WO1998027079A1 - Nouveaux composes, leurs polymeres, procedes de preparation de ces composes et polymeres et compositions renfermant ces composes - Google Patents

Nouveaux composes, leurs polymeres, procedes de preparation de ces composes et polymeres et compositions renfermant ces composes Download PDF

Info

Publication number
WO1998027079A1
WO1998027079A1 PCT/JP1997/004660 JP9704660W WO9827079A1 WO 1998027079 A1 WO1998027079 A1 WO 1998027079A1 JP 9704660 W JP9704660 W JP 9704660W WO 9827079 A1 WO9827079 A1 WO 9827079A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
resin
unsaturated
Prior art date
Application number
PCT/JP1997/004660
Other languages
English (en)
French (fr)
Inventor
Takeshi Endo
Hiroto Miyake
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP35373496A external-priority patent/JPH10176013A/ja
Priority claimed from JP28139097A external-priority patent/JPH11100434A/ja
Priority claimed from JP28139197A external-priority patent/JPH11100544A/ja
Priority claimed from JP28138897A external-priority patent/JPH11100423A/ja
Priority claimed from JP9281389A external-priority patent/JPH11100432A/ja
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to EP97949121A priority Critical patent/EP0899269A4/en
Priority to US09/125,161 priority patent/US6063898A/en
Publication of WO1998027079A1 publication Critical patent/WO1998027079A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F26/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F26/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G

Definitions

  • the first invention relates to a novel compound containing a reactive functional group and its use. More specifically, the compound is easily homopolymerized or copolymerized by heat or light, is used for printing, resists and coatings for electronics, and adhesives.
  • the present invention relates to a novel compound used as an agent and the like.
  • thermosetting or photocuring In response to these market needs, compounds with two or more reactive groups in the molecule or reactive oligomers or polymers with multiple reactive groups in the side chain have become thermosetting or photocuring. Developed as resin. In addition, other functional trees It has been studied and developed from a wide variety of fields for a wide range of industrial uses as fat, and further development of new materials is expected.
  • the present inventors have made intensive studies to achieve the above object, and as a result, have found that a compound having a specific structure or a polymer thereof has photocuring or thermosetting properties and can achieve the above object. We have found and completed the present invention.
  • the present invention provides a compound represented by the formula (1).
  • the present invention also provides the compound, wherein the group containing a reactive functional group is a group containing an alicyclic epoxy.
  • the present invention provides the above compound, wherein the aliphatic hydrocarbon group substituted with a group containing a reactive functional group is a group represented by the formula (2) or (3). is there.
  • the present invention provides a polymer of the compound.
  • the present invention provides a method for producing a compound represented by the formula (1) in which a compound represented by the formula (5) is reacted with a compound containing a hydroxyl group represented by the formula (4-1) or (4-2). That is what you do.
  • the present invention will be described in detail.
  • R 1 is a hydrogen atom, an aromatic hydrocarbon or a saturated or unsaturated aliphatic hydrocarbon
  • R 2 represents an aliphatic hydrocarbon group substituted with a group containing a reactive functional group
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, and m
  • n represents an integer of 1 to 10.
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, m is an integer of 4 to 8, and n is an integer of 0 to I 0.
  • N a -CO-CH CH-R 1 (5) (wherein, R 1 represents a hydrogen atom, an aromatic hydrocarbon group or a saturated or unsaturated aliphatic hydrocarbon group.)
  • FIG. 1 is an IR chart of 3,4-epoxycyclohexylmethyloxycarbonyl vinylamine (Compound A) obtained in Example 1
  • FIG. 2 is the IR chart of the compound obtained in Example 4. It is an IR chart of the polymer of A (Polymer A).
  • R 1 is preferably a hydrogen atom, an aromatic hydrocarbon group or a saturated or unsaturated aliphatic hydrocarbon group.
  • R 1 is particularly preferably a hydrogen atom, a methyl group, an ethyl group, or a phenyl group.
  • R 2 represents an aliphatic hydrocarbon group substituted with a group containing a reactive functional group, and is particularly preferably a group represented by the above formula (2) or (3).
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, m is preferably an integer of 4 to 8, and n is preferably an integer of 1 to 10.
  • the compound represented by the formula (1) is obtained by, for example, reacting a compound represented by the formula (5) with a hydroxyl group-containing compound represented by the formula (4-1) or the formula (412). Can be manufactured.
  • the hydroxyl-containing compound represented by the formula (4-1) is 3,4-epoxycyclohexylmethyl alcohol.
  • the hydroxyl group-containing compound represented by the formula (4-2) is a lactone polymer obtained by polymerizing lactone in 3,4-epoxycyclohexylmethyl alcohol in a range of 1 to 10.
  • the hydroxyl group-containing compound represented by the formula (4-2) is specifically activated with active hydrogen such as alcohol (compound (4-1)) as an initiator, and ring-opening is performed using a conventional method. It can be produced by polymerization.
  • the lactone may be a homopolymer of valerolacton or the like, or a copolymer of e-force prolacton and urelolacton, in addition to £ -force prolacton.
  • the compound represented by the formula (5) is, for example, an aqueous solution of an alkali or alkaline earth metal salt typified by sodium azide, a metal azide; 0 ⁇ —Can be obtained by reacting COC 1.
  • R 1 one having the same group as R 1 of the target compound represented by the formula (1) is used.
  • the reaction ratio between the metal azide and the acid chloride is preferably 0.01 to 1.5 moles of the acid chloride per mole of the metal azide.
  • the reaction is carried out by dropping a solution of acid chloride into an aqueous solution of metal azide.
  • the solvent for the acid chloride is not particularly limited, but ketones such as acetone and methyl ethyl ketone are preferred.
  • the dropping to the aqueous metal azide solution can be performed at a temperature of ⁇ 78 to 100 ° C., but is preferably performed at room temperature or lower in consideration of the stability of the metal azide.
  • the compound represented by the formula (1) and the hydroxyl group-containing compound represented by the formula (4-1) or (4-2) are usually added in an amount of 0.1 mol per mol of the compound represented by the formula (5). 5-10. It is produced by adding 0 mol and reacting.
  • the reaction temperature is preferably from 0 to 150 ° C. from the relationship between the stability of the compound represented by the formula (5) and the reaction temperature.
  • a catalyst can be used for the reaction.
  • Preferred examples of the catalyst include tertiary amines such as triethylamine and dimethylbenzylamine; quaternary amines such as tetraethylammonium chloride; and phosphines such as triphenylphosphine.
  • the compound represented by the formula (1) can be homopolymerized or copolymerized with another compound having a polymerizable unsaturated group based on the carbon-carbon double bond in the molecule.
  • the polymerization method there are solution polymerization, emulsion polymerization, suspension polymerization, precipitation polymerization, and the like, and solution radical polymerization is the simplest.
  • the monomer that can be copolymerized is not particularly limited as long as it has a polymerizable unsaturated group, and examples thereof include the following monomers. That is, alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and hexyl (meth) acrylate. There are factories.
  • Examples of the (meth) acrylic acid esters having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and hydraprolactone. There is hydroxyethyl (meth) acrylate.
  • Other (meth) acrylates include methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, isooctyloxydiethylene glycol (meth) acrylate, and phenoxytriethylene glycol (meth) acrylate.
  • Acrylate methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, and the like, and other monomers include styrenes.
  • the polymerization initiator that can be used to obtain the polymer of the present invention, those usually used for polymerization of a compound having a polymerizable unsaturated group can be used. Specific examples include lauroyl halide, g-tert-butyl peroxide, bis (4-t-butylcyclohexyl) peroxide, and t-butyl peroxy (2-ethylhexanoate).
  • Peroxide compounds such as methylethyl ketone peroxide, benzoyl peroxide and cumene hydroperoxide, 2,2-azobisisobutyronitrile, 2,2'-azobis- (2 And azo compounds such as 4-methylvaleronitrile). Further, a peroxide compound and an azo compound can be mixed and used.
  • a polymerization solvent can be used for the polymerization reaction, and there is no particular limitation as long as it can dissolve the monomer and the polymer.
  • examples include aromatic hydrocarbons such as benzene, toluene, and xylene, methyl alcohol, ethyl alcohol, and the like. 2—Prono ,.
  • Alcohols such as ethanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as acetyl ether, dibutyl ether, dioxane, etc., ethyl acetate, isobutyl acetate, ethylene glycol monoalkyl
  • Use may be made of ether acetates, diethylene glycol monoalkyl ether acetates, amides such as dimethylformamide and dimethylacetamide, and halogenated hydrocarbons such as carbon tetrachloride and chloroform. These solvents may be used alone or as a mixture.
  • the number average molecular weight of the obtained polymer or copolymer in terms of standard polystyrene by GPC is usually in the range of 5,000 to 500,000, preferably 10,000 to 80,000.
  • the compound (1) of the present invention and its homopolymer and copolymer are mixed with other resins, epoxy-opening addition catalysts, diluting monomers or oligomers, photopolymerization initiators and other additives to form a curable resin composition.
  • a product can be obtained and cured by light or heat and used as a resist.
  • the acid value of the compound (1) of the present invention or another resin that can be blended with the polymer thereof is preferably in the range of 50 to 150 KOHmgZg.
  • the weight average molecular weight of the resin that can be blended is preferably in the range of 5,000 to 150,000. However, this range varies depending on the application.In applications where the film thickness is 30 m or less, such as a solder resist or an etching resist, the weight average molecular weight is preferably 10,000 to 40,000 because good developability is required. .
  • the weight average molecular weight is preferably about 100,000 to 150,000 in order to emphasize sensitivity. If the weight average molecular weight exceeds 150,000, developability may be remarkably reduced, and problems such as poor storage stability may occur.
  • Examples of the epoxy ring-opening addition catalyst that can be blended with the compound (1) of the present invention or a polymer thereof include tertiary amines such as dimethylbenzylamine, triethylamine, tetramethylethylenediamine, and tri-n-octylamine, Quaternary ammonium salts such as methylammonium chloride, tetramethylammonium bromide and tetrabutylammonium bromide; alkyl ureas such as tetramethyl urea; alkyl guanidines such as tetramethyl guanidine; triphenyl Examples thereof include phosphines such as phosphine and salts thereof. These may be used alone or as a mixture of two or more. These catalysts are used in an amount of from 0.01 to 10% by weight, preferably from 0.5 to 3.
  • Examples of the diluting monomer or oligomer which can be blended with the compound (1) of the present invention or a polymer thereof include radical polymerization represented by acrylate or methacrylate compounds, vinyl aromatic compounds, amide unsaturated compounds, and the like. Compounds having a sexual double bond can be exemplified.
  • Examples of acrylate or methacrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and hexyl.
  • Alkyl (meth) acrylates such as (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and 2-hydroxyethyl (meth) acrylate (T) (meth) acrylates having hydroxyl groups such as acrylates, methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol
  • Examples thereof include trifunctional (meth) acrylic acid esters such as acrylic acid esters, trimethylol pulp tri (meth) atarylates, and more polyfunctional (meth) acrylic acid esters such as dipentaerythritol hexacrylate.
  • Examples of the vinyl aromatic compound include styrene, vinyltoluene, and -methylstyrene.
  • Examples of the amide-based unsaturated compound include acrylamide and methacrylamide.
  • oligomers include (meth) acrylic esters of polyester polyols, (meth) acrylic esters of polyether polyols, adducts of polyepoxy with (meth) acrylic acid, and polyisocyanates as polyols. And a resin into which hydroxy (meth) acrylate is introduced.
  • the diluent monomer or oligomer which can be blended is in the range of more than 0 to 300 parts by weight, particularly 10 to 100 parts by weight, per 1 part by weight of the compound of the present invention or the polymer of the present invention. Preferably, there is. 300 parts by weight of diluted monomers and oligomers If it exceeds, the degree of development may decrease.
  • Examples of the photopolymerization initiator that can be blended with the compound (1) of the present invention or its polymer include benzophenone, acetophenone, benzyl, benzyldimethylketone, benzoin, benzoinmethylether, benzoinethylether, benzoinisopropylether, Examples include dimethyoxyacetophenone, dimethyoxyphenyl-nilacetophenone, jetethoxyacetophenone, diphenyl disulfite, and the like, and these can be used alone or in combination of two or more. .
  • a photopolymerization initiator may be used in combination with a synergist, for example, a tertiary amine, for enhancing the conversion of light absorption energy into a polymerization initiation free radical.
  • a synergist for example, a tertiary amine
  • the addition of a photopolymerization initiator may be omitted.
  • Other additives that can be added to the compound (1) of the present invention or its polymer include, if necessary, a thermal polymerization inhibitor, a surfactant, a light absorber, a thixotropy-imparting agent, a dye and a pigment. can do.
  • a curable resin is applied as a thin film on a substrate and cured.
  • Spraying, brushing, roll coating, curtain coating, electrodeposition coating, electrostatic coating, etc. are used as a method of forming a thin film.
  • the curable resin composition is applied on a substrate and then cured by light.
  • a high-pressure mercury lamp, ultraviolet ray, EB, laser beam or the like can be used.
  • the liquid resist When used as a component of the liquid resist, it can be cured by heat.
  • the curing can be performed at 100 to 200 ° C. for 1 to 90 minutes. Curing is preferably performed in an inert gas atmosphere, but curing can also be performed in an air atmosphere.
  • GPC polystyrene standard
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • MFDG t-butyl vinyl-2-ethylhexanoate
  • Perbutyl 0 t-butyl vinyl-2-ethylhexanoate
  • methacrylic acid 172 g 126 g of methyl methacrylate and 9.5 g of 2,2-azobis (2-methylpyronitrile)
  • ABSN-E 2,2-azobis (2-methylpyronitrile
  • 200 g of M FDG were added dropwise over 3 hours. did.
  • the mixture was aged for 4 hours to synthesize a trunk polymer having a carboxyl group.
  • the epoxy polymer mouth hexyl methyl acrylate (“CYCROMA-1 A200” manufactured by Daicel Chemical Industries, Ltd.) was added to the above trunk polymer solution.
  • DPHA dipentaerythritol hexacrylate
  • Table 1 The composition shown in Table 1 is phthalocyanine green as the pigment, 2-methyl-1- [4- (methylthio) phenyl] —2-morpholinov as the initiator, and “Irgacure 907” manufactured by Chiba Geigy Corporation.
  • a photocurable resin composition was prepared at a ratio and evaluated as a solder resist.
  • the solder resist obtained in the example was applied on a pattern-formed substrate to a thickness of 20 to 30 m using a barco all-in-one, and dried for 20 minutes with a blow dryer at 80 ° C. Let dry. Thereafter, a negative film was brought into close contact with the film and irradiated with a light amount of 1000 mJ / cm 2 . Further, the film was developed with a 1% aqueous solution of sodium carbonate, and the obtained coating film was stiffened with a blowing air oven at 150 ° C. for 30 minutes to obtain a solder resist film. With respect to the solder resists of the examples, development time (min), sensitivity, adhesiveness, solder heat resistance and hydrolysis resistance were evaluated. Table 1 shows the results.
  • Development time The development time was determined by measuring the development time in a 1% aqueous sodium carbonate solution, and evaluated according to the following criteria. Soluble in dilute alkaline aqueous solution means that the development time is less than 20 seconds. ⁇ : less than 20 seconds, ⁇ : developable in 20-60 seconds, X
  • the very useful novel compound which can be used as a curable resin composition is provided.
  • the novel compound and its polymer polyfunctional epoxy resin
  • the novel compound and its polymer can be applied to the surface of a metal or the like, and then irradiated with ultraviolet rays or electron beams to form a cured film.
  • ADVANTAGE OF THE INVENTION According to this invention, the polyfunctional monomer or its polymer which provides the curable resin composition excellent in the adhesiveness of a coating film, solder heat resistance, weak alkaline water resistance, etc. is obtained.
  • the second invention relates to an active energy ray-curable resist resin composition containing a reactive functional group and its use. More specifically, the present invention relates to an active energy ray-curable composition which is easily cured by heat or light and can be imaged with an alkali. The present invention relates to a mold resist resin composition.
  • the film formed from the composition has insufficient adhesion and water resistance to the object to be coated, and has not yet exhibited properties sufficiently satisfactory for practical use. Disclosure of the second invention
  • the present inventor has conducted extensive research to solve the above-mentioned problems, and as a result, as an active energy linear curing type unsaturated resin composition, an alicyclic epoxy group-containing unsaturated compound having a specific structure and an acid group
  • an active energy linear curing type unsaturated resin composition an alicyclic epoxy group-containing unsaturated compound having a specific structure and an acid group
  • the present inventors have found that a composition obtained by diluting a reaction product with a contained unsaturated resin with an organic solvent and a polymerizable vinyl monomer can solve the above problems, and have completed the present invention.
  • the present invention provides an active energy ray-curable unsaturated resin obtained by blending a diluent with a reaction product of an alicyclic epoxy group-containing unsaturated compound represented by the formula (6) and an acid group-containing unsaturated resin. It provides a composition.
  • the present invention also provides the active energy ray-curable unsaturated resin composition, wherein the acid-containing unsaturated resin is an acid-containing acryl-based resin.
  • an active energy ray-curable resist resin composition comprising the active energy ray-curable unsaturated resin composition, which is capable of being fully developed. It provides things.
  • the present invention will be described in detail.
  • R 1 represents a hydrogen atom, an aromatic hydrocarbon group or a saturated or unsaturated aliphatic hydrocarbon group
  • R 2 represents the formula (2) or the formula (3).
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 4 to 8, and n represents an integer of 1 to 10.
  • the alicyclic epoxy group-containing unsaturated compound used in the present invention is a compound represented by the above formula (6), and among the compounds represented by the formula (1) of the first invention, R 2 is The formula
  • the production method and the structural formula are the same as the compound represented by (2) or (3).
  • the compound represented by the formula (6) used in the present invention may be, based on the carbon-carbon double bond in the molecule, one or more kinds of the acryl-based resins described below. And can be used as a copolymer.
  • the acid group-containing unsaturated resin used in the present invention may be a resin having at least one unsaturated group and an acid group in one molecule, for example, an ethylenically unsaturated acid (co) polymer, an acid Group-containing acrylic resin, modified unsaturated monocarboxylic acid, acid group-containing polyester resin, acid group-containing bisphenol A-type resin, acid group-containing novolak resin, polyamide Examples thereof include acids and acid group-containing polyimides. Among these, an ethylenically unsaturated acid (co) polymer and an acid group-containing acrylic resin are preferred. This is because the production method is simple and the resin characteristics can be easily controlled.
  • Examples of the ethylenically unsaturated acid (co) polymer include (co) polymers such as maleic anhydride, maleic acid, fumaric acid, and itaconic acid.
  • the acid group-containing acryl-based resin includes an acryl-based compound having a carboxy group, for example, acrylic acid, methacrylic acid, carboxymethyl, (meth) acrylate, 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (Meth) acrylic acid, 2- (carboxypropyl) (meth) acrylate, crotonic acid, (co) polymer of acid group-containing acrylic monomer such as ⁇ -carboxyethyl (meth) acrylate, etc., (meth) An adduct of acrylic acid and ⁇ -force prolactone can be exemplified.
  • the acid-containing acrylic resin used in the present invention contains the above-mentioned acid-containing acryl-based monomer as an essential component and one or more monomers selected from the following compounds. Polymerized copolymers can also be used.
  • Examples of monomers that can be used here include: (1) esters of (meth) acrylic acid, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc., 2 vinyl aromatic compounds, for example, styrene, Monomethylstyrene, vinyltoluene, ⁇ -chlorostyrene, etc.
  • 3Amid unsaturated compounds such as (meth) acrylamide, diacetone acrylamide, ⁇ -methylol acrylamide, ⁇ -butoxymethylacrylamide 4Polyolefin compounds, such as butadiene and isoprene Black hole Puren etc., 5 Others, such as (meth) acrylonitrile, methyl isopropenyl Niruketon, vinyl acetate, vinyl propionate, Binirubibare one bets like.
  • the modified unsaturated monocarboxylic acid is particularly preferably a modified unsaturated monocarboxylic acid having an unsaturated group and a carboxyl group and having a chain extended between the unsaturated group and the carboxylic acid.
  • a modified unsaturated monocarboxylic acid having an ester bond such as a lactone modified acid-modified terminal hydroxyl group with an acid anhydride, and a modified unsaturated monocarboxylic acid having an ether bond.
  • the acid group-containing unsaturated resin used in the present invention includes all or a part of the acid groups contained in the resin and all or a part of the epoxy group derived from the alicyclic epoxy group-containing unsaturated compound.
  • a resin which is a reactant having an unsaturated group introduced therein. Therefore, it is necessary that an unsaturated group necessary for curing the active energy ray is introduced into the obtained reaction product, and the acid value of the compound is 15 KOH mg / g or more, more preferably 40 to 50 KOH. It is preferably 0 KOH mg / g. Reaction of unsaturated compounds containing alicyclic epoxy groups with unsaturated resins containing acid groups
  • the reaction between the alicyclic epoxy group-containing unsaturated compound represented by the formula (6) and the acid group-containing unsaturated resin is performed by adding an acid group-containing unsaturated resin to 1 mole of the alicyclic epoxy group-containing unsaturated compound.
  • the reaction is preferably carried out in such an amount that the contained carboxyl groups become 1.08 to 5 mol. This is because the ring-opening addition reaction between the epoxy group and the acid group proceeds sufficiently within this range.
  • glycidyl methacrylate among 100 parts by weight of the aliphatic epoxy group-containing unsaturated compound to be reacted with the acid group-containing unsaturated resin, glycidyl methacrylate, / 3-methyl glycidyl methacrylate, aryl glycidyl ether, etc. More than 0 to 90% by weight of the unsaturated compound containing an aliphatic epoxy group, and any of the other unsaturated group-containing cycloaliphatic epoxy compounds shown below in a range of more than 0 to 90% by weight. You can also do it.
  • R 7 in the following compounds a linear or branched alkylene group, that is, a methylene, ethylene, propylene, trimethylene, tetramethylene, ethylethylene, pentamethylene, hexamethylene group or the like can be exemplified.
  • R 8 include methylene, ethylene, propylene, trimethylene, tetramethylene, ethylethylene, pentamethylene, hexamethylene, polymethylene, phenylene, 1,4-cyclohexylene, and p-xylylene group.
  • R 6 represents a hydrogen atom or a methyl group, represents a divalent aliphatic saturated hydrocarbon group having 1 to 6 ash cords, and R 8 represents a divalent aliphatic group having 1 to 10 carbon atoms. Represents a hydrocarbon group, and m represents an integer of 1 to 10.
  • the alicyclic epoxy group-containing unsaturated compound represented by the formula (6) used in the present invention may be used as an unsaturated resin such as an alcohol-based, ester-based, aromatic hydrocarbon-based or aliphatic hydrocarbon-based unsaturated resin having an acid group. Both can be reacted by adding to the active organic solvent solution and maintaining at 20 to 120 ° C for 1 to 7 hours.
  • the acid-containing unsaturated fatty resin is an acid-containing acryl-based resin
  • the reaction can be carried out under the reaction conditions of 20 to 120 ° C. and about 1 to 5 hours.
  • the resulting reactant has a number of unsaturated groups per molecular weight of 1,000 in the range of 0.2 to 4.0, preferably 0.7 to 3.5. If the number is less than 0.2, the curability of the film becomes insufficient, and the adhesion to the film and the water resistance may be poor. On the other hand, if the number of unsaturated groups is more than 4.0, the composition may undesirably thicken or gel during addition reaction with an acid group-containing acrylic resin or during long-term storage of the composition. Further, the obtained reactant preferably has a number average molecular weight of 1,000 to 100,000, preferably 3,000 to 70,000.
  • the acid value of the obtained reaction product is preferably 300 KOHmgZg or less. If the acid value is larger than 300 KOHmg / g, the water resistance of the coating may be poor, which is not preferable. Active energy ray-curable unsaturated resin composition
  • a diluent may be added to the reactant used in the present invention to obtain an active energy ray-curable unsaturated resin composition according to the intended use and required coating film performance.
  • Organic solvents and polymerizable compounds can be used as diluents to be added to the composition of the present invention.
  • the type of the organic solvent is not particularly limited as long as it has a boiling point higher than the reaction temperature and dissolves the raw materials and products.
  • alcohols such as ethyl alcohol, propyl alcohol, isopropyl alcohol, and butanol
  • glycols such as ethylene glycol, propylene glycol, and dipropylene glycol Glycols, such as methyl alcohol, methyl cellulose solvent, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, glycol esters such as ethylene glycol diacetate, propylene glycol monomethyl ether acetate, and a mixed solution thereof.
  • the amount of the organic solvent used is not particularly limited. It can be appropriately selected depending on the application method, and can be diluted to have a viscosity suitable for each application method.
  • the resin solid content concentration is preferably 1 to 40% by weight, and when a roll coater or curtain coater is used, it is preferably about 20 to 60% by weight.
  • the polymerizable compound the compounds exemplified as the “diluted polymer or oligomer” of the first invention can be similarly used, and further, a polyolefin-based compound, a polymerizable prepolymer and the like can be exemplified.
  • the polyolefin-based compound an alkali-soluble resin is preferable. Examples thereof include PVA, an acid group-containing acrylic resin, and a polyolefin having a phenol group.
  • Examples of the polymerizable prepolymer include a resin containing a polymerizable unsaturated group that can be converted to an aqueous solution, such as a resin in which a hydroxyalkyl (meth) acrylate is introduced into a carboxyl group-containing polyol via a polyisocyanate compound.
  • a resin containing a polymerizable unsaturated group for example, a (meth) acrylic acid ester of a polyester polyol, a (meth) acrylic acid ester of a polyether polyol, a (meth) acrylic acid ester of an acrylic polyol, a polyepoxy resin and a (meth) acrylic ester.
  • the resin examples include a resin in which hydroxyalkyl (meth) acrylate is introduced into an adduct with acrylic acid and a polyol via a polyisocyanate compound.
  • examples of other diluents include adducts of a hydroxyl group-containing monomer with a monoisosocyanate such as butyl isocyanate and phenyl isocyanate, an aziridine group-containing monomer, and a phosphorus-containing vinyl monomer.
  • the amount of the polymerizable compound to be used is preferably less than 100 parts by weight, preferably 50 parts by weight or less, based on 100 parts by weight of the resin solid content of the active energy ray-curable resin composition. .
  • the hardness, solvent resistance, alkali resistance, etc. of the resin coating may be poor. Because there is.
  • the active energy ray-hardened resin composition of the present invention is used in combination with a synergist, for example, the epoxy ring-opening addition catalyst exemplified in the first invention, for enhancing the conversion of light absorption energy into free radicals at the initiation of polymerization. can do. They may be used alone or as a mixture of two or more.
  • These catalysts are preferably used in an amount of 0.01 to 20% by weight, preferably 0.1 to 10% by weight, based on the compound of the formula (6), which is an epoxy compound, or a (co) polymer thereof.
  • the amount is less than 0.01% by weight, the catalytic effect is low, and when the amount exceeds 20% by weight, the curability is poor.
  • a photopolymerization initiator may not be added.
  • a photopolymerization initiator can be added.
  • the photopolymerization initiator the photopolymerization initiator exemplified in the first invention can be similarly used. They can be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator is preferably in the range of 0.1 to 10% by weight of the active energy ray-curable resin composition.
  • the composition of the present invention may contain, if necessary, pigments and dyes to such an extent that the curability of the active energy is not impaired.
  • the active energy ray-curable resin composition of the present invention is particularly useful for paints, printing inks, photo resists, solder resists, printing materials, adhesives, adhesives, and the like.
  • the method of forming a coating film using the composition of the present invention can be performed, for example, on wood, paper inorganic material, plastic, metal (zinc, iron, copper, aluminum, etc.).
  • active energy rays such as electron beams or ultraviolet rays.
  • the film can be cured to form a coating.
  • the thickness of the coating is preferably not more than 2000 ⁇ m in terms of dry film thickness, and particularly preferably from 0.1 to 100 ⁇ m. If the film thickness exceeds 2000 ⁇ m, the curability inside the coating film is poor, which is not preferable.
  • Examples of electron beam accelerators that emit active energy rays include Cockcroft type, Cockcroft-Walton type, Non-Thousand 'Graaf type, Transformer type, Transformer type, Insulated core transformer type, and Dynamitron.
  • Type linear filament type, broad beam type, area beam type, force source electrode type, high frequency type, etc. can be used.
  • the irradiation amount of the electron beam is not particularly limited as long as the dose required for curing the coating film is provided, but generally, it is approximately 0.5 to 20 Mrad at approximately 100 to 200 keV. (M rad) dose.
  • the irradiation with the electron beam is preferably performed in an inert gas.
  • the irradiation amount of the ultraviolet rays for emitting the active energy rays includes, for example, a mercury lamp, a high-pressure mercury lamp, a xenon lamp, a carbon arc lamp, a metal halide lamp, and sunlight.
  • the atmosphere for irradiating ultraviolet rays is preferably irradiated in air or in an inert gas. When the atmosphere for irradiation is air, it is particularly preferable to use a high-pressure mercury lamp as the irradiation source.
  • Irradiation conditions vary depending on the absorption amount of the photopolymerization initiator, but irradiation is performed within a few minutes using a light ray having a wavelength of 300 to 450 OA, usually in a range of 1 second to 20 minutes.
  • Embodiment of the second invention is performed within a few minutes using a light ray having a wavelength of 300 to 450 OA, usually in a range of 1 second to 20 minutes.
  • Parts means “parts by weight” unless otherwise specified.
  • Example 1 To 300 parts by weight of the solution of Synthesis Example 1 was added 10 parts by weight of perhydroxyisobutylphenone, and the solution was coated on an aluminum plate with a bar coater, and heated at 80 ° C.
  • this solution was coated on an aluminum plate with a bar coater, and dried at 80 ° C for 15 minutes. 1 2 OWZc.w UV irradiation with a high pressure mercury lamp for 2 seconds to cure. The coating thickness was about 20 m. The adhesion and water resistance of this coating film were examined.
  • Example 7 The same test as in Example 1 was conducted after adding 8 parts by weight of perhydroxyisobutylphenone to 260 parts by weight of the solution of Synthesis Example 7.
  • Tripropylene glycol diacrylate (501, 6-hexanediol diacrylate) 50 parts by weight in 2 64 parts by weight of the solution of Synthesis Example 3 trimethylol
  • the pressure was reduced while blowing in air to remove the n-butanol solvent in the solution.
  • 62 parts by weight of titanium white was added and dispersed by a ball mill to prepare a white paint.
  • the paint was applied to a 1.5 cm thick gypsum board using Ricoh Denko, and then irradiated with a 7 Mrad electron beam to cure the coating to form a gypsum tile.
  • the coating thickness is about 100 m.
  • Adhesion to Secco II was good, and after evaluating the appearance and adhesion for 3 months after attaching to the wall, the results were good as in the initial stage.
  • Example 8 As a result of performing the same test as in Example 7 using the solution of Synthesis Example 6, it was confirmed that a good resist film could be formed. As in Example 7, the resist film was excellent in heat resistance such as soldering resistance, and chemical resistance to acid and alkaline.
  • Curability was evaluated by gel fraction. After the dried coating film was peeled off from the substrate and extracted with acetone at reflux temperature for 6 hours using a Soxhlet extractor, the coating film residue was measured.
  • the active energy ray-curable unsaturated resin composition of the present invention is characterized in that the addition reaction between the alicyclic epoxy group unsaturated compound and the acid group derived from the acid group-containing unsaturated resin causes a ring-opening polymerization reaction of the epoxy group. Reacts easily and hardens with the active energy ray in the obtained reactant. In this case, an unsaturated group which can be converted is introduced.
  • the coating formed from the composition has a relatively large steric hindrance due to the chemical bond generated by the chemical reaction between the acid group of the acrylic resin and the alicyclic epoxy group. For example, it is chemically stable against water and rainwater. Therefore, according to the active energy ray-curable unsaturated resin composition of the present invention, it is possible to obtain a coating excellent in durability such as water resistance and exhibiting a remarkable effect.
  • the third invention relates to an active energy ray-polymerizable unsaturated resin composition and a liquid or powdery active energy ray-curable composition comprising the resin composition and having excellent chemical resistance, adhesion, and heat resistance.
  • a composition containing an inorganic filler has been used as a photocurable composition.
  • a large amount of an inorganic filler is incorporated into a substrate in order to obtain a photocured coating having excellent properties such as hardness and heat resistance.
  • the light transmittance of the resin composition is reduced or the curability of the film is deteriorated by the blended inorganic filler, and the film becomes brittle and porous, and the mechanical properties and water resistance of the film are reduced. Properties, adhesion and chemical resistance may be poor.
  • a powdery curable composition that can be applied without using an organic solvent can be easily used from the viewpoint of environmental protection in recent years as long as it is a powdery curable composition. Disclosure of the third invention
  • the present inventors have found that a resin composition obtained by reacting a specific alicyclic epoxy group-containing unsaturated compound with colloidal silica in the presence of a metal chelate and Z or a metal alkoxide is obtained.
  • the resin composition can be processed into a powder, and the curable composition comprising the resin composition has excellent curability by irradiation with active energy rays.
  • the inventors have found that they have excellent mechanical properties, water resistance, chemical resistance, adhesion, and the like, and have completed the present invention.
  • the alicyclic epoxy group-containing unsaturated compound (E) represented by the formula (6) and the colloidal silica (F) are metal chelates and / or metal alkoxides (hereinafter, referred to as “metal compounds”).
  • the present invention provides an active energy linear polymerizable unsaturated resin composition obtained by reacting in the presence of G).
  • the present invention also provides a powdery active energy ray polymerizable unsaturated resin composition obtained by removing the solvent from the active energy linear polymerizable unsaturated resin composition.
  • the present invention provides a liquid or powdery active energy ray-curable composition comprising the liquid or powdery active energy linear polymerizable unsaturated resin composition.
  • R 2 -O-CO-NH-CH CH-R 1 (6)
  • R 1 represents a hydrogen atom, an aromatic hydrocarbon group or a saturated or unsaturated aliphatic hydrocarbon group
  • R 2 represents the formula (2) or the formula (3).
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 4 to 8, and n represents an integer of 1 to 10.
  • the alicyclic epoxy group-containing unsaturated compound (E) used in the present invention refers to a compound having one alicyclic epoxy group and one or more active energy ray-polymerizable unsaturated groups in one molecule.
  • R 2 is a compound represented by the formula (2) or (3); Structural formula Are the same.
  • the alicyclic epoxy group-containing unsaturated compound (E) is characterized by containing only one alicyclic epoxy group in one molecule.
  • the reason for this is that when two or more alicyclic epoxy groups are present, when this is reacted with colloidal silica (F) in the presence of a metal compound (G), the system thickens and gels. This is because there are cases.
  • the alicyclic compound is a compound having an aliphatic epoxy group such as a glycidyl group, in which the reactivity between the epoxy group and the silanol group in the colloidal silica (F) component is poor, and the compound is unsaturated with the colloidal silicide component.
  • the carbon-carbon double bond of the alicyclic epoxy group-containing unsaturated compound (E) is an active energy ray polymerizable unsaturated group, and is activated by active energy rays such as visible light, ultraviolet light, and electron beam. And cause a polymerization reaction.
  • Colloidal silica (F) is an active energy ray polymerizable unsaturated group, and is activated by active energy rays such as visible light, ultraviolet light, and electron beam. And cause a polymerization reaction.
  • colloidal silica (F) used in the present invention a colloidal silica (F) having an average particle size of 0.001 to 100 m is dispersed in an organic solvent.
  • co-idal silica used in the present invention those having an average particle diameter of 0.05 to 0.1 l ⁇ m in which a silica powder having a silanol group on the particle surface is dispersed in an organic solvent. preferable.
  • the silanol group With the presence of the silanol group, the reaction between the silanol group in the colloidal silica and the alicyclic epoxy group can be easily performed, and the curable composition obtained using this can be cured by irradiation with active energy rays. This is because the coating has excellent mechanical properties, water resistance, chemical resistance, and adhesion.
  • the average particle size is larger than 0.1 m, the cured product may become cloudy or the sedimentation stability may be reduced.On the other hand, if the average particle size is smaller than 0.05 m, the obtained composition may be obtained. It is not preferable because the viscosity of the material becomes high and handling becomes difficult.
  • the organic solvent that can be used for the colloidal silica (F) can be used without any particular limitation as long as it can disperse the silica stably.
  • Monohydric alcohols polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol, ethyl cellosolve, butyl cellosolone, propylene glycol monomethyl monoester, diethylene glycol monomethyl ether, ethylene Examples thereof include ethers such as glycol dimethyl ether and diethylene glycol dimethyl ether, amides such as N, N-dimethylformamide, and nitriles such as acetate nitrile. Organic solvents other than those described above, for example, aromatic hydrocarbons, esters, ketones and the like can be used in combination.
  • Metal compound (G) Metal compound (G)
  • the metal compound (G) used in the present invention includes a metal chelate and a metal alkoxide.
  • metal chelate examples include an aluminum chelate compound, a titanium chelate compound and a zirconium chelate compound, and those described in JP-A-1-1290600 can also be used.
  • diisopropoxyshetyl acetate acetate aluminum tris (ethyl acetate acetate) aluminum, isopoxy 'bis (ethyl acetate acetate) aluminum, monoacetylacetonate' bis (ethyl acetate) Acetate) Aluminum
  • metal alkoxide a compound in which an alkoxy group, preferably an alkoxy group having 1 to 15 carbon atoms, is bonded to metals such as aluminum, titanium, zirconium, sodium, potassium, calcium, and lithium can be used. These compounds may be associated.
  • the active energy ray-polymerizable unsaturated resin composition of the present invention (hereinafter referred to as “unsaturated resin composition”) is obtained by converting the alicyclic epoxy group-containing unsaturated compound (E) and colloidal silica (F) to a metal. It can be produced by reacting in the presence of compound (G).
  • the mixing ratio of the alicyclic epoxy group-containing unsaturated compound (E) and the colloidal silica (F) can be appropriately changed according to the required film performance.
  • the compound (E) is 20 to 80% by weight, preferably 20 to 70% by weight
  • the colloidal silica (F) is 80 to 20% by weight, preferably 80 to 3% by weight based on the total weight of the solid contents of both.
  • the mixing ratio is 0% by weight.
  • the colloidal silica (F) content is less than 20% by weight, the film performance such as hardness and heat resistance is insufficient.
  • the amount of colloidal silica (F) is more than 80% by weight, cracks may occur in the coating and transparency may be poor, which is not preferable.
  • “any of the other unsaturated group-containing alicyclic epoxy compound groups” used in the second invention was added to the compound (E) in an amount of 99 / :! to 1Z99 parts by weight. It can be used together within the range.
  • the metal compound (G) is used in an amount of 0.01 to 10 parts by weight, particularly 0.1 to 5 parts by weight, based on 100 parts by weight of the total solid content of the compound (E) and the colloidal silica (F). It is preferable to mix them in a proportion of parts. If the amount is less than 0.01 part by weight, curing failure tends to occur, and if it exceeds 5 parts by weight, the storage stability is poor and the physical properties of the coating film may be affected.
  • the "unsaturated resin composition" of the present invention comprises a compound (E) and a colloidal silica (F), which are reacted at a reaction temperature of 40 to 130 ° C in the presence of a metal compound (G) at a temperature of 1 to 10 ° C. Obtained by heating for hours. Active energy ray polymerizable unsaturated resin composition in powder form
  • the powdery active energy ray-polymerizable unsaturated resin composition of the present invention can be produced by desolvating the above “unsaturated resin composition” according to a conventional method. Further, the active energy ray-curable composition (hereinafter referred to as “curable composition”) of the present invention is obtained by adding the following curable resin or curable monomer to the above “unsaturated resin composition”. It is a blended composition.
  • the colloidal silica (F) component is contained in an amount of 20 to 80% by weight, preferably 30 to 80% by weight based on the total solid content in the “curable composition”. It is preferable to mix them in the proportions.
  • the curable resin that can be blended a conventionally known one can be appropriately selected and used. Specifically, epoxy acrylic oligomers, polyester oligomers, urethane acrylic oligomers, acrylic oligomers, oligoester acryl oligomers, ether acryl oligomers, butadiene oligomers, acrylyl oligomers containing a subirane ring One or the like can be suitably used. In the present invention, these compounds have an average of one or more active energy ray polymerizable unsaturated groups in one molecule. Preferably, it has a molecular weight of 100 to 200,000.
  • the curable monomer that can be blended a conventionally known one can be appropriately selected and used. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, 2-hydroxypropyl (meth) acrylate, glycidyl (meth) Monofunctional vinyl monomers such as acrylate, (meth) acrylic acid, (meth) acrylamide, and styrene, and polyhydric alcohols such as ethylene glycol, trimethylolpropane, glycerin, and pentaerythritol, and (meth) acrylic Examples thereof include di- or triester compounds with an acid.
  • the curability is improved when a compound containing a functional group that reacts with the silanol group is compounded.
  • Compounds having a functional group that reacts with a silanol group include compounds having (1) an epoxy group, (2) a silanol group, (3) a hydrolyzable group directly bonded to silicon, (4) a hydroxyl group, and (4) an isocyanate group. When such a compound is blended, a curing reaction by irradiation with active energy rays and a curing reaction by heating occur at the same time, so that there is an effect that coating film performance and the like are improved.
  • Examples of the compound having an epoxy group include a homopolymer of the compound (E), a copolymer of the compound (E) with the monomer except (meth) acrylic acid, and an alicyclic epoxy resin (Chisso Corporation). Products such as “Tisonox 201" and “Tisonox 206” can be exemplified, and the following compounds can also be exemplified. Although an aliphatic epoxy group-containing compound can be used, the reactivity may be lower than that of the alicyclic epoxy group-containing compound. 0
  • Compounds having (ii) a silanol group or (3) a hydrolyzable group directly bonded to silicon, for example, an alkoxy group, an aryloxy group, an acyloxy group, etc. include silanol groups and
  • a polysiloxane-based monomer described in JP-A-62-197423 a polysiloxane-based monomer described in JP-A-63-108049
  • Monomers such as the vinyl monomer having an alkoxysilane group described in the above or a polymer containing the monomer as an essential component can be suitably used.
  • polyester-based polyols for example, polyester-based polyols, polyether-based polyols, acrylic-based polyols, polysiloxane-based polyols, polyurethane-based polyols, and modified polyols thereof can be suitably used.
  • the compound containing a diisocyanate group for example, a compound obtained by reacting a polyisocyanate, for example, isophorone diisocyanate with the above polyol so as to contain an isocyanate group can be suitably used.
  • the “curable composition” of the present invention can contain an organic solvent, for example, an aromatic hydrocarbon, an alcohol, an ether, an ester, or a ketone, if necessary. By blending these organic solvents, the viscosity, film thickness, stability, fluidity, etc. can be adjusted and the use becomes easy.
  • a water-soluble “curable composition” can be obtained using the “unsaturated resin composition”. Specifically, water-solubilization from the above resin Select a possible resin.
  • resins capable of being made water-soluble conventionally known resins can be used. Specifically, Japanese Patent Publication No. 52-216526, Japanese Patent Application Laid-Open No. 62-262855, Unsaturated resins having a cationic and anionic groups, specifically, resins containing an acid group, described in JP-A-64-4671, JP-A-64-4672, etc.
  • Residual acid groups include amine-neutralized resins and resins quaternized with glycidyl-containing compounds, resins with hydrophilic groups introduced using isocyanate groups, hydroxyl groups, polyether groups, etc. Resins and the like can be exemplified.
  • the “unsaturated resin composition” has a silanol group, a water-soluble compound selected from the compounds having a functional group that reacts with the silanol group is selected. Specific examples thereof include a mercapto group-containing cyanide compound, an amino group-containing silane compound, and a hydroxyl group-containing silane compound.
  • a powderable resin is selected from the above resins and blended.
  • the “unsaturated resin composition” has a silanol group
  • a compound that can be powdered among the compounds having a functional group that reacts with the silanol group is selected.
  • a colorant, a dispersant, a fluidity modifier and the like can be added as necessary.
  • the liquid or powdery “curable composition” can be cured by irradiating active energy rays such as electron beams, ultraviolet rays, and visible rays, but it can be cured by irradiating ultraviolet rays and visible rays.
  • active energy rays such as electron beams, ultraviolet rays, and visible rays
  • a photopolymerization initiator, a sensitizer, and a dye can be blended in the composition.
  • the photopolymerization initiator exemplified in the first invention can be used. They can be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator is within the range of 0.01 to 10% by weight of the “curable composition”. It is preferable to combine them.
  • the liquid or powdered “curable composition” of the present invention may be used in combination with a synergist, for example, an epoxy ring-opening addition catalyst, for enhancing the conversion of the light absorption energy into a polymerization initiation free radical.
  • a synergist for example, an epoxy ring-opening addition catalyst
  • the epoxy ring-opening addition catalyst exemplified in the first invention can be used. These may be used alone or in combination of two or more. These catalysts are preferably used in an amount of 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the "curable composition". If the amount is less than 0.01% by weight, the reaction rate of the addition itself becomes slow, which is not preferable for practical use. If the amount exceeds 10% by weight, the physical properties of the coating film are affected.
  • the compound or composition of the present invention is cured by irradiation with an electron beam, it is not necessary to add a photopolymerization initiator.
  • dyes that can be added to the liquid or powdery “curable composition” of the present invention include xanthonesin and ketocoumarins. These may be used alone or in combination of two or more. These catalysts are preferably used in an amount of 0.01 to 70% by weight, preferably 0.1 to 50% by weight, based on the "curable composition". If the amount is less than 0.01% by weight, the reaction rate of the addition itself becomes slow, which is not preferable for practical use. If the amount exceeds 70% by weight, the physical properties of the coating film are affected. Use
  • the liquid or powdery “curable composition” of the present invention can be applied to substrates such as wood, paper, inorganic materials, plastics and metals. Particularly useful for paints, printing inks, sealants, photoresists, solder resists, plating resists, printing materials, adhesives, and the like. Among them, they have excellent properties of chemical resistance, adhesion, and heat resistance, so that they are particularly preferably used as a sealant, a protective coating for electronic components, and various resist coatings. This is because the curable composition of the liquid or powdered “curable composition” of the present invention has a high coating hardness and excellent chemical resistance.
  • an aqueous compound of the “curable composition” is used, a negative or positive anionic electrodeposition paint or a negative Alternatively, it can be used as a positive-type cationic electrodeposition paint on steel foil laminated insulating substrates for printed wiring.
  • a method of forming a film using the “curable composition” of the present invention, a coating film thickness, an electron beam accelerator for emitting active energy rays, an irradiation amount of electron beams, and an irradiation of ultraviolet rays for emitting active energy rays The source, irradiation conditions, and the like can be used under the same conditions as those described in the second invention.
  • Parts and % indicate “parts by weight” and “% by weight” unless otherwise specified.
  • silica sol (Nissan Chemical Industries, Ltd. "IPA-STJ: solid content 30%, average particle size 0.01 to 0.02 ⁇ ) 1000 parts, the following compound (A) 150 parts, methyl methacrylate tris (acetylacetonato) 0.5 part, aluminum methoxyhydroquinone 0.04 parts are mixed and reacted at 110 ° C for 6 hours with stirring. Then, a resin solution having a solid content of 39% was obtained.
  • a resin solution was obtained in the same manner as in Synthesis Example 1 except that 100 parts of compound (A) and 50 parts of compound (B) described later were used instead of 150 parts of compound (A).
  • the obtained resin solution had a solid content of 39%.
  • a resin solution was obtained in the same manner as in Synthesis Example 1 except that glycidyl methacrylate was used instead of compound (A).
  • the obtained resin solution had a solid content of 39%. 60
  • the resin solution obtained in Synthesis Example 1 was dried at 40 ° C. under reduced pressure to obtain a resin powder.
  • the resin solution obtained in Synthesis Example 3 was dried under reduced pressure at 40 ° C. to obtain a resin powder.
  • a coating was obtained in the same manner as in Example 1 except that the resin solution of Synthesis Example 3 was used instead of the resin solution of Synthesis Example 1.
  • the surface was rubbed by hand without forming a continuous film, the film remained in hands as a powder.
  • a coating was obtained in the same manner as in Example 2 except that 150 parts of the resin solution of Synthesis Example 2 was used instead of 115 parts of the resin solution of Synthesis Example 3.
  • the film was a poorly continuous film with fine cracks. Further, the coating is opaque, and the adhesion of the eyes is 0/100, 4660
  • Example 4 A cast was obtained in the same manner as in Example 4, except that the resin powder of Synthesis Example 4 was used instead of the resin powder of Synthesis Example 4.
  • the cast product was subjected to a thermocycle test in the same manner as in Example 4, and as a result, cracks occurred in the cast product in 10 cycles. (Example 4)
  • Epoxy resin (Epico 180 S70 (Cresolnopolak epoxy resin with an epoxy equivalent of about 210) manufactured by Shell Chemical Co., Ltd.) 1100 parts of a resin solution dissolved in 1045 parts of After adding 0.1 part of hydroquinone and 288 parts of acrylic acid, heating the mixture to 100 ° C and continuing the reaction until the acid value becomes 5 or less, the mixture is cooled down to 0 ° C, and the mixture is further cooled. After adding 122 parts of glycol and 60 parts of acetic acid, the mixture was reacted at 70 ° C. for 8 hours to obtain a 60% solid content resin solution containing an acryloyl group and a hydroxyl group.
  • the reaction was performed at 0 ° C for 10 hours.
  • the reaction was performed under a mixed atmosphere of air / nitrogen.
  • a resin solution having an acid value of 10 OKOHmgZg double bond equivalent (resin weight per 1 mo of unsaturated group) of 450 and a weight average molecular weight of 20,000 was obtained.
  • a resist film pattern was formed in the same manner as in Example 4 using a mixture of 100 parts of the resin solution, 150 parts of the resin solution of Synthesis Example 1, 15 parts of the compound (C) and 5 parts of benzoethyl ether. did.
  • Example 4 a resist film pattern was formed in the same manner as in Example 4 except that 150 parts of the resin solution of Synthesis Example 1 was replaced with “130 parts of silica sol IPA-STJ” (Comparative Example 5).
  • Example 4 a resist film pattern was formed in the same manner as in Example 4 except that the resin solution of Synthesis Example 1 was used instead of the resin solution of Synthesis Example 3. Comparative Examples 4 and 5 The performance test results are summarized in Table 1-4.
  • Pencil hardness Performed according to JI SK 5400.
  • Dryness to the touch The film was adhered in a film shape using a vacuum laminator and observed visually after exposure.
  • the evaluation criteria were as follows. ⁇ : The film is not contaminated by the coating film at all, ⁇ : The film is slightly contaminated by the coating film. X: The film is clearly contaminated by the coating film.
  • Soldering resistance (visual): According to JI SC 6481, the test piece was floated in a 260 ° C solder bath for 10 seconds as one cycle. Observed at the 3rd cycle and 6th cycle, and evaluated visually. did.
  • Hot water immersion test After immersing the test piece in hot water at 80 to 90 ° C for 1 hour, make 100 lmm squares on the coating surface with a cutter, and adhere cellophane tape to it. The state of adhesion of the coating after the rapid separation was observed. The result was expressed by the number of remaining squares Z and the number of squares made.
  • the active energy ray-polymerizable unsaturated resin composition of the present invention is capable of reacting an alicyclic epoxy group in an alicyclic epoxy group-containing unsaturated compound (E) with a silanol group in a colloidal silica (F) component. Can be easily performed using metal compound (G) as a catalyst. Moreover, since the bond between the colloidal silica (F) and the polymerizable unsaturated group is bonded to the colloidal silica via an alicyclic epoxy group, the “curable composition” obtained using the obtained “resin composition” A film made of is excellent in heat resistance and chemical resistance, has a good finish, and is excellent in transparency.
  • the fourth invention relates to a low-temperature curable resin composition, and more specifically, a vinyl copolymer of a monomer having a polysiloxane structure and an oxysilane group-containing vinyl monomer having a specific structure, a specific metal compound and a specific A composition comprising the alicyclic oxysilane group-containing compound described above, which does not require moisture during the curing reaction, has excellent low-temperature curability, has excellent storage stability, and has a small difference in curability between the surface and the inside.
  • the present invention relates to a low-temperature curable resin composition capable of providing a cured product excellent in weather resistance and water resistance without causing shrinkage.
  • non-toxic, low-temperature curable composition that does not require an irradiation device
  • methacryloxypropyl trimethoxysilane disclosed in Japanese Patent Application Laid-Open No. 60-67553
  • a composition in which an aluminum chelate compound is blended with a vinyl polymer containing the above alkoxysilane is disclosed.
  • the composition disclosed in the above publication requires a large amount of water for curing because only silanol groups generated by hydrolysis of alkoxysilane are cross-linking functional groups.
  • the physical properties of the cured product are not sufficient due to the presence of a large amount of by-products such as alcohol generated during hydrolysis.
  • the composition hardens from the surface and hardly cures inside, and the cured product easily shrinks. Disclosure of the fourth invention
  • the present inventors have conducted intensive studies to solve the problems of the prior art, and found that a vinyl copolymer containing, as components, a specific polysiloxane-based macromonomer and a specific oxysilane group-containing vinyl monomer, When a compound containing a specific alicyclic oxysilane group and a specific organometallic compound were blended, the silanol group and the oxysilane group present in the obtained composition became a cross-linking functional group, and the temperature was 100 ° C or lower. It has been found that the composition cures even at a low temperature, and that the curing reaction proceeds simultaneously on the surface and inside of the cured product, so that there is little shrinkage, and the present invention has been completed.
  • the present invention provides a low-temperature curable resin composition characterized by containing the following components (a), (mouth), and (c).
  • R 11- Si R 12 13 R 14 (7) (wherein, R 11 represents an aliphatic hydrocarbon group or a phenyl group having 1 to 8 carbon atoms, and R 12 R 13 and R 14 each have 1 to 4 carbon atoms. Represents an alkoxyl group or a hydroxyl group.
  • R 2 -O-CO-NH-CH CH-R '(6) (wherein, R 1 represents a hydrogen atom, an aromatic hydrocarbon group or a saturated or unsaturated aliphatic hydrocarbon group, and R 2 represents , And represents formula (2) or formula ( 3 ).
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 4 to 8, and n represents an integer of 1 to 10.
  • the component (a) used in the low-temperature curable resin composition of the present invention is a vinyl copolymer containing, as a monomer, a polysiloxane macromonomer and an oxysilane group-containing vinyl monomer represented by the formula (6). It is.
  • Component (a) preferably has a number average molecular weight of 2,000 to 100,000, particularly preferably 4,000 to 50,000. If the number average molecular weight is less than 2,000, the curability is inferior. On the other hand, if the number average molecular weight is more than 100,000, the coating workability and the compatibility with the compound containing an oxysilane group as a component (c) decrease.
  • the polysiloxane macromonomer constituting the component (a) has a polysiloxane structure, and Si has an aliphatic hydrocarbon group, a phenyl group, a hydroxyl group, an alkoxyl group, and a polymerizable carbon-carbon double bond. Containing at least two silanol groups or alkoxysilane groups bonded to Si of the polysiloxane structure portion per molecule.
  • the polysiloxane-based macromonomer used in the present invention can be produced by reacting the compound (H) represented by the above formula (7) with the compound (J) represented by the above formula (8).
  • Compound (H) is represented by the above formula (7).
  • R 11 represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms or a phenyl group, and is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group And the like can be exemplified.
  • R 11 is particularly preferably a methyl group or a phenyl group.
  • R 12 , R 13 and R ′′ represent an alkoxyl group or a hydroxyl group having 1 to 4 carbon atoms, which may be all the same or partially or entirely different.
  • an alkoxyl group having 1 to 4 carbon atoms Stands for methoxy, ethoxy, propoxy, butoxy And the like can be exemplified.
  • examples of the compound (H) include methyltrimethoxysilane, phenyltrimethoxysilane, butyltrimethoxysilane, methyltriethoxysilane, methyltributoxysilane, phenyltrisilanol, methyltrisilanol, and the like.
  • I can show you an example. Of these, methinoletrimethoxysilane, pheninoletrimethoxysilane and phenyltrisilanol are particularly preferred. In the present invention, one or more of these can be used in combination.
  • Compound (J) is represented by the above formula (8).
  • R 15 represents a hydrogen atom or a methyl group
  • R 16 , R 17 and R 18 represent a hydroxyl group, an alkoxyl group having 1 to 4 carbon atoms or an aliphatic hydrocarbon group having 1 to 8 carbon atoms.
  • k represents an integer of 1 to 6.
  • R 16 , R 17 and R 18 may all be the same or partially or entirely different, but all of them must not be an aliphatic hydrocarbon group having 1 to 8 carbon atoms. This is because they cannot bind to the compound (H).
  • the aliphatic hydrocarbon group having 1 to 8 carbon atoms and the alkoxyl group having 1 to 4 carbon atoms the same as those exemplified for the compound (H) can be used.
  • R 1 R 17 and R 18 are particularly preferably a methoxy group, an ethoxy group and a hydroxyl group, and n is particularly preferably in the range of 2 to 4.
  • Examples of the compound (J) include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -methacryloxybutyltriethoxysilane, and ⁇ -acryloxypropyltrisilanol.
  • ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, and ⁇ -acryloxypropyltrisilanol are particularly preferred. In the present invention, these
  • the polysiloxane-based macromonomer is obtained by mixing the above compounds (H) and (J), It is obtained by reacting.
  • the mixing ratio of both compounds is such that the compound (H) is 70 to 99.999 mol%, preferably 90 to 99.9 mol%, more preferably 95 to 99 mol%,
  • the compound (J) power is in the range of 30 to 0.01 mol%, preferably 10 to 0.1 mol%, more preferably 5 to 1 mol%.
  • the compound (H) is less than 70 mol% and L is less than 70 mol%, it is easy to gel by a copolymer reaction.
  • it exceeds 99.999 mol% the amount of non-copolymerized polysiloxane increases and the resin liquid becomes smeared. It is not preferable.
  • the reaction between the compounds (H) and (J) is carried out by dehydration-condensation of the hydroxyl groups or the hydroxyl groups of the alkoxyl groups of both compounds. At this time, depending on the reaction conditions, not only dehydration condensation but also partial dealcoholization condensation occurs.
  • the reaction can be performed without a solvent, but is preferably performed using an organic solvent capable of dissolving the compounds (H) and (J) or water as a solvent.
  • organic solvents examples include hydrocarbon solvents such as heptane, toluene, xylene, octane, and mineral spirits, and ethers such as ethyl acetate, n-butyl acetate, isobutyl acetate, methyl sorbitol acetate, and butyl carbitol acetate.
  • hydrocarbon solvents such as heptane, toluene, xylene, octane, and mineral spirits
  • ethers such as ethyl acetate, n-butyl acetate, isobutyl acetate, methyl sorbitol acetate, and butyl carbitol acetate.
  • Ter-based solvents such as methylethyl ketone, methyl isobutyl ketone, and di-isobutyl ketone; alcohol-based solvents such as ethanol, isopropanol, n-butanol, sec-butanol, and isobutanol; n-butyl ether; Ether solvents such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether can be exemplified. These can be used alone or in combination of two or more. When used in a solution state, the concentration of the compounds (H) and (J) is preferably such that the total amount of both is 5% by weight or more.
  • the reaction between the compounds (H) and (J) is preferably carried out at a temperature of 20 to 180 ° C, particularly preferably 50 to 120.
  • the reaction time is preferably 1 to 40 hours.
  • a polymerization inhibitor can be added to the reaction as needed.
  • the use of a polymerization inhibitor is effective to prevent the unsaturated bond contained in the compound (J) from being polymerized during the reaction with the compound (H).
  • hydroquinone, hydroquinone monomethyl Ruether and the like can be used.
  • tetraalkoxysilane or dialkyldialkoxysilane was added to the reaction system in an amount of 20 mol% or less based on 100 mol% of the total of compounds (H) and (J). can do.
  • the organic solvent is heated during the reaction. It is preferable to perform the dehydration condensation reaction by stirring.
  • the compounds (H) and (J) to be used are compounds having an alkoxyl group
  • it is preferable that the compound is hydrolyzed before the condensation.
  • the mixture is heated and stirred in the presence of water and a catalyst, and the hydrolysis reaction and the binding reaction are continuously performed.
  • the amount of water used at this time is not particularly limited, but is preferably 0.1 mol or more per mol of the alkoxyl group. If the amount is less than 0.1 mol, the reaction of both compounds may be reduced. Most preferred is a method in which water is used in a large excess as a solvent.
  • the reaction system can be homogenized even when water which is hardly soluble in water is produced by condensation.
  • water-soluble organic solvent that can be used, alcohol-based, ester-based, ether-based, and ketone-based solvents used for dissolving the compounds (H) and (J) described above can be used.
  • a catalyst can be used for the hydrolysis reaction.
  • Acid catalysts or alkali catalysts can be used as the usable catalyst.Hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, propionic acid, acrylic acid, methacrylic acid, etc. can be used as the acid catalyst, and sodium hydroxide, triethylamine can be used as the alkali catalyst. And ammonia.
  • the amount of the catalyst to be added is preferably 0.0001 to 5% by weight, particularly 0.01 to 0.1% by weight, based on the total amount of the compounds (H) and (J).
  • the structure of the polysiloxane portion of the polysiloxane-based macromonomer may be any of a long chain, a ladder, or a mixture of these.
  • the ladder shape Or a mixture of linear and ladder-like materials is preferred, and those having a large number of ladder-like portions are particularly preferred in terms of water resistance, heat resistance, weather resistance and the like.
  • the structure of the polycyclohexane-based monomer can be arbitrarily selected depending on the mixing ratio of the compounds (H) and (J) and the amounts of water, an acid catalyst, and the like.
  • the polysiloxane macromonomer used in the present invention preferably has a number average molecular weight of 400 to 50,000, particularly preferably 1,000 to 20,000. If it is less than 400, it tends to be easily formed during copolymerization, and if it exceeds 50,000, the compatibility tends to decrease.
  • the polysiloxane-based macromonomer in the reaction solution of the compounds (H) and (J) preferably has an average of 0.2 to 1.9 polymerizable unsaturated bonds per molecule, more preferably. Is preferably 0.6 to 1.4, and particularly preferably 0.9 to 1.2. If the amount of the polymerizable unsaturated bond is too small, the copolymerization reaction product of the polysiloxane-based macromonomer and the vinyl monomer having an oxysilane group tends to become cloudy, while if the amount of the polymerizable unsaturated bond is too large, the copolymerization reaction may occur during the copolymerization reaction. It is undesirable because gelation may occur.
  • the number of unsaturated bonds in the polysiloxane-based macromonomer can be determined by the following method.
  • the resulting copolymer has almost the same peak molecular weight (highest content molecular weight) and a monopeak distribution curve. If there is no distribution of low molecular weight components (monomers having no unsaturated bond component) or high molecular weight components (copolymers of monomers having two or more unsaturated bonds), the monomer is 1 Has an average of one polymerizable unsaturated bond in the molecule.
  • the number of moles of compound (H) used is [H] and the number of moles of compound (J) is [J], and a macromonomer having an average of one polymerizable unsaturated bond is obtained.
  • the number of moles of the compound (H) used in the case was [HI],
  • the number of moles of (J) is [J1], and the average number of polymerizable unsaturated bonds in the macromonomer is determined from [J] / [H] and [J1] / [HI].
  • the oxysilane group-containing vinyl monomer constituting the component (a) is a compound represented by the formula (6), and among the compounds represented by the formula (1) of the first invention, R 2 is represented by the formula (2) Or the compound represented by formula (3) has the same production method and structural formula.
  • oxysilane group-containing vinyl monomer a glycidyl group-containing monomer such as glycidyl methacrylate, glycidyl acrylate, vinyl glycidyl ether, etc., and ⁇ another unsaturated group-containing alicyclic epoxy compound of the second invention '' Any of the compounds of the group "can be used in combination.
  • a glycidyl group-containing monomer is preferred from the viewpoint of availability and cost, and a monomer containing an alicyclic oxysilane group is preferably used from the viewpoint of curability of the low-temperature curable resin composition.
  • the component (a) used in the low-temperature curable resin composition of the present invention is a vinyl copolymer using a polysiloxane-based macromonomer and an oxysilane group-containing vinyl monomer as one monomer component.
  • other polymerizable vinyl monomers can be used as a monomer component, if necessary, in addition to the monomer component.
  • Use The following compounds can be exemplified as other polymerizable vinyl monomers that can be used.
  • Vinyl aromatic compounds for example, styrene, ⁇ -methylstyrene, vinyl toluene, and ⁇ -chlorostyrene.
  • Gen-based compounds for example, butadiene, isoprene, and black lipene.
  • the copolymerization ratio between the polysiloxane macromonomer and the oxysilane group-containing vinyl monomer is from 0.01 to 98% by weight of the polysiloxane macromonomer,
  • the amount of the group-containing vinyl monomer is 99.9 to 2% by weight, more preferably 0.1 to 80% by weight of the polysiloxane-based macromonomer, and 99.9 to 20% by weight of the oxysilane group-containing vinyl monomer.
  • the amount of the polysiloxane-based macromonomer is less than 0.01% by weight, the curability tends to decrease, and if it exceeds 98% by weight, the properties of the cured product tend to decrease, and shrinkage tends to occur.
  • 0.01 to 80% by weight of a polysiloxane-based macromonomer, 90 to 90% by weight of an oxysilane group-containing vinyl monomer is used.
  • the above-mentioned vinyl copolymer can be obtained by the same method and under the same conditions as those for the synthesis reaction of ordinary acryl resin and vinyl resin.
  • a method in which each monomer component is dissolved or dispersed in an organic solvent and heated with stirring at a temperature of about 60 to 180 ° C. in the presence of a radical polymerization initiator can be exemplified.
  • the reaction time is preferably 1 to 10 hours.
  • the organic solvent include the same alcohol-based solvents, ether-based solvents, ester-based solvents, and hydrocarbon-based solvents as described in the reaction between (H) and (J). When a hydrocarbon solvent is used, it is preferable to use another solvent in combination from the viewpoint of solubility.
  • a radical initiator can be used in the reaction system, and examples thereof include benzoyl peroxide, peroxides such as t-butylperoxy-12-ethylhexanoate, azoisobutylnitrile, and azobis. Examples include azo compounds such as dimethyl valeronitrile.
  • the component (mouth) used in the present invention is a 6-coordinate organoaluminum chelate compound and And zirconium chelate compounds having eight or more coordinations, and the following compounds can be exemplified.
  • the hexacoordinate organoaluminum chelate compound is preferably a compound obtained by treating organoaluminum with a chelating agent, and the organoaluminum is a compound represented by the following formula (9). It is suitable.
  • R 2 , R 21 and R 22 represents an alkoxyl group having 1 to 13 carbon atoms or an alkoxyalkoxyl group having 3 to 10 carbon atoms, and the other groups have carbon atoms.
  • alkoxyalkoxy group having 3 to 10 carbon atoms examples include methoxymethoxy, methoxyethoxy, ethoxybutoxy, Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and amyl groups.
  • Examples of the aryl group include a phenyltoluyl group, examples of the alkenyl group include a vinylaryl group, and examples of the alkyl group having 1 to 6 carbon atoms substituted with a mercapto group or an amino group include: , 7-mercaptopropyl, aminoethyl, aminopropyl and aminobutyl groups.
  • Preferred hexacoordinate organoaluminum chelate compounds include aluminum isopropylate, aluminum sec-butylate, aluminum tert-butylate, and the like.
  • chelating agents to be reacted with the above-mentioned organoaluminum include lower alkanols, such as triethanolamine, diethanolamine, dimethylaminoethanol, etc., acetate acetates, such as methyl acetate acetate, ethyl acetate acetate, diketones, etc.
  • Alcohols such as diacetone alcohol, diketones such as acetylacetone, glycols such as ethylene glycol, octylene glycol, etc., oxycarboxylic acids such as lactic acid, tartaric acid, etc., dicarboxylic acids or esters thereof, such as maleic acid, Examples include ethyl ethyl malonate, other salicylic acid, catechol, pyrogallol and the like. Of these, lower alkanolamines, oxycarboxylic acids and diketones are preferred.
  • the 6-coordinate organic aluminum chelate compound used in the present invention a compound having no hydroxyl group and no alkoxyl group directly bonded to an aluminum atom is preferable.
  • the organoaluminum chelate compound has a hydroxyl group or an alkoxyl group directly bonded to an aluminum atom
  • the storage stability of the composition is deteriorated and the composition is cured. It is not preferable because the smoothness of the subsequent coating film may be reduced.
  • the hexacoordinate organoaluminum chelate compound used in the present invention includes aluminum dimethyl tris (ethyl acetate), tristrifluoroacetylacetonatoaluminum, and trishexafluoroacetylacetonatoaluminum.
  • Examples of the 8-coordinate organic zirconium chelate compound that can be used in the present invention include organic A compound obtained by treating zirconium with a chelating agent is preferable, and as the organic zirconium, a compound represented by the following formula (10) is preferable.
  • R 23 -Zr R 24 25 R 26 (10) (wherein, at least any two of R 23 , R 24 , R 25 and R 26 are an alkoxyl group having 1 to 13 carbon atoms or a carbon number of 3 to Represents an alkoxyalkoxy group of 10; the other groups are any of an alkyl group having 1 to 6 carbon atoms, an aryl group, an alkenyl group, or an alkyl group having 1 to 6 carbon atoms substituted with a mercapto group or an amino group.
  • alkoxyl group having 1 to 13 carbon atoms methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, Examples include n-pentoxy, isoamyloxy, n-hexyloxy, n-heptyloxy, and n-octyloxy.
  • alkoxyalkoxy group having 3 to 10 carbon atoms include methoxymethoxy, methoxetoxy, ethoxybutoxy, and butoxypentoxy groups.
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and amyl groups, and the aryl group is phenyltoluyl.
  • the alkenyl group can be exemplified by a vinyldiaryl group.
  • Examples of the alkyl group having 1 to 6 carbon atoms substituted with a mercapto group or an amino group include amercaptopropyl, aminoethyl, aminopropyl, and aminobutyl groups.
  • organic zirconium examples include tetramethyl zirconate, tetraethyl zirconate, tetraisopropyl zirconate, tetra-n-butyl zirconate, tetraisobutyl zirconate, and tetra-tert-butyl zirconate.
  • chelating agent for reacting with the above-mentioned organic zirconium compound those similar to the chelating compound used in the case of the 6-coordinate organic aluminum compound are preferred. Can be used.
  • the organic zirconium chelate compound used in the present invention is preferably a compound having neither a hydroxyl group nor an alkoxyl group directly bonded to a zirconium atom.
  • a hydroxyl group or an alkoxyl group directly bonded to a zirconium atom is present, similar to the case of the aluminum compound, the storage stability of the resin composition and the smoothness of the cured coating film are reduced, which is preferable. Absent.
  • 8-coordinated organic zirconium chelate compounds include tetrakis (oxalic and) zirconium, tetrakis (acetylacetone) zirconium, tetrakis (n-propylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, tetrakis (salicyl) Aldehydato) zirconium and the like, which may be partially condensed.
  • the component (c) used in the present invention is a compound having at least two alicyclic oxylan groups in one molecule and having a number average molecular weight of 1,000 or less, and examples thereof include the following.
  • polyisocyanate compounds there are adducts of coal, etc. and polyisocyanate compounds.
  • polyisocyanate compounds that can be used include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; and xylylene diisocyanate and isophorone diisocyanate. Cycloaliphatic diisocyanates; organic diisocyanates themselves such as tolylene diisocyanate or aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, or each organic diisocyanate.
  • Examples thereof include adducts of alcohols with polyhydric alcohols, low molecular weight polyester resins or water, or polymers of the above-mentioned organic disuccinates, and further, isocyanate-biuret.
  • Commercially available products include products from Dainippon Ink and Chemicals, Inc., “Vanock D — 750”, “Vanock D—800”, “Vanock DN—950”, and “Vanock D— 9 7 0 "or” Bahnock D 15 5 4 5 5 ", products from Bayer, Germany” Death module L “," Death module NHLJ “,” Death module IL “or” Death module N 3390 ", Takeda Pharmaceutical Co., Ltd.
  • esterification reaction of an esterified compound having an unsaturated group such as 4-cyclohexene-1,1,2-ylene in the molecule for example, tetrahydrophthalic anhydride, trimethylolpropane, 1,4-butanediol, etc.
  • esterified product having a number average molecular weight of 900 obtained by peroxidation with peracetic acid or the like.
  • the compound having an alicyclic oxysilane group a compound in which an alicyclic oxysilane group is introduced in addition to the alicyclic oxysilane group can be used. It is important that the molecular weight of the component (c) be no more than a number average molecular weight of 1,000. If the number average molecular weight exceeds 1, 000, the component to be added to the low-temperature curable resin composition of the present invention. This is because the compatibility with the vinyl copolymer resin, which is the component (a), is reduced, and a coating film having excellent finishability and coating film performance cannot be formed. Low temperature curable resin composition
  • the low-temperature curable resin composition of the present invention comprises the following components (a), (mouth) and (c).
  • the amount of the component (mouth) is preferably from 0.01 to 30 parts by weight, particularly from 0.1 to 15 parts by weight, based on 100 parts by weight of the component (a). Is preferred. If the amount of the component (mouth) is less than this range, the cross-linking curability tends to decrease, and if it is more than this range, it remains in the cured product and the water resistance of the cured product is reduced, so that it is preferable. I do not.
  • the amount of the component (c) is preferably from 0 :! to 100,000 parts by weight, more preferably from 5 to 100 parts by weight, per 100 parts by weight of the component (a). is there.
  • component (c) also has the property of being a diluent in the low-temperature curable resin composition, and contributes to the increase or decrease of the solid content of the low-temperature curable resin composition. Is desirable.
  • the amount of the component (c) is more than 1,000 parts by weight, the content of Si iR or Z and Si 0 H groups in the low-temperature curable resin composition decreases, and Is reduced.
  • the resin composition of the present invention may further contain, for example, an epoxy group-containing resin (“Epicone 1001” manufactured by Shell Chemical) or a hydroxyl group-containing resin such as a styrenearyl alcohol copolymer. can do.
  • Epoxy group-containing resin (“Epicone 1001” manufactured by Shell Chemical)
  • a hydroxyl group-containing resin such as a styrenearyl alcohol copolymer. can do.
  • These resins can be blended in the low-temperature curable resin composition of the present invention in an amount of 10% by weight or less.
  • the cured product obtained from the low-temperature curable resin composition of the present invention has excellent weather resistance, water resistance, etc., and is used, for example, for painting and repairing automobiles and containers, painting outdoor building materials, and pre-coated metal. It is preferably used.
  • the coating method is not limited, and can be applied by a general coating method such as spray coating, roll coating, brush coating, and the like.
  • the low-temperature curable resin composition of the present invention can be used by dissolving it in an organic solvent.
  • Organic solvents that can be used include hydrocarbon solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, dioxane and ethylene glycol ethyl ether. Examples thereof include ether solvents, alcohol solvents such as butanol, and propanol.
  • the concentration of the low-temperature curable resin composition can be appropriately selected depending on the purpose of use, and is generally preferably from 10 to 70% by weight.
  • the low-temperature curable resin composition of the present invention can be easily crosslinked and hardened at a low temperature of 100 ° C. or lower. For example, in the case of curing at room temperature without any heating, it can usually be sufficiently cured in about 8 hours to 7 days, and in the case of heating to about 40 to 100 ° C, 5 minutes. It can be sufficiently cured in about 3 hours.
  • the curing reaction of the low-temperature curable resin composition of the present invention starts by volatilization of a solvent and proceeds in a chain by volatilization of a chelating agent from a crosslinking curing agent. It is assumed that the progress of the curing reaction by the cross-linking curing agent follows the mechanism described below.
  • an organoaluminum chelate compound when used as a cross-linking curing agent, first, as a first step reaction, after the chelating agent is volatilized, aluminum The compound reacts with the silanol group in the polyxanoxane-based macromonomer structural unit to form a bond of the formula (1i).
  • the formula (11) -bonded hesilanol group coordinates and the formula (1) polarizes the silanol group.
  • the polarized silanol group reacts with the epoxy group to form an oxonium salt.
  • ionic polymerization of an epoxy group and addition reaction to a hydroxyl group occur.
  • the curing reaction in the low-temperature curable resin composition of the present invention is caused by various reactions such as condensation reaction between silanol groups in addition to the above-mentioned crosslinking reaction by the catalytic action of the crosslinking curing agent. It is presumed that the reaction proceeds, for example, the following various curing reactions occur.
  • the polysiloxane-based macromonomer structural unit contains an alkoxyl group as a functional group
  • a silanol group is generated. Hydrolysis is necessary for this purpose, but this hydrolysis reaction requires only a small amount of moisture, such as humidity, in the air.
  • the vinyl copolymer used contains a functional group such as a silanol group derived from a polysiloxane macromonomer which is a monomer component and a vinyl monomer containing an oxysilane group. Oxysilane groups are present.
  • a solution obtained by adding 35 g of the compound (K) and 0.3 g of zirconium tetrakis (acetyl acetone) to 160 g of the copolymer solution was applied on a glass plate so as to have a dry film thickness of 60. Bake for 30 minutes. The cured coating film was smooth, transparent, and did not shrink, and the acetone extraction residue was 98.4%.
  • Example 1 48 moles of phenyltrimethoxysilane and 2 moles of methacryloxypropyltriethoxysilane were reacted in the same manner as in Example 1.
  • the obtained polysiloxane-based macromonomer had a number average molecular weight of about 5,000, and on average contained one vinyl group and 5 to 10 methoxy groups per molecule.
  • 500 g of this macromonomer and 500 g of the vinyl monomer used in Example 1 were polymerized in the same manner as in Example 1 to obtain a copolymer. Its number average molecular weight was about 60,000.
  • Methyltrimethoxysilane 29.1 mole and acryloxypropyltriet 0.9 mol of xysilane was reacted in the same manner as in Example 1.
  • the obtained polysiloxane macromonomer had a number-average molecular weight of about 15,000, and had one vinyl group and 5 to 10 methoxy groups per molecule on average.
  • This macromonomer -400 g and the vinyl monomer used in Example 1-600 g were polymerized in the same manner as in Example 1 to obtain a copolymer.
  • the number average molecular weight was about 70,000.
  • Example 2 The curable composition of Example 2 was applied on a glass plate so as to have a dry film thickness of 60, and was left at 25 ° C. for 48 hours. The cured coating was smooth, transparent, and did not shrink, and the acetone extraction residue was 95%.
  • the cured coating was smooth and transparent, no shrinkage was observed, and the residue extracted with acetone was 96%.
  • the gel fraction expressed by the residue extracted with acetone was obtained by removing the dried coating film from the glass plate and extracting it with acetone at reflux temperature for 6 hours using a Soxhlet extractor. In% by weight.
  • the low-temperature curable resin composition of the present invention can be easily cross-linked and cured at a low temperature of 100 ° C. or lower.
  • a gel fraction of 95% or more can be easily obtained by curing at 80 ° C. for 30 minutes.
  • a cured product having the same is obtained.
  • the curing reaction does not require moisture, or the curing reaction proceeds in the presence of a small amount of moisture in the air.
  • the storage stability is good even when used as a one-part composition.
  • the composition does not use a highly toxic curing agent such as isocyanate, and the solution viscosity of the composition is low, so that a high solid content can be obtained.
  • the fifth invention relates to a thermosetting aqueous coating composition in which a polymer of a specific epoxy group-containing unsaturated compound and a quaternary ammonium compound are blended in a vinyl resin or the like, and particularly relates to storage stability and curing of a coating film.
  • the present invention relates to a thermosetting aqueous coating composition having excellent properties.
  • Water-based paints are widely used in various fields because water is a medium and does not use an organic solvent as a medium.
  • a coating is known in which a resin composition containing a hydroxyl group-containing polycarboxylic acid resin and an amino aldehyde resin is neutralized with an amine compound and then dispersed.
  • conventional water-based paints need to be baked at a temperature of 180 ° C or more, and the resulting paint films are inferior in chemical and physical properties such as curability, weather resistance, and acid resistance. There is.
  • the present inventors have conducted intensive studies for the purpose of improving the storage stability of the water-based coating composition and the performance in which the curability of the coating film is balanced, and as a result, a resin having a hydroxyl group and a carboxyl group has been identified. It has been found that an aqueous coating composition containing a thermosetting resin composition in which the above epoxy resin and a quaternary ammonium compound are blended can achieve the above object, and have completed the present invention.
  • the present invention provides a resin (P) having a hydroxyl group and a carboxyl group, an epoxy resin obtained by polymerizing an alicyclic epoxy group-containing unsaturated compound represented by the following formula (6).
  • An object of the present invention is to provide a thermosetting aqueous coating composition comprising a resin (Q) and a quaternary ammonium compound (R).
  • R 1 represents a hydrogen atom, an aromatic hydrocarbon group or a saturated or unsaturated aliphatic hydrocarbon group
  • R 2 represents the formula (2) or the formula (3).
  • R 4 and R 5 are each a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 4 to 8, and n represents an integer of 1 to 10.
  • the resin (P) used in the thermosetting aqueous coating composition of the present invention is not particularly limited as long as it has a hydroxyl group and a carboxyl group.
  • any resin conventionally known in the field of coatings based on vinyl resin, polyester resin, or the like can be used. Specifically, the following resins can be exemplified.
  • Examples of the vinyl resin include a copolymer of a vinyl monomer having a hydroxyl group and a vinyl monomer having a carboxylic acid group.
  • Vinyl monomer is hydroxyl group and power When it contains a lipoxyl group, its homopolymer can also be used.
  • Hydroxyl-containing vinyl monomers include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polycaprolactonediol mono (meth) acrylate, and polio. Examples thereof include hydroxyl group-containing monomers such as xylethylene glycol mono (meth) acrylate. One or two or more of these vinyl monomers can be used in combination.
  • Vinyl monomers containing carboxyl groups include (meth) acrylic acid, carboxyethyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and / 3-carboxyethyl (meth). Acrylate and the like.
  • modified unsaturated monocarboxylic acids such as adducts of (meth) acrylic acid and £ -prolactone, can also be used.
  • the modified unsaturated monocarboxylic acid has an unsaturated group and a carboxylic acid group, and there is no particular limitation as long as the modified unsaturated monocarboxylic acid has a chain extended between the unsaturated group and the carboxylic acid group. Absent.
  • a compound having a lactone-modified (meth) acrylic acid represented by the following formula (A) and a compound having an ester bond such as a lactone-modified such that a terminal hydroxyl group represented by the following formula (B) is acid-modified with an acid anhydride examples thereof include a saturated monocarboxylic acid and a carboxyl group-containing compound such as a modified unsaturated monocarboxylic acid having an ether bond represented by the following formula (C).
  • each vinyl monomer can be used alone or in combination of two or more.
  • R 111 represents a hydrogen atom or a methyl group
  • R 11 and R 12 each represent a hydrogen atom, a methyl group or an ethyl group
  • R 13 represents a divalent lipid having 1 to 10 carbon atoms.
  • RH and R 15 are each a hydrogen atom, methyl , A methyl group, a propyl group, a butyl group
  • X represents an integer of 4 to 8
  • y represents an integer of 1 to 10).
  • polyester resins include trimethylolethane and trimethylolproha. And pentaerythritol, glycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, neopentyl glycol, 1,6-hexanediol, and other polyol components, and (phthalic anhydride), isophthalic acid, and tetrahydrophthalic anhydride.
  • a polycarboxylic acid component such as acid, hexahydrophthalic acid, adipic acid, (anhydride) trimellitic acid
  • modified polyester resin with fatty acid or epoxy resin Modified polyester resin
  • Modified polyester resin obtained by adding an acid anhydride such as maleic anhydride to an esterified product of bisphenol.epichlorohydrin type epoxy resin modified
  • the resin (P) preferably has a number-average molecular weight of 1,000 to 100,000, particularly preferably 2,000 to 800,000. Is preferably 130 ° C. or less, particularly preferably 115 ° C. or less, the acid value is preferably 1 to 100, particularly preferably 10 to 80, and the hydroxyl value is preferably It is preferably from 100 to 5,000, particularly preferably from 20 to 20,000.
  • the coating properties such as hardness, bending resistance and corrosion resistance are liable to be deteriorated.
  • the number average molecular weight is more than 100,000, the coating properties such as smoothness are reduced. Film appearance tends to be poor. If the softening point is higher than 130 ° C., the coating film tends to have poor smoothness.
  • the acid value is less than 1, it is difficult to form an aqueous solution.
  • the acid value is more than 100, the storage stability of the coating is deteriorated. And the coating performance such as hardness and flex resistance tends to decrease.
  • a functional group such as a phenolic hydroxyl group, an alkoxysilane group, or a hydroxysilane group, in addition to the above-mentioned hydroxyl group and carboxyl group, may be introduced into the resin (P) as necessary.
  • the method for introducing these functional groups is not particularly limited, and a known method can be used.
  • a phenolic hydroxyl group may be introduced by using bisphenol-modifying (meth) acrylate as a vinyl monomer component of the vinyl resin.
  • An alkoxysilane group-hydroxysilane group may be introduced by methacryloxypropyltrimethoxysilane and a hydrolyzate thereof.
  • a compound such as a decomposition product may be used as a component of the vinyl monomer of the vinyl resin, and copolymerized.
  • the epoxy resin (Q) used in the coating composition of the present invention is an alicyclic epoxy group-containing unsaturated compound represented by the above formula (6), that is, represented by the formula (1) of the first invention.
  • R 2 is a compound obtained by polymerizing a compound having the same production method and the same structural formula as the compound represented by the formula (2) or (3).
  • copolymerization may be carried out by using “any compound of other unsaturated group-containing alicyclic epoxy compound” of the second invention in combination.
  • the epoxy resin (Q) includes, in addition to the alicyclic epoxy group-containing unsaturated compound and the other compounds described above, methyl (meth) acrylate, ethyl (meth) acrylate, i-propyl (meth) acrylate, n- Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, acrylonitrile, acrylamide, styrene, vinyltoluene, vinyl acetate, i-propyl vinyl ether, n-butyl vinyl ether, methoxethyl vinyl ether, etc.
  • a radically polymerizable unsaturated group-containing monomer having no functional group that causes a reaction between a hydroxyl group and a carboxyl group can be copolymerized.
  • the epoxy resin (Q) has a number average molecular weight of 194-10000, especially 094-2,000, especially 194-1,000.
  • the epoxy equivalent is preferably 50 to 2,000, particularly preferably 55 to 1, 000, and the softening point is 130 ° C. or less, particularly 11 Preferably it is below 5 ° C.
  • Those having a number-average molecular weight of less than 100 are difficult to obtain, while those having a number-average molecular weight of more than 100,000 are not preferred because of poor coating surface smoothness.
  • Those having an epoxy equivalent of less than 50 are difficult to obtain, while those having an epoxy equivalent of more than 2,000 tend to decrease the curability of the coating film. Further, when the softening point is higher than 130 ° C, the smoothness of the coating film tends to deteriorate.
  • the alicyclic hydrocarbon ring may be 3-membered to 5-membered or more, and the ring may be monocyclic or polycyclic, and the ring may be an organic ring. It may constitute a hydrocarbon ring.
  • Specific examples of epoxy resin (Q) that can be used together examples thereof include epoxy resins having two or more functionalities shown below.
  • the quaternary Anmoniumu compound used in the coating composition of the present invention can be used those represented by (R 20 R 2 1 R 2 2 R 23 N w) XH.
  • R 2 °, R 21 , R 22 and R 23 each represent a hydrocarbon group, which may be the same or different. Further, the hydrocarbon group may be substituted with a hydroxy group.
  • X represents an anion residue of halogen ions or acids, for example C 1, B r, F, I, S0 4, HS0 4, NO 3, P_ ⁇ 4 C l O 4, HCOO, CH 3 COO, OH , etc. Can be exemplified.
  • Preferred quaternary ammonium compounds (R) used in the present invention include the following compounds.
  • Tetraalkylammonium organic acid salts such as tetramethylammonium acetate and tetraethylammonium formate can be exemplified.
  • the quaternary ammonium hydroxide easily disperses the resin (P) and the epoxy resin (Q) in water to give a coating composition having excellent storage stability, and also has water resistance. It is particularly preferable in that a coating film having excellent corrosion resistance can be formed.
  • the thermosetting aqueous coating composition of the present invention has a resin (P) content of 40 to 97% by weight, preferably 50 to 95% by weight in terms of the total amount of the resin (P) and the epoxy resin (Q). %, More preferably 60 to 90% by weight, epoxy resin (Q) 3 to 60% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight. It is preferable to do so.
  • the resin (P) power is less than 40% by weight and the epoxy resin (Q) is more than 60% by weight, the water dispersibility of the obtained coating composition decreases.
  • the content of the resin (P) is more than 97% by weight and the content of the epoxy resin (Q) is less than 3% by weight, the coating properties such as water resistance, corrosion resistance, and bending resistance are reduced.
  • the epoxy resin (Q) The hydroxyl group in the resin (P) is at least 0.3, preferably 0.5 to 5, more preferably 0.5 to 5 in the equivalent ratio (hydroxyl / epoxy group) to the epoxy group in the epoxy resin (Q). It is preferable to blend with the resin (P) so as to fall within the range of 7 to 4. If the equivalent ratio is less than 0.3, the unreacted resin (P) component increases in the coating film, and the coating film performance such as bending resistance, water resistance and corrosion resistance may decrease.
  • the epoxy resin (Q) is dispersed stably in water by the carboxyl group in the resin (P).
  • the mixing ratio of carboxyl group / epoxy group is considered from the viewpoint of water dispersion and paint storage stability. It is preferable that the equivalent ratio is in the range of 0.1 to 1, particularly 0.1 to 0.6.
  • the quaternary ammonium compound (R) is 0.01 to 10% by weight, preferably 0 to 10% by weight, based on the total weight of the resin (P), the epoxy resin (Q) and the quaternary ammonium compound (R). It is preferably in the range of 1 to 7% by weight, more preferably 0.1 to 5% by weight. This is because a resin having sufficient weather resistance and acid resistance can be obtained in this range.
  • the following method can be exemplified as a method for producing the thermosetting aqueous coating composition of the present invention.
  • an epoxy resin (Q) or a solution of an epoxy resin (Q) dissolved or dispersed in an organic solvent is mixed with a solution of the resin (P) dissolved or dispersed in an organic solvent.
  • a quaternary ammonium compound (R) and, if necessary, a neutralizing agent are added to the obtained mixture, and the mixture is dispersed in water.
  • the organic solvent that can be used for dissolving or dispersing the resin (P) or the epoxy resin (Q) is preferably an organic solvent that is substantially inert to the functional groups of these resins.
  • alcohol-based solvents ether-based solvents, ketone-based solvents, ester-based solvents, and hydrocarbon-based solvents.
  • a hydrophilic solvent such as an alcohol solvent or an ether solvent
  • neutralizing agents include, for example, ammonia, trimethylamine, triethylamine, tributylamine, dimethylethanolamine, getylethanolamine, dimethylproanolamine, methylethylamine, ethylethylamine, triethylamine. Ethanolamine and the like can be used.
  • a quaternary ammonium compound When a quaternary ammonium hydroxide is used as (R), the resin component can be dispersed in water without using a neutralizing agent. If necessary, the quaternary ammonium compound () may be used in combination with the neutralizing agent. Other compounds can be added to the coating composition of the present invention.
  • Resin that can be blended is polytetramethylene glycol, bisphenol A ⁇ ethylene oxide adduct, polyprolactone polyol, polycarbonate diol, polyurethane polyol, vinyl alcohol (co) polymer, styrene- A polyol resin containing no carboxyl group, such as an aryl alcohol copolymer, can also be blended.
  • Catalysts intended to cure coating films at lower temperatures include phenol compounds such as catechol, silanol compounds such as diphenylsilanediol, A], Ti, V, Fe, Zn, and Zr. And metal compounds such as Sn and ethyl acetate acetate, trifluoroacetylacetone, dibenzoyl acetyl acetate, and the like; and metal chelate compounds such as chelate compounds with 8-diketones.
  • the catalyst is preferably blended in the range of 0.01 to 10 parts by weight based on the total of 100 parts by weight of the resin (P) and the epoxy resin (Q).
  • paint additives such as titanium white, black pigment, red iron black, etc., pigments such as clay, talc, silica, etc., pigment dispersants, repelling inhibitors, fluidity regulators, etc. can do.
  • the method for forming a coating film using the coating composition of the present invention is not particularly limited. For example, it can be carried out by applying and drying the surface of the base material by means of electrodeposition coating, spray coating, dip coating, roller coating, brush coating or the like.
  • the thickness of the coating film is not particularly limited, but it is sufficient in the range of 100 to 100 ⁇ m for normal use. Drying of the coating is preferably in the range of 0 to 200 ° C, more preferably in the range of 50 to 180 ° C, and 120. This can be done in 30 minutes at C and about 10 minutes at 180 ° C.
  • the substrate to be applied is not particularly limited, either, but it is possible to apply zinc, tin, chromium, aluminum, etc. on the surface of steel, aluminum, alumite, copper, or steel. It can be preferably used for a wide range of metals such as painted steel or steel whose surface is chemically or electrolytically treated with chromic acid or phosphoric acid.
  • Parts indicates “parts by weight” unless otherwise indicated, and “%” indicates “% by weight” unless otherwise indicated.
  • Salt spray resistance Tested in accordance with JIS Z—2371, and those with a creep width of less than 2 mm on one side from the cut part of the coating film were accepted. The test time was 1,000 hours.
  • the test plate was bent at a right angle in an atmosphere at a temperature of 20 ° C for 1 to 2 seconds, and a test piece having no abnormalities such as peeling and peeling of the coating film at the bent portion was passed.
  • Methylprono in a four-neck flask. 75 parts of knol were charged and heated to 110 ° C. This A mixture of 3 parts of acrylic acid, 20 parts of hydroxyethyl acrylate, 57 parts of methyl methacrylate and 20 parts of styrene, 1 part of 2,2'-azobisisobutyl nitrile and 1 part of methyl isobutyl A mixture of 5 parts of ketone was added dropwise over 1 hour. This was aged for 1.5 hours to obtain a resin solution (P) having an acid value of 23, a hydroxyl value of 97, a number average molecular weight of 20000, and a solid content of 55%.
  • P resin solution
  • a four-necked flask was charged with 64 parts of methylpropanol and heated to 110 ° C.
  • a mixture of 1 part of isobutyl nitrile and 5 parts of methyl isobutyl ketone was added dropwise over 1 hour. This was further aged for 1.5 hours to give a resin solution with an acid value of 26, a hydroxyl value of 108, a number average molecular weight of 25,000 and a solid content of 59%.
  • the water-dispersed product before the storage test was spray-coated on a zinc phosphate-treated steel sheet so as to have a dry film thickness of 20, dried at 80 ° C for 10 minutes, and further heated at 140 ° C. Drying was performed for 20 minutes to obtain a coating.
  • This painted product had good coating smoothness, passed salt spray resistance, had a pencil hardness of 2 H, and passed flex resistance.
  • the gel fraction of the coating film was 93%.
  • Example 1 20 parts of hydroxyethyl acrylate and 57 parts of methyl methacrylate were added to 77 parts of methyl methacrylate, and 19.5 parts of a 20% aqueous solution of tetraethylammonium methoxide was added to triethylamine.
  • a water dispersion having a solid content of 30% was obtained in the same manner as in Example 1 except that 3.4 parts of the deionized water was replaced with 180 parts of deionized water.
  • the storage stability of the obtained aqueous dispersion was not abnormal.
  • the water oxide before storage was coated and dried in the same manner as in Example 1 to obtain a coated product. This painted product had good coating smoothness, but failed salt spray resistance, had a pencil hardness of 4 B, and failed flex resistance.
  • the gel fraction of the coating film was 55%.
  • thermosetting aqueous coating composition of the present invention the reaction between the functional groups of the hydroxyl group in the resin (P) and the epoxy group in the epoxy resin (Q) hardly proceeds at about room temperature, When baking is performed at about C, a reaction similar to the functional group rapidly proceeds. For this reason, it is particularly excellent in storage stability and coating film low-temperature curability. Further, the cured film obtained from the thermosetting aqueous coating composition of the present invention has good coating smoothness, and excellent salt spray resistance and bending resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)

Description

明 細
新規化合物、 その重合体及びそれらの製造方法並びに新規化合物を含む組成物 第 1の発明の技術の分野
第 1の発明は、 反応性官能基を含む新規化合物およびその用途に関し、 より詳 細には、 熱や光で容易に単重合または共重合し、 印刷用途、 エレク卜ロニクス用 レジスト及び塗料、 接着剤等に用いられる新規化合物に関する。 第 1の発明の背景技術
各種刷版、 エレクトロニクス用途の発展に伴い、 感光性フィルム等の解像度の 向上が求められている。 これら巿場ニーズに牽弓 Iされ高分子工業の著し 、進歩が 見られ、 多種多様な化合物や高分子材料が開発され、 広範囲にわたって用いられ ている。 特に近年、 工業製品の高機能化 ·高性能化に伴い、 より優れた化合物及 び高分子材料の開発が求められている。
例えば、 プリント配線板用レジス卜の分野ではプリント配線板にレジストを形 成させる方法として、 感光性フィルムを所定のパターンに露光 ·現像し、 目的の レジストパターンを形成させる写真法が開発されている。 また、 価格の点あるい は感光性フィルムにない特性を有することから液状レジス卜が採用されている。 更に、 レジスト形成の際の現像液としては、 従来より溶剤現像型と炭酸ナトリ ゥム水溶液を使用する希アルカリ水溶液現像型とがあり、 オゾン層破壊、 作業環 境への影響等から、 そのほとんどが希アル力リ水溶液現像型の使用に開発が移行 している。
このような市場のニーズを受け、 分子内に 2つ以上の反応性基を有する化合物 または側鎖に複数個の反応性基を有する反応性ォリゴマ一もしくはポリマ一が、 熱硬化性または光硬化性樹脂として開発されている。 また、 それ以外の機能性樹 脂として広範囲な工業用途に、 様々な分野から検討および開発が行われ、 更に新 たな素材の開発が期待されている。 特に、 熱または紫外線もしくはイオン放射線 等の光で容易に単重合または他の不飽和基含有化合物と共重合し得る多官能モノ マーの開発、 印刷用途、 エレクトロ二クス用レジス卜及び塗料、 接着剤等に用い られる硬化性樹脂を構成するモノマーまたはその重合体の開発、 特に、 配合によ り現像時間が短く、 感度、 密着性、 半田耐熱性に優れ、 且つ耐加水分解性に優れ るレジス卜を構成するモノマ一およびその重合体の開発が熱望されている。 第 1の発明の開示
本発明者らは、 前記目的を達成するため鋭意検討を重ねた結果、 特定の構造を 有する化合物またはその重合体が、 光硬化または熱硬化性を有し、 上記目的を達 成し得ることを見い出し、 本発明を完成させた。
すなわち本発明は、 式 (1) で表わされる化合物を提供するものである。 また、 反応性官能基を含む基が脂環式エポキシを含む基であることを特徴とする前記化 合物を提供するものである。 また、 反応性官能基を含む基で置換された脂肪族炭 化水素基が式 (2) または式 (3) で表される基であることを特徴とする前記化 合物を提供するものである。 更に、 前記化合物の重合体を提供するものである。 加えて、 式 (4— 1) または式 (4一 2) で表される水酸基含有化合物に式 (5) で表される化合物を反応させる式 (1) で表される化合物の製造方法を提供する ものである。 以下、 本発明を詳細に説明する。
Rz-0-CO-NH-CH = CH-R' (1)
(式中、 R 1は水素原子、 芳香族炭化水素または飽和もしくは不飽和脂肪族炭化
水素基を表す。 R2は、 反応性官能基を含む基で置換された脂肪族炭化水素基を
表す。 )
(3)
Figure imgf000004_0001
(式中、 R 4および R 5は、 各々水素原子、 メチル基またはェチル基であり、 m
は 4〜 8の整数、 nは 1 ~ 10の整数を表す。 )
Figure imgf000005_0001
O CCO(CR4Rs)mO) n- i-CO(CR4R5)m-OH (4-2)
Figure imgf000005_0002
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4~8の整数、 nは 0〜: I 0の整数を表す。 )
Na-CO-CH = CH-R1 (5) (式中、 R1は水素原子、 芳香族炭ィ匕水素基または飽和もしくは不飽和脂肪族炭 化水素基を表す。 )
図面の簡単な説明
第 1図は、 実施例 1で得た 3, 4 _エポキシシクロへキシルメチルォキシカル ボニルビニルァミン (化合物 A) の I Rチャートであり、 第 2図は、 実施例 4で 得た前記化合物 Aの重合体 (重合体 A) の I Rチヤ一卜である。
第 1の発明を実施するための最良の形態
本発明の式 (1) で表される化合物において、 R1は、 水素原子、 芳香族炭化水 素基または飽和もしくは不飽和脂肪族炭化水素基であることが好ましい。
芳香族炭化水素基である場合には、 フヱニル基、 ベンジル基であることが好ま しい。 また、 飽和脂肪族炭化水素基である場合は、 炭素数 1〜10のアルキル基 であることが好ましい。 更に、 不飽和脂肪族炭化水素である場合は、 ビニル基、 ァリル基、 (メタ) ァクリノレ基であることが特に好ましい。 R1は、 これらの中で、 水素原子、 メチル基、 ェチル基、 フヱニル基であることが特に好ましい。
R2は、 反応性官能基を含む基で置換された脂肪族炭化水素基を示し、 特に好ま しくは、 上記式 (2) 、 式 (3) で表される基である。 なお、 式 (3) において は、 R4および R5は各々水素原子、 メチル基またはェチル基であり、 mは 4〜8 の整数であることが好ましく、 nは 1〜 10の整数であることが好ましい。 式 (1) で表される化合物は、 例えば、 式 (4一 1 ) または式 (4一 2) で表 されるような水酸基含有化合物に、 式 (5) で表される化合物を反応させること により製造することができる。 ここに、 式 (4— 1) で表される水酸基含有化合 物は、 3, 4—エポキシシクロへキシルメチルアルコールである。 また、 式 (4 —2) で表される水酸基含有化合物は、 3, 4—エポキシシクロへキシルメチル アルコールにラク トンを 1〜10の範囲で重合することにより得られるラク トン 重合体である。 式 (4— 2) で表される水酸基含有化合物は、 具体的にはアルコ ールである化合物 (4- 1) 等の活性水素を開始剤とし、 ど一力プロラク トンを 常法により開環重合させて製造することができる。 ラク トンは、 £—力プロラク トン以外に、 バレロラク トン等を単重合体させ、 または e—力プロラク トンとノく レロラク トン等を共重合体させてもよい。
一方、 式 (5) で表される化合物は、 例えば、 アジ化金属であるアジ化ナトリ ゥムで代表されるアルカリ、 アルカリ土類金属塩の水溶液に、 酸クロライドであ る Ι^— 0Η=0Η— COC 1を反応させることにより得ることができる。 R1は、 目的物である式 (1) で表される化合物の R1と同じ基のものを用いる。
アジ化金属と酸クロライ ドとの反応比は、 アジ化金属 1モルに対し酸クロライ ドを 0. 01〜1. 5モル反応させることが好ましい。 反応は、 アジ化金属の水 溶液に酸クロライドの溶液を滴下させて行う。 酸クロライ ドの溶媒には特に制限 はないが、 アセトン、 メチルェチルケトンなどのケ卜ン類が好ましい。 また、 ァ ジ化金属水溶液への滴下は、 温度— 78〜 100°Cで行うことができるが、 アジ 化金属の安定性を考え、 室温またはそれ以下の温度で行うことが好ましい。 式 (1) で表される化合翻ま、 式 (5) で表される化合物 1モルに対し、 式 (4-1) または式 (4— 2) で表される水酸基含有化合物を通常 0. 5〜10. 0モル添加し反応させて製造する。 反応温度は、 式 (5 ) で表される化合物の安 定性と反応温度の関係から、 0〜 1 5 0 °Cであることが好ましい。 反応には触媒 を使用することができる。 好ましい触媒としては、 トリェチルァミン、 ジメチル ベンジルアミン等の 3級アミン、 テトラエチルアンモニゥ厶クロライ ド等の 4級 アミン、 トリフヱニルホスフィンなどのホスフィン類を例示することができる。 式 (1 ) で表わされる化合物は、 分子内の炭素一炭素二重結合に基づいて単独 重合させまたは他の重合性不飽和基を有する化合物と共重合させることができる。 重合法としては溶液重合、 乳化重合、 懸濁重合、 沈殿重合等があるが、 溶液ラジ カル重合が最も簡便である。
共重合できるモノマーは、 重合性不飽和基を有するものであれば特に制限はな いが、 以下のモノマーが例示できる。 すなわち、 (メタ) ァクリル酸アルキルェ ステル類として、 メチル (メタ) ァクリレート、 ェチル (メタ) ァクリレ一ト、 プロピル (メタ) ァクリレート、 ブチル (メタ) ァクリレート、 ペンチル (メタ) ァクリレー卜、 へキシル (メタ) ァクリレー卜などがある。 また、 水酸基を有す る (メタ) ァクリル酸エステル類として、 2—ヒドロキシェチル (メタ) ァクリ レー卜、 ヒドロキシプロピル (メタ) ァクリレート、 ヒドロキシブチル (メタ) ァクリレー卜、 力プロラク 卜ン変性 2—ヒドロキシェチル (メタ) ァクリレ一卜 などがある。 また、 他の (メタ) ァクリレー卜類として、 メ トキシジエチレング リコール (メタ) ァクリレー卜、 ェトキシジエチレングリコール (メタ) ァクリ レート、 イソォクチルォキシジエチレングリコール (メタ) ァクリレート、 フエ ノキシトリエチレングリコール (メタ) ァクリレー卜、 メ トキシトリエチレング リコール (メタ) ァクリレ一ト、 メ トキシポリエチレングリコール (メタ) ァク リレートなどが例示され、 さらにその他のモノマ一としてスチレン類等がある。 本発明の重合体を得るために使用できる重合開始剤としては、 重合性不飽和基 を有する化合物の重合に通常使用されているものを用いることができる。 具体例としては、 ラウロイルハ °—ォキサイ ド、 ジー tーブチルバ一ォキサイ ド、 ビス (4— t一プチルシクロへキシル) パ一ォキシジ力一ボネ一卜、 t一ブチル パーォキシ ( 2—ェチルへキサノエ一ト) 、 メチルェチルケトンパ一オキサイド、 ベンゾィルパーォキサイ ド、 クメンヒドロパ一ォキサイ ドなどの過酸化物系化合 物、 2, 2—ァゾビスイソブチロニトリル、 2, 2' —ァゾビス— (2, 4—ジ メチルバレロニトリル) などのァゾ系化合物が例示できる。 また、 過酸化物系化 合物とァゾ系化合物を混合して使用することもできる。
重合反応には、 重合溶媒を使用することができ、 モノマーおよびポリマ一を溶 解するものであれば特に制限なく、 例えばベンゼン、 トルエン、 キシレンなどの 芳香族炭化水素類、 メチルアルコール、 エチルアルコール、 2—プロノ、。ノールな どのアルコール類、 アセトン、 メチルェチルケトン、 メチルイソブチルケ卜ンな どのケトン類、 ジェチルェ一テル、 ジブチルェ一テル、 ジォキサンなどのェ一テ ル類、 酢酸ェチル、 酢酸イソブチル、 エチレングリコールモノアルキルエーテル ァセテ一ト類、 ジエチレングリコールモノアルキルエーテルァセテ一ト類、 ジメ チルホルムアミ ド、 ジメチルァセ卜アミ ドなどのアミ ド類、 四塩化炭素、 クロ口 ホルムなどのハロゲン化炭化水素などが用いられる。 これらの溶媒は単独で、 ま たは混合して使用してもよい。 得られる重合体または共重合体の G P Cによる標 準ポリスチレン換算の数平均分子量は、 通常、 5, 000〜 500, 000、 好 ましくは 10, 000〜 80, 000の範囲である。 本発明の化合物 (1) 並びにその単重合体および共重合体は、 他の樹脂、 ェポ シキ開環付加触媒、 希釈モノマーまたはオリゴマー、 光重合開始剤その他の添加 剤を配合し硬化性樹脂組成物を得て、 光硬化または熱硬化させてレジストとして 使用することができる。 本発明の化合物 (1) またはその重合体に配合できる他の樹脂の酸価は、 50 〜150 KOHmgZgの範囲であることが好ましい。 酸価が 50 KOHmg/ g未満の場合には希アルカリ水溶液での未硬化樹脂組成物の除去が難しく、 15 OKOHmg/gを越えると硬化皮膜の耐湿性、 電気特性が劣る場合があるから である。 また、 配合できる樹脂の重量平均分子量は、 5, 000〜150, 00 0の範囲であることが好ましい。 但し、 用途によってこの範囲は異なり、 ソルダ 一レジスト、 エッチングレジスト等として膜厚が 30 m以下の用途では、 良好 な現像性が必要なことから重量平均分子量が 10, 000〜 40, 000が好ま しい。 また、 刷版等の印刷等を含む塗膜厚が 100 m程度の用途においては、 感度を重視するため重量平均分子量が 1 00, 000〜 150, 000程度であ ることが好ましい。 重量平均分子量が 150, 000を越えると現像性が著しく 低下し、 貯蔵安定性が劣る等の問題が生ずる場合もある。 本発明の化合物 (1 ) またはその重合体に配合できるエポキシ開環付加触媒と しては、 ジメチルベンジルァミン、 トリェチルァミン、 テ卜ラメチルエチレンジ ァミン、 トリー n—ォクチルアミン等の 3級アミン、 テトラメチルアンモニゥム クロライド、 テトラメチルアンモニゥムブロマイ ド、 テトラプチルアンモニゥム ブロマイド等の 4級アンモニゥム塩、 テ卜ラメチル尿素等のアルキル尿素、 テト ラメチルグァニジン等のアルキルグァニジン、 トリフエニルホスフィン等のホス フィン系及びこれらの塩を例示できる。 これらは単独で使用しても 2種以上を混 合して使用してもよい。 これらの触媒はエポキシ化合物である式 (1) の化合物 またはその (共) 重合体に対して 0. 01〜10重量%、 好ましくは 0. 5〜3.
0重量%用いるのが好ましい。 0. 01重量%より少ない場合は触媒効果が低く、
10重量%を越える量を加えると硬化性が劣る。 本発明の化合物 (1) またはその重合体に配合できる希釈モノマーまたはオリ ゴマーとしては、 ァクリル酸エステルまたはメタクリル酸エステル化合物、 ビニ ル芳香族化合物、 アミ ド系不飽和化合物等で代表されるラジカル重合性二重結合 を有する化合物を例示できる。 アクリル酸エステルまたはメタクリル酸エステルとしては、 メチル (メタ) ァ クリレ一卜、 ェチル (メタ) ァクリレート、 プロピル (メタ) ァクリレ一ト、 ブ チル (メタ) ァクリレ一ト、 ペンチル (メタ) ァクリレート、 へキシル (メタ) ァクリレート等の (メタ) アクリル酸アルキルエステル類、 2—ヒドロキシェチ ル (メタ) ァクリレー卜、 ヒドロキシプロピル (メタ) ァクリレート、 ヒドロキ シブチル (メタ) ァクリレート、 力プロラク トン変性 2—ヒドロキシェチル (メ タ) ァクリレート等の水酸基を有する (メタ) アクリル酸エステル類、 メ 卜キシ ジエチレングリコール (メタ) ァクリレート、 エトキシジエチレングリコール
(メタ) ァクリレート、 イソォクチルォキシジエチレングリコール (メタ) ァク リレ一ト、 フエノキシトリエチレングリコール (メタ) ァクリレート、 メ トキシ 卜リエチレングリコール (メタ) ァクリレ一ト、 メ 卜キシポリエチレングリコ一 ル # 4 0 0 — (メタ) ァクリレート等のアルコキシ (メタ) ァクリレ一ト類、 1 , 6—へキサンジオールジ (メタ) ァクリレー卜、 ネオペンチルグリコールジ (メ タ) ァクリレー卜等の二官能 (メタ) ァクリル酸エステル類、 トリメチロールプ 口パントリ (メタ) アタリレ一卜等の三官能 (メタ) アクリル酸エステル類、 ジ ペンタエリスリ トールへキサァクリレートなどの更に多官能 (メタ) アクリル酸 エステル類等が例示できる。 また、 ビニル芳香族化合物としては、 スチレン、 ビ ニルトルエン、 —メチルスチレンを例示することができる。 また、 アミ ド系不 飽和化合物としてはアクリルアミ ド、 メタクリルアミ ド等を例示することができ 。
一方、 オリゴマーとしては、 ポリエステルポリオールの (メタ) アクリル酸ェ ステル類、 ポリエーテルポリオールの (メタ) アクリル酸エステル類、 ポリェポ キシと (メタ) アクリル酸との付加物およびポリオールにポリイソシァネートを 介してヒドロキシ (メタ) ァクリレートを導入した樹脂等が例示できる。
配合できる希釈モノマ一またはオリゴマ一は、 本発明の化合物または本発明の 重合体 1重量部に対し、 0を越え 3 0 0重量部の範囲、 特には 1 0〜 1 0 0重量 部の範囲であることが好ましい。 希釈モノマ一およびオリゴマーが 3 0 0重量部 を越えると現像度が低下する場合がある。 本発明の化合物 (1 ) またはその重合体に配合できる光重合開始剤としては、 ベンゾフエノン、 ァセトフヱノン、 ベンジル、 ベンジルジメチルケトン、 ベンゾ イン、 ベンゾインメチルェ一テル、 ベンゾインェチルエーテル、 ベンゾインイソ プロピルエーテル、 ジメ トキシァセトフヱノン、 ジメ トキシフ 1ニルァセトフエ ノン、 ジェトキシァセトフヱノン、 ジフヱニルジサルファイ ト等が例示でき、 こ れらは単独でも 2種以上を混合して使用することもできる。 光重合開始剤は、 光 吸収エネルギーの重合開始遊離基への転換を強めるための相乗剤、 例えば第 3級 アミンを併用することができる。 なお、 本発明の化合物、 重合物を電子線照射で 硬ィ匕させる場合には光重合開始剤の添加はなくてもよい。 本発明の化合物 (1 ) またはその重合体に配合できるその他の添加剤として、 必要に応じて熱重合禁止剤、 界面活性剤、 光吸収剤、 チキソ性付与剤、 染料およ び顔料等を含有することができる。 本発明の化合物、 重合物を硬化させて使用するには、 硬化性樹脂を基材上に薄 膜として被着させ硬化させる。 薄膜を形成する方法としては、 スプレー、 ブラシ 掛け、 ロール塗装、 カーテン塗装、 電着塗装、 静電塗装等が用いられる。 また、 液状レジスト、 ドライフィルムとして使用する場合は、 硬化性樹脂組成物を基板 上に被着させた後、 光によって硬化させる。 「光」 としては、 高圧水銀燈、 紫外 線、 E B、 レーザー光線等を使用することができる。
また、 液状レジス卜の 1成分として使用する場合には、 熱により硬化させるこ ともできる。 硬化の条件は、 1 0 0〜 2 0 0 °Cで、 1〜 9 0分の条件で行うこと ができる。 硬化は不活性ガス雰囲気下で行うことが好ましいが、 空気雰囲気下に おいても硬化させることができる。 第 1の発明の実施例
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。 なお 「%」 は、 特に示す場合を除くほか 「重量%」 を示す。
(実施例 1 : 3, 4—エポキシシクロへキシルメチルォキシカルボ二ルビニルァ ミンの合成)
攪拌機、 温度計、 還流冷却管、 滴下ロートおよび窒素導入管を備えた 100m 1容量のセパラブルフラスコに、 2. 8mo 1 /リッ トルのアジ化ナトリウム水 溶液を 20m I入れ、 2. 5m o I Zリッ トルのアクリル酸クロライ ドのァセト ン溶液を 20m l、 0°C、 10分かけて滴下し、 2時間熟成を行った。 ついで、
3, 4—エポキシシクロへキシルメチルアルコール (ダイセル化学工業 (株) 「ETHB」 ) 3. 84 g及び卜リエチルアミン 5m 1を添加後、 70 °C、 12 時間反応させた。 得られた反応液から 3, 4—エポキシシクロへキシルメチルォ キシカルボ二ルビニルアミン (以下、 化合物 Aと称す。 ) を得た。 収率は 72% であった。
化合物 Aの、 I R及び NMR測定結果を示す。
(1) I R: 3300 (N-H) , 2930 (― CH2—, 脂環メチレン) , 1710 (C = 0) , 1640 (ビニル基) , 850 (エポキシ基) cm—
(2) JH-NMR (CDC 13)
(5 = 0. 7〜2. 5 (m, 7 H) , 3. 17 (s, 2H) , 3. 91 (d d, 2 H, J = 2. 6 H z, 6. 4H z) , 4. 26 (d, 1 H, J = 8. 2Hz) ,
4. 49 (d, 1 H, J = 15. 4Hz) , 6. 69 (d d, 1 H, J = 8. 2 Hz, 15. 4 H z ) , 7. 1 (b r . s, 1 H) 。
(3) 13C— NMR (CDC 13)
(5 = 20. 86 ( t ) , 22. 76 (d) , 23. 46 (d) , 24. 38 ( t ) , 26. 82 ( t ) , 27. 96 ") , 29. 58 ( t ) , 32. 29 ( t ) , 50. 98 (d) , 51. 53 (d) , 52. 34 (d) , 69. 08 ( t ) , 9 3. 0 3 ( t ) , 1 3 0. 0 3 (d) , 1 5 3. 8 1 ( s )
CH: 化合物 A
Figure imgf000013_0001
(実施例 2、 3)
実施例 1のァクリル酸クロライドをメタクリル酸クロライドに代えた以外は実 施例 1と同様に操作し、 化合物 Bを得た (実施例 2) 。 また、 同様に、 実施例 1 のアクリル酸クロライドをフエニルアクリル酸クロライドに代えた以外は実施例 1と同様に操作し、 化合物 Cを得た (実施例 3) 。 化合物 B、 Cは、 I R及び N MR測定から以下の以下の構造を示す化合物であることを確認した。 化合物 Bの 収率は 83 %であり、 化合物 Cの収率は 74 %であった。 CH-CH 化合物 B
CH-CeH6 化合物 C
Figure imgf000013_0002
(実施例 4 :化合物 Aの重合体の合成)
窒素雰囲気下、 ベンゼン 1 0 m 1及び 2, 2 ' —ァゾビスィソブチロニトリル (日本ヒドラジン社製 「A I BN」 ) 24. 6mgを仕込み、 化合物 Aの 9 8 5 mgをシールチューブに封入した。 その後、 70°Cまで昇温を行い、 24時間、 重合反応を行った。 反応後、 ベンゼン/へキサン系で重合物 (以下、 重合体 Aと 称す。 ) を単離した。 その結果、 収率は 72%であった。
得られた重合体 Aの I R測定、 NMR分析及び GPCを測定し、 重合体 Aは化 合物 Aの重合物であることを確認した。
( 1) I R (KB r ) で 3 3 2 0 (N-H) , 2 9 3 0 (脂環メチレン) , 1 700 (C = 0) , 810 (エポキシ基) cm—丄。
(2) :H-NMR (CDC 13)
6 = 0. 8〜2. 5 (m, 10H) , 3. 23 (s, 2 H) , 3. 86 (s, 1 H) , 5. 5 (g r . s, 1 H) 0
(3) 13C-NMR (CDC 13)
(5 = 21. 07 ( t ) , 22. 91 (d) , 23. 62 (d) , 24. 54 ( t ) , 26. 87 ( t ) , 28. 17 ( t ) , 29. 74 ( t ) , 32. 45 (t ) , 45. 78 (d) , 51. 03 (d) , 51. 58 (d) , 52. 39 (d) , 68. 70 ( t ) , 156. 19 ( s ) 0
GPC (ポリスチレン基準) ;数平均分子量 (Mn) = 39, 790、 分子量 分布 (Mw/Mn) = 1. 67。
(実施例 5および 6 :化合物 Bまたは Cの重合体の合成)
実施例 4の化合物 Aを化合物 Bまたは化合物 Cに代えた以外は、 実施例 4と同 様に操作し、 化合物 Bから重合体 Bを得、 化合物 Cから重合体 Cを得た。
なお、 重合物 B、 Cの I R、 NMR及び GP C分析から、 それらが各々化合物 B、 Cの重合体であることを確認した。
(参考例:カルボキシル基を有する樹脂溶液の合成)
攪拌機、 温度計、 還流冷却管、 滴下口一卜及び窒素導入管を備えた 2 Lセパラ ブルフラスコに、 ジプロピレングリコールモノメチルエーテル (日本乳化剤社製
「MFDG」 ) 300 g、 tーブチルバ一ォキシ 2 _ェチルへキサノエ一ト (日 本油脂社製 「パーブチル 0」 ) 12. 0 gを導入し、 95°Cに昇温後、 メタクリ ル酸 172 g、 メチルメタクリレート 1 26 g、 及び 2, 2—ァゾビス (2—メ チルプチロニトリル) (日本ヒドラジン工業社製 「ABN— E」 ) 9. 5 g、 M FDG 200 gを共に 3時間かけて滴下した。 滴下後 4時間熟成してカルボキル 基を有する幹ポリマ一を合成した。 次に、 上記幹ポリマー溶液に、 エポキシシク 口へキシルメチルァクリレート (ダイセル化学工業社製 「サイクロマ一 A 200」 )
202 g、 トリフエニルホスフィン 2 g、 メチルハイ ドロキノン 1. 0 g加えて、 100°Cで 10時間反応させた。 反応は、 空気/窒素の混合雰囲気下で行った。 これにより、 酸価 100KOHmg/g、 二重結合当量 (不飽和基 1 mo 1当り の樹脂重量) 450、 重量平均分子量 20, 000の樹脂溶液 Dを得た。
(実施例 7 :光硬化性樹脂の評価)
実施例 1で得た化合物 Aおよび実施例 4〜 6で得た重合体 A、 B、 C並びに参 考例で得た樹脂溶液 Dを用いて、 希釈モノマ一としてジペンタエリスリ トールへ キサァクリレート (DPHA) 、 色素としてフタロシアニングリーン、 開始剤と して 2—メチルー 1— 〔4— (メチルチオ) フエニル〕 —2—モルフオリノーブ 口パン一 1 (チバ 'ガイギ一社製 「ィルガキュア 907」 ) を表— 1に示す配合 割合で光硬化性樹脂組成物を調製し、 ソルダ一レジストとしての評価を行った。 実施例で得られたソルダ一レジストをパタ―ン形成された基盤の上にバーコ一 夕一を用いて 20〜30〃mの厚さに塗布し、 80°Cの送風乾燥機で 20分間乾 燥させた。 その後ネガフィルムを密着させ、 1000m J /cm2の光量を照射し た。 さらに、 1 %炭酸ソ一ダ水溶液で現像し、 得られた塗膜を 150°C送風ォー ブンで 30分間硬ィ匕させることによってソルダ一レジス卜膜を得た。 実施例のソ ルダーレジス卜について、 現像時間 (m i n) 、 感度、 密着性、 半田耐熱性及び 耐加水分解性を評価した。 結果を表一 1に示す。
(測定項目とその測定方法)
( 1 )現像時間:現像時間は、 1 %炭酸ソーダ水溶液での現像時間を測定し、 以下の基準で評価した。 なお希アルカリ水溶液に可溶とは、 この現像時間が 20 秒未満であることを意味する。 〇: 20秒未満、 △: 20〜60秒で現像可、 X
: 60秒を越えて必要、 とした。
(2)感度: コダック社製ステップタブレツトを使用して評価した。
(3) 密着性:得られたレジスト膜について、 J I S DO 202に準じてセ ロハンテープによるピーリング試験を行った。 〇: 100/100、 Δ: 50/ 100〜 99Z100、 X : 0/100〜 497100、 とした。 ( 4 ) 半田耐熱性: 2 6 0 °Cの半田槽に 2 0秒間浸漬後のソルダーレジスト膜 の状態を目視で評価した。 〇:塗膜に異常がない、 △:塗膜にふくれ、 剥離が僅 かに認められる、 X :塗膜にふくれ、 剥離が認められる、 とした。
( 5 ) 耐加水分解性: 4 0 °Cの温水に 2 4時間浸潰し、 塗膜状態を目視で評価 '判定した。 〇:全く変化のないもの、 △:僅かに塗膜光沢がなくなるもの、 X :光沢がなくなるもの、 とした。 表— 1
Figure imgf000016_0001
本発明によれば、 硬化性樹脂組成物として使用できる極めて有用な新規化合物 が提供される。 この新規化合物及びその重合体 (多官能エポキシ樹脂) は、 金属 などの表面に塗布し、 次いで紫外線や電子線の輻射線を照射することにより、 硬 化皮膜を形成することができる。 本発明によれば、 塗膜の密着性、 半田耐熱性、 耐弱アルカリ水性等に優れる硬化性樹脂組成物を与える多官能モノマ一あるいは その重合物が得られる。 第 2の発明の技術の分野
第 2の発明は、 反応性官能基を含む活性エネルギー線硬化型レジスト樹脂組成 物およびその用途に関し、 より詳細には、 熱や光で容易に硬化し、 アルカリで現 像可能な活性エネルギー線硬化型レジス卜樹脂組成物に関する。 第 2の発明の背景技術
従来から、 活性エネルギー線硬化型不飽和樹脂組成物として種々のものが開発 され、 これらは塗装、 複合材、 電子部品等の分野で広く利用されている。 更に、 近年それらの活性エネルギー線硬化型不飽和樹脂組成物の一つとしてビニル樹脂 を主体とする樹脂組成物の開発が試みられている。 また、 現在ビニル樹脂を主体 とする組成物として、 高酸価ビニル樹脂と脂肪族エポキシ基含有ビニル化合物と を反応させて得られるものが知られている。
しかし、 該組成物から形成された被膜は被塗物に対する密着性及び耐水性が十 分でなく、 いまだ実用に充分満足すべき性質を示すには至っていない。 第 2の発明の開示
本発明者は、 上記した問題点を解決するために銳意研究を行った結果、 活性ェ ネルギ一線硬化型不飽和樹脂組成物として、 特定構造を有する脂環式エポキシ基 含有不飽和化合物と酸基含有不飽和樹脂との反応物を、 有機溶剤及び重合性ビニ ルモノマーで希釈してなる組成物が上記問題点を解消し得ることを見い出し、 本 発明を完成するに至った。
すなわち本発明は、 式 (6 ) で表わされる脂環式エポキシ基含有不飽和化合物 と酸基含有不飽和樹脂との反応物に、 希釈剤を配合してなる活性エネルギー線硬 化型不飽和樹脂組成物を提供するものである。 また、 酸基含有不飽和樹脂が酸基 含有ァクリル系樹脂であることを特徴とする前記活性エネルギー線硬化型不飽和 樹脂組成物を提供するものである。 更に、 前記活性エネルギー線硬化型不飽和樹 脂組成物からなるアル力リ現像可能な活性エネルギー線硬化型レジス卜樹脂組成 物を提供するものである。 以下、 本発明を詳細に説明する。
R2-0-CO-NH-CH = CH-R1 (6)
(式中、 R1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表し、 R2は、 式 (2) または式 (3) を表わす。 )
Figure imgf000018_0001
O O 〔CO(CR4R5)mO〕 „- i-CO(CR4R5)ra- (3)
(式中、 R 4および R 5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4〜 8の整数、 nは 1〜 10の整数を表す。 ) 第 2の発明を実施するための最良の形態
脂環式エポキシ基含有不飽和化合物
本発明で使用する脂環式エポキシ基含有不飽和化合物は、 上記式 (6) で表さ れる化合物であって、第 1の発明の式 (1 ) で表される化合物の内、 R2が前記式
(2) または (3) で表される化合物と製造方法及び構造式が同じものである。 本発明で使用する式 (6) で表わされる化合物は、 分子内の炭素一炭素二重結合 に基づいて、 以下に述べる酸基含有ァクリル系樹脂に使用するいずれか 1種もし くは 2種以上の単量体と共重合させ、 共重合体として使用することもできる。
酸基含有不飽和樹脂
本発明で使用する酸基含有不飽和樹脂は、 1分子中に少なくとも 1個の不飽和 基と酸基とを有する樹脂であればよく、 例えば、 エチレン性不飽和酸 (共) 重合 体、 酸基含有アクリル樹脂、 変性不飽和モノカルボン酸、 酸基含有ポリエステル 樹脂、 酸基含有ビスフエノール A型樹脂、 酸基含有ノボラック樹脂、 ポリアミ ド 酸、 酸基含有ポリイミ ドが例示できる。 これらの中でもエチレン性不飽和酸 (共) 重合体、 酸基含有アクリル系樹脂であることが好ましい。 製法が簡便で、 樹脂特 性を簡便にコントロールできるからである。
前記エチレン性不飽和酸 (共) 重合体としては、 無水マレイン酸、 マレイン酸、 フマール酸、 ィタコン酸等の (共) 重合体が例示できる。
前記酸基含有ァクリル系樹脂には、 カルボキシ基を有するァクリル系化合物、 例えばァクリル酸、 メタクリル酸、 カルボキシメチル、 (メタ) ァクリレート、 2—カルボキシェチル (メ夕) ァクリレ一ト、 2—カルボキシプロピル (メ夕) ァクリレー卜、 2 一カルボキシプロピル (メタ) ァクリレート、 クロトン酸、 β —カルボキシェチル (メタ) ァクリレートなどの酸基含有ァクリル系単量体の (共) 重合体、 その他、 (メタ) アクリル酸と ε—力プロラク トンとの付加物が 例示できる。 また、 本発明で使用する酸基含有アクリル系樹脂としては、 上記酸 基含有ァクリル系単量体を必須成分とし、 これに以下の化合物から選ばれる 1種 もしくは 2種以上の単量体を共重合させた共重合体も使用できる。
ここに使用できる単量体としては、 ① (メタ) アクリル酸のエステル類、 例え ばメチル (メタ) ァクリレート、 ェチル (メタ) ァクリレ一ト、 プロピル (メタ) ァクリレー卜、 ブチル (メタ) ァクリレー卜、 2—ェチルへキシル (メタ) ァク リレ一ト、 ステアリル (メタ) ァクリレ一卜、 ヒドロキシェチル (メタ) ァクリ レート、 ヒドロキシプロピル (メタ) ァクリレ一ト等、 ②ビニル芳香族化合物、 例えばスチレン、 一メチルスチレン、 ビニルトルエン、 ρ—クロルスチレン等、 ③アミ ド系不飽和化合物、 例えば (メタ) アクリルアミ ド、 ダイアセトンァクリ ルアミ ド、 Ν—メチロールアクリルアミ ド、 Ν—ブトキシメチルアクリルアミ ド 等、 ④ポリオレフイン系化合物、 例えばブタジエン、 イソプレン、 クロ口プレン 等、 ⑤その他、 例えば (メタ) アクリロニトリル、 メチルイソプロぺニルケトン、 酢酸ビニル、 ビニルプロピオネート、 ビニルビバレ一ト等が例示できる。
前記変性不飽和モノカルボン酸とは、 不飽和基とカルボキシル基とを有し不飽 和基と力ルポン酸との間に鎖延長された変性不飽和モノ力ルポン酸であれば特に 制限はなく、 例えば末端水酸基を酸無水物により酸変性されたラク トン変性等ェ ステル結合を有する不飽和モノカルボン酸、 エーテル結合を有する変性不飽和モ ノカルボン酸等が例示できる。
なお、 本発明で使用する酸基含有不飽和樹脂は、 該樹脂に含まれる酸基の全部 または一部と脂環式エポキシ基含有不飽和化合物に由来するエポキシ基の全部ま たは一部とを反応させ、 不飽和基を導入した反応物たる樹脂を得るものである。 従って、 得られた反応物に活性エネルギー線の硬化に必要な不飽和基が導入され ている必要があり、 該化合物の酸価は 1 5 K O H m g / g以上、 より好ましくは 4 0〜5 0 0 K O H m g / gであることが好ましい。 脂環式エポキシ基含有不飽和化合物と酸基含有不飽和樹脂との反応
式 (6 ) で表わされる脂環式エポキシ基含有不飽和化合物と酸基含有不飽和樹 脂との反応は、 脂環式エポキシ基含有不飽和化合物 1モルに対し酸基含有不飽和 樹脂をそれに含まれるカルボキシル基が 1 . 0 8〜5モルとなる量を反応させる ことが好ましい。 この範囲でエポキシ基と酸基との開環付加反応が十分に進行す るからである。 尚、 本発明では、 酸基含有不飽和樹脂と反応させる脂肪族ェポキ シ基含有不飽和化合物 1 0 0重量部の内、 グルシジルメタクリレート、 /3—メチ ルグリシジルメタクリレート、 ァリルグリシジルエーテル等の脂肪族エポキシ基 含有不飽和化合物を 0を超え 9 0重量%の範囲、 下記に示す他の不飽和基含有脂 環式エポキシ化合物群のいずれかを、 0を超え 9 0重量%の範囲で併用すること もできる。 ここに下記化合物における R 7としては、 直鎖または分枝状のアルキレ ン基、 即ちメチレン、 エチレン、 プロピレン、 トリメチレン、 テトラメチレン、 ェチルエチレン、 ペンタメチレン、 へキサメチレン基等が例示できる。 また、 R 8としては、 メチレン、 エチレン、 プロピレン、 トリメチレン、 テトラメチレン、 ェチルエチレン、 ペンタメチレン、 へキサメチレン、 ポリメチレン、 フヱニレン、 1 , 4ーシクロへキシレン、 p —キシリレン基等を例示することができる。
Figure imgf000021_0001
CH2 = CReCOOR7-
CH2=CR6COOR7OOCNHRsNHCOOR' :0
0
O
Figure imgf000021_0002
(各一般式中、 R 6は水素原子またはメチル基を示し、 は灰索数1~6の2ー 価の脂肪族飽和炭化水素基を示し、 R 8は炭素数 1〜 10の 2価の炭化水素基を示 し、 mは 1〜10の整数を示す。 ) 本発明で使用する式 (6) で表わされる脂環式エポキシ基含有不飽和化合物を 酸基含有不飽和樹脂のアルコール系、 エステル系、 芳香族炭化水素系、 脂肪族炭 化水素系等の不活性有機溶剤溶液に添加し、 20〜 120 °Cを 1〜 7時間保持す ると両者を反応させることができる。 ここに酸基含有不飽和脂肪樹脂が酸基含有 ァクリル系樹脂である場合には、 20〜 120 °C、 約 1〜 5時間の反応条件で反 応させることができる。
得られた反応物は、 分子量 1, 000当たり不飽和基数が 0. 2〜4. 0個、 好ましくは 0. 7〜3. 5個の範囲で有する。 0. 2個より少ないと被膜の硬化 性が不充分となり、 被膜物に対する密着性、 耐水性等が劣る場合がある。 その一 方、 不飽和基数が 4. 0個より多いと酸基含有アクリル系樹脂との付加反応中、 該組成物の長期間保存中に増粘、 ゲル化する恐れがあるので好ましくない。 また、 得られた反応物は、 数平均分子量が 1, 000〜 100, 000、 好ましくは 3, 000〜70, 000の範囲であることが好ましい。 1, 000より小さいと、 硬化被膜の耐水性が劣り、 他方、 分子量が 100, 000より大きいと、 高粘度 となり取り扱 、が不便となり、 また塗膜性も悪くなり耐水性被塗物に対する密着 性が劣る被膜となるので好ましくない。 更に、 得られる反応物の酸価は、 300 KOHmgZg以下であることが好ましい。 酸価が 300KOHmg/gより大 きいと、 被膜の耐水性が劣る場合があり好ましくない。 活性エネルギー線硬化型不飽和樹脂組成物
本発明で使用する上記反応物には希釈剤を配合し、 用途及び要求される塗膜性 能等に応じた活性エネルギー線硬化型不飽和樹脂組成物とすることができる。 本 発明の組成物に配合する希釈剤として、 有機溶媒、 重合性化合物を使用すること ができる。 有機溶媒の種類は特に制限はなく、 反応温度より高い沸点を有しかつ 原料および生成物を溶解するものであればよい。 例えば、 エチルアルコール、 プ 口ピルアルコール、 イソプロピルアルコール、 ブタノ一ル等のアルコール類、 ェ チレングリコール、 プロピレングリコール、 ジプロピレングリコール等のグリコ —ル類、 メチルセ口ソルブ、 プロピレングリコールモノメチルエーテル、 ジプロ ピレングリコールモノメチルエーテル等のグリコールエーテル類、 エチレングリ コールジァセテ一ト、 プロピレングリコールモノメチルエーテルァセテ一ト等の グリコールエステル類、 およびこれらの混合溶液が例示できる。 有機溶媒の使用 量は特に制限はない。 塗布方法によって適宜選択でき、 各塗布方法にあった粘度 を有するよう希釈することができる。 ディップコ一ター等を用いる場合には樹脂 固形分濃度が 1〜4 0重量%、 ロールコ一ター、 カーテンコ一ターを用いる場合 には 2 0〜6 0重量%程度にすることが好ましい。 重合性化合物としては、 第 1の発明の 「希釈ポリマ一又はオリゴマー」 として 例示された化合物が同様に使用でき、 更にポリオレフイ ン系化合物、 重合性プレ ポリマー等が例示できる。 ここに、 ポリオレフイン系化合物としては、 アルカリ に可溶な樹脂が好ましい。 例えば、 P V A、 酸基含有アクリル樹脂、 フヱノール 基を有するポリオレフイン等が例示できる。 また、 重合性プレポリマ一としては、 例えば水性化が可能な重合性不飽和基含有樹脂、 例えばカルボキシル基含有ポリ オールにポリイソシァネート化合物を介してヒドロキシアルキル (メタ) ァクリ レートを導入した樹脂等;重合性不飽和基含有樹脂、 例えばポリエステルポリォ —ルの (メタ) アクリル酸エステル、 ポリエーテルポリオールの (メタ) ァクリ ル酸エステル、 アクリルポリオールの (メタ) アクリル酸エステル、 ポリェポキ シと (メタ) アクリル酸との付加物及びポリオールにポリイソシァネート化合物 を介してヒドロキシアルキル (メタ) ァクリレ一トを導入した樹脂等を例示する ことができる。 その他の希釈剤として、 水酸基含有モノマーとブチルイソシァネ ―ト、 フヱニルイソシァネート等のモノイソシァネー卜との付加物やアジリジン 基含有モノマー及び含リンビニルモノマ一等が例示できる。
重合性化合物の使用量は、 活性エネルギー線硬化型樹脂組成物の樹脂固形分 1 0 0重量部に対して 1 0 0重量部未満、 好ましくは 5 0重量部以下の範囲で配合 することが好ましい。 樹脂塗膜の硬度、 耐溶剤性、 耐アルカリ性等が劣る場合が あるからである。 本発明の活性エネルギー線硬ィ匕型樹脂組成物には、 光吸収エネルギーの重合開 始遊離基への転換を強めるための相乗剤、 例えば第 1の発明で例示したエポキシ 開環付加触媒を併用することができる。 それらは単独で使用しても 2種以上を混 合して使用してもよい。 それらの触媒はエポキシ化合物である式 (6 ) の化合物 またはその (共) 重合体に対して 0 . 0 1〜2 0重量%、 好ましくは 0 . 1〜 1 0重量%用いるのが好ましい。 0 . 0 1重量%より少ない場合は触媒効果が低く、 2 0重量%を越える量を加えると硬化性が劣る。 なお、 本発明の組成物を電子線 照射で硬化させる場合には光重合開始剤の添加はなくてもよい。 他の配合剤として、 光重合開始剤を添加することができる。 光重合開始剤とし ては、 第 1の発明で例示した光重合開始剤を同様に使用することができる。 それ らは 1種もしくは 2種以上を組合わせて用いることができる。 また、 光重合開始 剤の配合量は、 活性エネルギー線硬化型樹脂組成物の 0 . 1〜 1 0重量%の範囲 で配合することが好ましい。 更に本発明の組成物には、 必要に応じて活性エネル ギ一線の硬化性を阻害しない程度で顔料及び染料等を配合することができる。 用途
本発明の活性エネルギー線硬化型樹脂組成物は、 塗料、 印刷インキ、 フオ トレ ジスト、 ソルダ一レジスト、 刷版材、 接着剤、 粘着剤等に特に有用である。
本発明組成物を用いて被膜を形成する方法は、 例えば木材、 紙無機質材料、 プ ラスチック、 金属 (亜鉛、 鉄、 銅、 アルミニウム等) 等に、 例えばナチュラル口 —ルコ一夕、 リバースロールコ一タ、 グラビアロールコ—タ、 スクリーン印刷機、 カーテンコ一タ一、 ディップコ一夕一、 エア一スプレー、 エアレススプレー、 ノく ーコ一夕—、 ナイフコータ—、 スピンコ—ター、 刷毛、 浸漬塗装機等の塗装機を 用いて塗装を行い、 次いで電子線又は紫外線等の活性エネルギー線を照射して塗 膜を硬化させ、 被膜を形成することができる。 上記塗装膜厚は乾燥膜厚で 2 0 0 0〃m以下、 特には、 0 . 1〜 1 0 0 0〃mであることが好ましい。 膜厚が 2 0 0 0〃mを越えると、 被膜内部の硬化性が劣るので好ましくない。
また、 活性エネルギー線を放出させる電子線の加速器としては、 例えばコック クロフト型、 コッククロフトワルトン型、 ノ ン ·千'グラーフ型、 共被変圧器型、 変圧器型、 絶縁コア変圧器型、 ダイナミ トロン型、 リニアフィラメント型、 プロ ードビーム型、 エリアビーム型、 力ソード電極型、 高周波型等を使用することが できる。 ここに、 電子線の照射量は塗膜を硬化させるに必要な線量を与えれば特 に制限されないが、 一般には約 1 0 0〜2 0 0 0 k e Vで約 0 . 5〜 2 0メガラ ド (M r a d ) の線量を照射する。 電子線を照射する雰囲気は不活性気体中で行 うことが好ましい。 また、 活性エネルギー線を放出させる紫外線の照射量は、 例 えば、 水銀ランプ、 高圧水銀ランプ、 キセノンランプ、 力一ボンアーク、 メタル ハライドランプ、 太陽光等を挙げることができる。 紫外線を照射する雰囲気は、 空気中もしくは不活性気体中で照射することが好ましい。 照射する雰囲気が空気 の場合は、 高圧水銀ランプを照射源として用いるのが特に好ましい。 また、 照射 条件は光重合開始剤の吸収量によって異なるが 3 0 0 0〜4 5 0 O Aの波長を有 する光線を用いて数分以内、 通常は 1秒〜 2 0分の範囲で行なう。 第 2の発明の実施例
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。 なお 「部」 は、 特に示す場合を除くほか 「重量部」 を示す。
(合成例 1 )
攪拌機、 温度計、 還流冷却管、 滴下口一卜及び窒素導入管を備えたセパラブル フラスコに、 プロピレングリコールモノメチルエーテル (ダイセル化学社製 「M M P G」 ) 5 5部、 tーブチルバ一ォキシ 2 —ェチルへキサノエ一ト (日本油脂 社製 「パーブチル 0」 ) 3 . 3部を導入し、 9 5 °Cに昇温後、 アクリル酸 1 8部、 スチレン 30部、 プチルァクリレ一卜 35部、 及び 2 , 2—ァゾビス ( 2—メチ ルブチロニトリル) (日本ヒドラジン工業社製 ΓΑΒΝ— E」 ) 3部、 ΓΜΜΡ G」 8部を共に 3時間かけて滴下した。 滴下後 4時間熟成してカルボキル基を有 する幹ポリマーを合成した。 次にこの幹ポリマ一溶液に後記化合物 (A) を 42 部、 トリフヱニルホスフィン 4部、 メチルハイドロキノン 0. 2部加えて、 10 0°Cで 10時間反応させた。 反応は、 空気/窒素の混合雰囲気下で行った。 これ により、 酸価 20KOHmg/g、 二重結合当量 (不飽和基 1 mo 1当りの樹脂 のグラム重量) 590、 重量平均分子量 20, 000の樹脂溶液を得た。
(合成例 2 )
合成例 1の化合物 (A) に代えて、 後記化合物 (B) を使用した以外は、 合成 例 1と同様に操作した。 これにより、 酸価 l KOHmg/g、 二重結合当量 (不 飽和基 1 m 0 】当りの樹脂のグラム重量) 590、 重量平均分子量 20, 000 の樹脂溶液を得た。
(合成例 3 )
攪拌機、 温度計、 還流冷却管、 滴下ロート及び窒素導入管を備えたセパラブル フラスコに、 ブチルアルコール 90部、 「パーブチル 0」 4部を導入し、 95°C に昇温後、 アクリル酸 23. 4部、 プチルメタクリレート 40部、 プチルァクリ レー卜 35部、 及び 「ABN— E」 3. 5部、 メチルイソプチルケトン 8部を共 に 3時間かけて滴下した。 滴下後 4時間熟成してカルボキル基を有する幹ポリマ 一を合成した。 次にこの溶液に化合物 (A) を 64部、 トリフヱニルホスフィン 10部、 メチルハイドロキノン 0. 26部加えて、 1 00°Cで 10時間反応させ た。 反応は、 空気 Z窒素の混合雰囲気下で行った。 これにより、 酸価 OKOHm g/g、 二重結合当量 (不飽和基 1 mo 1当りの樹脂のグラム重量) 500、 重 量平均分子量 17, 000の樹脂溶液を得た。
(合成例 4)
攪拌機、 温度計、 還流冷却管、 滴下ロート及び窒素導入管を備えたセパラブル フラスコに、 ブチルアルコール 90部、 t—ブチルパーォキシ 2—ェチルへキサ ノエ一ト (日本油脂社製パーブチル〇) 4部を導入し、 95°Cに昇温後、 ァクリ ル酸 23. 4部、 プチルメタクリレート 40部、 プチルァクリレート 35部、 及 び ΓΑΒΝ— E」 3. 5部、 メチルイソプチルケトン 8部を共に 3時間かけて滴 下した。 滴下後 4時間熟成してカルボキル基を有する幹ポリマ一を合成した。 次にこの溶液に化合物 (A) を 32部、 後記化合物 (C) (ダイセル化学社製 「CYM Ml 00」 ) を 32部及び、 トリフエニルホスフィン 1 0部、 メチル ハイ ドロキノン 0. 26部加えて、 1 00°Cで 1 0時間反応させた。 反応は、 空 気ノ窒素の混合雰囲気下で行った。 これにより、 酸価 0KOHmg/g、 二重結 合当量 (不飽和基 1 mo 1当りの樹脂のグラム重量) 500、 重量平均分子量 1 7, 000の樹脂溶液を得た。
(合成例 5 )
攪拌機、 温度計、 還流冷却管、 滴下ロート及び窒素導入管を備えたセパラブル フラスコに、 「MMPG」 1 00部、 「パーブチル〇」 4部を導入し、 95°Cに 昇温後、 ァクリル酸 45部、 メチルメタクリレート 20部、 プチルァクリレート 35部、 及び 「ABN_E」 3. 5部、 「MMPG」 1 0部を共に 3時間かけて 滴下した。 滴下後 4時間熟成してカルボキル基を有する幹ポリマ一を合成した。 次にこの溶液に化合物 (A) を 65部、 トリフヱニルホスフィン 6. 5部、 メ チルハイドロキノン 0. 27部加えて、 1 00°Cで 1 0時間反応させた。 反応は、 空気 Z窒素の混合雰囲気下で行った。 これにより、 酸価 1 00KOHmgZg、 二重結合当量 (不飽和基 1 mo 】当りの樹脂のグラム重量) 500、 重量平均分 子量 17, 000の樹脂溶液を得た。
(合成例 6 )
攪拌機、 温度計、 還流冷却管、 滴下ロート及び窒素導入管を備えたセパラブル フラスコに、 「MMPG」 1 00部、 「パーブチル 0」 4部を導入し、 95°Cに 昇温後、 ァクリル酸 45部、 メチルメタクリレー卜 20部、 プチルァクリレート 35部、 及び 「ABN— E」 3. 5部、 「MMPG」 1 0部を共に 3時間かけて 滴下した。 滴下後 4時間熟成して力ルポキル基を有する幹ポリマ一を合成した。 次にこの溶液に化合物 (A) 33部、 化合物 (C) 32部を 65部、 トリフエ ニルホスフィン 6. 5部、 メチルハイドロキノン 0. 27部加えて、 1 00°Cで 10時間反応させた。 反応は、 空気 Z窒素の混合雰囲気下で行った。 これにより、 酸価 100KOHmg/g、 二重結合当量 (不飽和基 lmo 1当りの樹脂のグラ ム重量) 500、 重量平均分子量 17, 000の樹脂溶液を得た。
(合成例 7 )
攪拌機、 温度計、 還流冷却管、 滴下ロート及び窒素導入管を備えたセパラブル フラスコに、 「MMPG」 55部、 「パーブチル 0」 3. 3部を導入し、 95 °C に昇温後、 ァクリル酸 18部、 スチレン 30部、 プチルァクリレー卜 35部、 及 び 「ABN— E」 3部、 「MMPG」 8部を共に 3時間かけて滴下した。 滴下後 4時間熟成してカルボキル基を有する幹ポリマーを合成した。 次にこの溶液にグ リシジルメタクリレー卜 30部、 トリフエニルホスフィン 3部、 メチルハイド口 キノン 0. 2部加えて、 100°Cで 10時間反応させた。 反応は、 空気 Z窒素の 混合雰囲気下で行った。 これにより、 酸価 20KOHmgZg、 二重結合当量 (不飽和基 lmo 1当りの樹脂のグラム重量) 530、 重量平均分子量 18, 0 00の樹脂溶液を得た。 化合物 A
化合物 B
化合物。
Figure imgf000028_0001
(実施例 1 ) 合成例 1の溶液 300重量部に、 ひーヒドロキシィソブチルフヱノン 10重量 部を加えた後、 この溶液をアルミニウム板上にバーコ一ターで塗装し、 80°Cで
1 5分間乾燥させた後、 12 OWZc w高圧水銀灯で 5秒間 UV照射し硬化させ た。 この塗膜厚は約 20〃mであった。 また、 この塗膜の付着性及び耐水性を調 ベた。結果を表一 2に示す。
(実施例 2 )
合成例 1の溶液 300重量部に下記化合物 (D) ビニル単量体 (東亜合成 (株) 製「ァロニックス M5700」 ) 100重量部、 トリプロピレングリコールジァ クリレート 20重量部を加えて 100°Cに加熱した後、 空気を吹き込みながら減 圧し、 溶液中の MMPGを除去した。 さらに、 α—ヒドロキシイソブチルフエノ ン 10重量部を添加した。 この組成物をアルミニウム板上にバーコ一ターで塗装 し、 120 WZ c w高圧水銀灯で 5秒間照射し、 硬化させた。 この塗膜厚 20 ^ mであった。 この塗膜の付着性および耐水性を調べた。 化合物 D
Figure imgf000029_0001
(実施例 3 )
合成例 2の溶液 312重量部に 「ァロニックス M5700」 106重量部、 卜 リプロピレングリコールジァクリレー卜 22重量部を加えて実施例 2と同様にし て溶剤を除去後、 α—ヒドロキシイソプチルフヱノン 1 7重量部を添加した。 さ らに実施例 2と同じ方法で硬ィヒさせた。
(実施例 4 )
合成例 3の溶液 220重量部に ーヒドロキシイソプチルフヱノン 6重量部を 加えた後、 この溶液をアルミニウム板上にバーコ一ターで塗装し、 80°Cで 1 5 分間乾燥させた後、 1 2 OWZc.w高圧水銀灯で 2秒間 UV照射し硬化させた。 この塗膜厚は約 20 mであった。 この塗膜の付着性及び耐水性を調べた。
(実施例 5 ) T JP97/04660
28 合成例 4の溶液 2 2 0重量部に 「ァロニックス M 5 7 0 0」 5 0重量部、 トリ プロピレングリコールジァクリレー卜 1 2重量部を加えて 1 0 0 °Cに加熱した後、 空気を吹き込みながら減圧し、 溶液中の n—ブ夕ノール及びメチルイソブチルケ トンを除去した。 さらに、 α—ヒドロキシイソブチルフエノン 1 0重量部を添加 した。 この組成物をアルミニウム板上にバーコ一ターで塗装し、 1 2 WZ C W高 圧水銀灯で 2秒間照射し、 硬化させた。 この塗膜厚は 2 0 mであった。 この塗 膜の付着性および耐水性を調べた。
(比較例 1 )
合成例 7の溶液 2 6 0重量部にひーヒドロキシイソブチルフヱノン 8重量部を 加えた後、 実施例 1と同様の試験をした。
(比較例 2 )
合成例 7の溶液 2 5 0重量部に 「ァロニックス M 5 7 0 0」 を 8 0重量部、 卜 リプロピレングリコールジァクリレート 1 5重量部を加えて実施例 2と同様にし て溶剤を除去後、 α—ヒドロキシィソブチルフヱノン 1 3重量部を添加した。 さ らに実施例 2と同じ方法で硬化させた。
表一 2 施 例 比 較 例
1 2 3 4 5 1 2 硬化性 良好 良好 良好 良好 良好 良好 良好 付着性 100/100 100/100 100/100 100/100 100/100 70/100 80/100 耐水性 100/100 100/100 100/100 100/100 100/100 20/100 50/100
(実施例 6 )
合成例 3の溶液 2 6 4重量部に卜リプロピレングリコールジァクリレート 5 0 1 , 6—へキサンジォ一ルジァクリレ一卜 5 0重量部、 トリメチロール プロパントリァクリレート 5 0重量部を加えて、 1 0 0 °Cに加熱した後、 空気を 吹き込みながら減圧し、 溶液中の n—ブ夕ノール溶剤を除去した。 さらにチタン 白 6 2重量部を加えて、 ボールミルで分散し、 白色塗料を作製した。 この塗料を 力一デンコ一夕一を用いて厚さ 1 . 5 c mのセッコゥボード上に塗装した後、 7 メガラツ ドの電子線を照射して塗膜を硬化させセッコゥタイルを作った。 塗膜厚 は約 1 0 0 mである。 セッコゥとの付着性は良好であり、 壁に張り付けて 3ケ 月間外観及び付着性を評価した結果、 初期と変わらず良好であつた。
(実施例 7 )
合成例 5の溶液 1 -9 ·8重量部、 フヱノールノボラックエポキシ樹脂 (エポキシ 当量 1 7 3 ) 2 0重量部、 α—ヒドロキシイソブチルフヱノン 5重量部、 フタ口 シアニングリーン 0 . 5重量部を 3本ロールで混練した。 この組成物をプリント 配線板用ソルダ一レジストインキとして使用した。 次に該インキを銅スルーホー ルブリント配線板上にスクリーン印刷法で塗布し、 7 0 °Cで 1 0分間乾燥 (膜厚 1 5〜2 0 ) した後、 必要なパターンが描かれたフィルムを密着させ、 3 k w 超高圧水銀灯で 1 0 0 0 m J / c m 2の光量を照射した。 さらに、 1 %炭酸ソ一ダ 溶液で未露光部を除去したのち、 1 4 0 °Cで 3 0分間加熱することによりソルダ 一レジス卜膜を得た。 このレジスト膜は、 耐ハンダメツキ性等の耐熱性、 酸及び アル力リに対する耐薬品性が優れていた。 結果を表一 3に示す。 表一 3
Figure imgf000031_0001
(実施例 8 ) 合成例 6の溶液を用いて実施例 7と同様の試験を行った結果、 良好なレジス卜 膜ができることが確認できた。 レジスト膜は実施例 7同様、 耐ハンダメツキ性等 の耐熱性、 酸及びアル力リに対する耐薬品性が優れていた。
(測定項目)
( 1 )硬化性:硬化性はゲル分率で評価した。 乾燥塗膜を基材からはがし、 ソ ックスレ一抽出器で還流温度でアセトンで 6時間抽出した後、 塗膜残分を測定し、 9 0 %以上あれば良好とした。
( 2 ) 付着性: J I S D— 0 2 0 2の試験法に従いテストピースに 1 mm間 隔で 1 0 0個のゴバン目状のカツトを入れて、 次いでセロファン粘着テープでピ 一リングを行い、 ハクリを生じていない升目の数を分子に、 もとの升目の数 (1 0 0ケ) を分母として表した。
( 3 ) 耐水性:浸水後の付着性を測定し、 耐水性とした。 測定は、 5 0 °Cの温 水中に 1日塗板を浸潰した後、 塗板の水分を拭きとり、 室温で 1時間放置した後 付着性と同じ試験を行った。
( 4 ) 耐ハンダメツキ性: J I S C 6 4 8 1の試験法に従いテストピースを 2 6 0 °Cのハンダ浴に 1 0秒フロー卜させるのを 1サイクルとして 3サイクル行 い、 目視による評価を行った。
( 5 ) 耐酸性: 3 0 °Cの 2 0 %塩酸中に 1時間浸した後、 ゴパ'ン目テストによ る評価を行った。
( 6 )耐アルカリ性: 3 0 °Cで 1 %炭酸ソ一ダ水溶液に 1時間浸した後、 碁盤 目テス卜による評価を行った。 第 2の発明の産業上の利用可能性
本発明の活性エネルギー線硬化型不飽和樹脂組成物は、 脂環式エポキシ基不飽 和化合物と酸基含有不飽和樹脂に由来する酸基との付加反応が、 エポキシ基の開 環重合反応に依存し容易に反応して、 得れらる反応物中に活性エネルギー線で硬 化可能な不飽和基を導入させたものである。 該組成物から形成される被膜はァク リル系樹脂の酸基と脂環式エポキシ基との化学反応によって生じた化学結合が比 較的立体障害の大きな結合であるため、 加水分解促進物質、 例えば水、 雨水等に 対して化学的に安定である。 従って、 本発明の活性エネルギー線硬化型不飽和樹 脂組成物によれば、 耐水性等の耐久性に優れた顕著な効果を奏する被膜を得るこ とができる。 第 3の発明の技術の分野
第 3の発明は、 活性エネルギー線重合性不飽和樹脂組成物及び当該樹脂組成物 からなる耐薬品性、 付着性、 耐熱性に優れる液体または粉末状活性エネルギー線 硬化性組成物に関する。 第 3の発明の背景技術
従来から、 光硬化性組成物として無機フィラ一を配合した組成物が使用されて いる。無機フイラ一は一般に、 硬度や耐熱性などの物性に優れた光硬化被膜を得 るために基材に多量に配合される。
しかし、 この配合された無機フィラ一により樹脂組成物の光透過性が低下し、 または被膜の硬化性が悪化し、 更には、 被膜が脆くポ一ラスなものとなり、 被膜 の機械的性質、 耐水性、 付着性、 耐薬品性などが劣る場合がある。 また、 有機溶 媒を使用せずに塗布等の操作ができる粉末状の硬化性組成物であれば、 近年の環 境保全の観点からも簡便に使用することができる。 第 3の発明の開示
本発明者は鋭意研究を重ねた結果、 特定の脂環式エポキシ基含有不飽和化合物 とコロイダルシリカとを金属キレ一卜及び Z又は金属アルコキシドの存在下で反 応させて得た樹脂組成物が、 粉末状に加工でき、 かつ該樹脂組成物からなる硬化 性組成物が活性エネルギー線照射による硬化性に優れ、 しかもその硬化被膜が機 械的性質、 耐水性、 耐薬品性、 付着性等に優れることを見い出し、 本発明を完成 させるに到った。
すなわち本発明は、 式 (6) で表わされる脂環式エポキシ基含有不飽和化合物 (E) とコロイダルシリカ (F) とを金属キレート及び/又は金属アルコキシド (以下、 「金属化合物」 という。 ) (G) の存在下で反応して得られる活性エネ ルギ一線重合性不飽和樹脂組成物を提供するものである。 また、 前記活性エネル ギ一線重合性不飽和樹脂組成物を脱溶剤した粉末状活性エネルギー線重合性不飽 和樹脂組成物を提供するものである。 更に、 前記液体または粉末状活性エネルギ 一線重合性不飽和樹脂組成物からなる液体または粉末状活性エネルギー線硬化性 組成物を提供するものである。 以下、 本発明を詳細に説明する。
R2-O-CO-NH-CH=CH-R1 (6)
(式中、 R 1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表し、 R2は、 式 (2) または式(3) を表わす。 )
Figure imgf000034_0001
00 I O CCO(CR4R5)mO] „- i-CO(CR4R5)m- (3)
\ノ\/
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4〜 8の整数、 nは 1〜10の整数を表す。 ) 第 3の発明を実施するための最良の形態
脂環式エポキシ基含有不飽和化合物 ( E )
本発明で使用する脂環式エポキシ基含有不飽和化合物 (E) とは、 1分子中に 1個の脂環式エポキシ基および 1個以上の活性エネルギー線重合性不飽和基を有 する化合物をいい、 上記式 (6) で示され、 第 1の発明の式 (1 ) で表される化 合物の内、 R2が式 (2) または (3) で表される化合物と製造方法及び構造式が 同じものである。
脂環式エポキシ基含有不飽和化合物 (E ) には、 1分子中に 1個の脂環式ェポ キシ基のみを含有することを特徴とする。 1個としたのは、 2個以上の脂環式ェ ポキシ基を有すると、 これを金属化合物 (G ) の存在下にコロイダルシリカ (F ) を反応させると、 系が増粘、 ゲル化する場合があるからである。 また、 脂環式と したのは、 グリシジル基などの脂肪族エポキシ基を有する化合物では、 エポキシ 基とコロイダルシリカ (F ) 成分中のシラノール基との反応性が劣り、 コロイダ ルシリ力成分と不飽和基含有化合物成分との結合が十分行われず、 外観及び性能 に優れた硬化被膜を得ることができないからである。 また、 脂環式エポキシ基含 有不飽和化合物 (E ) が有する炭素 -炭素二重結合は、 活性エネルギー線重合性 不飽和基であり、 可視光線、 紫外線、 電子線などの活性エネルギー線で活性化し、 重合反応を起こす。 コロイダルシリカ (F )
本発明で使用するコロイダルシリカ (F ) としては、 平均粒子径 0 . 0 0 1〜 1 0 0 mのシリカ粉末を有機溶媒中に分散させたものをいう。
本発明で使用するコ口ィダルシリカとしては、 粒子表面にシラノ一ル基を有す るシリカ粉末を有機溶剤中に分散させた平均粒子径 0 . 0 0 5〜0 . l ^ mのも のが好ましい。 シラノール基があると、 コロイダルシリカ中のシラノール基と脂 環式エポキシ基との反応を容易に行うことができ、 しかもこのものを用いて得ら れる硬化性組成物は、 活性エネルギー線照射による硬化に優れ、 被膜の機械特性、 耐水性、 耐薬品性、 付着性等も優れるからである。 平均粒子径が 0 . 1 mより 大きいと硬化物が白濁したり、 沈降安定性が低下する場合があり、 その一方、 平 均粒子径が 0 . 0 0 5 mより小さいと得れらた組成物の粘度が高くなつて取り 扱 L、が困難となるので好ましくない。
コロイダルシリカ (F ) に使用できる有機溶媒としては、 シリカを安定に分散 させるものであれば、 特に制限されずに使用できる。 メチルアルコール、 ェチル アルコール、 n —プロピルアルコール、 i s o—プロピルアルコール、 n—ブチ ルアルコール、 i s 0 —ブチルアルコール、 s e c 一ブチルアルコール、 t e r t —ブチルアルコール、 n—ペンチルアルコール、 n—ヘプチルアルコール等の 炭素数 1〜 6の 1価アルコール類:エチレングリコール、 ジエチレングリコール、 プロピレングリコール、 ジプロピレングリコール等の多価アルコール類、 ェチル セロソルブ、 ブチルセロソノレブ、 プロピレングリコ一ノレモノメチノレエ一テル、 ジ エチレングリコールモノメチルエーテル、 エチレングリコールジメチルエーテル、 ジエチレングリコールジメチルェ一テル等のエーテル類、 N, N—ジメチルホル ムアミ ド等のアミ ド類、 ァセ卜二トリル等の二トリル類等が例示できる。 また上 記した以外の有機溶剤、 例えば芳香族炭化水素類、 エステル類、 ケトン類等のも のも組み合わせて使用できる。 金属化合物 (G )
本発明で使用する金属化合物 (G ) には、 金属キレートと金属アルコキシドと がある。
金属キレートとしては、 アルミニウムキレート化合物、 チタニウムキレ一卜化 合物またはジルコニウムキレ一卜化合物が例示でき、 特開平 1— 1 2 9 0 6 0号 公報記載のものも使用できる。 具体的には、 ジイソプロポキシェチルァセトァセ テートアルミニウム、 トリス (ェチルァセトアセテート) アルミニウム、 イソプ 口ポキシ ' ビス (ェチルァセ卜アセテート) アルミニウム、 モノァセチルァセト ナト ' ビス (ェチルァセトァセテート) アルミニウム、 トリス (n —プロピルァ セ卜ァセテ一ト) アルミニウム、 卜リス (イソプロピルァセ卜ァセテ一ト) アル ミニゥム、 トリス (n—ブチルァセトアセテート) アルミニウム、 モノェチルァ セトァセテート . ビス (ァセチルァセトナ卜) アルミニウム、 卜リス (ァセチル ァセトナト) アルミニウム、 トリス (プロピオ二ルァセ卜ナト) アルミニウム、 ァセチルァセトナト · ビス (プロピオニルァセトナ卜)'アルミニウム、 ジイソプ ロボキシ . ビス (ェチルァセトアセテート) チタニウム、 ジイソプロボキシ . ビ ス (ァセチルァセトナト) チタニウム、 テトラキス (n—プロピルァセトァセテ —ト) ジルコニウム、 テトラキス (ァセチルァセトナト) ジルコニウム、 テトラ キス (ェチルァセトアセテート) ジルコニウム等が例示できる。 本発明では、 こ れらの 1種または 2種以上を併用してもよい。
金属アルコキシドとしては、 アルミニウム、 チタニウム、 ジルコニウム、 ナト リウム、 カリウム、 カルシウム、 リチウム等の金属類に、 アルコキシ基好ましく は炭素数 1〜 1 5のアルコキシ基が結合した化合物を使用することができる。 こ れらの化合物は会合していてもよい。 具体的には、 アルミニウムトリイソプロボ キシド、 アルミニウムトリー s e c—ブトキシド、 アルミニウム卜リー n—ブト キシド、 チタニウムテトライソプロポキシド、 チタニウムテトラー n—ブトキシ ド、 チタニウムテトライソブトキシド、 チタニウムテトラ _ t —ブトキシド、 ジ ルコニゥムテトライソプロポキシド、 ジルコニウムテトラ _ n—プロポキシド、 ジルコニウムテトライソブトキシド、 ジルコニウムテトラ—]!一ブトキシド、 ジ ルコニゥムテトラー tーブトキシドなどが好適に挙げられる。 本発明では、 これ らの 1種または 2種以上を併用してもよい。 活性エネルギー線重合性不飽和 ¾f脂組成物
本発明の活性エネルギー線重合性不飽和樹脂組成物 (以下、 「不飽和樹脂組成 物」 という。 ) は、 上記脂環式エポキシ基含有不飽和化合物 (E ) とコロイダル シリカ (F ) とを金属化合物 (G ) の存在下で反応させて製造することができる。 脂環式エポキシ基含有不飽和化合物 (E ) とコロイダルシリカ (F ) との配合 比は、 要求される被膜性能に応じて適宜変更することができる。 通常両者の固形 分総合計量に対し化合物 (E ) 2 0〜8 0重量%、 好ましくは 2 0〜7 0重量%、 コロイダルシリカ (F ) 8 0〜2 0重量%、 好ましくは 8 0〜3 0重量%の配合 割合である。 コロイダルシリカ (F ) が 2 0重量%より少ないと硬度、 耐熱性な どの被膜性能が十分でな 、。 一方、 コロイダルシリカ ( F ) が 8 0重量%より多 いと被膜にヒビヮレが生じ、 透明性が劣る場合があるので好ましくない。 また、 第 2の発明で使用した 「他の不飽和基含有脂環式エポキシ化合物群のい ずれかの化合物」 を、 化合物 (E ) に対して 9 9 /:!〜 1 Z 9 9重量部の範囲で 併用することができる。
金属化合物 (G ) は、 化合物 (E ) とコロイダルシリカ (F ) との固形分総合 計 1 0 0重量部に対して、 0 . 0 1〜 1 0重量部、 特には 0 . 1〜5重量部の割 合で配合することが好ましい。 0 . 0 1重量部より少ないと硬化不良を起こしや すく、 5重量部を超えると貯蔵安定性に劣り、 また塗膜物性に影響を与える場合 があるからである。 本発明の 「不飽和樹脂組成物」 は、 化合物 (E ) とコロイダルシリカ (F ) と を、 金属化合物 (G ) の存在下で 4 0〜 1 3 0 °Cの反応温度で 1〜 1 0時間加熱 することにより得られる。 粉末状活性エネルギー線重合性不飽和樹脂組成物
本発明の粉末状活性エネルギー線重合性不飽和樹脂組成物は、 上記 「不飽和樹 脂組成物」 を常法に従って脱溶剤し、 製造することができる。 また、 本発明の活 性エネルギー線硬化性組成物 (以下、 「硬化性組成物」 という。 ) は、 上記「不 飽和樹脂組成物」 に、 以下に示す硬化性樹脂または硬化性単量体を配合した組成 物である。 なお、 「硬化性組成物」 においては、 コロイダルシリカ (F ) 成分が、 「硬化性組成物」 中の固形分総合計量の 2 0〜 8 0重量%、 好ましくは 3 0〜 8 0重量%の割合となるよう配合することが好ましい。
配合し得る硬化性樹脂としては、 従来から公知のものを適宜選択して使用でき る。 具体的には、 エポキシアクリル系オリゴマー、 ポリエステル系オリゴマー、 ウレタンアクリル系オリゴマー、 アクリル系オリゴマー、 オリゴエステルァクリ ル系オリゴマ一、 エーテルァクリル系ォリゴマ一、 ブタジェン系ォリゴマー、 ス ビラン環含有ァクリル系ォリゴマ一などのォリゴマ一が好適に使用できる。 本発 明では、 これらが 1分子中に平均 1個以上の活性エネルギー線重合性不飽和基を 有し、 分子量 1 0 0〜2 0 , 0 0 0のものであることが好ましい。
また、 配合し得る硬化性単量体としては、 従来から公知のものを適宜選択して 使用できる。 具体的には、 例えば、 メチル (メタ) ァクリレート、 ェチル (メタ) ァクリレ一ト、 ブチル (メタ) ァクリレート、 2 -ェチルへキシルァクリレ一ト、 2—ヒドロキシプロピル (メタ) ァクリレ一ト、 グリシジル (メタ) ァクリレ一 ト、 (メタ) アクリル酸、 (メタ) アクリルアミ ド、 スチレンなどの単官能ビニ ル単量体及びエチレングリコール、 トリメチロールプロパン、 グリセリン、 ペン タエリスリ トールなどの多価アルコールと (メタ) アクリル酸とのジまたはトリ エステル化物などが挙げられる。
「不飽和樹脂組成物」 がシラノール基を有する場合は、 配合する樹脂 ·単量体 は、 シラノール基と反応する官能基を含有する化合物を配合すると硬化性が向上 する。 シラノール基と反応する官能基を含有する化合物としては、 ①エポキシ基、 ②シラノール基、 ③珪素に直接結合した加水分解性基、 ④水酸基、 ⑤イソシァネ —ト基等を有する化合物である。 かかる化合物を配合すると、 活性エネルギー線 照射による硬化反応と加熱による硬化反応とが同時に起こるので塗膜性能などが 向上するという効果がある。
①エポキシ基を有する化合物としては、 前記化合物 (E ) の単独重合体および 化合物 (E ) と (メタ) アクリル酸を除く前記単量体との共重合体、 並びに脂環 式エポキシ樹脂 (チッソ社製品 「チソノックス 2 0 1」 、 「チソノックス 2 0 6」 ) 等の脂環式エポキシ化合物が例示でき、 更に、 下記化合物も例示できる。 なお、 脂肪族型エポキシ基含有化合物を使用することもできるが、 脂環式エポキシ基含 有化合物と比べ反応性が劣る場合がある。 0
Figure imgf000040_0001
②シラノール基又は③珪素に直接結合した加水分解性基、 例えばアルコキシ基、 ァリールォキシ基、 ァシロキシ基等を有する化合物としては、 シラノール基及び
Z又はアルコキシシラン基を有するものであって、 例えば、 特開昭 6 2— 1 9 7 4 2 3号公報に記載のポリシロキサン系モノマー、 特開昭 6 3— 1 0 8 0 4 9号 公報に記載のアルコキシシラン基含有ビニル単量体等の単量体または該単量体を 必須成分として含有する重合体が好適に使用できる。
④水酸基を含有する化合物としては、 例えばポリエステル系ポリオ一ル、 ポリ エーテル系ポリオ一ル、 アクリル系ポリオ一ル、 ポリシロキサン系ポリオール、 ポリウレタン系ポリオール及びこれらの変性ポリオールなどが好適に使用できる。
⑤ィソシァネー卜基含有化合物としては、 例えば上記ポリオールにポリィソシ ァネ一ト、 例えばイソホロンジイソシァネ一ト等をイソシァネ一卜基を含有する ように反応させたものが好適に使用できる。 本発明の 「硬化性組成物」 には、 必要に応じて有機溶剤、 例えば芳香族炭化水 素類、 アルコール類、 エーテル類、 エステル類、 ケ卜ン類などを含有することが できる。 これら有機溶剤を配合することにより、 粘度、 膜厚、 安定性、 流動性等 の調整ができ、 使用が容易になる。 また、 「不飽和樹脂組成物」 を用いて水溶性 の 「硬化性組成物」 を得ることもできる。 具体的には、 上記樹脂から水溶性化が 可能な樹脂を選択する。 水性化が可能な樹脂としては従来から公知のものが使用 でき、 具体的には特公昭 5 2 - 2 1 5 2 6号公報、 特開昭 6 2 - 2 6 2 8 5 5号 公報、 特開昭 6 4— 4 6 7 1号公報、 特開昭 6 4 _ 4 6 7 2号公報などに記載の カチオン性及びァニオン性基を有する不飽和樹脂、 具体的には、 酸基含有樹脂を アミン中和した樹脂およびグリシジル基を含む化合物で 4級化した樹脂、 酸基を アル力リ中和した樹脂、 酸基含有樹脂の一部に不飽和基とエポキシ基を有する化 合物を付加させ、 残った酸基をアミン中和した樹脂およびグリシジル基を含む化 合物で 4級化した樹脂、 イソシァネート基を用いて親水基を導入した樹脂、 ヒド 口キシル基、 ポリエーテル基などを含む樹脂等が例示できる。 また、 「不飽和樹 脂組成物」がシラノール基を有する場合には、 上記したシラノール基と反応する 官能基を含有する化合物中の水溶性の化合物を選択する。 具体的には、 メルカプ ト基含有シアン化合物、 アミノ基含有シラン化合物、 ヒドロキシル基含有シラン 化合物が例示できる。 粉末状活性エネルギー線硬化性組成物
「不飽和樹脂組成物」から粉末の 「硬化性組成物」 を得るには、 上記樹脂から 粉末化が可能な樹脂を選択して配合する。 「不飽和樹脂組成物」 がシラノール基 を有する場合には、 上記したシラノール基と反応する官能基を含有する化合物中 の粉末化が可能な化合物を選択する。
本発明の 「硬化性組成物」 には、 必要に応じて着色剤、 分散剤、 流動性調整剤 等を添加することができる。 また、 液状または粉末状の 「硬化性組成物」 は、 電 子線、紫外線、 可視光線などの活性エネルギー線を照射することによって硬化さ せることができるが、 紫外線及び可視光線を照射して硬化させる場合には、 該組 成物中に光重合開始剤や、 増感剤、 色素類を配合することができる。
光重合開始剤としては、 第 1の発明で例示した光重合開始剂を使用することが できる。 それらは 1種もしくは 2種以上を組合わせて用いることができる。 また、 光重合開始剤の配合量は、 「硬化性組成物」 の 0 . 0 1〜 1 0重量%の範囲で配 合することが好ましい。
本発明の液状または粉末状の 「硬化性組成物」 には、 光吸収エネルギーの重合 開始遊離基への転換を強めるための相乗剤、 例えばエポキシ開環付加触媒を併用 することができる。 配合できるエポキシ開環付加触媒としては、 第 1の発明で例 示したエポキシ開環付加触媒を使用することができる。 これらは単独で使用して も 2種以上を混合して使用してもよい。 これらの触媒は 「硬化性組成物」 に対し、 0 . 0 1〜 1 0重量%、 好ましくは 0 . 1〜 5重量%用いることが好ましい。 0 . 0 1重量%を下回ると付加自身の反応速度が遅くなり実用上好ましくないためで あり、 1 0重量%を超えると塗膜物性に影響がでるからである。 なお、 本発明の 化合物、 組成物を電子線照射で硬化させる場合には光重合開始剤の添加はなくて もよい。
本発明の液状または粉末状の 「硬化性組成物」 に配合し得る色素類としては、 キサントンェォシン、 ケトクマリン類等が例示できる。 これらは単独で使用して も 2種以上を混合して使用してもよい。 これらの触媒は 「硬化性組成物」 に対し、 0 . 0 1〜7 0重量%、 好ましくは 0 . 1〜5 0重量%用いることが好ましい。 0. 0 1重量%を下回ると付加自身の反応速度が遅くなり実用上好ましくないた めであり、 7 0重量%を超えると塗膜物性に影響がでるからである。 用途
本発明の液状または粉末状の 「硬化性組成物」 は、 木材、 紙、 無機質材料、 プ ラスチック、 金属等の基材に適用することができる。 特に塗料、 印刷インキ、 封 止剤、 フォ トレジスト、 ソルダーレジスト、 メツキレジス卜、 刷版材、 接着剤な どに特に有用なものである。 これらの中でも、 耐薬品性、 付着性、 耐熱性に優れ た性質を有するので特に封止剤、 電子部品の保護被膜、 各種レジスト被膜として 用いることが望ましい。 本発明の液状または粉末状の 「硬化性組成物」 の硬化性 組成物は、 被膜の硬度が高く、 耐薬品性等に優れるからである。 なお、 「硬化性 組成物」 の水性化物を用いれば、 ネガまたはポジ型ァニオン性電着塗料やネガま たはポジ型カチオン形電着塗料としてプリント配線用鋼箔積層絶縁基板などに使 用することができる。 本発明の 「硬化性組成物」 を用いて被膜を形成する方法、 塗装膜厚、 活性エネ ルギ一線を放出させる電子線の加速器、 電子線の照射量、 活性エネルギー線を放 出させる紫外線の照射源、 照射条件等は、 第 2の発明に記載したものと同様の条 件で使用することができる。 第 3の発明の実施例
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。 なお 「部」 、 「%」 は、 特に示す場合を除くほか 「重量部」 、 「重量%」 を示す。
(合成例 1 )
攪拌機、 温度計、 還流冷却管、 滴下ロート及び窒素導入管を備えたセパラブル フラスコに、 シリカゾル (日産化学工業社製「I PA— STJ :固形分 30%、 平均粒子径 0. 01〜0. 02 μιη) 1000部、 後記化合物 (A) 150部、 メチルメタクリレートトリス (ァセチルァセ卜ナト) 0. 5部、 アルミニウムメ 卜キシハイドロキノン 0. 04部を混合し、 攪拌しながら 1 10°Cで 6時間反応 させ、 固形分 39%の樹脂溶液を得た。
(合成例 2 )
化合物 (A) 150部に代えて化合物 (A) 100部と後記化合物 (B) 50 部とを使用した以外は、 合成例 1と同様に操作して樹脂溶液を得た。 得られた樹 脂溶液は固形分 39 %であつた。
(合成例 3 )
化合物 (A) に代えてグリシジルメタクリレ一卜を使用した以外は、 合成例 1 と同様に操作して樹脂溶液を得た。 得られた樹脂溶液は固形分 39%であった。 60
42
(合成例 4 )
合成例 1で得た樹脂溶液を 4 0 °Cで減圧乾燥を行って樹脂粉末を得た。
(合成例 5 )
合成例 3で得た樹脂溶液を 4 0 °Cで減圧乾燥を行って樹脂粉末を得た。
(実施例 1 )
合成例 1で得た樹脂溶液 1 1 5 0部及び α —ヒドロキシイソプチルフヱノン 1 5部を混合し、 このものを A B S (アクリロニトリル—ブタジエン—スチレン共 重合体) 板の表面に乾燥膜厚 2 0 になるようにスプレー塗装を行い、 7 0 °C で 1 0分間加熱して溶剤を除去した後、 5 k wの高圧水銀灯で 3 0 c mの距離か ら 3 0秒間露光を行って被膜を得た。 該被膜はヒビヮレなどの欠陥がない連続被 膜であった。 また、 該被膜は透明でかつ鉛筆硬度は 7 Hで良好であった。
(比較例 1 )
合成例 1の樹脂溶液に代えて合成例 3の樹脂溶液を使用した以外は、 実施例 1 と同様にして被膜を得た。 該被膜は連続被膜を形成せず表面を手でこすると粉末 状となって手に残った。
(実施例 2 )
合成例 2の樹脂溶液 1 0 5 0部、 トリメチロールプロパントリァクリレート 1 5 0部及びべンゾィンェチルェ一テル 2 0部の混合物を、 リン酸亜鉛処理鋼板の 表面に乾燥膜厚 3 O ^ mになるようにスプレー塗装を行い、 7 0 °Cで 1 0分間加 熱して溶剤を除去した後、 5 k wの高圧水銀灯で 5 0 c mの距離から 2 0秒間露 光を行って被膜を得た。 該被膜はヒビヮレなどの欠陥のなし、連続被膜であつた。 また、 該被膜は透明で、 鉛筆硬度 8 H、 ゴバン目付着性は 1 0 0ノ 1 0 0で良好 であった。
(比較例 2 )
合成例 2の樹脂溶液 1 0 5 0部を合成例 3の樹脂溶液 1 1 5 0部に代えて使用 した以外は実施例 2と同様にして被膜を得た。 該被膜は細かいヒビヮレを生じ連 続性に劣る被膜であった。 また、 該被膜は不透明でゴバン目付着は 0 / 1 0 0、 4660
43 鉛筆硬度の結果は、 被膜を鉛筆で引つかくと被膜が剥がれ落ち測定できなかった。 (実施例 3 )
合成例 4の樹脂粉末 450部、 エポキシアクリルオリゴマー (シェル化学社製 「ェピコ一ト 828 (B i s— Aタイプのグリシジルエーテルであってエポキシ 当量が 1 90の液状樹脂) 」 1モルに対してァクリル酸 2モルを反応させたもの) 200部、 2—ヒドロキシー 3—ベンジルォキシプロピルァクリレート 50部及 び後記化合物 (C) 25部の混合物をボールミルで 6時間分散を行ったものを 1 辺 1 c mの軟鋼板製のマスに入れ、 5 k wの高圧水銀灯で 30 c mの距離から 4 0秒間露光した後、 140°Cで 60分間加熱し注型物を得た。 該注型物について サーモサイクルテストを行った。 その結果、 サ一モザイクルテスト前後において 全く変化がなく良好なものであつた。
(比較例 3)
合成例 4の樹脂粉末に代えて合成例 5の樹脂粉末に代えて使用した以外は実施 例 4と同様にして注型物を得た。 該注型物については、 実施例 4と同様の用法で サーモサイクルテストを行った結果、 1 0サイクルで注型物にヒビヮレを生じた。 (実施例 4)
エポキシ樹脂 (シヱル化学社製「ェピコ一トー 1 80 S 70 (エポキシ当量約 21 0のクレゾ一ルノポラックエポキシ樹脂) 」 ) 1 1 00部を.ブチルセ口ソル ブ 1045部に溶解した樹脂溶液に、 ハイドロキノン 0. 1部、 アクリル酸 28 8部を加えて 1 00°Cに加熱し酸価が 5以下になるまで反応を続けた後、 Ί 0°C まで冷却を行い、 更にこのものにチォジグリコール 1 22部、 酢酸 60部を加え、 70°Cで 8時間反応を行ってァクリロイル基及び水酸基を含有する固形分 60% 樹脂溶液を得た。 次に該樹脂溶液 1 00部、 合成例 1の樹脂溶液 1 50部、 化合 物 (C) 1 5部及びべンゾインェチルエーテル 5部の混合物をスルーホールを有 する鋼箔積層板上に乾燥膜厚 30 になるように塗布し、 70 で1 0分間加 熱して溶剤を除去した後、 ネガマスクを介して 8 OwZ cmの超高圧水銀灯を用 いて 50 cmの距離から 30 Om J /cm2の光量で露光を行ったのち、 現像液に て一定時間処理を行い未露光部の被膜を剥がしとつた後、 残った被膜を 140°C で 30分間加熱して鋼箔積層板上にレジスト膜ハ °ターンを形成した。 得られた膜 の性能結果を表一 4に示した。
(実施例 5 )
攪拌機、 温度計、
還流冷却管、 滴下ロート及び窒素導入管を備えた 2リッ トルセパラブルフラスコ に、 ジプロピレングリコールモノメチルエーテル (日本乳化剤社製 「MFDG」 )
300 g、 tーブチルバ一ォキシ 2—ェチルへキサノエ一ト (日本油脂社製 「パ 一ブチル 0」 ) 1 2. O gを導入し、 95°Cに昇温後、 メタクリル酸 1 72 g、 メチルメタクリレート 126 g、 及び 2, 2ーァゾビス (2—メチルプチロニト リル) (日本ヒ ドラジン工業社製 「ABN— E」 ) 9. 5 g、 「MFDG」 20
0 gを共に 3時間かけて滴下した。 滴下後 4時間熟成してカルボキル基を有する 幹ポリマーを合成した。 次に、 上記幹ポリマ一溶液に、 エポキシシクロへキシル メチルアタリレート (ダイセル化学工業社製 「サイクロマ一 A 200」 ) 202 g、 トリフエニルホスフィン 2 g、 メチルハイ ドロキノン 1. 0 g加えて、 10
0°Cで 10時間反応させた。 反応は、 空気/窒素の混合雰囲気下で行った。 これ により、 酸価 10 OKOHmgZg 二重結合当量 (不飽和基 1 mo 1当りの樹 脂重量) 450、 重量平均分子量 20, 000の樹脂溶液を得た。
次に該樹脂溶液 1 00部、 合成例 1の樹脂溶液 150部、 化合物 ( C ) 15部 及びべンゾィンェチルエーテル 5部の混合物を用いて実施例 4と同様にレジスト 膜パターンを形成した。
(比較例 4)
実施例 4において、 合成例 1の樹脂溶液 150部を 「シリカゾル I PA—STJ 130部に置き換えた以外は実施例 4と同様にレジス卜膜パターンを形成した。 (比較例 5 )
実施例 4において、 合成例 1の樹脂溶液を合成例 3の樹脂溶液代えて使用した 以外は実施例 4と同様にレジスト膜パターンを形成した。 比較例 4及び 5の膜の 性能試験結果をまとめて表一 4に示した
化合物 A
Figure imgf000047_0001
化合物 B
Figure imgf000047_0002
化合物 C
Figure imgf000047_0003
表一 4 実施例 4 実施例 5 比較例 4 比較例 5 現像性 ( 9 0秒) ◎ ◎ ◎ ◎ 現像性 (180秒) ◎ ◎ ◎ ◎ 指触乾燥性 〇 ◎ 〇 〇 ゴバン目付着性 100/100 100/100 50/100 60/100 耐酸性 ◎ ◎ 厶 Δ 耐半田メツキ性 異常なし 異常なし 異常なし 異常なし 耐半田メツキ性 *2 4 4 フクレ フクレ 耐半田メツキ性 * 3 100/100 100/100 0/100 0/100 耐熱水浸漬テスト 100/100 100/100 0/100 1/100
*1:耐半田メッキ性の 3サイクル後の目視結果
*2:耐半田メッキ性の 6サイクル後の目視結果
*3:耐半田メッキ性の 6サイクル後のゴノ ン目着性の結果 (試験方法)
(1)鉛筆硬度: J I SK 5400に従って行った。
(2) ゴバン目付着性:カッターで被膜面に 1 mmマスを 100個作り、 セロ ファンテープを密着させて急激に引き離した後の被膜の付着状態を観察した。 結 果は、 残ったマス目の数/作ったマス目の数で表した。
( 3 ) サ一モザイクルテスト :注型物を 150 で 5時間及び一 20 で 5時 間のサ一モサイクルを 1サイクルとして 50回繰り返した。 評価は目視に依つた。
( 4 )現像性:現像液 ( 1. 5 N a 2 C〇 3水溶液) を 25 °Cでスプレー圧 2 k g/ cm2で露光後のレジスト膜上に所定時間 (90秒と 180秒) スプレーして 行った。 評価は、 ◎:スルホールの穴の中まで完全に現像できる、 〇:基板表面 は完全に現像できる、 △:基板表面にも現像できない箇所あるいは現像液による 浸食、 膨潤などにより画線の欠陥を生じる、 X:ほとんど現像されない、 で表し た。
(5) 指触乾燥性:真空ラミネ一ターでフィルムを膜状に密着し露光後目視に より観察した。 評価基準は、 以下に従った。 ◎ : フィルムが塗膜により全く汚染 されない、 〇: フィルムが塗膜によりわずかに汚染される。 X: フィルムが塗膜 により明らかに汚染される、 で表した。
(6) 耐酸性: I Nの H2S04中に 60°Cで 1時間浸漬後目視により観察した。 ◎:塗膜状態に全く変化のないもの、 〇:塗膜状態にわずかな膨潤、 変色の認め られるもの、 △:塗装状態に明らかな変色が認められるもの、 X:塗膜が溶解な いしハクリしたもの、 で表した。
(7) 耐ハンダメツキ性 (目視) : J I SC 6481に従いテストピースを 260°Cのハンダ浴に 10秒フロー卜させるのを 1サイクルとし、 3サイクノレ目、 および 6サイクル目に観察し、 目視により評価した。
(8) 耐ハンダメツキ性 (ゴバン目付着性) : J I SC 6481に従いテス トピースを 260°Cのハンダ浴に 10秒フロー卜させるのを 1サイクルとし、 6 サイクル後に、 カッターで被膜面に 1 mmマスを 100個作り、 セロファンテ一 プを密着させて急激に引き離した後の被膜の付着状態を観察した。 結果は、 残つ たマス目の数/作つたマス目の数で表した。
( 9 ) 耐熱水浸漬テスト :テストピースを 8 0〜 9 0 °Cの熱水に 1時間浸漬し た後、 カッターで被膜面に l mmマスを 1 0 0個作り、 セロファンテープを密着 させて急激に引き離した後の被膜の付着状態を観察した。 結果は、 残ったマス目 の数 Z作ったマス目の数で表した。 第 3の発明の産業上の利用可能性
本発明の活性エネルギー線重合性不飽和樹脂組成物は、 脂環式ェポキシ基含有 不飽和化合物 (E ) 中の脂環式エポキシ基とコロイダルシリカ (F ) 成分中のシ ラノール基との反応が金属化合物 (G ) を触媒にして容易に行える。 しかもコロ ィダルシリカ (F ) と重合性不飽和基との結合が脂環式エポキシ基を介してコロ ィダルシリカに結合するため、 得られる 「樹脂組成物」 を使用して得た 「硬化性 組成物」からなる被膜は、 耐熱性、 耐薬品性に優れるほか、 仕上がりがよく、 透 明性等に優れる。 第 4の発明の技術の分野
第 4の発明は、 低温硬化性樹脂組成物に関し、 より詳細には、 ポリシロキサン 構造を有するモノマーと特定構造のォキシラン基含有ビニルモノマーとのビニル 共重合体、 特定の金属化合物および特定の 2個以上の脂環式ォキシラン基を含有 化合物とからなる組成物であって、 硬化反応時に水分が不要で低温硬化性に優れ、 貯蔵安定性に優れ、 表面と内部との硬化性の差が少ないため縮みを生じることが なく、 耐候性、 耐水性に優れた硬化物を提供し得る低温硬化性樹脂組成物に関す る。 第 4の発明の背景技術
エネルギーコスト低減のためには、 低温で硬化する樹脂組成物の開発が強く望 まれている。 従来から低温硬化性の樹脂組成物として、 ポリオ一ル Zイソシァネ 一ト系、 エポキシ/ポリアミン系等の 2液性の樹脂組成物が主として用いられて いる。 し力、し、 この様な 2液性の樹脂組成物では、 使用直前に両成分を混合する 必要があり操作が煩雑である。 更に、 イソシァネートを用いる場合には、 毒性が 強いという欠点もある。 一方、 紫外線や電子線等による活性エネルギー硬化型の 1液性の重合性不飽和樹脂組成物も知られているが、 照射装置が不可欠であるた め、 操作性がよいとはいえない。 また、 1液性で無毒性であって、 しかも照射装 置を必要としない低温硬化性組成物として、 例えば特開昭 6 0 - 6 7 5 5 3号公 報にメタクリロキシプロビルトリメ トキシシラン等のアルコキシシランを含有す るビニル重合体にアルミニゥムキレー卜化合物を配合した組成物が開示されてい る。
しかしながら、 上記公報の組成物は、 アルコキシシランが加水分解して生じる シラノール基のみが架橋官能基であるため、 硬化には多量の水を必要とする。 ま た、 加水分解時に生ずる多量のアルコール等の副生物の存在により、 硬化物の物 性が充分とはいえない。 更に、 空気中の水分のみで硬化させる場合は、 表面から 硬化するため内部が硬化しにく く、 硬化物に縮みを生じ易いこと等の問題がある。 第 4の発明の開示
本発明者は、 従来技術の問題点を解決すベく鋭意研究を重ねたところ、 特定の ポリシキロキサン系マクロモノマーと特定のォキシラン基含有ビニルモノマーと を成分として含有するビニル共重合体に、 特定の脂環式ォキシラン基を含有する 化合物および特定の有機金属化合物を配合したところ、 得られた組成物中に存在 するシラノール基とォキシラン基とが架橋官能基となり、 1 0 0 °C以下の低温に おいても硬化し、 しかも硬化物表面と内部とで同時に硬化反応が進行するため縮 みが少ないことを見い出し、 本発明を完成するに至った。
すなわち本発明は、 下記成分 (ィ)、 (口) 、 (ハ) を含有することを特徴と する低温硬化性樹脂組成物を提供するものである。 (ィ) 下記式 (7) で表される化合物 (H) 70〜99. 999モル%と下記 式 ( 8 ) で表される化合物 ( J ) 30〜 0. 001モル%とを反応させて得た 1 分子中に水酸基またはアルコキシル基を 2個以上有する数平均分子量 400〜5 0, 000のポリシロキサン系マクロモノマーと、 下記式 (6) で表されるォキ シラン基含有ビニルモノマ一との共重合体であって、 数平均分子量 2, 000〜 100, 000のビニル共重合体、 (口) 6配位の有機アルミニウムキレート化 合物及びノ又は 8配位の有機ジルコニウムキレート化合物、 (ハ) 1分子中に少 なくとも 2個の脂環式ォキシラン基を含有する数平均分子量 1, 000以下の化 合物。以下、 本発明を詳細に説明する。
R11 - S i R12 13R14 (7) (式中、 R 11は炭素数 1〜 8の脂肪族炭化水素基またはフヱニル基を示し、 R12 R13及び R14は炭素数 1〜4のアルコキシル基または水酸基を示す。 )
CH2=CRl5COO (CH2) k-S i R16R17R18 (8) (式中、 R 15は水素原子またはメチル基を示し、 R16、 R 17及び R 18は水酸基、 炭素数 1〜 4のアルコキシル基または炭素数 1〜 8の脂肪族炭化水素基のいずれ かを示し、 kは 1〜6の整数を示す。 但し、 R16、 R 17及び R 18の全てが炭素数 1〜 8の脂肪族炭化水素基であることはない。 )
R2-O-CO-NH-CH = CH-R' (6) (式中、 R 1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表し、 R2は、 式(2) または式(3) を表わす。 )
Figure imgf000051_0001
ΟΓ 0 〔C〇(CR4R5)mO〕 n- i-CO(CR4R5) (3)
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 mは 4〜 8の整数、 nは 1〜 10の整数を表す。 ) 第 4の発明を実施するための最良の形態
成分 (ィ)
本発明の低温硬化性樹脂組成物に使用する成分 (ィ) は、 ポリシロキサン系マ クロモノマーと式 (6) で表されるォキシラン基含有ビニルモノマーとをモノマ —成分として含有するビニル共重合体である。 成分 (ィ) は、 数平均分子量 2, 000〜100, 000であること、 特には 4, 000〜50, 000であるこ とが好ましい。 2, 000未満では硬化性が劣り、 他方、 数平均分子量 100, 000より大きいと塗装作業性や成分 (ハ) であるォキシラン基を含有する化合 物との相溶性が低下するからである。 ポリシロキサン系マク口モノマー
成分 (ィ) を構成するポリシロキサン系マクロモノマ一は、 ポリシロキサン構 造を有し、 S iに脂肪族炭化水素基、 フエニル基、 水酸基、 アルコキシル基、 重 合性炭素一炭素二重結合部を含むアルコキシル基等が結合したものであり、 ポリ シロキサン構造部の S iに結合したシラノール基またはアルコキシシラン基を 1 分子当たり 2個以上有することを特徴とする。
本発明で使用するポリシロキサン系マクロモノマ一は、 上記式 (7) で表され る化合物 (H) と上記式 (8) で表される化合物 (J ) とを反応させて製造する ことができる。 化合物 (H) は、 上記式 (7) で表される。 式中、 R11は、 炭素数 1〜8の脂 肪族炭化水素基またはフヱニル基を示し、 メチル基、 ェチル基、 プロピル基、 ブ チル基、 ペンチル基、 へキシル基、 ヘプチル基、 ォクチル基等の直鎖または分枝 したものが例示できる。 R11としては、 メチル基、 フ ニル基が特に好ましい。
R12、 R13及び R"は、 炭素数 1〜4のアルコキシル基または水酸基を示し、 これらは全て同一でも一部または全部が異なつていてもよい。 炭素数 1〜 4のァ ルコキシル基としては、 メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基 等の直鎖または分枝したものが例示できる。 R12、 R13及び としては、 特に メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基、 水酸基が好ましい。
具体的には、 化合物 (H) として、 メチルトリメ トキシシラン、 フエニルトリ メ 卜キシシラン、 ブチル卜リメ 卜キシシラン、 メチルトリエトキシシラン、 メチ ルトリブトキシシラン、 フヱニルトリシラノ一ル、 メチルトリシラノ一ル等が例 示できる。 これらのうち、 メチノレトリメ トキシシラン、 フエニノレトリメ トキシシ ラン、 フヱニルトリシラノールが特に好ましい。 本発明では、 これらの 1種また は 2種以上を併用して使用することができる。 化合物 ( J) は、 上記式 (8) で表される。 式中、 R15は、 水素原子またはメ チル基を示し、 R16、 R17及び R18は水酸基、 炭素数 1〜4のアルコキシル基ま たは炭素数 1〜8の脂肪族炭化水素基を示し、 kは 1〜6の整数を示す。 R16、 R 17及び R 18は全て同一でも一部又は全部が異なつてもよし、が、 その全てが炭素 数 1~8の脂肪族炭化水素基であってはならない。 化合物 (H) と結合できない からである。 炭素数 1〜 8の脂肪族炭化水素基及び炭素数 1〜 4のアルコキシル 基としては、 化合物 (H) で例示したと同じものを使用することができる。 尚、 Rl R17及び R18としては、 特にメ トキシ基、 エトキシ基、 水酸基が好ましく、 nは、 特に 2〜 4の範囲が好ましい。
化合物 (J ) として、 ァーメタクリロキシプロビルトリメ トキシシラン、 ァー メタクリロキシプロピルトリエトキシシラン、 ァ一ァクリロキシプロピルトリメ トキシシラン、 ァーメタクリロキシブチルトリエトキシシラン、 ァーァクリロキ シプロピルトリシラノール等が挙げられる。 これらのうち、 ァーメタクリロキシ プロピルトリメ トキシシラン、 ァ一メタクリロキシプロピルトリエトキシシラン、 ァ—ァクリロキシプロピルトリシラノールが特に好ましい。 本発明では、 これら
1種または 2種以上を併用して使用することができる。 ポリシロキサン系マクロモノマーは、 上記化合物 (H) と (J ) とを混合し、 反応させることによって得られる。 両化合物の混合比率は、 化合物 (H ) が 7 0 〜9 9 . 9 9 9モル%、 好ましくは 9 0〜 9 9 . 9モル%、 より好ましくは 9 5 〜9 9モル%であって、 化合物 ( J ) 力 3 0〜0 . 0 0 1モル%、 好ましくは 1 0〜0 . 1モル%、 より好ましくは 5 ~ 1モル%の範囲内である。 化合物 (H ) が 7 0モル%より少な L、と共重合体反応でゲル化し易く、 一方 9 9 . 9 9 9モル %を越えると共重合しないポリシロキサン量が多くなり樹脂液ににごりが生ずる ので好ましくない。
化合物 (H ) と (J ) との反応は、 両化合物が有する水酸基、 又はアルコキシ ル基が加水分解して生ずる水酸基が脱水縮合することにより行われる。 この際、 反応条件によっては脱水縮合のみではなく、 一部脱アルコール縮合も起こる。 反 応は、 無溶媒でも行うことができるが、 化合物 (H ) 及び (J ) を溶解できる有 機溶媒、 または水を溶媒として行うことが好ましい。
使用し得る有機溶媒としては、 ヘプタン、 トルエン、 キシレン、 オクタン、 ミ ネラルスピリッ ト等の炭化水素系溶媒、 酢酸ェチル、 酢酸 n—ブチル、 酢酸イソ ブチル、 メチルセ口ソルブアセテート、 ブチルカルビトールアセテート等のエス テル系溶媒、 メチルェチルケトン、 メチルイソブチルケ卜ン、 ジィソブチルケト ン等のケトン系溶媒、 エタノール、 イソプロパノール、 n—ブタノール、 s e c ーブタノール、 イソブタノ一ル等のアルコール系溶媒、 n—ブチルエーテル、 ジ ォキサン、 エチレングリコールモノメチルエーテル、 エチレングリコ一ルモノエ チルェ一テル等のエーテル系溶媒等が例示できる。 これらは 1種または 2種以上 を併用することができる。 尚、 溶液状態で用いる場合、 化合物 (H ) と (J ) の 濃度は、 両者の合計量が 5重量%以上であることが好ましい。
化合物 (H ) と ( J ) との反応は、 温度 2 0〜 1 8 0 °C、 特には 5 0〜: 1 2 0 であることが好ましい。 また、 反応時間は、 1〜4 0時間であることが好まし い。 反応には、 必要に応じて重合禁止剤を添加することができる。 重合禁止剤の 使用は、 化合物 (J ) に含まれる不飽和結合が化合物 (H ) との反応中に重合す るのを防ぐために有効であり、 例えばハイ ドロキノン、 ハイドロキノンモノメチ ルエーテル等が使用できる。 なお、 ポリシロキサン系マクロモノマーの製造にお いて、 反応系に中にテトラアルコキシシランまたはジアルキルジアルコキシシラ ンを化合物 (H) と (J) との合計 100モル%に対し 20モル%以下で添加す ることができる。
使用する化合物 (H) および (J) 、 上記式中の R12、 R13、 Rl R16、 R17及び R18が全て水酸基である化合物の場合には、 反応中に、 有機溶媒を加熱 攪拌して脱水縮合反応を行うことが好ましい。 一方、 使用する化合物 (H) およ び (J) のいずれかまたは双方がアルコキシル基を有する化合物である場合には、 縮合に先立って加水分解させておくことが好ましい。 通常は、 水及び触媒の存在 下で加熱攪拌し、 加水分解反応及び結合反応を連続して行う。 この際の水の使用 量は特に限定されないが、 アルコキシル基 1モル当たり 0. 1モル以上とするこ とが好ましい。 0. 1モルより少ないと両化合物の反応が低下するおそれがある。 最も好ましいのは、 水を溶媒として大過剰に用いる方法である。
加水分解反応に際し、 水と水溶性有機溶媒とを併用すれば、 縮合により水に難 溶性のアルコールが生成する場合にも反応系を均一化することができる。 使用で きる水溶性有機溶媒としては、 前記した化合物 (H) および (J ) を溶解するた めに使用するアルコール系、 エステル系、 エーテル系、 ケトン系等の溶媒を使用 することができる。
また、 加水分解反応には、 触媒を使用することができる。 使用できる触媒とし ては、 酸触媒又はアルカリ触媒が使用でき、 酸触媒として塩酸、 硫酸、 リン酸、 ギ酸、 酢酸、 プロピオン酸、 アクリル酸、 メタクリル酸等が、 アルカリ触媒とし て水酸化ナトリウム、 トリェチルァミン、 アンモニア等が例示できる。 触媒の添 加量は、 上記化合物 (H) と (J) との合計量に対し、 0. 0001〜5重量%、 特には、 0. 01〜0. 1重量%であることが好ましい。 ポリシロキサン系マクロモノマーが有するポリシロキサン部の構造は、 長鎖状、 梯子状又はこれらの混合系のいずれでもよい。 本発明では、 これらのうち梯子状 のもの又は直鎖状と梯子状の混合系が好ましく、 特に梯子状の部分を多く有する ものが耐水性、 耐熱性、 耐候性等の点から好ましい。 ポリシクロへキサン系モノ マ一の構造は、 化合物 (H) と (J) との混合比率や、 水、 酸触媒等の配合量等 によって任意に選択できる。 本発明で使用するポリシロキサン系マクロモノマ一 は、 数平均分子量が 400〜 50, 000、 特には 1, 000〜 20, 000で あることが好ましい。 400未満では、 共重合時にゲノレ化し易い傾向にあり、 ま た 50, 000を越えると相溶性が低下する傾向にあるからである。
また、 化合物 (H) と (J) との反応液中のポリシロキサン系マクロモノマ一 は、 重合性不飽和結合を 1分子当たり平均 0. 2~1. 9個有することが好まし く、 より好ましくは 0. 6〜1. 4個、 特には、 0. 9~1. 2個有することが 好ましい。 重合性不飽和結合が少な過ぎると、 ポリシロキサン系マクロモノマ一 とォキシラン基含有ビニルモノマ一との共重合反応生成物が白濁し易く、 一方重 合性不飽和結合が多過ぎると、 共重合反応中にゲル化が生ずる場合があり好まし くない。 ポリシロキサン系マクロモノマ一中の不飽和結合数は、 以下の方法によ り求められる。
①化合物 (H)及 (J) の割合を適宜変え、 同一条件で反応させ、 各種のポリ シロキサン系マクロモノマ一を得る。
②得られた各モノマーに、 非官能性ビニルモノマーの使用割合を変えて反応さ せ、 各種のビニル共重合体を合成する。
③得られたビニル共重合体の分子量分布を、 ゲルパーミエーションクロマトグ ラフィ一 (G. P. C. ) で求める。
④ポリシロキサン系マクロモノマーと非官能性ビニルモノマーとの使用割合を 変えた場合にも、 得られる共重合体のピーク分子量 (最も含有率の高い分子量) がほぼ同一で、 しかも分布曲線がモノピークであり、 低分子量成分 (不飽和結合 成分を持っていないモノマー) や高分子量成分 (不飽和結合を 2個以上有するモ ノマ一の共重合体) の分布が認められない場合は、 モノマ一は 1分子中に重合性 不飽和結合を平均 1個有する。 ⑤その他のマクロモノマーについては、 化合物 (H) の使用モル数を [H]、 化合物 (J) の使用モル数を [J] とし、 平均 1個の重合性不飽和結合を有する マクロモノマ一を得る場合に用いた化合物 (H)のモル数を [HI] 、 ィ匕合物
(J)のモル数を [ J 1] とし、 [J] / [H]、 [J 1] / [HI] によって マクロモノマ一中の平均の重合性不飽和結合数を求める。
( ⑥例えば、 化合物 ( J ) Z化合物 (H) =1/20 (モル比) の場合に重合性 不飽和結合数 1個のマクロモノマーが得られるとすれば、 化合物 (J) /化合物
(H) =0. 9 Z 20の場合は、 重合不飽和結合を平均 0. 9個有するマクロモ ノマーとなる。 ォキシラン基含有ビニルモノマ一
成分 (ィ) を構成するォキシラン基含有ビニルモノマーは、 式 (6)で表され る化合物であって、 第 1の発明の式 (1) で表される化合物の内、 R2が式 (2) または (3)で表される化合物と製造方法及び構造式が同じものである。
また、 本発明ではォキシラン基含有ビニルモノマ一として、 グリシジルメタク リレート、 グリシジルァクリレート、 ビニルグリシジルエーテル等のグリシジル 基含有モノマ一、 第 2の発明の 「他の不飽和基含有脂環式エポキシ化合物群のい ずれかの化合物」 を併用することができる。 これらの内、 入手のし易さ、 コスト の面からグリシジル基含有モノマーが好ましく、 低温硬化性樹脂組成物の硬化性 の面から、 脂環式ォキシラン基を含有するモノマーを使用することが好ましい。 これらは、 使用するォキシラン基含有ビニルモノマーの 0を超え 80モル%の範 囲で併用することができる。 本発明の低温硬化性樹脂組成物に使用する成分 (ィ) は、 ポリシロキサン系マ クロモノマーとォキシラン基含有ビニルモノマーとをモノマ一成分として用いて なるビニル共重合体である。 該共重合体では、 必要に応じて上記モノマ一成分以 外に、 他の重合性ビニルモノマーをモノマー成分として用いることができる。 使 用できる他の重合性ビニルモノマ一として、 以下の化合物が例示できる。
( a ) ァクリル酸又はメタクリル酸のエステル:例えば、 アタリル酸メチル、 アクリル酸ェチル、 アクリル酸プロピル、 アクリル酸イソプロピル、 アクリル酸 ブチル、 アクリル酸へキシル、 アクリル酸ォクチル、 アクリル酸ラウリル、 メタ クリル酸メチル、 メタクリル酸ェチル、 メタクリル酸プロピル、 メタクリル酸ィ ソプロピル、 メタクリル酸ブチル、 メタクリル酸へキシル、 メタクリル酸ォクチ ル、 メタクリル酸ラゥリル等のァクリル酸又はメタクリル酸の炭素数 1〜 1 8の アルキルエステル;ァクリル酸メ トキシブチル、 メタクリル酸メ 卜キシブチル、 アクリル酸メ トキシェチル、 メタクリル酸メ トキシェチル、 アクリル酸エトキシ プチル、 メタクリル酸ェトキシブチル等のァクリル酸又はメタクリル酸の炭素数 2〜1 8のアルコキシアルキルエステル;ァリルァクリレート、 ァリルメタクリ レ一ト等のァクリル酸又はメタクリル酸の炭素数 2〜 8のアルケニルエステル; ヒドロキシェチルァクリレート、 ヒドロキシェチルメタクリレート、 ヒドロキシ プロピルァクリレ一ト、 ヒドロキシプロピルメタクリレー卜等のァクリル酸又は メタクリル酸の炭素数 2〜8のヒドロキシアルキルエステル;ァリルォキシェチ ルァクリレー卜、 ァリルォキシェチルメタクリレ一ト等のァクリル酸又はメタク リル酸の炭素数 3〜 1 8のアルケニルォキシアルキルエステル。
( b ) ビニル芳香族化合物:例えば、 スチレン、 α—メチルスチレン、 ビニル トルエン、 ρ—クロルスチレン。
( c ) ジェン系化合物:例えば、 ブタジエン、 イソプレン、 クロ口プレン。
( d ) その他:アクリロニトリル、 メタクリロニトリル、 メチルイソプロぺニ ルケトン、 酢酸ビニルべォバモノマー (シヱル化学製品) 、 ビニルプロピオネー ト、 ビニルビバレ一ト等。 ポリシロキサン系マクロモノマーとォキシラン基含有ビニルモノマーとの共重 合割合は、 ポリシロキサン系マクロモノマー 0 . 0 1〜9 8重量%、 ォキシラン 基含有ビニルモノマー 9 9 . 9 9〜2重量%、 より好ましくはポリシロキサン系 マクロモノマ一 0 . 1〜8 0重量%、 ォキシラン基含有ビニルモノマ一 9 9 . 9 〜2 0重量%でぁる。 ポリシロキサン系マクロモノマーが 0 . 0 1重量%より少 ないと硬化性が低下し、 9 8重量%を越えると硬化物の物性が低下し、 縮みが発 生し易くなる傾向にある。 また、 上記 2種類のモノマーに加えて他の重合性ビニ ルモノマ一をモノマー成分として用いる場合には、 ポリシロキサン系マクロモノ マ一 0. 0 1〜8 0重量%、 ォキシラン基含有ビニルモノマ一 9 0〜 1重量%、 その他の重合性ビニルモノマ一 0を越えて 9 8 . 9 9重量%以下、 より好ましく はポリシロキサン系マクロモノマ一 0 . 1〜6 0重量%、 ォキシラン基含有ビニ ルモノマー 6 0〜3重量%、 その他の重合性ビニルモノマ一 1 0〜9 6 . 9重量 %である。 ポリシロキサン系マク口モノマ一およびォキシラン基含有ビニルモノ マーの使用量がこの範囲であると縮みが発生せず好ましい。
上記ビニル共重合体は、 通常のァクリル樹脂やビニル樹脂などの合成反応と同 様の方法、 条件で得ることができる。 例えば、 各モノマー成分を有機溶剤に溶解 または分散させ、 ラジカル重合開始剤の存在下で 6 0〜 1 8 0 °C程度の温度で攪 拌しながら加熱する方法が例示できる。 反応時間は、 1 ~ 1 0時間であることが 好ましい。 また、 有機溶剤としては、 前記 (H ) と (J ) との反応で記載したも のと同じアルコール系溶媒、 エーテル系溶媒、 エステル系溶媒、 炭化水素系溶媒 等が例示できる。 炭化水素系溶媒を用いる場合には、 溶解性の点から他の溶媒を 併用することが好ましい。
反応系には、 ラジカル開始剤を使用することができ、 その一例として、 過酸化 ベンゾィル、 t 一ブチルパーォキシ一 2—ェチルへキサノエ一ト等の過酸化物、 ァゾィソブチルニトリル、 ァゾビスジメチルバ'レロニトリル等のァゾ化合物等が 示される。 成分 (口)
本発明で使用する成分 (口) は、 6配位の有機アルミニウムキレート化合物及 びノ又は 8配位の有機ジルコニウムキレ一ト化合物であって、 以下の化合物が例 示できる。
6配位の有機アルミニウムキレ一ト化合物としては、 有機アルミニウムをキレ 一卜化剤で処理することによって得た化合物であることが好ましく、 有機アルミ ニゥムとしては下記式 (9) で示される化合物が好適である。
R20 - A 1 R21R22 (9)
(式中、 R2。、 R21及び R22のうち少なくとも 1つは、 炭素数 1〜 13のアル コキシル基、 または炭素数 3〜10のアルコキシアルコキシル基を示し、 かつ他 の基は炭素数 1〜6のアルキル基、 ァリール基、 アルケニル基または、 メルカプ ト基もしくはアミノ基で置換された炭素数 1〜 6のアルキル基のいずれかを示す。 式 (9) 中、 R2°、 R21及び R22の炭素数 1〜13のアルコキシル基として、 メ トキシ、 エトキシ、 n—プロボキシ、 イソプロボキシ、 n—ブトキシ、 イソブ トキシ、 s e c—ブトキシ、 t e r t—ブトキシ、 n—ペントキシ、 イソアミル ォキシ、 n—へキシルォキシ、 n_ヘプチルォキシ、 n—ォクチルォキシが例示 できる。 炭素数 3~10のアルコキシアルコキシル基として、 メ トキシメ トキシ、 メ トキシエトキシ、 エトキシブトキシ、 ブトキシペントキシ基等が例示できる。 また炭素数 1〜 6のアルキル基として、 メチル、 ェチル、 n—プロピル、 イソプ 口ピル、 n—ブチル、 イソブチル、 s e cーブチル、 t e r t—ブチル、 ァミル 基が例示でき、 ァリール基としてはフヱニルゃ卜ルイル基が例示でき、 アルケニ ル基としては、 ビニルゃァリル基が例示できる。 また、 メルカプト基もしくはァ ミノ基で置換された炭素数 1〜 6のアルキル基としては、 7—メルカプトプロピ ル、 ァミノェチル、 ァミノプロピル、 ァミノブチル基が例示できる。
好ましい 6配位の有機アルミニウムキレ一ト化合物として、 アルミニウムィソ プロビレート、 アルミニウム s e c—ブチレ一ト、 アルミニウム t e r t—ブチ レー卜等が例示できる。 一方、 上記有機アルミニウムと反応させるキレート化剤としては、 低級アル力 ノールァミン類、 例えばトリエタノ一ルァミン、 ジエタノ一ルァミン、 ジメチル アミノエタノール等、 ァセト酢酸エステル、 例えばァセト酢酸メチル、 ァセト酢 酸ェチル等、 ジケトンアルコール、 例えばジァセ卜ンアルコール等、 ジケトン類、 例えばァセチルアセトン等、 グリコール類、 例えばェチレグリコール、 ォクチレ ングリコール等、 ォキシカルボン酸、 例えば乳酸、 酒石酸等、 ジカルボン酸又は そのエステル、 例えばマレイン酸、 マロン酸ェチル等、 その他サルチル酸、 カテ コール、 ピロガロール等が例示でる。 これらの中でも低級アルカノ一ルァミン類、 ォキシカルボン酸、 ジケトン類が好ましい。
本発明で使用する 6配位の有機アルミニゥムキレート化合物としては、 アルミ ニゥム原子に直接結合する水酸基及びアルコキシル基を有しない化合物が好まし い。 有機アルミニウムキレート化合物が、 アルミニウム原子に直接結合する水酸 基やアルコキシル基を有していると、 本発明の低温硬化性樹脂組成物に配合する と組成物の貯蔵安定性を劣化させ、 かつ硬化後の塗膜の平滑性を低下させる場合 があり好ましくない。
本発明で使用する 6配位の有機アルミニウムキレ一ト化合物としては、 アルミ 二ゥムトリス (ェチルァセトアセテート) 、 トリストリフルォロアセチルァセト ナトアルミニウム、 トリスへキサフルォロアセチルァセトナトアルミニウム、 ト リスェチルァセ卜ァセタトアルミニウム、 卜リス (n—プロピルァセトァセタ卜) アルミニウム、 トリス ( i s o —プロピルァセトァセタト) アルミニウム、 トリ ス (n—ブチルァセトァセタト) アルミニウム、 トリスサリチルアルデヒダトァ ルミ二ゥム、 トリス (2—エトキシカルボ二ルフヱノラ一ト) アルミニウム、 ト リス (ァセチルァセトナト) アルミニウム、 卜リス (ェチルァセ卜ナト) アルミ 二ゥム、 卜リス (サリチルアルデヒダト) アルミニウム等が例示でき、 これらは 部分的に縮合したものであってもよい。 本発明で使用できる 8配位の有機ジルコニウムキレ一ト化合物としては、 有機 ジルコニウムをキレ一卜化剤で処理することによって得られるものが好ましく、 有機ジルコニウムとしては、 下記式 (10) で表される化合物が好ましい。
R23-Z r R24 25R26 (10) (式中、 R23、 R24、 R25及び R26のうち少なくともいずれか 2つは、 炭素数 1 〜13のアルコキシル基または炭素数 3〜 10のアルコキシアルコキシノレ基を示 し、 他の基は炭素数 1〜 6のアルキル基、 ァリール基、 アルケニル基、 またはメ ルカプト基もしくはアミノ基で置換された炭素数 1〜 6のアルキル基のいずれか を示す。 ) 式 (10) 中、 炭素数 1〜1 3のアルコキシル基として、 メ 卜キシ、 エトキン、 n—プロポキシ、 イソプロポキシ、 n—ブトキシ、 イソブトキシ、 s e c—ブト キシ、 t e r t—ブトキシ、 n—ペントキシ、 イソアミルォキシ、 n—へキシル ォキシ、 n—へプチルォキシ、 n—ォクチルォキシが例示できる。 炭素数 3〜 1 0のアルコキシアルコキシル基として、 メ 卜キシメ トキシ、 メ トキシェトキシ、 エトキシブトキシ、 ブトキシペントキシ基等が例示できる。 また炭素数 1〜6の アルキル基として、 メチル、 ェチル、 n—プロピル、 イソプロピル、 n—ブチル、 イソブチル、 s e cーブチル、 t e r t—ブチル、 ァミル基が例示でき、 ァリ一 ル基としてはフエニルゃトルィル基が例示でき、 アルケニル基としては、 ビニル ゃァリル基が例示できる。 また、 メルカプト基もしくはァミノ基で置換された炭 素数 1〜6のアルキル基としては、 ァ—メルカプトプロピル、 アミノエチル、 了 ミノプロピル、 ァミノブチル基が例示できる。
好ましい有機ジルコニウムとしては、 テトラメチルジルコネ一卜、 テトラェチ ルジルコネ一卜、 テトライソプロピルジルコネ一ト、 テトラー n—ブチルジルコ ネート、 テトライソブチルジルコネ一卜、 テトラー t e r tーブチルジルコネ一 ト等が例示できる。
上記有機ジルコニウム化合物とを反応させるキレート化剤としては、 先に 6配 位有機アルミニゥム化合物の場合に用いるキレ一卜化合物と同様のものが好まし く用いることができる。
本発明で使用する有機ジルコニウムキレ一ト化合物は、 ジルコニウム原子に直 接結合する水酸基及びアルコキシル基を有しない化合物が好ましい。 ジルコニゥ ム原子に直接結合する水酸基やアルコキシル基が存在する場合には、 アルミニゥ ム化合物の場合と同様に、 樹脂組成物の貯蔵安定性の低下や硬化塗膜の平滑性の 低下等が生じるので好ましくない。
8配位有機ジルコニウムキレート化合物としては、 テトラキス (ォキザリック アンド) ジルコニウム、 テトラキス (ァセチルアセトン) ジルコニウム、 テ卜ラ キス (n—プロピルァセトァセタト) ジルコニウム、 テトラキス (ェチルァセト ァセタト) ジルコニウム、 テトラキス (サリチルアルデヒダト) ジルコニウム等 が例示でき、 これらは部分的に縮合したものであってもよい。 成分 (ハ)
本発明で使用する成分 (ハ) は、 1分子中に少なくとも 2個の脂環式ォキシラ ン基を有する数平均分子量 1 , 0 0 0以下の化合物であって、 以下のものが例示 できる。
①化合物 (K )他以下に示す化合物がある。
0 化合物 ( K
0 その他
Figure imgf000063_0001
② 3 , 4—ェポ: コール等とポリイソシァネート 化合物との付加物がある。 使用し得るポリイソシァネ一ト化合物としては、 例えばへキサメチレンジイソ シァネートまたは卜リメチルへキサメチレンジイソシァネート等の脂肪族ジィソ シァネート類;キシリレンジイソシァネートまたはイソホロンジイソシァネ一ト 等の環状脂肪族ジイソシァネート類; トリレンジイソシァネートまたは 4 , 4 ' —ジフヱニルメタンジィソシァネート等の芳香族ジィソシァネ一卜類等の有機ジ イソシァネ一卜それ自体、 またはこれらの各有機ジイソシァネ一卜と多価アルコ ール、 低分子量ポリエステル樹脂または水等との付加物、 または上記した各有機 ジィソシァネート同士の重合体、 さらにはィソシァネート · ビウレッ ト体などが 例示できる。 市販品としては、 大日本インキ化学工業 (株) 製品 「バーノック D — 7 5 0」 、 「バ一ノック D— 8 0 0」 、 「バ一ノック D N— 9 5 0」 、 「バー ノック D— 9 7 0」 または 「バ一ノック D 1 5— 4 5 5」 、 ドイツ国バイエル社 製品 「デスモジュール L」 、 「デスモジュール N H L J 、 「デスモジュール I L」 または 「デスモジュール N 3 3 9 0」 、 武田薬品工業 (株) 製品 「タケネート D 一 1 0 2」 、 「タケネート D— 2 0 2」 、 「タケネート D— 1 1 0 N」 または 「タケネ一ト D— 1 2 3 N」 、 日本ポリウレタン工業 (株) 製品 「コロネ一卜 L」 、 「コロネ一ト Hし」 、 「コロネ一ト E H」 または 「コロネー卜 2 0 3」 または旭 化成工業 (株) 製品 「デユラネート 2 4 A— 9 0 C X」 などがある。
③前記化合物 (K ) と多塩基酸との付加物がある。
④分子中に、 例えば 4ーシクロへキセン一 1 , 2—ィレン等の不飽和基を有す るエステル化物、 例えば、 テトラヒドロ無水フタル酸、 トリメチロールプロパン 及び 1 , 4一ブタンジオール等をエステル化反応して得られる数平均分子量 9 0 0のエステル化物を、 過酢酸等で酸化させて得られるものがある。
また、 上記脂環式ォキシラン基を有する化合物は、 該脂環式ォキシラン基以外 にも脂環式でなぃォキシラン基が導入されたものも使用できる。 成分 (ハ) の分子量は、 数平均分子量 1, 0 0 0以下であることが重要である。 数平均分子量 1, 0 0 0を越えると本発明の低温硬化性樹脂組成物に配合する成 分 (ィ) であるビニル共重合体樹脂との相溶性が低下し、 仕上がり性及び塗膜性 能に優れた塗膜を形成することができないからである。 低温硬化性樹脂組成物
本発明の低温硬化性樹脂組成物は、 成分 (ィ) 、 (口)及び (ハ) からなる。 成分 (口) の配合量は、 成分 (ィ) 1 0 0重量部に対して 0 . 0 1〜3 0重量部 であることが好ましく、 特には、 0 . 1〜1 5重量部であることが好ましい。 成 分 (口) の使用量がこの範囲より少ないと架橋硬化性が低下する傾向にあり、 ま たこの範囲より多いと硬化物中に残存して、 硬化物の耐水性を低下させるので好 ましくない。 成分(ハ) の配合量は、 成分 (ィ) 1 0 0重量部に対して 0. :!〜 1 , 0 0 0 重量部であることが好ましく、 より好ましくは 5〜1 0 0重量部である。 0 . 1 重量部より少ないと、 硬化性促進の重要な要因である脂環式ォキシラン基含量が 低下し、 硬化性が低下する。 また成分 (ハ) は、 低温硬化性樹脂組成物において 希釈剤としての性格も有し、 低温硬化性樹脂組成物の固形分濃度の増減にも寄与 し、 この面からも 0 . 1以上の配合が望ましい。 なお、 成分 (ハ) の配合量が 1 , 0 0 0重量部より多くなると、 低温硬化性樹脂組成物中の S i 〇Rまたは Zおよ び S i 0 H基の含有量が少なくなり硬化性が低下する。 他の成分
本発明樹脂組成物には、 更に必要に応じて、 例えばエポキシ基含有樹脂 (シェ ル化学製「ェピコ一ト 1 0 0 1」 ) や、 スチレンァリルアルコール共重合体等の 水酸基含有樹脂を配合することができる。 これらの樹脂の配合量は、 本発明の低 温硬化性樹脂組成物に 1 0重量%以下で配合することができる。 用途 本発明の低温硬化性樹脂組成物により得られる硬化物は、 耐候性、 耐水性等に 優れたものであり、 例えば自動車やコンテナの塗装や補修、 屋外用建材の塗装、 プレコ一トメタル等の用途に好適に用いられる。 尚、 塗料として使用する場合に は、 塗装方法に限定はなく、 例えばスプレー塗装、 ロール塗装、 ハケ塗り等の一 般的な塗装方法によって塗装することができる。 本発明の低温硬化性樹脂組成物は、 有機溶剤に溶解して用いることができる。 使用できる有機溶剤には、 トルエン、 キシレン等の炭化水素系溶剤、 メチルェチ ルケトン、 メチルイソブチルケトン等のケトン系溶剤、 酢酸ェチル、 酢酸ブチル 等のエステル系溶剂、 ジォキサン、 エチレングリコ一ルジェチルェ一テル等のェ —テル系溶剤、 ブ夕ノール、 プロパノール等のアルコール系溶剤等が例示できる。 これらの溶剤は、 単独又は適宜混合して用いることができるが、 アルコール系溶 剤を用いる場合には、 樹脂の溶解性の点から他の溶剤と併用することが好ましい。 尚、 低温硬化性樹脂組成物の濃度は、 使用目的によって適宜選択でき、 一般に 1 0〜7 0重量%が好ましい。 本発明の低温硬化性樹脂組成物は、 1 0 0 °C以下の低温で容易に架橋硬ィヒさせ ることができる。 例えば、 何ら加熱せず常温で硬化させる場合には、 通常 8時間 〜 7日間程度で十分に硬化させることができ、 また 4 0〜1 0 0 °C程度に加熱す る場合には、 5分〜 3時間程度で十分に硬化させることができる。 更に常温付近 においても、 数十時間で十分硬化させることができる。 本発明の低温硬化性樹脂組成物の硬化反応は、 溶剤の揮発により始まり、 架橋 硬化剤からのキレート化剤の揮発によつて連鎖的に進行するものと考えられる。 架橋硬化剤による硬化反応の進行は以下に示すような機構に従うものであると推 定される。 即ち、 例えば架橋硬化剤として有機アルミニウムキレート化合物を用 いる場合には、 まず一段目の反応として、 キレート化剤が揮発した後アルミニゥ 厶化合物がポリシ口キサン系マクロモノマー構造単位中のシラノール基と反応し て、 式 (1 i ) 結合を生じる。 次いで、 二段目の反応として式 (1 1 ) 結合ヘシ ラノール基が配位し式 ( 1 となってシラノール基を分極させる。 この分極し たシラノール基がエポキシ基と反応してォキソニゥム塩化して式 (13) となる。 次いで、 エポキシ基のイオン重合及び水酸基への付加反応が生じる。
\
-A 1— 0 S i ( 1 1 )
\
S i — 0 - H + -
(12)
- A 1 -0- S i
I \
S i O-C-C- (13)
\ I
H0 +
本発明の低温硬化性樹脂組成物における硬化反応は、 上記した架橋硬化剤の触 媒作用による架橋反応の他にシラノ一ル基同士の縮合反応等の各種の反応が併行 して起きることによつて進行するものと推定され、 例えば次のような各種の硬化 反応が生じるものと思われる。
(A) シラノール基同士の縮合
(B) シラノール基とォキシラン基から生じた水酸基との縮合
(C) シラノール基のォキシラン基への付加
( D ) 水酸基のォキシラン基への付加
(E) ォキシラン基同士のイオン重合
なお、 本発明の低温硬化性樹脂組成物において、 ポリシロキサン系マクロモノ マ一構造単位が官能基としてアルコキシル基を含有する場合、 例えば、 アルコキ シシラン基を含有する場合には、 シラノ一ル基を生じるために加水分解が必要と なるが、 この加水分解反応は、 空気中の湿気程度の少量の水分の存在だけで充分 に進行する。 本発明の低温硬化性樹脂組成物では、 使用するビニル共重合体中に、 モノマ一 成分であるポリシ口キサン系マクロモノマーに由来するシラノ一ル基等の官能基 及びォキシラン基含有ビニルモノマーに由来するォキシラン基が存在する。 この ため、 上記 (A) 〜 (E) に示すような各種の硬化反応が併行して生じる。 その 結果、 硬化物の表面及び内部において硬化が同時に進行し、 硬化物の表面と内部 とで硬化の程度が少なく、 縮みが生じ難し、。 第 4の発明の実施例
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。 なお 「%」 は、 特に示す場合を除くほか 「重量%」 を示す。
(実施例 1 )
S US製反応器にメチル卜リメ トキシシラン 2, 720 g (20mo l ) 、 ァ —メタクリロキシプロピル卜リメ トキシシラン 256 g (lmo 1 ) 、 脱イオン 水 1 134 g、 60%塩酸 2 g、 ハイドロキノン 1 gを入れ、 この混合物を 80 °C、 5時間反応させた。 得られたポリシロキサン系マクロモノマーの数平均分子 量は 2, 000、 平均して 1分子当たり 1個のビニル基 (重合性不飽和結合) と 4個の水酸基を有していた。 このマクロモノマ一 300 gとスチレン 100 g、 後記化合物 (D) 280 g、 n—ブチルメタクリレート 400 g、 2, 2' —ァ ゾビスイソブチロニトリノレ 20 gの混合物をキシレン 1, 000 g中に 120°C で滴下、 重合させ、 透明な共重合体を得た。 数平均分子量は約 20, 000であ つた。 この共重合体溶液 140 gに、 前記化合物 (K) 30 gとアルミニウムト リス (ェチルァセトアセテート) を添加し、 ガラス板上に乾燥膜厚 60 の膜厚 に塗布し、 90°Cで 30分間焼き付けた。 硬化塗膜は平滑で透明で、 縮みはみら れず、 アセトンによる抽出残分は 92%であった。 (実施例 2 )
S US製反応器にフヱニルトリシラノール 7800 g (50mo l ) 、 ァ―ァ クリロキシプロピルトリシラノール 200 g ( 1 mo 1 ) 、 トルエン 4, 500 gを入れ、 この混合物を 1 17 °Cで 3時間反応させ、 脱水した。 得られたポリシ ロキサン系マクロモノマーの数平均分子量は 7, 000、 平均して 1分子当たり 1個のビニル基と 5〜 10個の水酸基を有していた。 このマクロモノマ一 100 gと 2—ヒドロキシェチルァクリレート 100 g、 後記化合物 (L) 200 g、 2—ェチルへキシルメタクリレート 600 g、 ァゾィソブチロニトリル 10 gの 混合物をブ夕ノールとキシレンの等重量混合物 1, 000 g中に 120°Cで滴下、 重合させ、 透明な共重合体を得た。 数平均分子量は約 40, 000であった。 この共重合体溶液 160 gに前記化合物 (K) 35 gとテトラキス (ァセチル アセトン) ジルコニウムの 0. 3 gを添加したものをガラス板上に乾燥膜厚 60 となるよう塗布し、 80°Cで 30分焼き付けた。 硬化塗膜は平滑、 透明で縮み はみられず、 アセトン抽出残分は 98. 4%であった。
(実施例 3)
フエニルトリメ トキシシラン 48モルとァーメタクリロキシプロピルトリエト キシシラン 2モルとを実施例 1と同様にして反応させた。 得られたポリシロキサ ン系マクロモノマーの数平均分子量は約 5, 000で、 平均して 1分子当たり、 1個のビニル基と 5〜10個のメ トキシ基を有していた。 このマクロモノマー 5 00 gと実施例 1で用いたビニルモノマー 500 gとを実施例 1と同様にして重 合させ共重合体を得た。 その数平均分子量は、 約 60, 000であった。 この共 重合体溶液 100 gにアジピン酸 1モルと前記化合物 (K) 2モルとの付加物 5 0 gとアルミニウムトリス (ァセチルアセトン) 1. 0 gを添加し、 ガラス板上 に乾燥塗膜 60 になる様に塗布し 100°Cで 30分焼き付けた。 硬化塗膜は平 滑で透明で縮みはみられず、 アセトンによる抽出残分は 96%であった。
(実施例 4)
メチルトリメ トキシシラン 29. 1モルとァ一ァクリロキシプロピルトリエト キシシラン 0. 9モルとを実施例 1と同様にして反応させた。 得られたポリシ口 キサン系マクロモノマーの数平均分子量は約 1 5, 000で、 平均して 1分子当 たり、 1個のビニル基とメ トキシ基を 5〜 10個有していた。 このマクロモノマ -400 gと実施例 1で用いたビニルモノマ一 600 gとを実施例 1と同様にし て重合させ共重合体を得た。 数平均分子量は約 70000であった。 この共重合 体溶液 180 gと前記化合物 (K) 10 gとの混合物に 1 0 gのテ卜ラキス (ェ チルァセトァセタ卜) ジルコニウムを添加し、 ガラス板に 60 膜厚に塗布し、
80°Cで 30分間焼き付けた。 硬化塗膜は透明で縮みがみられず、 アセトン抽出 残分は 94%であった。
(実施例 5 )
実施例 2の硬化性組成物をガラス板上に乾燥膜厚 60 となるよう塗装し、 2 5°Cで 48時間放置した。 硬化塗膜は平滑、 透明で縮みがなく、 アセトン抽出残 分は 95%であった。
(実施例 6 )
S US製反応器に実施例 1のマクロモノマー 300 gとスチレン 100 g、 後 記化合物 ( L ) 140 g、 グリシジルメタクリレート 100 g、 n-ブチルメ夕 クリレート 400 g、 2, 2' —ァゾビスイソブチロニトリル 20 gを入れ、 こ の混合物をキシレン 1, 000 g中に 120°Cで滴下、 重合させ、 透明な共重合 体を得た。 この数平均分子量は約 20, 000であった。 この共重合体溶液 14 0 gに前記化合物 (K) 30 gとアルミニウムトリス (ェチルァセ卜ァセテ一ト) を添加し、 ガラス板上に乾燥膜厚 60 ^の膜厚に塗布し、 90°Cで 30分間焼き 付けた。 硬化塗膜は平滑で透明で、 縮みはみられず、 アセトンによる抽出残分は
90%であった。
(実施例 7)
S US製反応器に実施例 1で得たマクロモノマー 300 gとスチレン 100 g、 後記化合物 (L) 140 g、 後記化合物 (M) 140 g、 n—プチルメタクリレ ート 400 g、 2, 2' —ァゾビスイソブチロニトリル 20 gを入れ、 この混合 物をキシレン 1 , 0 0 0 g中に 1 2 0 °Cで滴下、 重合させ、 透明な共重合体を得 た。 数平均分子量は約 2 0 , 0 0 0であった。 この共重合体溶液 1 4 0 gに前記 化合物 (K ) 3 0 gとアルミニウム卜リス (ェチルァセトァセテ一卜) を添加し、 ガラス板上に乾燥膜厚 6 0 の膜厚に塗布し、 9 0 °Cで 3 0分間焼き付けた。 硬 化塗膜は平滑で透明で、 縮みはみられず、 アセトンによる抽出残分は 9 6 %であ つた。 なお、 アセトンによる抽出残分で表されるゲル分率は、 乾燥させた塗膜を ガラス板から剥がし取り、 ソックスレー抽出器で還流温度でァセトンを用いて 6 時間抽出した後、 塗膜の残分を重量%で表した。
化合物 ( L )
化合物 (M)
Figure imgf000071_0001
第 4の発明の産業上の利用可能性
本発明の低温硬化性樹脂組成物は、 1 0 0 °C以下の低温で容易に架橋硬化でき、 例えば 8 0 °Cで 3 0分間硬化させただけで、 9 5 %以上のゲル分率を有する硬化 物が得られる。 また、 硬化反応に水分が不必要であるか、 或いは空気中の湿気程 度の少量の水分の存在下で硬化反応が進行する。 また、 溶剤揮発により硬化が始 まるので、 1液性組成物として用いる場合にも貯蔵安定性が良好である。 硬化に 際しイソシァネー卜の様な毒性の強い硬化剤を用いず、 組成物の溶液粘度が低い ので、 高固形分のものが得られる。 更に、 シラノール基の縮合反応、 エポキシ基 のィォン重合反応等の各種の架橋反応が併行して生じるので、 表面と内部との硬 化性の差が少なく、 縮みを生じることがなく、 厚塗り性に優れる。 加えて、 硬化 時の副生成物が少ないため、 物性に優れた硬化物力得られ、 特に、 耐候性、 耐水 性に優れた硬化物となる。 硬化物の表層に未硬化物がほとんど存在することがな く、 上塗り性、 リコ一ト性、 付着性等に優れた硬化物が得られる。 第 5の発明の技術の分野
第 5の発明は、 ビニル系樹脂等に特定のエポキシ基含有不飽和化合物の重合体 と第 4級アンモニゥム化合物とを配合した熱硬化型水性塗料組成物に関し、 特に 貯蔵安定性及び塗膜の硬化性に優れる熱硬化型水性塗料組成物に関する。 第 5の発明の背景技術
水性塗料は水が媒体であり有機溶媒を媒体としないため、 特に作業環境の悪化 及び火災の危険性等の恐れがなく各分野で広く使用されている。 例えば、 この様 な水性塗料として、 水酸基含有ポリカルボン酸樹脂とァミノアルデヒド樹脂とを 含む樹脂組成物をアミン化合物で中和後、 分散させた塗料が知られている。 しかしながら、 従来の水性塗料は 1 8 0 °C以上の温度で焼付けることが必要で あり、 得られる塗膜の硬化性、 耐候性、 耐酸性等の化学的、 物理的性質に劣ると いう欠点がある。 また、 従来の塗料においてァミノアルデヒド樹脂に代えてビス フエノールェピクロルヒドリン型エポキシ樹脂を用いたものは、 貯蔵中に塗料系 が増粘、 ゲル化し実用的な水性塗料を与えない。 第 5の発明の開示
本発明者等は、 水性塗料組成物の貯蔵安定性及び塗膜の硬化性のバランスの取 れた性能の向上を目的として鋭意研究を重ねた結果、 水酸基とカルボキシル基と を有する樹脂に、 特定のエポキシ樹脂と第 4級アンモニゥム化合物とを配合した 熱硬化性樹脂組成物を含む水性塗料組成物が、 上記の目的を達成し得ることを見 い出し、 本発明を完成するに至った。
すなわち本発明は、 水酸基とカルボキシル基とを有する樹脂 (P ) 、 下記式 ( 6 ) で表わされる脂環式エポキシ基含有不飽和化合物を重合してなるエポキシ 樹脂 (Q) および第 4級アンモニゥ厶化合物 (R) とを含有することを特徴とす る熱硬化型水性塗料組成物を提供するものである。 以下、 本発明を詳細に説明す る。
R2_O - CO— NH - CH = CH - R1 (6)
(式中、 R1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表し、 R2は、 式 (2) または式 (3) を表わす。 )
Figure imgf000073_0001
0: O 〔CO(CR4R5)mO CO(CR4R5)m— (3)
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4〜 8の整数、 nは 1〜 10の整数を表す。 )
第 5の発明を実施するための最良の形態
樹脂 (P)
本発明の熱硬化型水性塗料組成物に使用する樹脂 (P) は、 水酸基とカルボキ シル基とを有する樹脂であれば特に制約はない。 例えば、 ビニル系樹脂、 ポリエ 一テル系樹脂等をベースとする従来から塗料分野で既知の任意の樹脂を使用する ことができる。 具体的には下記の樹脂を例示することができる。
(1) ビニル系樹脂
ビニル系樹脂として、 水酸基を含有するビニルモノマーと力ルボキシル基を含 有するビニルモノマーとの共重合体が例示できる。 ビニルモノマーが水酸基と力 ルポキシル基とを含有する場合には、 その単独重合体も使用することができる。 ①水酸基を含有するビニルモノマーとしては、 ヒドロキシェチル (メタ) ァク リレート、 ヒドロキシプロピル (メタ) ァクリレート、 ヒドロキシブチル (メタ) ァクリレ一ト、 ポリ力プロラク トンジオールモノ (メタ) ァクリレ一ト、 ポリオ キシエチレングリコールモノ (メタ) ァクリレ一ト等の水酸基含有モノマーが例 示できる。 これらのビニルモノマーは、 1種または 2種以上を併用することがで きる。 ②カルボキシル基を含有するビニルモノマ一としては、 (メタ) アクリル 酸、 カルボキシェチル (メタ) ァクリレ一ト、 ィタコン酸、 マレイン酸、 フマ一 ル酸、 クロトン酸、 /3—カルボキシェチル (メタ) ァクリレート等が例示できる。 その他、 (メタ) アクリル酸と £一力プロラク トンとの付加物等の変性不飽和モ ノカルボン酸も使用できる。 ここに、 変性不飽和モノカルボン酸は、 不飽和基と 力ルボキシル基とを有し、 不飽和基と力ルボキシル基との間が鎖延長された変性 不飽和モノカルボン酸であれば特に制限はない。 例えば、 下記式 (A ) で示され る (メタ) アクリル酸をラクトン変性した化合物、 下記式 (B ) で示される末端 水酸基を酸無水物により酸変性させたラク トン変性等エステル結合を有する不飽 和モノカルボン酸、 下記式 (C ) で示されるエーテル結合を有する変性不飽和モ ノカルボン酸等のカルボキシル基含有化合物が例示できる。
また、 カルボキシル基を含有するビニルモノマ一と共に、 必要に応じてメチル (メタ) ァクリレ一卜、 ェチル (メタ) ァクリレー卜、 】' 一プロピル (メタ) ァ クリレ一ト、 n—ブチル (メタ) ァクリレート、 2—ェチルへキシル (メタ) ァ クリレート、 ァクリロニ卜リル、 ァクリルァミ ド、 スチレン、 ビニルトルエン、 酢酸ビニル、 i 一プロピルビニルエーテル、 n—プチルビ二ルェ一テル、 メ トキ シェチルビ二ルェ一テル等の水酸基やカルボキシル基と反応する官能基を有しな いラジカル重合性不飽和基含有モノマーを共重合させて得られたものが例示でき る。 なお、 各ビニルモノマーは、 1種または 2種以上を併用することができる。 CH2-CR10CO[O(CRl lR12)xCO]y-OH 式 (A)
CH2 = CR10COOCH2CH2O[CO(CR11R12)xO]yCOR13COOH
式 (B)
CH2 = CR10COO[(CR14R15)xO]yCOR13COOH 式 (C)
(各式中、 R111は、 水素原子またはメチル基を示し、 R11および R12は、 各々 水素原子、 メチル基またはェチル基を示し、 R13は、 炭素数 1〜10の 2価の脂 肪族飽和もしくは不飽和炭化水素基、 炭素数 1〜 6の 2価の脂環式飽和もしくは 不飽和炭化水素基、 p—キシリレンまたはフヱニレン基を示し、 RHおよび R15 は、 各々水素原子、 メチル基、 ェチル基、 プロピル基、 ブチル基を示し、 Xは 4 〜 8の整数、 yは 1〜: I 0の整数を示す。 )
(2) ポリエステル系樹脂
ポリエステル系樹脂として、 例えばトリメチロールェタン、 卜リメチロールプ ロハ。ン、 ペンタエリスリ トール、 グリセリン、 エチレングリコール、 プロピレン グリコール、 1, 3—ブチレングリコール、 ネオペンチルグリコール、 1, 6— へキサンジオール等のポリオール成分と、 (無水) フタル酸、 イソフタル酸、 テ トラヒドロフタル酸、 へキサヒドロフタル酸、 アジピン酸、 (無水) トリメリッ 卜酸等のポリカルボン酸成分との重縮合で得られるポリエステル樹脂;該ポリエ ステル樹脂を脂肪酸またはエポキシ樹脂で変性したもの;ァクリルグラフ卜した 変性ポリエステル樹脂; ビスフヱノール.ェピクロルヒドリン型エポキシ樹脂を 脂肪酸等で変性したエステル化物に無水マレイン酸等の酸無水物を付加して得ら れる変性ポリエステル樹脂; ビスフヱノール 'ェピクロルヒドリン型エポキシ樹 脂を触媒の存在下で重合反応させたものにポリ力ルポン酸等を付加したものが例 示できる。
上記した樹脂 (P) の中でも美粧性、 耐候性等に優れた塗膜が得られることか ら、 水酸基含有ビニルモノマーとカルボキシル基含有ビニルモノマ一及び必要に 応じてその他のモノマーと重合させることにより得られるビニル系樹脂が特に好 ましい。 また樹脂 (P ) は、 数平均分子量が 1, 0 0 0 ~ 1 0 0, 0 0 0であること、 特には 2 , 0 0 0〜8 0, 0 0 0であることが好ましく、 軟化点は 1 3 0 °C以下、 特には 1 1 5 °C以下であることが好ましく、 酸価が 1〜1 0 0であること、 特に は 1 0〜 8 0であることが好ましく、 水酸基価が 1 0〜 5 , 0 0 0であること、 特には 2 0〜 2, 0 0 0であることが好ましい。 数平均分子量が 1, 0 0 0より 小さいと硬度、 耐屈曲性、 耐食性等の塗膜性能が低下しやすく、 他方数平均分子 量が 1 0 0 , 0 0 0より大きくなると平滑性等の塗膜外観が悪くなる傾向がある。 また、 軟化点が 1 3 0 °Cより高いものは塗膜の平滑性が悪くなりやすい。 また、 酸価が 1より小さいと水性化が困難になり、 他方、 酸価が 1 0 0より大きいと塗 料の貯蔵安定性が悪くなり、 水酸基価が 1 0より小さいと塗膜の硬化性が低下し、 硬度、 耐屈曲性等の塗膜性能が低下する傾向がみられ、 他方、 水酸基価が 5, 0 0 0より大きくなると耐水性、 耐食性等の塗膜性能が低下するので好ましくない。 樹脂 (P ) には上記水酸基及びカルボキシル基以外に、 フエノール性水酸基や アルコキシシラン基、 ヒドロキシシラン基等の官能基を必要に応じて導入してお くこともできる。 これらの官能基を導入する方法は、 特に限定されず既知の方法 を用いることができる。 例えば、 フヱノール性水酸基導入は、 ビスフヱノール変 性 (メタ) アタリレートを前記ビニル系樹脂のビニルモノマー成分として用いれ ばよく、 アルコキシシラン基ゃヒドロキシシラン基の導入は、 ァーメタクリロキ シプロピルトリメ トキシシラン及びこれの加水分解物等の化合物を前記ビニル系 樹脂のビニルモノマ一成分として用し、て共重合させればよし、。 エポキシ樹脂 (Q )
本発明の塗料組成物に使用されるエポキシ樹脂 (Q ) は、 上記式 (6 ) で示さ れる脂環式エポキシ基含有不飽和化合物、 即ち、 第 1の発明の式 ( 1 ) で表さ れる化合物の内、 R 2が式 (2 ) または (3 ) で表される化合物と製造方法および 構造式が同一のものを重合したものである。 なお、 上記脂環式エポキシ基含有不 飽和化合物以外に、 第 2の発明の 「他の不飽和基含有脂環式エポキシ化合物分の いずれかの化合物」 を併用して共重合することもできる。
エポキシ樹脂 (Q ) には、 脂環式エポキシ基含有不飽和化合物および上記他の 化合物以外に、 更にメチル (メタ) ァクリレート、 ェチル (メタ) ァクリレ一卜、 i —プロピル (メタ) ァクリレート、 n—ブチル (メタ) ァクリレー卜、 2—ェ チルへキシル (メタ) ァクリレー卜、 アクリロニトリル、 アクリルアミ ド、 スチ レン、 ビニルトルエン、 酢酸ビニル、 i —プロピルビニルエーテル、 n —ブチル ビニルエーテル、 メ トキシェチルビニルエーテル等の水酸基とカルボキシル基と の反応を生じる官能基を有しないラジカル重合性不飽和基含有モノマーを共重合 させることもできる。
エポキシ樹脂 (Q ) は、 数平均分子量が 1 9 4〜1 0 0, 0 0 0であること、 特には 1 9 4〜 2 , 0 0 0、 特には 1 9 4〜1, 0 0 0であることが好ましく、 エポキシ当量が 5 0〜 2, 0 0 0であること、 特には 5 5〜 1 , 0 0 0であるこ とが好ましく、 軟化点は 1 3 0 °C以下、 特には 1 1 5 °C以下であることが好まし い。 数平均分子量が 1 0 0より小さいものは入手が困難であり、 他方、 数平均分 子量が 1 0 0, 0 0 0より大きいものは塗面平滑性が悪くなるのであまり好まし くない。 またエポキシ当量が 5 0より小さいものは入手が困難であり、 他方ェポ キシ当量が 2 , 0 0 0より大きいのもは塗膜の硬化性が低下する傾向がある。 更 に軟化点が 1 3 0 °Cより高いものは塗膜の平滑性が悪くなりやすい。
上記エポキシ樹脂 (Q ) と組合わせて、 脂環式炭化水素環上にあるエポキシ基 および脂環式炭化水素環を形成する炭素原子に直接結合したエポキシ基から選ば れる少なくとも 1種以上のエポキシ基を 1分子中に少なくとも 2個以上有するも のも使用できる。 該脂環式炭化水素環は 3員の小環員のものから Ί環員またはそ れ以上のものであってもよく、 また、 該環は、 単環でも多環でもよく、 更に環が 有機炭化水素環を構成していてもよい。 併用できるエポキシ樹脂 (Q ) の具体例 として、 下記に示す 2官能性以上のエポキシ樹脂を例示することができる。
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000078_0003
Figure imgf000078_0004
Figure imgf000078_0005
/ CH20 [OC (CH2) 5C0] ! 20 C H 2
/ CH20 [OC (CH2) 5C0] 150 2ノ ^
oc] T Ί. to
( 0 O I〜S ,d g τ ~ 0 ?Π 、Ψ )
Ή
3)
Figure imgf000079_0001
0コ
\ ΖΗつ Ο51 [ODs (ΖΗ0) Ο] ΟΟζΗ3
HOO51 [OOS (ΖΗ0) Ο] 03 Η3
Ο'
Ή3ΟΗ [03s HO) Ο] 00 HO
0' OO51 [03s HO) O] O3zH3
Figure imgf000079_0002
。4、し ΖΗ00" [03s H ) O] 03.
DO
^HOO51 [OO9 H ) 〇] 03'
0;
P0/L6d£/lDd 6ム 0 /86 OAV 上記エポキシ樹脂 (Q) と組合わせて、 さらにグリシジルェ一テル型エポキシ 樹脂、 脂肪族内部エポキシ樹脂等のエポキシ基を有するその他のエポキシ樹脂を 使用することもできる。 該その他のエポキシ樹脂は、 塗料の貯蔵安定性及び塗膜 硬化性の観点から、 両者の合計量を基準として 25重量%以下の割合で使用する ことが好ましい。 第 4級アンモニゥ厶化合物
本発明の塗料組成物に使用される第 4級アンモニゥム化合物 (R) としては ( R 20 R 2 1 R 2 2 R 23 N w ) X Hで示されるものを使用することができる。 式中、 R2°、 R21、 R22および R23は、 それぞれ炭化水素基を表わし、 これら は同一または異なっていてもよい。 また炭化水素基は、 ヒドロキシ基で置換され ていてもよい。 Xはハロゲンイオンまたは酸の陰イオン残基を示し、 例えば C 1、 B r、 F、 I、 S04、 HS04、 NO3、 P〇4C l O4、 HCOO、 CH3COO、 OH等が例示できる。
本発明で使用する好ましい第 4級アンモニゥム化合物 (R) として以下の化合 物が例示できる。
①テトラメチルアンモニゥムクロライ ド、 テトラェチルアンモニゥムクロライ ド、 テトラプチルアンモニゥムクロライ ド、 メチルトリェチルアンモニゥムクロ ライド、 テトラメチルアンモニゥムブロマイド、 テトラェチルアンモニゥムフル ォライド、 テトラェチルイオダィ ド等のテトラアルキルアンモニゥムハライ ドが 例示できる。
②酢酸テトラメチルアンモニゥム、 ギ酸テ卜ラエチルアンモニゥム等のテトラ アルキルアンモニゥム有機酸塩が例示できる。
③硫酸水素テトラメチルアンモニゥム、 硫酸水素テ卜ラエチルアンモニゥム、 硝酸テトラメチルアンモニゥム、 硝酸テトラエチルアンモニゥム、 過塩素酸テト ラエチルアンモニゥム、 リン酸テトラェチルアンモニゥム等のテトラアルキルァ ンモニゥ厶無機酸塩が例示できる。 ④テトラメチルアンモニゥムヒドロキシド、 テトラェチルアンモニゥムヒドロ キシド、 テトラプロピルアンモニゥムヒドロキシド、 テトラプチルアンモニゥム ヒドロキシド、 テ卜ラペンチルアンモニゥムヒドロキシド、 テトライソアミルァ ンモニゥムヒドロキシド、 テトラドデジルアンモニゥムヒドロキシド、 メチルト リエチルアンモニゥムヒドロキシド、 ェチルトリメチルアンモニゥムヒドロキシ ド、 デシルトリメチルアンモニゥムヒドロキシド、 モノヒドロキシェチルトリメ チルアンモニゥ厶ヒドロキシド、 モノヒドロキシェチルトリェチルアンモニゥム ヒドロキシド、 ジヒドロキシェチルジメチルアンモニゥムヒドロキシド、 ジヒド ロキシェチルジェチルアンモニゥムヒドロキシド、 トリヒドロキシェチルモノメ チルアンモニゥムヒドロキシド、 トリヒドロキシェチルモノェチルアンモニゥム ヒドロキシド、 ベンジルトリメチルアンモニゥムヒドロキシド、 ベンジノレトリェ チルアンモニゥムヒドロキシド、 ベンジルメチルジェチルアンモニゥムヒドロキ シド、 シクロへキシルトリメチルアンモニゥムヒドロキシド等の第 4級アンモニ ゥムヒドロキシドが例示できる。
これらの中で第 4級アンモニゥムヒドロキシドは、 樹脂 (P ) 及びエポキシ樹 脂 (Q ) を水中に容易に分散化させ、 貯蔵安定性に優れた塗料組成物を与え、 し かも耐水性、 耐食性に優れた塗膜を形成できる点で特に好ましい。 熱硬化型水性塗料組成物
本発明の熱硬化型水性塗料組成物は、 樹脂 (P ) とエポキシ樹脂 (Q ) との総 合計量換算で、 樹脂 (P ) 4 0〜9 7重量%、 好ましくは 5 0〜9 5重量%、 更 に好ましくは 6 0〜9 0重量%、 エポキシ樹脂 (Q ) 3〜6 0重量%、 好ましく は 5〜5 0重量%、 更に好ましくは 1 0〜4 0重量%の範囲内で配合することが 好ましい。 樹脂 (P ) 力 4 0重量%より少なく、 かつエポキシ樹脂 (Q ) が 6 0 重量%より多くと、 得られる塗料組成物の水分散性が低下する。 一方、 樹脂 (P ) が 9 7重量%より多く、 エポキシ樹脂 (Q ) が 3重量%より少ないと、 耐水性、 耐食性、 耐屈曲性等の塗膜性能が低下する。 また、 エポキシ樹脂 (Q ) は、 該ェ ポキシ樹脂 (Q) 中のエポキシ基に対し、 樹脂 (P) 中の水酸基が、 当量比 (水 酸基/エポキシ基) で 0. 3以上、 好ましくは 0. 5〜5、 更に好ましくは 0. 7〜4の範囲内になるように樹脂 (P) と配合することが好ましい。 当量比が 0. 3より小さいと塗膜中に未反応の樹脂 (P)成分が多くなり、 耐屈曲性、 耐水性、 耐食性等の塗膜性能が低下する場合がある。 また、 樹脂 (P) 中のカルボキシル 基によって、 エポキシ樹脂 (Q) 力安定に水に分散化される力^ その配合割合は、 水分散化及び塗料貯蔵安定性の観点からカルボキシル基/エポキシ基の当量比が 0. 1〜1、 特には 0. 1〜0. 6の範囲であることが好ましい。 第 4級アンモ ニゥム化合物 (R) は、 樹脂 (P) 、 エポキシ樹脂 (Q) 及び第 4級アンモニゥ ム化合物 (R) との総合計量を基準として、 0. 01〜10重量%、 好ましくは 0. 1〜7重量%、 更に好ましくは 0. 1〜 5重量%の範囲であることが好まし い。 この範囲で十分な、 耐候性、 耐酸性を有する樹脂が得られるからである。 本発明の熱硬化型水性塗料組成物の製造方法として、 以下の方法が例示できる。 まず、 樹脂 (P) を有機溶剤に溶解または分散した溶液に、 エポキシ樹脂 (Q) またはエポキシ樹脂 (Q) を有機溶剤に溶解または分散した溶液を混合する。 次 いで、 得られた混合物に第 4級アンモニゥ厶化合物 (R) 及び必要に応じて中和 剤を配合し、 水中に分散することによって製造する。 上記樹脂 (P) またはェポ キシ樹脂 (Q) を溶解または分散するために使用し得る有機溶剤は、 これらの樹 脂が有する官能基に対して、 実質的に不活性の有機溶剤が好適であり、 具体的に は、 アルコール系溶剤、 エーテル系溶剤、 ケトン系溶剤、 エステル系溶剤、 炭化 水素系溶剤等が挙げられる。 これらの中でも特にアルコール系溶剤、 エーテル系 溶剤等の親水性溶剤を主たる溶剤として用いることが好ましい。 また、 中和剤と して、 例えば、 ァンモニァ、 卜リメチルァミン、 トリェチルァミン、 トリブチル ァミン、 ジメチルエタノールァミン、 ジェチルエタノールァミン、 ジメチルプロ ノ ノールァミン、 メチルジェ夕ノ一ルァミン、 ェチルジェ夕ノ一ルァミン、 トリ エタノールアミン等を使用することができる。 尚、 第 4級アンモニゥム化合物 ( R ) として第 4級アンモニゥムヒドロキシドを用いると、 中和剤を使用せずに 樹脂成分を水中に分散することができる。 また、 必要に応じて第 4級アンモニゥ ム化合物 ( ) と上記中和剤とを組合わせて使用してもよい。 本発明の塗料組成物には、 他の化合物を配合することができる。 配合できる樹 脂として、 ポリテトラメチレングリコール、 ビスフエノール A ·エチレンォキシ ド付加物、 ポリ力プロラク トンポリオ一ル、 ポリ力一ボネ一トジオール、 ポリウ レ夕ンポリオール、 ビニルアルコール (共) 重合体、 スチレンーァリルアルコ一 ル共重合体等のカルボキシル基を含まないポリオール樹脂等を配合することもで きる。 より低温で塗膜を硬化させることを目的とする触媒として、 カテコール等 のフヱノール化合物、 ジフヱニルシランジオ一ル等のシラノール化合物、 A】、 T i、 V、 F e、 Z n、 Z r、 S n等の金属類とァセト酢酸ェチル、 トリフルォ ロアセチルァセトン、 ジベンゾィルァセチルァセ卜ン等の; 8—ジケトンとのキレ ―ト化合物等からなる金属キレ一卜化合物が例示できる。 該触媒は、 樹脂 (P ) 及びエポキシ樹脂 (Q ) の合計 1 0 0重量部に対して 0 . 0 1〜 1 0重量部の範 囲内で配合することが好ましい。 更に、 必要に応じてチタン白、 力一ボンブラッ ク、 ベンガラ等の着色顔料、 クレー、 タルク、 シリカ等の体質顔料、 顔料分散剤、 ハジキ防止剤、 流動性調整剤等の塗料用添加剤を配合することができる。 本発明の塗料組成物を用いて塗膜形成する方法は、 特に制限はない。 例えば、 電着塗装、 スプレー塗装、 浸積塗装、 ローラ一塗装、 刷毛塗装等の手段で基材表 面に塗布、 乾燥することによって実施することができる。
塗装膜厚は、 特に制限はないが、 通常の使用では 1 0〜1 0 0〃mの範囲内で 十分である。 塗膜の乾燥は、 0〜2 0 0 °Cの範囲が好ましく、 より好ましくは 5 0 - 1 8 0 °Cの範囲であり、 1 2 0。Cでは 3 0分間、 1 8 0 °Cでは 1 0分間程度 で行うことができる。 塗布すべき基材もまた特に制限されないが、 鉄鋼、 アルミ 二ゥ厶、 アルマイ ト、 銅、 鉄鋼の表面に亜鉛、 スズ、 クロム、 アルミニウム等を メツキしたメツキ鋼、 或いは鉄鋼の表面をクロム酸、 リン酸で化学処理或いは電 解処理したもの等の広範な金属類に好ましく使用することができる。 第 5の発明の実施例
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。 なお 「部」 は、 特に示す場合を除くほか 「重量部」 を示し、 「%」 は、 特に示す場合を除くほか 「重量%」 を示す。
(測定方法)
( 1 ) 貯蔵安定性: 3 0 °C 1ヶ月間放置したのち分散化物の沈降、 分離状態を 目視で観察し、 塗料組成物に分散化剤の沈降による色変化がない場合を異常なし とした。
( 2 ) 塗膜平滑性:塗膜の表面の凹凸状態を目視で観察し、 表面光沢の有るも のを良好とした。
( 3 ) 耐ソルトスプレー: J I S Z— 2 3 7 1に従って試験し、 塗膜のカツ ト部からのクリープ幅片側 2 mm以内のものを合格とした。 試験時間は 1, 0 0 0時間行った。
( 4 )鉛筆硬度: J I S K— 5 4 0 0に従って試験した。
( 5 ) 耐屈曲性:温度 2 0 °Cの雰囲気で試験板を直角に 1〜 2秒で折り曲げ、 折り曲げ部の塗膜のハガレ、 ヮレ等の異常のないものを合格とした。
( 6 ) ゲル分率:乾燥させた塗膜を剥がし取り 3 0 0メッシュのステンレスス チール製の網状容器に入れソックスレ一抽出器でァセ卜ン /メ夕ノ一ル = 1 / 1 溶媒を用いて還流温度で 6時間抽出させた後、 次式に従ってゲル分率の算出を行 つた。 ゲル分率 (%) は、 抽出した後の塗膜重量/抽出前の塗膜重量で評価した。
(実施例 1 )
4つ口フラスコにメチルプロノ、。ノール 7 5部を仕込み 1 1 0 °Cに加熱した。 こ れにアクリル酸 3部、 ヒドロキシェチルァクリレ一卜 20部、 メチルメタクリレ —卜 57部、 スチレン 20部の混合物と、 2, 2' —ァゾビスイソブチル二トリ ル 1部およびメチルイソブチルケトン 5部の混合物を 1時間かけて滴下した。 こ れを 1. 5時間熟成して、 酸価 23、 水酸基価 97、 数平均分子量 20000、 固形分 55%の樹脂溶液 (P) を得た。 次いで、 4つ口フラスコにメチルプロパ ノール 25部を仕込み 1 10°Cに加熱し、 下記化合物 (S) 25部と 2, 2' ― ァゾビスィソブチル二トリル 5部とメチルイソプチルケトン 5部との混合物を 3 時間かけて滴下した。 これを更に 3時間熟成して、 エポキシ当量 200、 平均分 子量約 3, 000の固形分 42%の樹脂溶液 (Q) を得た。 前記樹脂溶液 (P)
181重量部及び (Q) 60重量部に、 テトラエチルアンモニゥムヒドロキシド の 20%水溶液 1 9. 5部を加え撹拌しながら、 脱イオン水 166部を加えて固 形分 30 %、 平均粒子径 0. 15 ^ mの水分散化物を得た。 得られた該水分散化 物の貯蔵安定性は、 塗料状態および塗膜性能共に異常がなかった。 また、 貯蔵試 験前の水分散化物をリン酸亜鉛処理鋼板に乾燥膜厚が 20 になるようにスプ レー塗装し、 80°Cで 1 0分間乾燥後、 更に 120°Cで 20分間乾燥を行い、 塗 装物を得た。 この塗装物は、 塗膜平滑性は良好であり、 耐ソル卜スプレーも合格、 鉛筆硬度は H、 耐屈曲性も合格であった。 塗膜のゲル分率は 97%であった。
I 0-CO-NH-CH = CH; 化合物 (S)
(実施例 2 )
4つ口フラスコにメチルプロパノール 64部を仕込み 1 10°Cに加熱した。 こ れにメタクリル酸 4部、 ヒドロキシェチルメタクリレー卜 25部、 2—ェチルへ キシルメタクリレー卜 1 0部、 メチルメタクリレー卜 5 1部、 スチレン 10部の 混合物と 2, 2' ーァゾビスイソブチル二トリル 1部とメチルイソプチルケトン 5部との混合物を 1時間かけて滴下した。 これを更に 1. 5時間熟成して、 酸価 26、 水酸基価 108、 数平均分子量 25, 000、 固形分 59%の樹脂溶液
(P) を得た。 次いで、 4つ口フラスコにメチルプロパノール 25部を仕込み 1 10°Cに加熱し、 上記化合物 (S) 10部と下記化合物 (T) 5部との混合物と、 2, 2' —ァゾビスイソブチル二卜リル 5部とメチルイソブチルケトン 5部との 混合物を 3時間かけて滴下した。 これを更に 3時間熟成して、 エポキシ当量 20 0、 平均分子量約 3, 000の固形分 30%の樹脂溶液 (Q) を得た。 樹脂溶液
(P) 1 70重量部及び (Q) 60重量部に、 テ卜ラメチルアンモニゥムヒドロ キシドの 10%水溶液を 16. 2部加えて撹拌しながら脱イオン水 148部を加 えて固形分 30%、 平均粒径 0. 18 の水分散化物を得た。 得られた水分散化 物の貯蔵安定性は塗料状態および塗膜性能ともに異常なかった。 また、 貯蔵試験 前の水分散化物を実施例 1と同様に塗装、 乾燥を行って塗装物を得たところ、 該 塗装物は、 塗膜平滑性が良好で、 耐ソルトスプレーも合格で、 鉛筆硬度は 3 H、 耐屈曲性も合格であった。 なお、 塗膜のゲル分率は 97%であった。
Od ) O-CO-NH-C (CH3) CH2 化合物 (T)
\ \/
(実施例 3 )
実施例 1で得た 55 %樹脂溶液 ( P ) 1 50部、 実施例 1で得た 42 %樹脂溶 液 (Q) 10部、 3, 4—エポキシシクロへキシルカルボキシメチルシクロへキ センォキシド 10部、 10%テ卜ラブチルアンモニゥムヒドロキシド水溶液 1 7. 9部及びトリェチルアミン 2部との混合物を撹拌しながら、 脱イオン水 1 6 0部 を加えて固形分 2 7 %、 平均粒径 0 . 1 mの水分散物を得た。 得られた水分散 化物の貯蔵安定性は塗料状態および塗膜性能ともに異常なかった。 また、 貯蔵試 験前の水分散化物をリン酸亜鉛処理鋼板に乾燥膜厚が 2 0 になるようにスプ レー塗装し、 8 0 °Cで 1 0分間乾燥後、 さらに 1 4 0 °Cで 2 0分間乾燥を行い塗 装物を得た。 この塗装物は、 塗膜平滑性が良好で、 耐ソルトスプレーも合格で、 鉛筆硬度は 2 H、 耐屈曲性も合格であった。 なお、 塗膜のゲル分率は 9 3 %であ つた。
(比較例 1 )
実施例 1において、 ヒドロキシェチルァクリレート 2 0部及びメチルメタクリ レー卜 5 7部をメチルメタクリレート 7 7部に、 テトラエチルアンモニゥムヒド 口キシドの 2 0 %水溶液 1 9 . 5部を卜リエチルァミン 3 . 4部に、 脱イオン水 1 6 6部を 1 8 0部に置き換えた以外は実施例 1同様の方法で固形分 3 0 %の水 分散化物を得た。 得られた水分散化物の貯蔵安定性は異常なかった。 また、 貯蔵 前の水分酸化物を実施例 1と同様にして塗装、 乾燥して塗装物を得た。 この塗装 物は塗膜平滑性が良好であつたが、 耐ソルトスプレーは不合格であり、 鉛筆硬度 は 4 B、 耐屈曲性も不合格であった。 なお、 塗膜のゲル分率は 5 5 %であった。 第 5の発明の産業上の利用可能性
本発明の熱硬化型水性塗料組成物において、 樹脂 (P ) 中の水酸基とエポキシ 樹脂 (Q ) 中のエポキシ基との官能基同士の反応は、 室温程度ではほとんど進行 せず、 1 0 0 °C程度で焼付けると該官能基同様の反応が急速に進行する。 このた め特に貯蔵安定性及び塗膜低温硬化性に優れる。 また、 本発明の熱硬化型水性塗 料組成物から得られる硬化膜は、 塗膜平滑性が良好で、 耐ソルトスプレー、 耐屈 曲性に優れている。

Claims

請求の範囲
1. 式 (1 ) で表わされる化合物。
R2 - 0 - CO - NH - CH=CH - R1 (1)
(式中、 R1は水素原子、 芳香族炭化水素または飽和もしくは不飽和脂肪族炭化 水素基を表す。 R2は、 反応性官能基を含む基で置換された脂肪族炭化水素基を 表す。 )
2. 反応性官能基を含む基が脂環式エポキシを含む基であることを特徴と する請求項 1記載の化合物。
3. 反応性官能基を含む基で置換された脂肪族炭化水素基が式 ( 2 ) また は式 (3) で表される基であることを特徴とする請求項 1記載の化合物。
Figure imgf000088_0001
0 〔CO(CR4R5)raO〕 „-i-CO(C 4R5)m- (3)
Figure imgf000088_0002
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4 ~ 8の整数、 nは 1〜 1 0の整数を表す。 )
4. 請求項 1〜 3のいずれかに記載の化合物の重合体。
5. 式 (4一 1) または式 (4一 2) で表される水酸基含有化合物に式 ( 5 ) で表される化合物を反応させる請求項 1記載の化合物の製造方法。 H (4- 1)
Figure imgf000088_0003
CCO(C 4R5)mO) n—,- COCCRH— OH (4-2)
Figure imgf000089_0001
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4 ~ 8の整数、 nは 0〜10の整数を表す。 )
N3 - CO - CH=CH - R1 (5) (式中、 R1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表す。 )
6. 式 (6) で表わされる脂環式エポキシ基含有不飽和化合物と酸基含有 不飽和樹脂との反応物に、 希釈剤を配合してなる活性エネルギー線硬化型不飽和 樹脂組成物。
R2-0~CO-NH-CH = CH-R' (6)
(式中、 R1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 ィ匕水素基を表し、 R2は、 式 (2) または式 (3) を表わす。 )
Figure imgf000089_0002
O 1 I Ο CCO(CR4R5)mO] n r C O(C R4R5)m— (3)
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4~8の整数、 nは 1〜 10の整数を表す。 )
7. 酸基含有不飽和樹脂が酸基含有ァクリル系樹脂であることを特徴とす る請求項 6記載の活性エネルギー線硬化型不飽和樹脂組成物。
8. 請求項 6または 7記載の活性エネルギー線硬化型不飽和樹脂組成物か らなるアル力リ現像可能な活性エネルギー線硬化型レジス卜樹脂組成物。
9. 式 (6) で表わされる脂環式エポキシ基含有不飽和化合物 (E) とコ ロイダルシリカ (F) とを金属キレ一卜及びノ又は金属アルコキシド (G) の存 在下で反応させて得られる活性エネルギー線重合性不飽和樹脂組成物。
R2 - 0 - CO - NH - CH = CH— R1 (6)
(式中、 R1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表し、 R2は、 式 (2) または式 (3) を表わす。 )
Figure imgf000090_0001
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 m は 4〜 8の整数、 nは 1〜 10の整数を表す。 )
10. 請求項 9記載の活性エネルギー線重合性不飽和樹脂組成物を脱溶剂し た粉末状活性エネルギー線重合性不飽和樹脂組成物。
1 1. 請求項 9記載の活性エネルギー線重合性不飽和樹脂組成物からなる活 性エネルギー線硬化性組成物。
12. 請求項 10記載の粉末状活性エネルギー線重合性不飽和樹脂組成物 からなる粉末状活性エネルギー線硬化性組成物。
13. 下記成分 (ィ) 、 (口) 、 (ハ) を含有することを特徴とする低温 硬化性樹脂組成物。
(ィ) 式 (7) で表される化合物 (H) 70〜99. 999モル%と式 (8) で表される化合物 ( J ) 30〜 0. 001モル%とを反応させて得た 1分子中に 水酸基またはアルコキシル基を 2個以上有する数平均分子量 400〜50, 00 0のポリシロキサン系マクロモノマーと、 式 (6) で表されるォキシラン基含有 ビニルモノマーとの共重合体であって、 数平均分子量 2, 000〜1 00, 00 0のビニル共重合体、
(口) 6配位の有機アルミニウムキレ一卜化合物及び/又は 8配位の有機ジル コニゥムキレート化合物、
(ハ) 1分子中に少なくとも 2個の脂環式ォキシラン基を含有する数平均分子 量 1, 000以下の化合物
R11 - S i R12R13R14 (7) (式中、 R 11は炭素数 1〜8の脂肪族炭化水素基またはフヱニル基を示し、 Rl R13及び R 14は炭素数 1〜4のアルコキシル基または水酸基を示す。 )
CH2=CRl5COO (CH2) k-S i R16 17R18 (8) (式中、 R15は水素原子またはメチル基を示し、 Rl6、 R17及び R18は水酸基、 炭素数 1〜 4のアルコキシル基または炭素数 1〜 8の脂肪族炭化水素基の 、ずれ かを示し、 kは 1〜6の整数を示す。 但し、 Rl6、 R 17及び R 18の全てが炭素数 1〜 8の脂肪族炭化水素基であることはない。 ) 2-O-CO-NH-CH = CH-R1 (6) (式中、 R1は水素原子、 芳香族炭化水素基または飽和もしくは不飽和脂肪族炭 化水素基を表し、 R2は、 式 (2)または式 (3)を表わす。 ) (2)
〔CO(CR4R5)mO〕 „- i-CO(CR4R&)m - (3)
Figure imgf000091_0001
(式中、 R4および R5は、 各々水素原子、 メチル基またはェチル基であり、 mは 4〜 8の整数、 nは 1〜1 0の整数を表す。 )
14. 下記 (P)、 (Q)、 (R) 成分を含有することを特徴とする熱硬 化型水性塗料組成物。 (P) 水酸基とカルボキシル基とを有する樹脂
(Q) 請求項 13記載の式 (6) で表わされる脂環式エポキシ基含有不飽和化 合物を重合してなるェポキシ樹脂
(R) 第 4級アンモニゥ厶化合物
PCT/JP1997/004660 1996-12-18 1997-12-17 Nouveaux composes, leurs polymeres, procedes de preparation de ces composes et polymeres et compositions renfermant ces composes WO1998027079A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97949121A EP0899269A4 (en) 1996-12-18 1997-12-17 NOVEL COMPOUNDS, POLYMERS THEREOF, PROCESSES FOR THE PREPARATION THEREOF AND POLYMERS, AND COMPOSITIONS CONTAINING THE SAME
US09/125,161 US6063898A (en) 1996-12-18 1997-12-17 Compounds, polymers of them, processes for the preparation of both, and compositions containing the compounds

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP35373496A JPH10176013A (ja) 1996-12-18 1996-12-18 新規化合物、その重合体およびその製造方法
JP8/353734 1996-12-18
JP9/281390 1997-09-29
JP28139097A JPH11100434A (ja) 1997-09-29 1997-09-29 低温硬化性樹脂組成物
JP28139197A JPH11100544A (ja) 1997-09-29 1997-09-29 熱硬化型水性塗料組成物
JP9/281389 1997-09-29
JP9/281388 1997-09-29
JP28138897A JPH11100423A (ja) 1997-09-29 1997-09-29 活性エネルギー線硬化型不飽和樹脂組成物
JP9/281391 1997-09-29
JP9281389A JPH11100432A (ja) 1997-09-29 1997-09-29 活性エネルギー線重合性不飽和樹脂組成物

Publications (1)

Publication Number Publication Date
WO1998027079A1 true WO1998027079A1 (fr) 1998-06-25

Family

ID=27530688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004660 WO1998027079A1 (fr) 1996-12-18 1997-12-17 Nouveaux composes, leurs polymeres, procedes de preparation de ces composes et polymeres et compositions renfermant ces composes

Country Status (3)

Country Link
US (1) US6063898A (ja)
EP (1) EP0899269A4 (ja)
WO (1) WO1998027079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832309B2 (ja) * 2004-10-06 2011-12-07 関西ペイント株式会社 活性エネルギー線硬化性塗料組成物及び塗膜形成方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315956B1 (en) * 1999-03-16 2001-11-13 Pirelli Cables And Systems Llc Electrochemical sensors made from conductive polymer composite materials and methods of making same
US20030129501A1 (en) * 2002-01-04 2003-07-10 Mischa Megens Fabricating artificial crystalline structures
US7054528B2 (en) * 2004-04-14 2006-05-30 Lucent Technologies Inc. Plasmon-enhanced tapered optical fibers
US7012687B2 (en) * 2004-05-04 2006-03-14 Lucent Technologies Inc. Spectral analysis with evanescent field excitation
EP1944327B2 (en) * 2007-01-09 2018-11-28 Borealis Technology Oy A cross-linking agent
TWI348471B (en) * 2007-05-04 2011-09-11 Chang Chun Plastics Co Ltd Uv curable resin, its preparation and composition containing the same
US8866016B2 (en) * 2008-07-10 2014-10-21 Borealis Ag Crosslinkable polymer composition
JP5243880B2 (ja) * 2008-08-05 2013-07-24 日立電線株式会社 絶縁電線
GB0922503D0 (en) * 2009-12-23 2010-02-10 Pilkington Group Ltd Fire resistant glazings
US8507640B2 (en) 2010-08-19 2013-08-13 International Business Machines Corporation Methods of ring opening polymerization and catalysts therefor
US8070045B1 (en) * 2010-12-02 2011-12-06 Rohm And Haas Electronic Materials Llc Curable amine flux composition and method of soldering
US8070046B1 (en) * 2010-12-02 2011-12-06 Rohm And Haas Electronic Materials Llc Amine flux composition and method of soldering
WO2012127126A1 (fr) * 2011-02-21 2012-09-27 Lafarge Gypsum International Element resistant a des transferts d'air et des transferts thermohydriques pour le domaine de la construction, notamment des murs légers ou des façades légères
JP6456723B2 (ja) * 2015-02-25 2019-01-23 マクセルホールディングス株式会社 粘着テープ
KR20180113602A (ko) * 2016-02-22 2018-10-16 주식회사 다이셀 경화성 수지 조성물, 그의 경화물 및 반도체 장치
US10281770B2 (en) * 2016-03-11 2019-05-07 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415279A (ja) * 1990-05-10 1992-01-20 Kansai Paint Co Ltd 熱硬化形水性塗料組成物
JPH06107752A (ja) * 1992-10-01 1994-04-19 Daicel Chem Ind Ltd 硬化性樹脂組成物
JPH06157691A (ja) * 1992-11-18 1994-06-07 Nippon Kayaku Co Ltd 放射線硬化性樹脂組成物およびその硬化物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE629193A (ja) * 1962-03-07
US3649673A (en) * 1970-06-01 1972-03-14 Dow Chemical Co Vinyl and allyl carbamates
DE3723349C1 (de) * 1987-07-15 1988-08-11 Goldschmidt Ag Th Mittel zum Ausruesten von Fasern oder Faserprodukten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415279A (ja) * 1990-05-10 1992-01-20 Kansai Paint Co Ltd 熱硬化形水性塗料組成物
JPH06107752A (ja) * 1992-10-01 1994-04-19 Daicel Chem Ind Ltd 硬化性樹脂組成物
JPH06157691A (ja) * 1992-11-18 1994-06-07 Nippon Kayaku Co Ltd 放射線硬化性樹脂組成物およびその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0899269A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832309B2 (ja) * 2004-10-06 2011-12-07 関西ペイント株式会社 活性エネルギー線硬化性塗料組成物及び塗膜形成方法

Also Published As

Publication number Publication date
EP0899269A1 (en) 1999-03-03
US6063898A (en) 2000-05-16
EP0899269A4 (en) 2000-03-22

Similar Documents

Publication Publication Date Title
WO1998027079A1 (fr) Nouveaux composes, leurs polymeres, procedes de preparation de ces composes et polymeres et compositions renfermant ces composes
TWI713578B (zh) 硬化性樹脂組成物、乾膜、硬化物及印刷配線板
WO2008053985A1 (fr) Composition de résine photosensible, produit durci de celle-ci et procédé de production de résine photosensible
KR101178308B1 (ko) 광가교성 폴리우레탄
WO2003078494A1 (fr) Resines durcissables et compositions de resines durcissables les contenant
JPH0987346A (ja) エネルギ−線硬化型エポキシアクリレ−ト樹脂組成物
CN104076605A (zh) 印刷电路板用固化型组合物、使用其的固化涂膜以及印刷电路板
JPWO2008001722A1 (ja) 活性エネルギー線硬化型光学用組成物及び高屈折率樹脂
CN105938296B (zh) 抗蚀剂组合物和干膜
KR102501591B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
TWI819431B (zh) 阻焊劑組合物、乾膜、印刷線路板及其製造方法
CN105938297B (zh) 抗蚀剂组合物和干膜
CN103969951A (zh) 导电性树脂组合物及导电电路
JP2000256428A (ja) 硬化性樹脂及びその組成物
JP2006290999A (ja) 感光性樹脂組成物用基剤
JP2003119228A (ja) 光および/または熱硬化性樹脂組成物
JPH0518873B2 (ja)
KR20040105836A (ko) 산기 및 불포화기를 함유하는 신규한 폴리에테르 화합물,그의 제조 방법 및 수지 조성물
JPH09278869A (ja) 硬化性樹脂組成物
JP2024052183A (ja) 積層体およびその製造方法
JP2005250004A (ja) 感光性樹脂組成物、ソルダーレジスト用組成物、感光性ドライフィルムおよびプリント配線板
JPH10231326A (ja) 変性共重合体および放射線硬化性樹脂組成物
JP2004067902A (ja) 水性光重合性樹脂組成物の製造方法及び水性光重合性樹脂組成物
JPH05230158A (ja) 光硬化性樹脂組成物
JPH11100432A (ja) 活性エネルギー線重合性不飽和樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1997949121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09125161

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997949121

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1997949121

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997949121

Country of ref document: EP