WO1998054240A1 - Procede de preparation d'un polycarbonate aromatique - Google Patents

Procede de preparation d'un polycarbonate aromatique Download PDF

Info

Publication number
WO1998054240A1
WO1998054240A1 PCT/JP1998/002276 JP9802276W WO9854240A1 WO 1998054240 A1 WO1998054240 A1 WO 1998054240A1 JP 9802276 W JP9802276 W JP 9802276W WO 9854240 A1 WO9854240 A1 WO 9854240A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
reaction
diester
catalyst
carbonate
Prior art date
Application number
PCT/JP1998/002276
Other languages
English (en)
French (fr)
Inventor
Hidemi Takemoto
Toru Sawaki
Katsushi Sasaki
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE69816295T priority Critical patent/DE69816295T2/de
Priority to US09/424,318 priority patent/US6265524B1/en
Priority to EP98921788A priority patent/EP0987285B1/en
Publication of WO1998054240A1 publication Critical patent/WO1998054240A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids

Definitions

  • the present invention relates to a method for producing a high-molecular-weight and excellent hue poly-polyponate by an economical method. More specifically, the present invention relates to a method for producing a polycarbonate by a transesterification reaction between an aromatic dihydroxy compound and an aromatic carbonic diester produced by a specific production method.
  • Polycarbonate is widely used in various applications such as optical discs and mechanical parts because of its excellent transparency, mechanical properties, and thermal properties.
  • a transesterification catalyst such as a basic compound is used, and it is usually from 160 to 300 Transesterification proceeds in the molten state while heating to a temperature of ° C. After the reaction is completed, the product is directly pelletized and the product is obtained, so the production process can be simplified and economical compared to the interfacial polycondensation method It has the following advantages.
  • Aromatic carbonic acid diesters are generally produced by the dehydrochlorination reaction of an aromatic monohydroxy compound with phosgene and the phosgene method, and use of phosgene leaves problems in terms of safety and the environment.
  • the aromatic carbonate diester is produced by transesterification of aromatic polycarbonate, the reaction is inhibited due to the presence of an organic acid typified by phenyl octaformate as a reaction intermediate.
  • Purification method for example, hot water washing disclosed in Japanese Patent Publication No. 38-13773 It is necessary to perform purification such as purification.
  • Aromatic carbonic diesters obtained by the transesterification reaction of an alkyl carbonate represented by dimethyl carbonate with phosgene without using phosgene and aromatic monohydroxy compounds have a low reaction yield. Although it is not practical because of the high cost and, consequently, the cost of the resulting aromatic polycarbonate, it does not contain organic acids as in the case of using phosgene as a reaction intermediate. Simple purification such as low distillation may be performed. Therefore, as a method for obtaining an aromatic carbonic diester at low cost without using phosgene, a method for obtaining an aromatic carbonic acid ester by a dehydrogenating reaction of an aromatic oxalic acid diester is disclosed in Japanese Patent Application Laid-Open No. H08-33333. No. 07 proposes this.
  • the aromatic oxalic acid diester can be produced by a transesterification reaction between an alkyl oxalate represented by dimethyl oxalate and an aromatic monohydroxy compound, but the transesterification between an alkyl oxalate and an aromatic monohydroxy compound can be produced.
  • the reaction rate of the reaction is very high.
  • the yield of aromatic diester carbonate by decarbonylation reaction of aromatic oxalic acid diester is also high. Therefore, the aromatic carbonate diester can be produced at low cost by the above method.
  • an organic phosphorus compound is used as a catalyst.
  • the organophosphorus compound include phosphonium salt, phosphine, phosphine dioctylide or phosphinoxide.
  • Suitable catalysts are phosphonium halide or phosphine dioctylide, or phosphine or phosphine octylide.
  • a combination of oxides and halogenated compounds is used.
  • the use of an organic phosphorus compound containing a halogen is indispensable in order to obtain an aromatic carbonate diester in a high yield.
  • the aromatic carbonic diester obtained by the degassing ruponylation reaction does not contain an organic acid as a reaction intermediate impurity, as in the case of the synthesis by the phosgene method.
  • the aromatic carbonic diester obtained by the above-described weakened luponylation reaction is used, and this is transesterified with the aromatic dihydroxy compound.
  • the inventor of the present invention has studied diligently in order to produce an aromatic polycarbonate having a high amount and excellent hue from the aromatic carbonic acid diester obtained by the above-mentioned weakening Ropponi-dani reaction and the aromatic dihydroxy-distilled product. As a result, it has been found that it is effective to reduce the content of the water-soluble octalogen contained in the aromatic carbonic diester to a specific value or less, and the present invention has been completed.
  • the aromatic carbonate diester in a method for producing an aromatic polycarbonate by a transesterification reaction between an aromatic carbonate diester and an aromatic dihydroxy compound, is represented by the following general formula: (1)
  • the aromatic polycarbonate is produced by a transesterification reaction between an aromatic dihydroxy compound and an aromatic carbonate diester.
  • the aromatic carbonate diester is represented by the above general formula (1).
  • the present invention is characterized in that an aromatic oxalic acid ester represented by the following formula is used.
  • the aromatic dihydroxy compound may be any compound which is generally used as a dihydroxy component of an aromatic polycarboxylic acid. Specifically, the following general formula (3) The aromatic dihydroxy compound represented by the following formula is used.
  • n represents an integer of 0 to 4
  • R 5 and R 6 are the same or different from each other, and represent a halogen atom or a hydrocarbon group having 1 to L2 carbon atoms.
  • the halogen atom a chlorine atom, a bromine atom or an iodine atom is preferable
  • the carbon atom a carbon atom having 1 to 12 carbon atoms such as a methyl group or an ethyl group, preferably:
  • An aliphatic hydrocarbon group or an aromatic hydrocarbon group having 6 to 12 carbon atoms such as a phenyl group is preferred.
  • R 7 and R 8 are the same or different from each other, and represent a halogen atom, a hydrogen atom, or a hydrocarbon group having 1 to 12 carbon atoms.
  • examples of the hydrogen group for carbon hydride include those described above for R 5 and R 6 .
  • R 9 represents an alkylene group having 3 to 8 carbon atoms.
  • aromatic dihydroxy compound examples include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4-hydroxy_3-methylphenyl) propane.
  • 4,4-bis (4-hydroxyphenyl) heptane 2,2-bis (4-hydroxy-1,3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-1,3,5-) Dibromophenyl) propane, bis (4-hydroxyphenyl) oxide, bis (3,5-dichloro-4-hydroxyphenyl) oxide, p, p'-dihydroxydiphenyl, 3,3 'dichloro-1,4'- Dihydroxydiphenyl, bis (4-hydroxyphenyl) sulfone, resorcinol, hydroquinone, 1,4-dihydroxy-1,2,5-dichlorobenzene , 1, 4-dihydroxy-one 3-main ethylbenzene, bis (4-hydroxyphenyl) sulfides, bis (4-hydroxyphen
  • the aromatic carbonate diester to be reacted with the aromatic dihydroxy compound may be any of those usually used in the production of aromatic polycarbonate by a transesterification method. Specifically, an aromatic diester carbon represented by the following general formula (2) is used.
  • R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a phenyl group or a halogen atom.
  • aromatic carbonic diester examples include, for example, diphenyl carbonate, m-cresyl carbonate, m-cresyl carbonate, p-cresyl carbonate, p-cresyl carbonate, dinaphthyl carbonate Neat, bis (diphenyl) carbonate or bis (diphenyl) capillary is used. Of these, diphenyl alcohol is particularly preferred.
  • the aromatic diester carbonate used is one obtained by the weakened Luponyl reaction of the aromatic oxalic acid diester.
  • the aromatic oxalic acid diester is represented by the following general formula (1).
  • the aromatic oxalic acid diester represented by the general formula (1) forms an aromatic carbonic acid diester represented by the general formula (2) by a weakening rudination reaction. Therefore, the aromatic oxalic acid diester can be represented by the following formula (1 ′) corresponding to the general formula (2).
  • R i, R 2 , R 3 and R 4 have the same meaning as defined in the general formula (2).
  • aromatic oxalic acid diester compound examples include, for example, diphenyloxalate, m-cresyloxalate, m-cresylfenyloxalate, p-cresyloxalate, p-cresylfenyloxalate, dinaphtyloxalate, bis ( Diphenyl) oxalate or bis (black mouth fiel) oxalate is used. Of these, diphenyloxalate is particularly preferred.
  • an aromatic carbonic acid diester obtained by a deprotonation reaction of an aromatic oxalic acid diester is used.
  • this reaction is not particularly limited, for example, a method described in Japanese Patent Application Laid-Open No. H08-33337 is an industrial method.
  • the method described in this publication is an excellent method having high conversion and selectivity.
  • an organic phosphorus compound such as phosphonium salt, phosphine, phosphine dioctylide or phosphinoxide is used as a catalyst.
  • a catalyst capable of obtaining an aromatic carbonic acid diester (typically, diphenyl carbonate) in a high yield is a catalyst in which an organic phosphorus compound contains octogen. Or a catalyst combined with a halogenated compound.
  • the preferred method is to convert an aromatic carbonic acid diester from an aromatic oxalic acid diester by an elimination reaction using an organic phosphorus compound containing a halogen (chlorine, bromine) as a catalyst. It can be said that it is a way to get.
  • the present inventors have proposed the use of an aromatic carbonate diester obtained by the above-mentioned weakened liponylation reaction and separated and purified by a general method, by transesterification to obtain an aromatic polyester. Production of carbonate was carried out.
  • the aromatic carbonate obtained by the above-mentioned method is used to transesterify the aromatic dihydroxy compound with the aromatic dihydroxy compound by ordinary means, the transesterification does not easily proceed, and after a predetermined time elapses.
  • the present inventors have conducted various studies on certain compounds contained in the aromatic oxalic acid diester due to the decarbonylation reaction.
  • the content of the hydrolyzable amino acid and the halogen in the aromatic carbonic diester is 5 ppm or less, preferably 2 ppm or less, the transesterification reactivity is reduced. It has been found that an aromatic polycarbonate having an average molecular weight of not less than 10,000, more preferably not less than 15,000 can be easily obtained. Further, according to the present invention, by setting the content of the power ⁇ 7 ⁇ -degradable octogen to the above range, the color of the obtained aromatic polyphenol is good and the branching amount is low. It has been found that quality can be obtained.
  • an aromatic carbonate diester having a hydrolyzable octogen content of 5 ppm or less it is preferable to carry out the contact treatment with hot water at a temperature not lower than the melting point of the aromatic carbonate diester, and the pH can be increased. It is preferable to carry out the contact treatment with hot water of 8 to 10. Further, these methods may be combined, and the distillation and purification may be performed after the hot water contact treatment, or the hot water contact treatment may be performed after the purification such as distillation. In addition to these methods, there is a method using an adsorbed clay to remove hydrolysable octalogen.
  • the contact treatment between the aromatic carbonic acid diester and hot water is specifically carried out at a temperature of 80 to 120 ° C, preferably 80 to 100 ° C.
  • Such aromatic carbonate diester is contacted with hot water at a temperature not lower than its melting point.
  • neutral hot water and normal interface extraction may be performed with the aromatic carbonate diester in a molten state.
  • hot water having a pH of 8 to 10 for example, sodium carbonate, potassium carbonate, sodium bicarbonate, hydrogen carbonate bicarbonate, or the like may be used as the base conjugate.
  • the above-mentioned hot water contact treatment and distillation purification can be repeated once or twice or more each time, but the number of times is determined from the desired power, the content of the water-soluble halogen and the economical viewpoint. Is done.
  • an aromatic polycarbonate according to the present invention may be carried out by a known ester exchange method. That is, the aromatic carbonate diester represented by the general formula (2) is 1.005 to 1.20 moles per 1 mole of the aromatic dihydroxyl conjugate represented by the general formula (3), It is preferably used in an amount of 1.0 to 1.10 mol (preferably used in the case of J).
  • the transesterification reaction is represented by the general formula (2) in which the content of the aromatic dihydroxy compound represented by the general formula (3) and the content of the hydrolyzable octogen is 5 ppm or less, preferably 2 ppm or less.
  • the polymerization reaction is preferably carried out in the presence of a catalyst in a heated and molten state using an aromatic carbonic acid diester.
  • alkali metal compounds As the transesterification catalyst, alkali metal compounds, alkaline earth metal compounds and nitrogen-containing basic compounds are generally used. These catalysts will be described below.
  • Alkali metal compounds used as catalysts include, for example, hydroxides, bicarbonates, carbonates, acetates, nitrates, nitrites, sulfites, cyanates, thiocyanates and stearic acids of alkali metals Salts, borohydride salts, benzoates, hydrogen phosphate phosphides, bisphenols, phenol salts and the like.
  • Specific examples include 7j ⁇ sodium oxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, carbonate Potassium, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, sodium nitrate, potassium nitrate, lithium nitrate, sodium nitrite, potassium nitrite, lithium nitrite, sodium sulfite, potassium sulfite, lithium sulfite, sodium cyanate, potassium cyanate, Lithium cyanate, sodium thiocyanate, potassium thiocyanate, lithium thiocyanate, sodium stearate, potassium stearate, lithium stearate, sodium borohydride, potassium borohydride, lithium borohydride, phenylated boric acid Sodium, sodium benzoate, potassium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, bisphenol A Sodium salt
  • alkaline earth metal compounds used as catalysts include, for example, hydroxide hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, Examples include calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, barium stearate, magnesium stearate, strontium stearate and the like.
  • Al force Li metal compound or aralkyl force Li earth metal compounds mentioned above are used in a ratio of metal element of the catalyst is an aromatic dihydroxy compound per mol of 1 X 1 0- 8 ⁇ 5 X 1 0 _ 5 equivalents Is done. Preferably used so that the ratio of 1 X 1 0- 7 ⁇ 5 X 1 0- 6 equivalent. If the amount is outside the above range, the properties of the obtained polycarbonate are adversely affected, and the transesterification reaction does not proceed sufficiently, so that a high-molecular-weight polycarbonate cannot be obtained.
  • nitrogen-containing basic compound used as a catalyst examples include, for example, tetramethylammonium hydroxide (Me ⁇ NOH tetraethylammonium hydroxide). Sid (Et 4 NOH), Tetrabutylammonium hydroxide (Bu 4 N ⁇ H), Benzyltrimethylammonium hydroxide ( ⁇ —CH 2 (Me) 3 N ⁇ H), Hexadecyltrimethylammonium Tertiary amines such as ammonium hydroxide having alkyl, aryl, alkylaryl groups such as hydroxide, triethylamine, triptylamine, dimethylethylbenzylamine, hexadecyldimethylamine, or tetramethylammonium Niu arm Greensboro high dry M e 4 NBH 4), tetra-Petit Ruan monitor ⁇ beam Polo hydride (Bu 4 NBH 4), tetra-Petit Ruan monitor ⁇ beam
  • the nitrogen-containing basic compound an aromatic dihydroxy compound per mol, 1 X 1 0 one 5 ⁇ 1 X 10-3 equivalent, is used in a proportion of preferably 1 X 10- 5 ⁇ 5 X 10- 4 equivalents .
  • the transesterification catalyst described above can be used not only alone, but also in combination of two or more.
  • an alkaline metal compound or an alkaline earth metal compound can be used in combination with a nitrogen-containing basic compound.
  • the range of the catalyst is appropriately changed according to the combination ratio.
  • another compound can be used as an auxiliary catalyst, if necessary.
  • conjugates include alkali metal salts and alkaline earth metal salts of hydroxides of boron and aluminum, quaternary ammonium salts, alkoxides of alkaline metal and alkaline earth metal, and alkoxides of alkaline earth metal.
  • Organic acid salts zinc compounds, boron compounds, silicon compounds, germanium compounds, organotin compounds, lead compounds, osmium compounds, antimony compounds of lithium metal and alkaline earth metal, Catalysts commonly used for esterification reactions and transesterification reactions such as zirconium compounds can be used, but are not limited thereto.
  • Catalysts commonly used for esterification reactions and transesterification reactions such as zirconium compounds can be used, but are not limited thereto.
  • an auxiliary catalyst one type may be used, or two or more types may be used in combination.
  • a stabilizer can be added to the polycarbonate obtained in the present invention.
  • the present invention As the stabilizer used in the present invention, known stabilizers are effectively used, and among these, an ammonium salt and a phosphonium salt of sulfonic acid are preferable, and a dodecylbenzenesulfonate such as a tetrabutylphosphonium salt of dodecylbenzenesulfonic acid is preferable.
  • the above salts of acids and the above salts of paratoluenesulfonic acid such as tetrabutylammonium paratoluenesulfonate are preferred.
  • methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, octyl benzenesulfonate, phenyl benzenesulfonate, methyl paratoluenesulfonate, ethyl ethyl paratoluenesulfonate, butyl paratoluenesulfonate, Octyl paratoluenesulfonate, phenyl paratoluenesulfonate and the like are preferably used, and among them, tetrabutylphosphonium dodecylbenzenesulfonate is most preferably used.
  • These stabilizers are used in an amount of 0.5 to 50 moles, preferably 0.5 to 50 L, per mole of the polymerization catalyst selected from the group consisting of alkali metal compounds and earth metal compounds. It can be used at a ratio of 0 mol, more preferably at a ratio of 0 to 8 to 5 mol.
  • stabilizers are added directly to the melted polycarbonate and kneaded, either directly or after being dissolved or dispersed in a suitable solvent.
  • a twin-screw ruder is preferable, and when a stabilizer is dissolved or dispersed in a solvent, a vented twin-screw ruder is particularly preferably used. Is done.
  • other additives can be added to the polycarbonate as long as the object of the present invention is not impaired. This additive is preferably added to the molten polycarbonate similarly to the stabilizer.
  • Such an additive examples include a heat-resistant stabilizer, an epoxy compound, an ultraviolet absorber, a release agent, and a colorant.
  • heat stabilizers, ultraviolet absorbers, release agents, coloring agents, and the like are particularly commonly used, and these can be used in combination of two or more.
  • heat-resistant stabilizer used in the present invention examples include a phosphorus compound, a phenol-based stabilizer, an organic thioether-based stabilizer, and a hindered amine-based stabilizer. it can.
  • a general ultraviolet absorber is used, for example, salicylic acid ultraviolet absorber, benzophenone ultraviolet absorber, benzotriazole ultraviolet absorber, cyanoacrylate ultraviolet absorber, and the like.
  • the release agent generally known release agents can be used, and examples thereof include hydrocarbon release agents such as paraffins, fatty acid release agents such as stearic acid, and stearamide. Fatty acid amide release agents, alcohol release agents such as stearyl alcohol and pen erythritol, fatty acid ester release agents such as glycerin monostearate, and silicone release agents such as silicone oil. Can be mentioned.
  • an organic or inorganic pigment or dye can be used as the colorant.
  • the method of adding these additives is not particularly limited.
  • the additives may be directly added to the polystyrene resin, or a master pellet may be prepared and added.
  • the conditions of the transesterification reaction between the aromatic dihydroxy compound and the aromatic carbonic acid diester of the present invention include, as conventionally known, an aromatic monohydroxy compound formed by stirring while heating under an inert gas atmosphere. It can be done by distilling.
  • the reaction temperature is usually in the range of 120 to 350 ° C., preferably in the range of 160 to 300 ° C. In the latter stage of the reaction, the reaction system is produced by increasing the degree of decompression of the reaction system to 10 to 0.1 torr. The distilling of the aromatic monohydroxy compound can be facilitated to complete the reaction.
  • an aromatic carbonic acid diester obtained by weakening aromatic oxalic acid diester is used, and the amount of hydrolysable halogen contained in the aromatic carbonic acid diester is set to a specific value or less. This makes it possible to easily produce a high-molecular-weight and excellent color hue without deteriorating the transesterification reactivity when producing an aromatic poly-polycarbonate.
  • the intrinsic viscosity of a 0.7 g / d 1 methylene chloride solution was measured using an Ubbelohde viscometer, and the viscosity average molecular weight was determined by the following equation.
  • the amount of halogen ions generated by hydrolysis of the hydrolyzable octogen was measured by the following method. 1 g of aromatic carbonic acid diester was dissolved in 20 ml of toluene, 10 ml of pure water was added, and the mixture was stirred for 20 minutes to extract halogen ions into water. The solution 50 1 was quantified halogen ions by D i on ex Co. DX500 of 2 mM as the eluent with an ion chromatograph N a HC_ ⁇ 3.
  • Polycarbonate 2 Omg is dissolved in 0.4m1 heavy chloroform form and 270Mz ⁇ -NMR (JEOL EX270) Branched structure at 2048 times integration phenyl salicylate type (HI 8.06-8. L ppm ) (H2 10.51 pm) 2 DPC—COOPh type (Ha 8.23 to 8.27 ppm) was quantified.
  • the heavy liquid (diphenyl carbonate layer) is separated, the heavy liquid is dried under reduced pressure at 50 ° C for 24 hours, and diphenyl carbonate having a suitable amount of chlorine of 1.8 ppm in caro water used for the transesterification reaction is obtained. Obtained.
  • Bisphenol A (manufactured by Nippon Steel Chemical Co., Ltd.) 100 parts, diphenylcapone 95.7 parts described above, sodium hydroxide as a catalyst, bisphenol A 1 the 2 X 1 0- 6 mol and tetramethylammonium Niu arm hydrate port Kishido purging with nitrogen was charged with 1 X 1 0 _ 4 moles moles. The mixture was heated to 150 ° C. and melted with stirring. Then, the pressure was reduced to 30 mmHg and the temperature was raised to 200, and most of the phenol was distilled off in 1 hour.
  • Polycarbonate having a viscosity average ⁇ amount of 1,500,000 was obtained and cut with a cutter into pellets. Physical properties were measured using the pellets. The conditions and results are shown in Tables IA and IB below.
  • Distilled water was used as the diphenyl carbonate obtained by the de-energetic luponylation reaction using tetraphenylphosphonium chloride using diphenyl oxalate as a catalyst.
  • the same hot water washing as in Example 1 was repeated twice to obtain hydrolyzable chlorine.
  • An amount of 1.5 ppm diphenylcapone was obtained.
  • a polyphenol was synthesized in the same manner as in Example 1 except that this diphenyl alcohol was used, and physical properties were measured using the pellet. The conditions and results are shown in Tables IA and IB below.
  • Example 2 The same hot water washing as in Example 1 was repeated twice using distilled water for the diphenyl carbonate obtained by the decarboxylation reaction using tetraphenylphosphonidine chloride with diphenyl oxalate as a catalyst.
  • Diphenyl alcohol was charged to a distillation apparatus having a packed column equipped with 10 OA through-packing CYX 6, and 85% at a bottom temperature of 200 ° C, a top temperature of 20 mmHg, and a reflux ratio of 5 Water in the yield of ⁇ Diphenyl carbonate containing 0.99 ppm of chlorine was obtained.
  • This diphenyl carbonate was subjected to transesterification with bisphenol A in the same manner as in Example 1 to synthesize a polyphenol, and the physical properties were measured using this pellet.
  • the conditions and results are shown in Tables I-A and I-B below.
  • a solution of sodium bicarbonate (400 parts) having a pH of 8 was prepared by adding 200 parts of diphenylca-ponate obtained by a weakened ruponylation reaction using tetraphenylphosphonium chloride using diphenyl oxalate as a catalyst. The solution was heated to 90 ° C. and washed with hot water for 1 hour to obtain diphenyl carbonate having a hydrochlorine content of 1.3 ppm.
  • This diphenyl carbonate was subjected to transesterification with bisphenol A in the same manner as in Example 1 to synthesize a polycarbonate, and the physical properties were measured using this pellet.
  • the conditions and results are shown in Tables I_A and IB below.
  • aqueous sodium hydrogencarbonate solution having a pH of 8 was used as an aqueous solution of sodium bicarbonate, with 200 parts of diphenyl alcohol obtained by a depowered ruponylation reaction using tetraphenylphosphonium chloride using diphenyl oxalate as a catalyst.
  • the resulting heavy liquid (diphenylcaponate layer) was heated to 90 ° C and stirred for 1 hour using 0 parts, and the resulting heavy liquid (diphenyl carbonate layer) was purified by distillation in the same manner as in Example 3 to a yield of 85%. Then, diphenylca-ponate having a water-decomposable chlorine content of 0.8 ppm was obtained.
  • the diphenylcapone was transesterified with bisphenol A in the same manner as in Example 1 to synthesize a polycarbonate, and the physical properties were measured using the pellet.
  • the conditions and results are shown in Tables I-A and I-B below.
  • the diphenyl carbonate obtained by the de-energetic luponylation reaction using tetraphenylphosphonium chloride using diphenyl oxalate as a catalyst contained 24 ppm of hydrochloride. Except for using this diphenyl carbonate, a transesterification reaction with bisphenol A was carried out in the same manner as in Example 1 to synthesize a polyphenol. The conditions and results are shown in Tables I-A and I-B below.
  • the diphenylcaponate obtained by the de-energized Ruponylich reaction using tetraphenylphosphonium chloride with diphenyl oxalate as the catalyst contained 24 ppm of hydrolyzable chlorine.
  • a transesterification reaction with bisphenol A was carried out in the same manner as in Example 1 to synthesize a polyphenol. The conditions and results are shown in Tables IA and IB below.
  • Example 3 The washing with hot water was repeated twice, and the obtained heavy liquid was subjected to the same distillation and purification as in Example 3 with a yield of 90% to obtain a hydrolyzable chlorine amount of 1.9 p.
  • Example except for using 2 X 1 0- 5 mole The ester exchange reaction with bisphenol A was carried out in the same manner as 1 to synthesize a poly-ponate, and the physical properties were determined using this pellet. It was measured. The conditions and results are shown in Tables I-A and I-B below.
  • Hot water washing was performed using 400 parts by heating to 90 ° C and stirring for 1 hour, and the obtained heavy liquid (diphenyl alcohol-one layer) was further purified with 400 parts of distilled water.
  • the washing with hot water which was heated to 0 ° C and stirred for 1 hour, was repeated twice to obtain a diphenylca-one-ponate having a hydrolyzable chlorine of 3.1 ppm. Using 1.
  • a solution of sodium bicarbonate having a pH of 10 was prepared by converting 200 parts of diphenyl carbonate obtained by decarbonylation reaction using tetraphenylphosphonium chloride hydrochloride using diphenyl oxalate as a catalyst. The mixture was heated to 90 ° C using a water bath and stirred for 1 hour, followed by washing with hot water. The resulting heavy liquid (diphenyl carbonate layer) was further heated to 90 ° C using 400 parts of distilled water. Then, hot water washing with stirring for 1 hour was performed once to obtain a diphenylca-one-ponate having a hydrolyzable chlorine of 3.9 ppm. Except using 2.
  • Diphenylca-ponate 200 obtained by a de-energized luponylation reaction using tetraphenylphosphonium chloride hydrochloride using diphenyl oxalate as a catalyst.
  • diphenyl oxalate As a catalyst, 200 parts of diphenylcarbonate obtained by a weakened ruponylation reaction using hydrochloride of tetraphenylphosphonium chloride is obtained by using 400 parts of distilled water. One hot water wash with heating to Ot and stirring for 1 hour was performed to obtain a diphenylca-one-pot with 5.8 ppm of carohydrate-soluble chlorine.
  • This diphenyl carbonate was used as a transesterification catalyst, and instead of sodium hydroxide, a sodium salt of bisphenol A was used instead of sodium hydroxide and bisphenol A, except that 2.OX- 6 mol was used as a sodium salt.
  • the polyester exchange reaction with bisphenol A was carried out in the same manner as in Example 1 to synthesize a polyphenol, and the physical properties were measured using this pellet. The conditions and results are shown in Tables IA and IB below.
  • diphenyl oxalate Using diphenyl oxalate as a catalyst, 200 parts of diphenylcarbonate obtained by a weakened luponylation reaction using tetraphenylphosphonium chloride hydrochloride was heated to 90 parts with 400 parts of distilled water, and then heated for 1 hour. Hot water washing with stirring was performed once to obtain diphenyl carbonate having a hydrolyzable chlorine amount of 5.8 ppm.
  • the Jinatoriumu salt of bisphenol A in place of Natoriumu hydroxide this Jifue two Luke one Boneto as an ester exchange catalyst as sodium respect Bisufueno Ichiru A 3.
  • Example 1 1.8 2.0 15 200 1.2
  • Example 2 1.5 2.0 20 300 1.2
  • Example 4 1.3 2.0 23 300 1 0.2
  • Example 5 0.8 2.0 27 100 0.8 0.24
  • Example 6 0.9 2.0 25 500 0.5 Comparative Example 1 24 4.0 6000 Measurement not possible
  • Aqueous sodium bicarbonate solution with 200 parts of diphenylcapone obtained by catalyzed ruponylation using tetraphenylphosphonium chloride hydrochloride using diphenyl oxalate as the catalyst and having a pH of 10 Using 400 parts, heat to 90 ° C and wash with hot water for 1 hour, and then use the obtained heavy liquid (diphenyl alcohol-one layer) with 400 parts of distilled water. The hot water was heated to 90 and stirred for 1 hour.Washing with hot water was repeated twice, and the obtained heavy liquid was purified by distillation in the same manner as in Example 3 with a yield of 80%. A 0.9 ppm of diphenyl alcohol was obtained.
  • Hot water washing was performed using 400 parts by heating to 90 ° C and stirring for 1 hour, and the obtained heavy liquid (diphenyl carbonyl layer) was further diluted with 400 parts of distilled water.
  • Hot water washing with heating to 90 ° and stirring for 1 hour was repeated twice, and the obtained heavy liquid was subjected to the same distillation purification as in Example 3 with a yield of 90% to obtain a hydrolyzable chlorine amount of 1. 9 ppm of diphenyl alcohol was obtained.
  • Tetraphenylphosphonium chloride salt catalyzed by diphenyl oxalate Using 200 parts of diphenylca-one-potato obtained by the degassing reporterion reaction using an acid salt, up to 90 ° C. using 400 parts of an aqueous sodium hydrogencarbonate solution having a pH of 10 Hot water washing is performed by heating and stirring for 1 hour, and the obtained heavy liquid (diphenyl carbonate-layer) is further heated to 90 with 400 parts of distilled water and stirred for 1 hour. The washing was repeated twice to obtain a diphenylca-ponate having a hydrolyzable chlorine amount of 3.1 ppm.
  • An aqueous sodium hydrogencarbonate solution having a pH of 10 was converted to 200 parts of diphenyl carbonate obtained by a decarbonylation reaction using tetraphenylphosphonium chloride hydrochloride using diphenyl oxalate as a catalyst.
  • the mixture was heated to 90 ° C with 0 parts and washed with hot water by stirring for 1 hour, and the obtained heavy liquid (diphenyl alcohol-one layer) was further purified with 400 parts of distilled water. Hot water washing with heating to 0 and stirring for 1 hour was performed once to obtain diphenyl carbonate having a hydrolyzable chlorine amount of 3.9 ppm. Except for using 3.
  • Diphenylca-ponate obtained by decarboxylation reaction using tetraphenylphosphonium chloride hydrochloride using diphenyl oxalate as a catalyst contained 39 ppm of hydrolyzable chlorine. .
  • 3 Jinatoriumu salt bisphenol A instead of Natoriumu hydroxide this Jifue two Luke one Poneto as ester le exchange catalyst as sodium to bisphenol A.
  • 0 X 1 0- 5 mole a transesterification reaction with bisphenol A was carried out in the same manner as in Example 1 to synthesize a polycarbonate. The conditions and results are shown in Tables ⁇ _A and ⁇ -B below.
  • diphenyl oxalate tetraphenylphosphonium chloride and chloroform are used. The water washing was repeated twice, and the obtained diphenyl alcohol was charged into a distillation apparatus having a packed tower equipped with a 10 OA through-the-packing CYX6. Diphenyl carbonate having a hydrolyzable chlorine amount of 0.9 ppm was obtained at a yield of 90% under the conditions of 20 mmHg and a reflux ratio of 5.
  • Example 15 a diphenylalkeneone having a hydrolyzable chlorine amount of 1.5 ppm was obtained in the same manner as in Example 15 except that hot water washing was performed only once.
  • a polycarbonate was synthesized using the diphenylcapone under the same conditions as in Example 15, and the physical properties were measured using the pellets. The conditions and results are shown in Tables II-A and H-B below.
  • Example 15 To 200 parts of diphenyl carbonate obtained by the weakened luponylation reaction, 400 parts of distilled water was added, heated to 90 ° C., and stirred with hot water for 1 hour. I went there. The heavy solution was dried under reduced pressure at 50 ° C. for 24 hours to obtain a diphenylca-ponate having a hydrolyzable chlorine content of 8.3 ppm. Polycarbonate was synthesized under the same conditions as in Example 15 using this diphenyl alcohol, and physical properties were measured using the pellet. The conditions and results are shown in Tables II-A and II-B below.
  • Example 17 To 200 parts of diphenyl carbonate obtained by the weakened luponylation reaction, 400 parts of distilled water was added, heated to 90 ° C., and stirred with hot water for 1 hour. I went there. The heavy solution was dried under reduced pressure at 50 ° C. for 24 hours to obtain a diphenylca-ponate having a hydrolyzable chlorine content of 8.3 ppm.
  • Aqueous sodium bicarbonate solution with 200 parts of diphenylcaponate obtained by de-assisted ruponylation using tetraphenylphosphonium bromide and hydrogen chloride with diphenyl oxalate as the catalyst is repeated twice, and the obtained heavy liquid (diphenyl carbonate layer) is further purified using 400 parts of distilled water to 900 parts. The mixture was heated to ° C and stirred for 1 hour with hot water. 5 ppm of diphenyl alcohol was obtained.
  • Aqueous sodium bicarbonate solution having a pH of 10 was prepared by adding 200 parts of diphenylca-ponate obtained by a de-energized Ruponylich reaction using tetraphenylphosphonium bromide and hydrogen chloride with diphenyl oxalate as a catalyst.
  • the washing with hot water which was heated to 90 ° C using 100 parts and stirred for 1 hour, was repeated twice, and the obtained heavy liquid (diphenyl alcohol monoponate layer) was further purified using 400 parts of distilled water.
  • the mixture was heated to 0 ° C and washed with hot water for one hour to obtain diphenyl carbonate having a carophilic halogen content of 1.5 ppm.
  • Diphenyl carbonate This was a sodium to bisphenol A to Jinatoriumu salt of bisphenol A in place of Natoriumu hydroxide as an ester interchange catalyst 2. Except for using 0 X 1 0- 6 mol same manner as in Example 1 The polyester was subjected to an ester exchange reaction with bisphenol A to synthesize polycarbonate, and the physical properties were measured using this pellet. The conditions and results are shown in Table H-A and below! — Shown in B.
  • Aqueous sodium bicarbonate solution with 200 parts by weight of diphenyl carbonyl obtained by dehydration reaction using diphenyl oxalate as a catalyst and triphenyl phosphite and salified oxalyl is repeated twice, and the obtained heavy liquid (diphenyl carbonate layer) is further diluted with 400 parts of distilled water. Then, the mixture was heated to 90 ° C. and stirred for 1 hour. Hot water washing was performed to obtain a diphenyl alcohol having a hydrolyzable chlorine of 2.1 ppm. Except for using 2.
  • Diphenyl carboxylate 200 obtained by a depowered ruponylation reaction using triphenyl phosphite and oxalyl chloride with diphenyl oxalate as a catalyst. Part was heated to 90 with 400 parts of an aqueous sodium hydrogen carbonate solution with a pH of 10 and washed with hot water by stirring for 1 hour, and the resulting heavy liquid (diphenylca-one-pot Layer) was further heated to 90 ° C. using 400 parts of distilled water and stirred for 1 hour with hot water to obtain diphenylca-ponate having a hydrolyzable chlorine of 10.3 ppm. Was. Except using 2.
  • triphenylphosphine and kuchiguchi form were used to reduce 200 parts of diphenylca-ponate obtained by the de-energizing reaction to 900 ° C using 400 parts of distilled water.
  • the resulting heavy liquid (diphenyl carbonate layer) was heated and stirred for 1 hour, and the resulting heavy liquid (diphenyl carbonate layer) was subjected to the same distillation and purification as in Example 3 at a yield of 90% to obtain a hydrolyzable chlorine amount of 0%. 9 ppm of diphenirka 1ponate was obtained.
  • the diphenyl carbonate obtained by the deassertion of the reaction using diphenyl oxalate as a catalyst with triphenylphosphine and liposide form contained 15 ppm of hydrolyzable chlorine.
  • a polycarbonate was synthesized by performing a transesterification reaction with bisphenol A in the same manner as in Example 21 except that the diphenyl carbonate was used, and physical properties were measured using the pellets. The conditions and results are shown in Tables IE-A and IE-B below.
  • Example 1 0 X 1 0- 6 mol of sodium against the bisphenol A as a transesterification catalyst in Example 1
  • the transesterification reaction with bisphenol A was carried out in the same manner as in Example 1 to synthesize a polyacrylonitrile, and the physical properties were measured using this pellet.
  • the conditions and results are shown in Tables I-A and ⁇ _ ⁇ below.
  • triphenylphosphine and bromine (Br2) are used to convert 200 parts of diphenylca-ponate obtained by de-assisted luponylation reaction to 400 ° C with 400 parts of distilled water. Hot water washing with heating and stirring for 1 hour was repeated twice to obtain a diphenylca monoponate having a hydrolyzable bromine content of 1.7 ppm.
  • This diphenyl carbonate is used as a transesterification catalyst, and instead of sodium hydroxide, disodium salt of bisphenol A is converted to sodium with respect to bisphenol A.
  • Example 24 hot water washing using distilled water was performed only once to obtain a diphenylca-ponate having a hydrolyzable bromine content of 7.3 ppm. Using this diphenyl carbonate, a polycarbonate was obtained under the same conditions as in Example 24. The conditions and results are shown in Tables II-A and IE-B below.
  • An aqueous sodium hydrogen carbonate solution having a pH of 10 and a sodium bicarbonate aqueous solution having a pH of 10 was obtained by subjecting 200 parts of diphenylcaponate obtained by a weakening ruponylation reaction to triphenylphosphine and aluminum chloride with diphenyl oxalate as a catalyst.
  • the solution is heated to 90 ° C using water and washed with stirring for 1 hour, and the obtained heavy liquid (diphenyl alcohol-one layer) is further heated to 90 ° C using 400 parts of distilled water.
  • Example 1 Hot water washing with heating to C and stirring for 1 hour was repeated twice, and the obtained heavy liquid was subjected to the same distillation purification as in Example 3 with a yield of 85%, and the amount of carotenous water-soluble chlorine was 1.1. There was obtained a diphenyl ponone of p pm.
  • Example 1 A polyester was exchanged with bisphenol A in the same manner as in Example 1 to synthesize polycarbonate, and the physical properties were measured using the pellets. The conditions and results are shown in Tables II-A and II-B below.
  • An aqueous solution of sodium hydrogencarbonate having a pH of 10 was prepared by converting 200 parts of diphenylca-ponate obtained by a weakened ruponylation reaction using triphenylphosphine and aluminum chloride using diphenyl oxalate as a catalyst.
  • the mixture was heated to 90 ° C with 0 parts and washed with hot water by stirring for 1 hour, and the obtained heavy liquid (diphenyl alcohol-one layer) was further purified with 400 parts of distilled water. Heating to 0 ° C and stirring for 1 hour Hot water washing is repeated twice to remove diphenylcarbamate with 1.8 ppm hydrolyzable chlorine. Obtained.
  • the Jifue two Rukaponeto except for using 2.
  • triphenylphosphine and aluminum chloride were used to convert 200 parts of diphenylca-ponate obtained by a de-energized luponylation reaction to 900 parts with 400 parts of distilled water. Hot water washing with heating and stirring for 1 hour was repeated twice to obtain diphenylca-ponate having a hydrolyzable chlorine amount of 7.9 ppm.
  • Example 1 except for the use of X 1 0- 6 mol
  • the polyester exchange reaction with bisphenol A was carried out in the same manner as in Example 1 to synthesize a polypropionate, and the physical properties were measured using this pellet. The conditions and results are shown in Tables m-A and m-B below.
  • diphenyl oxalate Using diphenyl oxalate as a catalyst, 200 parts of diphenylcaponate obtained by a depowered Rupponi-Leuich reaction using tetraphenylphosphonium chloride was converted to 900 parts by aqueous sodium hydrogencarbonate solution with a pH of 8 and 400 parts. The washing with hot water, heating to 0 and 1 hour, was repeated twice, and the obtained heavy liquid (diphenylca-ponate layer) was further heated to 9 O: using 400 parts of distilled water and stirred for 1 hour. Hot water washing was repeated twice, and the obtained heavy liquid was subjected to the same distillation purification as in Example 3 at a yield of 85%. Nilka one ponate was obtained.
  • the hot water washing (diphenyl carbonate layer) obtained was further repeated twice with hot water washing up to 90 and then for 1 hour, and the resulting heavy liquid (diphenyl carbonate layer) was further heated to 90 with 400 parts of distilled water and stirred for 1 hour Hot water washing was repeated twice, and the obtained heavy liquid was subjected to distillation purification in the same manner as in Example 3 with a yield of 85%, and dihydrogen with an amount of hydrolyzable chlorine of 0.09 ppm was used. I got Luke One. Except for using 2.
  • Example 25 Ph 3 P AICI3 NaHC0 3 aqueous 10 90 1 1 of pure water 7 90 1 2 200 20 5 85
  • Example 26 Ph 3 P AICI3 NaHC0 3 aqueous 10 90 1 1 of pure water 7 90 1 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

i 明 細 書 芳香族ポリカーボネー卜の製造方法 発明の属する技術分野
本発明は、 経済的な方法により高分子量で色相の優れるポリ力一ポネートを製 造する方法に関するものである。 更に詳しくは芳香族ジヒドロキシ化合物と特定 の製造方法によって製造された芳香族炭酸ジエステルとのエステル交換反応によ るポリカーボネートの製造方法に関するものである。
従来の技術
ポリカーボネートはその優れた透明性、 機械的特性、 熱的特性から光学ディス ク、 機械部品等各種用途に幅広く用いられている。
このようなポリカーボネートの製造法としては従来工業的な方法として、 芳香 族ジヒドロキシィヒ合物とホスゲンを反応させる界面重縮合法と、 芳香族ジヒドロ キシ化合物とジフエ二ルカーポネートに代表される芳香族炭酸ジエステルとを溶 融状態でエステル交換反応させる方法が広く実施されている。
ところで芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとのエステル交換 反応によってポリカーボネ一トを製造する際には、 塩基性化合物に代表されるよ うなエステル交換触媒を使用し、 通常 1 6 0 〜 3 0 0 °Cの温度に加熱しなが ら溶融状態でエステル交換を進め、 反応終了後は直接ペレット化され製品が得ら れるため、 界面重縮合法に比べ製造プロセスが簡略化でき経済的に製造できると レ う利点を有する。
芳香族炭酸ジエステルは一般的に芳香族モノヒドロキシ化合物とホスゲンとの 脱塩酸反応、 レゝゎゆるホスゲン法で製造されており、 ホスゲンを使用する点で安 全面および環境等に問題を残す。 また得られた芳香族炭酸ジエステルは芳香族ポ リカーボネートをエステル交換反応により製造する際、 反応中間体としてク口口 ギ酸フェニルに代表される有機酸が含まれることによる反応阻害が起こるため、 これを除去する精製方法、 例えば特公昭 3 8 - 1 3 7 3号公報に示される熱水洗 浄のような精製を行う必要がある。
ホスゲンを使用しないジメチルカ一ポネートに代表されるアルキルカーポネ一 トと芳香族モノヒドロキシ化合物類とのエステル交換反応によって得られる芳香 族炭酸ジエステルは、その反応収率の低さから芳香族炭酸ジエステルのコスト高、 ひいては得られる芳香族ポリカーボネートのコスト高となり実用的ではないもの の、 反応中間体としてホスゲンを使用した際のような有機酸は含まれないため、 これを除去する熱水洗浄の必要性は低ぐ蒸留のような簡便な精製を行えばよい。 そこでホスゲンを使用せず、 カゝっ安価に芳香族炭酸ジエステルを得る方法とし て、 芳香族シユウ酸ジエステルの脱力ルポニル化反応によって芳香族炭酸ジエス テルを得る方法が特開平 8 - 3 3 3 3 0 7号公報にて提案されている。
芳香族シユウ酸ジエステルは、 シユウ酸ジメチルに代表されるシユウ酸アルキ ルと芳香族モノヒドロキシ化合物とのエステル交換反応によって製造することが できるが、 シユウ酸アルキルと芳香族モノヒドロキシ化合物とのエステル交換反 応の反応率は非常に高い。 さらに芳香族シユウ酸ジエステルの脱カルボニル反応 による芳香族炭酸ジエステルの収率も高い。 したがって上記の方法で芳香族炭酸 ジエステルが安価に製造できる。
前記公報に記載された芳香族シユウ酸ジエステルの脱力ルポ二ルイ匕反応におい ては、 有機リン化合物が触媒として使用される。 この有機リン化合物として、 ホ スホニゥム塩、 ホスフィン、 ホスフィンジ八ライドまたはホスフィンォキサイド が代表例として挙げられ、 好適な触媒としては、 ホスホニゥムハライドまたはホ スフィンジ八ライドであるか或いはホスフィンまたはホスフィンォキサイドと八 ロゲン化合物が組合せて使用されている。 前記公報記載の脱カルボニル化反応に おいては、 高い収率で芳香族炭酸ジエステルを得るためには、 ハロゲンを含む有 機リン化合物の使用が不可欠である。
前記脱力ルポニル化反応による芳香族炭酸ジエステルは、 ホスゲン法による合 成の場合のように、 その中に反応中間体不純物として有機酸は含まれない。 しか し本発明者らの研究によれば、 前記脱力ルポニル化反応により得られた芳香族炭 酸ジエステルを使用し、 これと芳香族ジヒドロキシ化合物とをエステル交換反応 させて芳香族ポリカーボネ一トを製造すると、 得られた芳香族ポリカーボネート は、 充分は高分子量のものが得られずしかも色相も不満足なものであることが判 明した。
発明力解決しょうとする課題
本発明者は前記脱力ルポ二ルイ匕反応により得られた芳香族炭酸ジエステルと、 芳香族ジヒドロキシィ匕合物とから高 量でかつ色相に優れる芳香族ポリ力一ポ ネートを製造すべく鋭意検討したところ、 芳香族炭酸ジエステル中に含まれる加 水^?性八ロゲンの含有量を特定値以下とすることが有効であることを見いだし、 本発明を完成するに至った。
課題を解決するための手段
すなわち、 本発明によれば、 芳香族炭酸ジエステルと、 芳香族ジヒドロキシ化 合物とをエステル交換反応させて芳香族ポリ力一ポネートを製造する方法におい て、 該芳香族炭酸ジエステルが、 下記一般式 ( 1 )
o 〇
II II ( 、
A r - O C - C O -A r … ( 1 )
[但し式中 2つの A rは同一もしくは異なる炭素数 6〜 1 4の芳香族炭化水素基 を示す。]
で表わされる芳香族シユウ酸ジエステルの脱力ルポ二ルイ匕反応によって得られか つその中の加水分解性八ロゲンの含有量が 5 p pm以下であることを特徴とする 芳香族ポリ力一ポネートの製造方法が提供される。
以下本発明による芳香族ポリ力一ポネートの製造方法についてさらに詳細に説 明する。
本発明において、 芳香族ポリ力一ポネートは、 芳香族ジヒドロキシ化合物と芳 香族炭酸ジエステルとのエステル交換反応によって製造されるが、 その際その芳 香族炭酸ジエステルは、 前記一般式 ( 1 ) で表わされる芳香族シユウ酸ジエステ ルの脱力ルポ二ルイ匕反応によって得られたものを使用する点に特徴を有している。 芳香族ジヒドロキシ化合物としては、 芳香族ポリ力一ポネートのジヒドロキシ 成分として通常使用されているものであればよい。具体的には、下記一般式 ( 3 ) で表わされる芳香族ジヒドロキシ化合物が使用される。
… (3)
Figure imgf000006_0001
前記一般式 (3) において Wは一 0—、 一 S―、 一SO—、 一S〇2—、 を表わす。
Figure imgf000006_0002
また前記一般式 (3) において nは 0〜4の整数を示し、 R5および R6は互 いに同一もしくは異なり、 ハロゲン原子または炭素数 1〜: L 2の炭化水素基を示 す。 ここでハロゲン原子としては、 塩素原子、 臭素原子またはよう素原子が好ま しく、 炭ィ匕水素基としては、 メチル基、 ェチル基の如き炭素数 1〜12、 好まし くは:!〜 5の脂肪族炭化水素基または、 フエニル基の如き炭素数 6〜 12の芳香 族炭化水素基が好適である。 さらに R 7および R8は互いに同一もしくは異なり、 ハロゲン原子、 水素原子または炭素数 1~12の炭化水素基を示す。 ここで炭ィ匕 水素基としては前記 R5および R6に示したものが例示される。 R9は炭素数 3〜 8のアルキレン基を示す。
芳香族ジヒドロキシ化合物の具体的化合物としては例えば、 ビス (4—ヒドロ キシフエニル) メタン、 2, 2—ビス (4ーヒドロキシフエニル) プロパン、 2, 2—ビス (4—ヒドロキシ _ 3 _メチルフエニル) プロパン、 4, 4—ビス (4 —ヒドロキシフエニル) ヘプタン、 2, 2—ビス (4—ヒドロキシ一 3, 5—ジ クロ口フエニル) プロパン、 2, 2—ビス (4—ヒドロキシ一 3, 5—ジブロモ フエニル) プロパン、 ビス (4—ヒドロキシフエニル) オキサイド、 ビス (3, 5—ジクロロー 4—ヒドロキシフエニル) オキサイド、 p, p ' —ジヒドロキ シジフエニル、 3, 3 ' ージクロ口一 4, 4' —ジヒドロキシジフエニル、 ビ ス (4—ヒドロキシフエニル) スルホン、 レゾルシノール、 ハイドロキノン、 1, 4ージヒドロキシ一 2, 5—ジクロロベンゼン、 1, 4—ジヒドロキシ一 3—メ チルベンゼン、 ビス (4ーヒドロキシフエニル) スルフイド、 ビス (4—ヒドロ キシフエニル) スルホキシド、 9, 9一ビス (4—ヒドロキシフエニル) フルォ レン、 1, 1, 一ビス (4—ヒドロキシフエニル) 一3, 3, 5—トリメチリレシ クロへキサン等が挙げられるが、 特に 2, 2—ビス (4—ヒドロキシフエニル) プロパン (ビスフエノール A) が好ましい。
一方前記芳香族ジヒドロキシ化合物と反応させるべき芳香族炭酸ジエステルは、 エステル交換法による芳香族ポリカーボネートの製造に通常使用されているもの であればよい。 具体的には下記一般式 (2) で表わされる芳香族炭酸ジエステル 力 S使用される。
… (2)
Figure imgf000007_0001
前記一般式 (2) において、 Rい R2, R3および R4は互いに同一もしくは 異なり、 水素原子、 炭素数 1〜4のアルキル基、 フエニル基またはハロゲン原子 を示す。
芳香族炭酸ジエステルの具体的化合物としては、 例えばジフエ二ルカ一ボネ一 ト、 m—クレジルカ一ボネート、 m—クレジルフエ二ルカ一ボネート、 p—クレ ジルカーボネート、 p—クレジルフエ二ルカーボネート、 ジナフチルカーボネー ト、 ビス (ジフエニル) カーボネートまたはビス (クロ口フエニル) 力一ポネ一 トなどが用いられる。 これらのうち特にジフエ二ルカ一ポネ一トが好ましい。 前述したように、 本発明において芳香族炭酸ジエステルは、 芳香族シユウ酸ジ エステルの脱力ルポニル反応によって得られたものを使用する。 かくして芳香族 シユウ酸ジエステルは下記一般式 (1) で表わされる。
0 〇
II II t N
Ar-OC-CO-Ar … (1)
[但し式中 2つの A rは同一もしくは異なる炭素数 6〜 14の芳香族炭化水素基 を示す。]
前記一般式 (1) で表わされる芳香族シユウ酸ジエステルは、 その脱力ルポ二 ル化反応によって前記一般式 (2) で表わされる芳香族炭酸ジエステルを形成す るので、 芳香族シユウ酸ジエステルは一般式 ( 2 ) に対応して下記 ~«式 (1 ') で表わすこともできる。
… (1,)
Figure imgf000008_0001
前記一般式 ( 1 ') において、 R i, R 2, R 3および R4は、 前記一般式 ( 2 ) における定義と同じ意味を有する。
芳香族シユウ酸ジエステル化合物としては、 具体的には例えばジフエ二ルォキ ザレート、 m—クレジルォキザレート、 m—クレジルフエ二ルォキザレート、 p —クレジルォキザレート、 p—クレジルフエ二ルォキザレート、 ジナフチルォキ ザレート、 ビス (ジフエニル) ォキザレートまたはビス (クロ口フィエル) ォキ ザレ一トなどが用いられる。 これらのうち特にジフエ二ルォキザレートが好まし い。
本発明においては、 芳香族シユウ酸ジエステルの脱力ルポニル化反応により得 られた芳香族炭酸ジエステルが使用される。 この反応は特に制限されないが、 例 えば特開平 8— 3 3 3 3 0 7号公報に記載された方法が工業的な方法として挙げ られる。 この公報に記載された方法は、 転化率および選択率が共に高く優れた方 法である。 この公報に記載された好ましい実施態様によれば、 触媒としてホスホ ニゥム塩、 ホスフィン、 ホスフィンジ八ライドまたはホスフィンォキサイドのよ うな有機リン化合物が使用される。 そしてこの公報に記載された多くの実施例に よれば、高い収率で芳香族炭酸ジエステル(代表的にはジフエニルカーボネート) を得ることができる触媒は、 有機リン化合物が八ロゲンを含有しているか或いは ハロゲン化合物と組合せた触媒である。 前記公報の記載による限り前記の好まし い方法は、ハロゲン(塩素、臭素) を含む有機リン化合物を触媒として使用して、 芳香族シユウ酸ジエステルから脱力ルポ二ルイ匕反応により芳香族炭酸ジエステル を得る方法であるということができる。
本発明者らは、 前記脱力ルポニル化反応によって得られ、 一般的方法で分離' 精製された芳香族炭酸ジエステルを使用して、 エステル交換反応により芳香族ポ リカーボネートの製造を行つた。 ところが前記方法で得られた芳香族炭酸ジエス テルを使用してこれと芳香族ジヒドロキシ化合物を通常の手段でエステル交換反 応させると、 エステル交換反応が容易に進行せず、 所定の時間経過しても満足す べき高重合度の芳香族ポリカーボネ一トは得ることが困難であつた。 さらに不都 合なことは、 得られたポリ力一ポネートは色相が不満足であることが判明した。 本発明者は、 芳香族シユウ酸ジエステルの脱カルボニル化反応に起因して含ま れる或る種の化合物について種々研究を重ねた。
その結果芳香族炭酸ジエステル中に含まれる微量の加水分解性ハロゲンに着目 し、 その含有量と得られたポリ力一ポネートの分子量および色相に相関関係があ ることが見出された。 この加水分解性八ロゲン化合物は、 その構造や種類は充分 に解明されていないが恐らく脱力ルポ二ルイ匕反応に使用された触媒に由来してい るものと推定される。
本発明者らの研究によれば、 芳香族炭酸ジエステル中の加水分解性ノ、ロゲンの 含有量が 5 p pm以下、 好ましくは 2 p pm以下のものを使用すると、 エステル 交換反応性を低下させることなく、 容易に平均 子量 1 0, 0 0 0以上、 さらに 好ましくは 1 5 , 0 0 0以上の芳香族ポリカーボネートが得られることが見出さ れた。 また本発明によれば、 力 Π7Κ分解性八ロゲンの含有量を前記範囲とすること により、 得られた芳香族ポリ力一ポネ一トの色相も良好でありその上分岐量も少 ない高品質のものが得られることが見出された。
加水分解性八ロゲンの含有量が 5 p pm以下の芳香族炭酸ジエステルを得るに は芳香族炭酸ジエステルの融点以上の温度で熱水と'接触処理を行うことが好まし く、 また p Hが 8から 1 0である熱水と接触処理を行なうことが好ましい。 また これらの方法を組合せてもよく、 熱水接触処理を行つた後に蒸留精製を行っても よいし、 蒸留のような精製を行った後に該熱水接触処理を行ってもよい。 またこ れらの方法以外に吸着粘土を用いて加水^性八ロゲンを除く方法も挙げられる。 芳香族炭酸ジエステルと熱水との接触処理は具体的には 8 0〜1 2 0 °C, 好 ましくは 8 0〜 1 0 0 °Cの温度で実施される。
このような芳香族炭酸ジエステルについてその融点以上の温度で熱水と接触処 理を行うには、 芳香族炭酸ジエステルが溶融した状態で、 中性の熱水と通常の界 面抽出を行えばよい。 また p Hが 8から 1 0である熱水を使用する場合には、 塩 基性ィ匕合物として例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、 炭酸水素力リゥム等を用いればよい。 このような熱水接触処理は芳香族炭酸ジェ ステル 1重量部に対し、 熱水を 0. 5〜 5重量部使用することが好ましい。
更に前記のような熱水接触処理を施した後、 蒸留精製を行つた芳香族炭酸ジェ ステルを用いることがさらに好ましい。
前述した熱水接触処理および蒸留精製は、 それぞれ 1回もしくは 2回以上繰返 して行うことができるが、 それぞれの回数は、 所望する力 Π水 性ハロゲンの含 有量および経済的観点から決定される。
本発明により芳香族ポリカーボネートを製造するには、 それ自体公知のエステ ル交換方法で実施すればよい。 すなわち、 前記一般式 ( 2 ) で表わされる芳香族 炭酸ジエステルは、 一般式 ( 3 ) で表わされる芳香族ジヒドロキシィ匕合物 1モル に対して、 1 . 0 0 5〜1 . 2 0モル、 好ましくは 1 . 0 1〜1 . 1 0モルの害 (J 合で用いられることが好ましい。
本発明においてエステル交換反応は、 一般式 ( 3 ) で表わされる芳香族ジヒド ロキシ化合物と、 加水^?性八ロゲンの含有量が 5 p pm以下好ましくは 2 p p m以下一般式 ( 2 ) で表わされる芳香族炭酸ジエステルを用い加熱溶融状態で触 媒の存在下に重合反応を行うことが好ましい。
エステル交換反応触媒としては、 アルカリ金属化合物、 アルカリ土類金属化合 物および含窒素塩基性化合物が一般的に使用される。 これら触媒については以下 説明する。
触媒として用いられるアル力リ金属化合物としては、 例えばアル力リ金属の水 酸化物、 炭酸水素化物、 炭酸塩、 酢酸塩、 硝酸塩、 亜硝酸塩、 亜硫酸塩、 シアン 酸塩、 チォシアン酸塩、 ステアリン酸塩、 水素化ホウ素塩、 安息香酸塩、 リン酸 水素化物、 ビスフエノール、 フエノールの塩等が挙げられる。
具体例としては、 7j<酸化ナトリウム、 水酸ィ匕カリウム、 水酸化リチウム、 炭酸 水素ナトリウム、 炭酸水素カリウム、 炭酸水素リチウム、 炭酸ナトリウム、 炭酸 カリウム、 炭酸リチウム、 酢酸ナトリウム、 酢酸カリウム、 酢酸リチウム、 硝酸 ナトリウム、 硝酸カリウム、 硝酸リチウム、 亜硝酸ナトリウム、 亜硝酸カリウム、 亜硝酸リチウム、 亜硫酸ナトリウム、 亜硫酸カリウム、 亜硫酸リチウム、 シアン 酸ナトリウム、 シアン酸カリウム、 シアン酸リチウム、チォシアン酸ナトリウム、 チォシアン酸カリウム、 チォシアン酸リチウム、 ステアリン酸ナトリウム、 ステ アリン酸カリウム、 ステアリン酸リチウム、 水素化ホウ素ナトリウム、 水素化ホ ゥ素カリウム、 水素化ホウ素リチウム、 フエニル化ホウ酸ナトリウム、 安息香酸 ナトリウム、 安息香酸カリウム、 安息香酸リチウム、 リン酸水素ジナトリウム、 リン酸水素ジカリウム、 リン酸水素ジリチウム、 ビスフエノール Aのジナトリウ ム塩、 ジカリウム塩、 ジリチウム塩、 フエノールのナトリウム塩、 カリウム塩、 リチウム塩などが挙げられ、 就中、 芳香族ジヒドロキシ化合物のナトリウム塩、 例えばビスフエノ一ル Aのジナトリゥム塩または芳香族モノヒドロキシ化合物の ナトリゥム塩、 例えばフエノールのナトリゥム塩が好ましく用いられる。
また触媒として用いられるアル力リ土類金属化合物としては、 例えば水酸化力 ルシゥム、 水酸化バリウム、 水酸化マグネシウム、 水酸化ストロンチウム、 炭酸 水素カルシウム、 炭酸水素バリウム、 炭酸水素マグネシウム、 炭酸水素ストロン チウム、 炭酸カルシウム、 炭酸バリウム、 炭酸マグネシウム、 炭酸ストロンチウ ム、 酢酸カルシウム、 酢酸バリウム、 酢酸マグネシウム、 酢酸ストロンチウム、 ステアリン酸バリウム、 ステアリン酸マグネシウム、 ステアリン酸ストロンチウ ム等が挙げられる。
前記したアル力リ金属化合物またはアル力リ土類金属化合物は、 当該触媒中の 金属元素が芳香族ジヒドロキシ化合物 1モル当り 1 X 1 0— 8〜 5 X 1 0 _ 5当量 となる割合で使用される。 好ましくは 1 X 1 0— 7〜5 X 1 0— 6当量となる割合 で使用される。 上記使用範囲を逸脱すると、 得られるポリカーボネートの諸物性 に悪影響を及ぼしたり、 また、 エステル交換反応が充分に進行せず高分子量のポ リカーボネートが得られない等の問題があり好ましくない。
また触媒として用いられる含窒素塩基性化合物として、 例えばテトラメチルァ ンモニゥムヒドロキシド (M e ^ N O H テトラエチルアンモニゥムヒドロキ シド (Et4NOH)、 テトラプチルアンモニゥムヒドロキシド (Bu4N〇H)、 ベンジルトリメチルアンモニゥムヒドロキシド (Φ— CH2 (Me) 3N〇H)、 へキサデシルトリメチルアンモニゥムヒドロキシドなどのアルキル、 ァリール、 アルキルァリール基などを有するァンモニゥムヒドロォキシド類、 トリェチルァ ミン、 トリプチルァミン、 ジメチリレベンジルァミン、 へキサデシルジメチルアミ ンなどの 3級ァミン類、あるいはテトラメチルアンモニゥムボロハイドライ M e4NBH4)、 テトラプチルアンモニゥムポロハイドライド (Bu4NBH4)、 テトラプチルアンモニゥムテトラフエ二ルポレート (Me4NBPh4)、 テトラ ブチルアンモニゥムテトラフエニルボレート (Bu4NBPh4) などの塩基性 塩を挙げることができ、 就中、 テトラメチルアンモニゥムヒドロキシド (Me4 NOH) が最も好ましく使用される。
前記含窒素塩基性化合物は、 芳香族ジヒドロキシ化合物 1モル当り、 1 X 1 0一5〜 1 X 10—3当量、 好ましくは 1 X 10— 5〜5 X 10— 4当量の割合で使用 される。
前述したエステル交換反応触媒は、 1種のみならず 2種以上組合せて使用する ことができる。 例えば、 アル力リ金属化合物またはアル力リ土類金属化合物と、 含窒素塩基性化合物とを組合せて使用することもできる。 このように組合せて使 用する場合は、 その組合せ割合に応じて、 前記触媒の範囲は適宜変更される。 本発明のエステル交換反応において、 必要に応じてその他の化合物を補助触媒 として用いることもできる。 このようなィ匕合物としては、 ホウ素やアルミニウム の水酸化物のアルカリ金属塩やアルカリ土類金属塩、 第 4級アンモニゥム塩類、 アル力リ金属やアル力リ土類金属のアルコキシド類、 アル力リ金属やアル力リ土 類金属の有機酸塩類、 亜鉛化合物類、 ホウ素化合物類、 ケィ素化合物類、 ゲルマ ニゥム化合物類、 有機スズ化合物、 鉛化合物類、 ォスニゥム化合物類、 アンチモ ン化合物類、 ジルコニウム化合物類などの通常エステル化反応、 エステル交換反 応に使用される触媒を用いることができるが、これらに限定されるものではない。 補助触媒を用いる場合、 1種でもよく、 また 2種以上組合せてもよい。
本発明で得られたポリカーポネ一トに安定剤を添加することもできる。 本発明 に使用する安定剤としては、 公知の安定剤が有効に使用されるが、 この中でもス ルホン酸のアンモニゥム塩、 ホスホニゥム塩が好ましく、 更にドデシルベンゼン スルホン酸テトラブチルホスホニゥム塩等のドデシルベンゼンスルホン酸の上記 塩類やパラトルエンスルホン酸テトラプチルアンモニゥム塩等のパラトルエンス ルホン酸の上記塩類が好ましい。 またスルホン酸のエステルとしてベンゼンスル ホン酸メチル、 ベンゼンスルホン酸ェチル、 ベンゼンスルホン酸ブチル、 ベンゼ ンスルホン酸ォクチル、 ベンゼンスルホン酸フエニル、 パラトルエンスルホン酸 メチル、 パラトルエンスルホン酸ェチル、 パラトルエンスルホン酸プチル、 パラ トルエンスルホン酸ォクチル、 パラトルエンスルホン酸フエニル等が好ましく用 いられ、 就中、 ドデシルベンゼンスルホン酸テトラブチルホスホニゥ厶塩が最も 好ましく使用される。
これらの安定剤の使用量はアル力リ金属化合物またはアル力リ土類金属化合物 より選ばれた前記重合触媒 1モル当たり 0 . 5〜 5 0モルの割合で、 好ましくは 0 . 5〜: L 0モルの割合で、 更に好ましくは 0 . — 8〜 5モルの割合で使用するこ とができる。
これらの安定剤は直接、 または適当な溶剤に溶解または分散させて溶融状態の ポリカーボネートに添加、 混練する。 この様な操作を実施するのに用いられる設 備に特に制限は無いが、 例えば 2軸ルーダー等が好ましく、 安定剤を溶剤に溶解 または分散させた場合はベント付きの 2軸ルーダーが特に好ましく使用される。 また本発明においては、 本発明の目的を損なわない範囲でポリカーボネートに 他の添加剤を添加することができる。 この添加剤は安定剤と同様に溶融状態のポ リカ一ボネートに添加することが好ましく、 この様な添加剤としては、 例えば、 耐熱安定剤、 エポキシ化合物、 紫外線吸収剤、 離型剤、 着色剤、 スリップ剤、 ァ ンチブロッキング剤、 滑剤、 有機充填剤、 無機充填剤等をあげることができる。 これらの内でも耐熱安定剤、 紫外線吸収剤、 離型剤、 着色剤等が特に一般的に 使用され、 これらは 2種以上組合せて使用することができる。
本発明に用いられる耐熱安定剤としては、 例えば、 燐化合物、 フエノール系安 定剤、 有機チォエーテル系安定剤、 ヒンダードアミン系安定剤等を挙げることが できる。
また、 紫外線吸収剤としては、 一般的な紫外線吸収剤が用いられ、 例えば、 サ リチル酸系紫外線吸収剤、 ベンゾフエノン系紫外線吸収剤、 ベンゾトリアゾール 系紫外線吸収剤、 シァノアクリレ一ト系紫外線吸収剤等を挙げることができる。 また離型剤としては一般的に知られた離型剤を用いることが出来、 例えば、 パ ラフィン類などの炭化水素系離型剤、 ステアリン酸等の脂肪酸系離型剤、 ステア リン酸アミド等の脂肪酸アミド系離型剤、 ステアリルアルコール、 ペン夕エリス リト一ル等のアルコール系離型剤、 グリセリンモノステアレート等の脂肪酸エス テル系離型剤、 シリコーンオイル等のシリコーン系離型剤等を挙げることができ る。
着色剤としては有機系や無機系の顔料や染料を使用することができる。
これらの添加剤の添加方法に特に制限はないが、 例えば、 直接ポリ力一ポネ一 卜に添加してもよく、 マスタ一ペレットを作成して添カロしてもよい。 本発明の芳 香族ジヒドロキシ化合物と芳香族炭酸ジエステルとのエステル交換反応の条件は、 従来知られているように不活性ガス雰囲気下で加熱しながら撹拌して生成する芳 香族モノヒドロキシ化合物を留出させることで行うことができる。 反応温度は通 常 1 2 0〜3 5 0 °C好ましくは 1 6 0〜3 0 0での範囲であり、 反応後期には 反応系の減圧度を 1 0〜 0 . 1 t o r rに高めて生成する芳香族モノヒドロキシ 化合物の留出を容易にさせ反応を完結させることができる。
発明の効果
本発明によれば、 芳香族シユウ酸ジエステルの脱力ルポ二ルイ匕によって得られ る芳香族炭酸ジエステルを使用し、 力ゝっ該芳香族炭酸ジエステルに含まれる加水 性ハロゲン量を特定値以下とすることにより、 芳香族ポリ力一ポネ一トを製 造する際のエステル交換反応性を損なうことなく容易に、 かつ高分子量で色相の 優れる芳«ポリ力一ポネートを製造することができる。
実施例
以下実施例によって説明する。 なお実施例中の%及び部は特に断らない限り重 量%または重量部である。 なお以下の実施例における各物性は以下のようにして 測定した。
(1) 粘度平均奸量
0.7 g/d 1の塩化メチレン溶液をウベローデ粘度計を用い固有粘度を測定し、 次式により粘度平均分子量を求めた。
["] =1. 23X 10- 4Μ0· 83
(2) 色調 (b値)
ポリ力一ボネートペレット (短径 X長径 X長さ (mm) =2. 5X3. 3X3. 0) の Lab値を日本電色工業製 N D— 1001 D Pを用い反射法で測定し黄色 度の尺度として b値を用いた。 下記表中 "測定不能" とあるのは分子量力?低く ペレット化ができず、 色調の測定ができなかったことを意味する。
(3) 加水分解性八ロゲン含有量
加水分解性八ロゲンが加水分解して生成するハロゲンイオン量を以下の方法に より測定した。 芳香族炭酸ジエステル 1 gをトルエン 20mlに溶解させ、 純水 10mlを加え、 20分間撹拌してハロゲンイオンを水に抽出させた。 この溶液 50 1を D i on e x社製 DX500イオンクロマトグラフを用い溶離液と して 2 mMの N a H C〇 3にてハロゲンイオンを定量した。
(4) ポリカーボネート分^ ¾
ポリカーボネート 2 Omgを 0. 4m 1の重クロ口ホルムに溶解させ 270M z ^-NMR (日本電子製 EX270) 積算 2048回にて分岐構造①サリ チル酸フエニル型 (HI 8. 06〜8. l ppm) (H2 10. 51 pm) ② DPC— COOPh型 (Ha 8. 23〜8. 27ppm) を定量した。
実施例 1
辦機、 冷却塔を備えた反応器にシユウ酸ジフエ二ル 300部を入れ、 触媒と してテトラフェニルホスホニゥムクロライド 4. 65部を加えて常圧にて 25 5 まで昇温して発生する一酸化炭素を系外へ除去しながら 255°Cで 3時間 脱カルボニル化反応を行ない、ジフエ二ルカ一ポネート (DPC)選択率 99%、 D PC収率 95 %して DP Cを得た。 このジフエ二ルカーポネートを 200部、 蒸留水 400部を加え 90°Cまで加熱し 1時間撹拌する熱水洗浄を一回行った。 重液 (ジフエニルカーボネート層) を分液し、 重液を 2 4時間、 5 0 °Cにて減 圧乾燥し、 エステル交換反応に用いるカロ水適性塩素量 1 . 8 p p mのジフエ二 ルカーポネートを得た。
辦機、蒸留塔を備えた反応器にビスフエノール A (新日鐡化学製) 1 0 0部、 上記ジフエ二ルカ一ポネート 9 5 . 7部、 触媒として水酸化ナトリウムをビスフ エノ一ル A 1モルに対し 2 X 1 0— 6モルおよびテトラメチルアンモニゥムヒド 口キシドを 1 X 1 0 _4モルとを仕込み窒素置換を行った。 この混合物を 1 5 0 °C まで加熱して撹拌しながら溶融させた。 次いで減圧度を 3 0 mmH gとして 2 0 0でまで加熱し 1時間で大半のフエノールを留去した。 ついで 2 7 0 °Cまで温 度を上げ、 減圧度 1 mmH gとして 2時間反応を行ない、 安定剤としてドデシル ベンゼンスルホン酸テトラブチルホスホニゥム塩をナトリゥム触媒に対して 2倍 モル加えて混練した。
粘度平均^量 1 5 2 0 0のポリカーボネートが得られ、 カッターで切断して ペレットとした。 このペレットを用い物性を測定した。 条件および結果を下記表 I— Aおよび I— Bに示す。
実施例 2
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポニル化反応によって得られたジフエ二ルカーボネートに蒸留水を用い 実施例 1と同様の熱水洗浄を 2回繰返し、 加水分解性塩素量 1 . 5 p p mのジフ ェニルカ一ポネートを得た。 このジフエ二ルカ一ポネ一トを用いたほかは実施例 1と同様にしてポリ力一ポネートを合成し、このペレツトを用い物性を測定した。 条件および結果を下記表 I— Aおよび I—Bに示す。
実施例 3
シュゥ酸ジフェニルを触媒としてテトラフェニルホスホニゥムク口ライドを用 い脱カルボ二ルイ匕反応によって得られたジフエ二ルカーポネートに蒸留水を用い 実施例 1と同様の熱水洗浄を 2回繰返し、 得られたジフエ二ルカ一ポネートを 1 0 O Aスルーザ一パッキン C Y X 6を備えた充填塔を有する蒸留装置に仕込み、 ボトム 2 0 0 °C、 塔頂 2 0 mmH g、 還流比 5の条件で 8 5 %の収率にて加水 ^性塩素量が 0 · 9 p p mのジフエニルカーボネートを得た。
このジフエ二ルカ一ボネートを実施例 1と同様にビスフエノ一ル Aとエステル 交換反応を行ないポリ力一ポネートを合成し、 このペレツトを用い物性を測定し た。 条件および結果を下記表 I 一 Aおよび I—Bに示す。
実施例 4
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0部を p H を 8とした炭酸水素ナトリゥム水溶液 4 0 0部を用いて 9 0 °Cまで加熱し 1時 間 する熱水洗浄を行ない加水 性塩素量 1 · 3 p pmのジフエ二ルカーポ ネートを得た。
このジフエ二ルカ一ポネ一トを実施例 1と同様にビスフエノ一ル Aとエステル 交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測定し た。 条件および結果を下記表 I _ Aおよび I—Bに示す。
実施例 5
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネ一ト 2 0 0部を p H を 8とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで加熱し 1時 間撹拌する熱水洗浄を行ない得られた重液 (ジフエ二ルカーポネート層) を実施 例 3と同様の蒸留精製を 8 5 %の収率にて行ない、 力 Π水分解性塩素量 0 . 8 p p mのジフエ二ルカ一ポネートを得た。
このジフエ二ルカ一ポネートを実施例 1と同様にビスフエノール Aとエステル 交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測定し た。 条件および結果を下記表 I 一 Aおよび I― Bに示す。
実施例 6
実施例 3で得られた加水^?性塩素を 0. 9 p pm含むジフエ二ルカ一ポネー トを用い、 エステル交換触媒として水酸ィ匕ナトリゥムの代わりにビスフエノール Aのジナトリウム塩をビスフエノール Aに対しナトリウムとして 2 X 1 0— 6モ ルを用いた以外は実施例 1と同様にビスフエノール Aとエステル交換反応を行な いポリカーボネートを合成し、 このペレットを用い物性を測定した。 条件および 結果を下記表 I— Aおよび I— Bに示す。
比較例 1
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポニル化反応によって得られたジフエ二ルカーボネートには加水^性 塩素が 2 4 p pm含まれていた。 このジフエ二ルカーポネートを用いた以外は実 施例 1と同様にビスフエノール Aとエステル交換反応を行ないポリ力一ポネ一ト を合成した。 条件および結果を下記表 I一 Aおよび I— Bに示す。
比較例 2
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポ二ルイヒ反応によって得られたジフエ二ルカーポネートには加水分解性 塩素が 2 4 p pm含まれていた。 このジフエ二ルカ一ポネ一卜をエステル交換触 媒として水酸化ナトリゥムの代わりにビスフエノール Aのジナトリゥム塩をビス フエノール Aに対しナトリウムとして 2 . 0 X 1 0 _6モルを用いた以外は実施 例 1と同様にビスフエノール Aとエステル交換反応を行ないポリ力一ポネートを 合成した。 条件および結果を下記表 I— Aおよび I— Bに示す。
実施例 7
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 得られた重液を実施例 3と同様の蒸留精製を 9 0 %の収率に て行ない、 加水^?性塩素量 1 . 9 p pmのジフエ二ルカ一ポネ一トを得た。 こ のジフエ二ルカ一ポネートをエステル交換触媒として水酸化ナトリゥムの代わり にビスフエノール Aのジナトリウム塩をビスフエノール Aに対しナトリウムとし て 1 . 2 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノール Aとェ ステル交換反応を行ないポリ力—ポネートを合成し、 このペレツトを用い物性を 測定した。 条件および結果を下記表 I— Aおよび I一 Bに示す。
実施例 8
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱カルボ二ルイヒ反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネー ト層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 加水分解性塩素が 3 . 1 p pmであるジフエ二ルカ一ポネー トを得た。 このジフエ二ルカ一ポネ一トをエステル交換触媒として水酸化ナトリ ゥムの代わりにビスフエノール Aのジナトリウム塩をビスフエノール Aに対しナ トリウムとして 1 . 8 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエ ノール Aとエステル交換反応を行ないポリ力一ポネートを合成し、 このペレット を用い物性を測定した。 条件および結果を下記表 I _ Aおよび I— Bに示す。
実施例 9
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱カルボニル化反応によって得られたジフエ二ルカーポネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカーポネー ト層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水 洗浄を 1回行ない、 加水分解性塩素が 3 . 9 p pmであるジフエ二ルカ一ポネー トを得た。 このジフエニルカーボネートをエステル交換触媒として水酸化ナトリ ゥムの代わりにビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナ トリウムとして 2. 4 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエ ノール Aとエステル交換反応を行ないポリ力一ポネートを合成し、 このペレツト を用い物性を測定した。 条件および結果を下記表 I一 Aおよび I― Bに示す。
実施例 1 0
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水洗浄を 2回 繰返し、 加水^?性塩素が 4. 9 p pmであるジフエ二ルカ一ポネ一トを得た。 このジフエ二ルカ一ポネートをエステル交換触媒として水酸化ナトリゥムの代わ りにビスフエノ一ル Aのジナトリゥム塩をビスフエノ一ル Aに対しナトリウムと して 3 . O X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノール Aと エステル交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性 を測定した。 条件および結果を下記表 I— Aおよび I— Bに示す。
比較例 3
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ボネ一ト 2 0 0 部を蒸留水 4 0 0部を用いて 9 O tまで加熱し 1時間撹拌する熱水洗浄を 1回 行ない、 カロ水^?性塩素量 5. 8 p pmのジフエ二ルカ一ポネ一トを得た。 この ジフエ二ルカ一ボネ一トをエステル交換触媒として水酸ィ匕ナトリゥムの代わりに ビスフエノ一ル Aのジナトリゥム塩をビスフエノール Aに対しナトリゥムとして 2. O X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノール Aとエス テル交換反応を行ないポリ力一ポネートを合成し、 このペレツトを用い物性を測 定した。 条件および結果を下記表 I—Aおよび I—Bに示す。
比較例 4
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポニル化反応によって得られたジフエ二ルカーポネート 2 0 0 部を蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水洗浄を 1回 行ない、 加水分解性塩素量 5. 8 p pmのジフエ二ルカーポネートを得た。 この ジフエ二ルカ一ボネートをエステル交換触媒として水酸化ナトリゥムの代わりに ビスフエノール Aのジナトリゥム塩をビスフエノ一ル Aに対しナトリウムとして 3 . 0 X 1 0 5モルを用いた以外は実施例 1と同様にビスフエノール Aとエス テル交換反応を行ないポリ力一ポネートを合成し、 このペレツトを用い物性を測 定した。 条件および結果を下記表 I— Aおよび I—Bに示す。
比較例 5 シユウ酸ジフエニルを触媒としてテトラフエニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポ二ルイヒ反応によって得られたジフエ二ルカ一ボネート 2 0 0 部を蒸留水 4 0 0部を用いて 9 0でまで加熱し 1時間撹拌する熱水洗浄を 1回 行ない、 加水分解性塩素量 5. 8 p pmのジフエニルカーボネ一トを得た。 この ジフエ二ルカーポネートをエステル交換触媒として水酸ィ匕ナ卜リゥムの代わりに ビスフエノ一ル Aのジナトリゥム塩をビスフエノール Aに対しナトリウムとして 3 . 5 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノール Aとエス テル交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測 定した。 条件および結果を下記表 I一 Aおよび I—Bに示す。
表 I—A
熱水洗 (1) 熱水洗 (2) 蒸留
Ηίί-ll,**一 11, レ ホ' k
水 PH 温度 時間 回数 水 PH 温度 時間 回数 塔頂圧 還流 収率 触媒
(。c) (hr) (°C) (hr) (°C) (torr) 比 (%) 実施例 1 Ph4PCl 純水 7 90 1 1
実施例 2 Ph4PCl 純水 7 90 1 2
実施例 3 Ph4PCl 純水 7 90 1 2 200 20 5 85 実施例 4 Ph4PCl NaHC03水 8 90 1 1
実施例 5 Ph4PCl NaHC03水 8 90 1 1 200 20 5 85 実施例 6 Ph4PCl 純水 7 90 1 2
比較例 1 Ph4PCl 0
比較例 2 Ph4PCl 0
実施例 7 Ph4PCl-HCl NaHC03水 10 90 1 1 純水 7 90 1 2 200 20 5 90 実施例 8 Ph4PCl-HCl NaHC03水 10 90 1 1 純水 7 90 1 2
実施例 9 Ph4PCl-HCl NaHC03水 10 90 1 1 純水 7 90 1 1
実施例 10 Ph4PCl-HCl 純水 7 90 1 2
比較例 3 Ph4PCl'HCl 純水 7 90 1 1
比較例 4 Ph4PCl'HCl 純水 7 90 1 1
比較例 5 Ph4PCl-HCl 純水 7 90 1 1
表 I一 B
ジフエ二ルカ一ポネ一卜 重合時間 ポリ力一ポネー卜 カロ水分解性八ロケン 270°C 粘度平 ; 量 QBW(b値)
(hr)
実施例 1 1.8 2.0 15200 1.2
実施例 2 1.5 2.0 20300 1.2
実施例 3 0.9 2.0 25400 0.8
実施例 4 1.3 2.0 23300 1 0.2 実施例 5 0.8 2.0 27100 0.8 0.24 実施例 6 0.9 2.0 25500 0.5
Figure imgf000023_0001
比較例 1 24 4.0 6000 測定不能
比較例 2 24 4.0 6200 測定不能 0.1 実施例 7 1.9 1.9 15300 0.7
実施例 8 3.1 1.9 15300 0.7
実施例 9 3.9 1.8 15200 0.9
実施例 10 4.9 1.7 15300 0.8
比較例 3 5.8 4.0 9800 2.6
比較例 4 5.8 2.0 15300 1.9 0.39 比較例 5 5.8 1.8 15200 1.7
O o o o o o O O o o 啊DT) V Ip 実施例 1 1
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネ一ト 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間■する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 得られた重液を実施例 3と同様の蒸留精製を 8 0 %の収率に て行ない、 力 Π水分解性塩素量 0. 9 p pmのジフエ二ルカ一ポネ一トを得た。 こ のジフエ二ルカ一ポネ一トをエステル交換触媒として水酸化ナトリゥムの代わり にビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナトリウムとし て 3 . 0 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノール Aとェ ステル交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を 測定した。 条件および結果を下記表 Π— Aおよび Π— Bに示す。
実施例 1 2
シユウ酸ジフエ二ルを触媒としてテトラフエニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ボネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0でまで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 得られた重液を実施例 3と同様の蒸留精製を 9 0 %の収率に て行ない、 加水分解性塩素量 1 . 9 p pmのジフエ二ルカ一ポネ一卜を得た。 こ のジフエニルカーボネー卜をエステル交換触媒として水酸ィ匕ナ卜リゥムの代わり にビスフエノ一ル Aのジナトリゥム塩をビスフエノ一ル Aに対しナトリウムとし て 3 . 0 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノール Aとェ ステル交換反応を行ないポリ力一ポネートを合成し、 このペレットを用い物性を 測定した。 条件および結果を下記表 Π— Aおよび Π—Bに示す。
実施例 1 3
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱力ルポ二ルイ匕反応によって得られたジフエ二ルカ一ポネ一ト 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ボネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0でまで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 加水舊性塩素量 3. 1 p pmのジフエ二ルカ一ポネートを 得た。 このジフエ二ルカ一ボネ一トをエステル交換触媒として水酸化ナトリゥム の代わりにビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナトリ ゥムとして 3 . 0 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノー ル Aとエステル交換反応を行ないポリ力一ポネ一トを合成し、 このペレツトを用 い物性を測定した。 条件および結果を下記表 Π— Aおよび Π—Βに示す。
実施例 1 4
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドの塩 酸塩を用い脱カルボニル化反応によって得られたジフエ二ルカーボネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水 洗浄を 1回行ない、 加水分解性塩素量 3 . 9 p pmのジフエニルカーボネートを 得た。 このジフエ二ルカ一ポネ一トをエステル交換触媒として水酸化ナトリゥム の代わりにビスフエノール Aのジナトリウム塩をビスフエノール Aに対しナトリ ゥムとして 3 . 0 X 1 0— 5モルを用いた以外は実施例 1と同様にビスフエノー ル Aとエステル交換反応を行ないポリカーボネ一トを合成し、 このペレツ卜を用 い物性を測定した。 条件および結果を下記表 Π— Aおよび Π—Bに示す。
比較例 6
シユウ酸ジフエニルを触媒としてテトラフエエルホスホニゥムクロライドの塩 酸塩を用い脱カルボ二ルイ匕反応によって得られたジフエ二ルカ一ポネートには加 水分解性塩素が 3 9 p pm含まれていた。 このジフエ二ルカ一ポネートをエステ ル交換触媒として水酸化ナトリゥムの代わりにビスフエノール Aのジナトリゥム 塩をビスフエノール Aに対しナトリウムとして 3 . 0 X 1 0— 5モルを用いた以 外は実施例 1と同様にビスフエノール Aとエステル交換反応を行ないポリカーボ ネートを合成した。 条件および結果を下記表 Π _ Aおよび Π - Bに示す。
実施例 1 5
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドおよ びクロ口ホルムを用レ ^脱力ルポニル化反応によって得られたジフエ二ルカ一ポネ ―トに蒸留水を用い実施例 1と同様の熱水洗浄を 2回繰返し、 得られたジフエ二 ルカ一ポネ一トを 1 0 O Aスルーザ一パッキン C Y X 6を備えた充填塔を有す る蒸留装置に仕込み、 ボトム 2 0 0 °C、 塔頂 2 0 mmH g、 還流比 5の条件で 9 0 %の収率にて加水分解性塩素量が 0. 9 p pmのジフエニルカーボネートを 得た。
このジフエ二ルカ一ポネ一トをエステル交換触媒として水酸化ナトリゥムの代 わりにビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナトリウム として 2 . 0 X 1 0— 6モルを用いた以外実施例 1と同様にビスフエノール Aと エステル交換反応を行ないポリ力一ポネートを合成し、 このペレツトを用い物性 を測定した。 条件および結果を下記表 Π— Aおよび Π— Βに示す。
実施例 1 6
実施例 1 5において、 熱水洗浄を 1回のみとする以外、 実施例 1 5と同様にし て加水分解性塩素量が 1 . 5 p pmのジフエ二ルカ一ポネ一トを得た。 このジフ ェニルカ一ポネートを用いて実施例 1 5と同様の条件でポリカーボネートを合成 し、 このペレットを用いて物性を測定した。 条件および結果を下記表 Π— Aお よび H— Bに示す。
比較例 7
実施例 1 5において、 脱力ルポニル化反応により得られたジフエ二ルカーボネ —ト 2 0 0部に、 蒸留水 4 0 0部を加えて 9 0 °Cまで加熱し 1時間撹拌する熱 水洗浄を 1回行った。 重液を 2 4時間、 5 0 °Cにて減圧乾燥し、 加水分解性塩 素量 8 . 3 p pmのジフエ二ルカ一ポネートを得た。 このジフエ二ルカ一ポネ一 トを用いて実施例 1 5と同様の条件でポリカーボネートを合成し、 このペレット を用いて物性を測定した。 条件および結果を下記表 Π— Aおよび Π— Bに示す。 実施例 1 7
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムブロマイドおよ び塩化水素を用レ ^脱力ルポニル化反応によって得られたジフエ二ルカーポネート 2 0 0部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水洗浄を 2回繰返し、 得られた重液 (ジフエ ニルカーボネート層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時 間撹拌する熱水洗浄を行ない、 得られた重液を実施例 3と同様の蒸留精製を 9 0 %の収率にて行ない、 力 B水分解性ハロゲン量 0. 5 p pmのジフエ二ルカ一ポ ネートを得た。 このジフエ二ルカ一ポネ一トをエステル交換触媒として水酸化ナ トリゥムの代わりにビスフエノール Aのジナトリゥム塩をビスフエノール Aに対 しナトリウムとして 2 . 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビス フエノール Aとエステル交換反応を行ないポリ力一ポネートを合成し、 このペレ ットを用い物性を測定した。 条件および結果を下記表 Π— Aおよび Π— Bに示 す。
実施例 1 8
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムブロマイドおよ び塩化水素を用い脱力ルポ二ルイヒ反応によって得られたジフエ二ルカ一ポネート 2 0 0部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水洗浄を 2回繰返し、 得られた重液 (ジフエ 二ルカ一ポネート層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時 間勝する熱水洗浄を行ない、 カロ水 性ハロゲンが 1 . 5 p pmであるジフエ 二ルカーポネートを得た。 このジフエ二ルカ一ポネ一トをエステル交換触媒とし て水酸化ナトリゥムの代わりにビスフエノール Aのジナトリゥム塩をビスフエノ —ル Aに対しナトリウムとして 2 . O X 1 0 _ 6モルを用いた以外は実施例 1と 同様にビスフエノール Aとエステル交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測定した。 条件および結果を下記表 Π _Αおよび Π — Βに示す。
比較例 8 ZD シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムブロマイドおよ び塩化水素を用い脱力ルポ二ルイヒ反応によって得られたジフエ二ルカ一ポネート
2 0 0部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水洗浄を行ない、 加水分解性ハロゲンが 9 . 1 p p mであるジフエ二ルカーポネートを得た。 このジフエ二ルカ一ポネートを エステル交換触媒として水酸化ナトリゥムの代わりにビスフエノール Aのジナト リウム塩をビスフエノール Aに対しナトリウムとして 2 . 0 X 1 0— 6モルを用 いた以外は実施例 1と同様にビスフエノール Aとエステル交換反応を行ないポリ 力一ポネートを合成し、 このペレットを用い物性を測定した。 条件および結果を 下記表 Π— Aおよび Π— Bに示す。
表 Π— A
熱水洗 (1) 熱水洗 (2)
Figure imgf000029_0001
—ル 1し ホ'ト A
水 H 温度 時間 回数 水 PH 時間 回数 塔頂圧 収率 触媒 温度
(°C) (hr) (°C) (hr) ( ) (torr) 比 ( % ) 実施例 11 Ph4PCl-HCl NaHC03水 10 90 1 1 純水 7 90 1 2 200 20 5 80 実施例 12 Ph4PCl'HCl NaHC03水 10 90 1 1 純水 7 90 1 2 200 20 5 90 実施例 13 Ph4PCl-HCl NaHC03水 10 90 1 1 純水 7 90 1 2
実施例 14 Ph4PCl'HCl NaHC03水 10 90 1 1 純水 7 90 1 1
比較例 6 Ph4PCl-HCl 0
実施例 15 Ph4PCl CHC13 純水 7 90 2 200 20 5 90 実施例 16 Ph4PCl CHCI3 純水 7 90 1 200 20 5 90 比較例 7 Ph4PCl CHCI3 純水 7 90 1
実施例 17 Ph4PBr HC1 NaHC03水 10 90 2 純水 7 90 1 1 200 20 5 90 実施例 18 Ph4PBr HC1 NaHC03水 10 90 2 純水 7 90 1 1
比較例 8 Ph4PBr HC1 NaHC03水 10 90 1 純水 7 90 1 1
表 Π— B
Figure imgf000030_0001
実施例 1 9
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフアイトおよび塩化ォキサ リルを用い脱力ルポニル化反応によって得られたジフエ二ルカーボネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間辦する熱水洗浄を 2回繰返し、 得られた重液 (ジフエ二ルカ一ポ ネート層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する 熱水洗浄を行ない、 得られた重液を実施例 3と同様の蒸留精製を 9 0 %の収率に て行ない、 カロ水分解性塩素量 1 , 1 p pmのジフエ二ルカ一ポネートを得た。 こ のジフエニルカーボネートをエステル交換触媒として水酸化ナトリゥムの代わり にビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナトリウムとし て 2 . 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノール Aとェ ステル交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を 測定した。 条件および結果を下記表 H— Aおよび]!— Bに示す。
実施例 2 0 "
シユウ酸ジフエニルを触媒としてトリフエニルホスフアイトおよび塩ィ匕ォキサ リルを用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネ一ト 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を 2回繰返し、 得られた重液 (ジフエ二ルカ一ボ ネート層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する 熱水洗浄を行ない、 加水分解性塩素が 2. 1 p pmであるジフエ二ルカ一ポネ一 トを得た。 このジフエ二ルカ一ボネートをエステル交換触媒として水酸ィ匕ナトリ ゥムの代わりにビスフエノ一ル Aのジナトリゥム塩をビスフエノ一ル Aに対しナ トリウムとして 2 . O X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエ ノール Aとエステル交換反応を行ないポリ力一ポネートを合成し、 このペレット を用い物性を測定した。 条件および結果を下記表 H— Aおよび Π— Βに示す。
比較例 9
シユウ酸ジフエニルを触媒としてトリフエニルホスフアイトおよび塩化ォキサ リルを用い脱力ルポニル化反応によって得られたジフエ二ルカ一ボネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0でまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水 洗浄を行ない、 加水分解性塩素が 1 0. 3 p pmであるジフエ二ルカ一ポネート を得た。 このジフエ二ルカ一ボネ一トをエステル交換触媒として水酸化ナトリウ ムの代わりにビスフエノ一ル Aのジナトリウム塩をビスフエノール Aに対しナト リウムとして 2. 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノ ール Aとエステル交換反応を行ないポリカーボネートを合成した。 条件および結 果を下記表 IE― Aおよび IE― Bに示す。
実施例 2 1
シュゥ酸ジフェニルを触媒としてトリフェニルホスフィンおよびク口口ホルム を用い脱力ルポ二ルイ匕反応によって得られたジフエ二ルカ一ポネート 2 0 0部を 蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエニルカーボネート層)を実施-例 3と同様の蒸留精製を 9 0 % の収率にて行ない、 加水分解性塩素量 0. 9 p pmのジフエ二ルカ一ポネートを 得た。 このジフエ二ルカ一ポネートをエステル交換触媒として水酸ィ匕ナトリゥム の代わりにビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナトリ ゥムとして 2. 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノ一 ル Aとエステル交換反応を行ないポリカーボネートを合成し、 このペレツトを用 い物性を測定した。 条件および結果を下記表 ΠΙ— Aおよび ΙΠ— Βに示す。
実施例 2 2
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフィンおよびクロロホルム を用い脱カルボ二ルイヒ反応によって得られたジフエ二ルカ一ポネート 2 0 0部を 蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水洗浄を行ない、 加水分解性塩素量 1 . 8 p pmのジフエ二ルカーポネートを得た。 このジフエ二 ルカーボネートをエステル交換触媒として水酸化ナトリウムの代わりにビスフエ ノール Aのジナトリゥム塩をビスフエノール Aに対しナトリウムとして 2 . 0 X 1 (T 6モルを用いた以外は実施例 1と同様にビスフエノール Aとエステル交 換反応を行ないポリカーボネートを合成し、このペレツトを用い物性を測定した。 条件および結果を下記表 m - Aおよび m - Bに示す。
比較例 1 0
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフィンおよびク口口ホルム を用い脱力ルポニル化反応によって得られたジフエ二ルカーボネートには加水分 解性塩素が 1 5 p pm含まれていた。 このジフエ二ルカ一ボネートを用いた以外 は実施例 2 1と同様にビスフエノール Aとエステル交換反応を行ないポリカーボ ネートを合成し、 このペレットを用い物性を測定した。 条件および結果を下記表 IE— Aおよび IE— Bに示す。
実施例 2 3
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフィンおよび臭素 (B r 2) を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を蒸留水 4 0 0部を用いて 9 0でまで加熱し 1時間撹拌する熱水洗浄を 2回 繰返し、 得られた重液 (ジフエ二ルカ一ボネート層) を実施例 3と同様の蒸留精 製を 8 5 %の収率にて行ない、 加水分解性臭素量 0. 7 p pmのジフエ二ルカ一 ボネートを得た。 このジフエ二ルカ一ポネートをエステル交換触媒として水酸ィ匕 ナトリゥムの代わりにビスフエノール Aのジナトリゥム塩をビスフエノール Aに 対しナトリウムとして 2. 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビ スフエノール Aとエステル交換反応を行ないポリ力一ポネートを合成し、 このべ レットを用い物性を測定した。 条件および結果を下記表 ΠΙ— Aおよび ΠΙ _ Βに 示す。
実施例 2 4
シユウ酸ジフエニルを触媒としてトリフエニルホスフィンおよび臭素 (B r 2) を用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水洗浄を 2回 繰返し、 加水分解性臭素量 1 . 7 p pmのジフエ二ルカ一ポネートを得た。 この ジフエ二ルカーポネートをエステル交換触媒として水酸ィ匕ナトリゥムの代わりに ビスフエノール Aのジナトリウム塩をビスフエノール Aに対しナトリウムとして o L
2 . 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノール Aとエス テル交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測 定した。 条件および結果を下記表 Π— Aおよび ΙΠ— Βに示す。
比較例 1 1
実施例 2 4において、 蒸留水を用いる熱水洗浄を 1回のみにして、 加水分解性 臭素量 7. 3 p pmのジフエ二ルカ一ポネートを得た。 このジフエ二ルカーポネ ートを用いて実施例 2 4と同様の条件でポリ力一ポネートを得た。 条件および結 果を下記表 ΠΙ― Aおよび IE— Bに示す。
実施例 2 5
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフィンおよび塩化アルミ二 ゥムを用い脱力ルポニル化反応によって得られたジフエ二ルカーポネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネ一 卜層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 得られた重液を実施例 3と同様の蒸留精製を 8 5 %の収率に て行ない、 カロ水^性塩素量 1 . 1 p pmのジフエ二ルカ一ポネートを得た。 こ のジフエ二ルカ一ポネートをエステル交換触媒として水酸化ナトリゥムの代わり にビスフエノール Aのジナトリゥム塩をビスフエノール Aに対しナトリウムとし て 2 . 0 X 1 0 _ 6モルを用いた以外は実施例 1と同様にビスフエノール Aとェ ステル交換反応を行ないポリカーボネートを合成し、 このペレットを用い物性を 測定した。 条件および結果を下記表 Π— Aおよび ΠΙ— Bに示す。
実施例 2 6
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフィンおよび塩化アルミ二 ゥムを用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を p Hを 1 0とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0 °Cまで 加熱し 1時間撹拌する熱水洗浄を行ない、 得られた重液 (ジフエ二ルカ一ポネ一 ト層) をさらに蒸留水 4 0 0部を用いて 9 0 °Cまで加熱し 1時間撹拌する熱水 洗浄を 2回繰返し、 加水分解性塩素量 1 . 8 p p mのジフエ二ルカ一ボネートを 得た。 このジフエ二ルカーポネートをエステル交換触媒として水酸化ナトリゥム の代わりにビスフエノ一ル Aのジナトリゥム塩をビスフエノ一ル Aに対しナトリ ゥムとして 2. 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノー ル Aとエステル交換反応を行ないポリ力一ポネートを合成し、 このペレツトを用 い物性を測定した。 条件および結果を下記表 ΙΠ— Aおよび m— Bに示す。
比較例 1 2
シユウ酸ジフエ二ルを触媒としてトリフエニルホスフィンおよび塩化アルミ二 ゥムを用い脱力ルポニル化反応によって得られたジフエ二ルカ一ポネート 2 0 0 部を蒸留水 4 0 0部を用いて 9 0でまで加熱し 1時間撹拌する熱水洗浄を 2回 繰返し、 加水分解性塩素量 7 . 9 p pmのジフエ二ルカ一ポネートを得た。 この ジフエ二ルカーボネートをエステル交換触媒として水酸ィ匕ナトリゥムの代わりに ビスフエノール Aのジナトリウム塩をビスフエノール Aに対しナトリウムとして 2 . 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノ一ル Aとエス テル交換反応を行ないポリ力一ポネートを合成し、 このペレツトを用い物性を測 定した。 条件および結果を下記表 m— Aおよび m—Bに示す。
実施例 2 7
シユウ酸ジフエニルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポ二ルイヒ反応によって得られたジフエ二ルカーポネート 2 0 0部を p H を 8とした炭酸水素ナトリゥム水溶液 4 0 0部を用いて 9 0でまで加熱し 1時 間 する熱水洗浄を 2回繰返し、 得られた重液 (ジフエ二ルカ一ポネート層) をさらに蒸留水 4 0 0部を用いて 9 O :まで加熱し 1時間撹拌する熱水洗浄を 2回繰返し、 得られた重液を実施例 3と同様の蒸留精製を 8 5 %の収率にて行な レ、 加水^?性塩素量 0. 0 5 p pmのジフエ二ルカ一ポネートを得た。 このジ フ工ニルカーボネ一トをエステル交換触媒として水酸化ナトリゥムの代わりにビ スフエノ一ル Aのジナトリゥム塩をビスフエノール Aに対しナトリウムとして 2 . 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノ一ル Aとエステル 交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測定し た。 条件および結果を下記表 m— Aおよび m—Bに示す。 実施例 2 8
シユウ酸ジフエ二ルを触媒としてテトラフェニルホスホニゥムクロライドを用 い脱力ルポニル化反応によって得られたジフエ二ルカーボネー卜 2 0 0部を p H を 8とした炭酸水素ナトリウム水溶液 4 0 0部を用いて 9 0でまで加熱し 1時 間»する熱水洗浄を 2回繰返し、 得られた重液 (ジフエニルカーボネート層) をさらに蒸留水 4 0 0部を用いて 9 0 まで加熱し 1時間撹拌する熱水洗浄を 2回繰返し、 得られた重液を実施例 3と同様の蒸留精製を 8 5 %の収率にて行な い、 加水分解性塩素量 0. 0 9 p pmのジフエ二ルカ一ポネ一トを得た。 このジ フエ二ルカ一ボネ一トをエステル交換触媒として水酸化ナトリゥムの代わりにビ スフエノ一ル Aのジナトリウム塩をビスフエノール Aに対しナトリウムとして 2 . 0 X 1 0— 6モルを用いた以外は実施例 1と同様にビスフエノール Aとエステル 交換反応を行ないポリカーボネートを合成し、 このペレツトを用い物性を測定し た。 条件および結果を下記表 m— Aおよび m—Bに示す。
表 m— A
熱水^1 ( 1 ) 熱水洗 ( 2 ) 蒸 ®
脱力ルホ'ニル化
P H ホ 卜ム
水 P H 温度 時間 回数 水 温度 時間 回数 塔頂圧 還流 収率 触媒
(°C ) (hr) (°C ) (hr) (で) (torr) 比 ( % ) 実施例 19 Ph3P=0 (G0C1)2 NaHC03水 10 90 2 純水 7 90 1 1 200 20 5 90 実施例 20 Ρ1¾Ρ=0 (00C1)2 NaHC03水 10 90 2 純水 7 90 1 1
比較例 9 Ph3P=0 (OOCl)2 NaHC03水 10 90 1 純水 7 90 1 1
実施例 21 Ph,P CHC13 純水 7 90 1 1 200 20 5 90 実施例 25 Ph3P CHCI3 純水 7 90 1 1
比較例 10 Ph3P CHCI3 0
実施例 23 Ph3P Br2 純水 7 90 1 2 200 20 5 85 実施例 24 Ph3P Br2 純水 7 90 1 2
比較例 11 Ph3P Br2 純水 7 90 1 1
実施例 25 Ph3P AICI3 NaHC03水 10 90 1 1 純水 7 90 1 2 200 20 5 85 実施例 26 Ph3P AICI3 NaHC03水 10 90 1 1 純水 7 90 1 2
比較例 12 Ph3P AICI3 純水 7 90 1 2
実施例 27 Ph4PCl NaHC03水 8 90 1 2 純水 7 90 1 2 200 20 5 80 実施例 28 Ph4PCl NaHC03水 8 90 1 2 純水 7 90 1 2 200 20 5 85
表 ΙΠ_Β
Figure imgf000038_0001

Claims

請求の範囲
1. 芳香族炭酸ジエステルと、 芳香族ジヒドロキシ化合物とをエステル交換反応 させて芳香族ポリカーボネートを製造する方法において、 該芳香族炭酸ジエステ ルが、 下記一般式 (1)
〇 〇
II II /
Ar-OC-CO-Ar … (1)
[但し式中 2つの A rは同一もしくは異なる炭素数 6〜 14の芳香族炭化水素基 を示す。]
で表わされる芳香族シユウ酸ジエステルの脱力ルポ二ルイヒ反応によって得られか つその中の加水分解性ハロゲンの含有量が 5 p pm以下であることを特徴とする 芳香族ポリカーボネー卜の製造方法。
2. 該芳香族炭酸ジエステルは、 その中の加水飾性塩素の含有量が 2 ppm以 下である請求項 1記載の芳香族ポリカーボネ一トの製造方法。
3. 該芳香族炭酸ジエステルは、 下記一般式 (2)
… (2)
Figure imgf000039_0001
[但し式中 R2, R3および R4は、 互いに同一もしくは異なり、 水素原子、 炭素数 1〜4のアルキル基、 フエニル基またはハロゲン原子を示す。] で表わされる請求項 1記載の芳香族ポリ力一ポネートの製造方法。
4. 該芳香族ジヒドロキシ化合物は、 下記一般式 (3)
… (3)
Figure imgf000039_0002
[但し式中 Wは— 0—、 —S—、 — SO—、 — S〇2—、
I - C—
J ~ または ( ) を表わす。 nは 0〜4示し、 R 5および R 6は互いに同一もしくは異なりハロゲン原子また は炭素数 1〜1 2の炭化水素基を示し、 R 7および R 8は互いに同一もしくは異 なり、 ハロゲン原子、 水素原子または炭素数:!〜 1 2の炭化水素基を示し、 R 9 は炭素数 3〜 8のアルキレン基を示す]
で表わされる請求項 1記載の芳香族ポリカーボネートの製造方法。
5. 該加水分解性八ロゲンは、 該芳香族シユウ酸ジエステルの脱力ルポエル化反 応における触媒に由来する請求項 1記載の芳香族ポリ力一ポネートの製造方法。
6. 該芳香族炭酸ジエステルは、 前記一般式 ( 1 ) で表わされる芳香族シユウ酸 ジエステルを有機リン化合物とハロゲン化合物、 または含ハロゲン有機リン化合 物を触媒として脱力ルポ二ル化反 ることにより得られる請求項 1記載の芳香 族ポリ力一ポネートの製造方法。
7 . 該エステル交換反応は、 アルカリ金属化合物、 アルカリ土類金属化合物およ び含窒素塩基性化合物よりなる群から選ばれた少なくとも 1種の触媒の存在下に 実施する請求項 1記載の芳香族ポリ力一ポネー卜の製造方法。
8. 該エステル交換反応は、 アルカリ金属化合物およびアルカリ土類金属化合物 を芳香族ジヒドロキシ化合物 1モルに対して 1 X 1 0— 8〜5 X 1 0— 5当量触媒 として使用する請求項 1記載の芳香族ポリ力一ポネートの製造方法。
9 . 該エステル交換反応は、 含窒素塩基性化合物を芳香族ジヒドロキシ化合物 1 モルに対して、 1 X 1 0一5〜 1 X 1 0— 3当量触媒として使用する請求項 1記載 の芳香族ポリカーボネートの製造方法。
1 0 . 該エステル交換反応は、 1 6 0〜3 0 0 °Cの範囲で実施する請求項 1記 載の芳香族ポリ力一ポネ一トの製造方法。
1 1 . 該芳香族炭酸ジエステルは、 該芳香族シユウ酸ジエステルの脱力ルポニル 化反応により得られかつ該芳香族炭酸ジエステルの融点以上の熱水で接触処理さ れたものである請求項 1記載の芳香族ポリカーボネートの製造方法。
1 2. 該熱水は p Hが 8〜1 0である請求項 1 1記載の芳香族ポリカーボネート の製造方法。
1 3 . 該熱水処理の前または後に蒸留精製を実施する請求項 1 1記載の芳香族ポ リカ一ポネートの製造方法。
14. 下記一般式 (1)
O O
Ar-OC-CO-Ar … (1)
[但し式中 2つの A rは同一もしくは異なる炭素数 6〜 14の芳香族炭化水素基 を示す]
で表わされる芳香族シユウ酸ジエステルの脱力ルポニル化反応により得られた加 水分解性ハロゲンの含有量が 5 pm以下の芳香族炭酸ジエステル。
15. 芳香族ポリ力一ポネートの製造に使用するための請求項 14記載の芳香族 炭酸ジエステル。
16. 請求項 14記載の芳香族炭酸ジエステルと芳香族ジヒドロキシ化合物との エステル交換反応によって得られた芳香族ポリカーボネート。
PCT/JP1998/002276 1997-05-26 1998-05-25 Procede de preparation d'un polycarbonate aromatique WO1998054240A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69816295T DE69816295T2 (de) 1997-05-26 1998-05-25 Verfahren zur herstellung von aromatischem poycarbonat
US09/424,318 US6265524B1 (en) 1997-05-26 1998-05-25 Process for the preparation of aromatic polycarbonate
EP98921788A EP0987285B1 (en) 1997-05-26 1998-05-25 Process for the preparation of aromatic polycarbonate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/134865 1997-05-26
JP13486497 1997-05-26
JP9/134864 1997-05-26
JP13486597 1997-05-26

Publications (1)

Publication Number Publication Date
WO1998054240A1 true WO1998054240A1 (fr) 1998-12-03

Family

ID=26468846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002276 WO1998054240A1 (fr) 1997-05-26 1998-05-25 Procede de preparation d'un polycarbonate aromatique

Country Status (8)

Country Link
US (1) US6265524B1 (ja)
EP (1) EP0987285B1 (ja)
KR (1) KR20010012654A (ja)
CN (1) CN1265120A (ja)
DE (1) DE69816295T2 (ja)
ES (1) ES2202852T3 (ja)
TW (1) TW464662B (ja)
WO (1) WO1998054240A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053657A (ja) * 2000-08-04 2002-02-19 Ube Ind Ltd ポリカーボネートの製法
JP2008516421A (ja) * 2004-10-01 2008-05-15 メルク パテント ゲーエムベーハー 有機半導体を含む電子デバイス

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243715C (zh) * 2000-08-04 2006-03-01 宇部兴产株式会社 碳酸二芳基酯产物和聚碳酸酯的制备
ATE540071T1 (de) * 2002-04-22 2012-01-15 Mitsubishi Chem Corp Hohlkörper enthaltend eine aromatische polycarbonatzusammensetzung
CN101585914B (zh) * 2002-04-22 2011-12-14 三菱化学株式会社 芳香族聚碳酸酯、其制造方法、聚碳酸酯组合物及由该组合物得到的中空容器
AU2012209043B2 (en) 2011-08-05 2015-09-24 Kraft Foods Group Brands Llc Ready-to-bake batter and methods of making the same
EP2712893A1 (de) 2012-10-01 2014-04-02 Basf Se Pipeline mit wärmespeichernden eigenschaften
US9890895B2 (en) 2012-10-01 2018-02-13 Basf Se Pipeline with heat-storing properties
US10442885B2 (en) 2012-12-13 2019-10-15 Basf Se Hydrolysis-stable polyurethane for coating elements in maritime applications
EP2743285A1 (de) 2012-12-13 2014-06-18 Basf Se Hydrolysestabiles Polyurethan zur Anwendung im off-shore Bereich
EP2743284A1 (de) 2012-12-13 2014-06-18 Basf Se Hydrolysestabiles Polyurethan zur Beschichtung von Elementen in maritimen Anwendungen
US9738590B1 (en) 2014-09-05 2017-08-22 Sabic Global Technologies B.V. Method of melt polymerizing polycarbonate and the polycarbonate made therefrom
DE102016119477A1 (de) * 2016-10-12 2018-04-12 Epc Engineering Consulting Gmbh Katalysator-System
CN107082878B (zh) * 2017-05-18 2019-04-26 濮阳市宏源石油化工有限公司 用于制备芳香族聚碳酸酯的复合催化剂及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175722A (ja) * 1988-09-22 1990-07-09 Nippon G Ii Plast Kk ポリカーボネートの製造方法
JPH08333307A (ja) * 1995-04-04 1996-12-17 Ube Ind Ltd ジアリールカーボネートの製造法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2107999T3 (es) * 1988-07-11 1997-12-16 Gen Electric Procedimiento para preparar policarbonatos.
US5892091A (en) * 1995-04-04 1999-04-06 Ube Industries, Ltd. Catalyst for decarbonylation reaction
TW322471B (ja) * 1995-04-04 1997-12-11 Ube Industries
US5922827A (en) * 1996-09-27 1999-07-13 Ube Industries, Ltd. Process for producing a polycarbonate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175722A (ja) * 1988-09-22 1990-07-09 Nippon G Ii Plast Kk ポリカーボネートの製造方法
JPH08333307A (ja) * 1995-04-04 1996-12-17 Ube Ind Ltd ジアリールカーボネートの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0987285A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053657A (ja) * 2000-08-04 2002-02-19 Ube Ind Ltd ポリカーボネートの製法
JP2008516421A (ja) * 2004-10-01 2008-05-15 メルク パテント ゲーエムベーハー 有機半導体を含む電子デバイス
US9150687B2 (en) 2004-10-01 2015-10-06 Merck Patent Gmbh Electronic devices containing organic semi-conductors

Also Published As

Publication number Publication date
EP0987285B1 (en) 2003-07-09
TW464662B (en) 2001-11-21
ES2202852T3 (es) 2004-04-01
DE69816295D1 (de) 2003-08-14
EP0987285A4 (en) 2000-08-16
EP0987285A1 (en) 2000-03-22
DE69816295T2 (de) 2004-05-27
CN1265120A (zh) 2000-08-30
US6265524B1 (en) 2001-07-24
KR20010012654A (ko) 2001-02-26

Similar Documents

Publication Publication Date Title
US6723823B2 (en) Method of polycarbonate preparation
WO1998054240A1 (fr) Procede de preparation d&#39;un polycarbonate aromatique
JP4195145B2 (ja) ポリカーボネートの製造方法
KR20010032512A (ko) 폴리카보네이트 공중합체 및 그의 제조방법
EP1417248A1 (en) Method for making polycarbonate
WO1997011107A1 (fr) Polycarbonate et procede pour sa production
JP2006502276A (ja) ポリカーボネート製造方法
US6316578B1 (en) Salts of non-volatile acids as polymerization catalysts
JP2888307B2 (ja) ポリカーボネートの製造方法
US6583258B1 (en) Salts of organic phosphates as catalysts for melt polycarbonate
JP2004525911A (ja) 粗製二価フェノール中の残留酸種の中和法
JP2004502848A (ja) 重合触媒として1種類以上のセシウム等価物を含有する硫酸の混合二アルカリ金属塩
US6710155B2 (en) Polyhydropolyborates as polymerization catalysts
ES2287568T3 (es) Metodo para preparar resina de policarbonato.
JP3508488B2 (ja) 芳香族ポリカーボネートの製造方法
JP2006504845A (ja) コポリカーボネート製造方法
US6610814B2 (en) Compounds of antimony and germanium as catalysts for melt polycarbonate
JP4836301B2 (ja) 芳香族ポリカーボネート樹脂の製造方法
JP4559725B2 (ja) ポリカーボネート製造用触媒及びポリカーボネートの製造方法
KR100529366B1 (ko) 폴리카보네이트 수지의 제조방법
EP1689803B1 (en) Polyhydropolyborates as polymerization catalysts
JPH11310630A (ja) 芳香族ポリカーボネートの製造法
JP4326876B2 (ja) ポリカーボネート製造用触媒及びポリカーボネートの製造方法
JPH0841193A (ja) ポリカーボネートの製造法
JP2000198838A (ja) 芳香族ポリカ―ボネ―トの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98807574.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997010615

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09424318

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998921788

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998921788

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997010615

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998921788

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997010615

Country of ref document: KR