WO1999024154A1 - Method of operating spiral type membrane module - Google Patents

Method of operating spiral type membrane module Download PDF

Info

Publication number
WO1999024154A1
WO1999024154A1 PCT/JP1998/005001 JP9805001W WO9924154A1 WO 1999024154 A1 WO1999024154 A1 WO 1999024154A1 JP 9805001 W JP9805001 W JP 9805001W WO 9924154 A1 WO9924154 A1 WO 9924154A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure
membrane module
membrane
spiral
Prior art date
Application number
PCT/JP1998/005001
Other languages
English (en)
French (fr)
Inventor
Keiji Uemura
Hirotake Shigemi
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Priority to JP52595099A priority Critical patent/JP4106714B2/ja
Priority to EP98951713A priority patent/EP0972558B1/en
Priority to DE69815327T priority patent/DE69815327T2/de
Priority to US09/341,047 priority patent/US6267890B1/en
Publication of WO1999024154A1 publication Critical patent/WO1999024154A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules

Definitions

  • the present invention relates to a method for operating a spiral membrane module used in a membrane separation device such as a microfiltration device, an ultrafiltration device, and a reverse osmosis membrane separation device.
  • a membrane module used in a membrane separation device there is a spiral membrane module in which a separation membrane is wound around a water collecting pipe.
  • FIG. 5 is a partially exploded perspective view showing the structure of a conventional spiral type membrane module.
  • a plurality of bag-shaped separation membranes 2 are wound around the outer periphery of the water collection pipe 1 via a mesh spacer 3.
  • the collecting pipe 1 has a slit-like opening communicating with the inside and outside of the pipe.
  • the separation membrane 2 has a bag-like shape, and the central part encloses the water collecting pipe 1.
  • a flow path member 4 made of a mesh sensor or the like is inserted into the bag-like separation membrane 2, and the inside of the bag-like separation membrane (bag-like membrane) 2 is a permeate flow path.
  • a top ring 6 and an end ring 7 are provided at both ends of a wound body 5 of the bag-shaped membrane 2, and a brine seal 8 is provided around the outer periphery thereof.
  • the water supply (raw water) flows from the front end face of the wound body 5 into the water supply flow path (raw water flow path) between the bag-shaped membranes 2 and flows as it is in the longitudinal direction of the wound body 5, It flows out from the rear end face as concentrated water. While flowing through this water supply channel Water permeates through the bag-like membrane 2 and enters the inside thereof, flows into the water collecting pipe 1, and is taken out of the module from the rear end side of the water collecting pipe 1.
  • the conventional spiral-type membrane module has the following problems to be solved.
  • An object of the present invention is to solve the above problems and to provide a spiral-type membrane module operating method capable of obtaining a high permeated water amount.
  • the present invention relates to a method for operating a spiral-wound membrane module comprising a spirally wound separation membrane, which comprises supplying water between the separation membranes to reduce permeated water and concentrated water. It provides an improvement in the operating method of separation.
  • the difference between the supply water pressure flowing into the water supply flow path of the spiral membrane module and the concentrated water pressure flowing out of the spiral membrane module when water flows through the separation membrane is 0.3 kg. / cm 2 or less preferably 0. 1 5 kg / cm 2 or less and particularly preferably 0. 1 0 kg / cm 2 or less and it
  • the module is operated as follows.
  • the membrane module is a spiral-type membrane module in which a permeated water flow path material is disposed inside the bag-shaped membrane, and a water supply flow path material is disposed between the bag-shaped membranes.
  • the membrane is substantially rectangular with first, second, third and fourth sides, the first, second and third sides are sealed, and the fourth side is partially An open portion is formed and the remaining portion is a closed portion.
  • a first side perpendicular to the fourth side is applied to a shaft to wind a bag-like membrane to form a roll, and the fourth side is formed. Facing the rear end face of the wound body, facing the second side facing the fourth side to the front end face of the wound body, and supplying water between the bag-shaped membranes.
  • the third side portion is entirely sealed, and in the fourth side portion, a portion overlapping with the open portion of the bag-shaped film is a closed portion, and the closed portion of the bag-shaped film is Overlap with That it has an open section is preferable.
  • the feedwater flows into the feedwater channel from the front end face of the wound body.
  • the feedwater flows through the feedwater flow path in a direction substantially parallel to the axis of the wound body, and then flows out as concentrated water from the feedwater flow path opening at the rear end face of the wound body.
  • the water that has passed through the bag-shaped membrane flows in the bag-shaped membrane in a direction substantially parallel to the axis of the wound body, and flows out of the bag-shaped membrane opening at the rear end face of the wound body.
  • the water collecting pipe used in the conventional spiral membrane module becomes unnecessary.
  • there is no flow stake when flowing into the water collecting pipe from the inside of the bladder membrane and the flow resistance of the permeated water is extremely reduced.
  • the water collecting pipe is eliminated, the length of the bag-shaped membrane in the winding direction can be increased accordingly, and the membrane area can be expanded. Even if the length of the bag-shaped membrane in the winding direction is increased, the flow resistance of permeated water does not increase, and the amount of permeated water can be increased.
  • the water supply flow path is opened only at a part of the rear end face of the wound body, so that the flow rate of the water supply (concentrated water) downstream of the water supply flow path is higher than before. It is possible to prevent the adhesion of dirt in the downstream area of the water supply channel.
  • the open portion of the bag-shaped membrane is disposed on the outer peripheral side or inner peripheral side of the rear end face of the wound body, and the water supply channel is disposed on the inner peripheral side or outer peripheral side of the rear end face of the wound body.
  • an annular member for separating the permeated water flowing out of the open portion of the bag-shaped membrane from the concentrated water flowing out of the open portion of the water supply channel may be connected to the rear end surface of the wound body. The annular member separates the outflow side of the feedwater and the outflow side of the concentrated water.
  • Fig. 1a is a perspective view of a bag-like membrane of a membrane module used in the method according to the embodiment
  • Fig. 1b is a cross-sectional view taken along line B-B of Fig. 1a
  • Fig. 1c is C- of Fig. 1a. Section ⁇ along line C.
  • FIG. 2 is a cross-sectional view showing a method of winding a bag-like membrane of a spiral membrane module used in the method according to the embodiment.
  • FIG. 3 is a perspective view showing an engagement relationship between the wound body and the socket.
  • FIG. 4 is a side view of a spiral-wound membrane module used in the method according to the embodiment.
  • FIG. 5 is a partially exploded perspective view showing the structure of a conventional spiral type membrane module.
  • FIGS. 6A and 6B are operating characteristic diagrams of the spiral-wound membrane module.
  • FIG. 7 is a dimensional diagram of the bag-like membrane.
  • FIG. 8 is an operation characteristic diagram of the spiral-wound membrane module in the example and the comparative example. Preferred embodiments of the invention
  • the water supply to the spiral membrane module was made almost equal to the water supply pressure and the concentrated water pressure, and the water supply was continued without changing the water supply pressure.
  • the amount of permeated water (permeated water flux) was measured over time. However, the following items were recognized.
  • Figure 6a shows the water flow time as the horizontal axis, the permeate flow rate as the vertical axis, and the feedwater pressure as a parameter.
  • Figure 6b shows the following.
  • This “medium” is the value of the water supply pressure at which the maximum value is obtained or a value in the vicinity thereof when the graph becomes a convex curve as in the case of the lapse of time T2 in FIG. 6b.
  • the feedwater pressure is set at this “medium” pressure, so that the permeated water flux is set to a high value for a long time.
  • This time T2 can be set arbitrarily as long as the relationship between the amount of permeated water and the feedwater pressure reaches a curve that becomes upwardly convex as shown in Fig. 6b. For example, after 1 minute to 2 hours It is particularly preferable to set the time after 0.1 to 1 hour.
  • the level of the “medium” feed water pressure depends on the quality of water to be treated, the temperature, the material of the membrane, etc. Therefore, the water to be treated is actually passed through the membrane module and the feed water pressure ( That is, the relationship between the membrane permeation pressure) and the amount of permeated water can be determined, and the graph can be obtained by drawing a graph with the water supply pressure on the horizontal axis and the permeated water amount on the vertical axis as shown in Fig. 6b. Note that after T 2 hours water supply in the actual operation, short (usually 0. 5 about 1 minute) and the backwash discontinue the water supply, cycle is repeated to feed water then again T 2 hours. Therefore, the curve at ⁇ 2 hours in Fig. 6b shows the lowest permeated water amount in the operation cycle.
  • a spiral-wound membrane module having a spirally wound separation membrane is housed in a cylindrical pressure-resistant container coaxially with the pressure-resistant container. Water supply is introduced into the pressure-resistant container from one end of the pressure-resistant container, and flows into the water supply flow path of the membrane module from the front end surface of the membrane module.
  • the concentrated water flows out from at least one of the outer peripheral surface and the rear end surface of the membrane module, and flows out of the pressure-resistant container from the concentrated water port of the pressure-resistant container.
  • the permeated water flows out of the rear end face of the membrane module and flows out of the pressure-resistant container through the permeated water port of the pressure-resistant container.
  • a concentrated water valve is provided in the concentrated water port of the pressure vessel or the concentrated water pipe connected to the concentrated water port, and the opening degree of the concentrated water valve is adjusted so that the membrane module can be installed in the pressure vessel.
  • the pressure of the condensate flowing out of the tank can be adjusted.
  • the permeated water port or the permeated water pipe connected to the permeated water port may not be provided with a permeated water valve. Even if a permeated water valve is provided, the permeated water flowing out of the membrane module in the pressure-resistant vessel is almost at the same pressure as the atmosphere by operating the permeated water valve fully or almost fully open during operation. The back pressure is hardly applied to the permeated water in the permeated water channel in the membrane module.
  • the pressure difference between the feedwater pressure flowing into the membrane module and the pressure of the concentrated water flowing out of the membrane module, that is, the concentration differential pressure is extremely reduced, so that the feedwater pressure in the membrane module is reduced.
  • transmembrane pressure difference is set to be above PF max or a pressure close thereto in the whole by connexion film surface thereto.
  • the concentration differential pressure is set to 0.3 kg / cm 2 or less, preferably 0.15 kgZ cm 2 or less, and particularly 0.10 kg cm 2 or less.
  • substantially PF max preferably water pressure was 70-1 30% PFmax, by a child and concentrated differential pressure 0. 3 kg / cm 2 or less, to maintain over a long period of time a high permeate flow flux The reasons for this may have been very clear to those skilled in the art.
  • FIG. 1a is a perspective view of one bag-like membrane used in the spiral membrane module and a shaft around which the bag-like membrane is wound.
  • 1b and 1c are cross-sectional views taken along lines 8-8 and C-C of FIG. 1 &, respectively.
  • Fig. 2 is a cross-sectional view showing a method of winding a bag-like membrane around a shaft
  • Fig. 3 is a perspective view showing the engagement relationship between a wound body and a socket
  • Fig. 4 is a side view of a spiral-type membrane module. It is.
  • the bag-like membrane 10 is square or rectangular and has a first side 11, a second side 12, a third side 13, and a fourth side 14. are doing.
  • This bag-like membrane 10 is formed by folding one long separation membrane film into two at the second side 12, and is folded at the first side 11 and the third side 13.
  • the separated separation membrane films are adhered to each other with an adhesive or the like, and a part of the fourth side portion 14 is a bag-shaped one that is opened without being adhered.
  • the separation membrane films of the bag-like membrane 10 are not bonded to each other from the middle of the fourth side portion 14 to the third side portion 13, and the open portion 3 for the permeated water outflow is not provided. It is 0. Further, from the middle of the fourth side portion 14 to the first side portion 11, the separation membrane films of the bag-like membrane 10 are adhered to each other, and a closing portion for preventing outflow of permeated water. 3 and 1
  • a channel material (for example, made of a mesh sensor) 15 is inserted and arranged in the bag-shaped membrane 10.
  • the bag-like membrane 10 is not limited to a single long film folded in two at the second side portion 12, but may be formed by laminating two separation membrane films to form the first side portion. The first side, the second side 12, the third side 13 and a part of the fourth side 14 may be adhered.
  • An adhesive 16 is attached to one surface of the bag-like film 10 and adhesives 17 and 18 are attached to the other surface, and the bag-like film 10 is Wrapped around.
  • the adhesive 11 is applied along the first side 16, and the adhesive 17 is applied along the third side 13.
  • the adhesive 18 is attached along the open portion 30 for permeated water outflow from the intermediate point in the longitudinal direction of the fourth side portion 14 to the third side portion 13.
  • Fins 19 extend from the boundary between the open portion 30 for permeated water outflow and the closed portion 31 for permeated water outflow out of the fourth side 14 toward the rear of the wound body. ing.
  • the fin 19 is preferably made of, for example, a synthetic resin film or sheet, and is preferably bonded to the bag-like film 10 by adhesion or the like.
  • each bag-like film 10 By winding each bag-like film 10 around the shaft 20 via the mesh spacer 29 as shown in FIG. 2, a wound body 24 is formed as shown in FIG.
  • the fin 19 extends from the rear end face of the wound body 24.
  • the fins 19 are located equiradially from the axis of the wound body 24, When the pins 19 overlap, the fins 19 form a ring-shaped protrusion.
  • the rear end of the cylindrical socket 25 is inserted into the ring-shaped protrusion, and the socket 25 and the fin 19 are joined with an adhesive or the like.
  • the socket 25 may be externally fitted to the fin 19.
  • a cutting groove may be formed on the rear end surface of the wound body 24 along the fins 19 with a lathe, and the end of the socket 25 may be embedded in the groove.
  • a top ring 26 and an end ring 27 are respectively formed on the leading edge and the trailing edge of the wound body 24 with a synthetic resin mold or the like, and a brine seal 28 is provided around the outer periphery of the top ring 26. Install around.
  • the water supply flows from the front end face of the wound body 24 into the water supply flow path between the bag-like membranes 10.
  • This water supply flows through the water supply channel in a direction substantially parallel to the axis of the wound body 24, and is taken out from the inner end surface of the socket 25 at the rear end of the wound body 24. Then, while the water is flowing through the water supply flow path, the water permeates into the bag-like membrane 10, and the permeated water flows out of the rear end face of the wound body 24 from the outer peripheral side of the socket 25. .
  • the water supply pressure that is, the pressure of the water supplied to the membrane module, is set to the above-mentioned PFmax or a value close thereto.
  • the water supply pressure should be 70 to Pf? Max .
  • the pressure difference ⁇ between the concentration difference pressure, that is, the inflow pressure of the feedwater, and the pressure of the concentration water flowing out of the membrane module is 0.3 kg / cm 2 or less, preferably 0.15 kcm 2 or less, particularly preferably 0 kg / cm 2 or less. . 10 k gZ cm2. Further, it is preferable that the back pressure applied to the permeated water flowing out of the membrane module be as small as possible.
  • the feedwater pressure is selected and the concentration differential pressure is reduced, and as shown in Figs. 6a and 6b, a high amount of permeated water can be maintained even after a long time has elapsed since the start of operation.
  • a small and efficient membrane separation process can be performed and a high permeate water volume can be obtained.
  • the length a of the bag-like membrane 10 shown in FIG. 7 in the direction of the winding axis is important in order to reduce the concentration difference ⁇ . That is, by setting the value of a to about 200 to 50 mm, The pressure ⁇ decreases.
  • the length b of the permeated water outflow portion and the length c of the concentrated water outflow portion of the bag-like membrane 10 are preferably in the following ranges.
  • the (b + c) / & ratio is preferably from 1.0 to 2.0, particularly preferably from 1.0 to 1.5.
  • the permeated water flows in the bag-like membrane 10 in a direction parallel to the axis of the wound body 24 and is taken out from the rear end face.
  • the existing drainage pipe is not required. For this reason, there is no flow resistance when flowing from the bag-like membrane into the water collection pipe, and the flow resistance of permeated water is significantly reduced. As a result, the back pressure is hardly applied to the permeated water, and the permeated water pressure in the membrane module becomes almost equal to the atmospheric pressure in the entire area of the permeated water flow path.
  • the length of the bag-like membrane 10 in the winding direction can be increased by that amount, and the membrane area can be increased. Even if the length of the bag-like membrane in the winding direction is increased, the permeated water flow resistance does not increase, and the amount of permeated water can be increased.
  • the outlet portion of the water supply channel is provided only inside the socket 25, and the outlet (the most downstream portion) of the water supply channel is narrowed.
  • the pressure drop of the feedwater (concentrated water) can also be reduced on the downstream side.
  • the area inside the socket 25 and the area outside (the length of the adhesive 18 in the side 14 direction) are preferably determined according to the water recovery rate of the spiral-wound membrane module.
  • socket 25 is used with fins 19. Connected to the wound body 24, and the connection strength between the socket 25 and the wound body 24 is high.
  • the socket 25 separates the supply water inflow side from the concentrated water outflow side in a watertight manner.
  • the permeated water outflow portion is arranged on the outer peripheral side of the socket 25, and the concentrated water outflow portion is arranged inside the socket 25.
  • the permeated water outflow portion is arranged inside the socket 25. It may be configured such that the water outflow portion is used, and the outer peripheral side of the socket 25 is used as the concentrated water outflow portion.
  • a is 300 mm
  • b is 300 mm
  • c is 100 mm
  • bZ c is 3.
  • This membrane module was housed in a cylindrical pressure vessel. Water is introduced into the pressure vessel from the distal end surface of the pressure vessel via a water supply valve. Concentrated water is taken out from the center of the rear end face of the pressure vessel via a concentrated water take-off valve. The permeated water is taken out from the vicinity of the outer periphery of the rear end face of the pressure vessel through an extraction pipe. No valve is provided on the permeate outlet pipe.
  • Example 1 Operation of Example 1 Then, by adjusting the opening of the water supply valve, the water supply pressure and 4. 5 k gZ cm 2, 0. 1 0 concentrated differential pressure by Filter small concentrated water concentrated water intake water outlet opening kg / The cycle was set to cm2, and the backwashing cycle of 7.5 minutes of water flow operation and 30 seconds of backwashing (one cycle consists of 8 minutes) was continued for 14 months.
  • the water supply was set at 40m3 / m2 / day.
  • the feedwater pressure was set to 0.7 kg / cm2 by reducing the opening of the feedwater valve, and the concentration differential pressure was set to 0.5 kg / cm2 by adjusting the opening of the concentrate discharge valve.
  • the membrane module was operated under the same conditions as in Example 1, the amount of permeated water for 30 days from the initial operation was 2 m 3 / m 2 ay. Although no significant clogging occurred during the last 30 days, the amount of permeated water during this operation period was extremely small as compared with Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

明細 :
スパイラル型膜モジュールの運転方法 技術分野
本発明は、 精密濾過装置、 限外濾過装置、 逆浸透膜分離装置などの 膜分離装置に用いられるスパイラル型膜モジュールの運転方法に関す る。 背景技術
膜分離装置に用いられる膜モジュールとして、 集水管の外周に分離 膜を巻回したスパイラル型膜モジュールがある。
図 5は従来のスパイラル型膜モジュールの構造を示す一部分解斜視 図である。
集水管 1の外周に複数の袋状の分離膜 2がメ ッシュスぺ一サ 3を介 して巻回されている。
集水管 1には管内外を連通するスリ ッ ト状開口が穿設されている。 分離膜 2は袋状のものであり、 その中央部が集水管 1をく るんでいる。 この袋状分離膜 2の内部にはメ ッシュスぺ一サ等よりなる流路材 4が 挿入されており、 この袋状分離膜 (袋状膜) 2の内部が透過水流路と なっている。
袋状膜 2の巻回体 5の両端にト ップリ ング 6とエン ドリ ング 7とが 設けられ、 その外周にブラインシール 8が周設されている。
給水 (原水) は、 巻回体 5の前端面から袋状膜 2同士の間の給水流 路 (原水流路) に流入し、 そのまま巻回体 5の長手方向に流れ、 巻回 体 5の後端面から濃縮水として流出する。 この給水流路を流れる間に 水が袋状膜 2を透過してその内部に入り、 集水管 1内に流入し、 該集 水管 1 の後端側からモジユール外に取り出される。
このようなスパイラル型膜モジュールは、 膜面が目詰まりし易く、 長期間にわたって透過水流束を高く維持するように運転しにくい。
また、 上記従来のスパイラル型膜モジュールには、 次のような解決 すべき課題があった。
1 ) 集水管 1内の透過水流量を多くするためには該集水管 1を大径化 する必要があるが、 そのようにするとスパイラル型膜モジユールの径 も大きくなってしまう。
2 ) 袋伏膜 2内に透過してきた透過水は、 該袋状膜 2内をスパイラル 状に回りながら集水管 1 まで流れるため、 袋状膜 2内の流通抵抗が大 きい。 しかも、 袋状膜 2内から集水管 1 に流れ込む集水管スリ ッ ト状 開口付近での流通抵抗も大きい。
3 ) 給水流路を流れる給水流量は、 下流側になるほど減少する。 (給 水が濃縮される分だけ給水流量が減る。 ) このため、 給水流路下流域 では給水流速が小さくなり、 汚れが付着し易くなる。 発明の開示
本発明は、 かかる問題点を解決し、 高透過水量を得ることができる スパイラル型膜モジュールの運転方法を提供することを目的とする。 本発明は、 スパイラル状に巻回された分離膜の巻回体を備えてなる スパイラル型膜モジュールの運転方法であって、 分離膜同士の間の給 水を供給して透過水と濃縮水とに分離する運転方法の改良を提供する。 本発明では、 該分離膜に水が流れている時の該スパイラル型膜モジ ユールの給水流路に流入する給水圧力とスパイラル型膜モジュールか ら流出する濃縮水圧力との差が 0 . 3 k g / c m 2以下好ましくは 0 . 1 5 k g / c m 2以下特に好ましくは 0 . 1 0 k g / c m 2以下とな るように該モジユールが運転される。
かかるスパイラル型膜モジュールの運転方法にあっては、 濃縮差圧 (即ち、 上記の給水圧力と濃縮水圧力との差) が適切であるため、 長 期間にわたって比較的高い透過水量を維持することができ、 総運転時 間に均してみた場合に効率の良い膜分離処理が行われることになる。 本発明では、 膜モジュールは、 袋状膜の内部に透過水流路材が配置 され、 袋状膜同士の間には給水流路材が配置されているスパイラル型 膜モジュールであって、 該袋状膜は第 1、 第 2、 第 3及び第 4の辺部 を有した略方形であり、 該第 1、 第 2及び第 3の辺部は封じられ、 該 第 4の辺部は一部が開放部となり残部が閉鎖部となっており、 前記第 4の辺部と直交する第 1の辺部をシャフ トに当てて袋状膜を巻回して 巻回体とし、 前記第 4の辺部を該巻回体の後端面に臨ませ、 該第 4の 辺部に対向する第 2の辺部を該巻回体の前端面に臨ませ、 該袋状膜同 士の間の給水流路は、 該第 3の辺部の全体が封じられると共に、 第 4 の辺部にあっては前記袋状膜の開放部と重なる箇所が閉鎖部となって おり、 且つ前記袋状膜の閉鎖部と重なる箇所が開放部となっているこ とが好ましい。
かかるスパイラル型膜モジュールにおいては、 巻回体の前端面から 給水が給水流路に流入する。 この給水は、 給水流路を巻回体軸心線と 略平行方向に流れ、 次いで巻回体後端面の給水流路開放部から濃縮水 として流出する。
袋状膜を透過した水は、 袋状膜内を巻回体軸心線と略平行方向に流 れ、 巻回体の後端面の袋状膜開放部から流出する。
このように、 透過水が袋状膜内を巻回体の軸心線と平行方向に流れ るため、 従来のスパイラル型膜モジュールに用いられていた集水管が 不要となる。 そして、 袋伏膜内から該集水管内に流れ込む際の流通抵 杭が無くなり、 透過水流通抵抗がきわめて小さくなる。 なお、 集水管を無く しているため、 その分だけ袋状膜の巻回方向の 長さを大きくとることができ、 膜面積を拡張できる。 そして、 このよ うに袋状膜の巻回方向長さを大きく しても透過水の流通抵抗は増大せ ず、 透過水量を多くすることができる。
このスパイラル型膜モジユールでは、 巻回体の後端面の一部におい てのみ給水流路を開放させるようにしているため、 給水流路の下流側 での給水 (濃縮水) 流速を従来よりも高めることができ、 給水流路下 流域における汚れの付着を防止できる。
本発明では、 袋状膜の開放部は巻回体の後端面の外周側又は内周側 に配置され、 給水流路は巻回体の後端面の内周側又は外周側に配置さ れており、 袋状膜の開放部から流出する透過水と給水流路の開放部か ら流出する濃縮水とを離隔させるための環状部材が該巻回体の後端面 に接続されていても良い。 この環状部材によって給水の流出側と濃縮 水の流出側とが区画される。 図面の簡単な説明
図 1 aは実施の形態に係る方法に用いられる膜モジユールの袋状膜 の斜視図、 図 1 bは図 1 aの B— B線に沿う断面図、 図 1 cは図 1 a の C— C線に沿う断面园である。
図 2は実施の形態に係る方法に用いられるスパイラル型膜モジュ一 ルの袋状膜の巻き付け方法を示す断面図である。
図 3は巻回体とソケッ トとの係合関係を示す斜視図である。
図 4は実施の形態に係る方法に用いられるスパイラル型膜モジュ一 ルの側面図である。
図 5は従来のスパイラル型膜モジュールの構造を示す一部分解斜視 図である。
図 6 a及び図 6 bはスパイラル型膜モジュールの動作特性図である。 図 7は袋状膜の寸法図である。
図 8は実施例及び比較例におけるスパイラル型膜モジュールの動作 特性図である。 発明の好ましい形態
スパイラル型膜モジユ ールに給水圧力と濃縮水圧力とをほぼ等しく するようにして且つ給水圧力を変えないで給水を継続して行ない、 透 過水量 (透過水流束) を経時的に計測したところ、 次の事項が認めら れた。
i) 図 6 aにも示すように、 給水圧力を高く して給水を継続すると、 初期透過水量は多いが、 分離膜が目詰りし易く (とくに、 給水流入 側では膜透過差圧が大きぐ、 透過流束が過大になるために膜面が急 速に目詰りする。 ) 透過水量は短時間のうちに急激に減少する。 なお、 透過水に背圧が殆どかかっていない状態にあっては、 給水圧 は、 分離膜単位面積当りの膜透過差圧 (給水圧力と透過水圧力の 差) とほぼ等しい。
ii) 給水圧力を中程度として給水を継続すると、 初期透過水量は中程 度であると共に、 透過水量は経時的に減少するが、 この減少の程度 はゆつく りであり高差圧の場合ほど急激ではない。
iii) 給水圧力を低く して給水を継続したときには、 透過水量の経時的 減少は小さいが、 最初から透過水量がかなり少ない。
図 6 aは通水時間を横軸とし透過水量を縦軸とし、 給水圧力をパラ メータとしたものであるが、 給水圧力を横軸とし、 透過水量を縦軸と し、 通水時間をパラメータとすると図 6 bのようになり、 次の事項が 認められる。
iv) 図 6 bからも明らかな通り、 通水を開始した直後は、 給水圧力と 透過水量との間にはほぼ直線的な比例関係があり、 給水圧力を増大 させると透過水量は直線的に増大する。 ところが、 通水時間が経過 するにつれて透過水量は減少するようになり、 この減少の程度は給 水圧力が高いほど顕著である。
v) 通水時間がある時間 Τ に達すると、 給水圧力が中圧から高圧に かけての領域では透過水量は殆ど同じになる。
vi) 通水時間がそれよりも長い時間 T 2に達すると、 給水圧力が中圧 から高圧にかけての領域では給水圧力が高いほうが透過水量が少な い。
vii) 給水圧力が低から中の領域では、 通水時間にかかわりなく、 給 水圧力が高い方が透過水量が多い。
viii) 従って、 給水圧力を 「中程度」 としたまま通水を継続すると、 比較的高い透過水量が長い時間継続して得られる。
この 「中程度」 とは、 図 6 bにおいて T 2時間経過後のようにグラ フが上に凸のカーブとなった場合において、 極大値をとらせる給水圧 力もしくはその近傍の値である。 本発明では、 給水圧力をこの 「中程 度」 の圧力とすることにより、 長時間にわたって透過水流束を高い値 とする。 好ましくは、 給水圧力は、 上記の極大値をとらせる給水圧力 pFma xの 70〜 1 30%とくに Ppma xの8 01 20%とり わけ pFm a x 90〜 l 10%とする。
この時間 T 2は、 図 6 bのように透過水量と給水圧力との関係が上 に凸となるカーブになるように達した時間内であれば任意に設定でき、 例えば 1分〜 2時間後とくに 0. 1〜 1時間後とされるのが好ましい。
この 「中程度」 の給水圧力がどの程度の圧力であるかは、 被処理水 の水質、 温度、 膜の材質等によって異なるので、 被処理水を実際に膜 モジュールに通水して給水圧力 (即ち膜透過差圧) と透過水量との関 係を求め、 図 6 bのように給水圧力を横軸とし透過水量を縦軸とした グラフを描く ことにより求めることができる。 なお、 実際の運転では T 2時間給水後、 短時間 (通常は 0 . 5〜 1 分程度) 給水を中止して逆洗され、 その後再度 Τ 2時間給水するサイ クルが繰り返される。 従って、 図 6 bの Τ 2時間におけるカーブは、 その運転サイクルにおける最低の透過水量を示すことになる。
スパイラル状に巻回された分離膜の巻回体を有するスパイラル型膜 モジュールは円筒状の耐圧容器内に該耐圧容器と同軸的に収容される。 給水はこの耐圧容器の一端側から耐圧容器内に導入され、 膜モジュ一 ルの先端面から膜モジュールの給水流路に流入する。
濃縮水は膜モジュールの外周面及び後端面の少なく とも一方から流 出し、 耐圧容器の濃縮水ポー トから耐圧容器外に流出する。 本発明の 好ましい形態にあっては、 透過水は膜モジュールの後端面から流出し、 耐圧容器の透過水ポー トから耐圧容器外に流出する。
耐圧容器の濃縮水ポー ト或いは該濃縮水ポー トに接続された濃縮水 配管に濃縮水用弁を設けておき、 この濃縮水用弁の開度を調節するこ とにより耐圧容器内において膜モジュールから流出する濃縮水圧力を 調節することができる。
透過水ポー ト或いは該透過水ポー トに接続された透過水配管には透 過水用の弁を設けないことがある。 透過水用の弁を設けたとしても、 運転中はこの透過水用の弁は全開又はほぼ全開とすることにより、 耐 圧容器内において膜モジュールから流出する透過水は殆ど大気と同じ 圧力となり、 膜モジュール内の透過水流路内の透過水には背圧は殆ど かからない。
本発明においては、 分離膜の膜面のすべての箇所において膜透過差 圧が前記の P F m a x (図 6 b参照) 或いはそれに近い値とすること により、 分離膜の膜面のすべての領域において、 長時間にわたって高 い透過水流束が維持される。
前記の通り、 透過水に背圧が殆どかかっていないときには、 膜モジ ユール内の透過水の圧力はほぼ大気圧に等しく、 膜透過差圧は膜面に 接している給水の圧力とほぼ等しい。 膜面の全領域にわたって膜透過 差圧がほぼ前記の Ppm a xとなるようにするには、 従って膜モジュ ール内の給水流路を流れる給水に圧力低下を殆ど発生させなければよ い。
本発明では、 膜モジュールに流入しょうとしている給水圧力と、 膜 モジュールから流出した濃縮水の圧力との差圧即ち濃縮差圧をきわめ て小さくすることにより、 膜モジュール内の給水圧力を膜面の全域に わたってほぼ等しくし、 これによつて膜面の全域において膜透過差圧 が前記の P Fm a x或いはそれに近い圧力となるようにしている。
本発明では、 この濃縮差圧を 0. 3 k g/ cm 2以下、 好ましくは、 0. 1 5 k gZ cm2以下、 とりわけ 0. 10 k g c m 2以下とす る。
以上の説明から、 給水圧力をほぼ PFm a x好ましくは PFmax の 70〜 1 30%とし、 濃縮差圧を 0. 3 k g/ c m 2以下とするこ とにより、 高透過水流束を長期間にわたって維持することができる理 由が当業者にとってきわめて明確になったであろう。
濃縮差圧を 0. 3 k g/ cm2以下とするには、 前記濃縮水用弁の 開度を十分に小さくすると共に、 膜モジュールとして給水の圧力損失 が小さい夕ィプのものを選択するのが好ましい。
そこで、 次に、 本発明で採用するのに好適な膜モジュールについて、 図 1 ~4を参照して説明する。 図 1 aはこのスパイラル型膜モジュ一 ルに用いられる一枚の袋状膜及び該袋状膜が巻き付けられるシャフ ト の斜視図である。 図 1 b, 図 1 cはそれぞれ図 1 &の8— 8線、 C一 C線に沿う断面図である。 図 2はシャフ 卜の周りに袋状膜を巻き付け る方法を示す断面図、 図 3は巻回体とソケッ トとの係合関係を示す斜 視図、 図 4はスパイラル型膜モジュールの側面図である。 この袋状膜 1 0は、 正方形又は長方形状のものであり、 第 1の辺部 1 1、 第 2の辺部 1 2、 第 3の辺部 1 3及び第 4の辺部 1 4を有して いる。 この袋状膜 1 0は、 長い一枚の分離膜フィルムを第 2の辺部 1 2の部分で二つに折り返し、 第 1の辺部 1 1及び第 3の辺部 1 3にお いて折り重なった分離膜フィルム同士を接着剤等によって接着し、 第 4の辺部 1 4の一部については接着を行うことなく開放部とした袋状 のものである。
この実施の形態においては、 第 4の辺部 1 4の途中から第 3の辺部 1 3にかけて袋状膜 1 0の分離膜フィルム同士が接着されておらず、 透過水流出用の開放部 3 0となっている。 また、 この第 4の辺部 1 4 の該途中から第 1の辺部 1 1にかけては、 袋状膜 1 0の分離膜フィル ム同士が接着されており、 透過水の流出を阻止する閉鎖部 3 1となつ ている。
この袋状の膜 1 0内に流路材 (例えばメ ッシュスぺ一サ等よりな る。 ) 1 5が挿入配置されている。 なお、 袋状膜 1 0としては、 長い 一枚のフィルムを第 2の辺部 1 2部分で二つに折り返したものに限ら ず、 二枚の分離膜フィルムを重ね合わせ、 第 1の辺部 1 1、 第 2の辺 部 1 2、 第 3の辺部 1 3及び第 4の辺部 1 4の一部を接着するように したものであっても良い。
この袋状膜 1 0の一方の面には、 接着剤 1 6が付着されると共に他 方の面には接着剤 1 7, 1 8が付着され、 この袋状膜 1 0がシャフ ト 2 0の周りに巻き付けられる。 接着剤 1 1は第 1の辺部 1 6に沿って 付着され、 接着剤 1 7は第 3の辺部 1 3に沿って付着されている。 接 着剤 1 8は第 4の辺部 1 4の長手方向の前記途中箇所から第 3の辺部 1 3にかけて、 透過水流出用の開放部 3 0に沿って付着されている。 複数枚の袋状膜 1 0をシャフ ト 2 0の周囲に巻き付けることにより、 重なり合った袋状膜 1 0同士は接着剤 1 6, 1 7, 1 8の部分におい て水密的に接合される。 これにより、 各袋状膜 1 0同士の間には給水 (及び濃縮水) が流れる給水流路が構成される。 接着剤 1 8が硬化す ることにより、 巻回体の後端面には、 内周側に給水 (濃縮水) の流出 用の開放部が形成され、 外周側に給水流出阻止用の閉鎖部が形成され る。
第 4の辺部 1 4のうち透過水流出用の開放部 3 0と透過水流出阻止 用の閉鎖部 3 1 との境界部分から、 巻回体の後方に向ってフィン 1 9 が延設されている。 このフィ ン 1 9は、 例えば合成樹脂フィルム又は シ一 トよりなり、 袋状膜 1 0に対し接着等により接合されるのが好ま しい。
各袋状膜 1 0をシャフ ト 2 0の周りに図 2の如く メ ッシュスぺ一サ 2 9を介して巻き付けることにより、 図 3に示すように巻回体 2 4が 形成される。 この巻回体 2 4の後端面からは、 フィ ン 1 9が延出する。 各袋状膜 1 0の第 4の辺部 1 4において同一箇所にフィン 1 9を設け ておく ことにより、 フィン 1 9は巻回体 2 4の軸心から等半径位上に 位置し、 フィ ン 1 9が重なり合うことによりフィン 1 9がリ ング状の 突出部を形成することになる。 このリ ング状の突出部内に円筒状のソ ケッ ト 2 5の後端を挿入し、 該ソケッ ト 2 5とフィ ン 1 9を接着剤等 により接合する。 なお、 ソケッ ト 2 5をフィン 1 9に外嵌めしても良 い。 また、 フィン 1 9に沿って巻回体 2 4の後端面に旋盤で切込み溝 を付け、 該溝にソケッ ト 2 5の端部を埋め込むようにしても良い。 このようにソケッ ト 2 5とフィン 1 9とを接合することにより、 巻 回体 2 4の後端面の外周側の透過水流出領域とソケッ ト 2 5の内周側 の濃縮水流出領域とが区画される。
なお、 袋状膜 1 0をシャフ ト 2 0の周りに巻き付けるに際しては、 図 2に示すように、 袋状膜 1 0同士の間にメ ッシュスぺ一サ 2 9を介 在させておく。 これらのメ ッシュスぺ一サ 2 9を介在させることによ り、 給水流路が構成される。
図 4に示すように、 巻回体 24の前縁及び後縁にそれぞれト ツプリ ング 26及びェン ドリ ング 27を合成樹脂モール ド等により形成し、 ト ップリ ング 26の外周にブラインシール 28を周設する。
このスパイラル型膜モジュールにおいては、 図 4に示すように、 巻 回体 24の前端面から給水が袋状膜 10同士の間の給水流路に流入す る。 この給水は、 巻回体 24の軸心線と略平行方向に給水流路を流れ、 巻回体 24の後端のソケッ ト 25の内側の端面から取り出される。 そ して、 このように給水が給水流路を流れる間に、 水が袋状膜 10内に 透過し、 透過水は巻回体 24の後端面のうちソケッ ト 25の外周側か ら流出する。
このスパイラル型膜モジュールに給水を通水する場合、 給水圧力即 ち膜モジュールに流入しょうとする給水の圧力を前記の PFm a X或 いはそれに近い値とする。 好ましくは給水圧力を P f?m a xの 70〜
1 30%とくに 80〜 1 20%とりわけ 90〜 1 1 0%とする。 加え て、 濃縮差圧即ち給水の流入圧力と、 膜モジュールから流出した濃縮 水の圧力との差圧 ΔΡを 0. 3 k g/ c m 2以下好ましくは 0. 1 5 k cm 2以下とくに好ましくは 0. 1 0 k gZ cm2とする。 また、 この膜モジユールから流出する透過水にかかる背圧がなるべく小さく なるようにするのが好ましい。
このように給水圧力を選定すると共に濃縮差圧を小さく し、 図 6 a, 図 6 bに示すように運転開始後長時間経過しても高い透過水量を維持 することができ、 逆洗頻度を小さく して効率の良い膜分離処理を行い、 高透過水量を得ることが可能となる。
濃縮差圧 ΔΡを小さくするためには、 図 7に示す袋状膜 10の巻回軸 心線方向の長さ aが重要であることが種々の研究の結果見出された。 即ち、 この aの値を 200〜50 Omm程度とすることにより濃縮差 圧 ΔΡが小さくなる。 エレメ ン トサイズの増大すなわち膜面積の増大に は長手方向ではなく半径方向にサイズァップしてゆく ことが好ましい。 この場合、 袋状膜 10の透過水流出部の長さ bと濃縮水流出部の長さ cはそれぞれ次の範囲にあることが好ましい。
b : 200〜50 Ommとくに 200〜400mm
c : 50〜200mmとくに 1 00〜 165mm
b / c比率 : 2〜4とくに 2〜3
また、 (b + c) / &比は 1. 0〜2. 0とくに 1. 0〜 1. 5で あることが好ましい。
なお、 このスパイラル型膜モジュールにあっては、 透過水が袋状膜 10内を巻回体 24の軸心線と平行方向に流れて後端面から取り出さ れるため、 従来のスパイラル型膜モジュールに用いられていた集水管 が不要である。 このため、 袋状膜から集水管内に流れ込む際の流通抵 杭が無くなり、 透過水流通抵抗が著しく小さくなる。 この結果、 透過 水には背圧がほとんどかからず、 膜モジュール内の透過水圧力が透過 水流路の全域においてほぽ大気圧と等しいものとなる。
また、 集水管を省略しており、 その分だけ袋状膜 1 0の巻回方向の 長さを大きく とることができ、 膜面積を大きく とることが可能である。 袋状膜の巻回方向の長さを大きく しても、 透過水流通抵抗は増大せず、 透過水量を多くすることができる。
この実施の形態にあっては、 給水流路の出口部分をソケッ ト 25の 内側だけに設けており、 給水流路の出口 (最下流部) を絞った構成と しているため、 給水流路の下流側においても給水 (濃縮水) の圧力低 下を小さ くすることができる。 なお、 ソケッ ト 25の内側の面積と外 側の面積 (接着剤 1 8の辺部 14方向の長さ) は、 このスパイラル型 膜モジユールの水回収率に応じて決めるのが好ましい。
また、 この実施の形態にあっては、 ソケッ ト 25をフィン 1 9を用 いて巻回体 24に接続しており、 ソケッ ト 25と巻回体 24との接続 強度が高い。 そして、 このソケッ ト 25によって給水の流入側と濃縮 水の流出側とが水密的に区画分離される。
なお、 上記実施の形態においては、 ソケッ ト 25の外周側に透過水 流出部を配置し、 ソケッ ト 25の内側に濃縮水流出部を配置している が、 逆にソケッ ト 25の内側を透過水流出部とし、 ソケッ ト 25の外 周側を濃縮水流出部とするように構成しても良い。
実施例
実施例 1
i ) PFm a Xを求めるための運転
aが 300mm、 bが 300mm、 cが 1 00mm、 bZ cが 3で ある図 1〜 4に示す構成のポリテトラフルォロェチレン製の分離膜の 巻回体を有する膜モジユールを用いて通水試験を行った。 この膜モジ ユールは、 円筒状の耐圧容器に収容された。 給水弁を介して該耐圧容 器の先端面から耐圧容器内に給水が導入される。 耐圧容器の後端面の 中央から濃縮水取出弁を介して濃縮水が取り出される。 透過水は耐圧 容器の後端面の外周近傍から透過水が取出管を介して取り出される。 透過水取出管には弁は設けられていない。
給水として市水を用い、 第 1回目は 2 k gノ cm2の給水圧力をか けて耐圧容器内に供給し、 膜モジュールに通水した。 第 2回目は 4 k g/ cm2の給水圧で給水した。 第 3回目は 6 k gノ cm2の給水圧 で給水した。 そして、 運転開始後 2時間が経過するまでの透過水量を 測定した。 その結果を図 8に示す。 図 8より Ppm a xは 4. 5 k g
/ cm2であることがわかった。 なお、 図 8のようにカーブが上に凸 になり始める通水経過時間 T 2は 1. 5時間であった。
ii) 実施例 1の運転 次に、 給水弁の開度を調整し、 給水圧力を 4. 5 k gZ cm2とし、 濃縮水取出水の開度を小さく し濃縮水量を絞り込むことにより濃縮差 圧を 0. 1 0 k g/ cm2に設定し、 7. 5分通水運転一 30秒逆洗 のサイクル ( 1サイクルは 8分よりなる。 ) を繰り返し、 14ヶ月間 運転を継続した。 給水量は 40m3/m2/ dayとした。
その結果、 この 14ヶ月間の全期間にわたって約 4 Om 3 /m 2 / d a yの安定した透過水量が得られた。 なお、 給水の 98%は透過水 となり、 2%が濃縮水となった。 比較例 1
同じ膜モジュールを用い、 給水弁の開度を大きく して給水圧力を 6 k g/ cm2とし、 濃縮水取出弁の開度を大きく して濃縮水量を増加 させ濃縮水圧を低下させることにより濃縮差圧を 4 k gZ cm2とし た他は実施例 1と同じ条件で膜モジュールを運転したところ、 24時 間での透過水量は 1 0m3zm2 /d a yとなり、 しかも急速な目詰 まりが見られ、 それ以降逆洗を繰り返しても透過水量の回復は見られ なかった。 そのため、 24時間後よりも長い時間はモジュールの通水 運転を継続することが不可能であった。 比較例 2
同じ膜モジュールを用い、 給水弁の開度を小さく して給水圧力を 0. 7 k g/ cm2とし、 濃縮水取出弁の開度を調節して濃縮差圧を 0. 5 k g/ cm2とした他は実施例 1と同一条件で膜モジュールを運転 したところ、 運転初期から 30日間の透過水量は 2m 3 /m 2 a yであった。 この 30日間にわたってさほどの目詰まりは生じなかつ たものの、 この運転期間中の透過水量は実施例 1に比べて極めて少な い。 産業上の利用可能性
以上の通り、 本発明によると、 透過水量の経時的低下が小さく、 高 透過水量を安定して得ることが可能となる。

Claims

請求の範囲
1. スパイラル状に巻回された分離膜の巻回体を備えてなるスパイラ ル型膜モジュールの運転方法であって、 分離膜同士の間に給水を供給 して透過水と濃縮水とに分離する運転方法において、
該分離膜に水が流れている時の該スパイラル型膜モジュールの給水 流路に流入する給水圧力とスパイラル型膜モジュールから流出する濃 縮水圧力との差即ち濃縮差圧を 0. 3 k cm 2以下であるように したスパイラル型膜モジユールの運転方法。
2. 請求項 1において、 給水圧力を変化させずに膜モジュールに所定 時間給水を継続して供給して該所定時間が経過したときの透過水量が 最大となる給水圧力 PFm a x又は PFm a χに近い給水圧力にて運 転を行うスパイラル型膜モジュールの運転方法。
3. 請求項 2において、 前記圧力 Ppm a xの 70〜: L 30%の給水 圧力にて運転を行うスパイラル型膜モジユールの運転方法。
4. 請求項 2において、 前記圧力 Ppm a xの 80〜120%の給水 圧力にて運転を行うスパイラル型膜モジュールの運転方法。
5. 請求項 2ないし 4のいずれか 1項において、 給水圧力を変化させ ずに前記膜モジュールに給水を継続して行ない、 給水を開始してから 所定時間経過後の透過水流束を計測し、 この計測を異なる給水圧力で 行うことにより該所定時間経過後における給水圧力と透過水流束との 相関関係を求めておき、
この相関関係から、 該所定時間経過後において透過水流束を最大と する給水圧力 PFm a xを求めるスパイラル型膜モジュールの運転方 法。
6. 請求項 1ないし 5のいずれか 1項において、 前記濃縮差圧を 0. 15 k gZ cm 2以下とするスパイラル型膜モジュールの運転方法。
7 . 請求項 1ないし 5のいずれか 1項において、 前記濃縮差圧を 0 . 1 0 k g / c m 2以下とするスパイラル型膜モジュールの運転方法。
8 . 請求項 1ないし 7のいずれか 1項において、 濃縮水は分離膜の前 記巻回体の他方の端面及び外周面の少なく とも一方から流出するスパ イラル型膜モジュールの運転方法。
9 . 請求項 1ないし 7のいずれか 1項において、 透過水は分離膜の前 記巻回体の他方の端面から流出するスパイラル型膜モジュールの運転 方法。
1 0 . 請求項 1ないし 9のいずれか 1項において、 前記膜モジュール は、 袋伏膜の内部に透過水流路材が配置され、 袋状膜同士の間には給 水流路材が配置されているスパイラル型膜モジユールであって、
該袋状膜は第 1、 第 2、 第 3及び第 4の辺部を有した略方形であり、 該第 1、 第 2及び第 3の辺部は封じられ、 該第 4の辺部は一部が開放 部となり残部が閉鎖部となっており、
前記第 4の辺部と直交する第 1の辺部をシャフ トに当てて袋状膜を 巻回して巻回体とし、 前記第 4の辺部を該巻回体の後端面に臨ませ、 該第 4の辺部に対向する第 2の辺部を該巻回体の前端面に臨ませ、 該袋状膜同士の間の給水流路は、 該第 3の辺部の全体が封じられる と共に、 第 4の辺部にあっては前記袋状膜の開放部と重なる箇所が閉 鎖部となっており、 且つ前記袋伏膜の閉鎖部と重なる箇所が開放部と なっているスパイラル型膜モジュールの運転方法。
1 1 . 請求項 9において、 前記袋伏膜の開放部は前記巻回体の後端面 の外周側又は内周側に配置され、 前記給水流路は前記巻回体の後端面 の内周側又は外周側に配置されており、
該袋状膜の開放部から流出する透過水と該給水流路の開放部から流 出する濃縮水とを離隔させるための環状部材が該巻回体の後端面に接 続されていることを特徴とするスパイラル型膜モジユールの運転方法。
PCT/JP1998/005001 1997-11-07 1998-11-06 Method of operating spiral type membrane module WO1999024154A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP52595099A JP4106714B2 (ja) 1997-11-07 1998-11-06 スパイラル型膜モジュールの運転方法
EP98951713A EP0972558B1 (en) 1997-11-07 1998-11-06 Method of operating spiral type membrane module
DE69815327T DE69815327T2 (de) 1997-11-07 1998-11-06 Verfahren zum betrieb eines membranmoduls des spiraltyps
US09/341,047 US6267890B1 (en) 1997-11-07 1998-11-06 Method of operating spiral wound type membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/305610 1997-11-07
JP30561097 1997-11-07

Publications (1)

Publication Number Publication Date
WO1999024154A1 true WO1999024154A1 (en) 1999-05-20

Family

ID=17947223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005001 WO1999024154A1 (en) 1997-11-07 1998-11-06 Method of operating spiral type membrane module

Country Status (5)

Country Link
US (1) US6267890B1 (ja)
EP (1) EP0972558B1 (ja)
JP (1) JP4106714B2 (ja)
DE (1) DE69815327T2 (ja)
WO (1) WO1999024154A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432179A (en) * 1977-08-15 1979-03-09 Ebara Infilco Co Ltd Controlling method for operation of fresh water making apparatus
JPS54167863U (ja) * 1978-05-17 1979-11-27
JPS59179110A (ja) * 1983-03-30 1984-10-11 Nitto Electric Ind Co Ltd 濾過モジュールの運転方法
JPH05208120A (ja) * 1992-01-30 1993-08-20 Toray Ind Inc スパイラル型分離膜エレメント
JPH1043552A (ja) * 1996-08-08 1998-02-17 Nitto Denko Corp 膜分離装置および操作圧力の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814079A (en) * 1988-04-04 1989-03-21 Aqua-Chem, Inc. Spirally wrapped reverse osmosis membrane cell
US4902417A (en) 1988-06-14 1990-02-20 Desalination Systems, Inc. Spiral-wound membrane cartridge with ribbed and spaced carrier layer
US5069780A (en) 1990-06-04 1991-12-03 Infinitex Ultrafiltration device and process
US5460720A (en) * 1993-08-12 1995-10-24 Schneider; Burnett M. Pleated membrane crossflow fluid separation device
US5858229A (en) 1996-07-19 1999-01-12 Kurita Water Industries Ltd. Spiral wound type membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432179A (en) * 1977-08-15 1979-03-09 Ebara Infilco Co Ltd Controlling method for operation of fresh water making apparatus
JPS54167863U (ja) * 1978-05-17 1979-11-27
JPS59179110A (ja) * 1983-03-30 1984-10-11 Nitto Electric Ind Co Ltd 濾過モジュールの運転方法
JPH05208120A (ja) * 1992-01-30 1993-08-20 Toray Ind Inc スパイラル型分離膜エレメント
JPH1043552A (ja) * 1996-08-08 1998-02-17 Nitto Denko Corp 膜分離装置および操作圧力の制御方法

Also Published As

Publication number Publication date
US6267890B1 (en) 2001-07-31
EP0972558A4 (en) 2000-02-02
EP0972558A1 (en) 2000-01-19
JP4106714B2 (ja) 2008-06-25
DE69815327D1 (de) 2003-07-10
DE69815327T2 (de) 2003-12-11
EP0972558B1 (en) 2003-06-04

Similar Documents

Publication Publication Date Title
JP2022543640A (ja) スパイラル型エレメントのための好ましい流路
WO1999024154A1 (en) Method of operating spiral type membrane module
JPH11207155A (ja) 海水等の淡水化装置
JP3659106B2 (ja) 膜分離装置の運転方法
JP2001219038A (ja) 膜分離装置
JP3829447B2 (ja) スパイラル型膜モジュールの逆洗方法
JP3900624B2 (ja) 膜分離装置
JP4599633B2 (ja) 膜分離装置
JPH11169685A (ja) スパイラル型膜モジュール
JPH11207157A (ja) 膜分離装置
JP3536603B2 (ja) 膜分離装置
JP3433663B2 (ja) 膜モジュールの運転方法
JPH11207154A (ja) スパイラル型膜モジュール
JPH10272342A (ja) スパイラル型膜モジュール
JPH1028849A (ja) スパイラル型膜モジュール
JP3900623B2 (ja) 膜分離装置の運転方法
JP3282563B2 (ja) 膜モジュールの洗浄装置
JPH11207335A (ja) 膜分離装置の運転方法
JP3659105B2 (ja) 膜分離装置の運転方法
JP2001170457A (ja) 膜分離装置の洗浄方法
JPH11207339A (ja) 可搬型膜分離装置
JPH11169683A (ja) スパイラル型膜モジュール
JPH11197467A (ja) スパイラル型膜モジュールを有する膜分離装置
JPH11207153A (ja) 膜分離装置
JPH11169686A (ja) スパイラル型膜モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09341047

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998951713

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998951713

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998951713

Country of ref document: EP