y(i)(n+Δ)) (9)
y(n +Δ ) = Mean{y(i)(n + Δ )|Station i aktiv} (10)
y(n + Δ )= Max{y i)(n+Δ )| Station i aktiv} (11)
Diese Maßnahme entspricht einer speziellen Realisierung eines „Mixing of Experts" mit neuronalen Netzen. Jeder Prädiktor stellt dabei einen stationsspezifischen neuronalen Experten bezüglich der Aufrollagendicke oder einer anderen Papierwik- kelkenngröße dar und aus den Beiträgen aller Experten wird eine Eingangsgröße für den Regler gebildet. Da während eines WickelVorgangs nicht immer alle Stationen aktiv sind, bzw. im Extremfall nur eine Station betrieben wird, werden vorzugsweise nur die Beiträge der aktiven Stationen berücksichtigt .
Wie Figur 6 zeigt, dient der Prädiktionswert y als Schätzung des Aufrollwertes zum Durchmesser d oder einer anderen zeit- korellierten Größe. Vorzugsweise wird dieser neben der Sollwertvorgabe für die Papierwickelkenngröße yson und der Soll- wertvorgabe des Bahnzuges F'goll beim Regelvorgang verarbei- tet. Zu beachten ist, daß hier als Argument die Zeit verwendet und zur Vereinfachung der Darstellung eine Zeitverzögerung Tt für die betroffenen Stufen des Regelkreises angenommen wurde. Da jedoch derzeit sowohl Messungen, als auch das Modell für den Prädiktor durchmesserdiskret sind, ist der
Durchmesser-Prädiktionshorizont Δ so zu wählen, daß die Zeit- verzögerung in den einzelnen Stufen kompensiert wird.
Dem Regler R wird beispielsweise eine Regeldifferenz aus der Sollwertvorgabe ysoll und dem Schätzwert y(t) zugeführt. Er ist beispielsweise als PID-Regler ausgeführt und nutzt den Zusammenhang zwischen Kraft und mittlerer Lagendicke als Papierwickelkenngröße aus, der Eingangs ermittelt wurde. Vorzugsweise wird über den Regler R die einem Kraftregler KS vorgegebene Sollkraft F'soll (t) korrigiert. Demgemäß wird durch Variation der Einflußkraft Fsoll(t) des Kraftreglers KS an den einzelnen Wickelstationen Sl bis Sll der Wickelvorrichtung WV eine gewünschte Wickellagendicke bzw. ein gewünschter Wickellagendickeverlauf beim Wickelvorgang erzielt. Hierzu werden an den einzelnen Stationen Sl bis Sll für die Aufwicklung und an der Abwickelstation des Tambours AB Meßwerte erfaßt und daraus eine Lagendicke in Abhängigkeit einer Totzeit Tt bestimmt, wobei diese Totzeit für die Bestimmung bzw. Berechnung der Einflußgröße aus den Meßgrößen erforder- lieh ist. Demnach sind Pradiktoren PI bis Pll vorgesehen, denen diese bestimmten Einflußgrößen zugeführt werden, und die zum aktuellen Zeitpunkt eine aktuelle Lagendicke prädizieren. D. h. durch die Pradiktoren wird die Totzeit kompensiert, die zur Bestimmung der Einflußgrößen aus den Meßgrößen vergeht. Falls mehrere Stationen vorgesehen sind, wie hier in Figur 6 dargestellt, wird eine Kombinationseinheit KOM eingesetzt, welche die einzelnen Prädiktionsergebnisse auf geeignete Weise zu einem Schätzwert y (t) überlagert. Der Kraftregler KS ist bei gängigen Papierwickelvorrichtungen bereits Stand der Technik und dient zum Konstanthalten der eingestellten Kraft F soiι (fc) • Im vorgeschlagenen Regler R wird eine Korrekturkraft für die Kraft F'soll (t) bestimmt. Der Regler verwendet dabei den Zusammenhang aus Formel 3, der sich hierzu wie folgt darstellen läßt:
δF(n)= 1(y(n))-NN1(yβoU(n)) (12)
FMU(n)=F,oU(n)+δF(n) (13)
Im Falle eines linearen Zusammenhangs gilt für die Korrektur beispielsweise :
Figure imgf000015_0001
Die Bahnzugkorrektur, bzw. die Korrektur der Linienkraft als Einflußkraft, kompensiert die beobachteten Schwankungen in der Aufrollkurve, weil bei einem zunehmenden Wert der Aufrollagendicke der Bahnzug erhöht, und bei abnehmender Aufrollagendicke im Vergleich zum Sollwert der Bahnzug reduziert wird. Wegen der mechanischen Eigenschaften des Papieres, d. h. prozeßbedingt, darf die Bahnzugkorrektur bestimmte Werte nicht über- bzw. unterschreiten. Aus diesem Grund ist bevorzugt eine Begrenzung vorzusehen, die beispielsweise durch Hardlimits gemäß:
F.ou(n) = ≤ Fn»x
Figure imgf000015_0002
oder auch durch Softlimits, die durch eine differenzierbare Begrenzungsfunktion gekennzeichnet sind, beispielsweise basierend auf der arctan-Funktion, realisiert werden. Bei komplizierteren Zusammenhängen ist auch die Verwendung eines neuronalen Netzes als Limiter denkbar.
Gemäß der vorliegenden Anordnung wird also eine Sollpapierwickelkenngröße durch eine pradizierte Papierwickelkenngröße korrigiert und in dem Regler R, der die Abhängigkeit der Einflußkraft von der Papierwickelkenngröße regelt, wird eine Sollkorrekturkraft erzeugt, die der Regeldifferenz aus prädi- zierter aktueller Papierwickelkenngröße und Sollpapierwickel- kenngröße entspricht. Mit dieser Korrekturkraft wird der
Kraftregelung KS, welche die Einflußkraft der Wickelvorrichtung WV regelt, eine korrigierte Sollkraft Fsoll (t) vorgegeben, um die Papierwickelkenngröße an den einzelnen Aufwickel- stationen, bzw. zweiten Papierwickeln Sl bis Sll zu regeln. Fallweise können auch mehr oder weniger Aufwickelstationen an der Wickelvorrichtung vorgesehen sein. Es müssen ebenfalls nicht für jede Wickelvorrichtung Pradiktoren vorgesehen sein, sondern es können fallweise nur die Meßwerte solcher Aufwik- kelstationen aufgenommen und zu einer Schätzgröße prädiziert werden, von denen bekannt ist, daß sie sich am oberen, bzw. am unteren Ende der Streuung der Qualitätsparameter des Wik- kelprozesses befinden. D. h. es wird vorzugsweise eine besonders gute, bzw. eine besonders schlechte Station ausgewählt. Wie erkannt werden kann, wird bei dieser Wickelvorrichtung in Figur 6, die Einflußkraft für alle AufWickelstationen gleich geregelt. Es sind jedoch auch Fälle denkbar, in denen die Einflußkräfte je Wickelstation separat geregelt werden können. Bei solchen Anordnungen kann die Regelanordnung aus Figur 5 Verwendung finden. Es soll nochmals betont werden, daß hier sowohl als Einflußkraft die Linienkraft, als auch die
Bahnzugkraft zur Regelung der Wickelvorrichtung herangezogen werden kann.
Figur 5 zeigt die Regelung der Linienkraft bei einer Wickel- Vorrichtung. Wie zuvor bei der Beschreibung von Figur 6 erläutert wurde, kann jedoch ohne Beschränkung der Erfindung auch die Bahnzugkraft in entsprechender Weise geregelt werden, sofern die Bahnzugkräfte einzelner Wickelstationen Fl bis Fll separat regelbar sind. Die Darstellung in Figur 5 un- terscheidet sich von der in Figur 6 lediglich dadurch, daß anstatt der Bahnzugskraft F eine Linienkraft L eingetragen ist und daß aufwickelrollenspezifische Regler RI bzw. KSI vorgesehen sind. Analog zur bekannten Funktionsweise aus Figur 6 wird durch diesen Regler, bzw. diese Regelanordnung eine vorgegebene Sollpapierwickelkenngröße durch eine, die Vorgabekraft für den Kraftregler KSI beeinflussende Korrektur- kraft geregelt, die aus einem prädizierten Schätzwert y(l)(t) zur Bildung der Regeldifferenz, die dem Regler zugeführt wird, abgeleitet wurde. Mit WVI ist in Figur 5 die individuelle einzelne Wickelvorrichtung bezeichnet. Es ist vorstellbar, daß neben der beschriebenen Regelung der Aufrollagendik- ke als Papierwickeleinflußgröße durch die Bahnzugkraft eine weitere Verbesserung erzielt werden kann, wenn ebenfalls, oder in Kombination mit der Bahnzugkraft, die Linienkraft geregelt wird. Charakteristisch ist dabei, daß die Sollinien- kraft L'soll durch den Regler RI beeinflußt und korrigiert wird und daß der an der Wickelvorrichtung bereits vorhandene Kraftregelkreis, der die Einflußkraft L ) (t) regelt ohne Änderung verwendet werden kann, so daß keine Änderung an vorhandenen Papierwickelvorrichtungen erforderlich ist. Diese sind üblicherweise in der Lage eine konstante Einflußkraft während des Wickelvorgangs zu regeln. In analoger Weise wie bei der Regelung mit der Bahnzugkraft als Einflußkraft, wird zunächst die Abhängigkeit der mittleren Aufrollagendicke als Papierwickeleinflußgröße von der Linienkraft als Einflußkraft ermittelt und durch eine lineare Trendgerade approximiert, bzw. der Zusammenhang durch einen Funktionsapproximator gelernt. Der Prädiktor PI wird anhand der bekannten Zusammenhänge aus Abwicklung des Tambours und Aufwicklung der Papierwickel geprägt. D. h. es müssen im Vorfeld ebenfalls Messungen mit unterschiedlichen Kräften vorgenommen werden und in analoger Weise, wie das bei Figur 2 geschehen ist, für die
Linienkraft aufgetragen werden.

Claims

Patentansprüche
1. Verfahren zur Vorhersage einer Papierwickelkenngröße einer Papierwickelvorrichtung, mit folgenden Merkmalen: a) das Papier wird dabei von einer ersten Papierrolle abgewickelt und auf eine zweite Papierrolle (Wi) aufgewickelt; b) in einem Vorbereitungsschritt wird in Abhängigkeit von mindestens einer zeitabhängigen meßbaren Kenngröße des Wickelvorganges (r) bei bekanter erster Einflußkraft (F, L) mindestens die erste Papierwickelkenngröße (x, h) der ersten und die zweite Papierwickelkenngröße (y) der zweiten Papierrolle bestimmt; c) anhand der Ergebnisse aus dem Vorbereitungsschritt wird ein Prädiktor (PI) geprägt, der mindestens in Abhängigkeit einer ihm zugeführten ersten und zweiten Papierwickelkenngröße (x, y, h) und der Zeit eine zukünftige zweite Papierwickelkenngröße (y) prädiziert;
2. Verfahren zur Regelung einer Papierwickelkenngröße einer Papierwickelvorrichtung über eine die Papierwickelkenngröße beeinflussende Einflußkraft, mit folgenden Merkmalen: a) das Papier wird dabei von einer ersten Papierrolle abgewickelt und unter Einwirkung der Einflußkraft (F, L) auf eine zweite Papierrolle (Wi) aufgewickelt; b) in einem ersten Vorbereitungsschritt wird in Abhängigkeit von mindestens einer zeitabhängigen meßbaren Kenngröße des Wickelvorganges (r) bei konstanter erster Einflußkraft (F, L) mindestens die erste Papierwickelkenngröße (x, h) der ersten und die zweite Papierwickelkenngröße zweiten Pa- pierrolle (y) bestimmt; c) in einem zweiten Vorbereitungsschritt wird in Abhängigkeit von mindestens der meßbaren Kenngröße des Wickelvorganges (r) bei bekanter zweiter Einflußkraft (F, L) mindestens die zweite Papierwickelkenngröße (y) , sowie die Zeitdauer für den Bestimmungsvorgang als Bestimmungszeit (Tt) bestimmt; d) anhand der Ergebnisse aus dem ersten Vorbereitungsschritt wird ein Prädiktor (PI) geprägt, der mindestens in Abhängigkeit einer ihm zugeführten zweiten Papierwickelkenngröße (y) und der Zeit mindestens eine zukünftige zweite Pa- pierwickelkenngröße (y) prädiziert; e) anhand mindestens der Ergebnisse aus dem ersten und zweiten Vorbereitungsschritt wird ein Regler (R) geprägt, der in Abhängigkeit der ihm zugeführten Papierwickelkenngröße (y) eine dieser Papierwickelkenngröße zugehörige Einfluß- kraft (F, L) regelt; f) beim Regelvorgang wird dem Regler eine soll-zweite- Papierwickelkenngröße (ysolι ) zugeführt, mindestens die zweite Papierwickelkenngröße (y) wird an der Papierwickel - Vorrichtung als aktuelle Papierwickelkenngröße (y) be- stimmt, die Papierwickelkenngröße wird mit der Bestimmungszeit (Tt) und der aktuellen Papierwickelkenngröße (y) vom Prädiktor als pradizierte Papierwickelkenngröße prädiziert und daraus mit der soll-zweite-Papierwickelkenngröße wird eine Regeldifferenz gebildet, die dem Regler (R) zur Regelung der Einflußkraft (F, L) zugeführt wird.
3. Verfahren nach einem der vorangehenden Ansprüche, bei dem das Papier beim Wickeln in Bahnen geschnitten und auf mindestens zwei zweite Papierrollen (Wi) aufgewickelt wird.
4. Verfahren nach Anspruch 2 und 3 , bei dem die Ergebnisse der Pradiktoren (PI) zu einer gemeinsamen Papierwickel- kenngröße (y ) verarbeitet werden.
5. Verfahren nach einem der vorangehenden Ansprüche, bei dem als Papierwickelkenngröße die Lagendicke des Papiers und/oder als meßbare Kenngröße die Winkelgeschwindigkeit einer Papierrolle und oder der Radius (r) einer Papierrolle und/oder als Prädiktor (PI) ein neuronales Netz verwen- det wird.
6. Verfahren nach einem der Ansprüche 2 bis 5, bei dem als Einflußkraft die Linienkraft (L) und/oder die Bahnzugkraft (F) geregelt wird.
7. Anordnung zur Vorhersage einer Papierwickelkenngroße einer Papierwickelvorrichtung, mit folgenden Merkmalen: a) sie weist eine erste und mindestens eine zweite Papierrolle (Wi) auf, wobei das Papier von der ersten Papierrolle abgewickelt und auf die zweite Papierrolle aufgewickelt wird; b) sie weist mindestens ein Prädiktionsmittel (PI) auf das anhand der Ergebnisse aus einem Vorbereitungsschritt geprägt wurde, wozu in Abhängigkeit von mindestens einer zeitabhängigen meßbaren Kenngröße (r) des WickelVorganges mindestens die erste Papierwickelkenngroße (x, h) der ersten und die zweite Papierwickelkenngroße zweiten Papierrolle (y) bestimmt wurde und das mindestens in Abhängigkeit einer ihm zugeführten ersten und zweiten Papierwik- kelkenngröße (x, y, h) und der Zeit eine zukünftige zweite Papierwickelkenngroße (y) prädiziert; c) sie weist Bestimmungsmittel (WV) zur Bestimmung der Papierwickelkenngroße aus der meßbaren Kenngröße auf; d) sie weist Meßmittel (Sl) zum messen der Kenngröße auf.
8. Anordnung zur Regelung einer Papierwickelkenngroße einer Papierwickelvorrichtung über eine die Papierwickelkenngroße beeinflussende Einflußkraft, mit folgenden Merkmalen: a) sie weist eine erste und mindestens eine zweite Papierrolle (Wi) auf, wobei das Papier von der ersten Papierrolle abgewickelt und unter Einwirkung der Einflußkraft (F, L) auf die zweite Papierrolle aufgewickelt wird; b) sie weist mindestens ein Prädiktionsmittel (PI) auf, das anhand der Ergebnisse aus einem ersten Vorbereitungs- schritt geprägt wurde, wozu in Abhängigkeit von mindestens einer zeitabhängigen meßbaren Kenngröße (r) des Wickelvorganges bei bekannter erster Einflußkraft (F, L) mindestens die erste Papierwickelkenngroße (x , h) der ersten und die zweite Papierwickelkenngroße (y) zweiten Papierrolle (Wi) bestimmt wurde und das mindestens in Abhängigkeit einer bestimmten und ihm zugeführten ersten und zweiten Papierwickelkenngroße (x, h, y) und einer Bestimmungszeit (Tt) eine zukünftige zweite Papierwickelkenngroße (y) prädi- ziert ; c) sie weist Bestimmungsmittel (Tt) zur Bestimmung der Papierwickelkenngroße (y) aus der meßbaren Kenngröße (r) innerhalb der Bestimmungszeit (Tt) auf; d) sie weist Meßmittel (Sl) zum messen der Kenngröße auf. e) sie weist einen Regler (R) auf, der anhand mindestens der Ergebnisse aus dem ersten und zweiten Vorbereitungsschritt geprägt wurde, wozu in Abhängigkeit von mindestens der meßbaren Kenngröße (r) des WickelVorganges bei bekanter zweiter Einflußkraft (F, L) mindestens die zweite Papierwickelkenngroße (y) , sowie die Zeitdauer für den Bestimmungsvorgang (Tt) als Bestimmungszeit bestimmt wurde, der in Abhängigkeit der ihm zugeführten Papierwickelkenngroße (y) eine dieser Papierwickelkenngroße zugehörige Einfluß- kraft (F, L) regelt, wobei beim Regelvorgang eine soll- zweite-Papierwickelkenngroße (yson) vorgegeben wird, mindestens die zweite Papierwickelkenngroße (y) an der Papierwickelvorrichtung (WV) als aktuelle Papierwickelkenngroße (y) durch die Bestimmungsmittel (Tt) bestimmt wird, die Papierwickelkenngroße (y) mit der Bestimmungszeit (Tt) und der aktuellen Papierwickelkenngroße (y) vom Prädiktor
(PI) als pradizierte Papierwickelkenngroße (y) prädiziert wird und daraus mit der soll-zweite-Papierwickelkenngröße eine yson) Regeldifferenz gebildet wird, die dem Regler (R) zur Regelung der Einflußkraft (F, L) zugeführt wird.
9. Anordnung nach Anspruch 7 oder 8, Bei der mindestens als Prädiktor (PI) ein neuronales Netz vorhanden ist.
10. Anordnung nach Anspruch 8, bei der als Regler (R) ein PID-Regler vorhanden ist.
PCT/DE1998/003531 1997-12-10 1998-12-01 Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung WO1999029604A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK98965599T DK1037842T3 (da) 1997-12-10 1998-12-01 Fremgangsmåde og indretning til forudsigelse og regulering af en papirvikleparameter ved en papirvikleindretning
EP98965599A EP1037842B1 (de) 1997-12-10 1998-12-01 Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung
US09/581,002 US6363297B1 (en) 1997-12-10 1998-12-01 Method and circuit for predicting and regulating a paper winding parameter in a paper winding device
AT98965599T ATE218493T1 (de) 1997-12-10 1998-12-01 Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung
CA002313461A CA2313461A1 (en) 1997-12-10 1998-12-01 Method and arrangement for predicting and regulating a paper winding characteristic variable in a paper winding device
DE59804370T DE59804370D1 (de) 1997-12-10 1998-12-01 Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung
BR9813509-0A BR9813509A (pt) 1997-12-10 1998-12-01 Processo e dispositivo para a previsão e regulação de um valor caracterìstico de enrolamento de papel em um dispositivo de enrolamento de papel
NO20002995A NO317470B1 (no) 1997-12-10 2000-06-09 Fremgangsmate og anordning for prediksjon og regulering av en papirviklingsparameter ved en papirviklingsinnretning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19754878A DE19754878A1 (de) 1997-12-10 1997-12-10 Verfahren und Anordnung zur Vorhersage und Regelung einer Papierwickelkenngröße bei einer Papierwickelvorrichtung
DE19754878.4 1997-12-10

Publications (1)

Publication Number Publication Date
WO1999029604A1 true WO1999029604A1 (de) 1999-06-17

Family

ID=7851444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003531 WO1999029604A1 (de) 1997-12-10 1998-12-01 Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung

Country Status (11)

Country Link
US (1) US6363297B1 (de)
EP (1) EP1037842B1 (de)
AT (1) ATE218493T1 (de)
BR (1) BR9813509A (de)
CA (1) CA2313461A1 (de)
DE (2) DE19754878A1 (de)
DK (1) DK1037842T3 (de)
ES (1) ES2178304T3 (de)
NO (1) NO317470B1 (de)
PT (1) PT1037842E (de)
WO (1) WO1999029604A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI107908B (fi) * 1998-11-04 2001-10-31 Metso Paper Inc Menetelmä ja laitteisto rullan rakenteen hallitsemiseksi
FI110425B (fi) * 2000-04-12 2003-01-31 Metso Paper Inc Menetelmä kiinnirullaimen toimintavarmuuden parantamiseksi
FI114943B (fi) * 2001-04-25 2005-01-31 Metso Paper Inc Paperin radiaalisen kimmomodulin mittaus
FI111033B (fi) * 2001-06-15 2003-05-15 Metso Paper Inc Menetelmä rullan tiheyden määrittämiseksi
ES2290941T3 (es) 2002-02-05 2008-02-16 KOENIG &amp; BAUER AKTIENGESELLSCHAFT Procedimiento para la regulacion de una tension de una banda de papel.
DE10204484B4 (de) * 2002-02-05 2005-03-03 Koenig & Bauer Ag Verfahren zur Regelung der Bahnspannung
FI116582B (fi) * 2002-10-24 2005-12-30 Metso Paper Inc Menetelmä paperin kimmomoduulin määrittämiseksi
FI20022023A (fi) * 2002-11-13 2004-05-14 Metso Paper Inc Menetelmä kiinnirullaimen ohjaamiseksi
AU2003290932A1 (en) * 2002-11-15 2004-06-15 Applied Materials, Inc. Method, system and medium for controlling manufacture process having multivariate input parameters
DE10326304A1 (de) 2003-06-11 2005-02-03 Voith Fabrics Patent Gmbh Verfahren und Vorrichtung zur Herstellung einer Tissuebahn
DE10342210A1 (de) * 2003-09-12 2005-04-07 Voith Paper Patent Gmbh Verfahren und Vorrichtung zum Messen eines Bahnzugs einer Materialbahn und einer Nipkraft in einem Nip
FI119034B (fi) * 2004-04-14 2008-06-30 Metso Paper Inc Menetelmä ja järjestelmä kuormitusmittausten suorittamiseksi ja hyödyntämiseksi paperinvalmistukseen liittyvien koneenosien ja laitteiden kunnossapidossa
US7506280B2 (en) 2004-11-12 2009-03-17 Tabtronics, Inc. Magnetic winding and method of making same
US8032246B2 (en) * 2007-02-02 2011-10-04 Kimberly-Clark Worldwide, Inc. Winding method for uniform properties
US7891276B2 (en) * 2007-08-31 2011-02-22 Kimbelry-Clark Worldwide, Inc. System and method for controlling the length of a discrete segment of a continuous web of elastic material
DE102009019624A1 (de) * 2009-04-30 2010-11-04 Robert Bosch Gmbh Verfahren zur Bestimmung wenigstens eines Reglerparameters eines Regelglieds in einem Bahnspannungs-Regelkreis für eine Bearbeitungsmaschine
CN102353587B (zh) * 2011-06-23 2012-12-05 杭州电子科技大学 柔性卷绕物弹性模量在线软检测电路
JP7360381B2 (ja) * 2018-03-29 2023-10-12 富士フイルム株式会社 巻き取り条件生成装置、巻き取り装置、巻き取り条件算出方法、巻き取り方法
AT524284B1 (de) * 2020-10-15 2022-06-15 B & R Ind Automation Gmbh Parametrierung eines Zugkraftreglers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2633999A1 (de) * 1976-07-29 1978-02-09 Basf Ag Verfahren und vorrichtung zur regelung des zuges einer materialbahn bei einer wickeleinrichtung
US4743811A (en) * 1987-09-21 1988-05-10 Eastman Kodak Company Adaptive control system for reel to reel web transport apparatus
JPH01167158A (ja) * 1987-12-24 1989-06-30 Yaskawa Electric Mfg Co Ltd 径演算における予測制御方法
EP0745890A1 (de) * 1995-05-30 1996-12-04 Eastman Kodak Company Bewegungssteuerungssystem für Filmband

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2439212C3 (de) * 1974-08-16 1980-10-16 Feldmuehle Ag, 4000 Duesseldorf Verfahren und Vorrichtung zum Steuern der Wickelgüte beim Wickeln von bahnförmigem Material
DE2741083C2 (de) * 1977-09-13 1983-03-03 Maschinenfabrik Stahlkontor Weser Lenze Kg, 3251 Aerzen Friktionswickelwellenantrieb
DE2932396A1 (de) * 1979-08-09 1981-02-26 Siemens Ag Wickelhaertenregelung bei doppel- tragwalzenrollern
CA1217277A (en) * 1984-12-14 1987-01-27 James C. Murdoch Apparatus for determining finished roll density in a mill
WO1992019522A1 (en) * 1991-05-03 1992-11-12 Eastman Kodak Company Control of web winding
DE4116081C2 (de) * 1991-05-16 1995-02-23 Brueckner Maschbau Regelverfahren zur Erzielung einer entsprechend vorwählbaren Wickeldichte, insbesondere relativen Wickeldichte sowie eine zugehörige Vorrichtung
DE19531692C2 (de) * 1995-08-29 2000-01-13 Clemens Schaeffner Verfahren zur Beobachtung nicht meßbarer Größen nichtlinearer dynamischer Systeme
DE19604652A1 (de) * 1996-02-09 1997-08-14 Reifenhaeuser Masch Verfahren zum Aufwickeln einer Kunststoffolienbahn zu einem Coil auf einer Wickelhülse
FI108635B (fi) * 1997-06-30 2002-02-28 Metso Paper Inc Menetelmä rullanmuodostuksen laadun määrittämiseksi ja rullanmuodostuksen ohjaamiseksi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2633999A1 (de) * 1976-07-29 1978-02-09 Basf Ag Verfahren und vorrichtung zur regelung des zuges einer materialbahn bei einer wickeleinrichtung
US4743811A (en) * 1987-09-21 1988-05-10 Eastman Kodak Company Adaptive control system for reel to reel web transport apparatus
JPH01167158A (ja) * 1987-12-24 1989-06-30 Yaskawa Electric Mfg Co Ltd 径演算における予測制御方法
EP0745890A1 (de) * 1995-05-30 1996-12-04 Eastman Kodak Company Bewegungssteuerungssystem für Filmband

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 434 (M - 875) 28 September 1989 (1989-09-28) *

Also Published As

Publication number Publication date
EP1037842B1 (de) 2002-06-05
CA2313461A1 (en) 1999-06-17
DE59804370D1 (de) 2002-07-11
ES2178304T3 (es) 2002-12-16
BR9813509A (pt) 2000-10-03
PT1037842E (pt) 2002-11-29
NO20002995D0 (no) 2000-06-09
ATE218493T1 (de) 2002-06-15
US6363297B1 (en) 2002-03-26
DE19754878A1 (de) 1999-06-24
NO20002995L (no) 2000-06-09
NO317470B1 (no) 2004-11-01
DK1037842T3 (da) 2002-09-30
EP1037842A1 (de) 2000-09-27

Similar Documents

Publication Publication Date Title
EP1037842B1 (de) Verfahren und anordnung zur vorhersage und regelung einer papierwickelkenngrösse bei einer papierwickelvorrichtung
EP0593946B1 (de) Vorrichtung zum Aufwickeln einer Bahn
EP1409388B1 (de) Verfahren zur steuerung eines rollenspeichers und rollenspeicher zum speichern blättförmiger gegenstände
DE69912100T2 (de) Verfahren und vorrichtung zum wickeln einer bahn
EP3569537A1 (de) Verfahren zum wickeln eines wickelgutes, computerprogrammprodukt, steuereinrichtung und wickelmaschine
EP1070280B1 (de) Verfahren und anordnung zur neuronalen modellierung einer papierwickelvorrichtung
DE19614300B4 (de) Verfahren zur selbstregulierenden Kompensation der Auswirkung des ungleichmäßigen Rundlaufs einer Rolle
DE69915602T2 (de) Verfahren und vorrichtung zur wickelkontrolle
EP1484443A1 (de) Vorrichtung und Verfahren zum Regeln der Spannkraft einer laufenden Bahn
EP2621645B1 (de) Verfahren zum ansteuern einer tandemwalzstrasse, steuer- und/oder regeleinrichtung für eine tandemwalzstrasse, maschinenlesbarer programmcode, speichermedium und tandemwalzstrasse
EP0919498B1 (de) Verfahren zur Regelung einer Bahnspannung
DE2439212A1 (de) Verfahren und vorrichtung zum steuern der wickelguete beim wickeln von bahnfoermigem material
DE19814407B4 (de) Verfahren und Anordnung zur neuronalen Modellierung einer Papierwickelvorrichtung
EP3988485B1 (de) Parametrierung eines zugkraftreglers
DE10392814T5 (de) Verfahren zum Steuern des Aufbaus einer Rolle aus einer faserartigen Bahn, beispielsweise eine Papierrolle oder eine Kartonrolle
DE2541945C2 (de) Verfahren und Vorrichtung zum Steuern eines Berührungsdrucks zwischen einer Andrückwalze und einer Aufwickelwalze für Bahnmaterial
DE19511801A1 (de) Verfahren und Vorrichtung zur Dickenvorsteuerung beim Folienwalzen
WO1995019591A1 (de) Verfahren und vorrichtung zur führung eines prozesses
EP2436625A2 (de) Verfahren zur Herstellung und Weiterverarbeitung von Papier
DE10393725T5 (de) Verfahren zum Steuern eines Aufwicklers inklusive dem Bestimmen von Laufparametern auf der Grundlage von Modellen unter Berücksichtigung eines Abwicklers
AT511029A2 (de) Verfahren zur regelung der bahnspannung in einem einen tänzer aufweisenden bahnspannungsabschnitt
EP1577241B1 (de) Markierungseinheit für eine Materialbahn
EP2152965B1 (de) Verfahren zur steuerung und/oder regelung der antriebe einer walzenanordnung
EP2085342A2 (de) Verfahren zum Aufwickeln einer Materialbahn zu einer Materialbahnrolle und Wickelvorrichtung, insbesondere Tragwalzenwickelvorrichtung
DE102021119111A1 (de) Verfahren und Vorrichtung zum Aufwickeln einer Materialbahn in einer Rollenschneidmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998965599

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581002

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2313461

Country of ref document: CA

Ref country code: CA

Ref document number: 2313461

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998965599

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998965599

Country of ref document: EP