WO1999003913A1 - Dispersion de poudre inorganique dans du glycol, procede de production de cette dispersion et composition polyester la contenant - Google Patents

Dispersion de poudre inorganique dans du glycol, procede de production de cette dispersion et composition polyester la contenant Download PDF

Info

Publication number
WO1999003913A1
WO1999003913A1 PCT/JP1998/003139 JP9803139W WO9903913A1 WO 1999003913 A1 WO1999003913 A1 WO 1999003913A1 JP 9803139 W JP9803139 W JP 9803139W WO 9903913 A1 WO9903913 A1 WO 9903913A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
water
dispersion
inorganic powder
methanol
Prior art date
Application number
PCT/JP1998/003139
Other languages
English (en)
French (fr)
Inventor
Naofumi Saito
Seiya Shimizu
Kazunori Ohide
Shiro Minayoshi
Original Assignee
Maruo Calcium Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Company Limited filed Critical Maruo Calcium Company Limited
Priority to EP98931081A priority Critical patent/EP0999231B1/en
Priority to US09/462,785 priority patent/US6372832B1/en
Priority to DE69833255T priority patent/DE69833255D1/de
Priority to JP2000503134A priority patent/JP4101457B2/ja
Publication of WO1999003913A1 publication Critical patent/WO1999003913A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a glycol-based dispersion of an inorganic powder, a method for preparing the same, and a polyester composition obtained by blending the dispersion. More specifically, inorganic lactate is blended into the polyester for the purpose of improving the coefficient of friction, imparting opacity, improving the hue, and imparting pores, particularly for polyester used as a film or fiber. At this time, as a method of dispersing the inorganic particles used in the glycol such as ethylene glycol as a raw material, inorganic powders for the purpose of simplifying the process, reducing transportation costs, and preventing shape destruction of the inorganic particles are used.
  • the present invention relates to a glycol-based dispersion of an inorganic powder comprising glycol, a method for preparing the same, and a polyester composition obtained by blending the dispersion. Background art
  • polyesters especially polyethylene terephthalate
  • these polyester compositions contain fine particles in the polyester for the purpose of improving the coefficient of chylation, imparting opacity, improving hue, imparting fine pores, and the like.
  • Polyester contrary to its excellent properties, has its molding process, processing process, It is known that the product itself has poor slipperiness in terms of the handleability of the product itself, which leads to undesired troubles such as deterioration of workability and decrease in product value. Many of this is due to the high coefficient of friction of polyester itself.
  • a number of methods have been proposed and put to practical use to improve the surface lubricity of molded products by adding fine particles to the polyester and imparting appropriate irregularities to the surface of the molded products.
  • the method (1) for depositing internal particles has a good affinity with polyester to some extent because the particles are a metal salt of a polyester component. It is difficult to control the diameter and prevent the generation of coarse particles.
  • the method of adding external particles in (2) is a method of adding inorganic compound fine particles insoluble in polyester such as titanium dioxide, silica, talc, potassium or calcium carbonate during or after polymerization. If the diameter and amount of addition are appropriately selected, and coarse particles are removed by classification or the like and added, the lubricity will be superior to the method (1).
  • a glycol slurry of the inorganic compound fine particles is prepared and added to a polyester manufacturing process.
  • Particles have good dispersibility in glycol and good dispersion stability over time
  • the inorganic compound fine particles settle and precipitate to form a hard hard cake, which is difficult to redisperse.
  • the inorganic compound fine particles aggregate.
  • the presence of coarse particles in the polymer may cause breakage of the yarn during spinning, or may cause coarse protrusions and fish eyes in the film, especially when used in magnetic tape films. Causes a drop in dropout SZN ratio.
  • Examples of particles having a high dispersibility used in such applications include monodisperse butera..it-type calcium carbonate, spherical silica prepared by a sol-gel method, and calcite-type cubic calcium carbonate. These are prepared by advanced techniques so that the individual particles are present without agglomeration, but they are usually prepared mostly in water or in alcohol and maintain their highly dispersed state It is necessary to replace glycol with water or alcohol as it is to prepare a slurry of the monodisperse particles and glycol. For this reason, it is prepared using a vacuum evaporator such as an evaporator, but this method is very expensive.
  • glycol slurry prepared in this way may be transported to the site where the polyester is manufactured, or may be transported in water or methanol slurry in a packed form and subjected to distillation or the like where the polyester is manufactured. Since the transportation is carried out in the slurry state, the transportation efficiency is inevitably reduced due to bulkiness, and high costs in the transportation stage are also a problem.
  • the monodispersed particles prepared by highly dispersing in water or methanol are powdered down using a dryer such as a spray dryer, and the glycol is mixed with the glycol by stirring.
  • a dryer such as a spray dryer
  • the glycol is mixed with the glycol by stirring.
  • monodisperse particles once This method does not cause the monodispersed particles to be re-dispersed in the glycol in the original well-dispersed state even if the transportation cost is reduced, since the aggregates are formed when dried.
  • Japanese Patent Publication No. 2-41817-4 discloses a method of obtaining a good dispersibility by wet-grinding precipitated calcium carbonate having a specific dispersibility and a particle size in glycol under specific conditions. Has been proposed. This method can be said to be a good method in applications where the unevenness of the particle shape in the glycol dispersion is not a problem.For example, a spherical or cubic monodispersed carbon dioxide lumps having a uniform shape and particle diameter are used. Not suitable for
  • undesired fine particles may be generated by such pulverization. These particles are re-agglomerated during the production of the polyester to form coarse particles, which is a cause of deteriorating the physical properties of the composition, which is not preferable. .
  • fragments such as media (eg, glass beads) used for pulverization are mixed into the pulverized material, and the particle size of the fragments is generally about 10 to 100 / zm. It is not a suitable method for the use of films such as polyester because they are coarse particles.
  • the present invention does not require the use of a distillation apparatus or the like for replacing a solvent such as water / methanol with glycol, does not require transporting a slurry of water, methanol, or glycol, and furthermore does not require wet powder.
  • the inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, using an inorganic powder in which a dispersant having a water solubility within a specific range has been surface-treated in advance, the amount of the additive added to satisfy a specific condition.
  • a dispersant having a water solubility within a specific range has been surface-treated in advance
  • the amount of the additive added to satisfy a specific condition By adding a trace amount of water and / or methanol whose concentration has been adjusted, it is possible to reduce the transportation cost, simplify the process, maintain the particle shape, etc., and obtain a glycol-based dispersion having excellent dispersibility.
  • the present inventors have also found that a polyester composition having excellent performance can be provided by using the glycol-based dispersion for a film, a textile or a molded article, and have completed the present invention.
  • the first aspect of the present invention is to disperse an inorganic powder surface-treated with a dispersant having a solubility in water of 2 O′C of 5 (g / ⁇ 0 Og—water) or more in glycol, It contains a glycol-based dispersion of an inorganic powder, characterized by containing water and / or methanol in a range satisfying the formulas (1) to (3). (1)) ⁇ A ⁇ 20 / t
  • A weight percent of water and / or methanol based on inorganic powder
  • a second aspect of the present invention is to provide an inorganic powder obtained by surface-treating a dispersant having a solubility in water of 2 CTC of 5 (g / 100 g-water) or more, satisfying the following formulas (1) to (3).
  • the present invention relates to a method for preparing a glycol-based dispersion of an inorganic powder, which is characterized by dispersing in a glycol together with water and Z or methanol in such a manner.
  • A weight% of water and / or methanol based on inorganic powder
  • a third aspect of the present invention includes a polyester composition containing the glycol-based dispersion of the inorganic powder.
  • Figure 1 is a schematic diagram of an apparatus for measuring the coefficient of friction of a film, BEST MODE FOR CARRYING OUT THE INVENTION
  • Examples of the inorganic powder referred to in the present invention include, but are not particularly limited to, titanium dioxide, silica, alumina, kaolin, talc, calcium carbonate, calcium phosphate (such as apatite), etc., as long as they are commonly used in polyesters.
  • titanium dioxide, silica, talc, kaolin, calcium carbonate, calcium carbonate, etc. is preferably titanium dioxide, silica, talc, kaolin, calcium carbonate, calcium carbonate, etc., and from the viewpoint that the dispersion can be prepared without losing its shape, a state close to monodispersion at the time of particle preparation
  • Particularly preferred are calcium carbonate manufactured by hexahedral sedimentation and spherical silica. These are used alone or in combination of two or more.
  • the average particle size of the inorganic powder is not particularly limited, and may be a particle size that is usually added to a polyester film or a fiber, but is preferably 0.01 to 1, more preferably 0 to 1. 0.05 to 5 / m, most preferably 0.05 to 2 zm, which is fine particles and can maintain good dispersion state. If the particles become too fine, the dispersibility of the particles may be impaired, and as the particles become larger, they may settle out in the glycol slurry and the smoothness of the polyester surface may be impaired.
  • the dispersant to be subjected to a surface treatment on these inorganic powders in advance needs to have a solubility in water at 20 ° C of 5 (g / 100 g—water) or more. It is 20 or more, more preferably 50 or more. This is because the amount of added water described below is extremely small relative to the entire system, so it is necessary to dissolve it in this added water promptly, and it is desirable that the water solubility be as high as possible.
  • Examples of such a dispersing agent include an alkali metal salt of a condensed acid, such as potassium tripolyphosphate and sodium hexametic acid: Metal salts of alicyclic and aromatic resin acids, such as carboxylic acid, neoabietic acid, benzoic acid, and cinnamic acid; sulfonic acid compounds, such as alkylsulfonic acid, alkylbenzenesulfonic acid, and the like: Sulfuric acid compounds exemplified by alkylsulfuric acid, alkyl ether sulfuric acid and the like; phosphoric acid compounds exemplified by alkylphosphoric acid and alkyl ether fatty acid; esters of these acids such as methyl ester, ethyl ester and hexyl ester; alkali metals; Salts such as ammonium and amine: fibrous compounds exemplified by hydroquinethyl cellulose, carboxymethyl cellulose and the like: unsaturated carb
  • the processing halo of these dispersants is not particularly limited, it is usually 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the inorganic powder. is there. If the amount is less than 0.01 part by weight, the effect of the treatment is insufficient. If the amount exceeds 10 parts by weight, not only is it uneconomical at the time of cost, but also it may hinder polymerization in some cases, which is not preferable.
  • the method of surface-treating these dispersants to inorganic powders is not a problem in conventional methods.
  • heavy powders such as calcium carbonate, kaolin, and talc, which are produced by dry pulverization, do not cause any problem.
  • the dispersant may be adsorbed on the surface of the inorganic powder by using a mixer such as a super mixer, and the inorganic powder is temporarily suspended in water or alcohol, and then the dispersant is added.
  • a method of adding and mixing in a fixed amount and drying with a dryer such as a spray dryer may be used.
  • the above-mentioned dry treatment can be performed once as a powder.However, from the viewpoint of cost, it is dispersed in a suspended drowning liquid or a concentrated liquid. It is more advantageous to add the agent and dry it. Further, the present invention makes it possible to reproduce the dispersed state of the inorganic powder in a state before drying, so that particles having a dispersibility close to a single particle may be prepared and used. It is also advantageous to adjust the particle size in advance to a desired particle size by wet pulverization or the like according to the conditions.
  • Glycols that disperse inorganic powders that have been previously surface-treated with these dispersants include, for example, polyesters such as ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, and decamethylene glycol.
  • Aliphatic glycols having 2 to 10 carbon atoms used as glycol components of alicyclic diols such as cyclohexanedimethanol; 2,2'-bis (4-hydroxyphenyl) propane and hydroquinone Aromatic polyols and the like can be mentioned. These may be used alone or in combination of two or more.
  • the method of dispersing the inorganic powder in the glycol is characterized by including a very small amount of water and / or methanol when mixing the glycol and the inorganic powder. It is necessary that the amount of the rule satisfies the following equation at the same time.
  • (1) Set the water and / or methanol amount A (weight%) that satisfies 1 A ⁇ 2 OZ t with respect to the dispersant amount t (weight%) for the inorganic powder.
  • the dispersant will exhibit its function If the amount of water is not enough and dispersion is poor, and if it exceeds 20 / t, there is a possibility that hydrolysis of polyester will occur due to too much water at the time of polymerization, and bumping will occur in the polyester polymerization reaction system. is there.
  • the amount B (% by weight) of water and / or methanol in the glycol dispersion is adjusted to 0.5 or more and 10 or less. When the value is below the lower limit, the dispersant function is not exhibited, and when the value exceeds the upper limit, it is not preferable for the same reason as when the value exceeds the upper limit of (1).
  • the amount C (% by weight) of the inorganic powder in the glycol-based dispersion is set to 5 or more. If the solids content is lower than 5, it is not preferable because a sufficient share is not obtained for each particle and dispersion is inferior.
  • the concentration should be as high as possible, preferably 30 or more, more preferably 40 or more. However, after preparation, the concentration may be adjusted by diluting with glycol according to the purpose.
  • solubility of the dispersant to be surface-treated is 5 or more and the solubility in methanol is 5 or more, water is used. Can be further reduced, and in some cases, can be dispersed without adding water.
  • the amount of water adsorbed by the inorganic powder should also be taken into consideration. ) Is not included.
  • a pulverizer using a medium such as a sand grinder mill is not necessary, and if the mixture is sufficiently mixed with a normal stirrer, the present invention can be dispersed.
  • the desired glycol-based dispersion can be obtained.However, if necessary, the glycol-based slurry is made into a slurry, and then subjected to wet grinding, a balancing high-pressure disperser, an ultrasonic disperser, or the like. It is also possible to adjust the particle size, and after that, coarse particles may be removed by using a filter of about 10 // ⁇ or less, a spade, or the like.
  • a glycol-based dispersion By dispersing by such a method, a glycol-based dispersion can be obtained while maintaining the shape and particle size before drying or at the initial stage. -The glycol dispersion is blended into the polyester to produce a polyester composition.
  • the polyester include polyesters containing an aromatic dicarboxylic acid as a main acid component and the above-mentioned aliphatic glycols, alicyclic diols, and aromatic diols as a main glycol component.
  • aromatic dicarboxylic acid examples include terephthalic acid, naphthalenedicarboxylic acid, isophthalic acid, diphenylethanedicarboxylic acid, diphenyldicarbonic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, and diphenylketone dicarboxylic acid.
  • acids, anthracene dicarboxylic acids, and the like may be used alone or in combination of two or more.
  • the polyester containing these as a main component for example, those containing alkylene terephthalate and / or alkylene naphthalate as a main component are preferably used.
  • the amount of the glycol-based dispersion to be added to the polyester varies depending on the type and use of the polyester and cannot be specified unconditionally.
  • the amount of the inorganic powder relative to 100 parts by weight of the polyester resin is reduced. 0.005 to 3 parts by weight is suitable as a body, and preferably 0.01 to 1 part by weight is blended.
  • the reason for this is that if the amount is less than the lower limit, the target effect is insufficient due to the small amount of added halos, and the accuracy of adding to the polyester resin to uniformly disperse it is reduced. If the amount exceeds the upper limit, physical properties may not be improved in spite of the added amount, and drawbacks may be lowered, which may cause inconvenience.
  • the polyester obtained from the polyester composition of the present invention is a textile, It is suitable for film, especially for magnetic tape for video and audio, capacitor, photoresist, food packaging, photography, film for prepaid card, etc.It does not have coarse protrusions due to coarse particles and anti-block. An extremely high quality film with king effect and electrical properties is obtained.
  • the water slurry before drying and the particle size distribution of the glycol dispersion were measured in order to confirm the dispersion reproducibility of the glycol dispersion by the following operation, and polyethylene terephthalate film was used as the synthetic resin. Created and evaluated the following items.
  • MI CROTRAC FRA manufactured by Leeds & Northrup
  • Sample Add 2 to 3 g of water slurry or glycol dispersion before drying to 5 Occ solvent and thoroughly stir to obtain a sample.
  • D 90 Weight calculated from the larger particle size side in the measured particle size distribution. Particle size at 90% cumulative (m)
  • D10 / D90 an index of the variation in the particle size distribution. The closer to 1, the sharper the particle size content.
  • each of the ethylene glycol dispersions shown in Tables 1 to 3 was added to perform a polyesterification reaction, and the intrinsic viscosity (orthochlorophenol, 3%) containing 0.1% by weight of additive particles was added.
  • 5 ° C 0.62 d 1 X g of polyethylene terephthalate was prepared. The polyethylene terephthalate was dried at 160 ° C., melted and extruded at 29 ° C., and quenched and solidified on a casting drum maintained at 40 ° C. to obtain an unstretched film.
  • the unstretched film was preheated to 7 (TC) with a heating roller, and then stretched 3.6 times in the longitudinal direction while heating with an infrared heater. After stretching twice, heat treatment was performed at 200 ° C. to obtain a biaxially oriented film having a thickness of 15 / m.
  • the quality of the film thus obtained was evaluated by the following method.
  • the center line average roughness (Ra) is a value defined by JI SB 0601, and is measured using a stylus type surface roughness meter (SURFCORDER SF-30C) of Kosaka Laboratory Co., Ltd. in the present invention. .
  • the measurement conditions and the like are as follows.
  • 1 is an unwinding reel
  • 2 is a tension controller
  • 3 is a tension detector (inlet)
  • 7 is a stainless steel wire SUS304 fixed rod (outside diameter 5 hidden)
  • 10 is a tension detector (outlet)
  • 12 is Guide rollers and 13 indicate take-up reels, respectively.
  • the exit tension detector detects the exit tension ( ⁇ 2: g) when the tension controller ⁇ - adjuster is adjusted so that the entrance tension T1 is 35 g. Calculate the coefficient k.
  • a 1 / 2-inch wide film surface is brought into contact with a stainless steel fixing pin (surface roughness 0, 58) with a diameter of 5 strokes at an angle of 150 °, and reciprocates about 15 cm at a speed of 2 m / min. (At this time, the entry side tension T1 is set to 60 g.)
  • the calender is a 5-stage calender consisting of a nylon roll and a steel roll.
  • the processing temperature is 80
  • the linear pressure applied to the film is 200 kg / cm
  • the film speed is 5 Om / min.
  • the running film is evaluated by a three-point scale based on the following criteria for the dirt adhering to the top opening of the calendar when the running film runs for a total length of 400 Om.
  • the number of coarse protrusions (number per 1 mm 2 of the measuring surface) is counted using a two-beam interference microscope. Rank according to the criteria.
  • a glycol-based dispersion was prepared by performing the operations described in Examples 1 and 3 and Comparative Examples 1 to 3 described below.
  • inorganic particles V composed of precipitated calcium carbonate were obtained. Observation of the obtained calcium carbonate with an electron microscope revealed hexagonal particles having an average particle size of 0.5 / m. The particle size distribution is shown in Tables 1 and 2.
  • a glycol-based dispersion was prepared by performing the operations described in Examples 2 and 9 and Comparative Example 4 described below.
  • Example 4 By using the inorganic particles, the operations described in Example 4 and Comparative Example 5 described later were performed to prepare a glycol dispersion.
  • Example 1 An ethylene glycol dispersion having a solid content of 70% by weight was obtained in the same manner as in Example 1 except that the amount of water added and the amount of ethylene glycol sacrifice added during the preparation of the ethylene glycol slurry were changed to those shown in Table 1.
  • Table 1 shows the particle size distribution of the obtained glycol dispersion. It can be seen that the particle size distribution before drying is maintained and reproduced.
  • An ethylene glycol dispersion having a solid content of 15% by weight was obtained in the same manner as in Example 1 except that the amount of water and the amount of ethylene glycol added during the preparation of the ethylene glycol slurry were changed to the amounts shown in Table 2. .
  • Table 2 shows the particle size distribution of the obtained glycol dispersion, which shows that the particle size distribution is significantly different from that before drying.
  • An ethylene glycol dispersion having a solid content of 45% by weight was obtained in the same manner except that the amount of water and the amount of ethylene glycol added during the preparation of the ethylene glycol slurry in Example 1 were changed to the amounts shown in Table 2. .
  • the particle size distribution of the obtained glycol dispersion is shown in Table 2, and although the particle size distribution before drying was reproduced, the water content of the obtained glycol dispersion was large, and as shown in the comparative examples described later. Obtaining a good film using the glycol dispersion could not.
  • Inorganic absorpti V was made into a 50% by weight aqueous slurry in the same manner as in Example 2, and then sodium oleate (solubility in water 2) was added to the inorganic particles by adding 3.0 wt. By crushing, a surface-treated inorganic powder was obtained.
  • water and ethylene glycol shown in Table 2 were added to prepare an ethylene glycol slurry having a solid content of inorganic powder of 30% by weight, and a disk-type stirring blade was provided. The mixture was stirred with a stirrer for 30 minutes to obtain an ethylene glycol dispersion.
  • the particle size distribution of the obtained glycol dispersion is shown in FIG. 2, which shows that it is significantly different from the particle size distribution before drying.
  • the surface-treated inorganic powder was obtained by changing the dispersant used in Example 4 to hexanoic acid (solubility in water 1) of 2.0% by weight, drying and crushing.
  • A weight percent of water and Z or methanol based on inorganic powder
  • polyester films were prepared by the methods described above, and the physical properties of each were evaluated. The results are shown in Table 4.
  • polyester films were prepared by the above method, and the physical properties of each were evaluated. However, since the ethylene glycol dispersion prepared in Comparative Example 3 had a large water content and bumped, the film was not evaluated. The results are shown in Table 4.
  • Example 2 The same operation as in Example 1 was performed to obtain a surface-treated powder of the inorganic particles U, and the powder and water were vigorously stirred and mixed to prepare a water slurry having a solid concentration of 50% by weight. A predetermined halo of ethylene glycol was mixed, and water was removed with an evaporator to obtain an ethylene glycol dispersion composed of inorganic particles U. Using the obtained glycol dispersion, a polyester film was prepared in the same manner as in Example 5. Table 4 shows the evaluation results.
  • Example 2 The same operation as in Example 2 was performed to obtain a surface-treated powder of the inorganic particles V. This powder and water were vigorously stirred and mixed to prepare a water slurry having a solid content of 50% by weight. A predetermined amount of ethylene glycol was mixed, and water was removed with an evaporator to obtain an ethylene glycol dispersion composed of inorganic particles V. Using the resulting glycol dispersion, a polyester film was prepared in the same manner as in Example 6. Table 4 shows the evaluation results.
  • the inorganic powder can be dispersed in a glycol-based solution while maintaining the shape and particle size before drying or in the initial state to obtain a glycol-based dispersion, and the uniformly dispersed inorganic powder thus obtained can be obtained.
  • a polyester composition containing a glycol dispersion of the formula (1) can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

明 細 書 無機粉体のグリコール系分散体及びその調製方法、 並びに該分散体を配 合してなるポリエステル組成物 技術分野
本発明は無機粉体のグリコ一ル系分散体及びその調製方法、 並びに該 分散体を配合してなるポリエステル組成物に関する。 更に詳しくは、 特 にフイルムあるいは繊維として使用されるポリエステルの摩擦係数の改 善、 不透明性の付与、 色相の改良、 徼細孔の付与等を目的として、 ポリ エステル中に無機拉子を配合するに際し、 原料となるエチレングリコー ル等のグリコール中に用いられる無機粒子を分散せしめる方法として、 工程の単純化、 輸送コス トの低減、 無機粒子の形状破壊の防止を目的と する、 無機粉体とグリコールとからなる無機粉体のグリコール系分散体 、 及びその調製方法、 並びに該分散体を配合してなるポリエステル組成 物に関する。 背景技術
今日、 工業的に製造されているポリエステル、 特にポチエチレンテレ フタ一トは優れた物理的 ·化学的特性を有しており、 繊維、 フィルム、 その他の成形品として広く使用されている。 これらポリエステル組成物 には従来から縻擦係数の改善、 不透明性の付与、 色相の改良、 微細孔の 付与等を目的として、 ポリエステル中に微細な粒子を含有させることが 行われている。
例えば、 摩擦係数の低減を目的とした場合について説明すると、 ポリ エステルにはその優れた特性とは逆に、 その成形過程、 加工過程あるい は製品自体における取り扱い性の面で滑り性が悪く、 そのため作業性の 悪化、 商品価値の低下といった好ましくないトラブルが発生することが 知られている。 その原因の多くは、 ポリエステル自身の高い摩擦係数に よるものである。 これらのトラブルに対して、 ポリエステル中に微粒子 を含有せしめ、 成形品の表面に適度の凹凸を与えて成形品の表面滑性を 向上させる方法が数多く提案され実用化されている。
このポリエステルの表面特性を向上させる手段としては、 従来から
①ポリエステル合成時に使用する触媒など一部または全部を反応工程で 析出させる方法 (内部粒子析出方法) 、.
②炭酸カルシウム、 酸化ゲイ素などの微粒子を重合時または重合後に添 加する方法 (外部添加方法) 、
が知られている。
しかしながら、 ①の内部粒子の析出方法は粒子がポリエステル成分の 金属塩であるため、 ポリエステルとの親和性はある程度良好である反面 、 反応中に粒子を生成させる方法であるため、 粒子量、 拉子径のコント ロールおよび粗大粒子の生成防止などが困難である。
一方、 ②の外部粒子添加方法は、 二酸化チタン、 シリカ、 タルク、 力 オリン、 炭酸カルシウムなどのポリエステルに不溶不活性な無機化合物 微粒子を重合時または重合後に添加する方法であり、 これら無機化合物 微粒子の拉径、 添加量などを適当に選択し、 さらに粗大粒子を分級など により除去し添加すれば、 易滑性の面では①の方法より優れたものとな る。
また、 これらの無機化合物微粒子はポリエステル中での分散性をよく するため、 無機化合物微粒子のグリコ—ルスラリーを調製し、 ポリエス テルの製造工程に添加することが行われているが、 これら無機化合物微 粒子はグリコ—ル中での分散性及び経時分散安定性が良好であるとはい えず、 無機化合物微粒子を懸濁させたグリコールを長期間保存した場合 、 無機化合物微粒子が沈降沈殿して固いハードケーキを形成し、 再分散 が困難となること、 さらにグリコール中やポリエステルの製造時に無機 化合物微粒子が凝集してしまうという欠点もある。 ポリマ一中に凝粜粗 大粒子が存在すると、 紡糸時に糸切れの原因となったり、 フィルムにお いては粗大突起、 フィ ッシュ 'アイなどの原因となり、 特に磁気テープ 用フィルムに使用する場合にはドロップアゥトゃ S ZN比の低下を引き 起こす。
このような用途に使用される高度な分散性を有する粒子としては、 単 分散のバテラ..ィト型炭酸カルシウム、 ゾルゲル法で調製した球状シリカ 、 カルサイ ト型立方形炭酸カルシウムなどがあげられる。 これらは個々 の粒子が凝集することなく存在するように高度な技術で調製されるが、 これらは通常、 水中又はアルコール中で調製されることがほとんどであ り、 その高度な分散状態を維持したままで水あるいはアルコールとグリ コールとを置換し、 該単分散粒子とグリコールとのスラリーを調製する 必要がある。 そのため、 エバボレーターなどの減圧蒸留器などを用いて 調製するのであるが、 この方法は非常に高コストである。 また、 このよ うに調製されたグリコ一ルスラリーをポリエステルを製造する現地に輸 送するにしても、 水もしくはメタノールスラリ一荷姿で輸送しポリエス テルを製造する現地で蒸留等を行うにしても、 スラリーの状態で輪送さ れることにかわりはないため、 嵩張りによる輸送効率の低下は避けられ ず、 輸送段階における高コストも問題である。
かかる問題を解消するため、 水、 メタノール中で高度に分散して調製 された単分散粒子を、 例えばスプレードライヤーなどの乾燥機を用いて パウダー伏にし、 これとグリコールとを攪拌混合することによりグリコ 一ルスラリーを調製する方法がある。 しかしながら、 単分散粒子は一旦 乾燥させると凝集体を形成することから、 たとえ輸送コス卜が低減され たとしても、 この方法では単分散粒子が元の良好な分散状態でグリコ一 ル中に再分散することはない。
さらに、 日本国特公平 2— 4 8 1 7 4号公報では特定の分散性及び粒 子径を有する沈降製炭酸カルシウムをグリコール中において特定の条件 下で湿式粉砕して良好な分散性を得る方法が提案されている。 この方法 はグリコール分散体中の粒子形伏の不均一性が問題にならない用途にお いては良好な方法と言えるが、 例えば均一な形状、 粒子径を有する球状 や立方体の単分散炭酸力ルシゥムなどには適さない。
例えば、 前述のスプレードライヤーで得られる球状の炭酸カルシウム やシリカをパウダー状にして湿式粉砕原料として用い、 グリコールとか らなるグリコールスラリーを該公報記載の方法で湿式粉砕すれば、 分散 性が良好なグリコ一ル分散体が得られるものの、 湿式粉砕工程が加わる ことにより高コストとなるのは勿論のこと、 粉砕によりその形状は不定 形となり元の粒子の形状は損なわれる。 また、 このような粉砕により目 的外の微細な粒子が発生する場合もあり、 これがポリエステルの製造時 に再凝集することにより粗大粒子となり、 組成物の物性を低下させる原 因となるので好ましくない。 さらにまた、 該公報に記載の方法では粉砕 に用いるメディア (例えばガラスビ一ズ) などの破片が粉砕物中に混入 することになり、 該破片の粒子径が一般に 1 0〜1 0 0 /z m程度の粗大 粒子であるため、 ポリエステル等のフィルムの用途には適した方法であ るとはいえない。
以上のごとく、 無機粉体を乾燥前あるいは初期の形状及び粒度内容を 維持したまま、 グリコ一ル系溶液に分散せしめグリコール系分散体を調 製することが困難であるため、 輸送コス卜の低減を目的とする粉体での 輸送が不可能で、 そのためスラリーでの輸送を余儀なくされ、 また、 た とえ粉体での輸送が可能であるとしても、 満足な分散状態のダリコール スラリーを調製するには非常な高コストとなっているのが現伏である。 本発明は、 かかる実状に鑑み、 水 · メタノール等の溶媒をグリコール に置換するための蒸留装置等を用いる必要もなく、 また水、 メタノール あるいはグリコールのスラリーを輸送する必要もなく、 さらには湿式粉 砕という工程も必要ない等、 大巾な製造工程の簡略化とコスト低減を可 能とし、 かつ無機粉体を乾燥前あるいは初期の形状及び粒度内容を維持 したまま、 グリコール系溶液に分散せしめるグリコール系分散体を調製 する方法、 及びこのようにして得られる均一に分散された無機粉体のグ リコ一ル系分散体を含有してなるポリエステル組成物を提供するもので める。 発明の開示
本発明者らは上記課題を解决せんとして鋭意検討を重ねた結果、 水に 対する溶解度が特定の範囲にある分散剤を予め表面処理した無機粉体を 用い、 特定の条件を満足するよう添加量、 濃度を調整した微量の水及び /またはメタノールを含有させることにより、 輪送コストの低減、 工程 の簡略化、 粒子形伏の維持等を図るとともに優れた分散性を有するグリ コール系分散体を得、 かつ該グリコール系分散体をフィルム、 織維ある いは成型品に用いることにより優れた性能を有するボリエステル組成物 を提供し得ることを見出し、 本発明を完成するに至った。
すなわち本発明の第 1は、 2 O 'Cにおける水に対する溶解度が 5 ( g / \ 0 O g—水) 以上である分散剤を表面処理した無機粉体をグリコー ルに分散してなり、 下記式 ( 1 )〜( 3 ) を満足する範囲で水及び/又 はメタノールを含有してなることを特徴とする無機粉体のグリコ一ル系 分散体を内容とするものである。 ( 1 ) 】 ≤ A ≤ 20/t
(2) 0. 5 B ≤ 1 0
(3) 5 ≤ C
ただし、
A ; 無機粉体に対する水及び/又はメタノールの重量%
t ; 無機粉体に対する分散剤の重量%
B ; グリコール系分散体に占める水及び/又はメタノールの重量% C ; グリコール系分散体に占める無機粉体の重量%
本発明の第 2は、 2 CTCにおける水に対する溶解度が 5 (g/ 1 00 g -水) 以上である分散剤を ¾面処理した無機粉体を、 下記式 ( 1 ) 〜 (3) を満足するように水及び Z又はメタノールとともにグリコ一ルに 分散せしめることを特徵とする無機粉体のグリコール系分散体の調製方 法を内容とするものである。
( 1 ) 1 ≤ A ≤ 20/t
(2) 0. 5 ≤ B ≤ 1 0
(3) 5 ≤ C
ただし、
A : 無機粉体に対する水及び/又はメタノールの重量%
t : 無機粉体に対する分散剤の重量%
B ; グリコール系分散体に占める水及びノ又はメタノールの重量 C ; グリコール系分散体に占める無機粉体の重量
また本発明の第 3は、 上記無機粉体のグリコール系分散体を配合して なるポリエステル組成物を内容とするものである。 図面の簡単な説明
図 1は、 フィルムの摩擦係数を測定するための装置の概略図である, 発明を実施するための最良の形態
本発明でいう無機粉体としては、 二酸化チタン、 シリカ、 アルミナ、 カオリ ン、 タルク、 炭酸カルシウム、 燐酸カルシウム (アパタイ ト等) 等通常ポリエステルに配合使用されるものであれば特に限定されるもの ではないが、 好ましくは二酸化チタン、 シリカ、 タルク、 カオリン、 炭 酸カルシウム、 憐酸カルシウム等であり、 形伏を崩さずに分散体を調製 できるとの観点からは、 粒子調製時に単分散に近い状態である球状シリ 力、 六面体沈降製炭酸カルシウムが特に好ましい。 これらは単独又は 2 種以上組み合わせて用いられる。
また無機粉体の平均粒子径については、 特に規定するものではなく、 通常ポリエステルフイルムもしくは維維に添加される粒子径であればよ いが、 好ましくは 0 . 0 1〜1 、 より好ましくは 0 . 0 5〜5 / m、 最も好ましくは、 微粒子でかつ良好な分散伏態を保つことができる 0 . 0 5 ~ 2 z mである。 あまり微粒子になると粒子の分散性が阻害さ れることがあり、 また粒子が大きくなればなるほどグリコ一ルスラリー 中で沈降する場合があり、 ポリエステル表面の平滑性が損なわれる場合 がある。
また、 これら無機粉体に予め表面処理する分散剤は、 2 0 °Cの水に対 する溶解度が 5 ( g / 1 0 0 g—水) 以上であることが必要であり、 好 ましくは 2 0以上、 より好ましくは 5 0以上である。 これは後に述べる 添加水量が、 全体系に対して極微量であるため、 この添加水に速やかに 溶解する必要があり、 できるだけ水に対する溶解性の高いことが望まし いからである。
このような分散剤としては、 例えばトリポリ燐酸カリウム、 へキサメ タ憐酸ナトリゥム等に例示される縮合憐酸のアル力リ金属塩:ァビエチ ン酸、 ネオアビェチン酸、 安息香酸、 ケィ皮酸等に例示される脂環族、 芳香族の樹脂酸のアル力リ金属塩;アルキルスルホン酸、 アルキルベン ゼンスルホン酸等に例示されるスルホン酸化合物: アルキル硫酸、 アル キルエーテル硫酸等に例示される硫酸化合物;アルキル燐酸、 アルキル エーテル憐酸等に例示される燐酸化合物; これら酸のメチルエステル、 ェチルエステル、 へキシルエステル等のエステル類、 アルカリ金属、 ァ ンモニゥム、 ァミ ン等の塩: ヒドロキンェチルセルロース、 カルボキシ メチルセルロース等に例示される繊維素化合物:ァクリル酸、 メタクリ ル酸、 マレイン酸等の不飽和カルボン酸及びこれらのポリマー: さらに はアクリル酸アルキルエステル、 メタクリル酸アルキルエステル、 アル コキシ基を有するァクリレート及びメタクリレート、 ポリアルキレング リコ一ルモノアクリレート及びメタクリレートビニルエステル等、 上記 不飽和力ルポン酸と重合可能な単量体との共重合物、 これら共重合物の アルカリ金属、 アンモニゥム、 ァミンによる部分もしくは完全中和物等 が例として挙げられる。 これらは単独又は 2種以上組み合わせて用いら れ O o
これら分散剤の処理暈についても特に規定されるものではないが、 通 常無機粉体〗 0 0重量部に対して 0 . 0 1〜1 0重量部、 好ましくは 0 . 1〜5重量部である。 0 . 0 1重量部未満では処理による効果が不十 分であり、 また 1 0重量部を越えるとコスト時に不経済であるばかりで なく、 場合により重合の妨げになることがあり好ましくない。
これら分散剤を無機粉体に表面処理する方法は、 従来から一般的に行 われる方法で何ら支障はなく、 例えば重質炭酸カルシウム、 カオリ ン、 タルクのように乾式粉砕によって製造されるものでは、 スーパ一ミキサ 一のような混合機を用い無機粉体表面に分散剤を吸着せしめてもよく、 該無機粉体を一旦水あるいはアルコール中に懸濁し、 その後分散剤を所 定量添加 ·混合し、 スプレードライヤーのごとき乾燥機で乾燥する方法 でもよい。 また、 沈降製炭酸カルシウムのように主に水系で合成される ものについても、 一旦粉体として上記乾式処理を行うこともできるが、 コスト的にみて、 反 終了の懸溺液もしくは濃縮液に分散剤を添加し乾 燥する方が有利である。 さらに本発明によって無機粉体の分散状態を乾 燥前の状態に再現することが可能となるので、 単一粒子に近い状態の分 散性を有する粒子を作成して使用してもよく、 必要に応じて湿式粉砕等 で所望の粒度に予め調整しておくのも有利である。 この際において、 分 散剤の添加時期は、 水スラリーの状態であればいかなる時点であっても 本発明の効果を撗なうものではない。 これら表面処理された無機粒子は 常法によつて乾燥 ·粉末化され、 本発明の無機粉体が得られる。
これら分散剤で予め表面処理された無機粉体を分散させるグリコール としては、 例えば、 エチレングリコール、 トリメチレングリコ一ル、 テ トラメチレングリコール、 ペンタメチレングリコール、 へキサメチレン グリコール、 デカメチレングリコールのごとき一般にポリエステルのグ リコール成分として使用される炭素数 2〜1 0の脂肪族グリコール; シ クロへキサンジメタノ一ルのごとき脂環式ジオール; 2 , 2 ' —ビス ( 4 -ヒドロキシフエニル) プロパン、 ヒドロキノンのごとき芳香族ジォ —ル等を挙げることができる。 これらは単独又は 2種以上組み合わせて 用いられる。
上記グリコールに無機粉体を分散する方法は、 グリコールと無機粉体 を混合する際に極微量の水及び/又はメタノ一ルを含有させることに特 徴がぁり、 その水及び/又はメタノ一ルの量は以下の式を同時に満足す る必要がある。 まず、 ( 1 ) 無機粉体に対する分散剤量 t (重量%) に 対して、 1 A≤ 2 O Z tを満足する水及び 又はメタノール量 A (重 量%) を設定する。 Aが 1より小さい場合、 分散剤が機能を発現するに たる水量にいたらず分散不良をきたし、 2 0 / tを越えた場合、 結果的 に重合時の水が多すぎるためポリエステルの加水分解を起こしたり、 ポ リエステル重合反応系で突沸したりする場合がある。 次いで、 (2 ) グ リコール系分散体に占める水及び/又はメタノール量 B (重量%) を 0 . 5以上、 1 0以下とする。 下限値を下回ると分散剤機能が発現するに いたらず、 上限値を上回ると ( 1 ) の上限値を上回った場合と同様の理 由で好ましくない。 さらに、 (3 ) グリコール系分散体に占める無機粉 体の量 C (重量%) 、 すなわち固形分濃度を 5以上とする。 固形分濃度 が 5より低いと粒子個々に十分なシェア一がかからず分散不良をきたす ため好ましくなく、 できるだけ高濃度にすべきで、 好ましくは 3 0以上 、 より好ましくは 4 0以上とするのがよいが、 調製後は目的に応じてグ リコールで希釈し濃度調整を行ってもよい。
また、 これらグリコール系分散体を調製する際に水とメタノールを併 用することも可能で、 表面処理する分散剤の水に対する溶解度が 5以上 でかつメタノ一ルに対する溶解度も 5以上であれば水の添加量をさらに 減量することができ、 場合によっては水を添加せずとも分散が可能であ る。
また、 水及び/又はメタノールを添加するに際しては、 無機粉体の吸 着した水分 (メタノール分) にも留意すべきで、 上記各式における含有 水量 (メタノール量) には吸着した水分 (メタノール分) も当然含まれ な。
このようにして水及び 又はメタノールを添加したグリコ一ルスラリ 一を分散させる際、 サンドグラインダーミル等の媒体を使用する粉砕機 は必要ではなく、 通常の攙拌機で十分に混合すれば本癸明の目的とする グリコール系分散体は得られるが、 必要に応じて、 グリコール系スラリ 一とした後、 さらに湿式粉砕、 衝整式高圧分散機、 超音波分散機等によ り粒度調整することも可能であり、 またそれらの後に 1 0 // πι以下程度 のフィルター、 スパ一デカン夕一等を用いて滤過し粗大粒子を除去して もよい。 このような方法で分散させることにより、 乾燥前あるいは初期 の形伏及び粒度を維持した状態でグリコール系分散体が得られる。 - このグリコール系分散体をポリエステル中に配合してポリエステル組 成物を製造する。 ポリエステルとしては、 芳香族ジカルボン酸を主たる 酸成分とし、 前記した脂肪族グリコ一ル、 脂環式ジオール、 芳香族ジォ —ルを主たるグリコール成分とするポリエステルが挙げられる。 芳香族 ジカルボン酸としては、 例えばテレフタル酸、 ナフタレンジカルボン酸 、 イソフタル酸、 ジフエニルェタンジカルボン酸、 ジフエ二ルジカルボ ン酸、 ジフエニルエーテルジカルボン酸、 ジフエニルスルホンジカルボ ン酸、 ジフエ二ルケトンジカルボン酸、 アンスラセンジカルボン酸等を 挙げることができ、 これらは単独又は 2種以上組み合わせて用いられる 。 これらを主成分とするポリエステルとしては、 例えばアルキレンテレ フタレ一ト及び/又はアルキレンナフタレ一トを主たる構成成分とする ものが好ましく用いられる。
また、 このグリコール系分散体をボリエステルに添加する量は、 ポリ エステルの種類や用途によって異なり一概に特定できるものではないが 、 例えばポリエステルフイルムの場合、 ポリエステル樹脂 1 0 0重量部 に対して無機粉体として 0 . 0 0 5〜 3重量部が適当で、 好ましくは 0 . 0 1 ~ 1重量部を配合する。 この理由は、 下限値未満にあっては、 添 加暈が少ないため目的とする効栗が不十分であるとともに、 ポリエステ ル樹脂に添加して均一に分散させる精度が低下するためであり、 一方、 上限値を越えると、 添加量の割には物性が向上せず、 また延伸性も低下 する等不都合が起こる場合があるためである。
本発明のボリエステル組成物より得られるボリエステルは、 織維、 フ イルムに好適であり、 特にビデオ用、 オーディオ用磁気テープ、 コンデ ンサ一、 フォ トレジスト、 食品包装、 写真、 プリペイ ドカード用のフィ ル厶等に適しており、 粗大粒子による粗大な突起がなく、 アンチブロッ キング効果と電気特性の極めて高い品質のフィルムが得られる。
以下、 実施例、 比較例を挙げて本癸明をより詳細に説明するが、 本発 明はこれらにより何等制約を受けるものではない。
なお評価については、 以下の操作によりグリコール系分散体の分散再 現性を確認するために乾燥前の水スラリ一及びグリコール分散体の粒度 分布を測定し、 また合成樹脂としてボリエチレンテレフタレートフィル 厶を作成し、 以下の項目について評価を行った。
「粒度分布の測定」
測定機: Le ed s & No r thrup製 MI CROTRAC FRA
溶媒 ;エチレングリコール
試料 : 5 Occの溶媒中に乾燥前の水スラリ一又はグリコール分散体 を 2〜3 g添加し、 十分に攙拌した液を試料とする。
上記方法により得られた結果から、 下記の項目において比較する。
D 1 0 :測定された粒度分布における大きな粒子径側から起算した重量 累計 1 0%時の粒子径 (/ m)
D 5 0 ;測定された粒度分布における大きな粒子径側から起算した重量 累計 5 0%時の粒子径 (/zm)
D 9 0 :測定された粒度分布における大きな粒子径側から起算した重量 累計 9 0 %時の粒子径 ( m)
D 1 0/D 9 0 ;粒度分布のばらつきの指標であって 1に近い程粒度内 容がシャ一プであることを表す。
5 zm< ;測定された粒度分布における 5 ;zmより大きな粒子の重量% Γポリエチレンテレフタレ一トフィルムの製造」
表 1〜表 3に記載の各エチレングリコール分散体をポリエステル化反 応前に添加してポリエステル化反応を行い、 添加剤粒子 0. 1重量%含 有した極限粘度数 (オルソクロロフヱノール, 3 5°C) 0. 6 2 d 1 X gのポリエチレンテレフタレ一トを調製した。 該ポリエチレンテレフタ レートを 1 6 0°Cで乾燥した後 2 9 0でで溶融押し出し、 4 0°Cに保持 したキャスティングドラム上に急冷固化せしめて未延伸フィルムを得た 。 引き続き、 該未延伸フィルムを加熱ローラ一で 7 (TCに予熱した後、 赤外線ヒーターで加熱しながら縦方向に 3. 6倍延伸した。 続いて 9 0 °Cの温度で横方向に 4, 0倍に延伸した後 2 0 0 °Cで熱処理を行い、 厚 さ 1 5 /mの二軸配向フィルムを得た。
このようにして得られたフィルムの品質を、 以下に示す方法で評価し た。
① フィルム表面粗さ (Ra)
中心線平均粗さ (Ra) として J I S-B 0 6 0 1で定義される値で あり、 本発明では株式会社小坂研究所の触針式表面粗さ計 (SURFCORDER SF -30C) を用いて測定する。 測定条件等は次の通りである。
(a) 触針先端半径: 2 m
(b) 測定圧力: 3 Omg
(c) カッ トオフ : 0. 25 mm
(d) 測定長: 0, 5mm
(e) 同一試料について 5回操り返し測定し、 最も大きい値を除き、 残り 4つのデ一ターの平均値を示す。
② フィルムの摩擦係数 (//k)
図 1に示した装置を用いて下記のようにして測定する。 図中、 1は巻 出しリール, 2はテンションコントローラ一, 3, 5, 6, 8, 9及び 1 1はフリー口一ラー, 4はテンション検出機 (入口) , 7はステンレ ス網 SUS 3 0 4製の固定棒 (外径 5隱) , 1 0はテンション検出機 ( 出口) , 1 2はガイドロ一ラー, 1 3は巻取りリールをそれぞれ示す。 温度 20°C, 湿度 6 0%の環境で、 幅 1/2インチに裁断したフィル 厶を、 7の固定棒 (表面粗さ 0. 3 ΐη) に角度 0= ( 1 5 2/ 1 8 0 ) 7Γラジアン ( 1 5 2° ) で接触させて毎分 2 0 0 cmの速さで移動 (摩 擦) させる。 入口テンション T1 が 3 5 gとなるようにテンションコン ト α—ラーを調整したときの出口テンション (Τ2 : g) をフイルムが 9 0m走行した後に出口テンション検出機で検出し、 次式で走行摩耗係 数 kを算出する。
uk= ( 2. 3 0 3/0) l o g (T2ノ Tl )
= 0. 8 6 】 o g (T2 /3 5)
③ 摩耗性評価一 I
1/2インチ幅のフィルム表面を直径 5画のステンレス製固定ピン ( 表面粗さ 0, 5 8) に角度 1 5 0' で接触させ、 毎分 2mの速さで約 1 5cm程度往復移動, 麾擦させる (この時入側テンション T1 を 6 0 gと する) 。
この操作を緣り返し、 往復 4 0回測定後、 摩擦面に生じたスクラッチ の程度を目視により下記の基準で 4段階判定する。
ぐ 4段階判定基準 >
a :スクラッチがほとんど発生しなレ、。
b:スクラッチがわずかに発生する。
c :スクラッチがかなり発生する。
d :スクラッチが全面に多数発生する。
④ 麾耗性評価一 II
フィルムの走行面の削れ性を 5段のミニス一パ一力レンダーを使用して 評価する。 カレンダ一はナイロンロールとスチールロールの 5段カレン ダ一であり、 処理温度は 8 0て、 フィルムにかかる線圧は 2 0 0 kg/cm 、 フイルムスピードは 5 O m/分で走行させる。 走行フィルムは全長 4 0 0 O m走行させた時点でカレンダ一のトップ口一ラーに付着する汚れ でフィル厶の削れ性を下記の基準で 3段階評価する。
< 3段階判定基準 >
a : ナイロン α—ルの汚れ全く無し。
b : ナイロンロールの汚れ殆ど無し。
C : ナイロンロールが汚れる。
⑤ フィルム表面の粗大突起数
フィルム表面にアルミ二ゥムを薄く蒸着した後、 二光束干渉顕微鏡を用 いて四重環以上の粗大突起数 (測定面稷 1 mm2 当りの個数) をカウント し、 粗大突起数の多少により下記の基準によりランク付けする。
1級 : 1 6個以上 2扱 1 2〜1 5個
3級 8〜 1 1個 4級 : 4〜7個
5极 0〜3個
「実施例 ·比較例に使用した無機粒子 U、 V、 Wの調製方法」 無機粒子 U
1 . O mol /リツ夕—濃度の炭酸ナトリウム溶液 (X溶液) 、 0 . 9 mol Zリッ夕ー濃度の塩化カルシウム溶液 (Y溶液) 、 及び 0 . 0 3 mo 1 /リッ夕—濃度の水酸化ナトリウム溶液 (Z溶液) を各々 1 0 0 リツ 夕—調製した。 該 X溶液と Z溶液を混合し、 液温を 1 9 °Cに調整した後 、 同様に 1 7 °Cに調整した Y溶液を該混合溶液に撹拌条件下に滴下した 。 得られた混合 (反 ) 溶液の P Hが 1 2であるため、 遠心脱水機を用 いて水道水により脱水 ·水洗を緣り返し p H 9となった時点で濃縮する ことにより、 沈降性炭酸カルシウムからなる無機粒子 Uを得た。 得られ た炭酸カルシウムを電子顕微鏡で観察した結果、 平均粒子径 1 . 6 m の六面体粒子であった。 粒度分布を表 1及び表 2に示す。
該無機粒子を使用して後記する実施例 1、 3、 比較例 1〜3に記載の 操作を行うことによりグリコ一ル系分散体を作成した。
無機粒子 V
X溶液濃度を 1 . 5 mol リッタ—に、 Y溶液濃度を 1 . 4 mol /リ ッターに、 Z溶液を 0 . 0 4 mol Zリツターにそれぞれ変更することを 除いて無機粒子 Uと同様の方法で沈降性炭酸カルシウムからなる無機粒 子 Vを得た。 得られた炭酸カルシウムを電子顕微鏡で観察した結果、 平 均粒子径 0 . 5 / mの六面体粒子であった。 粒度分布を袠 1及び衷 2に 示す。
該無機粒子を使用して後記する実施例 2、 9、 比較例 4に記載の操作 を行うことによりグリコール系分散体を作成した。
無機粒子 W
市販の酸化チタン (平均拉子径 0 . 7 u rn) を用い、 固形分濃度 5 0 重量%の水スラリ一を作成し、 湿式粉砕機 (WA V社製ダイノーミル) にて湿式粉砕することにより平均粒子径 0, 4 z mの酸化チタンからな る無機粒子 Wを得た。 粒度分布を表 3に示す。
該無機粒子を使用して後記する実施例 4、 比較例 5に記載の操作を行 うことによりグリコ一ル系分散体を作成した。
実施例 1
上記無機粒子 Uを使用し、 遠心脱水機により脱水 ·水洗を操り返し固 形分 5 0重量%の水スラリーを得、 次いで該水スラリー中にポリアクリ ル酸ナトリウム (水に対する溶解度 9 0 0 ) を無機粒子に対して 0 . 4 重量%添加 '混合し、 スプレードライヤ一にて乾燥し、 分散剤で表面処 理された無機粉体を得た。 該無機粉体をグリコールに分散させるに際し 、 表 1に記載した量の水とエチレングリコールを添加して無機粉体固形 分濃度 6 2重量%のエチレンダリコ一ルスラリ一を調製し、 ディスクタ イブの攙拌羽を有する攪拌機にて S 0分間攪拌し、 エチレングリコ—ル 分散体を得た。 得られたグリコール分散体の粒度分布を表 1に示すが、 乾燥前の粒度分布が維持再現されていることがわかる。
実施例 2
上記無機粒子 Vを使用し、 遠心脱水機により脱水 ·水洗を繰り返し固 形分 3 0重量%の水スラリーを得、 次いで該水スラリー中にァクリル酸 とボリエチレングリコールモノメタクリレ一ト共重合体 (重量比 7 / 3 ) のナトリウム塩 (水に対する溶解度 1 5 0 ) を無機粒子に対して 1 , 2重量%添加 '混合し、 スプレードライヤーにて乾燥し、 分散剤で表面 処理された無機粉体を得た。 該無機粉体をグリコールに分散させるに際 し、 表 1に記載した量の水とエチレングリコールを添加して無機粉体固 形分濃度 5 0重量%のエチレングリコールスラリーを調製し、 ディスク タイプの攪拌羽を有する攪拌機にて 3 0分間搜拌し、 エチレングリコー ル分散体を得た。 得られたグリコール分散体の粒度分布を表 1 に示すが 、 乾燥前の粒度分布が維持再現されていることがわかる。
実施例 3
実施例 1のエチレングリコ一ルスラリ一調製時に添加する水量とェチ レングリコール曩を表 1に記載の量に変更した他は同様の方法で固形分 濃度 7 0重量%のエチレングリコール分散体を得た。 得られたグリコー ル分散体の粒度分布を表 1に示すが、 乾燥前の粒度分布が維持再現され ていることがわかる。
実施例 4
無機粒子 Wの 5 0重量%水スラリーに、 へキサメタ憐酸ナト リウム ( 水に対する溶解度 7 0 ) を無機粒子に対して 0 . 7重量%添加 '混合し 、 スプレードライヤ一にて乾燥し、 分散剤で表面処理された無機粉体を 得た。 該無機粉体をグリコールに分散させるに際し、 表 3に記載の水と エチレングリコールを添加して無機粉体固形分濃度 5 0重量%のェチレ ングリコールスラリーを調製し、 ディスクタイプの攪拌羽を有する攪拌 機にて 3 0分間攪拌し、 エチレングリコール分散体を得た。 得られたグ リコール分散体の粒度分布を表 3に示すが、 乾燥前の粒度分布が維持再 現されていることがわかる。
比較例 1
実施例 1のエチレングリコ一ルスラリ一調製時に添加する水量とェチ レングリコール量を表 2に記載の量に変更した他は同様の方法で固形分 濃度 5 0重量%のエチレングリコール分散体を得た。 得られたグリコー ル分散体の粒度分布を表 2に示すが、 乾燥前の粒度分布とは大きく異な つていることがわかる。
比較例 2
実施例 1のエチレングリコールスラリ一調製時に添加する水量とェチ レングリコール量を表 2に記載の量に変更した他は同様の方法で固形分 濃度 1 5重量%のエチレングリコール分散体を得た。 得られたグリコ一 ル分散体の粒度分布を表 2に示すが、 乾燥前の粒度分布とは大きく異な つていることがわかる。
比較例 3
実施例 1のエチレングリコールスラリ一調製時に添加する水量とェチ レングリコール量を表 2に記載の量に変更した他は同様の方法で固形分 濃度 4 5重量%のエチレングリコール分散体を得た。 得られたグリコー ル分散体の粒度分布を表 2に示すが、 乾燥前の粒度分布が再現されたも のの、 得られたグリコール分散体の含水量が多いため、 後述の比較例に 示すとおり、 該グリコ一ル分散体を用いても良好なフィルムを得ること ができなかった。
比較例 4
無機拉子 Vを実施例 2と同様の方法で 5 0重量%の水スラリーとし、 次いでォレイン酸ナトリウム (水に対する溶解度 2 ) を無機粒子に対し て 3 . 0重暈 添加 '混合し、 乾燥,解碎することにより表面処理無機 粉体を得た。 該無機粉体をグリコールに分散させるに際し、 表 2に記載 の水とエチレングリコール添加して無機粉体固形分濃度 3 0重量%のェ チレングリコールスラリ一を調製し、 ディスクタイプの攪拌羽を有する 攪拌機にて 3 0分間攪拌し、 エチレングリコール分散体を得た。 得られ たグリコール分散体の粒度分布を袠 2に示すが、 乾燥前の粒度分布とは 大きく異なっていることがわかる。
比較例 5
実施例 4で使用した分散剤をへキサン酸 (水に対する溶解度 1 ) 2 . 0重量%に変更し、 乾燥 ·解砕することにより表面処理無機粉体を得た
。 該無機粉体をグリコールに分散させるに際し、 表 3に記載の水とェチ レングリコールを添加して無機粉体固形分 g度 6 0重量%のエチレング リコールスラリーを調製し、 ディスクタイプの攬拌羽を有する攪拌機に て 3 0分間搜拌し、 エチレングリコ一ル分散体を得た。 得られたグリコ ール分散体の拉度分布を表 3に示すが、 乾燥前の粒度分布とは大きく異 なっていることがわかる。
実施例 9
上記無機粒子 Vを使用し、 遠心脱水機により脱水■水洗を操り返し固 形分 3 0重量%の水スラリーを得、 次いで該水スラリー中にアクリル酸 とポリエチレングリコールモノメタクリレー卜共重合体 (重量比 7 / 3 ) のァミン (メタノールに対する溶解度 1 0 0 ) を無機粒子に対して 1 . 1重量%添加 '混合し、 スプレードライヤーにて乾燥し、 分散剤で表 面処理された無機粉体を得た。 該無機粉体をエチレングリコールに分散 させるに際し、 表 3に記載した量のメタノールとエチレングリコールを 添加し、 無機粉体固形分濃度 4 5重量%のエチレングリコールスラリー を調製し、 ディスクタイプの攪拌羽を有する攙拌機にて 3 0分間攪拌し 、 グリコール分散体を得た。 得られた分散体の粒度分布を表 3に示すが 、 乾燥前の粒度分布が維持再現されていることがわかる。 。
表 1
Figure imgf000023_0001
A;無機粉体に対する水及び Z又はメタノ一ルの重量%
t ;無«体に対する分散剤の重量%
B ;グリコール系分散体に占める水及び/又はメタノールの重量% C ;グリコール系分散体に占める の重童%
X:グリコール系分散体に添加する水及び Ζ又はメタノールの % Υ;無 »体の ¾¾7j分の重量%
Z ;ダリコール系 体に添加するエチレングリコールの重量 表 2 無難子 ― U mi uri " V 水 D 1 0 (な m) 2. 08 0. 80 乾ス D50 ( m) 1. 59 0. 5 1 燥ラ D 90 (um) 1. 20 0. 34 前リ D10/D90 1, 73
1 5 um< (%) 0 ο 比較例 1 比較例 2 比較例 3 比較例 4 分 種類 ボリアクリル酸ナトリウム Av^ V 散 溶解度 900 Δ. 0 剤 処 ¾ tO) 0. 4 3, 0
X (½) 0. 05 0. 1 26. 8 2. 6
Y 0. 2 0. 2 0. 2 0. 4
Z (%) 49. 75 84. 7 28. 0 A 7 Π
Xの種類 水 水 水
20/t 50 R R 7 グ A (%) 0. 5 2. 0 60, 0 R 0 リ B (96) 0. 25 0. 3 27. 0 . U
C (¾) 50 1 5 45 50
1 D ] 0 (^m) 34. 02 1 9. 66 2. 05 43. 94 ル D50 (j«m) 1. 94 1. 82 1. 59 0. 59 分 -D90 ( m) 1, 23 1. 23 1. 20 0. 34 散 D10/D90 27. 6 6 1 5. 98 1. 7 1 1 29. 23 体 5 μτη< (%) 32. 1 6 25. 79 0 32. 1 5
A;無機粉体に対する び 又はメタノールの
t ;無機粉体に対する分散剤の重量%
B: グリコール系^ ¾体に占める水及び/又はメタノールの重量%
C;グリコール系分散体に占める無機扮体の重量%
X;グリコール系^ ¾体に添加する水及びノ又はメタノールの
Y 無機粉体の吸着水分の重量%
2; グリコ一ル系分散体に [1するエチレングリコールの重量% 表 3 無機粒子 W 無機粒子 V 水 D 1 0 ( m 0. 5 1 0. 82 乾ス D 50 (um) 0. 36 0. 53 燥ラ D90 (um) 0, 25 0. 34 前リ D10/D90 2. 04 2. 41
1 5 m< (%) 0 0 実施例 4 比較例 5 実施例 9 分 種類 へキサメタ焼酸 へキサン酸 了クリル酸—ポリエチレングリコ-ルモノメタ 散 ナトリウム タリレ-ト共重合体の了ミン 剤 溶解度 70 1. 0未満 1 00
処 a¾tc 0. 7 2. 0 1. 1
X (%) 4. 6 3. 6 4. 0
Y (%) 0. 4 0. 4 0. 5
Z (%) 45. 0 36. 0 50. 5
Xの種類 水 水 メタノ —ル
20/t 28. 57 1 0. 0 1 8, 1 8 グ A (%) 1 0 6. 67 1 0
リ B (%) 5. 0 4. 0 4. 5
C (%) 50 60 45
1 D 1 0 (um 0. 62 1 7. 1 5 0. 82 ル D 50 (urn) 0. 39 0. 55 0, 54 分 D 90 (urn 0. 28 0. 33 0. 33 散 D10/D90 2. 2 1 5 1. 97 2. 48 体 5 / mく (%) 0 22. 1 0 0
A;無機粉体に対する水及び/又はメタノールの %
t :無機粉体に対する^ C剤の %
B;グリコール系分散体に占める水及び Z又はメタノールの重量%
C グリコール系分散体に占める無機粉体の SS%
X グリコール系分散体に添加する水及び Z又はメ夕ノールの重量%
Y 無機粉体の吸着水分の 量%
Z グリコール系分散体に添加するエチレングリコールの重量% 実施例 5 ~ 8及び 1 0
実施例 1〜4及び 9で調製したエチレングリコール分散体を用い、 上 記記載の方法でポリエステルフィルムを作成し、 各々の物性を評価した 。 その結果を表 4に示す。
比較例 6〜 9
比較例 1〜5で調製したエチレングリコ一ル分散体を用い、 上記の方 法でポリエステルフイルムを作成し、 各々の物性を評価した。 ただし、 比較例 3で調製したェチレングリコール分散体は含有水量が多く突沸し たためフィルム評価は行わなかった。 その結果を表 4に示す。
参考例 1
実施例 1 と同様の操作を行い、 無機粒子 Uの表面処理粉体を得、 この 粉体と水を強力に攪拌 ·混合することにより固形分濃度 5 0重量%の水 スラリーを調製し、 次いで所定暈のエチレングリコールを混合し、 エバ ポレーターで水を除去することにより無機粒子 Uからなるエチレングリ コール分散体を得た。 得られたグリコール分散体を使用して実施例 5と 同様の操作によりポリエステルフィルムを作成した。 この評価結果を表 4に示す。
参考例 2
実施例 2と同様の操作を行い、 無機粒子 Vの表面処理粉体を得、 この 粉体と水を強力に攪拌 ·混合することにより固形分濃度 5 0重量%の水 スラリーを調製し、 次いで所定量のエチレングリコールを混合し、 エバ ボレー夕一で水を除去することにより無機粒子 Vからなるエチレングリ コール分散体を得た。 得られたグリコール分散体を使用して実施例 6と 同様の操作によりポリエステルフィルムを作成した。 この評価結果を表 4に示す。
これら参考例 1、 2との比較から、 実施例 1〜4及び 9で得たェチレ ングリコール分散体は、 参考例 1、 2のように多大なエネルギーを必要 とすることなく、 しかも参考例 1、 2と同様の良好な物性を有するフィ ルムを提供することが理解される。
表 4 使用した ボリエステルフィルムの評価結果 ェチレノ
ン リ J ノレ 表面粗さ 摩擦係数 摩耗性 摩耗性 粗大突起
Ra I II
l 参考例 1 0.018 0.15 b b 5級 参考例 2 0,013 0.14 a a 5級 宝 1 湖リ 11 0.018 0 15 b b 5級 実施例 6 実施例 2 0.013 0.14 a a 5級 実施例 7 実施例 3 0.018 0.15 b b 5級 実施例 8 実施例 4 0.020 0, 16 b b 4級 実施例 10 実施例 9 0.017 0.15 b b 5級 比較例 6 比較例 1 0.028 0.15 d c 1級 比較例 7 比較例 2 0.029 0.15 c c 2級 比較例 8 比較例 4 0.033 0.15 d c 1級 比較例 9 比較例 5 0.033 0.16 d c 1級 產業上の利用可能性
叙上のとおり、 本発明によれば、 粉体伏で輸送して、 使用される工場 等でグリコール分散体とすることが可能であるから、 水、 メタノールあ るいはグリコールのスラリーを輸送する必要もなく、 水、 メタノール等 の溶媒をグリコールに箧換するための蒸留装 ^等を用いる必要もなく、 さらには湿式粉砕という工程も必要ない等、 大巾な製造工程の簡略化と コスト低減が可能である。 また、 無機粉体を乾燥前あるいは初期の形状 及び粒度を維持したまま、 グリコール系溶液に分散せしめてグリコール 系分散体とすることができ、 このようにして得られる均一に分散された 無機粉体のグリコール系分散体を含有してなるポリエステル組成物を提 供することができる。

Claims

請 求 の 範 囲
1. 2 0てにおける水に対する溶解度が 5 (g/ 1 0 0 g—水) 以上で ある分散剤を表面処理した無機粉体をグリコールに分散してなり、 下記 式 ( 1 ) 〜 (3) を満足する範囲で水及び Z又はメタノールを含有して なることを特徴とする無機粉体のグリコール系分散体。
( 1 ) 1 ≤ A ≤ 2 OZt
(2) 0. 5 ≤ B ≤ 1 0
(3) 5 ≤ C
ただし、
A ; 無機粉体に対する水及び/又はメタノールの重量%
t ; 無機粉体に対する分散剤の重量%
B ; グリコール系分散体に占める水及び Z又はメタノールの重量 C ; グリコール系分散体に占める無機粉体の重量%
2. 無機扮体が、 炭酸カルシウム、 二酸化チタン、 シリカ、 タルク、 力 オリン及び憐酸カルシウムよりなる群から選ばれる少なくとも 1種であ る請求項 1に記載のグリコール系分散体。
3. 2 (TCにおける水に対する溶解度が 5 (gZl 0 0 g—水) 以上で ある分散剤を表面処理した無機粉体を、 下記式 ( 1 ) 〜 (3) を満足す るように水及び/又はメタノールとともにグリコールに分散せしめるこ とを特徴とする無機粉体のグリコール系分散体の調製方法。
( 1) 1 ≤ A ≤ 20/t
(2) 0. 5 ≤ B ≤ 1 0
(3) 5 ≤ C
ただし、
A ; 無機粉体に対する水及び/又はメタノールの重量% t 無機粉体に対する分散剤の童量%
B ; グリコール系分散体に占める水及び/又はメタノールの重量% C ; グリコール系分散体に占める無機粉体の重畳%
4 . 請求項 1記載の無機粉体のグリコール系分散体を配合してなるポリ エステル組成物。
PCT/JP1998/003139 1997-07-16 1998-07-14 Dispersion de poudre inorganique dans du glycol, procede de production de cette dispersion et composition polyester la contenant WO1999003913A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98931081A EP0999231B1 (en) 1997-07-16 1998-07-14 Glycoldispersion of anorganic powder, process for producing the same, and polyester composition containing the dispersion
US09/462,785 US6372832B1 (en) 1997-07-16 1998-07-14 Glycol dispersion of inorganic powder, process for producing the same, and polyester composition containing the dispersion
DE69833255T DE69833255D1 (de) 1997-07-16 1998-07-14 Glycoldispersion eines anorganischen pulvers, verfahren zu ihrer herstellung und diese dispersion enthaltende polyestermischung
JP2000503134A JP4101457B2 (ja) 1997-07-16 1998-07-14 無機粉体のグリコール系分散体及びその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20855997 1997-07-16
JP9/208559 1997-07-16

Publications (1)

Publication Number Publication Date
WO1999003913A1 true WO1999003913A1 (fr) 1999-01-28

Family

ID=16558198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003139 WO1999003913A1 (fr) 1997-07-16 1998-07-14 Dispersion de poudre inorganique dans du glycol, procede de production de cette dispersion et composition polyester la contenant

Country Status (7)

Country Link
US (1) US6372832B1 (ja)
EP (1) EP0999231B1 (ja)
JP (1) JP4101457B2 (ja)
KR (1) KR100376326B1 (ja)
CN (1) CN1094951C (ja)
DE (1) DE69833255D1 (ja)
WO (1) WO1999003913A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030055207A1 (en) * 2000-10-02 2003-03-20 Nyacol Nano Technologies, Inc. Surface-modified Ca(CO3) and polymers containing same
EP1430501A2 (en) * 2001-07-02 2004-06-23 Plasmasol Corporation A novel electrode for use with atmospheric pressure plasma emitter apparatus and method for using the same
US6437088B1 (en) * 2001-08-14 2002-08-20 E. I. Du Pont De Nemours And Company Process for producing polyester with coated titanium dioxide
WO2015046487A1 (ja) * 2013-09-30 2015-04-02 住友大阪セメント株式会社 無機粒子分散液、無機粒子含有組成物、塗膜、塗膜付きプラスチック基材、表示装置
CN103922352A (zh) * 2014-03-30 2014-07-16 苏州奈微纳米科技有限公司 纳米二氧化硅分散体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4747294B1 (ja) * 1969-09-03 1972-11-29
JPS4813335B1 (ja) * 1968-05-17 1973-04-26
JPS62151431A (ja) * 1985-12-26 1987-07-06 Maruo Calcium Kk 沈降製炭酸カルシウムのグリコ−ル系分散体
JPS63221158A (ja) * 1987-03-11 1988-09-14 Nippon Shokubai Kagaku Kogyo Co Ltd ポリエステル組成物
JPS63268734A (ja) * 1987-04-25 1988-11-07 Kanebo Ltd ポリエステル樹脂組成物の製造法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858284A (en) * 1955-04-11 1958-10-28 Grace W R & Co Non-caking flatting agent for varnishes
US2921913A (en) * 1956-05-01 1960-01-19 Du Pont Silica organosols
US2984629A (en) * 1957-11-04 1961-05-16 Cabot Corp Aqueous dispersions of pyrogenic silica
US3004921A (en) * 1958-06-11 1961-10-17 Argus Chem Preparation of colloidal dispersions of fine-particle size silica hydrogel in polyols
US3629139A (en) * 1969-03-13 1971-12-21 Nalco Chemical Co Silica organosols and process for making
GB1481685A (en) * 1973-08-15 1977-08-03 Unilever Ltd Detergent ingredient
JPS52103422A (en) * 1976-02-26 1977-08-30 Toyo Ink Mfg Co Ltd Preparation of pigment compositions
US4230501A (en) * 1978-07-31 1980-10-28 Cities Service Company Pigments dispersible in plastics
US4277288A (en) * 1978-10-06 1981-07-07 Ciba-Geigy Corporation Fluidized granulation of pigments using organic granulating assistant
JPS5853918A (ja) * 1981-09-28 1983-03-30 Teijin Ltd ポリエステルの製造法
US5275652A (en) * 1982-12-07 1994-01-04 Elkem Materials Inc. Concrete additive comprising a multicomponent admixture containing silica fume, its method of manufacture and concrete produced therewith
JPH0672180B2 (ja) * 1983-12-28 1994-09-14 東レ株式会社 ポリエステル用粒子スラリーの調整方法
US4599114A (en) * 1985-02-11 1986-07-08 Atkinson George K Treatment of titanium dioxide and other pigments to improve dispersibility
JPS62199649A (ja) * 1986-02-27 1987-09-03 Toyobo Co Ltd ポリエステル用微粒子分散液の製造法
US5304324A (en) * 1986-03-07 1994-04-19 Nippon Shokubai Kagaku Kogyo Co., Ltd. Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
EP0236945B1 (en) * 1986-03-07 1993-03-03 Nippon Shokubai Co., Ltd. Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
US5236622A (en) * 1986-03-07 1993-08-17 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for producing a monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US5000871A (en) * 1987-06-24 1991-03-19 Maruo Calcium Company Limited Gycol dispersion of calcium carbonate
US4952617A (en) * 1987-11-06 1990-08-28 Columbian Chemicals Company Dispersion of pigments in resins and coatings systems
US5085800A (en) * 1988-07-06 1992-02-04 Maruo Calcium Company, Limited Glycol dispersion of precipitated calcium carbonate
FI100476B (fi) * 1989-06-06 1997-12-15 Pluss Stauffer Ag Mineraalien ja/tai täyteaineiden ja/tai pigmenttien erittäin väkevä ve sisuspensio
JPH0433920A (ja) * 1990-05-30 1992-02-05 Toyobo Co Ltd ポリエステルの製造方法
DE69403631T2 (de) * 1993-02-12 1997-10-16 Cabot Corp., Boston, Mass. Oberflächenmodifizierte kieselsaüre
JP3259444B2 (ja) * 1993-06-17 2002-02-25 東レ株式会社 ポリエステル組成物
US5674443A (en) * 1994-09-26 1997-10-07 Skc Limited Process for the preparation of polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813335B1 (ja) * 1968-05-17 1973-04-26
JPS4747294B1 (ja) * 1969-09-03 1972-11-29
JPS62151431A (ja) * 1985-12-26 1987-07-06 Maruo Calcium Kk 沈降製炭酸カルシウムのグリコ−ル系分散体
JPS63221158A (ja) * 1987-03-11 1988-09-14 Nippon Shokubai Kagaku Kogyo Co Ltd ポリエステル組成物
JPS63268734A (ja) * 1987-04-25 1988-11-07 Kanebo Ltd ポリエステル樹脂組成物の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0999231A4 *

Also Published As

Publication number Publication date
CN1094951C (zh) 2002-11-27
KR100376326B1 (ko) 2003-03-17
US6372832B1 (en) 2002-04-16
CN1264398A (zh) 2000-08-23
EP0999231B1 (en) 2006-01-18
DE69833255D1 (de) 2006-04-06
EP0999231A1 (en) 2000-05-10
JP4101457B2 (ja) 2008-06-18
KR20010021937A (ko) 2001-03-15
EP0999231A4 (en) 2001-01-10

Similar Documents

Publication Publication Date Title
KR0176250B1 (ko) 단분산된 바테라이트형 탄산칼슘 및 그 제조방법과 입자성장형태 제어방법
US5000871A (en) Gycol dispersion of calcium carbonate
KR950002528B1 (ko) 바테라이트형 탄산칼슘을 함유하는 폴리에스테르 조성물
WO1999003913A1 (fr) Dispersion de poudre inorganique dans du glycol, procede de production de cette dispersion et composition polyester la contenant
JP3040564B2 (ja) ブロッキング防止剤
JP3469286B2 (ja) 立方体状炭酸カルシウムの製造方法
JP2010023001A (ja) 微粒子分散体の製造方法
JP2001342335A (ja) フィルム製造用ポリエステル樹脂組成物
JP4097741B2 (ja) 蛇腹状無機粒子及びこれを含有してなる合成樹脂組成物
US5085800A (en) Glycol dispersion of precipitated calcium carbonate
JPH0314051B2 (ja)
KR20010053271A (ko) 열가소성수지 조성물, 그 제조방법 및 그 조성물로이루어진 2축 배향 필름
JP3405016B2 (ja) ポリエステル組成物
JPH0560979B2 (ja)
JPH0324493B2 (ja)
JPS62260834A (ja) ポリエステルフイルム
JPH07103247B2 (ja) ポリエステル組成物および該組成物からなるフィルム
JP3260881B2 (ja) ポリエステル組成物
JPH0699060A (ja) 炭酸カルシウムのグリコール系分散体
JPH05339394A (ja) ポリエステルフィルム
JP3077245B2 (ja) ポリエステル組成物の製造方法
KR0149445B1 (ko) 폴리에스테르 필름의 제조방법
JPH0573457B2 (ja)
JPS62106955A (ja) ポリエステル組成物
JPH02178333A (ja) 滑り性の良いポリエステルフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98807223.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB LU NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09462785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007000502

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998931081

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998931081

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007000502

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007000502

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998931081

Country of ref document: EP