WO1998040716A1 - Procede et systeme de detection des defauts d'un vehicule - Google Patents

Procede et systeme de detection des defauts d'un vehicule Download PDF

Info

Publication number
WO1998040716A1
WO1998040716A1 PCT/JP1998/000976 JP9800976W WO9840716A1 WO 1998040716 A1 WO1998040716 A1 WO 1998040716A1 JP 9800976 W JP9800976 W JP 9800976W WO 9840716 A1 WO9840716 A1 WO 9840716A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnosis
diagnostic
operation signal
item
vehicle
Prior art date
Application number
PCT/JP1998/000976
Other languages
English (en)
French (fr)
Inventor
Kazumune Sasaki
Akira Hashimoto
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to US09/147,143 priority Critical patent/US6314375B1/en
Priority to BR9805912A priority patent/BR9805912A/pt
Priority to EP98905831A priority patent/EP0922952A4/en
Priority to CA002248831A priority patent/CA2248831C/en
Publication of WO1998040716A1 publication Critical patent/WO1998040716A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters

Definitions

  • the present invention relates to a vehicle diagnosis method and apparatus, and more particularly to a vehicle diagnosis method and apparatus that communicates with a vehicle-mounted electronic control device mounted on a vehicle and performs vehicle diagnosis based on the communication result. More specifically, the vehicle parts supply a forced operation signal so as to indicate the expected state, and as a result, based on whether or not the actual state of the vehicle parts has reached the expected state.
  • the present invention relates to a method and an apparatus for diagnosing a vehicle for determining the quality of each diagnostic item. Background art
  • ECU electronic fuel injection device
  • the control and the like are being performed by an in-vehicle electronic control unit (ECU) equipped with a microcomputer.
  • the ECU includes various sensors such as a temperature sensor that detects the temperature of the engine coolant, a rotation sensor that detects the engine speed, a vehicle speed sensor that detects the vehicle speed, a 02 sensor that detects the oxygen concentration in the exhaust gas, and a brake.
  • Various switches such as a brake switch for detecting that the pedal is depressed are connected, and the ECU performs various controls based on detection signals output from various sensors and the like.
  • 3 7 2 Has proposed a diagnostic method in which a vehicle diagnostic program is executed by a diagnostic device equipped with a microcomputer, and a diagnosis on a desired diagnostic item is performed at a scheduled time.
  • a vehicle diagnostic program is executed by a diagnostic device equipped with a microcomputer, and a diagnosis on a desired diagnostic item is performed at a scheduled time.
  • the failure diagnosis for a plurality of diagnostic items for example, as described in Japanese Patent Publication No. 61-25091, the plurality of diagnostic items are diagnosed in a predetermined order, and each diagnostic item is diagnosed. The result of the pass / fail judgment regarding the item was sequentially output on the display device.
  • the above vehicle diagnostic items include prerequisites such as “Ne diagnostic”, which determines whether or not the engine speed Ne during idling falls within a specified range. Some diagnoses require that the engine is sufficiently warm. On the other hand, there are diagnostics that do not require any preconditions and can be completed immediately, such as “brake switch diagnostics”, which diagnoses the opening / closing function of the brake switch.
  • the diagnostic order of each diagnostic item is determined in advance in a conventional vehicle diagnosis or the like, and the next diagnostic is performed until the previous diagnosis is completed and its quality is determined. Can not do. Therefore, if it is specified that the "Brake switch diagnosis" be performed after the "Ne diagnosis”, the operator will be able to perform the "Brake switch diagnosis” until the engine has warmed up sufficiently and the "Ne diagnosis” is completed. ] Can not do. For this reason, there is a problem that the useless waiting time is generated during the work and the efficiency is reduced, and as a result, the restraint time of the worker, that is, the work time is lengthened.
  • each diagnosis is repeated cyclically in a very short cycle regardless of the success or failure, and diagnosis items that do not pass even after the scheduled time are diagnosed as failures
  • Recirculation-type diagnostic methods can be considered. If such a cyclic diagnostic method is adopted, for example, if the diagnostic processing cycle is set so that one cycle of the entire diagnostic processing is completed while the operator is depressing the brake pedal, any order and timing so Even if the brake pedal is depressed, the “Brake Switch Diagnosis” is always executed during that time, so the order of various operations to be performed for each diagnostic item is reduced. To improve.
  • diagnosis of the function of controlling the opening and closing timing of the valve according to various conditions such as the vehicle running speed and the engine speed, and the collection of fuel gas evaporating from the fuel tank, are performed under predetermined operating conditions.
  • EVP diagnosis the diagnosis of the evaporation system to be supplied to the engine (hereinafter referred to as EVP diagnosis) is difficult to achieve under the limited conditions of the inspection process, such as the driving conditions that actually function. Difficult to diagnose. Therefore, in the diagnosis of such an item, a forced actuation signal is supplied from the ECU to each related part to forcibly actuate the above-described valve and the evaporation system, and the valve and the evaporator obtained at this time are obtained.
  • a method of diagnosing pass / fail based on whether or not the actual state of the rac- tion system is in a state predicted from the forcible operation signal may be considered.
  • the ECU cannot supply multiple forced activation signals at the same time, and the content and destination of the forced activation signal differ depending on the diagnosis target. Therefore, if there is more than one diagnostic item that requires the supply of a forced activation signal, first supply the first forced activation signal for diagnosis of one item to diagnose the item, and when this is completed, the first It is necessary to stop sending the forced operation signal of the second item and then supply the second forced operation signal for diagnosis of another item to diagnose the other item. In this case, the second compulsory activation signal cannot be supplied until the diagnosis of one item is completed, so that the diagnosis of another item cannot be performed unless the diagnosis of one item passes to the end. There was a problem that it would.
  • the present invention provides a compulsory activation signal so that each part of the vehicle indicates a scheduled state.As a result, based on whether the actual state of each part of the vehicle has reached the scheduled state, whether or not each diagnostic item is good or bad is determined.
  • the vehicle diagnostic method and device for determination are characterized by the following means.
  • a forced operation signal which is expected to bring the vehicle part related to the diagnosis item into a scheduled state, is supplied to each related part, and the diagnosis corresponding to the forced operation signal is performed while the forced operation signal is supplied.
  • the diagnostics for each item are cyclically executed so that the diagnosis is executed, the diagnostic items that have been judged as good are excluded from the diagnosis target during the cyclic processing, and the diagnostics for the remaining diagnostic items continue to be cyclically performed.
  • the compulsory activation signal is stopped when either the corresponding diagnosis is judged to be good, or when the scheduled period for the diagnosis has elapsed, or I made it.
  • Diagnostic item selection means for continuously and cyclically selecting diagnostic items one by one from a plurality of diagnostic items, and supplying a compulsory activation signal to the diagnostic target section related to any of the diagnostic items
  • Forcible activation signal supply means state detection means for detecting the current state of the diagnosis target portion related to the selected diagnostic item, and the current state of the detected diagnosis target portion, Diagnosing means for comparing the state predicted when the power is supplied and determining that the two are in a predetermined relationship to determine that the diagnosis target portion is good; and a supply stop for stopping the supply of the forced operation signal.
  • Means for stopping the supply when it is determined that the diagnostic item corresponding to the forced operation signal is good, and when the scheduled period has elapsed from the start of supply of the forced operation signal. At this time, the forced operation signal supplied for diagnosis of the diagnostic item is stopped.
  • the vehicle diagnosis method and apparatus having the above-described configuration, not only when the one diagnostic item passes, but also when the supply of the forced activation signal exceeds a predetermined period, the forced operation related to the one diagnostic item is performed. The signal supply is stopped. Therefore, the forced activation signal for one diagnosis item is continuously supplied, and the diagnosis of another item is not hindered.
  • FIG. 1 is a block diagram showing a configuration of an ECU 1 mounted on a vehicle to be diagnosed and a vehicle diagnostic device 2 of the present invention.
  • FIG. 2 is a diagram schematically showing the storage contents of the ROM card 7.
  • FIG. 3 is a diagram showing the storage contents of the diagnosis item management table 71.
  • FIG. 4 is a diagram showing the storage contents of the non-standard data storage area 74.
  • FIG. 5 is a view showing the storage contents of the standard data storage area 73.
  • 6A to 6F are diagrams showing various display examples on the display unit 27.
  • FIG. 1 is a diagram schematically showing the storage contents of the ROM card 7.
  • FIG. 3 is a diagram showing the storage contents of the diagnosis item management table 71.
  • FIG. 4 is a diagram showing the storage contents of the non-standard data storage area 74.
  • FIG. 5 is a view showing the storage contents of the standard data storage area 73.
  • 6A to 6F are diagrams showing various display examples on the display unit 27.
  • FIG. 7 is a functional block diagram of the vehicle diagnostic device of the present invention.
  • FIG. 8 is a flowchart showing an outline of vehicle diagnosis according to the present invention.
  • FIG. 9 is a flowchart showing the operation of the initial processing.
  • FIG. 10 is a flowchart showing the operation of the vehicle speed sensor diagnosis (
  • FIG. 11 is a flowchart showing the operation of the EGR diagnosis.
  • FIG. 12 is a flowchart showing the operation of the EVP diagnosis.
  • FIG. 13 is a block diagram of the evaporation system.
  • FIG. 14 is a flowchart showing the operation of the VT diagnosis.
  • FIG. 15 is a flowchart showing the operation of Ne diagnosis.
  • FIG 16 is a flowchart showing the operation of the Ne diagnosis (continued)
  • FIG. 17 is a flowchart showing the operation of each switch diagnosis.
  • FIG. 18 is a flowchart showing the operation of the end processing.
  • FIG. 19 is a flowchart showing the operation of the standby mode processing.
  • the ECU 1 includes a CPU 10, a RO 1 RAM 12, a dryno 13, an A / D converter 14, and a communication interface 15.
  • the ECU 1 is connected to peripheral devices via connectors 16 and 17.
  • various actuators 3 are connected to the connector 16, and various sensors and switches 4 are connected to the connector 17.
  • the communication cable 5 of the external diagnostic device 2 is connected to the connector 18 via the connector 34.
  • a signal input from each sensor 4 to the ECU 1 is converted into a digital signal by the A / D converter 14 and taken into the CPU 10.
  • the signal taken into the CPU 10 is processed according to control data stored in the ROM 11 and the RAM 12 and a control program written in the ROM 11.
  • An instruction signal corresponding to the processing result of the CPU 10 is input to the dryno 13.
  • the dry air supply 13 supplies power to the actuator 3 in response to this instruction signal.
  • an identification code unique to each ECU 1, that is, an ECU code is also registered in the ROM 11.
  • the external diagnostic device 2 of the present invention includes a CPU 20, a R ⁇ M 21, a RAM 22, a transmitting unit 24, a communication interface X-source 25, and a power supply unit 29.
  • the power supply unit 29 selects one of the vehicle-mounted battery 19 and the built-in battery 23 of the vehicle to be diagnosed as the power source of the external diagnostic device 2.
  • the external diagnostic device 2 includes a keyboard 26 for inputting instructions from the operator, a display unit 27 for displaying the processing results of the CPU 20, and a bar code for reading the identification code displayed on the bar code.
  • a recorder 31 and a barcode interface 32 are provided.
  • a liquid crystal display panel (LCD) with a backlight is employed as the display unit 27.
  • LCD liquid crystal display panel
  • the keyboard 26 is provided with general numeric keys, cursor movement keys, function keys, and the like.
  • the communication cable 5 has a signal line 51 and a power supply line 52, and the communication interface 15 of the ECU 1 and the communication interface 25 of the external diagnostic device 2 are connected via the signal line 51 of the communication cable 5. It is configured such that bidirectional digital communication can be performed between the CPU 10 and the CPU 20.
  • the power supply unit 29 uses the power supplied from the vehicle battery 19 via the power supply line 52 as a power source for the external diagnostic device 2, and uses the power to supply the internal battery Recharge 23.
  • the operator activates the external diagnostic device 2 by turning on a power switch (not shown) provided on the keyboard 26 or operating the key switch at all.
  • the operator simply connects the connector 34 of the communication cable 5 to the connector 18 of the ECU 1 without having to The operation after startup differs depending on which method was used.
  • the ROM 21 stores basic programs and control data necessary for controlling the external diagnostic device 2, and includes non-standard data used in each diagnosis and a vehicle diagnostic program. Specific information that can be added or changed is stored in the ROM card 7. The data of the ROM 7 is taken into the CPU 20 via the ROM card interface 28.
  • the signals fetched from the ECU 1 are processed based on the basic data stored in the ROM 21 and the RAM 22, and the vehicle diagnostic program and control data stored in the ROM card 7. It is temporarily stored in the RAM 22.
  • This diagnostic result is output to the display unit 27 each time the diagnosis of each vehicle is completed, and the diagnostic results of several vehicles are transmitted from the transmitting unit 24 to the host device such as the host computer 30 in response to the instruction of the operator.
  • the information is centrally managed and stored by the host computer 30 and the large storage device 33.
  • the external diagnostic device 2 can be connected to a personal computer (not shown), and necessary information, for example, an updated (upgraded) fault diagnostic program can be fetched via the personal computer.
  • the ROM card 7 has a diagnostic item management table 71 for selecting diagnostic items based on an ECU code, and a vehicle storing a vehicle diagnostic program for a plurality of diagnostic items.
  • Diagnostic program storage area 72 standard data storage area 73 that stores standard data shared by each vehicle regardless of ECU, and non-standard data that stores unique non-standard data that differs depending on each ECU
  • FIG. 3 shows an example of the storage contents of the diagnosis item management table 71. It is.
  • the external diagnostic device 2 of the present invention is capable of diagnosing a large number of items and has all the algorithms for each diagnostic item, but not all diagnostics are performed for all vehicles. The diagnostic items to be performed for a patient are different.
  • FIG. 4 is a diagram showing an example of the storage contents of the non-standard data storage area 74.
  • the non-standard data that differs for each ECU ie, ECU code
  • the unique idling speed NID-ref is registered in association with each ECU code.
  • the unique idling speed NID-ref is a reference idling speed specified for each ECU code, as will be described in detail later, and indicates whether the engine speed during idling is normal.
  • the diagnosis is made by comparing the detected engine speed Ne with the specific idling speed NID-ref selected according to the ECU code of the vehicle.
  • diagnosis contents that is, combinations of diagnosis items and non-standard data are automatically determined according to the ECU code. You are free from the task of determining Therefore, not only the burden on the worker is reduced, but also there is no mistake in the selection of diagnostic items and no misrecognition of non-standard data, and accurate diagnosis can be performed.
  • FIG. 5 is a diagram showing the storage contents of the standard data storage area 73, in which the standard data xl to # 5 shared in each diagnosis are stored regardless of the ECU code in the diagnosis program.
  • FIG. 8 is a flowchart showing an outline of vehicle diagnosis by the external diagnostic device of the present invention.
  • the external diagnostic device 2 of the present invention can be used in vehicle diagnosis under any environment, such as vehicle diagnosis on a production line and vehicle diagnosis in a repair shop. The operation will be described by taking as an example the case of use in "vehicle diagnosis” performed in the "inspection process".
  • step S100 "initial processing” is executed.
  • step S200 "vehicle speed sensor diagnosis” registered as diagnosis item 1 is executed.
  • step S300 "EGR diagnosis” registered as diagnosis item 2 is executed.
  • step S400 "EVP diagnosis” registered as diagnosis item 3 is executed.
  • step S500 the “variable VT (valve timing) diagnosis” registered as diagnosis item 4 is executed.
  • step S600 it is registered as diagnostic item 5.
  • Step S700 the diagnosis of each switch system registered as the diagnosis item 6,... Is executed.
  • step S800 "end processing” is executed.
  • step S900 "standby mode processing” is executed. Thereafter, the process returns to step S200, and the above-described diagnoses are repeated until all the diagnostics pass, unless stopped by an external instruction from an operator or the like.
  • the external diagnostic device of the present invention is configured to automatically, continuously, and cyclically repeatedly execute diagnosis on a large number of items.
  • each diagnostic method and processing method will be described in detail.
  • FIG. 9 is a flowchart showing the operation of the “initial processing” of step S100.
  • the operator turns on the power switch provided on the keyboard 26.
  • the operation can be performed, or the operator can connect the communication cable 5 to the ECU 1.
  • it is determined which method has been used for the initial power-on.
  • step S101 it is determined whether or not the power of the external diagnostic device 2 has been turned on by turning on the switch. If the result is affirmative, "0" is set in the flag Fst indicating the power-on procedure in step S104. Is At this time, power supply to the external diagnostic device 2 is performed by the built-in battery 23. If the determination in step S101 is negative, it is determined in step S102 whether or not the communication cable 5 is connected to the vehicle (ECU 1). If the determination is positive, step S103 At this time, "1" is set to the flag Fst. The power supply at this time is performed by the vehicle-mounted battery 19.
  • step S105 If the power-on is detected by any of the methods, an initial screen is displayed on the display unit 27 in step S105, and in step S106, the diagnostic device 2 is self-checked for abnormality or failure. Diagnosis is performed. If it is determined in step S107 that the result of the self-diagnosis is good, the process proceeds to step S108. finish.
  • step S109 the ECU code registered in the ECU 1 is read.
  • step S 1 10 the read EC Based on the U code, the diagnosis item management table 71 described with reference to FIG. 3 is searched, and a diagnosis item to be executed is selected.
  • step S111 the diagnosis selection flag Fselcx X ("xx" is a diagnosis item number) of the selected diagnosis item is set to "1" (selection), and the diagnosis selection of the diagnosis item not selected is performed. Flag Fselcx X is set to "0" (not selected).
  • step S112 the diagnostic item numbers representing the selected diagnostic items are listed on the display unit 27.
  • FIG. 6 (a) is a diagram showing a display example of the display section 27 when all the diagnostic items are selected, and all the diagnostic item numbers "01", "02", "03” ... are displayed. Have been.
  • "00” is a code that is erased when a sufficient number of times or a total time for completing the "Ne diagnosis" of the diagnostic item 5 are performed, as will be described in detail later. This is displayed in step S113.
  • the code is not limited to “00”, but may be an alphabet such as “X” or any other symbol as long as it can be easily distinguished from other diagnostic item numbers.
  • step S114 an identification code representing the identification information unique to each vehicle by a barcode is read by the barcode reader 31, and is temporarily stored in the RAM22.
  • This identification code is printed in advance on a diagnostic chart prepared in advance for each vehicle. Instead of printing on the diagnostic chart, a tag or sticker on which a barcode is printed may be attached to an appropriate place on the vehicle body. Then, the process proceeds to the next diagnosis in FIG. 8, that is, “vehicle speed sensor diagnosis”.
  • step S108 when it is determined that the flag Fst is "0", that is, the power-on is performed by the operator turning on the switch, in step S115, the operator is caused to select the processing content.
  • the menu screen is displayed on the display unit 27.
  • the processing after the power is turned on differs depending on whether the power of the external diagnostic apparatus 2 is turned on by the switch on operation or the cable connection procedure. Then, the diagnostic process is started immediately without displaying the menu screen. Therefore, the operator of the inspection line can automatically start the vehicle diagnosis simply by connecting the cable 5 of the external diagnostic device 2 to each of the vehicles to be diagnosed conveyed one after another. Operation at the time of diagnosis is simplified. In addition, when the external diagnostic device 2 is activated by the operator turning on the switch, a menu screen is displayed, so that other processes can be easily selected.
  • FIG. 10 is a flowchart showing a diagnostic method of “vehicle speed sensor diagnostic” of diagnostic item 1 executed as step S200 in FIG.
  • the “vehicle speed sensor diagnosis” is a diagnosis of whether or not a sensor for detecting the vehicle speed is functioning normally, and is based on a comparison result of the vehicle speed VS detected by the vehicle speed sensor with a reference value (reference vehicle speed VSref). The diagnosis is made by a known and appropriate technique.
  • step S203 the reference vehicle speed VSref stored in the standard data storage area 73 (FIG. 5) of the ROM card 7 is read as one of the standard data, and in step S204, the current vehicle speed VS is determined by the ECU 1.
  • step S205 a vehicle speed sensor diagnosis is executed based on the reference vehicle speed VSref and the vehicle speed VS.
  • step S206 the pass / fail of the diagnosis executed in step S205 is determined. If the diagnosis is not passed, the next diagnosis item (in the present embodiment, “EGR of diagnosis item 2” in accordance with the flowchart of FIG. 8) Diagnosis ”), the“ vehicle speed sensor diagnosis ”will wait until the next diagnosis timing.
  • the next diagnosis item in the present embodiment, “EGR of diagnosis item 2” in accordance with the flowchart of FIG. 8) Diagnosis
  • FIG. 6B is a diagram showing a display example of the display unit 27 when only the “vehicle speed sensor diagnosis” has passed, and only the diagnosis item number “01” is deleted.
  • FIG. 11 is a flowchart showing a diagnosis method of “EGR diagnosis” of diagnosis item 2 executed as step S300 in FIG.
  • EGR diagnosis is a diagnosis of whether or not the device (EGR) for reducing N ⁇ x by recirculating exhaust gas to the combustion chamber of the engine is functioning properly.
  • the specific method is known. is there.
  • diagnosis item 3 “EVF diagnosis” the flowchart of FIG. Will wait until the next diagnostic time.
  • FIGS. 12 and 14 are flow charts showing the “EVP diagnosis” and “Variable VT diagnosis” methods executed as steps S400 and S500 in FIG. 8, respectively. This is a specific diagnosis according to the present invention, which is performed by utilizing the above.
  • FIG. 7 is a functional block diagram of the present invention for realizing the above-described vehicle diagnosis. The same reference numerals as those described above denote the same or equivalent parts. Note that the step numbers assigned to the respective blocks correspond to the step numbers assigned to the respective flowcharts, and indicate the contents of the processing executed by the respective blocks.
  • the diagnosis item selection means 551 selects one diagnosis item to be executed from among a plurality of diagnosis items based on the diagnosis item management table 71 and the vehicle diagnosis program 72 registered in the ROM card 7. Select continuously and cyclically.
  • the forcible operation signal supply unit 550 is one of the diagnostic items that require the compulsory operation signal at the time of diagnosis among the diagnostic items that can be selected by the diagnostic item selection unit 551 (in this embodiment, “EV P diagnosis” or “Variable VT diagnosis”)
  • a forced activation signal S x for activation is supplied via the ECU 1.
  • the vehicle state detecting means 552 detects, via the in-vehicle ECU 1, the current state of the diagnosis target portion 101 related to the diagnostic item selected by the diagnostic item selecting means 551.
  • the diagnosing means 55 3 is configured to calculate a current state of the diagnosis target portion 101 detected by the vehicle state detecting means 55 2, a state predicted when the forced operation signal S x is given to the current state. It is determined that the diagnosis target part 101 is good if the two are in agreement or a predetermined relationship. The judgment result is displayed on the display unit 27.
  • the counter 556 counts the number of diagnoses by the diagnostic means 553 for each diagnostic item.
  • the supply stopping means 5 5 5 5 is provided when the forced operation signal S x is used to determine that the diagnosis target portion 101 under operation is good or that the forced operation is performed after the scheduled period has elapsed.
  • the forced operation signal supply means 550 is sent to the forced operation signal supply means S x. Instruction to stop supply. Further, when the supply of the forced operation signal for one diagnostic item is stopped by the supply stopping means 55, the forcible operation signal supply means 550 is replaced with any one of the remaining diagnostic items. Supply other forced activation signal for
  • the “EVP diagnosis” refers to the fuel gas evaporated from the fuel in the fuel tank 81 and collected by the canister 86, as shown schematically in Fig. This is a diagnosis related to an evaporation system that supplies the engine to the engine via the suction pipe 87 when the condition is satisfied.
  • each valve 83, 84, 85 is controlled to be opened and closed by the ECU 1, each valve is used in the EVP diagnosis. It must be determined whether it is working properly. However, it is difficult to run the vehicle so that each valve of the evaporation system operates properly under the limited conditions of the inspection process. Therefore, in the present embodiment, the above-mentioned forced operation signal is sent from the ECU 1 to each valve, and each valve is forcibly opened / closed independently of the actual running state of the vehicle. At that time, the pressure detected by the pressure sensor (PS) 82 is compared with the pressure expected when each valve is opened and closed as instructed by the forcible operation signal. If so, diagnose each valve as good.
  • PS pressure sensor
  • step S401 When the “EVP diagnosis” of step S400 is selected by the diagnosis item selection means 551 in FIG. 7, in step S401, the above is determined based on the selection flag Fselc3 and the pass flag Fpass3 for diagnosis item 3. Similarly, the presence / absence of the selection of the diagnostic item and the pass / fail of the diagnosis are determined. If the selected diagnostic item has been selected but has not passed, the process proceeds to step S402; otherwise, the process proceeds to the next diagnosis. In step S402, the diagnosis stop flag Fstop3 is referred to. If the flag is set, the process proceeds to the next diagnosis. If the flag is not set, the process proceeds to step S403. The diagnosis stop flag Fstop3 is set when the “EVP diagnosis” does not pass even though it has been performed more than the scheduled number of times. When the diagnosis stop flag Fstop3 is set, "EVP diagnosis" is excluded from the diagnosis after that.
  • step S403 it is determined whether another forced operation signal for diagnosis has already been transmitted from the ECU 1 to the diagnosis target portion 101 or not.
  • the forced activation signal to be determined here is a forced activation signal supplied to the solenoid valve in the “variable VT diagnosis” described later in the present embodiment. If the determination in step S403 is negative, in step S404, it is determined whether or not the forced activation signal Sx for “EVP diagnosis” has already been transmitted. If the judgment is negative, in step S405, the evaporation system A command for causing the ECU 1 to output an appropriate forced operation signal Sx for forcibly opening and closing the valves 83 to 85 constituting the system from the forced operation signal supply means 550 in FIG. Output to ECU 1.
  • the ECU 1 responds to this by outputting a forced operation signal Sx to each of the valves 83 to 85.
  • the detection value of the pressure sensor PS (FIG. 13) is read by the vehicle state detection means 552 in FIG.
  • the quality of each valve is determined by the diagnosis means 553 based on whether or not the detected value matches the pressure value predicted from the state of each valve opened and closed by the forcible activation signal Sx. Is diagnosed. If it is not determined to be good, the diagnostic counter 556 is incremented in step S411. In step S412, it is determined whether or not the number of diagnoses has exceeded the upper limit number.
  • step S407 the diagnosis result in step S407 becomes good, "1" is set in the diagnosis pass flag Fpass3 in step S408, and in step S409, the diagnosis displayed on the display unit 27 is set. Item number "03" is deleted.
  • step S410 the supply stop means 555 instructs the forced operation signal supply means 550 to stop sending the forced operation signal Sx, and the supply of the forced operation signal Sx for operating the diagnosis target part 101 is stopped. Is done.
  • step S407 If the result of the diagnosis in step S407 is not good in the subsequent EVP diagnosis, the diagnosis counter 556 is incremented each time in step S411. If it is determined in step S412 that the count value has exceeded the upper limit, the diagnosis stop flag is set in step S413 so as not to hinder other failure diagnosis using the forced operation signal. F stop 3 is set.
  • step S 4 14 the supply stop means 55 55 instructs the forced operation signal supply means 55 0 to stop sending the forced operation signal S x, whereby the diagnosis target part 101 The supply of the forced operation signal Sx for operating the switch is stopped.
  • the number of diagnoses is counted, and when the number exceeds the upper limit, the supply of the forced operation signal S x is stopped.However, the total diagnostic time is measured instead of the number of diagnoses, and the total diagnostic time is set to the upper limit. , The supply of the forced operation signal S x may be stopped.
  • “Variable VT diagnosis” is a diagnosis of the function of switching the opening and closing timing of pulp and the amount of valve lift between high speed and low speed in accordance with various conditions such as vehicle running speed and engine speed.
  • the vehicle engine is equipped with two types of cams, each having a different shape, for each cylinder.
  • Valve opening / closing timing and switching of valve lift are performed by switching the cam to be operated.
  • the switching of the cam is performed, for example, by switching the supply destination of the hydraulic pressure by a solenoid valve.
  • When operating the high-speed cam the hydraulic pressure is supplied to the high-speed hydraulic system, and when the low-speed cam is operated.
  • the control is performed by controlling a solenoid valve so as to prevent the supply of hydraulic pressure to the high-speed hydraulic system. Therefore, in the “variable VT diagnosis”, it is determined whether or not the solenoid valve is correctly controlled as instructed.The specific determination is that the hydraulic response switch provided in the hydraulic system is correctly opened and closed. This is done based on whether it was done.
  • step S501 based on the selection flag Fse lc4 and the pass flag Fpass4 related to the diagnosis item 4, The presence / absence of the selection and the pass / fail of the diagnosis are determined. If it is selected but has not passed, the process proceeds to step S502; otherwise, the process proceeds to the next diagnosis.
  • step S502 the diagnosis stop flag Fstop4 is referred to. If the flag is set, the process proceeds to the next diagnosis. If the flag is not set, the process proceeds to step S503.
  • the diagnosis stop flag Fstop4 is also set in step S513 described below when the “variable VT diagnosis” is not performed despite the fact that the “variable VT diagnosis” has been performed more than the predetermined number of times (or the predetermined time). You.
  • step S503 it is determined whether the forced operation signal has already been sent from the ECU 1 for another diagnosis. If this determination is negative, in step S504, the high-speed side diagnosis flag F high 4 It is determined whether or not is set. This flag Fhigh4 is set when the diagnosis for the high-speed cam is completed. Since the flag is not initially set, the process proceeds to step S505. In step S505, it is determined whether the forced operation signal Sx for operating the solenoid valve so that the high-speed cam is selected has already been transmitted from the ECU 1, and if not, the process proceeds to step S5. At 06, a command to output the forced operation signal Sx from the ECU 1 is sent from the forced operation signal supply means 550 to the ECU 1.
  • step S507 the open / close state of the pressure switch provided in the hydraulic system of the high-speed cam is detected.
  • This pressure switch is specified in the system. Since the contact is opened when a hydraulic pressure equal to or greater than the value is applied, if the open state is detected, the diagnostic means 553 diagnoses the condition as good in step S508, and proceeds to step S509.
  • step S509 the high-speed side diagnosis flag Fhigh 4 is set, and in step S510, the forcible operation signal for forcibly operating the solenoid valve so that the high-speed cam is selected is stopped. A forced operation signal is sent to force the solenoid valve to select the low speed cam.
  • step S507 the diagnostic means 553 diagnoses that the open state is not good in step S508, and the flow advances to step S511.
  • step S511 the number-of-diagnosis counter 556 for the "variable VT diagnosis” is incremented in the same manner as described above.
  • step S512 it is determined whether or not the number of diagnoses has exceeded the upper limit. If the number of diagnoses has not yet exceeded the upper limit, the process is performed according to the flowchart of FIG. In the embodiment, since the process proceeds to the diagnosis item 5 “Ne diagnosis”), the “variable VT diagnosis” waits until the next diagnosis timing.
  • step S510 when the forced operation signal for selecting the low-speed cam is output in step S510, the process of FIG. 14 proceeds from step S504 to S520 in the next routine diagnosis timing.
  • step S520 the open / close state of the pressure switch provided in the hydraulic system of the low-speed cam is detected, and in step S521, diagnosis is performed in the same manner as described above.
  • the process proceeds to step S511, and the number of diagnoses is incremented.
  • the diagnosis pass flag F pass 4 is set to ""1" is set, and in step S523, the diagnostic item number "04" displayed on the display unit 27 is deleted.
  • step S524 the supply stop means 555 is used to supply the forced operation signal supply means. -1-
  • the transmission stop of the forced operation signal Sx is instructed to 550.
  • step S521 If the diagnosis result of step S521 is not good even at the next and subsequent diagnosis timings, the diagnosis counter 556 is incremented each time at step S511 and counted at step S512. If it is determined that the value has exceeded the upper limit, in step S513, 1 is set to the diagnosis stop flag Fstop4 as described above. In step S 5 14, the supply stop means 55 55 instructs the forced operation signal supply means 55 0 to stop sending the forced operation signal S x.
  • the supply of the compulsory operation signal for the one diagnostic item is performed. Is stopped, so that the forced activation signal for one diagnostic item is not continuously supplied. Therefore, if there are multiple diagnostic items that require the use of the compulsory activation signal, supply of the compulsory activation signal for the first diagnosis even if the first diagnosis does not pass even after the lapse of a predetermined period. Is stopped and another forced operation signal for the second diagnostic item is supplied, so that even if one diagnostic item is defective, another diagnostic item can be diagnosed.
  • the mixture ratio and the combustion efficiency are different from those in the normal state, which may interfere with the diagnosis of other items that do not use the forced operation signal. is there.
  • the transmission of the forced operation signal S x is appropriately stopped as described above, so that the use of the forced operation signal makes it possible to perform troublesome diagnosis without restriction.
  • FIGS. 15 and 16 are flowcharts showing a diagnostic method of “Ne diagnostic” of diagnostic item 5 executed as step S600 in FIG.
  • the “Ne diagnosis” is a diagnosis of whether the engine speed during idling is normal or not.
  • the engine speed Ne during idling and the reference value (permissible speed) are determined. Diagnosis is made based on the results of comparison with several tolerances (NID-TRC).
  • step S601 based on the selection flag Fselc5 and the pass flag Fpass5 relating to the diagnostic item 5, it is determined whether or not the diagnostic item has been selected and whether or not the diagnostic item has passed in the same manner as described above. Proceed to step S602, otherwise proceed to the next diagnosis.
  • step S602 it is determined whether a load such as the electric device / power steering is being used.
  • a load such as the electric device / power steering
  • the “Ne diagnosis” if the difference between the detected idling speed Ne and the target value is small, it is judged to be good. If a load that affects the engine speed such as the power engine load / electrical load is applied, To compensate for this, engine control is performed to set the idling speed higher than usual, so that accurate diagnosis of the idling speed becomes difficult. Therefore, in the present embodiment, prior to the “Ne diagnosis”, the presence or absence of a load is detected in advance in step S602, and if a load is detected, the diagnosis is not performed.
  • step S603 it is determined whether idling is stable. If not, the process proceeds to step S620. If the idling is stable, the process proceeds to step S604.
  • step S604 the operation state of the timer MLD is determined in step S604, and if it has not been started, the operation is started.
  • step S605 the cumulative number Cmesu is incremented.
  • step S606 the engine speed Ne is received from the ECU 1, and in step S607, the engine speed Ne detected at the timing of this “Ne diagnosis” and the integrated value ⁇ Ne up to the previous time are added. The sum is registered as a new integrated value ⁇ Ne.
  • step S608 of FIG. 16 the timer MID is compared with a reference idling measurement time MID-ref, which is one of the standard data.
  • step S609 the number of times of idling diagnosis CID is incremented.
  • step S610 the number of times of diagnosis CID is compared with the reference number of times of idling diagnosis CID-ref, which is one of the standard data.
  • step S612 the average value of the rotational speed Ne is calculated by dividing the integrated value ⁇ Ne of the engine rotational speed Ne by the integrated number Cmesu.
  • step S613 the absolute value of the difference between the average value of the rotation speed Ne and the non-standard data N ID-ref is compared with an idling tolerance N ID-TRC which is one of the standard data, and the difference between the two is compared. If the absolute value is equal to or smaller than the tolerance NID-TRC, idling is diagnosed as normal, and the process proceeds to step S614. If the absolute value of the difference between the two exceeds the tolerance N ID-TRC, the idling is diagnosed as abnormal, and the process proceeds to step S620, where the timer MID, the number of integration times Cmesu, and the accumulated value ⁇ Ne, which will be described later, are used. Proceed to the next diagnosis after resetting the variables.
  • step S 614 “1” is set to the diagnosis pass flag Fpass3 relating to the “Ne diagnosis”.
  • step S 615 the diagnosis item number “05” (“00”) displayed on the display unit 27 is displayed. If left, "00" and "05") are erased.
  • the detected engine speed Ne is integrated each time the “Ne diagnosis” is performed, and the average engine speed is calculated based on the integrated value ⁇ Ne. If this average falls within the reference range Since the diagnosis is made based on whether or not the diagnosis is performed, the “Ne diagnosis” can be performed efficiently even if a diagnosis method that cyclically repeats a plurality of diagnoses in a very short cycle is adopted.
  • FIG. 17 is a flowchart showing a diagnostic method for diagnosing each switch system such as diagnostic items 6, 7,... Executed as step S700 in FIG. 8, and is a diagnosis target here. If both the ON state and the OFF state of each switch are detected, it is diagnosed as good.
  • step S701 based on a diagnosis selection flag Fselc6 and a diagnosis pass flag Fpass6 relating to "various brake switch diagnosis", which is an example of the diagnosis item 6, the presence / absence of selection of the diagnosis item and a diagnosis It is determined whether or not the connection is successful. If “brake switch diagnosis” has been selected and has not passed yet, the process proceeds to step S702, and a diagnosis on switch-on and switch-off is executed. In step S703, it is determined whether or not the above diagnosis is successful. If both the on-state and the off-state have passed, in step S704, "1" is set in the diagnosis pass flag Fpass6 relating to the switch diagnosis. The diagnostic item number "06" displayed on the display unit 27 is deleted in step S705.
  • step S701 determines whether the determinations in steps S701 and S703 are negative. If the determinations in steps S701 and S703 are negative, the process proceeds to step S710 to execute the next switch diagnosis (diagnosis item 7). Similarly, the same diagnosis is executed for the other switches, and the numbers of the passed diagnosis items are sequentially deleted from the display unit 27.
  • FIG. 18 is a flowchart showing the operation of “end processing” executed as step S800 in FIG.
  • step S801 as a diagnosis result at the present time, for example, the number of a diagnosis item that has not yet passed diagnosis is associated with the identification code of the vehicle read in step S114 of FIG. Stored in RAM22 (FIG. 1). The result of this diagnosis is Every time the step S810 is executed, it is rewritten according to the diagnosis result at that time.
  • the diagnostic results for a plurality of devices can be stored in the RAM 22 in association with the respective identification codes.
  • the diagnostic results for a plurality of devices for example, 50 to 60 devices
  • an automatic When the operator manually or manually selects the “transfer function” on the menu screen, the diagnosis results are collectively transmitted to the host device such as the host computer 30 via the transmission unit 24 by wireless communication. Transferred.
  • the diagnostic results transferred for each of the plurality of devices are collectively stored in the storage device 33, and when data for the planned number (for example, several hundreds) is accumulated, this is stored in an IC card. Or a portable storage medium such as a floppy disk.
  • step S802 of FIG. 18 all the diagnostic pass flags F pass x are referred to, and it is determined whether or not all diagnostic items have passed. If “1" is set to all the diagnostic pass flags F pass x X, the character "PASS" is displayed in large size on the display unit 27 in step S803 as shown in Fig. 6F. Then, the operator is notified of the end of the diagnosis. In step S805, it is determined whether or not the communication cable 5 has been detached from the ECU 1. When the communication cable 5 has been detached, the power supply is cut off in step S805.
  • step S808 If the communication cable 5 has not been disconnected, it is determined in step S808 whether or not a key operation for turning off the power has been performed by an operator, and if the key operation has been performed, the operation proceeds to step S808. Proceed to 5 and return to step S803 if the relevant key operation has not been performed. On the other hand, if it is determined in step S802 that one or more diagnostic items, for example, diagnostic item 2 have not passed, the process proceeds to step S806. At this time, the display "02" remains on the display unit 27 as shown in FIG. 6C, so that the operator can easily recognize that only the diagnostic item 2 has not yet passed.
  • the diagnosis result of the diagnosis item 5 depends on whether or not the display "00" remains. Judge the validity. That is, as described with reference to steps S610 and S611 of FIG. 16, the display "00" indicates that the preconditions of the diagnostic item 5 (for example, the engine is sufficiently warm and there is no load). Cleared when the number of Ne diagnoses (C1D) exceeds a predetermined number (C ID> C ID-ref). Therefore, as shown in FIG. 6D, if the display “00” also remains, it means that the diagnosis end condition of item 5 is not satisfied. Therefore, the operator does not immediately determine that the diagnosis item 5 is defective, continues the Ne diagnosis, and determines that the display is good if the display "05" is erased.
  • the unsatisfied code “00” indicating whether or not the prerequisite is satisfied is displayed for the diagnostic items that need to satisfy the prerequisite before the diagnosis.
  • the diagnosis of the relevant diagnostic item has not passed, it is easy to recognize that this is due to the failure of the preconditions, and the diagnostic item that is not necessarily defective is erroneously determined to be defective. There is no end.
  • step S806 the switch operation for turning off the power is performed. It is determined whether or not the switch operation has been performed, and when the switch operation is performed, the process proceeds to step S805 to be in an off state, and when the switch operation is not performed, step S807 is performed. Then, it is determined whether or not the communication cable 5 has been removed from the ECU 1. When the communication cable 5 is removed, the process proceeds to step S805 to turn off the power, and if not removed, the process proceeds to the next diagnosis to continue the diagnosis.
  • FIG. 19 is a flowchart showing the operation of the “standby mode process” executed as step S900 in FIG.
  • step S910 it is determined whether the apparatus is in the standby mode or not. Since the diagnosis mode is initially set, the process proceeds to step S902.
  • step S902 the latest detected and read engine speed Ne is compared with the previously detected engine speed Nepre.
  • the standby mode timer Tss is reset, and in step S904, the engine speed Ne detected this time is newly registered as the previous engine speed Ne- ⁇ e.
  • the next diagnosis (vehicle speed sensor diagnosis in this example).
  • step S 902 when the diagnosis work is interrupted during a break time or the like and the engine is stopped, the determination in step S 902 becomes affirmative, and the process proceeds to step S 905.
  • step S905 it is determined whether or not the timer Tss has been started. Since it is initially determined that the timer has not been started, the process proceeds to step S906, where the timer Tss is started.
  • step S907 timer T The count value of ss is compared with the standby mode start condition Tss-ref which is one of the standard data. If the count value of the timer Tss exceeds the start condition Tss-ref (that is, if the engine stop determination in step S902 is continued for a predetermined time), in step S908, the process shifts from the diagnostic mode to the standby mode. However, the backlight of the display unit 27 and its liquid crystal drive are both turned off. The progress of the diagnosis up to now is temporarily stored in the RAM 22.
  • step S909 the previous engine speed Ne-pre and the current engine speed Ne are compared.
  • the two always match and the determination in step S909 is affirmative, so the standby mode is maintained.However, when the breaktime ends and the engine is restarted, the determination in step S909 is negative. And proceed to step S910.
  • step S910 the operation mode of the process shifts from the standby mode to the diagnostic mode, and both the backlight of the display unit 27 and the liquid crystal drive are turned on.
  • step S911 the diagnosis history at the time when the standby mode is started is read from the RAM 22, and the display content immediately before the start of the standby mode is reproduced on the display unit 27.
  • step S911 the engine speed Ne detected this time is newly registered as the previous engine speed Nepre, and then the process returns to “vehicle speed sensor diagnosis” described with reference to FIG.
  • Each of the diagnostic processes described above is repeated cyclically as shown in FIG.
  • step S908 Shift from step S908 to step S901.
  • step S909 If the determination in step S909 is affirmative, the process proceeds to step S901.
  • step S911 is omitted, and the process proceeds from step S910 to step S904.
  • the transition from the diagnostic mode to the standby mode is a failure. If the change in the engine speed is no longer detected, it will be performed automatically, and the transition from the standby mode to the diagnostic mode will be performed automatically if the change in the engine speed is detected. Therefore, the operator only needs to stop the engine when the break time starts and the diagnosis is interrupted, and restart the engine when the break time ends and restart the diagnosis, no special operation is required. . Therefore, no extra burden is imposed on the operator when shifting from the diagnostic mode to the standby mode and from the standby mode to the diagnostic mode.
  • the operator operates (depresses) the brake pedal during the period from when the operator starts one operation for each diagnosis to when the operation is completed, for example, in the case of the “brake switch diagnosis”.
  • the "brake switch diagnosis” needs to be executed. Therefore, the diagnosis of each diagnostic item is performed cyclically at such a rate that the diagnosis for all diagnostic items is performed at least once between the start and the end of the operation by the operator. It is desirable to be executed repeatedly.
  • all the diagnostic item numbers are first displayed in a list, the numbers of the diagnostic items that have passed are sequentially deleted, and the diagnostic items with the remaining numbers until the end are determined to be defective. Conversely, the numbers of passed diagnostic items may be sequentially displayed, and diagnostic items with numbers not displayed until the end may be determined to be defective. Similarly, the display “0 0” has been described as being erased when the diagnosis of the diagnosis item 5 is sufficiently performed. On the contrary, when the diagnosis of the diagnosis item 5 is sufficiently performed, It may be displayed for the first time.
  • vehicle diagnosis method and apparatus of the present invention is used in an “inspection process” or the like in a production line of a factory.
  • the present invention is not limited to this.
  • Vehicle diagnostics used in the environment The method and the device can be similarly applied.
  • the supply of the compulsory activation signal for a certain diagnostic item is stopped not only when the corresponding diagnostic item passes, but also when the diagnostic item does not pass even after a predetermined period of time.
  • the present invention may also be applied to a case where a diagnostic operation does not require the supply of a compulsory activation signal, but includes a diagnostic item that cannot be performed while the compulsory activation signal for another diagnostic item is supplied. If, for example, the supply of the forced operation signal is stopped as appropriate, performing a diagnosis while the forced operation signal is being supplied allows the troublesome diagnosis to be performed without restriction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Engines (AREA)

Description

明 細 書 車両診断方法および装置 技術分野
本発明は車両診断方法および装置に係り、 特に、 車両に搭載された車 載用電子制御装置と通信し、 その通信結果に基づいて車両診断を行う車 両診断方法および装置に関する。 さ らに具体的にいえば、 車両各部が予 定の状態を示すように強制作動信号を供給し、 その結果、 前記車両各部 の実際の状態が前記予定の状態になったか否かに基づいて各診断項目の 良否を判定する車両診断方法および装置に関する。 背景技術
近年、 エンジンの制御機能を向上させるために、 自動車 (以下、 「車 両」 と表現する) におけるエンジンの点火時期制御、 バルブの開閉タイ ミ ング制御、 あるいは電子燃料噴射装置 (E F I ) による燃料噴射制御 等は、 マイ クロコンピュータを備えた車載用電子制御装置 (E C U ) に より行われるようになってきている。 E C Uには、 エンジン冷却水の温 度を検出する温度センサ、 エンジン回転数を検出する回転センサ、 車速 を検出する車速センサ、 排気ガス中の酸素濃度を検出する 02 センサ等 の各種センサや、 ブレーキペダルが踏まれたことを検出するブレーキス イ ッチ等の各種スィ ツチが接続され、 E C Uは各種センサ等から出力さ れる検出信号に基づいて各種の制御を行う。
このような E C Uを搭載した車両の生産工程では、 車両組み立て後の 最終検査工程において各センサ等あるいは E C U自体が正常に機能して いるか否かを診断する必要があり、 例えば特公平 3— 5 9 3 7 2号公報 では、 マイクロコンピュータを搭載した診断装置によつて車両診断プロ グラムを実行し、 所望の診断項目に関する診断を予定のタイミ ングで行 う診断方法が提案されている。 また、 複数の診断項目を対象とした故障 診断では、 例えば特公昭 6 1 - 2 5 0 9 1号公報に記載されているよう に、 前記複数の診断項目が予定の順序で診断され、 各診断項目に関する 合否判定の結果が表示装置上に順次出力されていた。
ところで、 上記した車両診断項目には、 例えばアイ ドリング時のェン ジン回転数 N eが規定範囲内に収まつているか否かを判定する 『N e診 断』 のように、 その前提条件としてエンジンが十分に暖まっていること 等が要求される診断がある。 その一方で、 例えばブレーキスィ ッチの開 閉機能を診断する 『ブレーキスィ ッチ診断』 のように、 前提条件が一切 不要であり、 かつ診断を瞬時に終えることの可能な診断もある。
また、 これら複数の診断項目が用意されている場合、 従来の車両診断 等では各診断項目の診断順序が予め確定されており、 前の診断が終了し てその良否が判別されるまで次の診断を行うことができない。 したがつ て 『N e診断』 の後に 『ブレーキスィ ツチ診断』 を行うように定められ ていると、 作業者はエンジンが十分に暖まって 『N e診断』 が終了する まで 『ブレーキスィ ツチ診断』 を行うことができない。 このため、 作業 中に無駄な待機時間が生じて能率が低下し、 結果として作業者の拘束時 間すなわち作業時間が長くなってしまうという問題があった。
このような問題点を解決する診断方法の一つとして、 各診断をその合 否とは無関係にごく短い周期で循環的に繰り返し、 予定時間の経過後も 依然として合格しない診断項目を故障と診断する循環式の診断方法が考 えられる。 このような循環式診断方法を採用した場合、 たとえば作業者 がブレーキペダルを踏み込んでいる間に全診断処理の一周期が終了する ように診断処理周期を設定すれば、 どのような順序およびタィミ ングで ブレーキペダルを踏み込んでも、 その間に必ず 『ブレーキスィ ッチ 診断』 が実行されることになるので、 診断項目ごとに行うべき各種操作の順序 ゃタイ ミ ングに関する制約が少なく なって作業効率が飛躍的に向上する。
しかしながら、 たとえば車両走行速度やエンジン回転数等の諸条件に 応じてバルブの開閉タイミ ングを制御する機能の診断や、 燃料タンクか ら蒸発する燃料ガスを捕集し、 これを所定の運転条件が成立するとェン ジンへ供給するエバポレーシヨ ンシステムの診断 (以下、 E V P診断と いう) は、 これらが実際に機能する走行条件等を検査工程の限られた条 件下で実現することが困難であるために診断が難しい。 そこで、 このよ うな項目に関する診断では、 強制作動信号を E C Uから各関連部位へ供 給して上記したバルブやエバポレ一ションシステム等を強制的に作動さ せ、 このときに得られたバルブやエバポレーシヨンシステムの実際の状 態が、 前記強制作動信号から予測される状態にあるか否かに基づいて良 否を診断する手法が考えられる。
しかしながら、 E C Uはその機能上、 同時に複数の強制作動信号を供 給することができず、 また強制作動信号の内容および供給先は診断対象 によって異なる。 したがって、 強制作動信号の供給を必要とする診断項 目が複数ある場合は、 初めに一の項目の診断用に第 1の強制作動信号を 供給して当該項目を診断し、 これが完了したら第 1の強制作動信号の送 出を停止し、 その後に他の項目の診断用に第 2の強制作動信号を供給し て当該他の項目を診断する必要がある。 このようにすると一の項目の診 断が完了するまでは第 2の強制作動信号を供給することができないので、 一の項目の診断が最後まで合格しないと他の項目の診断が行えなく なつ てしまうという問題があった。
また、 強制作動信号の供給を必要とする診断項目が一つのみで、 他の 診断項目は強制作動信号の供給を必要としない場合であっても、 たとえ ば上記したエバポレ一ションシステムを強制作動信号により強制作動さ せると、 混合気の濃度が高く なる場合もあり、 他の診断項目として混合 気の濃度に影響される診断が含まれていると、 これらの診断項目が正し く診断されないという問題もあった。 発明の開示
本発明の目的は、 強制作動信号を利用する診断項目を上記した循環式 診断方法に適用する場合でも良好な診断が行えるようにした車両診断方 法および装置を提供することにある。
本発明は、 車両各部が予定の状態を示すように強制作動信号を供給し、 その結果、 前記車両各部の実際の状態が前記予定の状態になったか否か に基づいて各診断項目の良否を判定する車両診断方法および装置におい て、 以下のような手段を講じた点に特徴がある。
( 1 ) 診断項目に関連した車両の部位を予定の状態にすると予測される強 制作動信号を各関連部位に供給し、 強制作動信号が供給されている間に 当該強制作動信号に対応した診断が実行されるように各項目のための診 断を循環的に実行し、 良判定の下された診断項目を循環処理の途中で診 断対象から外し、 残りの診断項目の診断を引き続き循環的に実行し、 前 記強制作動信号は、 これに対応した診断に良判定が下されたとき、 およ び当該診断のための予定期間が経過したとき、 のいずれかのときに停止 されるようにした。
(2) 複数の診断項目の中から診断項目を一つづつ連続的かつ循環的に選 択する診断項目選択手段と、 いずれかの診断項目に関連した診断対象部 位へ強制作動信号を供給する強制作動信号供給手段と、 選択された診断 項目に関連した診断対象部位の現在の状態を検出する状態検出手段と、 前記検出された診断対象部位の現在の状態を、 これに強制作動信号が供 給されたときに予測される状態と比較し、 両者が予定の関係にあると当 該診断対象部位が良好である旨を判定する診断手段と、 前記強制作動信 号の供給を停止させる供給停止手段とを設け、 前記供給停止手段は、 強 制作動信号に対応した診断項目が良好である旨の判定がなされたとき、 および前記強制作動信号の供給開始から予定期間が経過したときのいず れかのときに、 当該診断項目の診断用に供給されている強制作動信号を 停止させるようにした。
上記した構成の車両診断方法および装置によれば、 一の診断項目が合 格した場合のみならず、 前記強制作動信号の供給が所定期間を超過した 場合にも当該一の診断項目に関する当該強制作動信号の供給が停止され る。 したがって、 一の診断項目に関する強制作動信号が供給され続けて、 他の項目の診断を妨げることがなく なる。 図面の簡単な説明
図 1は、 診断対象の車両に搭載される E C U 1および本発明の車 両診断装置 2の構成を示したプロック図である。
図 2は、 R O Mカード 7の記憶内容を模式的に表現した図である。 図 3は、 診断項目管理テーブル 7 1 の記憶内容を示した図である。 図 4は、 非標準データ記憶領域 7 4の記憶内容を示した図である 図 5は、 標準データ記憶領域 7 3の記憶内容を示した図である。 図 6 A〜Fは、 表示部 2 7における種々の表示例を示した図であ る。
図 7は、 本発明の車両診断装置の機能プロック図である。
図 8は、 本発明による車両診断の概要を示したフローチヤ一トで める。
図 9は、 初期処理の動作を示したフローチャー トである。 図 10は、 車速センサ診断の動作を示したフローチヤートである ( 図 1 1は、 EGR診断の動作を示したフローチャートである。 図 12は、 EVP診断の動作を示したフローチヤ一トである。 図 13は、 エバポレーシヨンシステムのブロック図である。
図 14は、 VT診断の動作を示したフローチヤ一トである。
図 15は、 Ne 診断の動作を示したフローチャートである。
図 16は、 Ne 診断の動作 (続き) を示したフローチャートであ る
図 17は、 各スィ ッチ診断の動作を示したフローチヤ一トである, 図 18は、 終了処理の動作を示したフローチャートである。
図 19は、 待機モ一ド処理の動作を示したフローチヤ一トである 発明を実施するための最良の形態
以下、 図面を参照して本発明を詳細に説明する。 図 1において、 EC U 1は、 C PU 10、 RO 1 RAM 1 2、 ドライノ 13、 A/D 変換器 14、 および通信ィンタフヱース 15により構成されている。 こ の ECU 1はコネクタ 16および 17を介して周辺機器と接続され、 例 えばコネクタ 16には各種のァクチユエータ 3が接続され、 コネクタ 1 7には各種のセンサおよびスィ ッチ 4が接続される。 また、 コネクタ 1 8には外部診断装置 2の通信ケーブル 5がコネクタ 34を介して接続さ れる。
各センサ等 4から ECU 1に入力される信号は A/D変換器 1 4でデ ジタル信号に変換されて CPU 10に取込まれる。 CPU 10に取込ま れた信号は、 ROM 1 1および RAM 12に記憶されている制御用デー タ、 ならびに ROM1 1に書込まれている制御プログラムに従って処理 される。 ドライノ 13には CPU 10の処理結果に応じた指示信号が入 力され、 ドライノく 1 3は、 この指示信号に応答してァクチユエータ 3に 電力を供給する。 ROM 1 1にはプログラムの他、 各 ECU 1に固有の 識別コードすなわち E CUコードも登録されている。
本発明の外部診断装置 2は、 CPU20、 R〇M21、 RAM22、 送信部 24、 通信インタフ X—ス 25および電源部 29により構成され ている。 電源部 29は、 当該外部診断装置 2の電源として、 診断対象車 両の車載バッテリ 19および内蔵バッテリ 23のいずれか一方を選択す る。 このほか、 外部診断装置 2には、 作業者による指示を入力するため のキ一ボート 26、 CPU20による処理結果を表示する表示部 27と 共に、 バーコ一ド表示された識別符号を読み取るためのバーコ一ドリ一 ダ 31およびバーコードインタ一フヱース 32が設けられている。 前記 表示部 27として、 本実施形態ではバックライ ト付の液晶表示パネル (LCD) を採用している。 キーボード 26には、 一般的なテンキー、 カーソル移動キー、 およびフ ァ ンクシ ョ ンキ一などが設けられている。 通信ケーブル 5は信号ライン 51および電源ライン 52を具備し、 E CU 1の通信イ ンタフ ェース 15と外部診断装置 2の通信ィ ンタフエー ス 25とは通信ケーブル 5の信号ライ ン 51を介して接続され、 CPU 10および CPU20間で双方向デジタル通信ができるように構成され ている。 通信ケーブル 5が ECU 1に接続されると、 電源部 29は電源 ライン 52を介して車載バッテリ 19から供給される電力を当該外部診 断装置 2の電力源として利用すると共に、 この電力によって内蔵バッテ リ 23を充電する。
外部診断装置 2の起動は、 後に詳述するように、 作業者がキーボート 26に設けられた電源投入用のキースィ ッチ (図示せず) をオン操作す るか、 あるいはキースィ ッチを一切操作することなく、 作業者が通信ケ —ブル 5のコネクタ 34を ECU 1のコネクタ 18に単に接続すること によって行われ、 いずれの方法で起動されたかによって起動後の動作が 異なる。
ROM 21には、 当該外部診断装置 2の制御に必要な基本プログラム や制御データが格納されており、 各診断において用いられる非標準デー タゃ車両診断プログラムなどの、 新型車種の生産等に伴って追加や変更 され得る固有の情報は ROMカード 7に記憶されている。 この ROM力 一ド 7のデータは、 ROMカードイ ンタフ ェース 28を介して CPU2 0に取込まれる。
ECU 1から取込まれた信号は、 ROM 21および RAM 22に記憶 された基本データ、 ならびに ROMカード 7に記憶されている車両診断 プログラムや制御用データに基づいて処理され、 処理結果すなわち診断 結果は RAM22に一時記憶される。 この診断結果は、 各車両の診断が 終了するごとに表示部 27に出力されると共に、 数台分の診断結果が作 業者の指示に応答して送信部 24からホス ト コンピュータ 30等の上位 装置へまとめて送信され、 ホス ト コンピュータ 30および大型記憶装置 33によって集中管理および記憶される。 外部診断装置 2を図示しない パーソナルコンピュータに接続し、 このパーソナルコンピュータを介し て、 必要な情報、 例えば更新 (バージョンアップ) された故障診断プロ グラムを取込むこともできる。
前記 ROMカード 7には、 図 2に示したように、 診断項目を ECUコ ―ドに基づいて選択するための診断項目管理テーブル 71と、 複数の診 断項目に関する車両診断プログラムが記憶された車両診断プログラム記 憶領域 72と、 ECUにかかわらず各車両で共用される標準データの記 憶された標準データ記憶領域 73と、 各 ECUに応じて異なる固有の非 標準データが記憶された非標準データ記憶領域 74とが確保されている, 図 3は、 前記診断項目管理テーブル 71の記憶内容の一例を示した図 である。 本発明の外部診断装置 2は多数の項目に関する診断が可能であ り、 各診断項目に関するアルゴリズムを全て備えているが、 全ての車両 に対して全ての診断が実行される訳ではなく、 車両ごとに実行すべき診 断項目は異なる。 そのため、 当該管理テーブル 7 1 には、 各診断項目に 関して E CUコードごとに " 1 " (選択) または "0" (非選択) が登 録されており、 例えば、 ECUコード "〇△><□" が登録されている車 両に対して選択実行される診断項目は 1、 2、 5、 6…となり、 その他 の診断項目は実行されないことになる。
図 4は、 前記非標準データ記憶領域 74の記憶内容の一例を示した図 であり、 本実施形態では ECU (すなわち、 E CUコード) ごとに異な る非標準データとして、 例えば固有アイ ドリング回転数 NID-refが各 E CUコードと対応付けて登録されている。
固有アイ ドリング回転数 NID- refとは、 後に詳述するように、 E CU コードごとに規定されたアイ ドリング時の基準回転数であり、 アイ ドリ ング時のエンジン回転数が正常であるか否かの診断は、 検出されたェン ジン回転数 Ne を、 その車両の E CUコードに応じて選択される固有ァ ィ ドリング回転数 NID-refと比較することによって行われる。
このように、 本実施形態では E CUコードに応じて異なる診断内容、 すなわち診断項目の組み合わせや非標準データが自動的に決定されるの で、 作業者は診断項目を選択する作業や非標準データを決定する作業か ら解放される。 したがって、 作業者の負担が軽減されるのみならず、 診 断項目の選択ミスゃ非標準データの誤認識等がなく なって正確な診断が 可能になる。
図 5は、 前記標準データ記憶領域 73の記憶内容を表した図であり、 診断プログラム中で E CUコ一ドにかかわらず各診断において共用され る標準データ xl 〜χ5 が記憶されている。 次いで、 フローチヤ一トを参照して本実施形態の動作例について詳細 に説明する。 図 8は本発明の外部診断装置による車両診断の概要を示し たフローチャートである。 本発明の外部診断装置 2は、 生産ライン上で の車両診断や修理工場での車両診断等、 あらゆる環境下での車両診断に おいて使用可能であるが、 ここでは工場の生産ライ ンにおける 『検査ェ 程』 等で実施される "車両診断" で使用する場合を例にしてその動作を 説明する。
ステップ S 1 0 0では 『初期処理』 が実行される。 ステップ S 2 0 0 では、 診断項目 1 として登録されている 『車速センサ診断』 が実行され る。 ステップ S 3 0 0では、 診断項目 2として登録されている 『E G R 診断』 が実行される。 ステップ S 4 0 0では、 診断項目 3として登録さ れている 『E V P診断』 が実行される。 ステップ S 5 0 0では、 診断項 目 4として登録されている 『可変 V T (バルブタイ ミ ング) 診断』 が実 行される。 ステップ S 6 0 0では、 診断項目 5として登録されている
『N e 診断』 が実行される。 ステップ S 7 0 0では、 診断項目 6、 Ί… 等として登録されている各スイ ツチ系の診断が実行される。 ステップ S 8 0 0では 『終了処理』 が実行される。 ステップ S 9 0 0では 『待機モ ード処理』 が実行される。 その後、 当該処理はステップ S 2 0 0へ戻り、 作業者等からの外部指示によって中止されない限り、 全ての診断が合格 するまで上記各診断が繰り返される。
このように、 本発明の外部診断装置は、 多数の項目に関する診断を自 動的、 連続的かつ循環的に繰り返し実行するように構成されている。 以 下、 各診断方法および処理方法に関して詳細に説明する。
図 9は、 前記ステッ プ S 1 0 0の 『初期処理』 の動作を示したフロー チャー トである。 上記したように、 本実施形態の外部診断装置 2の起動 は、 作業者がキーボート 2 6に設けられた電源投入用のキ一スィ ツチを 操作をすること、 あるいは作業者が通信ケーブル 5を ECU 1に接続す ることのいずれによっても可能であり、 当該初期処理では、 初めの電源 投入がいずれの方法で行われたのか判定される。
ステップ S 101では、 外部診断装置 2の電源がスィ ツチのオン操作 によって投入されたか否かが判定され、 肯定であると、 ステップ S 10 4では電源投入手順を表すフラグ Fstに "0" がセッ トされる。 このと き、 外部診断装置 2への給電は内蔵バッテリ 23によって行われる。 前 記ステップ S 101の判定が否定であると、 ステップ S 102では、 通 信ケーブル 5が車両 (ECU 1) に接続されたか否かが判定され、 この 判定が肯定であると、 ステップ S 1 03においてフラグ Fstに "1" が セッ トされる。 このときの給電は車載バッテリ 19によって行われる。 いずれかの方法による電源投入が検出されると、 ステップ S 105で は表示部 27に初期画面が表示され、 ステップ S 106では、 診断装置 2それ自身の異常や故障をチェ ッ クするために自己診断が実行される。 ステップ S 107において、 この自己診断結果が良好と判定されると当 該処理はステツプ S 108へ進み、 不良と判定されると、 ステップ S 1 19において表示部 27にエラーメ ッセージが表示されて処理が終了す る。
ステップ S 108では、 これから実行すべき処理をメニュ一画面上で 作業者に選択させるのか、 あるいは予め定められた特定の処理を自動的 に起動するのかを判定するために前記フラグ Fstがチヱ ッ クされる。 フ ラグ Fst= " 1 " すなわち電源投入がケーブル接続によって行われてい ると、 メニュー画面を表示部 27に表示することなく、 予め定められた 特定の処理として 『車両診断』 が直ちに起動され、 当該処理はステップ S 109へ進む。 ステップ S 109では、 ECU 1に登録されている E CUコードが読み取られる。 ステップ S 1 10では、 読み取られた EC Uコードに基づいて、 前記図 3に関して説明した診断項目管理テーブル 71が検索され、 実行すべき診断項目が選択される。 ステップ S 1 1 1 では、 選択された診断項目の診断選択フラグ Fselcx X ( "x x" は診 断項目番号) に "1" (選択) がセッ トされ、 選択されなかった診断項 目の診断選択フラグ Fselcx Xには "0" (非選択) がセッ トされる。 ステッ プ S 1 12では、 選択された診断項目を表す診断項目番号が表 示部 27に一覧表示される。 図 6 (a) は、 全ての診断項目が選択された 場合の表示部 27の表示例を示した図であり、 全ての診断項目番号 "0 1 " 、 "02" 、 "03" …が表示されている。 図中 "00" 表示は、 後に詳述するように、 診断項目 5の 『Ne診断』 を完了するのに十分な 回数または延べ時間の診断が行われた場合に消去される符号であり、 続 くステップ S 1 13において表示される。 当該符号は "00" に限らず、 他の診断項目番号と容易に区別できる符号であれば、 例えば "X" 等の アルフ ァべッ トゃ他の記号であっても良い。
ステツプ S 1 14では、 各車両に固有の識別情報をバーコードで表し た識別符号が前記バーコードリーダ 31によって読み取られ、 RAM2 2に一時記憶される。 この識別符号は、 各車両ごとに予め用意されてい る診断カルテ上に予め印刷されている。 なお、 診断カルテ上に印刷する 代わりに、 バーコードの印刷された札やシールを車両本体の適所に取り 付けるようにしても良い。 それから、 処理は図 8の次の診断、 すなわち 「車速センサ診断」 へ進む。
前記ステップ S 108において、 フラグ Fst= "0" すなわち電源投 入が作業者によるスィ ツチのオン操作によって行われたと判定されると, ステップ S 1 15では、 作業者に処理内容を選択させるためのメニュー 画面が表示部 27に表示される。 ステップ S 1 16では、 作業者がメニ ユー画面上で選択した処理内容が判断され、 例えば 『車両診断』 が選択 されると前記ステップ S 109へ進み、 フラグ Fst= "1" の場合と同 様に診断処理が開始される。 ステップ S 1 16において、 作業者が 『車 両診断』 以外の処理を選択すると、 ステップ S 1 17において当該選択 された処理が実行される。 ステップ S 1 18では、 前記ステップ S 1 1 6において "終了" が選択されたか否かが判定され、 "終了" が選択さ れていると当該処理を終了する。
このように、 本実施形態では外部診断装置 2の電源がスィ ツチのオン 操作およびケーブル接続のいずれの手順で投入されたかに応じて電源投 入後の処理を異ならせ、 電源投入がケーブル接続によつて行われると、 メニュー画面が表示されることなく直ちに診断処理が開始される。 した がって、 検査ラインの作業者は、 次々と搬送される各診断対象車両に当 該外部診断装置 2のケーブル 5を接続するだけで自動的に車両診断を開 始させることができるようになり、 診断時の操作が簡単になる。 また、 外部診断装置 2の起動が作業者によるスィ ツチのオン操作によって行わ れるとメニュ一画面が表示されるので、 他の処理の選択も容易に行える よつになる。
図 10は、 前記図 8のステップ S 200として実行される診断項目 1 の 『車速センサ診断』 の診断方法を示したフローチャー トである。 『車 速センサ診断』 とは、 車速を検出するセンサが正常に機能しているか否 かの診断であり、 車速センサにより検出された車速 VSと基準値 (基準 車速 VSref ) との比較結果に基づいて、 既知の適宜の手法で診断され る。
ステップ S 201では、 『車速センサ診断』 に関する診断選択フラグ Fselc 1に基づいて、 当該車速センサ診断が選択されているか否か判定 され、 Fselcl = "0" であれば、 選択されていないので次の診断へ進 み、 Fselcl = "1" であれば、 選択されているのでステップ S 202 へ進む。
ステップ S 202では、 『車速センサ診断』 に関する合格フラグ Fpa ss 1に基づいて当該診断が既に合格しているか否かが判定される。 この フラグ "Fpassx x" は診断項目 X Xが合格しているか否かを表し、 F pass 1 = " 1 " であれば既に合格しているので次の診断へ進み、 Fpass 1 = "0" であれば、 未だ合格していないのでステップ S 203へ進む。 ステップ S 203では、 前記標準データの一つとして ROMカード 7 の標準データ記憶領域 73 (図 5) に記憶されている基準車速 VSref が読み出され、 ステップ S 204では現在の車速 VSが ECU 1を介し て検出される。 ステップ S 205では前記基準車速 VSref および車速 VSに基づいて車速センサ診断が実行される。 ステップ S 206では、 前記ステツプ S 205で実行された診断の合否が判定され、 不合格であ れば図 8のフローチヤ一トにしたがって次の診断項目 (本実施形態では、 診断項目 2の 『EGR診断』 ) へ進むので、 当該 『車速センサ診断』 は、 次の診断タイ ミ ングまで待機することになる。
一方、 合格していればステップ S 207において診断合格フラグ Fpa sslに " 1 " (合格) がセッ トされ、 ステップ S 208では、 表示部 2 7に表示されている診断項目番号 "01" が消去される。 図 6Bは、 当 該 『車速センサ診断』 のみが合格した状態での表示部 27の表示例を示 した図であり、 診断項目番号 "01" のみが消去されている。
図 1 1は、 前記図 8のステップ S 300として実行される診断項目 2 の 『EGR診断』 の診断方法を示したフローチャートである。 『EGR 診断』 とは、 排気ガスをエンジンの燃焼室に再循環させて N〇x を減少 させる装置 (EGR) が正常に機能しているか否かの診断であり、 その 具体的手法は既知である。
ステップ S 301、 S 302では、 『EGR診断』 に関する診断選択 フラグ Fselc2および診断合格フラグ F pass 2に基づいて、 前記と同様 に当該診断項目の選択の有無および診断の合否が判定される。 『EGR 診断』 が選択され (Fselc2= " 1 " ) かつ未だ合格していない (Fpa ss2 = "0" ) と、 ステップ S 303では EGRが診断の既知の適宜の 手法によって実行される。 ステップ S 304において診断が合格したと 判定されると、 ステップ S 305では診断合格フラグ Fpass2に "1" がセッ トされ、 ステップ S 306では、 表示部 27に表示されている診 断項目番号 "02" が消去される。 ステップ S 304の判定が否定であ ると当該処理は図 8のフローチヤートにしたがって次の診断項目 (本実 施形態では、 診断項目 3の 『EVF診断』 ) へ進むので、 当該 『EGR 診断』 は次の診断タイ ミングまで待機することになる。
図 12、 14は、 それぞれ前記図 8のステップ S 400およびステツ プ S 500としてそれぞれ実行される 『E VP診断』 および 『可変 VT 診断』 の方法を示したフローチャー トであり、 共に強制作動信号を利用 して実行される本発明にしたがった特有の診断である。 図 7は、 上記し た各車両診断を実現する本発明の機能プロック図であり、 前記と同一の 符号は同一または同等部分を表している。 なお、 各ブロック内に付した ステツプ番号は前記各フローチヤートに付したステツプ番号と対応し、 各ブロックが実行する処理の内容を示している。
図 7において、 診断項目選択手段 551は、 ROMカード 7に登録さ れた前記診断項目管理テーブル 71および車両診断プログラム 72に基 づいて、 複数の診断項目の中から実行すべき診断項目を一つづつ連続的 かつ循環的に選択する。 強制作動信号供給手段 550は、 前記診断項目 選択手段 551によって選択され得る診断項目のうち、 診断に際して強 制作動信号を必要とする診断項目のいずれか (本実施形態では、 『EV P診断』 または 『可変 VT診断』 ) に関連した診断対象部位 101を作 動させるための強制作動信号 S x を E C U 1を介して供給する。 車両状 態検出手段 5 5 2は、 前記診断項目選択手段 5 5 1 によって選択されて いる診断項目に関連した診断対象部位 1 0 1 の現在の状態を車載 E C U 1を介して検出する。
診断手段 5 5 3は、 前記車両状態検出手段 5 5 2によって検出された 診断対象部位 1 0 1 の現在の状態を、 これに前記強制作動信号 S x が与 えられたときに予測される状態と比較し、 両者が一致または予定の関係 にあると当該診断対象部位 1 0 1が良好である旨を判定する。 判定結果 は表示部 2 7に表示される。 カウンタ 5 5 6は、 診断手段 5 5 3による 診断回数を各診断項目ごとにカウン トする。 供給停止手段 5 5 5は、 強 制作動信号 S x に応じて強制作動中の診断対象部位 1 0 1が良好である 旨の判定がなされたとき、 あるいは予定期間経過後も当該強制作動中の 診断対象部位 1 0 1が良好である旨の判定がなされず、 カウンタ 5 5 6 のカウント値が予定値を越えたとき、 強制作動信号供給手段 5 5 0に対 して当該強制作動信号 S x の供給停止を指示する。 さらに、 前記強制作 動信号供給手段 5 5 0は、 供給停止手段 5 5 5によって一の診断項目の ための強制作動信号の供給が停止されると、 その代わりに残りのいずれ か 1つの診断項目のための他の強制作動信号を供給する。
次いで、 図 1 2のフローチヤ一トおよび図 7の機能プロック図を参照 して、 本発明を適用した診断項目 3の 『E V P診断』 の診断方法を説明 する。 『E V P診断』 とは、 図 1 3にその概要を模式的に示したように、 燃料タンク 8 1内の燃料から蒸発してキヤニスタ 8 6に捕集された燃料 ガスを、 車両走行時に予定の条件が成立すると吸入管 8 7を介してェン ジンへ供給するエバポレーシ ョ ンシステムに関する診断である。
このようなエバポレーシ ヨ ンシステムでは、 各弁 8 3、 8 4、 8 5が E C U 1 によって開閉制御されることから、 『E V P診断』 では各弁が 正常に動作しているか否かが判断されなければならない。 しかしながら、 検査工程の限られた条件下ではエバポレーションシステムの各弁を正規 に作動させるように車両を走行させることが難しい。 そこで、 本実施形 態では ECU 1から各弁に対して前記強制作動信号を送出させて各弁を 実際の車両走行状態とは無関係に強制的に開閉作動させる。 その際に圧 力センサ (PS) 82によって検出された圧力と、 各弁が前記強制作動 信号による指示通りに開閉された場合に予測される圧力とを比較し、 両 者が一致あるいは予定の関係にあれば各弁を良好と診断する。
前記図 7の診断項目選択手段 551によってステップ S 400の 『E VP診断』 が選択されると、 ステップ S 401では、 診断項目 3に関す る選択フラグ Fselc3および合格フラグ F pass 3に基づいて前記と同様 に当該診断項目の選択の有無および診断の合否が判定され、 選択されて いるが未だ合格していないとステツプ S 402へ進み、 それ以外であれ ば次の診断へ進む。 ステップ S 402では診断中止フラグ Fstop3が参 照され、 セッ トされていれば次の診断へ進み、 セッ トされていなければ ステッ プ S 403へ進む。 この診断中止フラグ Fstop3は、 当該 『EV P診断』 が予定回数以上行われたにもかかかわらず合格しない場合にセ ッ トされる。 診断中止フラグ Fstop3がセッ トされると、 それ以後は 『EVP診断』 が診断対象から外される。
ステップ S 403では、 既に他の診断用の強制作動信号が ECU 1力、 ら診断対象部位 101へ送出されているか否かが判断される。 ここで判 断対象となる強制作動信号は、 本実施形態では後述する 『可変 VT診断』 においてソ レノィ ド弁へ供給される強制作動信号である。 ステップ S 4 03の判断が否定であると、 ステップ S 404では、 今度は当該 『EV P診断』 用の強制作動信号 Sx が既に送出されているか否かが判断され る。 この判断が否定なら、 ステップ S 405で、 エバポレーシヨンシス テムを構成する前記各弁 83〜85へ、 これらを強制的に開閉させるた めの適宜の強制作動信号 Sx を ECU 1から出力させるための指令が、 前記図 7の強制作動信号供給手段 550から ECU 1へ出力される。 E CU 1はこれに応答し、 各弁 83~85へ強制作動信号 Sx を出力する。 ステップ S 406では、 圧力センサ P S (図 13) の検出値が図 7の 車両状態検出手段 552によって読み取られる。 ステップ S 407では、 前記診断手段 553によって、 当該検出値が前記強制作動信号 Sx によ つて開閉された各弁の状態から予測される圧力値と一致するか否か等に 基づいて各弁の良否が診断される。 良好と判断されない場合は、 ステツ プ S 41 1において診断回数カウンタ 556がインク リ メ ン トされる。 ステップ S 412では、 前記診断回数が上限回数を越えたか否かが判断 され、 判断が否定ならば、 当該処理は図 8のフローチャー ト にしたがつ て次の診断項目 (本実施形態では、 診断項目 4の 『可変 VT診断』 ) へ 進むので、 当該 『E VF診断』 は次の診断タイミ ングまで待機する。 次回以降の EVP診断において、 ステップ S 407の診断結果が良好 になると、 ステップ S 408では診断合格フラグ Fpass3に "1" がセ ッ トされ、 ステップ S 409では、 表示部 27に表示されている診断項 目番号 "03" が消去される。 ステップ S 410では、 前記供給停止手 段 555から強制作動信号供給手段 550に対して強制作動信号 Sx の 送出停止が指示され、 当該診断対象部位 101を作動させるための強制 作動信号 Sx の供給が中止される。
次回以降の EVP診断においてもステップ S 407の診断結果が良好 とならないと、 ステッ プ S 41 1では診断回数カウンタ 556がその都 度インク リメントされる。 ステップ S 412においてカウント値が上限 回数を越えていると判断されると、 強制作動信号を利用する他の故障診 断の妨げにならないように、 ステップ S 413において診断中止フラグ F stop 3がセッ トされる。 ステップ S 4 1 4では、 供給停止手段 5 5 5 から強制作動信号供給手段 5 5 0に対して、 強制作動信号 S x の送出停 止が指示され、 これによつて当該診断対象部位 1 0 1を作動させるため の強制作動信号 S x の供給が中止される。
ここでは診断回数をカウント して、 その回数が上限を越えると強制作 動信号 S x の供給を中止するものとして説明したが、 診断回数の代わり に全診断時間を計時し、 全診断時間が上限を越えると強制作動信号 S x の供給を中止するようにしても良い。
次いで、 図 1 4のフローチャートおよび図 7の機能プロッ ク図を参照 して、 本発明を適用した診断項目 4の 『可変 V T診断』 の診断方法を説 明する。 『可変 V T診断』 とは、 車両走行速度やエンジン回転数などの 諸条件に応じてパルプの開閉タィミ ングゃバルブリフ ト量を高速用およ び低速用のいずれかに切換える機能の診断である。
車両のエンジンは、 形状がそれぞれ異なる 2種類のカムを各気筒ごと に備え、 バルブの開閉タイミ ングやバルブリフ ト量の切換えは、 作動さ せるカムを切り替えることによって行われる。 カムの切り替えは、 例え ばソ レノィ ド弁によって油圧の供給先を切り替えることによって行われ、 高速用カムを作動させる場合には高速用油圧系統へ油圧を供給し、 低速 用カムを作動させる場合には前記高速用油圧系統への油圧供給が阻止さ れるようにソ レノィ ド弁を制御することによって行われる。 したがって、 『可変 V T診断』 では、 ソ レノィ ド弁が指示通りに正しく制御されてい るか否かが判断され、 その具体的な判断は、 油圧系統に設けられた油圧 応答スィ ッチが正しく開閉されたか否かに基づいてなされる。
しかしながら、 前記した 『E V P診断』 の場合と同様に、 検査工程の 限られた条件下ではバルブタイ ミ ング等が切り替わるような高速で、 診 断に必要な時間連続して安定走行することは非常に難しい。 そこで、 本 実施形態では ECU 1からソ レノィ ド弁へ強制作動信号を送出し、 各力 ムを実際の車両走行状態とは無関係に強制的に切り替える。 その際に圧 力センサによって検出された圧力に基づいて、 油圧応答スィ ッチが正確 に作動して当該指示通りのカムが選択されているか否かを判断する。 前記図 7の診断項目選択手段 551によって 『可変 VT診断』 が選択 されると、 ステップ S 501では、 診断項目 4に関する選択フラグ Fse lc4および合格フラグ Fpass4に基づいて、 前記と同様に当該診断項目 の選択の有無および診断の合否が判定され、 選択されているが未だ合格 していないとステップ S 502へ進み、 それ以外であれば次の診断へ進 む。 ステツプ S 502では診断中止フラグ Fstop4が参照され、 セッ ト されていれば次の診断へ進み、 セッ 卜されていなければステップ S 50 3へ進む。 この診断中止フラグ Fstop4も、 前記と同様に当該 『可変 V T診断』 が予定回数 (あるいは、 予定時間) 以上行われたにもかかかわ らず合格しない場合に、 後述するステツプ S 513でセッ トされる。 ステップ S 503では、 他の診断用として既に E CU 1から強制作動 信号が送出されているか否かが判断され、 この判断が否定であると、 ス テツプ S 504では、 高速側診断フラグ F high 4がセッ 卜されているか 否かが判断される。 このフラグ Fhigh4は、 高速用カムに関する診断が 終了したときにセッ トされるもので、 初めはセッ トされていないのでス テツプ S 505へ進む。 ステップ S 505では、 高速用カムが選択され るようにソ レノィ ド弁を作動させるための強制作動信号 Sx が既に EC U 1から送出されているか否かが判断され、 否定ならば、 ステップ S 5 06において、 当該強制作動信号 Sx を ECU 1から出力させるための 指令が強制作動信号供給手段 550から ECU 1へ送出される。
ステップ S 507では、 高速用カムの油圧系統に設けられた圧力スィ ツチの開閉状態が検出される。 この圧力スィ ッチは、 当該系統内に規定 値以上の油圧が加わると接点が開く構造なので、 開状態が検出されると、 ステップ S 508において診断手段 553により良好と診断されてステ ップ S 509へ進む。 ステップ S 509では、 高速側診断フラグ Fhigh 4がセッ トされ、 ステップ S 510では、 高速用カムが選択されるよう にソ レノィ ド弁を強制作動させていた強制作動信号が停止され、 代りに、 低速用カムが選択されるようにソ レノィ ド弁を強制作動させる強制作動 信号が送出される。
前記ステップ S 507において開状態が検出されないと、 ステップ S 508では診断手段 553により良好ではないと診断されてステツプ S 51 1へ進む。 ステップ S 51 1では当該 『可変 VT診断』 に関する診 断回数カウンタ 556が前記と同様にインク リメント トされる。 ステツ プ S 512では、 前記診断回数が上限値を越えたか否かが判断され、 未 だ上限回数を越えていなければ、 当該処理は図 8のフローチヤ一トにし たがって次の診断項目 (本実施形態では、 診断項目 5の 『Ne 診断』 ) へ進むので、 当該 『可変 VT診断』 は次の診断タイ ミ ングまで待機する ことになる。
一方、 ステップ S 510において低速用カムを選択させるための強制 作動信号が出力されると、 次のルーチンの診断タイ ミ ングでは、 図 14 の処理はステツプ S 504から S 520へ進む。 ステップ S 520では、 今度は低速用カムの油圧系統に設けられた圧力スィ ツチの開閉状態が検 出され、 ステップ S 521では、 前記と同様にして診断が行われる。 こ こで、 良好と判断されなければ前記ステツプ S 51 1へ進んで診断回数 がインク リ メ ン トされるが、 良好と判断されると、 ステップ S 522で は診断合格フラグ F pass 4に " 1 " がセッ トされ、 ステップ S 523で は、 表示部 27に表示されている診断項目番号 "04" が消去される。 ステッ プ S 524では、 供給停止手段 555から強制作動信号供給手段 - 1 -
5 5 0に対して強制作動信号 S x の送出停止が指示される。
次回以降の診断タイ ミ ングにおいてもステップ S 5 2 1 の診断結果が 良好とならないと、 ステップ S 5 1 1では診断回数カウンタ 5 5 6がそ の都度ィンク リメントされ、 ステップ S 5 1 2においてカウント値が上 限回数を越えていると判断されると、 ステップ S 5 1 3では前記と同様 に診断中止フラグ F stop 4に 1がセッ トされる。 ステップ S 5 1 4では、 供給停止手段 5 5 5から強制作動信号供給手段 5 5 0に対して強制作動 信号 S x の送出停止が指示される。
上記したように本実施形態では、 一の診断項目が合格した場合のみな らず、 当該一の診断項目が所定期間経過後も合格しない場合にも当該一 の診断項目に関する当該強制作動信号の供給が停止されるので、 一の診 断項目に関する強制作動信号が供給され続けてしまうことがない。 した がって、 強制作動信号を利用しなければならない診断項目が複数ある場 合、 第 1 の診断が所定期間経過後も合格しない場合でも、 当該第 1の診 断に関する当該強制作動信号の供給が停止されて第 2の診断項目のため の他の強制作動信号が供給されるので、 一の診断項目が不良であっても 他の一の診断項目の診断を行えるようになる。
上記した 『E V P診断』 や 『可変 V T診断』 の間は混合気の比率や燃 焼効率等が正常時とは異なるので、 強制作動信号を利用しない他の項目 の診断に支障を来す場合がある。 しかしながら、 本実施形態では上記の ようにして強制作動信号 S x の送出が適宜に停止されるので、 強制作動 信号を利用すると支障のある診断も制約なく行えるようになる。
図 1 5、 1 6は、 前記図 8のステップ S 6 0 0として実行される診断 項目 5の 『N e 診断』 の診断方法を示したフローチヤ一トである。 『N e 診断』 とは、 アイ ドリング時のエンジン回転数が正常であるか否かの 診断であり、 アイ ド リ ング時のエンジン回転数 N e と基準値 (許容回転 数公差 NID- TRC) との比較結果に基づいて診断される。
ステップ S 601では、 診断項目 5に関する選択フラグ Fselc5およ び合格フラグ Fpass5に基づいて前記と同様に当該診断項目の選択の有 無および診断の合否が判定され、 選択されかつ未だ合格していないとス テツプ S 602へ進み、 それ以外であれば次の診断へ進む。
ステップ S 602では、 電装装置ゃパワーステアリングなどの負荷が 駆使されているかどうかが判定される。 『Ne 診断』 では、 検出された アイ ドリング回転数 Ne と目標値との差が小さければ良好と判断される 力 エンジン負荷ゃ電装負荷等のエンジン回転数に影響を及ぼす負荷が 加わっていると、 これを補うためにアイ ドリング回転数を常時よりも高 めに設定するエンジン制御が行われるためにアイ ドリング回転数の正確 な診断が難しく なる。 そこで、 本実施形態では 『Ne 診断』 に先立って、 予めステップ S 602において負荷の有無を検出し、 負荷が検出される と当該診断を行わず、 ステップ S 620へ進んで後述するタイマ MID、 積算回数 Cmesu、 積算値∑Ne 等の変数をリセッ ト した後に次の診断へ 進み、 負荷が検出されなければステップ S 603へ進む。 ステップ S 6 03では、 アイ ドリングが安定しているか否かが判断され、 安定してい なければ前記ステツプ S 620へ進み、 安定していればステップ S 60 4へ進む。
以上のようにアイ ドリングが安定して診断開始条件が成立すると、 ス テツプ S 604ではタイマ Ml Dの動作状態が判定され、 これがスタート していなければスタートされる。 ステップ S 605では積算回数 Cmesu がインク リ メン トされる。 ステップ S 606では E C U 1からエンジン 回転数 Ne を受け取り、 ステップ S 607では、 今回の 『Ne診断』 の タイ ミ ングで検出されたエンジン回転数 Ne と前回までの積算値∑Ne とが加算され、 その和が新たな積算値∑Ne として登録される。 次いで、 図 16のステップ S 608では前記タイマ MIDが、 前記標準 データの一つである基準アイ ドリング計測時間 MID- refと比較される。 タイマ MIDのカウント値が前記 MID- re こ達していると、 『Ne 診断』 に必要な計測期間が既に経過したものと判断してステツプ S 609へ進 む。 ステップ S 609では、 アイ ドリング診断回数 CIDがインクリメン 卜され、 ステップ S 610では、 診断回数 C IDが前記標準データの一つ である基準アイ ドリング診断回数 CID-refと比較される。
診断回数 C IDが基準診断回数 CID-re こ達していると、 診断に十分な 回数の計測が終了したと判定され、 ステップ S 61 1において表示部 2 7上から "00" 表示が消去される。 ステップ S 612では、 前記ェン ジン回転数 Ne の積算値∑Ne を前記積算回数 C mesuで割って回転数 N e の平均値が算出される。
ステップ S 613では、 回転数 Ne の平均値と非標準データ N ID- ref との差の絶対値が、 前記標準データの一つであるアイ ドリング公差 N ID -TRCと比較され、 両者の差の絶対値が公差 NID-TRC以下であれば、 アイ ドリングが正常と診断されてステツプ S 61 4へ進む。 両者の差の絶対 値が公差 N ID- TRCを越えていれば、 アイ ドリングが異常と診断されて前 記ステップ S 620へ進み、 後述するタイマ MID、 積算回数 Cmesu、 積 算値∑Ne 等の変数をリセッ ト した後に次の診断へ進む。 ステップ S 6 14では、 当該 『Ne 診断』 に関する診断合格フラグ Fpass3に "1" がセッ トされ、 ステップ S 615では、 表示部 27に表示されている診 断項目番号 "05" ( "00" が残っていれば "00" および "05" ) が消去される。
このように、 本実施形態では 『Ne 診断』 が実行されるごとに検出さ れるエンジン回転数 Neが積算され、 この積算値∑Ne に基づいてェン ジン回転数の平均値が算出される。 この平均値が基準範囲内に収まって いるか否かに基づいて診断が下されるので、 複数の診断をごく短い周期 で循環的に繰り返す診断方法を採用しても 『Ne 診断』 を効率良く行え るようになる。
図 17は、 前記図 8のステツプ S 700として実行される診断項目 6、 7…等の各スィ ツチ系の診断に関する診断方法を示したフローチヤ一ト であり、 ここでは、 診断対象となっている各スィ ッチのオン状態および オフ状態のいずれもが検知されれば良好と診断される。
ステップ S 701では、 前記診断項目 6の 1例である 『各種ブレーキ スィ ツチ診断』 に関する診断選択フラグ Fselc6および診断合格フラグ F pass 6に基づいて、 前記と同様に当該診断項目の選択の有無および診 断の合否が判定される。 『ブレーキスィ ッチ診断』 が選択されかつ未だ 合格していないとステップ S 702へ進み、 スィ ッチオン時およびスィ ツチオフ時に関する診断が実行される。 ステップ S 703では、 上記診 断の合否が判定され、 ォン時およびオフ時のいずれもが合格していれば、 ステップ S 704では当該スイ ツチ診断に関する診断合格フラグ F pass 6に "1" がセッ トされ、 ステップ S 705では、 表示部 27に表示さ れている診断項目番号 "06" が消去される。 前記ステップ S 70 1お よび S 703の判定が否定のときは、 ステップ S 710へ進んで次のス イ ッチ診断 (診断項目 7) を実行する。 以下同様に、 他のスィ ッチに関 しても同様の診断が実行され、 合格した診断項目の番号が表示部 27上 から順次消去される。
図 18は、 前記図 8のステップ S 800として実行される 『終了処理』 の動作を示したフローチヤ一トである。 ステップ S 801では、 現時点 での診断結果として、 例えば未だに診断が合格していない診断項目の番 号が、 前記図 9のステツプ S 1 1 4で読み取られた当該車両の識別符号 と対応付けて前記 RAM22 (図 1) に記憶される。 この診断結果は、 当該ステツプ S 8 0 1が実行されるごとに、 その時点での診断結果に応 じて書き換えられる。
前記 R A M 2 2には複数台分の診断結果をそれぞれの識別符号と対応 付けて記憶することができ、 複数台分 (例えば、 5 0〜 6 0台分) の診 断結果がまとまると、 自動的または手動で作業者が前記メ二ユー画面上 の 『転送機能』 を選択することにより、 診断結果が送信部 2 4を介して 前記ホス ト コンピュータ 3 0等の上位装置へ無線通信によりまとめて転 送される。 ホス ト コンピュータ 3 0では、 複数台分づっ転送される診断 結果をまとめて記憶装置 3 3へ記憶し、 予定台数分 (例えば、 数百台分) のデータが蓄積されると、 これを I Cカードやフロッ ピ一ディスク等の 可搬性記憶媒体に記憶する。
このように、 各車両の診断結果をまとめて管理するようにすれば、 作 業者の作業効率が向上するのみならず、 診断結果の統計的な処理が容易 になり、 診断結果の分析や生産工程への素早いフィ一ドバックが可能に なる。
図 1 8のステップ S 8 0 2では、 全ての診断合格フラグ F pass x が 参照され、 全ての診断項目が合格しているか否かが判定される。 全ての 診断合格フラグ F pass x Xに " 1 " がセッ トされていると、 ステップ S 8 0 3では、 図 6 Fに示したように表示部 2 7に "合格" の文字が大き く表示されて作業者に診断の終了を知らせる。 ステップ S 8 0 4では、 通信ケーブル 5が E C U 1から取り外されたか否かが判定され、 取り外 されると、 ステップ S 8 0 5において電源が遮断される。 通信ケーブル 5が取り外されていないと、 ステップ S 8 0 8では、 電源をオフにする ためのキー操作が作業者によって行われたか否かが判定され、 当該キー 操作が行われるとステツプ S 8 0 5へ進み、 当該キー操作が行われてい ないとステップ S 8 0 3へ戻る。 一方、 前記ステップ S 802において、 1または複数の診断項目、 例 えば診断項目 2が合格していないと判定されると当該処理はステップ S 806へ進む。 このとき表示部 27には、 図 6Cに示したように、 表示 "02" が残っているので、 作業者は診断項目 2のみが未だに合格して いないことを簡単に認識することができる。
図 6D、 Eに示したように、 『Ne診断』 の診断項目番号 "05" が 残っている場合には、 表示 "00" が残っているか否かに応じて診断項 目 5の診断結果の正当性を判定する。 すなわち、 前記図 16のステップ S 610、 S 61 1に関して説明したように、 表示 "00" は、 診断項 目 5の前提条件 (例えば、 エンジンが十分に暖まっており、 かつ負荷が ない等) が成立して Ne 診断回数 (C1D) が所定の回数を上回った (C ID> C ID-ref) ときに消去される。 したがって、 図 6 Dに示したように、 表示 "00" も残っている場合には、 項目 5の診断終了条件が成立して いないことになる。 したがって、 作業者は当該診断項目 5を直ぐには不 良と判定せず、 さらに Ne診断を継続し、 表示 "05" が消去されれば 良好と判定する。
また、 表示 "00" が消えていれば、 十分な回数 (すなわち、 CID) の項目 5の診断が行われているにもかかわらず合格していないことにな るので、 作業者は当該診断項目 5を直ちに不良と判定する。
このように、 本実施形態では、 診断に先立って前提条件を満足する必 要がある診断項目に関しては、 この前提条件が成立しているか否かを表 す不成立符号 "00" が表示されるので、 当該診断項目の診断が合格し ていない場合であっても、 これが前提条件の不成立に起因していること を容易に認識することができ、 必ずしも不良ではない診断項目を不良と 誤判定してしまうことがない。
ステップ S 806では、 電源をオフにするためのスイ ツチ操作が作業 者によって行われたか否かが判定され、 当該スィ ツチ操作が行われると、 前記ステツプ S 8 0 5へ進んでオフ状態となり、 当該スィ ッチ操作が行 われていないと、 ステップ S 8 0 7では、 通信ケーブル 5が E C U 1か ら取り外されたか否かが判定される。 通信ケーブル 5が取り外されると、 前記ステップ S 8 0 5へ進んで電源オフ状態となり、 取り外されていな ければ診断を継続するために次の診断へ進む。
図 1 9は、 前記図 8のステップ S 9 0 0と して実行される 『待機モ一 ド処理』 の動作を示したフローチヤートである。 ステップ S 9 0 1では、 待機モード中か否かが判定され、 初めは診断モードなのでステツプ S 9 0 2へ進む。 ステップ S 9 0 2では、 最新に検出されて読み出されたェ ンジン回転数 N e と前回検出されたエンジン回転数 N e- pre とが比較さ れる。 ここで、 診断作業中すなわちエンジンが回転中であると、 たとえ アイ ドリング状態であってもエンジン回転数は微妙に変化しているので、 両者は不一致と判定されてステツプ S 9 0 3へ進む。 ステップ S 9 0 3 では、 待機モードタイマ Tssがリセッ トされ、 続くステップ S 9 0 4で は、 今回検出されたエンジン回転数 N e が前回のエンジン回転数 N e- ΡΓ e として新たに登録されて次の診断 (この例では、 車速センサ診断) へ 進む。
例えば休憩時間等に診断作業を中断してエンジンを停止させると、 前 記ステップ S 9 0 2における判定が肯定になるので当該処理はステツプ S 9 0 5へ進む。 ステップ S 9 0 5では、 タイマ T ssがスタート済か否 かが判定され、 初めはスター ト済ではないと判定されるのでステツプ S 9 0 6へ進み、 ここでタイマ T ssがスタートする。
以上のようにして待機モードタイマ T ssがスタ一トすると、 その後は 前記ステップ S 9 0 5の判定が肯定となるので、 当該処理はステップ S 9 0 5からステップ S 9 0 7へ進む。 ステップ S 9 0 7では、 タイマ T ssのカウン ト値が前記標準データの一つである待機モード始動条件 Tss - refと比較される。 タイマ Tssのカウント値が始動条件 Tss-refを超え ると (すなわち、 ステップ S 902におけるエンジン停止判断が予定時 間継続されると) 、 ステップ S 908では、 処理が診断モードから待機 モードに移行し、 表示部 27のバックライ トおよびその液晶駆動がいず れもオフ状態となる。 また、 これまでの診断経過は RAM22に一時記 憶される。
待機モードが始動されると、 次回の処理はステップ S 901からステ ップ S 909へ進み、 前回エンジン回転数 Ne- pre と今回エンジン回転 数 Ne とが比較される。 休憩時間の間、 両者は常に一致してステップ S 909の判定が肯定となるので待機モードは維持されるが、 休憩時間が 終了してエンジンを再始動させると、 ステップ S 909の判定が否定と なってステップ S 910へ進む。 ステップ S 910では、 当該処理の動 作モードが待機モードから診断モ一ドへ移行し、 表示部 27のバックラ イ トおよび液晶駆動がいずれもオン状態となる。 これと同時に、 待機モ ―ドが開始された時点での診断履歴が前記 RAM 22から読み出され、 表示部 27には待機モード開始直前の表示内容が再現される。 ステップ S 91 1では、 今回検出されたエンジン回転数 Ne が前回のエンジン回 転数 Ne- pre として新たに登録され、 その後、 当該処理は図 10に関し て説明した 『車速センサ診断』 へ戻り、 上記した各診断処理が図 8に示 したように循環的に繰り返される。
図 19に示した処理手順はつぎのように変形できる。 (1)ステップ S 9 08からステップ S 901へ移行させる。 (2)ステップ S 909の判定が 肯定のときはステップ S 901へ移行させる。 (3)ステップ S 91 1を省 略し、 ステップ S 910からステップ S 904へ移行させる。
このように、 本実施形態では診断モードから待機モ一ドへの移行はェ ンジン回転数の変動が検知されなく なれば自動的に行われ、 待機モード から診断モードへの移行はエンジン回転数の変動が検知されれば自動的 に行われる。 したがって、 作業者は休憩時間が始まって診断を中断する 場合にエンジンを停止させ、 休憩時間が終了して診断を再開する場合に エンジンを再始動するだけで良く、 他に特別な操作は要求されない。 こ のため、 診断モードから待機モードへの移行、 および待機モードから診 断モードへの移行にあたって作業者は余計な負担を強いられることがな い。
本実施形態では作業者が各診断のための一の操作を開始してから終了 するまでの間、 例えば前記 『ブレーキスィ ッチ診断』 であれば、 作業者 がブレーキペダルを操作する (踏み込む) 間に当該 『ブレーキスィ ッチ 診断』 が実行される必要がある。 したがって、 各診断項目の診断は、 作 業者が一の操作を開始してから終了するまでの間に全ての診断項目に関 する診断が少なく とも 1回は実行されるような速度で循環的に繰り返し 実行されることが望ましい。
また、 上記した実施形態では、 始めに診断項目番号の全てを一覧表示 し、 合格した診断項目の番号を順次消去し、 最後まで残った番号の診断 項目を不良と判断するものとして説明したが、 これとは逆に、 合格した 診断項目の番号を順次表示し、 最後まで表示されない番号の診断項目を 不良と判断するようにしても良い。 同様に、 表示 " 0 0 " も診断項目 5 の診断が十分に行われたときに消去されるものとして説明したが、 これ とは逆に、 診断項目 5の診断が十分に行われたときに始めて表示される ようにしても良い。
さらに、 ここでは本発明の車両診断方法および装置を工場の生産ライ ンにおける 『検査工程』 等で用いる場合を例にして説明したが、 本発明 はこれのみに限定されず、 修理工場や他の環境下で用いられる車両診断 方法および装置にも同様に適用することもできる。 産業上の利用可能性
本発明によれば、 ある診断項目に関する当該強制作動信号の供給は、 対応の診断項目が合格した場合のみならず、 前記診断項目が所定期間経 過後も合格しない場合にも停止されるので、 以下のような効果が達成さ れる。
( 1 ) 強制作動信号を利用しなければならない診断項目が複数ある場合、 一の診断項目が所定期間経過後も合格しない場合には当該一の診断に関 する当該強制作動信号の供給が停止され、 他の一の診断用に他の強制作 動信号を供給することができるので、 一の診断項目が不良であっても他 の診断項目の診断を行える。
(2) 診断に際して強制作動信号の供給を必要とはしないが、 他の診断項 目用の強制作動信号が供給されている間は実施できない診断項目が含ま れている場合も、 本発明によれば強制作動信号の供給が適宜に停止され るので、 強制作動信号の供給中に診断を行うと支障のある診断も制約な く行えるようになる。

Claims

請 求 の 範 囲
1 . 複数項目の診断を循環的に繰返し実行し、 合格判定をされた診断 項目は順次診断対象から外して残りの診断を引き続き循環的に実行する と共に、 前記複数項目のうちの少なく とも 1つの診断のためには、 当該 診断項目に関連する対象部位を予定状態にさせるような強制作動信号を 供給し、 これに応答する前記対象部位の実際の状態が前記予定状態にな つたか否かの判定に基づいて前記診断項目の良否を判定する車両診断方 法において、
ある強制作動信号が供給されている間に、 当該強制作動信号に対応し た診断項目が必ず実行されるように各診断を循環的に実行し、
前記強制作動信号の供給は、 これに対応する診断に合格判定がなされ たとき、 および当該診断のための予定期間が経過したときの、 いずれか のときに停止されることを特徴とする車両診断方法。
2 . 前記強制作動信号が連続して供給される時間は、 その時に実行さ れるべき全ての診断項目の診断を一巡するのに必要な時間よりも短くな いことを特徴とする請求項 1 に記載の車両診断方法。
3 . 診断のために強制作動信号の供給を必要とする少なく とも 2つの 診断項目が含まれ、 第 1の診断項目のための第 1強制作動信号の供給が 停止された後に、 第 2の診断項目のための第 2強制作動信号の供給が開 始されることを特徴とする請求項 1 または 2に記載の車両診断方法。
4 . 複数項目の診断を循環的に繰返し実行し、 合格判定をされた診断 項目は順次診断対象から外して残りの診断を引き続き循環的に実行する 車両診断装置において、
複数の診断項目の中から診断項目を一つづつ連続的かつ循環的に選択 する診断項目選択手段と、 前記選択された診断項目に関連した診断対象部位の現在の状態を検出 する状態検出手段と、
前記診断対象部位の検出された現在状態を前記対象部位の予定状態と 対比して両者が一致または予定の関係にあるときは合格判定をする診断 手段と、
予め決められた少なく とも 1つの診断項目に関連した診断対象部位が 予定状態になるように作動させるための強制作動信号を供給する強制作 動信号供給手段と、
強制作動信号に対応する診断対象部位に対して合格判定がなされたと き、 および前記診断対象部位に対する強制作動信号の供給が予定時間連 続して行なわれたとき、 のいずれかのときに、 前記強制作動信号の供給 を停止させる供給停止手段とを具備したことを特徴とする車両診断装置
5 . 前記強制作動信号が連続して供給される時間は、 その時に実行さ れるべき全ての項目の診断を一巡するのに必要な時間よりも短く ないこ とを特徴とする請求項 4に記載の車両診断装置。
6 . 少なく とも第 1および第 2の強制作動信号供給手段と、 第 1 の強制作動信号供給手段が第 1の強制作動信号の供給を停止した 後に、 第 2の強制作動信号供給手段が第 2強制作動信号の供給を開始す るように制御する手段とを具備したことを特徴とする請求項 4または 5 に記載の車両診断装置。
PCT/JP1998/000976 1997-03-10 1998-03-10 Procede et systeme de detection des defauts d'un vehicule WO1998040716A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/147,143 US6314375B1 (en) 1997-03-10 1998-03-10 Method and device for diagnosis for vehicle
BR9805912A BR9805912A (pt) 1997-03-10 1998-03-10 Processo de diagnÄstico de ve¡culo e aparelho de diagnÄstico para a execu-Æo circulante em modo repetido de diagnÄsticos para diversos itens
EP98905831A EP0922952A4 (en) 1997-03-10 1998-03-10 METHOD AND DEVICE FOR DIAGNOSIS FOR VEHICLES
CA002248831A CA2248831C (en) 1997-03-10 1998-03-10 Method and device for diagnosis for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP07090997A JP3897135B2 (ja) 1997-03-10 1997-03-10 車両診断方法および装置
JP9/70909 1997-03-10

Publications (1)

Publication Number Publication Date
WO1998040716A1 true WO1998040716A1 (fr) 1998-09-17

Family

ID=13445123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000976 WO1998040716A1 (fr) 1997-03-10 1998-03-10 Procede et systeme de detection des defauts d'un vehicule

Country Status (6)

Country Link
US (1) US6314375B1 (ja)
EP (1) EP0922952A4 (ja)
JP (1) JP3897135B2 (ja)
BR (1) BR9805912A (ja)
CA (1) CA2248831C (ja)
WO (1) WO1998040716A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427102B1 (en) * 1999-02-01 2002-07-30 Continental Teves Ag & Co., Ohg Method and device for sensor monitoring, especially for ESP system for motor vehicles
JP4081919B2 (ja) * 1999-05-11 2008-04-30 トヨタ自動車株式会社 内燃機関の異常診断装置
JP2001076012A (ja) 1999-08-31 2001-03-23 Hitachi Ltd 車両情報収集方法および装置
JP2001154725A (ja) * 1999-11-30 2001-06-08 Mitsubishi Motors Corp 車両の故障診断方法及び車両の故障診断装置並びに故障診断用プログラムを記録したコンピュータ読取可能な記録媒体
US6421791B1 (en) * 2000-06-14 2002-07-16 Delphi Technologies, Inc. Computer-implemented system and method for evaluating the diagnostic state of a component
US6308120B1 (en) * 2000-06-29 2001-10-23 U-Haul International, Inc. Vehicle service status tracking system and method
ES2378302T3 (es) * 2001-03-23 2012-04-11 Audi Ag Procedimiento para el diagnóstico funcional de al menos un elemento de movimiento de carga mediante evaluación de la inestabilidad de marcha.
ES2228203B1 (es) * 2002-02-13 2006-06-01 Jesus Martin Miguel Sistema de diagnostico de averias en vehiculos.
US6687601B2 (en) 2002-03-21 2004-02-03 Cummins, Inc. System for diagnosing an air handling mechanism of an internal combustion engine
EP1536994A1 (de) * 2002-08-27 2005-06-08 Continental Teves AG & Co. oHG Verfahren zur überwachung von fahrwerksfunktionen und fahrwerksbauteilen
DE10316898A1 (de) * 2003-04-12 2004-11-04 Audi Ag Verfahren zur Überprüfung der Funktionstüchtigkeit einer Vorrichtung zum Verstellen des Hubes der Gaswechselventile einer Brennkraftmaschine
JP4296875B2 (ja) 2003-08-08 2009-07-15 三菱ふそうトラック・バス株式会社 故障診断装置
JP4082306B2 (ja) * 2003-08-08 2008-04-30 三菱ふそうトラック・バス株式会社 故障診断装置
EP1663672B1 (fr) * 2003-09-18 2009-06-24 Société de Technologie Michelin Pneumatique a mobilite etendue avec bourrelets agences de facon asymetrique
US7146851B2 (en) * 2004-01-29 2006-12-12 Denso Corporation Diagnostic apparatus for variable valve control system
US7063057B1 (en) * 2005-08-19 2006-06-20 Delphi Technologies, Inc. Method for effectively diagnosing the operational state of a variable valve lift device
US7047924B1 (en) * 2005-08-19 2006-05-23 Delphi Technologies, Inc. Method for diagnosing the operational state of a two-step variable valve lift device
US8762165B2 (en) 2006-06-14 2014-06-24 Bosch Automotive Service Solutions Llc Optimizing test procedures for a subject under test
US7643916B2 (en) 2006-06-14 2010-01-05 Spx Corporation Vehicle state tracking method and apparatus for diagnostic testing
US8428813B2 (en) 2006-06-14 2013-04-23 Service Solutions Us Llc Dynamic decision sequencing method and apparatus for optimizing a diagnostic test plan
US8423226B2 (en) 2006-06-14 2013-04-16 Service Solutions U.S. Llc Dynamic decision sequencing method and apparatus for optimizing a diagnostic test plan
US7865278B2 (en) * 2006-06-14 2011-01-04 Spx Corporation Diagnostic test sequence optimization method and apparatus
US9081883B2 (en) 2006-06-14 2015-07-14 Bosch Automotive Service Solutions Inc. Dynamic decision sequencing method and apparatus for optimizing a diagnostic test plan
JP5144169B2 (ja) * 2007-08-17 2013-02-13 本田技研工業株式会社 コージェネレーション装置
JP4345860B2 (ja) * 2007-09-14 2009-10-14 株式会社デンソー 車両用記憶管理装置
US7680581B2 (en) 2007-12-19 2010-03-16 Detroit Diesel Corporation Method for diagnosing air intake throttle actuators for internal combustion engines
US8239094B2 (en) * 2008-04-23 2012-08-07 Spx Corporation Test requirement list for diagnostic tests
JP4414470B1 (ja) * 2008-10-10 2010-02-10 本田技研工業株式会社 車両の故障診断のための基準値の生成
US8150671B2 (en) * 2009-04-30 2012-04-03 GM Global Technology Operations LLC Portable USB power mode simulator tool
US8648700B2 (en) 2009-06-23 2014-02-11 Bosch Automotive Service Solutions Llc Alerts issued upon component detection failure
JP5425595B2 (ja) * 2009-11-19 2014-02-26 本田技研工業株式会社 車両診断装置
WO2013061647A1 (ja) * 2011-10-28 2013-05-02 本田技研工業株式会社 車両診断方法及び外部診断装置
JP5538475B2 (ja) * 2012-05-25 2014-07-02 本田技研工業株式会社 外部診断装置、車両診断システム及び車両診断方法
DE102014207282A1 (de) * 2014-04-16 2015-10-22 Volkswagen Aktiengesellschaft Verfahren zur Diagnose eines Kraftfahrzeugsystems, Diagnosegerät für ein Kraftfahrzeugsystem, Steuergerät für ein Kraftfahrzeugsystem und Kraftfahrzeug
JP6183330B2 (ja) * 2014-10-13 2017-08-23 株式会社デンソー 電子制御装置
KR101655570B1 (ko) * 2014-11-12 2016-09-07 현대자동차주식회사 차량 액추에이터 고장진단 장치 및 방법
DE102016213256A1 (de) 2016-07-20 2018-01-25 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Kraftfahrzeugsystems
CN112578764A (zh) * 2019-09-30 2021-03-30 北京车和家信息技术有限公司 车辆故障诊断方法、系统及车辆
US11460374B1 (en) 2020-11-11 2022-10-04 David M. Cope Engine testing mechanism
CN114265382B (zh) * 2021-11-12 2024-07-19 潍柴动力股份有限公司 Ecu刷写故障处理方法、装置、电子设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238241A (ja) * 1991-01-23 1992-08-26 Nissan Motor Co Ltd 内燃機関の自己診断装置
JPH08164827A (ja) * 1994-12-13 1996-06-25 Nissan Motor Co Ltd 車両故障診断装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2824190A1 (de) 1978-06-02 1979-12-06 Bosch Gmbh Robert Mikrorechner-system zur steuerung von betriebsvorgaengen in kraftfahrzeugen, mit einer diagnoseeinrichtung zur ueberpruefung des kraftfahrzeuges
JPS62161037A (ja) * 1986-01-09 1987-07-17 Nippon Denso Co Ltd 車両に搭載される総合診断装置
US4831560A (en) * 1986-01-15 1989-05-16 Zaleski James V Method for testing auto electronics systems
US5369581A (en) 1989-03-17 1994-11-29 Hitachi, Ltd. Vehicle control apparatus and method therefor
GB9016533D0 (en) * 1990-07-27 1990-09-12 Churchill V L Ltd Automotive diagnostic tool
US5214582C1 (en) * 1991-01-30 2001-06-26 Edge Diagnostic Systems Interactive diagnostic system for an automobile vehicle and method
US5491631A (en) * 1991-12-25 1996-02-13 Honda Giken Kogyo Kabushiki Kaisha Fault diagnostic system for vehicles using identification and program codes
US5506773A (en) * 1992-08-11 1996-04-09 Nippondenso Co., Ltd. Self-diagnosing apparatus for motor vehicles
US5553488A (en) * 1993-07-30 1996-09-10 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus for vehicle control system
US5621167A (en) 1995-06-30 1997-04-15 General Motors Corporation Exhaust gas recirculation system diagnostic
JP3333378B2 (ja) * 1996-02-05 2002-10-15 本田技研工業株式会社 車両診断方法および装置
JPH10253505A (ja) * 1997-03-10 1998-09-25 Honda Motor Co Ltd 車両診断方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238241A (ja) * 1991-01-23 1992-08-26 Nissan Motor Co Ltd 内燃機関の自己診断装置
JPH08164827A (ja) * 1994-12-13 1996-06-25 Nissan Motor Co Ltd 車両故障診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0922952A4 *

Also Published As

Publication number Publication date
CA2248831C (en) 2003-04-15
EP0922952A1 (en) 1999-06-16
EP0922952A4 (en) 2001-01-17
JPH10253504A (ja) 1998-09-25
JP3897135B2 (ja) 2007-03-22
BR9805912A (pt) 1999-08-24
CA2248831A1 (en) 1998-09-17
US6314375B1 (en) 2001-11-06

Similar Documents

Publication Publication Date Title
WO1998040716A1 (fr) Procede et systeme de detection des defauts d&#39;un vehicule
WO1998040715A1 (fr) Procede et dispositif de diagnostic de vehicule
JP3333378B2 (ja) 車両診断方法および装置
KR970007446B1 (ko) 자동차 제어시스템 및 제어방법
US4975846A (en) Diagnosis system for a motor vehicle
US5003478A (en) Diagnosis system for a motor vehicle
US4975847A (en) Diagnosis system for a motor vehicle
GB2222704A (en) Engine diagnostic system
JP3483691B2 (ja) 車両診断方法および装置
EP2020497B1 (en) Electronic control unit
JP3331111B2 (ja) 車両診断装置
JP3363015B2 (ja) 車両診断方法および装置
JP2010001021A (ja) 電子制御装置
JP3331112B2 (ja) 車両診断方法および装置
JP3527351B2 (ja) 車両診断方法および装置
JP3417754B2 (ja) 車両診断装置
JP2002303203A (ja) 車両制御装置及びその組み付け方法
JPH1010013A (ja) 故障診断装置
JPH05172701A (ja) 自動車用故障診断装置
KR100401616B1 (ko) 자동차의 엔진 동작시 이모빌라이저 제어방법
JP2005092852A (ja) 故障診断装置
KR20020030350A (ko) 차량 엔진의 자기 진단 시스템 및 그 방법
JPH0711468B2 (ja) 車輌診断装置
JPH0944372A (ja) 電子制御ユニットの調整装置及びその使用方法
JPH0876830A (ja) 電子制御システムの診断装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2248831

Country of ref document: CA

Ref country code: CA

Ref document number: 2248831

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09147143

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998905831

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998905831

Country of ref document: EP