WO1999023675A1 - AIMANT LIE A BASE DE R-Fe-B EXTREMEMENT RESISTANT A LA CORROSION ET PROCEDE DE FABRICATION DUDIT AIMANT - Google Patents

AIMANT LIE A BASE DE R-Fe-B EXTREMEMENT RESISTANT A LA CORROSION ET PROCEDE DE FABRICATION DUDIT AIMANT Download PDF

Info

Publication number
WO1999023675A1
WO1999023675A1 PCT/JP1998/004829 JP9804829W WO9923675A1 WO 1999023675 A1 WO1999023675 A1 WO 1999023675A1 JP 9804829 W JP9804829 W JP 9804829W WO 9923675 A1 WO9923675 A1 WO 9923675A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
bonded magnet
metal
plating
barrel
Prior art date
Application number
PCT/JP1998/004829
Other languages
English (en)
French (fr)
Inventor
Kohshi Yoshimura
Takeshi Nishiuchi
Fumiaki Kikui
Takahiro Isozaki
Original Assignee
Sumitomo Special Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP04455898A external-priority patent/JP3236813B2/ja
Priority claimed from JP04455998A external-priority patent/JP3236814B2/ja
Priority claimed from JP04882798A external-priority patent/JP3236815B2/ja
Priority claimed from JP04882898A external-priority patent/JP3236816B2/ja
Priority claimed from JP10056044A external-priority patent/JPH11238641A/ja
Priority claimed from JP10083011A external-priority patent/JPH11260613A/ja
Priority claimed from JP10083012A external-priority patent/JPH11260614A/ja
Priority claimed from JP10103496A external-priority patent/JPH11283818A/ja
Application filed by Sumitomo Special Metals Co., Ltd. filed Critical Sumitomo Special Metals Co., Ltd.
Priority to EP98950380A priority Critical patent/EP1028437B1/en
Priority to DE69834567T priority patent/DE69834567T2/de
Publication of WO1999023675A1 publication Critical patent/WO1999023675A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated

Definitions

  • the present invention relates to an R-Fe-B bonded magnet having various shapes, such as a ring shape and a disk shape, having improved corrosion resistance with a metal film having high cleanliness.
  • Polishing dust and inorganic powder are buried in the pores to seal and smooth the surface, or without the above-mentioned sealing treatment, Cu, Sn, Zn, Pb, Cd, In, Au , Ag, Fe, Ni, Co, Cr, Al and its alloy pieces are crushed by dry barrel polishing using a metal media, and the crushed metal flakes are bonded to the resin surface of the bonded magnet surface and the voids or sealing portions.
  • R-Fe-B-based magnets that use R-Fe-B-based magnetic materials that exhibit high magnetic properties with a maximum energy product of 50MGOe or more for sintered magnets High performance has been achieved for bonded magnets.
  • R-Fe-B bonded magnets have a problem that they are prone to cracking due to the fact that they contain a large amount of Fe and a highly oxidizable component phase in the magnet alloy composition, and a resin layer of various compositions is electrodeposited on the surface.
  • a spray method, an immersion method, an impregnation method and the like for example, JP-A-1-66519, JP-A-1-245504.
  • the film thickness is uniform, but it is necessary to attach each of the magnets to an electrode, and repair of the electrode part removed after painting, that is, touch-up is required.
  • touch-up is required.
  • the electric metal plating performed by the sintered R-Fe-B magnet should be applied (Japanese Patent Application Laid-Open Nos. 60-54406 and 62-120003).
  • the plating solution remains or the plating film is sufficiently formed on the resin part. Pinholes (non-plated parts) are generated, and firing occurs.
  • a plating bath with a specific composition has been proposed as a method of applying Ni plating with high film formation efficiency to R-Fe-B-based bonded magnets (Japanese Patent Application Laid-Open No. 4-99192). There is a danger of intrusion and residual fire.
  • Cu strike plating which is usually performed before Ni plating, is either strongly alkaline or strongly acidic, and is unsuitable for processing R-Fe-B based bonded magnets. is there.
  • the conductive coating layer is a resin layer containing a conductive substance or metal powder, and the resin exposed portion of the bonded magnet on the surface is improved as compared with the R-Fe-B based bonded magnet material.
  • it is difficult to obtain a uniform and good conductive surface because there are not a few exposed portions of the coating resin due to the manufacturing method, and there are low conductivity parts on the surface. There are problems such as the tendency to occur.
  • the inventor of the present invention carried out barrel polishing by a dry method using a mixture of a vegetable medium or a surface-modified vegetable medium and an abrasive with the abrasive, as a medium.
  • An object of the present invention is to provide an R-Fe-B bonded magnet having extremely high corrosion resistance, which does not occur even in a long-time high-temperature high-humidity test, and has an extremely high adhesion strength in order to realize high corrosion resistance.
  • An object of the present invention is to provide a manufacturing method capable of uniformly forming various corrosion resistant coatings on an R-Fe-B-based bonded magnet.
  • the present invention provides high adhesion strength and high dimensional accuracy on the magnet surface, which prevents the plating solution and cleaning solution from entering and remaining in the porous R-Fe-B bond magnet in the conventional electroless plating method.
  • the purpose of the present invention is to provide a method for manufacturing a high corrosion-resistant R-Fe-B-based bonded magnet comprising an industrial process most suitable for providing a corrosion-resistant coating.
  • the electroplating technology of R-Fe-B bonded magnets with excellent corrosion resistance and surface cleanliness the inventors have focused on the fact that it is important to impart conductivity to the surface of the material extremely uniformly.
  • the R-Fe-B bonded magnet was converted to a barrel device using irregular shaped Cu pieces of the required dimensions, such as spherical, massive or needle-like (wire), as metal media.
  • irregular shaped Cu pieces of the required dimensions such as spherical, massive or needle-like (wire), as metal media.
  • the crushed Cu fine particles are pressed into the resin surface and pores of the bonded magnet surface and coated, and the magnetic particle surface is also coated with Cu fine particles.
  • porous the R-Fe-B bonded magnet such as A1 2 0 3, SiC
  • a mixture of an abrasive obtained by baking inorganic powder and a vegetable medium such as fruit husk or corn core, or a mixture of the above abrasive and a vegetable medium whose surface has been modified with the inorganic powder And then subjecting it to barrel polishing by a dry process to remove abrasive debris such as abrasive powder, inorganic powder for reforming, and the surface oxide layer of the magnetic powder constituting the bonded magnet, using the oils and fats of the vegetable medium Since it is possible to fix and seal the pores of the magnet and to smooth the surface at the same time, it is possible to form a conductive film directly on the surface of the magnet material after dry barrel polishing. Improved smoothness and resistance It was found that sex can further excellent Rukoto obtain an R-Fe-B
  • the inventors of the present invention have reported that soft metal pieces of Sn, Zn, Pb, Cd, In, Au, and Ag having a Vickers hardness value of 80 or less, , Co, and Cr can be used as media.
  • the inventors used an amorphous A1 piece as a medium, and performed barrel polishing by a dry method using a barrel device, so that the ground A1 pieces were bonded to the surface of the bonded magnet.
  • the surface of the A1 coating layer formed on the surface of the R-Fe-B bonded magnet is zinc-substituted by press-fitting and coating the resin surface and sealing portion of As a result, it is possible to prevent the outflow of A1 at the time of electroplating, to achieve good electroplating, to obtain an R-Fe-B-based bonded magnet plated coating having excellent corrosion resistance and little deterioration in magnetic properties.
  • the high corrosion resistance R-Fe-B-based bonded magnet according to the present invention is:
  • Jihi, 811, 211,? 15, J 111 116,: 1 ⁇ 0, ⁇ 1 and its alloys are press-fitted and coated with metal particles, and the surface of magnetic powder is coated with metal particles to form metal on the surface of the magnet. It is characterized by having a coating layer and an electrolytic plating layer formed via the metal coating layer.
  • the pores forming the surface of the R-Fe-B-based bonded magnet include abrasive powder, polishing debris of the bonded magnet, and inorganic material.
  • the metal particles are pressed into and coated on the resin surface constituting the surface and the sealing portion, and on the magnetic powder surface constituting the surface.
  • the magnet is characterized by having the metal coating layer on the surface of the magnet formed by coating metal particles and an electrolytic plating layer formed via the metal coating layer.
  • the R-Fe-B bonded magnet having high corrosion resistance according to the present invention is characterized in that A1 fine particles are press-fitted and coated on the resin surface constituting the surface and the sealing portion, and A1 fine particles are adhered on the magnetic powder surface constituting the surface.
  • R-Fe-B bonded magnets are intended for both isotropic and anisotropic bonded magnets.
  • thermosetting of magnetic powder having the required composition and properties It is obtained by adding and kneading a curable resin, a coupling agent, lubrication, etc., then compressing and heating to cure the resin.
  • a thermoplastic resin is added to the magnetic powder. It is obtained by adding and kneading a coupling agent, lubrication, etc., and then molding by any of injection molding, extrusion molding, and rolling molding.
  • the R-Fe-B-based magnetic material powder is prepared by dissolving the required R-Fe-B-based alloy and pulverizing it after production. Melting R-Fe-B alloy using a jet caster to obtain ribbon foil and pulverizing and annealing it, quenching alloy, dissolving required R-Fe-B alloy, pulverizing it by gas atomization and heat-treating Gas atomization method, powdering the required raw material metal, pulverizing it by mechanical alloying and heat-treating it.
  • Mechanismanical alloying method and heating and decomposing and recrystallizing the required R-Fe-B alloy in hydrogen Isotropic and anisotropic powders obtained by various production methods such as a method for making the particles (HDDR method) can be used.
  • the rare earth element R used in the R-Fe-B-based magnet powder occupies 10 to 30 atomic% of the composition, but at least one of Nd, Pr, Dy, Ho, and Tb, or , 1 ⁇ , 06, 8111, & (1 1 ⁇ 11,13 ⁇ 41, ⁇ 1) and 1 ⁇ 1, ⁇ are preferable.
  • one kind of R is sufficient, but in practice, a mixture of two or more kinds (mish metal, sijim, etc.) can be used for convenience and other reasons.
  • R may not be a pure rare earth element, and may contain impurities that are unavoidable in production as far as it is industrially available.
  • R is an essential element in the above-mentioned system magnet powder, and if it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as a-iron, so that high magnetic properties, particularly high coercive force, cannot be obtained. If it exceeds 30 atomic%, there will be many R-rich non-magnetic phases, and the residual magnetic flux density (Br) will decrease, so that a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is preferably in the range of 10 atomic% to 30 atomic%.
  • B is an essential element in the above-mentioned system magnet powder. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, a high coercive force (iHc) cannot be obtained, and if it exceeds 28 atomic%, it becomes B-rich. Since there are many non-magnetic phases and the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.
  • Fe is an essential element in the above-mentioned system magnet powder, and if it is less than 65 atomic%, the residual magnetic flux density (Br) decreases, and if it exceeds 80 atoms, a high coercive force cannot be obtained. Atomic% is desirable.
  • substituting part of Fe with Co can improve the temperature characteristics without impairing the magnetic properties of the obtained magnet, but conversely when the Co substitution amount exceeds 20% of Fe, It is not preferable because the magnetic properties deteriorate.
  • the substitution amount of Co is 5 atomic% in the total amount of Fe and Co> ⁇ 15 atomic%, (Br) increases as compared with the case where no substitution is made, and thus it is preferable to obtain a high magnetic flux density.
  • B in addition to R, B, Fe, the presence of unavoidable impurities in industrial production can be tolerated.
  • a part of B is 4.0 wt% or less C, 2.0 wt% or less P, 2.0 wt% or less.
  • At least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Ga, Sn, Zr, Ni, Si, Zn, and Hf is included in the magnet powder.
  • it can be added because it has the effect of improving the coercive force and the squareness of the demagnetization curve or improving the manufacturability and reducing the price.
  • the upper limit of the addition amount is desirably in a range that satisfies the conditions necessary for setting the (BH) max and (Br) values of the bonded magnet to required values.
  • 6 Pa, 12 Pa, PPS, PBT, EVA, etc. are used as a resin for the injection molding for the binder, and PVC, NBR, CPE, NR, Hibaron, etc. are used for the extrusion molding, the calender roll, the rolling molding, and the compression molding is used.
  • the resin epoxy resin, DAP, phenol resin, etc. can be used, and a known metal binder can be used if necessary.
  • a lubricant for facilitating molding a binder between a resin and an inorganic filler, a silane-based or titanium-based coupling agent, or the like can be used.
  • a polishing material such as A1 2 0 3, inorganic powders baked compacted ceramics such as SiC or a metal ball, plant sexual Kawakuzu, sawdust, fruit shells, such as the core of the corn mixture of vegetable medium, or the abrasive and the A1 2 0 3, SiC at inorganic powder such as surface modified above A mixture of vegetable media is used.
  • a well-known barrel can be used for the sealing and smoothing treatment and the dry barrel polishing for forming the metal coating layer on the surface of the bonded magnet according to the present invention, and a rotating barrel having a general rotation speed of 20 to 50 rpm and a rotation speed of 70 can be used.
  • a centrifugal barrel of ⁇ 200 rpm, a vibration barrel polishing method with a vibration amplitude of 0.5 nmi or more and less than 50 mm can be adopted.
  • the atmosphere of the barrel polishing is usually may be in the air, but by the media has frictional heat in barrels polishing, if an acid I spoon magnet is concerned, N 2, Ar, alone such as He Alternatively, the atmosphere may be an inert gas atmosphere such as a mixed gas thereof.
  • the processing amount is reduced. If it is too small, it is not practical. If it exceeds 90%, stirring is insufficient and sufficient polishing cannot be performed. Therefore, 20% to 90% of the internal volume is preferable.
  • the abrasive in the smoothing process is not particularly limited, the particle diameter l ⁇ 7 mm, preferably 3 ⁇ 5 mm approximately abrasive and diameter 0.5 ⁇ 3 mm, preferably a plant of the order of diameter l ⁇ 2m m
  • the mixture of the magnet and the medium is uniformly stirred, and under the condition that the relative movement is performed. It is preferred to do so.
  • the modified vegetable medium surface at the inorganic powder As the modified vegetable medium surface at the inorganic powder, after the grease, such as wax vegetable medium surface kneaded coatings, particle size 0.01 ⁇ 3 ⁇ A1 2 0 3, SiC, ZrO, MgO inorganic powder uniformly spread on the surface and fixed You.
  • the powder of the abrasive, the inorganic powder for modifying the surface of the vegetable medium, and the swarf of the bonded magnet, which are sealing materials, have a particle size of 0.01 to 3 ⁇ .
  • the ratio of the vegetable medium to the abrasive in the media is 1/5 to 2, and a mixture having a ratio of 1 is preferred. Also, the mixing ratio (bond magnet / media) of the bond magnet and the medium is preferably 3 or less.
  • the abrasive material effectively grinds and removes a surface oxide layer of the magnet, smoothes the surface, and powders of the abrasive material and an inorganic powder for modifying the surface of a vegetable medium, and a bonded magnet.
  • the above-mentioned vegetable medium has an effect of improving the adhesive force of the sealed object by effectively releasing the oil and fat thereof, by tapping and solidifying the sealed object such as abrasive dust.
  • the porosity of the bonded magnet after the surface smoothing treatment can be reduced to 3% or less. Not only the smooth sealing treatment of the bonded magnet surface but also the oxide surface of the magnet is removed to activate the magnet.
  • the surface of the R-Fe-B based magnetic powder can be obtained.
  • a known barrel device such as a rotary type, a vibration type, and a centrifugal type can be used for dry barrel polishing with a metal piece.
  • the shape of the metal piece can be irregular, such as spherical, massive, or needle-like (one wire) . If the size of the metal piece is less than 0.1 mm, it takes a long time to press-fit and coat it practically. However, if it exceeds 10 mm, the surface unevenness becomes large, and the metal cannot be coated on the entire surface.Therefore, the size of the metal piece is preferably 0.1 mm to 10 mm, more preferably 0.3 mm to 5 mm. A more preferred range is 0.5 mm to 3 mm.
  • the metal pieces to be charged into the dry barrel may have the same shape and dimensions, or may mix different shapes and dimensions. Also, fine metal powder may be mixed into the irregular shaped metal piece.
  • the composite metal may be the metal alone or an alloy, or a Cu composite metal in which a different metal such as Fe, Ni, or Al as a core material is coated with Cu. Also, it is desirable that the ratio to be charged for dry barrel polishing and the volume ratio between magnet and metal piece (magnet / metal) is 3 or less. If it exceeds 3, it takes time for press-fitting and coating of metal, which is not practical, and This is because the magnetic particles are shed from the magnet surface.
  • the amount of bonded magnets and metal pieces to be charged into the barrel polishing machine is the amount of bonded magnets and metal pieces to be charged into the barrel polishing machine.
  • the treatment amount is too small to be practical, and if it exceeds 90%, there is a problem that stirring is insufficient and sufficient polishing cannot be performed.
  • the metal flakes to be pressed and coated are fine powder or needle-shaped pieces. If the diameter exceeds 5 ⁇ , the adhesion to the magnet surface is not good, and poor adhesion and peeling during electrolytic plating Therefore, the major diameter was set to 5 ⁇ or less. A preferred range is 2 ⁇ or less in major axis.
  • the metal particles are press-fitted and coated on a resin surface and a hole portion and a magnetic powder surface of a bonded magnet surface, and on a soft resin surface and a hole portion on a bonded magnet surface.
  • the surface of the magnetic powder is coated. The amount press-fitted into the resin surface and the pores increases toward the surface, and the content gradually decreases inside the resin layer.
  • the thickness of the metal press-fit layer on the resin surface and the pores is preferably ⁇ . ⁇ or more and 2 ⁇ or less. If the thickness is less than ⁇ . ⁇ , sufficient conductivity cannot be obtained. No, but time consuming and impractical.
  • the thickness of the metal coating layer on the magnetic powder surface of the bonded magnet surface is preferably 0.2 ⁇ or less, and the reaction between the magnetic powder surface and the metal particles is a kind of mechanochemical reaction.
  • the number of rotations is 20 to 50 rpm for a rotary barrel, 70 to 200 rpm for a centrifugal barrel, and 50 to 50 rpm for a vibration barrel polishing method. : L00 Hz, vibration amplitude 0.3 to 10 mm is preferred.
  • the atmosphere of the barrel polishing method may be in the air, but the irregular shaped metal pieces used as a medium and the ground metal fine pieces and the magnet are used. Friction heat during barrel polishing due to magnetic powder on the surface
  • the atmosphere may be a single gas such as N 2 , Ar, He, or a mixture of gases, etc. Preferred is in an inert gas.
  • the reason why zinc is substituted on the A1 coated surface is to prevent the outflow of A1 at the time of subsequent electric plating.
  • the zinc substitution method is preferably carried out using a solution containing zinc oxide, sodium hydroxide, ferric chloride, rosserile salt, and the like. Processing conditions are preferably immersion with a bath temperature of 10 ° C. to 25 ° C. and a processing time of 10 seconds to 120 seconds.
  • a treatment of washing ⁇ zinc replacement ⁇ washing is preferable. If there is dirt or other deposits on the A1 surface, it is better to immerse and degrease it in a solution of sodium carbonate and sodium triphosphate for cleaning.
  • the formed Zn layer is
  • the thickness of the formed Zn layer is preferably ⁇ . ⁇ or less. If the layer thickness exceeds ⁇ . ⁇ , poor adhesion occurs, which is not preferable.
  • At least one metal selected from Ni, Cu, Sn, Co, Zn, Cr, Ag, Au, Pb, Pt, etc. or an alloy thereof is B, S, P Is preferred, and particularly preferred is Ni plating.
  • the plating thickness is 50 ⁇ or less, preferably 10 to 30 ⁇ .
  • the plating method for the Ni plating bath is preferably performed in the steps of washing ⁇ electrical Ni plating—washing ⁇ drying.
  • Ni plating uses the above-mentioned plating bath, the anode is an electrolytic nickel plate, the required current is applied, and the electric Ni plating is used to stabilize the elution of Ni from the anode Ni plate. It is desirable to use an Estland nickel chip containing
  • the plating method of the Ni plating bath is preferably performed in the steps of washing, electroplating, washing, and drying, and drying is preferably performed at 70 ° C. or more.
  • Various bathtubs can be used for the plating bath according to the shape of the bond magnet. In the case of a ring-shaped bond magnet, trapping plating and barrel plating are preferable.
  • Ndl2at% prepared by the rapid solidification method, Fe77at%, B6at%, and kneaded to an epoxy resin 2 wt% to the alloy powder having an average particle size 150 ⁇ having the composition Co5at%, after compression molding at a pressure of 7 ton / cm 2 Cure at 170 ° C for 1 hour, outer diameter 22mmX inner diameter
  • a ring-shaped bonded magnet of 20 mm ⁇ 3 mm height was produced.
  • the properties of the obtained bonded magnet were Br6.7 kG, iHc8.9 kOe, and (BH) max 9.0 MGOe.
  • the resulting bonded magnet was placed in a vibration barrel, and dry barrel polishing was performed using a short cylindrical Cu piece having a diameter of lmm and a length of lmm to form a conductive coating layer of Cu fine particles.
  • the depth of press-fit coating on the resin surface of the Cu particles is about 0.7 ⁇ , and the coating thickness on the magnetic powder surface is ⁇ . ⁇ .
  • the processing conditions for barrel polishing were as follows: in an atmosphere iiAr gas, in a vibrating barrel with a vibration frequency of 70 Hz and a vibration amplitude of 3 mm, 50 bonded magnets (apparent volume 0.15 weight 100 g) and Cu pieces of the above dimensions (apparent volume) 2Z, weight 10kg), and the total charge was 60% of the barrel inner volume, and the treatment was performed for 3 hours.
  • the film thickness after plating was 20 ⁇ on the inner diameter side and 22 ⁇ on the outer diameter side.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 1 shows the properties of the magnet before and after the moisture resistance test
  • Table 2 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test.
  • the conditions for electric Ni plating were as follows: current density 2 A / dm 2 , plating time 60 minutes, pH 4.2, bath temperature 55 ° C, plating solution composition: 240 g / Z nickel sulfate, 45 g nickel chloride / appropriate nickel carbonate (pH adjustment), and the amount of boric acid was 30 g / rC.
  • the conditions for the electroless copper plating were a plating time of 20 minutes, a pH of 11.5, and a bath temperature of 20 ° C.
  • the composition of the plating solution was 29 g of copper sulfate, 25 g of sodium carbonate / 140 g of tartrate, 40 g of sodium hydroxide, 37% formaldehyde was 150 mrC.
  • Example 2 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 1, a phenol resin and Ni powder were mixed to form a conductive film having a thickness of ⁇ . After the treatment, Ni plating was performed under the same conditions as in Example 1. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Tables 1 to 3 show the results.
  • the conductive film treatment conditions were as follows: treatment time: 30 minutes; treatment liquid composition: 5 wt% of phenol resin, 5 wt% of Ni powder (particle size: 0.7 ⁇ or less), and 90 wt% of MEK (methyl ethyl ketone).
  • Example 2 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 1, forming a phenol resin layer as an adhesive layer in advance by a dipping method, and then attaching Ag powder (particle diameter 0.7 ⁇ or less) to the surface Then, a conductive coating layer having a thickness of 7 ⁇ was formed using a vibration barrel. After the vibration barrel treatment, Ni plating was performed under the same conditions as in Example 1. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. The results are shown in Tables 1 to 3. The vibration barrel processing conditions were as follows: a vibration barrel with a capacity of 3.5 was used, 50 bonded magnets were inserted, and a 2.5 mm steel ball with an apparent volume of 2 was used as a medium for 3 hours.
  • Comparative Example 1 showed spotting after about 100 hours, Comparative Example 2 300 hours later, and Comparative Example 3 also showed about 350 hours later. On the other hand, in Example 1, there were no spots observed under a microscope of 30 times even after 500 hours.
  • Magnetic property degradation rate (%) — -——————- X 100
  • Example 1 No change (no birch) 20 ⁇ 1 Cu coating layer + Ni plating Comparative example 1 After 100 hours ⁇ 25 ⁇ 2 Electroless Cu plating + Ni plating Comparative example 2 After 300 hours Microscopic mackerel 30 ⁇ 10 Conductive resin layer + Ni plating Comparative example 3 Minute after 350 hours ⁇ 27 ⁇ 10 Conductive coating layer + Ni plating
  • Ndl2at% prepared by the rapid solidification method, Fe77at%, B6at%, and kneaded to an epoxy resin 2 wt% to the alloy powder having an average particle size 150 ⁇ having the composition Co5at%, after compression molding at a pressure of 7 ton / cm 2 Cure at 170 ° C for 1 hour, outer diameter 26mm x inner diameter
  • a ring-shaped bonded magnet having a size of 24 mm and a height of 5 mm was produced.
  • the properties of the obtained bonded magnet were Br6.8 kG, iHc9.1 kOe, and (BH) max9.2 MGOe.
  • a bonded magnet was put in a vibrating barrel, and the atmosphere (in iAr gas, using a short cylindrical Cu piece with a diameter of lmm and a length of lmm, a dry barrel with a vibration frequency of 70Mz and a vibration amplitude of 3mm, was polished, Formed conductive coating layer Resin surface of Cu flakes, sealing The indentation depth at the hole was about 0.7 ⁇ , and the coating thickness on the magnetic powder surface was ⁇ . ⁇ .
  • the processing conditions for barrel polishing were as follows: a 3.5 W capacity barrel, 50 bonded magnets (apparent capacity 0.15, weight 100 g) and Cu pieces of the above dimensions (apparent capacity 2kg, weight 10 kg) were charged into the barrel. The charge was 60% of the barrel volume and the treatment was performed for 3 hours at an amplitude of 20 mm.
  • the film thickness after plating was 21 ⁇ on the inner diameter side and 23 ⁇ on the outer diameter side.
  • the resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 800 hours.
  • Table 3 shows the properties of the magnet before and after the moisture resistance test
  • Table 4 shows the surface condition results and the film thickness dimensional accuracy during the humidity resistance test.
  • Ni plating The conditions for electric Ni plating were as follows: current density: 2 A / dm 2 , plating time: 60 minutes, pH: 4.2, bath temperature: 55 ° C; plating solution composition: nickel sulfate 240 g, nickel chloride 45 g / l, nickel carbonate appropriate amount (pH adjustment), the amount of boric acid was 30 g / rt '.
  • the ring-shaped bonded magnet obtained in the same manner as in Example 2 was washed, subjected to the same sealing and surface smoothing treatment as in Example 2, washed, and electroless copper-plated.
  • the plating thickness was 5 ⁇ .
  • Ni plating was performed under the same conditions as in Example 2.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) under the same conditions as in Example 2.
  • the results and film thickness dimensional accuracy (moisture resistance test) were performed. Tables 3 and 4 show the results.
  • the conditions for the electroless copper plating were a plating time of 20 minutes, a pH of 11.5, and a bath temperature of 20 ° C.
  • the composition of the plating solution was 29 gl of copper sulfate, 25 g of sodium carbonate, 140 g of tartrate, 40 g of sodium hydroxide, 37% formaldehyde was 150 ⁇ .
  • a phenol resin and Ni powder were mixed and applied under the following conditions to form a conductive resin film of ⁇ .
  • the magnet and the 5 mm copper ball were charged into a barrel at 60% of the barrel volume, and smooth polishing was performed by barrel polishing at an amplitude of 20 mm for 60 minutes.
  • Example 2 Ni plating was performed under the same conditions as in Example 2.
  • the obtained ring-shaped bond magnet was subjected to an environmental test (moisture resistance test) under the same conditions as in Example 2.
  • the results and film thickness dimensional accuracy (moisture resistance test) were performed. Tables 3 and 4 show the results.
  • the conductive film treatment condition was a treatment time of 30 minutes, and the composition of the treatment solution was phenol resin.
  • Example 2 did not show any spots observed under a microscope at 30 ⁇ magnification even after 800 hours.
  • Example 2 In the same manner as in Example 1, a ring-shaped bonded magnet having an outer diameter of 25 mm, an inner diameter of 23 mm and a height of 3 mm was produced.
  • the properties of the obtained bonded magnet were Br6.9 kG, iHc9.1 kOe, and (BH) max9.3 MGOe.
  • the obtained bonded magnet was placed in a vibration barrel, and dry barrel polishing was performed using a short cylindrical Sn piece having a diameter of 2 mm and a length of 1 mm to form a conductive coating layer of Sn fine particles.
  • the indentation depth of the Sn particles on the resin surface was about 0.9 ⁇ , and the coating thickness on the magnetic powder surface was 0.4 ⁇ .
  • the processing conditions for barrel polishing are the same as in Example 1.
  • the film thickness after plating was 22 ⁇ on the inner diameter side and 23 ⁇ on the outer diameter side.
  • the resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 5 shows the properties of the magnet before and after the moisture resistance test
  • Table 6 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test.
  • the conditions for the electro-Cu plating were a current density of 2.5 A / dm2, a plating time of 5 minutes, a pH of 10, and a bath temperature of 40 ° C.
  • the composition of the plating solution was 20 g of copper and 10 g of free cyanide / nOg / n.
  • the conditions of the electric Ni plating are the same as those in the first embodiment.
  • a ring-shaped bonded magnet obtained in the same manner as in Example 3 was put in a vibration barrel, and a dry barrel treatment was performed using a cylindrical Zn piece having a diameter of lmm and a length of 2 mm to form a conductive coating layer of Zn fine particles. .
  • the indentation depth of the Zn particles on the resin surface was about 0.8 ⁇ , and the coating thickness on the magnetic powder surface was 0.2 ⁇ .
  • the processing conditions for barrel polishing were the same as in Example 1.
  • Example 3 Thereafter, Cu and Ni plating were performed under the same conditions as in Example 3.
  • the resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 5 shows the properties of the magnet before and after the moisture resistance test
  • Table 6 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test.
  • a ring-shaped bonded magnet obtained in the same manner as in Example 3 was placed in a vibration barrel, and a dry barrel treatment was performed using a cylindrical Pb piece having a diameter of lmm and a length of lmm to form a conductive coating layer of Pb fine particles.
  • the press-in depth of the Pb particles on the resin surface was about 0.9 ⁇ , and the coating thickness on the magnetic powder surface was 0.6 ⁇ .
  • the processing conditions for barrel polishing were the same as in Example 1.
  • Example 3 Thereafter, Cu and Ni plating were performed under the same conditions as in Example 3.
  • the resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 5 shows the properties of the magnet before and after the moisture resistance test
  • Table 6 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test.
  • Example 3 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 3, electroless copper plating was performed. The plating thickness was 5 ⁇ . After the electroless copper plating, Cu and Ni plating were performed under the same conditions as in Example 3. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Before and after the humidity test Table 5 shows the characteristics, and Table 6 shows the results of surface conditions and the dimensional accuracy of the film thickness during the moisture resistance test. The conditions for the electroless copper plating were the same as in Comparative Example 1.
  • Example 3 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 3, a phenol resin and Ni powder were mixed to form a conductive film having a thickness of ⁇ . After the treatment, Cu and Ni plating were performed under the same conditions as in Example 3. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Table 5 shows the properties of the magnet before and after the moisture resistance test, and Table 6 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test. The conductive film treatment conditions were the same as in Comparative Example 2.
  • Example 3 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 3, forming a phenol resin layer as an adhesive layer in advance by a dipping method, and adhering Ag powder (particle diameter 0.7 ⁇ or less) to the surface Then, a conductive coating layer having a thickness of 7 ⁇ was formed using a vibration barrel. After the vibration barrel treatment, Cu and Ni plating were performed under the same conditions as in Example 3. The obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Table 5 shows the properties of the magnet before and after the moisture resistance test, and Table 6 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test. The vibration barrel treatment conditions were the same as in Comparative Example 3.
  • Example 2 In the same manner as in Example 1, a ring-shaped bonded magnet having an outer diameter of 34 mm, an inner diameter of 31 mm and a height of 8 mm was produced.
  • the properties of the obtained bonded magnet were iiBr6.7kG, iHc9.1kOe, and (BH) max9.1MGOe.
  • Example 2 It obtained similar manner as in Example 2 the magnet, and sealing and smoothing treatment with A1 2 0 3 based spherical barrel stones having an average diameter of 3mm with a vibrating barrel conditions.
  • a bonded magnet is inserted in a vibrating barrel, and dry barrel polishing is performed using short cylindrical Sn, Zn, and Pb pieces each having a diameter of lmm and a length of lmm.
  • Table 7 shows the depth of press-fitting of the metal particles on the resin surface, the sealing part, and the coating thickness on the magnetic powder surface.
  • the processing conditions for barrel polishing were the same as in Example 2.
  • the film thickness after plating was 21 ⁇ on the inner diameter side and 22 ⁇ on the outer diameter side.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 1000 hours. Tables 8 to 9 show the results and the film thickness dimensional accuracy.
  • the conditions for the Cu electroplating and Ni electroplating were the same as in Example 2.
  • Example 6 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 6, the same sealing and surface smoothing treatment as in Example 6 was performed, followed by cleaning, and then electroless copper plating. The plating thickness was 5 ⁇ . After electroless copper plating, Cu plating and Ni plating were performed under the same conditions as in Example 6.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) under the same conditions as in Example 6.
  • Table 8 shows the properties of the magnet before and after the moisture resistance test
  • Table 9 shows the surface condition results and the film thickness dimensional accuracy during the humidity resistance test.
  • the electroless copper plating conditions were the same as in Comparative Example 4.
  • Example 9 did not show any spots observed under a microscope at 30 ⁇ magnification even after 1000 hours.
  • the obtained bonded magnet was placed in a vibration barrel, and dry barrel polishing was performed using short cylindrical Fe, Ni, Co, and Cr pieces having a diameter of 0.7 mm and a length of 0.5 mm to form a conductive coating layer of the metal fine particles. Formed.
  • Table 10 shows the press-fitting depth of the metal particles on the resin surface and the coating thickness on the magnetic powder surface.
  • the processing conditions for barrel polishing are the same as in Example 1.
  • the film thickness after plating is 18 ⁇ on the inner diameter side and 21 ⁇ on the outer diameter side.
  • the resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 12 shows the properties of the magnet before and after the humidity resistance test
  • Table 13 shows the surface condition results and the film thickness dimensional accuracy during the humidity resistance test.
  • the conditions for the Cu plating and the Ni plating are the same as in the first embodiment.
  • Example 7 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 7, a phenol resin and Ni powder were mixed to form a conductive film having a thickness of ⁇ . After the treatment, Cu and Ni plating were performed under the same conditions as in Example 7. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Table 12 shows the properties of the magnet before and after the moisture resistance test, and Table 13 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test. The conductive film treatment conditions were the same as in Comparative Example 2.
  • Example 7 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 7, forming a phenol resin layer as an adhesive layer in advance by a dipping method, and then attaching Ag powder (particle diameter 0.7 ⁇ or less) to the surface Then, a conductive coating layer having a thickness of 7 ⁇ was formed using a vibration barrel. After the vibration barrel treatment, Cu and Ni plating were performed under the same conditions as in Example 7. The obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Table 12 shows the properties of the magnet before and after the moisture resistance test, and Table 13 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test. The vibration barrel treatment conditions were the same as in Comparative Example 3. Table 10
  • Example 15 In the same manner as in Example 1, a ring-shaped bonded magnet having an outer diameter of 29 mm, an inner diameter of 25 mm, and a height of 5 mm was produced. The characteristics of the obtained bonded magnet are shown in Table 15,
  • Example 2 the vibration barrel conditions Yore and sealing and smoothing treatment with A1 2 0 3 based spherical barrel stones having an average diameter of 3 mm.
  • a bonded magnet was inserted in a vibrating barrel, and dry barrel polishing was performed using short columnar Fe, Ni, Co, and Cr pieces of 0.5 mm in diameter and 0.4 mm in length to form a conductive coating layer of metal particles.
  • Table 14 shows the depth of press-fitting of the metal particles on the resin surface, the sealing part, and the coating thickness on the magnetic powder surface.
  • the processing conditions for barrel polishing were the same as in Example 2. After that, cleaning was performed, and electric Ni plating was performed by the trap plating method, and then Ni plating was performed.
  • the film thickness after plating was 20 ⁇ on the inner diameter side and 22 ⁇ on the outer diameter side.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 1000 hours. Tables 16 to 17 show the results and film thickness dimensional accuracy.
  • the conditions for the Cu electroplating and Ni electroplating were the same as in Example 2.
  • the zinc displacement treatment conditions were as follows: treatment time: 40 seconds, bath temperature: 22 ° C, liquid resistance: sodium hydroxide 300 g, zinc oxide 40 g / Z, ferric chloride lg / Z, rossel salt 30 g / / Was.
  • the film thickness was ⁇ . ⁇ .
  • Example 8 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 8, the same sealing and surface smoothing treatment as in Example 6 was performed, followed by cleaning, and electroless copper plating was performed. The plating thickness was 5 ⁇ . After electroless copper plating, Cu plating and Ni plating were performed under the same conditions as in Example 8.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) under the same conditions as in Example 8.
  • Tables 16 to 17 show the results and the film thickness dimensional accuracy.
  • the electroless copper plating conditions were the same as in Comparative Example 4.
  • Example 6 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 6, a phenol resin and Ni powder were mixed and applied to form a conductive resin film of ⁇ , and the magnet and a 5 mm steel ball were placed in a vibration barrel. 60% of the barrel volume was charged, and smooth polishing was performed by barrel polishing at an amplitude of 20 mm for 60 minutes. Thereafter, Cu plating and Ni plating were performed under the same conditions as in Example 8. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) under the same conditions as in Example 6. Tables 16 to 17 show the results and film thickness dimensional accuracy. The conductive film treatment conditions were the same as in Comparative Example 5.
  • Example 14 had spotting after about 700 hours, and Comparative Example 15 also had spotting after 550 hours. In contrast, Example 8 did not show any spots observed under a microscope at 30 ⁇ magnification even after 800 hours.
  • Example 2 In the same manner as in Example 1, a ring-shaped bond magnet having an outer diameter of 20 mm, an inner diameter of 17 mm and a height of 6 mm was produced.
  • the properties of the obtained bonded magnet were iiBr6.9 kG, iHc9.4 kOe, and (BH) max9.6MGOe.
  • the resulting bonded magnet was placed in a vibrating barrel, and dry barrel polishing was performed using a short cylindrical A1 piece having a diameter of 0.8 mm and a length of lmm to form a conductive coating layer of A1 fine particles.
  • the coating depth of the A1 fine particles on the resin surface was about 0.9 ⁇ , and the coating thickness on the magnetic powder surface was 0.5 ⁇ .
  • the processing conditions for barrel polishing are the same as in Example 1. After washing and zinc substitution, electric Ni plating was carried out by the trap plating method.
  • the film thickness after plating was 19 ⁇ on the inner diameter side and 21 ⁇ on the outer diameter side.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 18 shows the properties of the magnet before and after the humidity resistance test
  • Table 19 shows the surface condition results and the film thickness dimensional accuracy during the humidity resistance test.
  • the conditions of the electric Ni plating are the same as those in the first embodiment.
  • Example 9 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 9, a phenolic resin and Ni powder were mixed to form a conductive film having a thickness of ⁇ . After the treatment, Ni plating was performed under the same conditions as in Example 9. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours. Table 18 shows the properties of the magnet before and after the moisture resistance test, and Table 19 shows the surface condition results and the film thickness dimensional accuracy during the moisture resistance test. The conductive film treatment conditions were the same as in Comparative Example 2.
  • Example 2 In the same manner as in Example 1, a ring-shaped bonded magnet having an outer diameter of 36 mm, an inner diameter of 33 mm and a height of 3 mm was produced.
  • the properties of the resulting bonded magnet were Br 6.7 kG, iHc 9.2 kOe, and (BH) max 9.5 MGOe.
  • the surface was modified by A1 2 0 3 powder having a particle size of about 2 ⁇
  • a vegetable medium consisting of walnut nuts with a diameter of about 2 mm was charged at 50% of the barrel volume, the surface was polished by a dry method for 150 minutes, and the holes were sealed and smoothed.
  • the obtained bonded magnet is placed in a vibrating barrel, and dry barrel polishing is performed using a short cylindrical A1 piece with a diameter of 0.5 mm and a length of 0.7 mm to form a conductive coating layer of A1 fine particles.
  • the press-fitting coating depth of the Al particles on the resin surface was about 1.1 ⁇ , and the coating thickness on the magnetic powder surface was 0.6 ⁇ .
  • the processing conditions for barrel polishing are the same as in Example 1.
  • the film thickness after plating was 17 ⁇ on the inner diameter side and 19 ⁇ on the outer diameter side.
  • the obtained ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 500 hours.
  • Table 20 shows the properties of the magnet before and after the humidity resistance test
  • Table 21 shows the surface condition results and the film thickness dimensional accuracy during the humidity resistance test.
  • the conditions for the Cu electroplating and Ni electroplating were the same as in Example 2.
  • the treatment conditions for the zinc displacement treatment were a treatment time of 40 seconds, a bath temperature of 22 ° C., and a liquid composition of 300 g of sodium hydroxide, 40 g of zinc oxide, ferric chloride lg, and rossel salt 30 g /.
  • the film thickness was ⁇ . ⁇ .
  • Example 10 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 10, the same sealing and surface smoothing treatment as in Example 10 was performed, followed by cleaning, and then electroless copper plating was performed. The plating thickness was 6 ⁇ . After the electroless copper plating, Ni plating was performed under the same conditions as in Example 10. The resulting ring-shaped bonded magnet was subjected to an environmental test (moisture resistance test) at 80 ° C and a relative humidity of 90% for 1000 hours. Table 20 shows the properties of the magnet before and after the humidity resistance test, and Table 21 shows the surface condition results and film thickness dimensional accuracy during the humidity resistance test. The conditions for electroless copper plating were the same as in Comparative Example 4.
  • Ni plating was performed under the same conditions as in Example 10.
  • An environmental test moisture resistance test
  • Table 20 shows the properties of the magnet before and after the moisture resistance test
  • Table 21 shows the results of the surface condition and the film thickness accuracy during the moisture resistance test.
  • the conductive film treatment conditions were the same as in Comparative Example 5.
  • Comparative Example 19 showed spotting after about 750 hours, and Comparative Example 20 showed spotting after 680 hours, whereas Example 10 showed 1000 hours. Even afterwards, there was no point ⁇ ⁇ observed with a microscope at a magnification of 30 ⁇ .
  • the present invention relates to a dry method using a porous R-Fe-B bonded magnet as a medium by using a mixture of an abrasive and a vegetable medium or a mixture of an abrasive and a vegetable medium modified with an inorganic powder.
  • the polishing powder, the inorganic powder and the polishing dust can be fixed and sealed in the pores of the R-Fe-B-based bonded magnet with the oil and fat content of the vegetable medium,
  • surface smoothing treatment can be performed and modified, and this R-Fe-B based bonded magnet can be formed with a barrel device using amorphous A1 such as spherical, massive or needle-like (one wire) of required dimensions.
  • Barrel polishing is performed by a dry method, and the crushed A1 fine particles are press-fitted onto the resin surface and the sealing portion of the bonded magnet surface, and the magnetic powder surface is coated with the A1 fine particles to obtain R-Fe-B.
  • After forming an A1 coating film on the surface of the bonded magnet By performing a zinc substitution treatment on the surface of the Al coating layer, a dense and pinhole-free electrolytic plating layer can be formed, and an R-Fe-B based bond magnet having extremely excellent corrosion resistance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Description

明細書
高耐食性 R-Fe-B系ボンド磁石とその製造方法 技術分野
この発明は、 清浄性の高い金属被膜にて耐食性を改善したリング形状や円板 状の種々の形状からなる R-Fe-B系ボンド磁石に係り、 乾式バレル研磨により 研磨材の粉末及びボンド磁石の研磨屑、 さらに無機質粉体を空孔部に埋め込ん で封孔して表面平滑化処理した後、 あるいは前記の封孔処理を行うことなく、 Cu,Sn,Zn,Pb,Cd,In,Au,Ag,Fe,Ni,Co,Cr,Al及びその合金片の金属メディァによ る乾式バレル研磨により、 磨砕された前記金属微片をボンド磁石表面の樹脂面 及び空孔部または封孔部に圧入、 被覆し、 また磁粉面に金属微片を被覆するこ とにより、 磁石表面に十分な導電性を付与して、 無電解めつきすることなく直 接電解めつき処理を実施可能とし、 また、 前記の A1被覆層を形成した後、 亜鉛 置換処理を行うことによリ、 後処理の電解 Niめっきなどのめつき浴を限定する ことなく、 効率的に量産性良く形成可能な高耐食性めつき層を設けて、 耐食 性、 密着性を著しく改善した高耐食性 R-Fe-B系ボンド磁石とその製造方法に 関する。 背景技術
今日、 リング状や円板状の種々の形状からなるゴム磁石あるいはプラスチッ ク磁石と呼ばれるボンド磁石には、 従来の等方性ボンド磁石から異方性ボンド 磁石へ、 また、 フェライト系ボンド磁石からより高磁力の希土類系ボンド磁石 へと高性能化が進み、 さらに、 焼結磁石では最大エネルギー積が 50MGOe以上 の高磁気特性を発揮する R-Fe-B系磁性材を用いる R-Fe-B系ボンド磁石へと高 性能化が図られてきた。 R-Fe-B系ボンド磁石は、 その磁石合金組成に極めて酸化しやすい成分相及 び Feを多量に含むために鲭びやすい問題があリ、 表面に種々組成からなる樹脂 層を電着塗装、 スプレー法、 浸漬法、 含浸法等で被着していた (例えば、 特開 平 1-166519号、 特開平 1-245504号)。
これまで R-Fe-B系ボンド磁石の耐食性向上のために用レヽられてきた樹脂塗 装法、 例えば、 スプレー法ではリング状ボンド磁石の場合、 塗料のロスが大き く、 裏、 表を反転する必要があるため工数が多く、 また、 膜厚の均一性も劣る 問題があった。
また、 電着塗装法では、 膜厚は均一であるが、 磁石の 1個にそれぞれ電極に 取リ付ける必要があり、 さらに塗装後に外した電極部跡の補修、 すなわちタツ チアップが必要でぁリ、 多大の工数を要して特に小物には不適であるという問 題がある。
浸漬法では、 一定の均一な膜厚の塗膜を得るには塗料のタレ等の問題により 困難であり、 またポ一ラスなボンド磁石では空孔部が十分に埋まらず、 乾燥時 に膨れたり、 製品同士の付着等の問題がある。
金属被膜の生成方法については量産性を考慮すると、 焼結 R-Fe-B磁石で行 われている電気金属めつきを施すこと (特開昭 60-54406号、 特開昭 62-120003 号)が考えられるが、 R-Fe-B系ボンド磁石表面はポ一ラスでかつ導電性の低い 樹脂部分が露出しているため、 めっき液が残存したり、 樹脂部にめっき被膜が 十分に生成せずピンホール (無めつき部)が生じて、 発鲭が起こる。
そこで、 ポ一ラスなボンド磁石に侵入、 残留しても無害なめっき液を選定す る方法 (特開平 4-276092号)や下地に樹脂コーティングを施した後にめっきする 方法 (特開平 3-11714号、 特開平 4-276095号)が提案されている。
しかし、 めっき液の pH調整や完全な無害化は困難であり、 かつ成膜効率の よいめつき浴は見出されてなく、 また、 下地の厚みのばらつきがめっき層の不 安定要素となり、 十分な厚みの下地コーティングを施すのであれば、 表面の めっき層は不要になるという矛盾がある。
また、 R-Fe-B系ボンド磁石に成膜効率のよい Niめっきを施す方法とし て、 特定組成のめっき浴が提案 (特開平 4-99192号)されているが、 やはリボン ド磁石に侵入、 残留して発鲭させる恐れがある。
一方、 構造材などにおいて、 Niめっき前に通常行われている Cuストライク めっきは強アル力リ性か強酸性のいずれかであリ、 R-Fe-B系ボンド磁石への 処理としては不適である。
また、 電子部品に耐磨耗性を付与するため、 あるいは自動車用鋼板等の防鲭 処理として、 高温酸性浴タイプの NiPめっき処理が実用化されているが、 R- Fe-B系ボンド磁石に適用するには、 磁石内部を腐食させるため不適である。 そこで、 めつき液や洗浄液などがポ一ラスな R-Fe-B系ボンド磁石に侵入、 残留するのを防止して、 効率よく電気 Niめっき等のめっき層が形成でき、 耐食 性を向上させ得る構成からなる R-Fe-B系ボンド磁石の製造方法として、
(1) R-Fe-B系ボンド磁石の表面に樹脂と導電性粉末との混合物を塗装し素材表 面に導電性被膜層を形成する方法。
(2) R-Fe-B系ボンド磁石の表面に粘着性を有する樹脂層を形成し、 金属粉体を 付着させて素材表面に導電性被膜層を形成する方法 (特開平 5-302176号)。
(3) R-Fe-B系ボンド磁石の表面に樹脂と導電性粉末との混合物を塗装して導電 性被膜層を形成した後、 表面平滑処理を施す方法 (特開平 9-186016号)。 が提案されている。
しかし上記 3つの方法は素材の空孔部を封孔するために種々の樹脂を用いて ぉリ、 必然的に樹脂の塗布 (含侵)、 硬化 (平滑化処理)と工程が煩雑になり好ま しくない。
また、 素材の樹脂を塗布 (含侵)する方法では、 樹脂を素材表面に均一に塗布 することは困難であリ、 たとえ後工程でバレル研磨を行っても寸法精度に優れ ためつき品を得ることは難しい。 さらに前記導電被膜層は樹脂層の中に導電性 物質あるいは金属粉を含有させたものであり、 表面においてボンド磁石の樹脂 露出部は R-Fe-B系ボンド磁石素材に比べると改善されているものの、 製法上 被膜樹脂露出部が少なからず存在し、 表面に導電性の低い部分が存在すること から、 均一な良好な導電性の表面を得るのは困難であり、 電気めつき時にピン ホールが生じ易くなるなどの問題がある。
そこで発明者は、 植物性媒体または無機質粉体にて表面を改質された植物性 媒体と研磨材との混合物をメディアとして乾式法でバレル研磨し、 研磨材の粉 末とボンド磁石の研磨屑をボンド磁石の空孔部に植物性媒体の油脂分で固着、 封孔するとともに表面平滑して、 アル力リ性浴による無電解銅めつきにより導 電層を形成する方法を提案した。
しかし、 無電解銅めつきはめつき液寿命が短く良好な鍍金被膜を得るための 液管理が難しいという問題点がある。 さらに従来に比べ耐食性、 寸法精度は優 れるものの、 今日の様々な用途に対応していくためにはさらに高い耐食性が要 求される。 発明の開示
この発明は、 長時間の高温高湿試験でも発鲭しなレ、極めて高い耐食性を有す る R-Fe-B系ボンド磁石の提供を目的とし、 高い耐食性を実現するため極めて 高い密着強度で、 種々の耐食性被膜が均一に R-Fe-B系ボンド磁石に形成でき る製造方法の提供を目的としている。
また、 この発明は、 従来の無電解めつき法において、 めっき液や洗浄液など がポーラスな R-Fe-B系ボンド磁石に侵入、 残留するのを防止した磁石表面に 高密着強度で寸法精度よく耐食性被膜を設けるのに最適な工業的工程からなる 高耐食性 R-Fe-B系ボンド磁石の製造方法の提供を目的としている。 発明者らは、 耐食性および表面清浄性に優れた R-Fe-B系ボンド磁石の電気 めっき技術については、 素材表面にきわめて均一に導電性を付与することが重 要であることに着目し、 その導電性膜の形成方法について種々検討した結果、 R-Fe-B系ボンド磁石を、 所要寸法の球状、 塊状あるいは針状 (ワイヤー)等の不 定形 Cu片を金属メディアとして用いて、 バレル装置にて乾式法にてバレル研 磨を施すことにより、 磨砕された Cu微片がボンド磁石表面の樹脂面および空 孔部に圧入、 被覆され、 また磁粉面にも Cu微片が被覆されて R-Fe-B系ボンド 磁石表面に極めて均一に導電性膜が付与でき、 良好な電気めつきが可能とな リ、 耐食性に優れ、 磁気特性劣化の少ない R-Fe-B系ボンド磁石めつき被膜品 を得ることができることを知見した。
さらに発明者らは、 ボンド磁石表面の平滑性が求められる場合に、 上述の問 題を解決すべく種々検討した結果、 ポーラスな R-Fe-B系ボンド磁石を A1203、 SiCなどの無機質粉体を焼き固めた研磨材と果実の殻、 トウモロコシの芯など の植物性媒体の混合物、 または上記研磨材と上記無機質粉体にて表面を改質さ れた植物性媒体の混合物をメディアとして用いて乾式法にてバレル研磨を施す ことによって、 研磨材の粉末及び改質用の無機質粉体並びにボンド磁石を構成 する磁粉の表面酸化層などの研磨屑を、 植物性媒体の油脂分により当該磁石の 空孔部に固着、 封孔することが可能であり、 同時に表面を平滑化処理すること も可能であることから、 乾式バレル研磨後に磁石素材表面に直接導電性膜を形 成でき、 平滑性が向上し、 耐食性がさらにすぐれた R-Fe-B系ボンド磁石を得 ることができることを知見した。
また、 発明者らは、 乾式バレル研磨の金属メディアに上記の Cu片以外に、 ビッカース硬度値が 80以下の Sn,Zn,Pb,Cd,In,Au,Agの軟質金属片、 さらに Fe,Ni,Co,Cr,をメディアとして用いることが可能であることを知見した。 さらに、 発明者らは、 不定形 A1片をメディアとして用いて、 バレル装置にて 乾式法にてバレル研磨を施すことにより、 磨砕された A1微片がボンド磁石表面 の樹脂面および封孔部に圧入、 被覆され、 また磁粉面にも同様に A1微片が被覆 されて R-Fe-B系ボンド磁石表面に形成された A1被覆層表面に亜鉛置換処理を 行うことによリ、 電気めつき時の A1流出が防止され、 良好な電気めつきが可能 となり、 耐食性に優れ、 磁気特性劣化の少ない R-Fe-B系ボンド磁石のめっき 被膜品を得ることができることを知見し、 この発明を完成した。 発明を実施するための最良の形態
この発明による高耐食性 R-Fe-B系ボンド磁石は、
R-Fe-B系ボンド磁石の表面を構成する樹脂面及び空孔部に
じひ,811,211,?15,じ 111 11 6,:1^ 0,^ 1及びその合金の金属微片が圧入かっ 被覆され、 また表面を構成する磁粉面に金属微片が被覆されて形成された当該 磁石表面の金属被覆層と、 この金属被覆層を介して形成された電解めつき層と を有することを特徴とする。
また、 この発明による高耐食性 R-Fe-B系ボンド磁石は、 R-Fe-B系ボンド磁 石の表面を形成する空孔部が、 研磨材の粉末とボンド磁石の研磨屑、 さらに無 機質粉体を植物性媒体の油脂分にて固着、 封孔された後、 表面を構成する樹脂 面および前記封孔部に前記金属微片が圧入かつ被覆され、 また表面を構成する 磁粉面に金属微片が被覆されて形成された当該磁石表面の前記金属被覆層とこ の金属被覆層を介して形成された電解めつき層とを有することを特徴とする。 また、 この発明による高耐食性 R-Fe-B系ボンド磁石は、 表面を構成する樹 脂面及び前記封孔部に A1微片が圧入かつ被覆され、 また表面を構成する磁粉面 に A1微片が被覆されて形成された A1被覆層を有し、 当該磁石表面に亜鉛置換 処理による Zn層を有し、 さらにこの被覆層を介して形成された電解めつき層 とを有することを特徴とする。
この発明において、 R-Fe-B系ボンド磁石は等方性、 異方性ボンド磁石のい ずれも対象とし、 例えば圧縮成型の場合は、 所要組成、 性状の磁性粉末の熱硬 化性樹脂、 カップリング剤、 潤滑等を添加混練した後、 圧縮成型し加熱して樹 脂を硬化して得られ、 射出成型、 押し出し成型、 圧延成型の場合は、 磁性粉末 に熱可塑性樹脂、 カップリング剤、 潤滑等を添加混練したのち、 射出成型、 押 し出し成型、 圧延成型のいずれかの方法にて成型して得られる。
R-Fe-B系磁性材粉には、 所要の R-Fe-B系合金を溶解し踌造後に粉砕する溶 解粉砕法、 Ca還元にて直接粉末を得る直接還元拡散法、 所要の R-Fe-B系合金 を溶解ジェットキャスターでリボン箔を得てこれを粉砕'焼鈍する急冷合金 法、 所要の R-Fe-B系合金を溶解し、 これをガスアトマイズで粉末化して熱処 理するガスアトマイズ法、 所要原料金属を粉末化したのち、 メカニカルァロイ ングにて微粉末化して熱処理するメカニカルァロイ法及び所要の R-Fe-B系合 金を水素中で加熱して分解並びに再結晶させる方法 (HDDR法)などの各種製法 で得た等方性、 異方性粉末が利用できる。
この発明において、 R-Fe-B系磁石粉末に用いる希土類元素 Rは、 組成の 10原 子%~30原子%を占めるが、 Nd,Pr,Dy,Ho,Tbのうち少なくとも 1種、 あるいは さらに、 1^,06,8111,&(1 1^11,1¾1,¥1),1^1,¥のぅち少なくとも 1種を含むものが 好ましい。 また、 通常 Rのうち 1種をもって足リるが、 実用上は 2種以上の混合 物 (ミッシュメタル、 シジム等)を入手上の便宜等の理由により用いることがで きる。 なお、 この Rは純希土類元素でなくてもよく、 工業上入手可能な範囲で 製造上不可避な不純物を含有するものでも差し支えない。
Rは、 上記系磁石粉末における必須元素であって、 10原子%»未満では結晶構 造が a-鉄と同一構造の立方晶組織となるため、 高磁気特性、 特に高保磁力が得 られず、 30原子%を超えると Rリッチな非磁性相が多くなリ、 残留磁束密度 (Br)が低下してすぐれた特性の永久磁石が得られない。 よって、 Rは、 10原子 %~30原子%の範囲が望ましい。
Bは、 上記系磁石粉末における必須元素であって、 2原子%未満では菱面体構 造が主相となり、 高い保磁力 (iHc)は得られず、 28原子%を超えると Bリッチな 非磁性相が多くなリ、 残留磁束密度 (Br)が低下するため、 すぐれた永久磁石が 得られない。 よって、 Bは 2原子%~28原子%»の範囲が望ましい。
Feは、 上記系磁石粉末において必須元素でぁリ、 65原子%未満では残留磁束 密度 (Br)が低下し、 80原子 を超えると高い保磁力が得られないので、 Feは 65 原子%~80原子%の含有が望ましい。
また、 Feの一部を Coで置換することは、 得られる磁石の磁気特性を損なう ことなく、 温度特性を改善することができるが、 Co置換量が Feの 20%を超え ると、 逆に磁気特性が劣化するため、 好ましくない。 Coの置換量が Feと Coの 合計量で 5原子%>~15原子%の場合は、 (Br)は置換しない場合に比較して増加す るため、 高磁束密度を得るために好ましい。
また、 R,B,Feのほか、 工業的生産上不可避的不純物の存在を許容でき、 例え ば、 Bの一部を 4.0wt%以下の C、 2.0wt%以下の P、 2.0wt%以下の S、 2.0wt 以下の Cuのうち少なくとも 1種、 合計量で 2.0wt%以下で置換することによ り、 永久磁石の製造性改善、 低価格化が可能である。
さらに、 Al,Ti,V,Cr,Mn,Bi,Nb,Ta,Mo,W,Sb,Ge,Ga,Sn,Zr,Ni,Si,Zn,Hfのう ち少なくとも 1種は、 磁石粉末に対してその保磁力、 減磁曲線の角型性を改善 あるいは製造性の改善、 低価格化に効果があるため添加することができる。 な お、 添加量の上限は、 ボンド磁石の (BH)maxや (Br)値を所要値とするに必要な 該条件を満たす範囲が望ましい。
またこの発明において、 バインダーには射出成形では、 樹脂として 6Pa、 12Pa、 PPS、 PBT、 EVA等、 又押出成形、 カレンダーロール、 圧延成形では PVC、 NBR、 CPE、 NR、 ハイバロン等、 又圧縮成形には、 エポキシ樹脂、 DAP、 フエノール樹脂等が利用でき、 必要に応じて、 公知の金属バインダー を用いることができる。 さらに、 助材には成形を容易にする滑剤や樹脂と無機 フイラ一の結合剤、 シラン系、 チタン系等のカップリング剤などを用いること ができる。 この発明において、 封孔、 平滑化処理のためバレル研磨する際のメディアと しては、 A1203、 SiCなどの無機質粉体を焼き固めたセラミックス、 あるいは 金属ボールなどの研磨材と、 植物性の皮屑、 おが屑、 果実の殻、 トウモロコシ の芯などの植物性媒体の混合物、 または上記の研磨材と上記 A1203、 SiCなど の無機質粉体にて表面を改質された上記の植物性媒体の混合物を用いる。 この 混合物をメディアとしてバレル研磨処理を行うことによリ、 ボンド磁石の平滑 封孔処理を行うことが可能となる。
この発明の封孔、 平滑化処理及びボンド磁石表面に金属被覆層を形成するた めの乾式バレル研磨には、 公知のバレルが使用でき、 一般の回転数 20〜50rpm の回転バレル、 回転数 70~200rpmの遠心バレル、 振動振幅 0.5nmi以上 50mm 未満の振動バレル研磨法などを採用することができる。
また、 バレル研磨の雰囲気は通常は大気中でよいが、 メディアによってはバ レル研磨中の摩擦熱があり、 磁石の酸ィ匕などが懸念される場合は、 N2、 Ar、 He等の単独またはその混合ガス等の不活性ガス雰囲気とすることができる。 この発明において、 封孔、 平滑化処理のとき、 使用する回転バレル、 振動バ レルの場合、 バレル内に装入するボンド磁石と研磨材と植物性媒体の総量は、 20%未満では処理量が少なすぎて実用的でなく、 90%を越えると撹拌が不十分 で、 十分な研磨ができないため、 内容積の 20%~90%が好ましい。
この発明の封孔、 平滑化処理における研磨材は特に限定しないが、 粒径 l~7mm、 好ましくは 3~5mm程度の研磨材と長径 0.5~3mm、 好ましくは長径 l~2mm程度の植物性媒体、 もしくは上記研磨材と無機質粉体にて表面を改質 された上記の植物性媒体の混合物を用いて、 磁石とメディアの混合物が均一に 撹拌され、 相対的な移動運動が行われる条件で行うことが好ましい。
また、 上記無機質粉体にて表面を改質された植物性媒体としては、 植物性媒 体表面にワックスなどの油脂分を混練被覆した後、 粒径 0.01~3μπιの A1203、 SiC、 ZrO、 MgOの無機質粉体を表面に均一にまぶし、 固着したものを用い る。 封孔物である上記研磨材の粉末および植物性媒体表面を改質するための無 機質粉体ならびにボンド磁石の研磨屑は、 粒径 0.01~3μπιである。
メディァにおける植物性媒体と研磨材との比率 (植物性媒体/研磨材)は 1/5~2 とし、 好ましくは比率 1の混合物がよい。 また、 ボンド磁石とメディアとの混 合比率 (ボンド磁石/メディァ)は 3以下がよい。
この発明において、 上記の研磨材は当該磁石の表面酸化層を有効に研削除去 し、 表面を平滑化し、 研磨材の粉末および植物性媒体表面を改質するための無 機質粉体ならびにボンド磁石の研磨屑などの封孔物を叩いて固める効果を担 い、 上記植物性媒体はその油脂分を効果的に放出することによリ、 封孔物の固 着力を高める効果を担う。
この発明において、 表面平滑化処理後のボンド磁石の空孔率は 3%以下にす ることが可能で、 ボンド磁石表面の平滑封孔処理のみならず、 磁石の表面酸化 層も除去して活性な R-Fe-B系磁性粉の表面を得ることができる。
この発明において、 金属片による乾式バレル研摩には、 回転式、 振動式、 遠 心式等の公知のバレル装置が使用できる。 金属片の形状については球状、 塊状 あるいは針状 (ワイヤ一)等の不定形金属が使用でき、 金属片の大きさは、 0.1mm未満では十分な圧入、 被覆に長時間を要して実用的でなく、 また 10mm を越えると表面凹凸が大きくなリ、 表面全体に当該金属を被覆することができ ないため、 金属片の大きさは 0.1mm~10mmが望ましく、 0.3mm~5mmが好 ましく、 さらに好ましい範囲は 0.5mm~3mmである。
また、 この発明において、 乾式バレル内に装入される金属片は同一形状、 寸 法でもよく、 異形状、 異寸法のものを混合してもよい。 又不定形金属片に金属 微粉を混入してもよい。 さらに、 当該金属のみ、 又は合金、 あるいは芯材の Fe,Ni,Al等の異種金属に Cuを被覆した Cu複合金属でもよい。 また、 乾式バレル研磨に投入する比率、 磁石と金属片の容積比率 (磁石/金属) を 3以下が望ましく、 3を越えると金属の圧入、 被覆に時間を要し実用的でな く、 またボンド磁石表面からの磁粉の脱粒が生じるためである。
バレル研磨機内に装入するボンド磁石及び金属片の量は研磨機内容積の
20%~90%が好ましく、 20%未満では、 処理量が少なすぎて実用的でなく、 90%を越えると、 撹拌が不十分で、 十分な研磨ができない問題がある。
圧入、 被覆される金属微片は微粉末又は針状片でその大きさについては、 長 径 5μπιを越えると、 磁石表面との密着性が良くなく、 電解めつき時に密着不 良、 剥離等が生じるため長径 5μπι以下とした。 好ましい範囲は長径 2μπι以下で ある。
この発明において、 金属微片の圧入、 被覆に関し、 金属微片はボンド磁石表 面の樹脂面及び空孔部と磁粉面にお 、ては、 柔らかい樹脂面及び空孔部には圧 入、 被覆され、 磁粉面には被覆される。 樹脂面及び空孔部に圧入される量は表 面ほど多く、 樹脂層内部に漸次的に含有量が減少している。
この発明において、 樹脂面及び空孔部の金属の圧入層の厚さは Ο.ΐμιη以上 2μπι以下が好ましく、 Ο.ΐμπι未満では充分な導電性が得られず、 2μιηを越える と性能上の問題はないが作業に時間を要し、 実用的でない。
また、 ボンド磁石表面の磁粉面の金属の被覆層の厚さは 0.2μπι以下が好まし く、 磁粉面表面と金属微片の反応は一種のメカノケミカル的反応であリ、
0.2μπιを越えると密着性が劣るためである。
この発明による乾式法バレル研磨の場合の回転数は、 回転バレルの場合は回 転数 20~50rpm、 遠心バレルの場合は回転数 70~200rpm、 また振動バレル研 磨法の場合は振動数 50〜: L00Hz、 振動振幅 0.3~10mmが好ましい。
この発明において、 バレル研磨法によリ磁石表面に金属微片を圧入被覆する 際、 バレル研磨法の雰囲気は大気中でも良いが、 メディアとして用いる不定形 金属片および磨砕された金属微片及び磁石表面の磁粉がバレル研磨中の摩擦熱 による酸化により導電性が低下し、 均一な電解めつきが得られず耐食性が低下 する恐れがあるため、 バレル研磨法においては雰囲気は、 N2、 Ar、 He等の単 独あるいは混合ガス等の不活性ガス中が好ましい。
この発明において、 A1被覆面に亜鉛置換する理由は後続の電気めつき時に A1の流出を防止するためである。 亜鉛置換方法としては酸化亜鉛、 水酸化ナト リウム、 塩化第二鉄、 ロッセリレ塩等を含む溶液で行うのが好ましい。 処理条件 は浸漬にて浴温 10°C〜25°C、 処理時間 10秒 ~120秒で行うのが好ましい。
亜鉛置換方法としては、 洗浄→亜鉛置換→洗浄の処理が好ましい。 A1表面に 汚れ等付着物がある場合には炭酸ナトリゥム、 三リン酸ナトリゥムの溶液で浸 漬脱脂して洗浄を行うのがよレヽ。 形成される Zn層は極表面層は
ΖηΟχ(Χ = 0~1)の形に形成され、 形成される Zn層厚は Ο.ΐμηι以下が好ましく、 層厚が Ο.ΐμηιを超えると密着不良を生ずるので好ましくない。
この発明において、 電気めつき方法には、 Ni,Cu,Sn,Co,Zn,Cr,Ag,Au,Pb,Pt 等から選ばれた少なくとも 1種の金属またはそれらの合金に B,S,Pが含有される めっき法が好ましく、 特に Niめっきが好ましい。 めっき厚は 50μπι以下、 好ま しくは 10~30μπιである。 この発明では前述の樹脂面及び空孔部に金属微粉の 圧入、 被覆が有効な作用をするため一般的なヮット浴によってもめっき可能で ぁリ、 優れた密着性、 耐食性が得られる。
特に Niめつき浴のめっき方法としては、 洗浄→電気 Niめつき—洗浄乾燥 の工程で行うのがよく、 Niめっき浴の pH調整は塩基性炭酸ニッケル、
pH4.0~4.6、 50°C~60°Cの処理が好ましい。
Niめっきは上述しためつき浴を用い、 陽極を電解二ッケル板を用 、て所要電 流を流し、 電気 Niめつきを行うのが陽極 Ni板の Niの溶出を安定させるため、 電極に Sを含有したェストランドニッケルチップを使用することが望ましい。
Niめっき浴のめつき方法としては、 洗浄→電気めっき→洗浄→乾燥の工程で行 うのがよく、 乾燥は 70°C以上の処理が好ましい。 めっき浴槽にはボンド磁石の形状に応じて種々の浴槽を使用することがで き、 リング形状のボンド磁石の場合、 ひっかけめっき処理、 バレルめつき処理 が好ましい。 実 施 例
実施例 1
超急冷法で作製した Ndl2at%、 Fe77at%、 B6at%、 Co5at%の組成からなる 平均粒径 150μπιの合金粉末にエポキシ樹脂 2wt%を加えて混練し、 7ton/cm2の 圧力で圧縮成型した後、 170°Cで 1時間キュア一し、 外径 22mmX内径
20mmX高さ 3mmのリング状ボンド磁石を作製した。 得られたボンド磁石の 特性は Br6.7kG、 iHc8.9kOe、 (BH)max9.0MGOeであった。
得られたボンド磁石を振動バレルに入れ、 直径 lmm、 長さ lmmの短円柱状 Cu片を用い、 乾式バレル研磨処理を行い、 Cu微片による導電被覆層を形成し た。 Cu微片の樹脂面での圧入被覆深さは約 0.7μπι、 磁粉面での被覆厚さは Ο.ΐμιηであつ,こ。
なお、 バレル研磨の処理条件は、 雰囲気 iiArガス中、 容積 3 の振動数 70Hz、 振動振幅 3mmの振動バレルに、 50ケのボンド磁石 (見かけ容積 0.15 重量 100g)と前記寸法の Cu片 (見かけ容積 2Z、 重量 10kg)を装入し、 総装入量は バレル内容積の 60%で、 3時間の処理を行った。
その後洗浄を行い、 ひっかけめっき方式で電気 Niめっきを行った。 めっき後 の膜厚は内径側 20μπι、 外径側 22μπιであった。 得られたリング状ボンド磁石 を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿 試験前後の磁石の特性を表 1、 耐湿試験時の表面状況結果及び膜厚寸法精度を 表 2に示す。 なお、 電気 Niめっきの条件は、 電流密度 2A/dm2、 めっき時間 60分、 pH4.2、 浴温 55°Cであり、 めっき液組成は硫酸ニッケル 240g/Z、 塩化ニッケル 45g/ 炭酸ニッケル適量 (pH調整)、 ほう酸 30g/rCあった。
比較例 1
実施例 1と同様方法で得たリング状ボンド磁石を洗浄後、 無電解銅めつきを 行った。 めっき厚は 5μπιであった。 無電解銅めつき後、 実施例 1と同一の条件 で Niめつきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その結果を表 1~表 3に示す。
なお、 無電解銅めつきの条件は、 めっき時間 20分、 pH11.5、 浴温 20°Cであ り、 めっき液組成は硫酸銅 29g 、 炭酸ナトリウム 25g/ 酒石酸塩 140g 、 水 酸化ナトリゥム 40g〃、 37%ホルムアルデヒド 150mrCあった。
比較例 2
実施例 1と同様方法で得たリング状ボンド磁石を洗浄後、 フエノール樹脂と Ni粉を混合して ΙΟμπιの導電被膜を形成した。 処理後、 実施例 1と同一の条件 で Niめつきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その結果を表 1〜表 3に示す。
なお、 導電被膜処理条件は、 処理時間 30分、 処理液組成はフエノール樹脂 5wt%、 Ni粉 (粒径 0.7μπι以下) 5wt%、 MEK (メチルェチルケトン) 90wt%あつ た。
比較例 3
実施例 1と同様方法で得たリング状ボンド磁石を洗浄後、 浸漬法にて接着層 としたフエノール樹脂層を予め形成後、 Ag粉 (粒径 0.7μπι以下)を表面に付着さ せた後、 振動バレルにて 7μπιの導電被覆層を形成した。 振動バレル処理後、 実 施例 1と同一の条件で Niめつきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その結果を 表 1〜表 3に示す なお、 振動バレル処理条件は、 容積 3.5の振動バレルを用い、 50ケのボンド 磁石を装入し、 見かけ容積が 2の 2.5mm径のスチールボールをメディアとし て、 3時間の処理を行った。
表 1、 表 2ょリ明らかなごとく、 比較例 1は約 100時間後に点鯖が認められ、 比較例 2は 300時間後、 比較例 3においても約 350時間後に点銷が認められた が、 これに対して実施例 1は 500時間後においても 30倍の顕微鏡で認められる 点鯖はなかった。
Figure imgf000017_0001
(素材上がりの磁気特性)- (耐湿試験後の磁気特性) 磁気特性劣化率 (%) = — -—————- X 100
(素材上がりの磁気特性) 耐湿試験時の 膜厚寸法精度
製 法
表面状況 (μπι) 実施例 1 変化なし (発鯖なし) 20± 1 Cu被膜層 +Niめっき 比較例 1 100時間後点鲭 25±2 無電解 Cuめつき +Niめつき 比較例 2 300時間後微小鯖 30± 10 導電樹脂層 +Niめっき 比較例 3 350時間後微小鲭 27 ± 10 導電被膜層 +Niめっき
実施例 2
超急冷法で作製した Ndl2at%、 Fe77at%、 B6at%、 Co5at%の組成からなる 平均粒径 150μπιの合金粉末にエポキシ樹脂 2wt%を加えて混練し、 7ton/cm2の 圧力で圧縮成型した後、 170°Cで 1時間キュア一し、 外径 26mmX内径
24mm X高さ 5mmのリング状ボンド磁石を作製した。 得られたボンド磁石の 特性は Br6.8kG、 iHc9.1kOe、 (BH)max9.2MGOeであった。
得られた磁石 100ケ (200g)を 20Zの容積の振動バレルに平均直径 3mmの A1203 系球状バレル石とともに投入後、 粒径 Ιμιη程度の A1203粉体によって表面を改 質された直径 lmm程度のクルミの実からなる植物性媒体をバレル容積の 50% 投入して 120分間振幅 20mmにて乾式法で表面研磨をし、 封孔するとともに平 滑処理した。
ついでボンド磁石を振動バレルにて入れ、 雰囲気 (iArガス中、 直径 lmm長 さ lmmの短円柱状の Cu片を用い、 振動数 70Mz、 振動振幅 3mmの乾式バレル 研磨処理を行い、 Cu微片による導電被覆層を形成した。 Cu微片の樹脂面、 封 孔部での圧入深さは約 0.7μπι、 磁粉面での被覆厚さは Ο.ΐμπιであった。 なおバ レル研磨の処理条件は、 容積 3.5W)振動バレルに、 50ケのボンド磁石 (見かけ 容積 0.15、 重量 100g)と前記寸法の Cu片 (見かけ容積 2Ζ、 重量 10kg)を装入し、 総装入量はバレル容積の 60%で振幅 20mmにて 3時間の処理を行った。
その後洗浄を行い、 ひっかけめっき方式で電気 Niめっきを行った。 めっき後 の膜厚は内径側 21μιη、 外径側 23μπιであつた。 得られたリング状ボンド磁石 を 80°C、 相対湿度 90%、 800時間にて環境試験 (耐湿試験)を行った。 その耐湿 試験前後の磁石の特性を表 3、 耐湿試験時の表面状況結果及び膜厚寸法精度を 表 4に示す。
なお、 電気 Niめっきの条件は、 電流密度 2A/dm2、 めっき時間 60分、 pH4.2、 浴温 55°Cであり、 めっき液組成は硫酸ニッケル 240g 、 塩化ニッケル 45g/l、 炭酸ニッケル適量 (pH調整)、 ほう酸 30g/rt'あった。
比較例 4
実施例 2と同様方法で得たリング状ボンド磁石を洗浄後、 実施例 2と同様の封 孔、 表面平滑化処理を行って洗浄後、 無電解銅めつきを行った。 めっき厚は 5μιηであった。 無電解銅めつき後、 実施例 2と同一の条件で Niめっきを行つ た。 得られたリング状ボンド磁石を実施例 2と同一条件の環境試験 (耐湿試験) を行った。 その結果および膜厚寸法精度 (耐湿試験)を行った。 その結果を表 3~ 表 4に示す。
なお、 無電解銅めつきの条件は、 めっき時間 20分、 pH11.5、 浴温 20°Cであ リ、 めっき液組成は硫酸銅 29g l、 炭酸ナトリウム 25g 、 酒石酸塩 140g 、 水 酸化ナトリゥム 40g 、 37%ホルムアルデヒド 150πιΓϋあった。
比較例 5
実施例 2と同様方法で得たリング状ボンド磁石を洗浄後、 下記条件にてフエ ノール樹脂と Ni粉を混合して塗布して ΙΟμπιの導電樹脂被膜を形成し、 振動バ レルに前記磁石と 5mmの銅ボールをバレル容積の 60%装入し振幅 20mmにて 60分間バレル研磨にて平滑研磨した。
その後、 実施例 2と同一の条件で Niめっきを行った。 得られたリング状ボン ド磁石を実施例 2と同一の条件の環境試験 (耐湿試験)を行った。 その結果およ び膜厚寸法精度 (耐湿試験)を行った。 その結果を表 3〜表 4に示す。
なお導電被膜処理条件は処理時間 30分、 処理液組成はフェノール樹脂
5wt%、 Ni粉 (粒径 0.7μπι以下) 5wt%、 MEK (メチルェチルケトン) 90wt%であつ た。
表 4よリ比較例 4は約 700時間後に点鲭が認められ、 比較例 5においても 600時 間後、 点鲭が認められた。 それに比べ実施例 2は 800時間後においても 30倍の 顕微鏡で認められる点鯖はなかった。
Figure imgf000020_0001
,, (素材上がりの磁気特性) -耐湿試験後の磁気特性) 磁気特性劣化率 (%) = ― -"; X 100
(素材上がりの磁気特性) 表 4
Figure imgf000021_0001
実施例 3
実施例 1と同様方法で、 外径 25mmX内径 23mmX高さ 3mmのリング状ボン ド磁石を作製した。 得られたボンド磁石の特性は Br6.9kG、 iHc9.1kOe、 (BH)max9.3MGOeであつた。
得られたボンド磁石を振動バレルに入れ、 直径 2mm、 長さ lmmの短円柱状 Sn片を用い、 乾式バレル研磨処理を行い、 Sn微片による導電被覆層を形成し た。 Sn微片の樹脂面での圧入深さは約 0.9μπι、 磁粉面での被覆厚さは 0.4μπιで あつた。 バレル研磨の処理条件は実施例 1と同様である。
その後洗浄を行い、 ひっかけめっき方式で電気 Cuめっきを行い、 その後電 気 Niめっきを行った。 めっき後の膜厚は内径側 22μπι、 外径側 23μιηであつ た。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試 験 (耐湿試験)を行った。 その耐湿試験前後の磁石の特性を表 5、 耐湿試験時の 表面状況結果及び膜厚寸法精度を表 6に示す。
なお、 電気 Cuめっきの条件は、 電流密度 2.5A/dm2、 めっき時間 5分、 pH10、 浴温 40°Cであり、 めっき液組成は銅 20g 、 遊離シアン lOg/n?あつ た。 また、 電気 Niめっきの条件は実施例 1と同様である。 実施例 4
実施例 3と同様方法で得たリング状ボンド磁石を振動バレルにて入れ、 直径 lmm, 長さ 2mmの円柱状 Zn片を用い、 乾式バレル処理を行い、 Zn微片による 導電被覆層を形成した。 Zn微片の樹脂面での圧入深さは約 0.8μπι、 磁粉面での 被覆厚さは 0.2μπιであつた。 バレル研磨の処理条件は実施例 1と同様であつ た。
その後、 実施例 3と同一の条件で Cu、 Niめっきを行った。 得られたリング状 ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行つ た。 その耐湿試験前後の磁石の特性を表 5、 耐湿試験時の表面状況結果及び膜 厚寸法精度を表 6に示す。
実施例 5
実施例 3と同様方法で得たリング状ボンド磁石を振動バレルに入れ、 直径 lmm, 長さ lmmの円柱状 Pb片を用い、 乾式バレル処理を行い、 Pb微片による 導電被覆層を形成した。 Pb微片の樹脂面での圧入深さは約 0.9μπι、 磁粉面での 被覆厚さは 0.6μπιであつた。 バレル研磨の処理条件は実施例 1と同様であつ た。
その後、 実施例 3と同一の条件で Cu、 Niめっきを行った。 得られたリング状 ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行つ た。 その耐湿試験前後の磁石の特性を表 5、 耐湿試験時の表面状況結果及び膜 厚寸法精度を表 6に示す。
比較例 6
実施例 3と同様方法で得たリング状ボンド磁石を洗浄後、 無電解銅めつきを 行った。 めっき厚は 5μπιであった。 無電解銅めつき後、 実施例 3と同一の条件 で Cu、 Niめっきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の 特性を表 5、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 6に示す。 なお、 無電解銅めつきの条件は比較例 1と同様であつた。
比較例 7
実施例 3と同様方法で得たリング状ボンド磁石を洗浄後、 フエノール樹脂と Ni粉を混合して ΙΟμιηの導電被膜を形成した。 処理後、 実施例 3と同一の条件 で Cu、 Niめっきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の 特性を表 5、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 6に示す。 なお、 導電被膜処理条件は比較例 2と同様であつた。
比較例 8
実施例 3と同様方法で得たリング状ボンド磁石を洗浄後、 浸漬法にて接着層 としたフエノール樹脂層を予め形成後、 Ag粉 (粒径 0.7μπι以下)を表面に付着さ せた後、 振動バレルにて 7μπιの導電性被覆層を形成した。 振動バレル処理後、 実施例 3と同一の条件で Cu、 Niめっきを行った。 得られたリング状ボンド磁石 を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿 試験前後の磁石の特性を表 5、 耐湿試験時の表面状況結果及び膜厚寸法精度を 表 6に示す。 なお、 振動バレル処理条件は比較例 3と同様であった。
耐湿試 ¾?ΒΪί 耐湿試験後 磁気特性劣化率 (%)
Br iHc (BH)max Br iHc (BH)max Br iHc (BH)max
(kG) (kOe) (MGOe) (kG) (kOe) (MGOe) (kG) (kOe) (MGOe) 実施例 3 6.7 9.0 9.0 6.7 8.9 9.0 2.8 2.2 3.2 実施例 4 6.7 9.0 9.0 6.7 8.8 9.0 2.8 3.2 3.2 実施例 5 6.7 9.0 9.0 6.6 8.8 8.9 4.4 3.3 4.3 比較例 6 6.5 8.7 8.8 5.8 7.6 7.7 15.9 16.5 17.2 比較例 7 6.5 8.9 8.9 6.2 8.4 8.5 10.1 7.7 8.6 比較例 8 6.5 8.9 9.0 6.2 8.5 8.5 10.1 6.6 8.6
(素材上がリの磁気特性)- (耐湿試験後の磁気特性) 磁気特性劣化率 (%) = xioo
(素材上がりの磁気特性)
表 6
Figure imgf000025_0001
表 5〜表 6よリ明らかなごとく、 比較例 6は約 130時間後に点鯖が認められ、 比較例 7は 250時間後、 比較例 8においても約 330時間後に点鯖が認められた が、 これに対して実施例 3は 500時間後においても 30倍の顕微鏡で認められる 点锖はなかった。
実施例 6
実施例 1と同様方法で、 外径 34mmX内径 31mmX高さ 8mmのリング状ボン ド磁石を作製した。 得られたボンド磁石の特性 iiBr6.7kG、 iHc9.1kOe、 (BH)max9.1MGOeであつた。
得られた磁石を実施例 2と同様方法、 条件で振動バレルを用い平均直径 3mm の A1203系球状バレル石による封孔並びに平滑処理した。
ついでボンド磁石を振動バレルにて入れ、 直径 lmm長さ lmmの短円柱状の Sn,Zn,Pb片を用い、 乾式バレル研磨処理を行い、 金属微片による導電被覆層 を形成した。 金属微片の樹脂面、 封孔部での圧入深さ、 磁粉面での被覆厚さを 表 7に示す。 なぉバレル研磨の処理条件は実施例 2と同様であつた。
その後洗浄を行い、 ひっかけめっき方式で電気 Niめっきを行い、 その後 Ni めっきを行った。 めっき後の膜厚は内径側 21μπι、 外径側 22μπιであった。 得 られたリング状ボンド磁石を 80°C、 相対湿度 90%、 1000時間にて環境試験 (耐 湿試験)を行った。 その結果及び膜厚寸法精度を表 8~表 9に示す。 なお、 電気 Cuめっき、 電気 Niめっきの条件は実施例 2と同様であった。
比較例 9
実施例 6と同様方法で得たリング状ボンド磁石を洗浄後、 実施例 6と同様の封 孔、 表面平滑化処理を行って洗浄後、 無電解銅めつきを行った。 めっき厚は 5μπιであった。 無電解銅めつき後、 実施例 6と同一の条件で Cuめっき、 Niめつ きを行った。
得られたリング状ボンド磁石を実施例 6と同一条件の環境試験 (耐湿試験)を 行った。 その耐湿試験前後の磁石の特性を表 8、 耐湿試験時の表面状況結果及 び膜厚寸法精度を表 9に示す。 なお、 無電解銅めつき条件は比較例 4と同様で めった。
比較例 10
実施例 6と同様方法で得たリング状ボンド磁石を洗浄後、 フエノール樹脂と Ni粉を混合して塗布して ΙΟμπιの導電樹脂被膜を形成し、 振動バレルに前記磁 石と 5mmのスチールボールをバレル容積の 60%装入し振幅 20mmにて 60分間 バレル研磨にて平滑研磨した。
その後、 実施例 6と同一の条件で Cuめっき、 Niめっきを行った。 得られたリ ング状ボンド磁石を実施例 6と同一の条件の環境試験 (耐湿試験)を行った。 そ の結果および膜厚寸法精度を表 8〜表 9に示す。 なお、 導電被膜処理条件は比較 例 5と同様であった。 表 7
Figure imgf000027_0001
Figure imgf000027_0002
(素材上がリの磁気特性) - (耐湿試験後の磁気特性) 磁気特性劣化率 ( ) = X 100
(素材上がりの磁気特性) 耐湿試験時の 膜厚寸法
表面状況 精度 (μπι) 実施例 6 Sn 変化なし (無発锖) 22±1 封孔処理 + Sn被膜層 + Cu,Niめつき 実施例 6Zn 変化なし (無発鲭) 22± 1 封孔処理 + Zn被膜層 + Cu,Niめつき 実施例 6 Pb 変化なし (無発鲭) 22±1 封孔処理 +Pb被膜層 +Cu,Niめつき 比較例 9 800時間後点鲭 27±2 封孔処理 +無電解 Cu + Cu,Niめつき 比較例 10 600時間後点鑌 30±5 導電樹脂層 +平滑研摩 +Cu,Niめつき
表 9よリ比較例 9は約 800時間後に点鲭が認められ、 比較例 10においても 600 時間後、 点鲭が認められた。 それに比べ実施例 6は 1000時間後においても 30倍 の顕微鏡で認められる点鯖はなかった。
実施例 7
実施例 1と同様方法で、 外径 21mmX内径 18mmX高さ 4mmのリング状ボン ド磁石を作製した。 得られたボンド磁石の特性は表 11に示すごとく、
Br6.8kG、 iHc9.1kOe、 (BH)max9.2MGOeであった。
得られたボンド磁石を振動バレルに入れ、 直径 0.7mm、 長さ 0.5mmの短円 柱状 Fe,Ni,Co,Cr片を用い、 乾式バレル研磨処理を行い、 前記金属微片による 導電被覆層を形成した。 前記金属微片の樹脂面での圧入深さと磁粉面での被覆 厚さを表 10に示す。 バレル研磨の処理条件は実施例 1と同様である。
その後洗浄を行い、 ひっかけめっき方式で電気 Cuめっきを行い、 その後電 気 Niめっきを行った。 めっき後の膜厚は内径側 18μπι、 外径側 21μπιであつ た。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試 験 (耐湿試験)を行った。 その耐湿試験前後の磁石の特性を表 12、 耐湿試験時の 表面状況結果及び膜厚寸法精度を表 13に示す。 なお、 電気 Cuめっき、 電気 Ni めつきの条件は実施例 1と同様である。
比較例 11
実施例 7と同様方法で得たリング状ボンド磁石を洗浄後、 無電解銅めつきを 行った。 めっき厚は 6μπιであった。 無電解銅めつき後、 実施例 3と同一の条件 で Cu、 Niめっきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%, 500時間にて環境試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の 特性を表 12、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 13に示す。 な お、 無電解銅めつきの条件は比較例 1と同様であった。
比較例 12
実施例 7と同様方法で得たリング状ボンド磁石を洗浄後、 フエノール樹脂と Ni粉を混合して ΙΟμιηの導電被膜を形成した。 処理後、 実施例 7と同一の条件 で Cu、 Niめっきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の 特性を表 12、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 13に示す。 な お、 導電被膜処理条件は比較例 2と同様であった。
比較例 13
実施例 7と同様方法で得たリング状ボンド磁石を洗浄後、 浸漬法にて接着層 としたフエノール樹脂層を予め形成後、 Ag粉 (粒径 0.7μπι以下)を表面に付着さ せた後、 振動バレルにて 7μιηの導電性被覆層を形成した。 振動バレル処理後、 実施例 7と同一の条件で Cu、 Niめっきを行った。 得られたリング状ボンド磁石 を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿 試験前後の磁石の特性を表 12、 耐湿試験時の表面状況結果及び膜厚寸法精度を 表 13に示す。 なお、 振動バレル処理条件は比較例 3と同様であった。 表 10
Figure imgf000030_0001
素材上がリ磁気特性
Br(kG) iHc(kOe) (BH)ma MGOe
Fe 6.8 9.1 9.2 施 Ni 6.8 9.1 9.2 例 Co 6.8 9.1 9.2
7 Cr 6.8 9.1 9.2 比較例 11 6.8 9.1 9.2 比較例 12 6.8 9.1 9.2 比較例 13 6.8 9.1 9.2 表 12
Figure imgf000031_0001
(素材上がリの磁気特性)- (耐湿試験後の磁気特性) 磁気特性劣化率 (%) = X 100
(素材上がりの磁気特性)
表 13
Figure imgf000032_0001
表 10〜表 13よリ明らかなごとく、 比較例 11は約 130時間後に点鯖が認めら れ、 比較例 12は 350時間後、 比較例 13においても約 370時間後に点鲭が認めら れたが、 これに対して実施例 7は 500時間後においても 30倍の顕微鏡で認めら れる点鲭はなかった。
実施例 8
実施例 1と同様方法で、 外径 29mm X内径 25mm X高さ 5mmのリング状ボン ド磁石を作製した。 得られたボンド磁石の特性は表 15に示すごとく、
Br6.7kG、 iHc9.3kOe、 (BH)max9.5MGOeであった。
得られた磁石を実施例 2と同様方法、 条件で振動バレルを用レ、平均直径 3mm の A1203系球状バレル石による封孔並びに平滑処理した。 ついでボンド磁石を振動バレルにて入れ、 直径 0.5mm長さ 0.4mmの短円柱 状の Fe,Ni,Co,Cr片を用い、 乾式バレル研磨処理を行い、 金属微片による導電 被覆層を形成した。 金属微片の樹脂面、 封孔部での圧入深さ、 磁粉面での被覆 厚さを表 14に示す。 なおバレル研磨の処理条件は実施例 2と同様であった。 その後洗浄を行い、 ひっかけめっき方式で電気 Niめっきを行い、 その後 Ni めっきを行った。 めっき後の膜厚は内径側 20μπι、 外径側 22μιηであった。 得 られたリング状ボンド磁石を 80°C、 相対湿度 90%、 1000時間にて環境試験 (耐 湿試験)を行った。 その結果及び膜厚寸法精度を表 16〜表 17に示す。
なお、 電気 Cuめっき、 電気 Niめっきの条件は実施例 2と同様であった。 ま た、 亜鉛置換処理の処理条件は、 処理時間 40秒、 浴温 22°Cで、 液難は水酸 化ナトリウム 300g 、 酸化亜鉛 40g/Z、 塩化第二鉄 lg/Z、 ロッセル塩 30g //であつ た。 膜厚は Ο.ΟΙμπιであった。
比較例 14
実施例 8と同様方法で得たリング状ボンド磁石を洗浄後、 実施例 6と同様の封 孔、 表面平滑化処理を行って洗浄後、 無電解銅めつきを行った。 めっき厚は 5μπιであった。 無電解銅めつき後、 実施例 8と同一の条件で Cuめっき、 Niめつ きを行った。
得られたリング状ボンド磁石を実施例 8と同一条件の環境試験 (耐湿試験)を 行った。 その結果及び膜厚寸法精度を表 16~表 17に示す。 なお、 無電解銅めつ き条件は比較例 4と同様であつた。
比較例 15
実施例 6と同様方法で得たリング状ボンド磁石を洗浄後、 フエノール樹脂と Ni粉を混合して塗布して ΙΟμπιの導電樹脂被膜を形成し、 振動バレルに前記磁 石と 5mmのスチールボールをバレル容積の 60%装入し振幅 20mmにて 60分間 バレル研磨にて平滑研磨した。 その後、 実施例 8と同一の条件で Cuめっき、 Niめっきを行った。 得られたリ ング状ボンド磁石を実施例 6と同一の条件の環境試験 (耐湿試験)を行った。 そ の結果および膜厚寸法精度を表 16〜表 17に示す。 なお、 導電被膜処理条件は比 較例 5と同様であった。
表 14
Figure imgf000034_0001
素材上がり
Br iHc (BH)max
(kG) (kOe) (MGOe)
実施例 8 Fe 6.9 9.3 9.5
実施例 8 Ni 6.9 9.3 9.5
実施例 8 Co 6.9 9.3 9.5
実施例 8 Cr 6.9 9.3 9.5
比較例 14 6.9 9.3 9.5 比較例 15 6.9 9.3 9.5 表 16
Figure imgf000035_0001
fa (素材上がリの磁気特性)- (耐湿試験後の磁気特性) 磁気特性劣化率 (%) = X 100
(素材上がリの磁気特性)
表 17
Figure imgf000036_0001
表 17よリ比較例 14は約 700時間後に点锖が認められ、 比較例 15においても 550時間後、 点鯖が認められた。 それに比べ実施例 8は 800時間後においても 30 倍の顕微鏡で認められる点鯖はなかった。
実施例 9
実施例 1と同様方法で、 外径 20mmX内径 17mmX高さ 6mmのリング状ボン ド磁石を作製した。 得られたボンド磁石の特性 iiBr6.9kG、 iHc9.4kOe、 (BH)max9.6MGOeであつた。
得られたボンド磁石を振動バレルに入れ、 直径 0.8mm、 長さ lmmの短円柱 状 A1片を用い、 乾式バレル研磨処理を行い、 A1微片による導電被覆層を形成 した。 A1微片の樹脂面での圧入被覆深さは約 0.9μπι、 磁粉面での被覆厚さは 0.5μπιであつた。 バレル研磨の処理条件は実施例 1と同様である。 その後洗浄を行い、 亜鉛置換処理を行った後、 ひっかけめっき方式で電気 Ni めっきを行った。 めっき後の膜厚は内径側 19μπι、 外径側 21μπιであった。 得 られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿 試験)を行った。 その耐湿試験前後の磁石の特性を表 18、 耐湿試験時の表面状 況結果及び膜厚寸法精度を表 19に示す。 なお、 電気 Niめっきの条件は実施例 1 と同様である。
比較例 16
実施例 9と同様方法で得たリング状ボンド磁石を洗浄後、 無電解銅めつきを 行った。 めっき厚は 6μπιであった。 無電解銅めつき後、 実施例 3と同一の条件 で Cu、 Niめっきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の 特性を表 18、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 19に示す。 な お、 無電解銅めつきの条件は比較例 1と同様であった。
比較例 17
実施例 9と同様方法で得たリング状ボンド磁石を洗浄後、 フエノール樹脂と Ni粉を混合して ΙΟμπιの導電被膜を形成した。 処理後、 実施例 9と同一の条件 で Niめつきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行つた。 その耐湿試験前後の磁石の特性を 表 18、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 19に示す。 なお、 導 電被膜処理条件は比較例 2と同様であつた。
比較例 18
実施例 9と同様方法で得たリング状ボンド磁石を洗浄後、 浸漬法にて接着層 としたフエノール樹脂層を予め形成後、 Ag粉 (粒径 0.7μπχ以下)を表面に付着さ せた後、 振動バレルにて 7μπιの導電性被覆層を形成した。 振動バレル処理後、 実施例 9と同一の条件で Niめっきを行った。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿試験)を行った。 その耐湿試 験前後の磁石の特性を表 18、 耐湿試験時の表面状況結果及び膜厚寸法精度を表 19に示す。 なお、 振動バレル処理条件は比較例 3と同様であった。 表 18
Figure imgf000038_0001
丄,, (素材上がリの磁気特性 - (耐湿試験後の磁気特性) 磁気特性劣化率 = ; X 100
(素材上がリの磁気特性)
表 19
Figure imgf000039_0001
表 18〜表 19より明らかなごとく、 比較例 16は約 120時間後に点鑌が認めら れ、 比較例 17は 270時間後、 比較例 18においても約 300時間後に点鯖が認めら れたが、 これに対して実施例 9は 500時間後においても 30倍の顕微鏡で認めら れる点鯖はなかった。
実施例 10
実施例 1と同様方法で、 外径 36mmX内径 33mmX高さ 3mmのリング状ボン ド磁石を作製した。 得られたボンド磁石の特性 ¾Br6.7kG、 iHc9.2kOe、 (BH)max9.5MGOeであつた。
得られた磁石 220ケを 20Zの容積の振動バレルに平均直径 4mmの A1203系球 状バレル石とともに投入後、 粒径 2μπι程度の A1203粉体によって表面を改質さ れた直径 2mm程度のクルミの実からなる植物性媒体をバレル容積の 50%投入 して 150分間乾式法で表面研磨をし、 封孔するとともに平滑処理した。
得られたボンド磁石を振動バレルに入れ、 直径 0.5mm、 長さ 0.7mmの短円 柱状 A1片を用い、 乾式バレル研磨処理を行い、 A1微片による導電被覆層を形 成した。 Al微片の樹脂面での圧入被覆深さは約 1.1μπι、 磁粉面での被覆厚さは 0.6μπιであつた。 バレル研磨の処理条件は実施例 1と同様である。
その後洗浄を行い、 亜鉛置換処理を行った後、 ひっかけめっき方式で電気 Ni めっきを行った。 めっき後の膜厚は内径側 17μπι、 外径側 19μιηであった。 得 られたリング状ボンド磁石を 80°C、 相対湿度 90%、 500時間にて環境試験 (耐湿 試験)を行った。 その耐湿試験前後の磁石の特性を表 20、 耐湿試験時の表面状 況結果及び膜厚寸法精度を表 21に示す。
なお、 電気 Cuめっき、 電気 Niめっきの条件は実施例 2と同様であった。 ま た、 亜鉛置換処理の処理条件は、 処理時間 40秒、 浴温 22°Cで、 液組成は水酸 化ナトリウム 300g 、 酸化亜鉛 40g 、 塩化第二鉄 lg 、 ロッセル塩 30g /であつ た。 膜厚は Ο.ΟΙμπιであった。
比較例 19
実施例 10と同様方法で得たリング状ボンド磁石を洗浄後、 実施例 10と同様 の封孔、 表面平滑処理を行って洗浄後、 無電解銅めつきを行った。 めっき厚は 6μπιであった。 無電解銅めつき後、 実施例 10と同一の条件で Niめっきを行つ た。 得られたリング状ボンド磁石を 80°C、 相対湿度 90%、 1000時間にて環境 試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の特性を表 20、 耐湿試験時 の表面状況結果及び膜厚寸法精度を表 21に示す。 なお、 無電解銅めつきの条件 は比較例 4と同様であった。
比較例 20
実施例 10と同様方法で得たリング状ボンド磁石を洗浄後、 下記条件にてフエ ノール樹脂と Ni粉を混合して 12μπιの導電樹脂被膜を形成し、 振動バレルに前 記磁石と 2mmのスチールボールをバレル容積の 70%装入して 90分間バレル研 磨にて平滑研磨した。
その後、 実施例 10と同一の条件で Niめっきを行った。 得られたリング状ボ ンド磁石を 80°C、 相対湿度 90%、 1000時間にて環境試験 (耐湿試験)を行った。 その耐湿試験前後の磁石の特性を表 20、 耐湿試験時の表面状況結果及び膜厚寸 法精度を表 21に示す。 なお、 導電被膜処理条件は比較例 5と同様であった。 表 20
Figure imgf000041_0001
(素材上がりの磁気特性)- (耐湿試験後の磁気特性) 磁気特性劣化率 (%) = -—— ~~—— X 100
(素材上がリの磁気特性)
表 21
Figure imgf000042_0001
表 20〜表 21よリ明らかなごとく、 比較例 19は約 750時間後に点鯖が認めら れ、 比較例 20は 680時間後に点鲭が認められたが、 これに対し実施例 10は 1000 時間後においても倍率 30倍の顕微鏡で認められる点鲭はなかつた。
産業上の利用可能性
この発明は、 ポーラスな R-Fe-B系ボンド磁石を研磨材と植物性媒体の混合 物、 または研磨材と無機質粉体にて改質された植物性媒体の混合物をメディア として用いて乾式法にてバレル研磨を施すことによリ、 研磨粉並びに無機質粉 体及び研磨屑を R-Fe-B系ボンド磁石の空孔部に植物性媒体の油脂分で固着、 封孔することができ、 同時に表面平滑ィ匕処理が可能で改質でき、 さらに、 この R-Fe-B系ボンド磁石を所要寸法の球状、 塊状あるいは針状 (ワイヤ一)等の不定 形 A1を用いてバレル装置にて乾式法にてバレル研磨を施し、 磨砕された A1微 片をボンド磁石表面の樹脂面および封孔部に圧入被覆し、 また磁粉面に A1微片 を被覆することにより、 R-Fe-B系ボンド磁石表面に A1被覆膜を形成した後、 この Al被覆層表面に亜鉛置換処理を行うことで、 徽密でピンホールのない電解 めっき層の形成可能となり、 極めて優れた耐食性を有する R-Fe-B系ボンド磁 石を得ることができる。

Claims

請求の範囲
1. R-Fe-B系ボンド磁石表面を構成する樹脂面及び空孔部に金属微片が圧 入、 且つ被覆され、 また表面を構成する磁粉面に金属微片が被覆されて 形成された当該磁石表面の金属被覆面と前記金属被覆面を介して最外表 面に電解めつき層を有する高耐食性 R-Fe-B系ボンド磁石。
2. R-Fe-B系ボンド磁石表面に形成された空孔部を研磨材の粉末とボンド 磁石の研磨屑、 あるいは更に無機質粉体を植物性媒体の油脂分にて固 着、 封孔され、 磁石表面を構成する樹脂面および前記封孔部に金属微片 が圧入被覆され、 また磁石表面を構成する磁粉面に金属微片が圧入被覆 された当該磁石表面の金属被覆面と前記金属被覆面を介して最外表面に 電解めつき層を有する高耐食性 R-Fe-B系ボンド磁石。
3. 請求項 1、 請求項 2において、 金属微片は
〇11,811 11 1),〇(1,111 11, ^ 6,:^,00, 1及びその合金でぁる高耐食性 R-Fe-B系ボンド磁石。
4. 請求項 1または請求項 2において、 樹脂面及び空孔部に形成された金属微 片圧入被覆層の厚みが 0.1μπι~2μπιである高耐食性 R-Fe-B系ボンド磁 石。
5. 請求項 1または請求項 2において、 磁粉面上に被覆された金属微片被覆層 の厚みが Ι.Ομπι以下である高耐食性 R-Fe-B系ボンド磁石。
6. 請求項 5において、 磁粉面上に被覆された Cu,Fe,Ni,Co,Cr及びその合金 被覆層の厚みは 0.2μιη以下である高耐食性 R-Fe-B系ボンド磁石。
7. 請求項 1または請求項 2において、 金属微片が A1及びその合金の場合は 当該磁石表面の A1及びその合金被覆面に形成の Zii層を介して電解めつ き層を有する高耐食性 R-Fe-B系ボンド磁石。
8. バレル装置内にて、 R-Fe-B系ボンド磁石と不定形金属微片を装入し て、 乾式法にてバレル研磨を施して、 R-Fe-B系ボンド磁石表面を構成 する樹脂面及び空孔部に圧砕された金属微片を圧入かつ被覆し、 また磁 石表面を構成する磁粉面に前記金属微片を被覆し、 当該磁石表面に金属 被覆層を形成して、 導電性金属被覆層を介して、 最外表面に電解めつき を施して、 電解めつき層を形成する高耐食性 R-Fe-B系ボンド磁石の製 造方法。
9. 植物性媒体または無機質粉体にて表面を改質された植物性媒体と研磨材 との混合物をメディァとして、 R-Fe-B系ボンド磁石を乾式法にてバレ ル研磨して前記研磨材の粉末とボンド磁石の研磨屑あるいはさらに前記 無機質粉体を R-Fe-B系ボンド磁石の空孔部を植物性媒体の油脂分で固 着、 封孔するとともに、 表面平滑化して改質した後、 当該ボンド磁石と 不定形金属微片をバレル装置内に装入して、 乾式法にてバレル研磨し、 圧砕された金属微片を前記磁石の樹脂面および前記封孔部に圧入かつ被 覆し、 また表面の磁粉面に金属微片を被覆することにより、 R-Fe-B系 ボンド磁石表面に導電性を付与した後、 最外表面に電解めつき層を形成 する高耐食性 R-Fe-B系ボンド磁石の製造方法。
10. 請求項 8または請求項 9において、 金属微片は
Cu,Sn,Zn,Pb,Cd,In,Au,Ag,Fe,Ni,Co,Cr,Al及びその合金である高耐食性 R-Fe-B系ボンド磁石の製造方法。
11. 請求項 8または請求項 9において、 金属微片が A1の場合は当該磁石表面 の A1被覆面に亜鉛置換処理法によリ形成の Zn層を介して電解めつき層 を有する高耐食性 R-Fe-B系ボンド磁石の製造方法。
12. 請求項 8または請求項 9において、 不定形金属微片の大きさは
0.1mm〜: LOmmの球状、 塊状あるいは針状である高耐食性 R-Fe-B系ボン ド磁石の製造方法。
13. 請求項 12において、 不定形 Cu,Fe,Ni,Co,Cr微片の大きさは
0.1mm~5mmの球状、 塊状あるいは針状である高耐食性 R-Fe-B系ボン ド磁石の製造方法。
14. 請求項 8または請求項 9において、 バレル研磨して圧砕された金属微片の 大きさは長径 5μπι以下である高耐食性 R-Fe-B系ボンド磁石の製造方 法。
15. 請求項 8または請求項 9において、 回転、 振動または遠心バレルを用い て、 磁石と金属微片の容積比率 (磁石/金属微片)を 3以下にてバレル研磨 する高耐食性 R-Fe-B系ボンド磁石の製造方法。
16. 請求項 9において、 研磨材は無機質粉体を焼き固めた研磨石あるいは金 属ボールである高耐食性 R-Fe-B系ボンド磁石の製造方法。
17. 請求項 9において、 植物性媒体は植物性の皮屑、 おが屑、 果実の殻、 ト ゥモロコシの芯である高耐食性 R-Fe-B系ボンド磁石の製造方法。
18. 請求項 8または請求項 9において、 R-Fe-B系ボンド磁石と金属微片を乾 式法にてバレル研磨する雰囲気は不活性ガス雰囲気である高耐食性 R- Fe-B系ボンド磁石の製造方法。
PCT/JP1998/004829 1997-10-30 1998-10-23 AIMANT LIE A BASE DE R-Fe-B EXTREMEMENT RESISTANT A LA CORROSION ET PROCEDE DE FABRICATION DUDIT AIMANT WO1999023675A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98950380A EP1028437B1 (en) 1997-10-30 1998-10-23 HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
DE69834567T DE69834567T2 (de) 1997-10-30 1998-10-23 Korrosionsbeständige r-fe-b verbundmagnet und herstellungsverfahren

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP9/316435 1997-10-30
JP31643597 1997-10-30
JP33368197 1997-11-17
JP9/333681 1997-11-17
JP10/44559 1998-02-10
JP04455898A JP3236813B2 (ja) 1997-10-30 1998-02-10 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP10/44558 1998-02-10
JP04455998A JP3236814B2 (ja) 1997-11-17 1998-02-10 高耐食性R−Fe−B系ボンド磁石及びその製造方法
JP10/48827 1998-02-12
JP04882798A JP3236815B2 (ja) 1998-02-12 1998-02-12 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP04882898A JP3236816B2 (ja) 1998-02-12 1998-02-12 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP10/48828 1998-02-12
JP10/56044 1998-02-19
JP10056044A JPH11238641A (ja) 1998-02-19 1998-02-19 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP10083011A JPH11260613A (ja) 1998-03-12 1998-03-12 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP10/83012 1998-03-12
JP10/83011 1998-03-12
JP10083012A JPH11260614A (ja) 1998-03-12 1998-03-12 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP10/103496 1998-03-30
JP10103496A JPH11283818A (ja) 1998-03-30 1998-03-30 高耐食性R−Fe−B系ボンド磁石とその製造方法

Publications (1)

Publication Number Publication Date
WO1999023675A1 true WO1999023675A1 (fr) 1999-05-14

Family

ID=27579948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004829 WO1999023675A1 (fr) 1997-10-30 1998-10-23 AIMANT LIE A BASE DE R-Fe-B EXTREMEMENT RESISTANT A LA CORROSION ET PROCEDE DE FABRICATION DUDIT AIMANT

Country Status (5)

Country Link
EP (1) EP1028437B1 (ja)
KR (1) KR100374398B1 (ja)
CN (1) CN1205626C (ja)
DE (1) DE69834567T2 (ja)
WO (1) WO1999023675A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024506A1 (en) * 1999-01-27 2000-08-02 Sumitomo Special Metals Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
WO2002004714A1 (en) * 2000-07-07 2002-01-17 Hitachi Metals, Ltd. Electrolytic copper-plated r-t-b magnet and plating method thereof
WO2003038157A1 (fr) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Procede de formation d'un revetement depose par electrolyse sur la surface d'un article
US6923898B2 (en) * 1999-07-01 2005-08-02 Neomax Co., Ltd. Electroplating device, and process for electroplating work using the device
CN113589594A (zh) * 2021-07-19 2021-11-02 Tcl华星光电技术有限公司 显示面板及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389193B2 (ja) * 1999-04-26 2003-03-24 住友特殊金属株式会社 リング状ボンド磁石空孔部の封孔処理方法および該方法により封孔処理されたリング状ボンド磁石
FR2819120B1 (fr) * 2000-12-28 2003-02-28 Valeo Equip Electr Moteur Procede de fabrication d'un inducteur d'une machine electrique tournante
JP4162884B2 (ja) * 2001-11-20 2008-10-08 信越化学工業株式会社 耐食性希土類磁石
CN103403821B (zh) * 2011-03-02 2016-08-10 日立金属株式会社 稀土系粘结磁体的制造方法
US8717132B2 (en) 2012-01-09 2014-05-06 Apple Inc. Unibody magnet
CN103632687A (zh) * 2013-12-19 2014-03-12 广东金潮集团有限公司 一种cd光盘电镀材料
CN103779027A (zh) * 2014-01-27 2014-05-07 江西江钨稀有金属新材料有限公司 一种粘结型稀土磁粉及其制备设备
CN105810380A (zh) * 2016-03-11 2016-07-27 江西江钨稀有金属新材料有限公司 一种耐高温型高磁性稀土永磁材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290107A (ja) * 1986-06-09 1987-12-17 Seiko Instr & Electronics Ltd 磁石
JPH08250356A (ja) * 1995-03-13 1996-09-27 Daido Steel Co Ltd 異方性磁石用合金粉末、これを用いた異方性永久磁石とその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254504A (ja) * 1988-08-18 1990-02-23 Nippon Steel Corp 高耐食性希土類系永久ボンド磁石およびその製造方法
DE69220519T2 (de) * 1991-03-04 1998-02-19 Toda Kogyo Corp Verfahren zur Plattierung eines Verbundmagneten sowie Verbundmagnet mit einem Metallüberzug
JP3151843B2 (ja) * 1991-03-04 2001-04-03 戸田工業株式会社 合金磁石のめっき法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290107A (ja) * 1986-06-09 1987-12-17 Seiko Instr & Electronics Ltd 磁石
JPH08250356A (ja) * 1995-03-13 1996-09-27 Daido Steel Co Ltd 異方性磁石用合金粉末、これを用いた異方性永久磁石とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1028437A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024506A1 (en) * 1999-01-27 2000-08-02 Sumitomo Special Metals Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
US6399150B1 (en) 1999-01-27 2002-06-04 Sumitomo Special Metals Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
US7053745B2 (en) 1999-01-27 2006-05-30 Neomax Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
US6923898B2 (en) * 1999-07-01 2005-08-02 Neomax Co., Ltd. Electroplating device, and process for electroplating work using the device
WO2002004714A1 (en) * 2000-07-07 2002-01-17 Hitachi Metals, Ltd. Electrolytic copper-plated r-t-b magnet and plating method thereof
US6866765B2 (en) 2000-07-07 2005-03-15 Hitachi Metals, Ltd. Electrolytic copper-plated R-T-B magnet and plating method thereof
KR100720015B1 (ko) * 2000-07-07 2007-05-18 가부시키가이샤 네오맥스 전해구리도금한 r-t-b계 자석 및 그 도금 방법
WO2003038157A1 (fr) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Procede de formation d'un revetement depose par electrolyse sur la surface d'un article
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles
CN113589594A (zh) * 2021-07-19 2021-11-02 Tcl华星光电技术有限公司 显示面板及其制备方法
CN113589594B (zh) * 2021-07-19 2022-07-12 Tcl华星光电技术有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
CN1205626C (zh) 2005-06-08
CN1279810A (zh) 2001-01-10
EP1028437A1 (en) 2000-08-16
EP1028437B1 (en) 2006-05-17
DE69834567D1 (de) 2006-06-22
DE69834567T2 (de) 2007-04-26
KR20010040267A (ko) 2001-05-15
EP1028437A4 (en) 2001-06-13
KR100374398B1 (ko) 2003-03-04

Similar Documents

Publication Publication Date Title
JP3278647B2 (ja) 希土類系ボンド磁石
WO1999023675A1 (fr) AIMANT LIE A BASE DE R-Fe-B EXTREMEMENT RESISTANT A LA CORROSION ET PROCEDE DE FABRICATION DUDIT AIMANT
JP2000133541A (ja) 高耐食性R−Fe−B系ボンド磁石の製造方法
KR100371786B1 (ko) 고내식성 R-Fe-B계 본드 자석의 제조 방법
US6423369B1 (en) Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP3236816B2 (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP3236813B2 (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP3236815B2 (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP3236814B2 (ja) 高耐食性R−Fe−B系ボンド磁石及びその製造方法
JPH11283818A (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP3519069B2 (ja) 希土類系焼結磁石
JPH11260613A (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JPH11260614A (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JPH11238641A (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JPH0613211A (ja) 耐食性のすぐれた永久磁石及びその製造方法
JPH0927433A (ja) 高耐食性R−Fe−B系ボンド磁石の製造方法
JP3218028B2 (ja) 外部に連通する中空部を備えた被処理物の表面処理方法および該方法により処理されたリング状ボンド磁石
JP2002134342A (ja) 希土類系永久磁石およびその製造方法
JP2922601B2 (ja) 樹脂成形型磁石
JP4131385B2 (ja) 希土類系永久磁石の製造方法
JP2002020879A (ja) 外部に連通する中空部を備えた被処理物の表面処理方法および該方法により処理されたリング状ボンド磁石
JPH10294209A (ja) 樹脂成形型磁石
JP2003100536A (ja) ボンド磁石空孔部の封孔処理方法
JP2002088402A (ja) 成形体空孔部の封孔処理方法および該方法により封孔処理されたボンド磁石
JP2002237405A (ja) 成形体空孔部の封孔処理方法および該方法により封孔処理されたボンド磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98811456.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007004631

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09529724

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998950380

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998950380

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004631

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007004631

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998950380

Country of ref document: EP