WO1998026470A1 - Resonateur dielectrique, filtre dielectrique, duplexeur dielectrique et oscillateur - Google Patents

Resonateur dielectrique, filtre dielectrique, duplexeur dielectrique et oscillateur Download PDF

Info

Publication number
WO1998026470A1
WO1998026470A1 PCT/JP1997/004454 JP9704454W WO9826470A1 WO 1998026470 A1 WO1998026470 A1 WO 1998026470A1 JP 9704454 W JP9704454 W JP 9704454W WO 9826470 A1 WO9826470 A1 WO 9826470A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
dielectric
dielectric substrate
openings
resonance
Prior art date
Application number
PCT/JP1997/004454
Other languages
English (en)
French (fr)
Inventor
Takehisa Kajikawa
Koichi Sakamoto
Sadao Yamashita
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to US09/319,823 priority Critical patent/US6172572B1/en
Priority to JP52647398A priority patent/JP3177988B2/ja
Priority to EP97946113A priority patent/EP0945913A4/en
Publication of WO1998026470A1 publication Critical patent/WO1998026470A1/ja
Priority to NO19992862A priority patent/NO321147B1/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20309Strip line filters with dielectric resonator
    • H01P1/20318Strip line filters with dielectric resonator with dielectric resonators as non-metallised opposite openings in the metallised surfaces of a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1864Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator

Definitions

  • the present invention relates to a dielectric resonator, a dielectric filter, a dielectric duplexer, and an oscillator used in a microwave band to a millimeter wave band.
  • the input / output means such as a metal loop and the dielectric resonator
  • the coupling between the dielectric resonator and the dielectric resonator is determined by the distance between them, it was necessary to arrange them with high positional accuracy.
  • FIG. 12 shows a basic configuration of the dielectric filter according to the above application.
  • FIG. 12 is an exploded perspective view of the dielectric filter according to the above application.
  • the dielectric film 101 is composed of a dielectric substrate 102 and conductive plates 104a and 104b.
  • the dielectric substrate 102 has a constant relative permittivity, and conductors 102 a and 102 b having five circular openings on both main surfaces thereof have openings each other. It is constituted by being arranged so as to face each other.
  • the input coplanar line 105a and the output coplanar line 105a are arranged so as to be close to the openings at both ends of the five openings.
  • One coplanar line 105b is formed.
  • the conductor plates 104 a and 104 b are arranged and fixed so as to sandwich the dielectric substrate 102 at a predetermined distance from the dielectric substrate 102 in the vicinity of the opening.
  • the line 105a and the output coplanar line 105b project from the conductor plates 104a and 104b.
  • the conductor plate 104a is provided with a notch so as not to be connected to the input coplanar line 105a and the output coplanar line 105b.
  • the conductor plate 104a and the conductor 102a of the dielectric substrate 102 are electrically connected, and the conductor plate 104b and the conductor 102 of the dielectric substrate 102 are electrically connected.
  • b is electrically connected.
  • the electromagnetic field energy is confined in the dielectric substrate 102 near the portion between the opposing openings of the conductors 102a and 102b, and five resonance parts are formed. You. Then, the adjacent resonance units are combined to form a dielectric filter having five stages of resonance units.
  • the resonance part can be defined by the size of the opening of the electrode, it is possible to use a method such as etching at the time of manufacturing, and it is possible to use a dielectric resonator that reproduces the dimensional accuracy of the resonance part with respect to frequency extremely accurately. Dielectric material You can now create filters.
  • the confinement of electromagnetic energy in the resonance part constituted by the dielectric substrate 102 sandwiched between the openings of the conductors 102a and 102b facing each other is improved.
  • the input / output terminal means is formed of a coplanar single line 105a, 105b
  • the coupling between the resonance part and the input / output terminal means is weak, and the openings of the electrodes 102a, 102b are high.
  • the coupling between the resonating part and the input / output terminal means was strengthened by making the distance between the part and the coplanar lines 104a and 104b as narrow as possible.
  • the coupling between the adjacent resonance sections is weak because the resonance section has a high confinement property of the electromagnetic field energy, and the interval between the openings is reduced as much as possible. The bonds between them were strengthened.
  • a voltage controlled oscillator is known as a device using a dielectric resonator.
  • FIG. 13 shows such a voltage-controlled oscillator.
  • a cylindrical TE 01 ⁇ 5 mode dielectric resonator 112 is used for the voltage controlled oscillator 111.
  • the TE015-mode dielectric resonator 1 1 2 is mounted on the wiring board 1 1 3 via the low dielectric constant support 1 1 2 a.
  • a ground electrode (not shown) is formed on the lower surface of the wiring board 113.
  • the wiring board 113 is housed in an upper metal case 130 and a lower metal case 131.
  • a microstrip line 114 constituting a main line and a microstrip line 115 constituting a sub line are TE 01 ⁇ 5 mode dielectric resonators. They are formed so as to overlap with each other in the direction seen from above and below in FIG.
  • microstrip line 114 One end of the microstrip line 114 is connected to a ground electrode 117 via a chip resistor 116, and the other end is a field effect transistor. It is connected to the gate of transistor 118.
  • the resonance circuit is formed by the electromagnetic field coupling between the microstrip line 114 constituting the main line and the TE 01 ⁇ 5 mode dielectric resonator 112.
  • microstrip line 115 One end of the microstrip line 115 is connected to a ground electrode 117 via a barak diode diode 119, and the other end is an open end.
  • the oscillation frequency variable circuit is constituted by the microstrip line 115 and the paraductaid 119, which constitute this sub-line.
  • the field effect transistor 118 has a drain connected to the input terminal 122 via the microstrip line 121, and a source connected to one end of the microstrip line 123. .
  • a matching stub 124 is connected to the microstrip line 122 at a connection point with the drain of the field effect transistor 118.
  • the other end of the microstrip line 123 is connected to the ground electrode 117 via the chip resistor 125.
  • the microstrip line 123 is formed in parallel with the microstrip line 126 at a certain interval on the way so as to be electromagnetically coupled.
  • the microstrip line 126 is connected to the output terminal electrode 128 via the chip resistor 127.
  • a chip capacitor 124 is connected to the input terminal electrode 122 in parallel with the microstrip line 121.
  • a chip capacitor 129 is connected to the output terminal 1280 in parallel with the chip resistor 127.
  • the varactor diode 1 19 becomes a variable capacitor according to the applied voltage, and the resonance frequency of the TE 01 ⁇ 5 mode dielectric resonator 112 changes, causing the oscillation frequency to change It has become.
  • the dielectric filter 101 shown in FIG. The coupling between the resonance part and the input / output terminal means was strengthened by making the distance between the apertures of 02a, 102b and the coplanar lines 105a, 105 as small as possible.
  • the resonance portion arrangement of the dielectric substrate 102 is formed. Since the length in the direction became longer, the length of the dielectric filter 101 itself was also longer. Therefore, the space for the input / output terminal means such as the coplanar single line 105a.105b has been an obstacle in miniaturizing the dielectric filter 101.
  • a dielectric filter having five stages of resonance parts is configured as shown in Fig. 12, five openings are formed in the conductors 102a and 102b on both main surfaces of the dielectric substrate 102. Since it must be formed, the size of the dielectric substrate 102 is large, and as a result, the size of the dielectric filter 101 is also large. Therefore, as the number of conductor openings formed on both main surfaces of the dielectric substrate increases, that is, as the number of stages of the resonance section increases, the size of the dielectric filter increases accordingly. Was supposed to be.
  • the distance between the openings of the conductor is reduced by reducing the distance.
  • another dielectric with a small distance between conductor openings This was done by replacing it with a substrate, and a separate dielectric substrate had to be created, which was time-consuming and costly.
  • a separate capacitor, coil, etc. and the dielectric substrate 10 are placed on the dielectric substrate 102.
  • 2 circuit elements such as transmission lines formed on the
  • the transmission lines When the transmission lines are arranged on the same substrate, the transmission lines for arranging them are also formed on the same substrate.However, when such transmission lines are formed around the resonance part, the size of the substrate increases, The size of the filter itself was also increasing.
  • the electromagnetic field of the TE 01 ⁇ 5 mode dielectric resonator 112 is greatly spread around the TE 01 ⁇ mode dielectric resonator 112.
  • the microstrip lines 121, 123, etc. other than the microstrip lines 114 and 115 are coupled. When such unnecessary coupling occurs, the oscillation frequency of the voltage-controlled oscillator 111 may become unstable.
  • the micro-strip lines 12 1 and 12 3 that are not desired to be coupled to the TE 01 5 mode dielectric resonator 112 are replaced by TE 01 5
  • the wiring was designed so as to be as far away from the mode dielectric resonator as possible.
  • microstrip lines 12 1 and 12 3 that are not desired to be coupled to the TE 01 ⁇ 5 mode dielectric resonator 112 are connected to the TE 01 ⁇ 5 mode dielectric resonator. Wiring was designed under the condition that it was as far away from the vibrator 1 1 2 as possible, so the degree of freedom in wiring design was limited.
  • the TE 01 ⁇ 5 mode dielectric resonator 1 1 2 is placed on the wiring board 113, and the electromagnetic field of the TE 01 ⁇ 5 mode dielectric resonator 1 1 2 is placed on the wiring board 113.
  • the case 130 is covered with an upper metal case 130 to confine it, and the height of the upper metal case 130 is TE015 mode dielectric resonator 1 1
  • the height of 1 1 1 itself was also increasing.
  • the present invention has been made in view of these problems, and is a dielectric which can be miniaturized as a whole, can easily adjust the coupling between adjacent resonators, and can freely design wiring. Its purpose is to provide resonators, dielectric filters, dielectric duplexers, and oscillators.
  • the dielectric resonator according to claim 1 includes a dielectric substrate, a first conductor formed on one main surface of the dielectric substrate, and a first conductor formed on the other main surface of the dielectric substrate.
  • a plurality of the support members are provided by the dielectric resonator. It is arranged in the thickness direction of the dielectric substrate with respect to the body substrate.
  • a transmission line is formed by the electrodes.
  • the electrode is used as a frequency adjusting electrode.
  • the electrode is used as a frequency adjusting electrode.
  • the resonance part is formed by o
  • a resonance unit determined by the first opening and the second opening is formed. There are more than one.
  • a coupling electrode for electromagnetically coupling the plurality of resonance units is formed on the support member.
  • a plurality of the support members are arranged with respect to the dielectric substrate in a thickness direction of the dielectric substrate.
  • a dielectric substrate, a first conductor formed on one main surface of the dielectric substrate, and a second conductor formed on the other main surface of the dielectric substrate A conductor; a plurality of first openings formed in the first conductor; a plurality of second openings formed in the second conductor; and at least the plurality of first openings.
  • a second filter composed of a vibrating section group, a support member arranged at a distance from the dielectric substrate in a thickness direction of the dielectric substrate, and an electrode formed on the support member.
  • the dielectric duplexer according to claim 13, further comprising: a first input / output terminal electrode formed of the electrode, and electromagnetically coupled to at least one of the first resonance unit groups; and A second input / output terminal electrode that is electromagnetically coupled to at least one of the second resonance unit groups; and at least one of the first resonance unit groups, A third input / output terminal electrode that is electromagnetically coupled to at least one of the second resonance unit groups;
  • the electrode is used as a frequency adjusting electrode.
  • the dielectric duplexer according to claim 16 wherein the plurality of first openings and the plurality of second openings exist, and the resonance unit determined by the first opening and the second opening. Are multiple.
  • a coupling electrode for electromagnetically coupling the plurality of resonance sections is formed on the support member.
  • the plurality of support members are arranged with respect to the dielectric substrate in a thickness direction of the dielectric substrate.
  • a first conductor plate disposed at a distance from the conductor, and a second conductor plate disposed at a distance from the second conductor so as to cover at least the second opening.
  • a resonance unit determined by the first opening and the second opening; a support member arranged at a distance from the dielectric substrate in a thickness direction of the dielectric substrate; A main line that is formed on a member and that forms an resonance circuit by being electromagnetically coupled to the resonance unit; And a negative resistance circuit connected to.
  • the resonance circuit has an oscillation frequency variable circuit.
  • the oscillation frequency variable circuit is controlled by a voltage.
  • FIG. 1 is an exploded perspective view of a dielectric resonator according to a first embodiment.
  • FIG. 2 is an exploded perspective view of the dielectric filter according to the second embodiment.
  • FIG. 3 is an exploded perspective view of a dielectric filter according to a first modification of the second embodiment.
  • FIG. 4 is an exploded perspective view of a dielectric filter according to a second modification of the second embodiment.
  • FIG. 5 is an exploded perspective view of a dielectric filter according to a third modification of the second embodiment.
  • FIG. 6 is an exploded perspective view of the dielectric duplexer according to the third embodiment.
  • FIG. 7 is an exploded perspective view of the voltage controlled oscillator according to the fourth embodiment.
  • FIG. 8 is a sectional view taken along line XX of FIG.
  • FIG. 9 is a cross-sectional view of a voltage controlled oscillator according to a first modification of the fourth embodiment.
  • FIG. 10 is a sectional view of a voltage-controlled oscillator according to a second modification of the fourth embodiment.
  • FIG. 11 shows a voltage-controlled oscillator according to a third modification of the fourth embodiment.
  • FIG. 12 is an exploded perspective view of a dielectric filter previously proposed by the present applicant.
  • FIG. 13 is an exploded perspective view of a conventional voltage controlled oscillator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an exploded perspective view of the dielectric resonator according to the first embodiment.
  • the dielectric resonator 1 includes a dielectric substrate 2, supporting members 3a and 3b, and conductive plates 4a and 4b.
  • Dielectric substrate 2 has a certain relative permittivity, and conductors 2a and 2b having circular openings on both main surfaces thereof are formed so that the openings on both main surfaces face each other. It consists of.
  • the openings of the conductors 2a and 2b of the dielectric substrate 2 are set to have a size corresponding to a predetermined frequency.
  • the opening constitutes a resonance section.
  • the support member 3 a is an insulating substrate, and is arranged in parallel with the dielectric substrate 2.
  • the electrode 5 is formed on the surface of the support member 3 a facing the dielectric substrate 2.
  • the electrode 5 functions as a transmission line, and is electromagnetically coupled to a resonance portion formed by the openings of the conductors 2 a and 2 b of the dielectric substrate 2.
  • the support member 3b is an insulating substrate like the support member 3a, and is arranged on a side different from the support member 3a in parallel with the dielectric substrate 2.
  • the electrode 6 is formed on the surface of the support member 3 a facing the dielectric substrate 2.
  • the electrode 6 functions as a frequency adjusting electrode, and by increasing or decreasing the area of the electrode 6, the resonance frequency of the resonance section formed on the opposing dielectric substrate 2 can be adjusted.
  • spacers 9 are arranged between the dielectric substrate 2 and the support member 3a and between the dielectric substrate 2 and the support member 3b.
  • FIG. 2 is an exploded perspective view of the dielectric filter according to the second embodiment.
  • the dielectric filter 11 is composed of a dielectric substrate 12, a support member 13, and conductive plates 14a and 14b.
  • the dielectric substrate 12 has a constant relative permittivity, and the conductors 12a and 12b having three circular openings on both main surfaces thereof have openings on both main surfaces facing each other. It is constituted by being formed so that it does.
  • the openings of the conductors 12a and 12b of the dielectric substrate 12 are set to have a size corresponding to a predetermined frequency.
  • the support member 13 is a dielectric substrate having a constant relative dielectric constant, like the dielectric substrate 12, and has electrodes 13a and 13 having two circular openings on both main surfaces thereof. b is formed by forming the openings on both main surfaces to face each other. The openings of the electrodes 3 a and 3 b of the support member 13 are set to have a size corresponding to a predetermined frequency, similarly to the dielectric substrate 12.
  • the support member 13 is fixed from the dielectric substrate 12 so that the two openings of the electrode 13 b overlap two of the three openings of the conductor 12 a of the dielectric substrate 12, respectively. They are arranged at intervals. In order to hold the dielectric substrate 12 and the support member 13 at a fixed interval, Spacers 19 and 19 are arranged between the body substrate 12 and the support member 13.
  • an input coplanar line 15 a and an output coplanar single line 15 b are formed at both ends thereof.
  • the input coplanar line 15a is arranged at a position overlapping one of the three ends of the three openings of the conductor 12a of the dielectric substrate 12, and the output coplanar line 15b is It is arranged at a position overlapping with one of the two ends of the three openings of the electrode 12 a of the body substrate 12.
  • the conductive plates 14a and 14b are arranged and fixed so as to sandwich the dielectric substrate 12 and the support member 13 at a predetermined distance from the dielectric substrate 12 and the support member 13 near the opening.
  • the input coplanar line 15a and the output coplanar line 15b protrude from the conductor plates 14a and 14b.
  • the opening and the portion of the dielectric substrate sandwiched between the openings function as a resonance portion, and thus a dielectric filter 11 including five stages of resonance portions is obtained.
  • the width of the dielectric substrate is larger than when a multi-stage resonance section is formed on one dielectric substrate. The dimension in the direction can be reduced. Also, since the resonance portions formed on the dielectric substrate 12 and the resonance portions formed on the support member 13 are alternately coupled to each other, the distance between the dielectric substrate 12 and the support member 13 must be changed.
  • the coupling between the resonance portions can be changed by changing the area where the resonance portion of the dielectric substrate 2 and the resonance portion of the support member 3 overlap.
  • the distance between the dielectric substrates 12 and the supporting members 13 is smaller than the conventional method of reducing the horizontal distance between adjacent resonators on the same substrate. Since the spacing can be small, stronger bonds can be obtained.
  • Fig. 2 shows a dielectric filter in which a resonance part is formed on two dielectric substrates. Although the description has been given of the filter, the present invention is not limited to this.
  • a resonator may be formed on each of three substrates as shown in FIG.
  • FIG. 3 is an exploded perspective view of a dielectric filter according to a first modification of the second embodiment.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description will be omitted.
  • the points different from FIG. 2 are that the coupling electrodes 17a and 17b are added to the electrode 13a side of the support member 13 and that the support member 16 is added. It is a point.
  • the coupling electrodes 17a and 17b are formed at both ends.
  • the coupling electrode 17a is electrically connected to the input coplanar line 15a via a through hole
  • the coupling electrode 17b is connected to the output coplanar line 15 via a through hole. It is electrically connected to b.
  • the supporting member 16 has a certain relative permittivity, and the electrodes 16a and 16b having two circular openings on both main surfaces thereof are opposed to each other on the two main surfaces. It is constituted by being formed as follows.
  • the openings of the electrodes 16a and 16b of the support member 16 have frequencies different from the frequencies of the openings of the conductor of the dielectric substrate 12 and the openings of the electrodes of the support member 13. Is set to a reasonable size.
  • the resonating portion set by the opening formed in the supporting member 16 functions as a trap by being coupled to the coupling electrodes 17a and 17b, thereby attenuating an undesired frequency. it can.
  • FIG. 4 is an exploded perspective view of a dielectric filter according to a modification of the second embodiment. Note that the same components as those of the second embodiment shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the dielectric filter 21 is composed of a dielectric substrate 22, a support member 23, and conductive plates 4a and 4b.
  • the dielectric substrate 22 has a certain relative permittivity, and the conductors 22a and 22b having three circular openings on both main surfaces thereof have openings on both main surfaces facing each other. It is constituted by being formed so that it does.
  • the openings of the conductors 22a22b of the dielectric substrate 22 are set to have a size corresponding to a predetermined frequency.
  • an input coplanar line 25a and an output coplanar line 25b are formed at both ends.
  • the supporting member 23 is an insulating substrate, and is formed by forming three circular strip electrodes 23 b on one main surface thereof.
  • the support member 23 has the strip electrodes 23 b, 23 c, and 23 d formed on one side, and the main surface thereof overlaps with the three openings of the conductor 22 a of the dielectric substrate 22. As described above, they are arranged at a fixed interval from the dielectric substrate 22.
  • a spacer 9 is arranged between the dielectric substrate 22 and the support member 23 in order to hold the dielectric substrate 22 and the support member 23 at a constant interval.
  • the strip electrode 23 b of the support member 23 is deleted, or a conductor is added to the strip electrode 23 b, and the distance between the support member 23 and the dielectric 22 is reduced.
  • the resonance frequency of each resonance unit can be changed by a method such as changing the distance. In other words, the electromagnetic field in the dielectric substrate on which the resonance part is formed is disturbed and unnecessary because the conductor of the dielectric substrate on which the resonance part is formed has been deleted in the past. In contrast to the occurrence of spurious signals, in the present embodiment, such a problem does not occur because adjustment is performed using a support member other than the dielectric substrate on which the resonance section is formed.
  • FIG. 5 is an exploded perspective view of a dielectric filter according to a third modification of the second embodiment.
  • the same parts as those of the dielectric filter 11a shown in FIG. 3 shown as the first modification of the second embodiment are denoted by the same reference numerals, and detailed description will be omitted.
  • This embodiment is different from the first modification of the second embodiment shown in FIG. 3 in that the second support member 16 in FIG. In contrast to this, in the present embodiment, the second support member 33 has a strip line.
  • the dielectric filter 31 is composed of a dielectric substrate 12, a support member 13, a support member 33, and conductor plates 14a and 14b.
  • the support member 33 is an insulating substrate, and is formed by forming one strip line 33a on one main surface thereof. Further, the supporting member 33 is formed from the supporting member 13 such that one main surface on which the strip electrode 33a is formed overlaps both of the two openings of the electrode 3a of the supporting member 13. They are arranged at regular intervals. A spacer 19 is arranged between the support member 13 and the support member 33 in order to hold the support member 13 and the support member 33 at a constant interval.
  • the second-stage resonance unit and the fourth-stage resonance unit are jump-coupled, so that the filter characteristics of the dielectric filter are reduced.
  • a pole can be formed at the same time. In other words, to adjust the strength of this jump connection By adjusting the poles to an undesired frequency, the undesired frequency can be attenuated.
  • FIG. 6 is an exploded perspective view of the dielectric duplexer according to the third embodiment.
  • the dielectric duplexer 41 includes a dielectric substrate 42,
  • the dielectric substrate 42 has a certain relative permittivity, and the conductors 42a and 42b having three circular openings on both main surfaces thereof have openings on both main surfaces facing each other. It is constituted by being formed so that it does.
  • the openings of the conductors 42a and 42b of the dielectric substrate 42 are set to have a size corresponding to a predetermined frequency.
  • the coplanar line 4 is placed on the conductor 42b side of the dielectric substrate 42 so as to be close to one of the openings at both ends.
  • Dielectric substrate 43 has a certain relative permittivity, and conductors 43a and 43b having three circular openings on both main surfaces thereof have openings on both main surfaces facing each other. It is constituted by being formed so that it does.
  • the openings of the conductors 43a and 43b of the dielectric substrate 43 are set to have a size corresponding to a predetermined frequency.
  • the conductor 4 3 b side of the dielectric substrate 4 3 is arranged so as to be close to one of the openings at both ends.
  • the support member 46 has a multilayer structure, and electrodes 46 b and 46 c are formed on almost all of the main surfaces of the support substrate 46 a having a low dielectric constant, and a support having a low dielectric constant is provided at one end thereof.
  • Substrates 47a and 48a are laminated
  • a coplanar line 45c insulated from the electrode 46b is formed at one end of the electrode 46b side surface formed on the support substrate 46a, and one end of the coplanar line 45c is formed. Is formed with a through hole penetrating to the surface on the side of the electrode 46c formed in the support substrate 46a. Support substrate 4 6 a The electrode 46c is not formed around the through hole on the other side of the electrode, so that the electrode 46c and the through hole are not connected.
  • the support substrate 47a is laminated on the coplanar line 45c formed on the support substrate 46a.
  • a strip line 47 b is formed on the support substrate 47 a on a surface opposite to a surface in contact with the support substrate 46 a, and a support substrate is formed at one end of the strip line 47 b.
  • a through hole penetrating to the other surface of 46a is formed.
  • Strip line 47 b is connected to coplanar single line 45 c via a through hole.
  • the support substrate 48a is stacked so as to face the support substrate 47a with the support substrate 46a interposed therebetween. Also, a strip line 48b is formed on the support substrate 48a on a surface opposite to a surface in contact with the support substrate 46a, and a support substrate is formed at one end of the strip line 48b. A through hole penetrating to the other surface of 48a is formed. Strip line 48b is connected to coplanar single line 45c via through hole 48d and through hole 46d.
  • spacers 49a and 49b Between the dielectric substrate 42 and the supporting member 46 and between the dielectric substrate 43 and the supporting member 46, there are disposed spacers 49a and 49b, between which Are held at regular intervals.
  • the spacer 49b between the dielectric substrate 42 and the support member 46 has the same height as the combined height of the support substrate 47a and the spacer 49a.
  • the body substrate 42 and the support member 46 are arranged so as to be parallel.
  • the spacer 49b between the dielectric substrate 43 and the support member 46 has the same height as the combined height of the support substrate 48a and the spacer 49a.
  • the dielectric substrate 43 and the support member 46 are arranged in parallel.
  • the dielectric substrate 4 2 Two filters are obtained, one consisting of a resonator consisting of two resonators and the other consisting of a resonator formed on the dielectric substrate 43.
  • the coplanar line 45c is connected to the antenna
  • the coplanar line 45a is connected to the receiver
  • the coplanar line 45b is connected to the transmitter
  • the dielectric duplexer 41 is connected to the antenna.
  • the coplanar line is used as the input / output structure.
  • the present invention is not limited to this. Any transmission line may be formed.
  • other input / output structures, loops, probes, and the like may be formed separately.
  • FIG. 7 is an exploded perspective view of the voltage controlled oscillator according to the fourth embodiment
  • FIG. 8 is a sectional view taken along line XX of FIG. Note that the same parts as those of the conventional voltage controlled oscillator 111 shown in FIG. 13 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the voltage controlled oscillator 51 includes a dielectric substrate 52, a wiring substrate 113 serving as a support member, an upper metal case 130 serving as a conductive plate, and a lower metal case 13 serving as a conductive plate. It is composed of 1.
  • the dielectric substrate 52 has a certain relative permittivity, and conductors 52a and 52b having circular openings on both main surfaces thereof are formed so that the openings on both main surfaces face each other. It is constituted by being done.
  • the openings of the conductors 52a and 52b of the dielectric substrate 52 are set to have a size corresponding to a predetermined frequency.
  • the opening constitutes a resonance section.
  • a microstrip line 114 constituting a main line and a microstrip line 115 constituting a sub line are formed by openings of conductors 52b of a dielectric substrate 52. It is formed so as to overlap with the direction seen from above in Fig. 17.
  • a low-dielectric constant spacer 59 is arranged on the wiring board 113, and FIG. As shown in the figure, the dielectric substrate 52 is fixed so that it can be arranged at a fixed distance from the wiring substrate 113.
  • the thickness of the resonance section can be made smaller than that of the conventional structure, so that the height of the voltage controlled oscillator itself can be made smaller than that of the conventional structure.
  • the space required for the resonance part formed on the dielectric substrate 52 is smaller in both the thickness of the resonator itself and the space required for resonance than the TE016 mode dielectric resonator consisting of a conventional dielectric block. Because it is small, the height of the voltage-controlled oscillator can be reduced.
  • FIG. 9 is a cross-sectional view of the voltage-controlled oscillator in the same portion as FIG.
  • the same parts as those of the conventional voltage controlled oscillator 11 1 shown in FIG. 13 and the voltage controlled oscillator of the fourth embodiment shown in FIG. 7 are denoted by the same reference numerals, and detailed description thereof will be omitted. .
  • the difference from the fourth embodiment shown in FIG. 7 is that the voltage controlled oscillator 61 of the present modified example has a leaf spring 63.
  • the conductor 2 a of the dielectric substrate 52 and the ceiling surface of the upper metal case 130 are electrically connected by the leaf spring 63.
  • the leaf spring 6 3 is pressed radially against the dielectric substrate 52 to fix the dielectric substrate 52.
  • the conductor 52 a of the dielectric substrate 52 is electrically connected to the upper metal case 130 by the conductive leaf spring 63, and the potentials of the two become equal. Because it is fixed, a stable oscillation frequency can be obtained.
  • FIG. 10 is a cross-sectional view of the voltage-controlled oscillator in the same portion as FIG. The same reference numerals are used for the same portions as those of the conventional voltage controlled oscillator 111 shown in FIG. 13 and the voltage controlled oscillator according to the first modified example of the fourth embodiment shown in FIG. And detailed description is omitted.
  • the voltage-controlled oscillator 71 of the present modification has seven points where a short-circuit conductor 72c is formed on the dielectric substrate 72. "S o
  • the dielectric substrate 72 has a certain relative permittivity, and conductors 72 a and 72 b having circular openings on both main surfaces thereof have openings on both main surfaces.
  • the parts are formed so as to face each other.
  • the openings of the conductors 72a and 72b of the dielectric substrate 72 are set to have a size corresponding to a predetermined frequency.
  • the opening forms a resonance section.
  • the conductors 72a and 72b are connected by a short-circuit conductor 72c formed on the side surface of the dielectric substrate 72.
  • FIG. 11 is a cross-sectional view of the voltage-controlled oscillator in the same portion as FIG.
  • the same reference numerals are used for the same portions as those of the conventional voltage controlled oscillator 111 shown in FIG. 13 and the voltage controlled oscillator according to the first modified example of the fourth embodiment shown in FIG. And detailed description is omitted.
  • the voltage-controlled oscillator 81 of this modification has a through hole 8 2 c and a short-circuit conductor 8 2 d in the dielectric substrate 82. It is in the formed point.
  • the dielectric substrate 82 has a constant relative permittivity, and conductors 82a and 82b having circular openings on both main surfaces thereof have openings on both main surfaces.
  • the parts are formed so as to face each other.
  • the openings of the conductors 82a and 82b of the dielectric substrate 82 are set to have a size corresponding to a predetermined frequency.
  • the opening forms a resonance section.
  • a through hole 82 c penetrating through the dielectric substrate 82 in the thickness direction is formed, and a short-circuit conductor 82 d is formed on the inner peripheral surface of the through hole.
  • the conductors 82a and 82b of the dielectric substrate 82 are electrically connected by the short-circuit conductor 82d.
  • the present invention is not limited to this.
  • the oscillation frequency is varied. It is also possible to configure a normal oscillator having no function.
  • a spacer is used to keep a constant distance between the dielectric substrate and the support member.
  • the spacer is not limited to this.
  • the conductor plate is made larger than the dielectric substrate and the supporting member so that it can be accommodated therein, and projections and the like are provided on the inner wall, thereby holding the dielectric substrate and the supporting member to reduce the distance between them.
  • the distance may be fixed, in other words, it is only necessary that the interval can be kept constant.
  • the shape of the souser may be any shape o
  • a circuit element such as a resonator or a transmission line conventionally disposed on the same dielectric substrate is divided into a dielectric substrate and a support member, thereby providing a dielectric resonator, The overall lateral dimension of the dielectric filter or the like can be reduced.
  • a resonance section is formed on the dielectric substrate, and a resonance section is also formed on the support member so that the resonance section of the dielectric substrate and the resonance section of the support member overlap. Since the distance between the resonator formed on the dielectric substrate and the resonator formed on the support member is reduced, the coupling between the resonators can be strengthened.
  • the input / output transmission line formed on the same dielectric substrate as the resonance section is formed on another support member.
  • a resonance section configured by forming a conductor having an opening in the dielectric substrate is used, and the thickness of the dielectric substrate is less than the conventional TE 01 ⁇ 5 mode. Since it is thinner than a dielectric resonator, it can be made thinner than a conventional oscillator and can be made smaller as a whole.
  • a resonant portion formed by forming a conductor having an opening in the dielectric substrate is used, the electromagnetic field is well confined, and only the electrodes arranged near the opening are coupled to each other. Do not couple to the electrodes. Therefore, the other electrodes may be arranged anywhere except the vicinity of the opening of the conductor, so that the wiring can be freely designed.
  • the dielectric resonator, the dielectric filter, the dielectric duplexer, and the oscillator according to the present invention can be used for various electronic devices such as terminals for mobile communication systems and base stations. Widely applied to equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

明細書 誘電体共振器及び誘電体フィルタ、 誘電体デュプレクサ、 発振器 技術分野 本発明は、 マイクロ波帯ゃミリ波帯で使用される、 誘電体共振器、 誘電体フィルタ、 誘電体デュプレクサや発振器に関する。 背景技術 近年、 移動体通信システムの需要の急速な増加およびマルチメデ ィァ化に対応して大容量で且つ高速な通信システムが要求されてい る。 "このような通信すべき情報量の拡大に伴って、 マイクロ波帯か らミリ波帯へ使用周波数帯域が拡大されようとしている。 このよう なミリ波帯でも、 従来から知られている円柱形状の誘電体からなる T E 01 <5モー ド誘電体共振器をマイクロ波帯と同様に使用するこ とが可能である。 この時、 T E 01 (5モー ド誘電体共振器の周波数は 円柱形状の誘電体の外形寸法で決定されていたため厳しい加工精度 が必要となっていた。
また、 T E 01 <5モー ド誘電体共振器を複数個、所定間隔を隔てて 金属ケース内に配置することによって誘電体フィルタを構成した場 合、 金属ループ等の入出力手段と誘電体共振器、 または、 誘電体共 振器と誘電体共振器との結合は、 相互間の距離によって決定される ため、 高い位置精度で配置されることが必要とされていた。
そこで、 本願出願人は特願平 7— 6 2 6 2 5号でこれらの問題を 解消した加工精度に優れた誘電体共振器及び誘電体フィルタを提案 している。 上記出願に係る誘電体フィルタの基本的な構成を図 1 2に示す。 図 1 2は上記出願に係る誘電体フィルタの分解斜視図である。
図 1 2に示すように、 誘電体フィル夕 1 0 1 は、 誘電体基板 1 0 2 と導電体板 1 0 4 a、 1 0 4 bから構成されている。
また、 誘電体基板 1 0 2は、 一定の比誘電率を有し、 その両主面 に 5つの円形状の開口部を有する導体 1 0 2 a、 1 0 2 bが、 その 開口部が互いに対向するように配置して形成されることにより構成 されている。
誘電体基板 1 0 2の一方主面側 (図 1 2における上側) には、 5 つの開口部のうち両端の開口部にそれぞれ近接するように入力用コ プレナ一線路 1 0 5 aと出力用コプレナ一線路 1 0 5 bが形成され ている。
導電体板 1 0 4 a、 1 0 4 bは、 開口部付近で誘電体基板 1 0 2 から所定間隔隔てて、 誘電体基板 1 0 2を挟むように配置固定され ており、 入力用コプレナ一線路 1 0 5 aと出力用コプレナ一線路 1 0 5 bとが導電体板 1 0 4 a、 1 0 4 bから突出している。 また、 導電体板 1 0 4 aには入力用コプレナ一線路 1 0 5 aと出力用コプ レナ一線路 1 0 5 bと接続されないように切り欠きが設けられてい る。 また、 導電体板 1 0 4 aと誘電体基板 1 0 2の導体 1 0 2 aは 電気的に接続されており、 導電体板 1 0 4 bと誘電体基板 1 0 2の 導体 1 0 2 bは電気的に接続されている。
このような構成により、 導体 1 0 2 a、 1 0 2 bの対向する開口部 に挟まれた部分付近の誘電体基板 1 0 2に電磁界エネルギーが閉じ 込められ、 5つの共振部が形成される。 そして、 隣接する共振部同 士で結合して 5段の共振部を有する誘電体フィルタが構成される。 以上のように、 共振部を電極の開口部の大きさで規定できるので、 製造時にエッチング等の手法を用いることができ、 周波数に対する 共振部の寸法精度を極めて正確に再現した誘電体共振器や誘電体フ ィルタを作成することができるようになった。
このような誘電体フィルタ 1 0 1 では、 対向する導体 1 0 2 a、 1 0 2 bの開口部に挟まれた誘電体基板 1 0 2により構成される共振 部において電磁界エネルギーの閉じ込め性が高いため、 入出力端子 手段をコプレナ一線路 1 0 5 a、 1 0 5 bで形成した場合、 共振部 と入出力端子手段との結合が弱く、 電極 1 0 2 a, 1 0 2 bの開口 部とコプレナ一線路 1 0 4 a、 1 0 4 bとの間隔をできるだけ狭く することで、 共振部と入出力端子手段との結合を強く していた。 また、 このような誘電体フィルタ 1 0 1 では、 共振部において電磁 界エネルギーの閉じ込め性が高いため、 隣接する共振部間の結合が 弱く、 開口部間の間隔をできるだけ狭くすることで、 共振部同士の 結合を強く していた。
さらに、 従来、 誘電体共振器を用いた装置として電圧制御発振器 が知られている。 このような電圧制御発振器には、 図 1 3に示すよ うなものがあった。
図 1 3に示すように、 電圧制御発振器 1 1 1 には円柱形状の T E 01 <5モー ド誘電体共振器 1 1 2が用いられている。
T E 01 5モー ド誘電体共振器 1 1 2は低誘電率の支持台 1 1 2 aを介して配線基板 1 1 3上に載置されている。 配線基板 1 1 3の 下面には図示しないアース電極が形成されている。 また、 配線基板 1 1 3は、 上金属ケース 1 3 0と下金属ケース 1 3 1 内に収納され ている。
配線基板 1 1 3上には、 主線路を構成するマイクロス トリ ップ線路 1 1 4と副線路を構成するマイクロス 卜 リ ップ線路 1 1 5が T E 01 <5モー ド誘電体共振器 1 1 2と図 1 3の上から下を見た方向に おいて重なるように形成されている。
マイクロス トリ ップ線路 1 1 4はその一端がチップ抵抗 1 1 6を介 してアース電極 1 1 7に接続されており、 その他端が電界効果トラ ンジスタ 1 1 8のゲー 卜に接続されている。
この主線路を構成するマイクロス トリ ツプ線路 1 1 4と T E 01 <5モー ド誘電体共振器 1 1 2とが電磁界結合することにより、 共振 回路が構成される。
マイクロス トリツプ線路 1 1 5はその一端がバラク夕ダイ才ー ド 1 1 9を介してアース電極 1 1 7に接続されており、 他端が開放端に なっている。
この副線路を構成するマイクロス 卜リツプ線路 1 1 5とパラクタダ ィ才一 ド 1 1 9により、 発振周波数可変回路を構成している。
電界効果トランジスタ 1 1 8は、 ドレインがマイクロス 卜リップ 線路 1 2 1 を介して入力端子 1 2 2に接続されており、 ソースがマ イクロス トリ ップ線路 1 2 3の一端に接続されている。
マイクロス ト リ ヅプ線路 1 2 1 には電界効果トランジスタ 1 1 8 のドレインとの接続点に整合用のスタブ 1 2 4が接続されている。 マイクロス 卜リ ツプ線路 1 2 3は、 他端がチップ抵抗 1 2 5を介 してアース電極 1 1 7に接続されている。 また、 マイクロス 卜リ ツ プ線路 1 2 3は、 電磁気的に結合するように、 その途中でマイクロ ス トリツプ線路 1 2 6と一定の間隔をおいて平行に形成されている。 マイクロス ト リツプ線路 1 2 6はチップ抵抗 1 2 7を介して出力 端子電極 1 2 8に接続されている。
入力端子電極 1 2 2には、 マイクロス トリ ップ線路 1 2 1 に並列 にチップコンデンサ 1 2 4が接続されている。
出力端子端子 1 2 8には、 チップ抵抗 1 2 7に並列にチップコン デンサ 1 2 9が接続されている。
以上のような構成で、 バラクタダイオー ド 1 1 9が印加電圧に応 じて可変容量となり、 T E 01 <5モー ド誘電体共振器 1 1 2の共振周 波数を変化させ、 発振周波数が変化するようになっている。
上記したように、 図 1 2に示す誘電体フィルタ 1 0 1 では、 導体 1 0 2 a , 1 0 2 bの開口部とコプレナ一線路 1 0 5 a、 1 0 5 と の間隔をできるだけ狭くすることで共振部と入出力端子手段との結 合を強く していた。
しかしながら、 導体 1 0 2 a, 1 0 2 bの開口部とコプレナ一線路 1 0 5 a , 1 0 5 bとの間隔を狭くすることにも限界があつたため、 それ以上、 結合を強くすることができなかった。
また、 誘電体基板 1 0 2の一方主面に形成した入出力端子用のコ プレナ一線路 1 0 5 a、 1 0 5 bを形成することにより、 誘電体基 板 1 0 2の共振部配列方向の長さが長くなるため、 誘電体フィルタ 1 0 1 の長さ自体も長〈なっていた。 したがって、 コプレナ一線路 1 0 5 a . 1 0 5 b等の入出力端子手段用のスペースが誘電体フィ ル夕 1 0 1 を小型化する上での障害となっていた。
さらに、 図 1 2のように 5段の共振部を有する誘電体フィルタを 構成した場合、 誘電体基板 1 0 2の両主面の導体 1 0 2 a、 1 0 2 bに 5つの開口部を形成しなければならないため、 誘電体基板 1 0 2の大きさも大きく、 結果的に誘電体フィルタ 1 0 1 の大きさも大 きかった。 したがって、 誘電体基板の両主面に形成された導体の開 口部の数が増えれば増えるほど、 すなわち、 共振部の段数を増やせ ば増やすほど、 誘電体フィルタの大きさはそれに伴って大きくなる こととなっていた。
また、 誘電体フィルタにおける各共振部の特性、 例えば周波数特 性を調整する場合には、 共振部を構成する電極の開口部付近の導体 を削除することによって行っていたが、 この手法では導体の開口部 の形状を変化させることになるので、 電磁界が乱れて不要なスプリ ァスが発生することがあった。
さらに、 誘電体フィルタにおける各共振部間の結合を強〈する必 要がある場合には導体の開口部間の距離を小さ くすることによって 行っていた。 すなわち、 導体の開口部間の距離が小さい別の誘電体 基板に置き換えることによって行っていたため、 新たに別の誘電体 基板を作成しなければならないため、 時間及びコス トがかかること となっていた。
そして、 誘電体フィルタの特性を調整するため、 例えば、 互いに離 れた共振部間を跳び結合させる場合には、 誘電体基板 1 0 2上に別 体のコンデンサ、 コィル等及び誘電体基板 1 0 2上に形成した伝送 線路等の回路素子を配置していたが、 これらの回路素子を基板 1 0
2上に配置する場合これらを配置するための伝送線路も同一の基板 上に形成していたが、 共振部の周囲にこのような伝送線路を形成す ると基板の寸法が大きくなり、 誘電体フィルタ自体の大きさも大き くなつていた。
さらに、 図 1 3に示す電圧制御発振器 1 1 1 では、 T E 01 <5モー ド誘電体共振器 1 1 2の電磁界は T E 01 δモー ド誘電体共振器 1 1 2の周辺に大きく広がるので、 マイクロス 卜リ ツプ線路 1 1 4及 びマイクロス ト リ ツプ線路 1 1 5以外のマイクロス 卜リツプ線路 1 2 1 、 1 2 3等と結合してしまうという問題があった。 このような 不要結合が生じると電圧制御発振器 1 1 1 の発振周波数が不安定に なる恐れがあった。 従来では、 このような不要結合による不具合を 抑えるために、 T E 01 5モ— ド誘電体共振器 1 1 2に結合させたく ないマイクロス 卜リツプ線路 1 2 1 、 1 2 3を、 T E 01 5モー ド誘 電体共振器 1 1 2からできるだけ離すように配線設計していた。
しかしながら、 主線路及び副線路以外のマイクロス トリップ線路 を T E 01 <5モ一 ド誘電体共振器 1 1 2からできるだけ離すように するということは、 それだけ配線基板 1 1 3の大きさが大きくなる ということであり、 結果的に電圧制御発振器 1 1 1 自体の大きさも 大きくなっていた。
また、 T E 01 <5モ— ド誘電体共振器 1 1 2に結合させたくないマ イクロス 卜リ ツプ線路 1 2 1 、 1 2 3を、 T E 01 <5モ一 ド誘電体共 振器 1 1 2からできるだけ離すという条件のもとに配線設計を行つ ていたため、 配線設計の自由度が少なかつた。
そして、 T E 01 <5モ— ド誘電体共振器 1 1 2を配線基板 1 1 3上 に配置し、配線基板 1 1 3上を T E 01 <5モー ド誘電体共振器 1 1 2 の電磁界を閉じ込めるための上金属ケース 1 3 0で覆っており、 こ の上金属ケース 1 3 0の高さは T E 01 5モー ド誘電体共振器 1 1
2の高さよりもさらに高くする必要があつたため、 電圧制御発振器
1 1 1 自体の高さも高くなつていた。 発明の開示 本発明は、 これらの問題点を鑑みてなされたもので、 全体的に小 形化が可能で、 隣接する共振器間の結合を容易に調整でき、 自由に 配線設計が行える誘電体共振器、 誘電体フィルタ、 誘電体デュプレ クサ、 発振器を提供することを目的としている。
そこで、 請求項 1 に係る誘電体共振器は、 誘電体基板と、 前記誘電 体基板の一方主面に形成された第 1 の導体と、 前記誘電体基板の他 方主面に形成された第 2の導体と、 前記第 1 の導体から前記誘電体 基板が露出するように前記第 1 の導体に形成された第 1 の開口部と、 前記第 2の導体から前記誘電体基板が露出するように前記第 2の導 体に形成された第 2の開口部と、 少なく とも前記第 1 の開口部を覆 うように前記第 1 の導体から間隔を隔てて配置された第 1 の導電体 板と、 少なく とも前記第 2の開口部を覆うように前記第 2の導体か ら間隔を隔てて配置された第 2の導電体板と、 前記第 1 の開口部と 前記第 2の開口部により決定される共振部と、 前記誘電体基板の厚 み方向に前記誘電体基板から間隔を隔てて配置される支持部材と、 前記支持部材上に形成される電極とを有している。
請求項 2に係る誘電体共振器では、 複数の前記支持部材が前記誘電 体基板に対して前記誘電体基板の厚み方向に配置されている。
請求項 3に係る誘電体共振器では、 前記電極により伝送線路が構成 されている。
請求項 4に係る誘電体共振器では、 前記電極を周波数調整用電極と して用いている。
請求項 5に係る誘電体フィルタでは、 誘電体基板と、 前記誘電体基 板の一方主面に形成された第 1 の導体と、 前記誘電体基板の他方主 面に形成された第 2の導体と、 前記第 1 の導体から前記誘電体基板 が露出するように前記第 1 の導体に形成された第 1 の開口部と、 前 記第 2の導体から前記誘電体基板が露出するように前記第 2の導体 に形成された第 2の開口部と、 少なく とも前記第 1 の開口部を覆う ように前記第 1 の導体から間隔を隔てて配置された第 1 の導電体板 と、 少なく とも前記第 2の開口部を覆うように前記第 2の導体から 間隔を隔てて配置された第 2の導電体板と、 前記第 1 の開口部と前 記第 2の開口部により決定される共振部と、 前記誘電体基板の厚み 方向に間隔を隔てて配置される支持部材と、 前記支持部材上に形成 される電極とを有している。
請求項 6に係る誘電体フィルタでは、 前記電極により前記共振部に 電磁界結合する入出力端子電極が構成されている。
請求項 7に係る誘電体フィルタでは、 前記電極を周波数調整用電極 として用いている。
請求項 8に係る誘電体フィルタでは、 前記支持部材が誘電体基板で あり、 前記電極は前記支持部材の両主面に形成され、 前記両主面の 電極に開口部が形成され、 前記開口部により共振部が形成されてい o
請求項 9に係る誘電体フィルタでは、 前記第 1 の開口部及び前記第 2の開口部が複数存在することにより、 前記第 1 の開口部と前記第 2の開口部により決定される共振部が複数存在している。 請求項 1 0に係る誘電体フィルタでは、 前記支持部材上に前記複数 の共振部間を電磁界結合させる結合電極を形成している。
請求項 1 1 に係る誘電体フィルタでは、 複数の前記支持部材が前記 誘電体基板に対して前記誘電体基板の厚み方向に配置されている。 請求項 1 2に係る誘電体デュプレクサでは、 誘電体基板と、 前記誘 電体基板の一方主面に形成された第 1 の導体と、 前記誘電体基板の 他方主面に形成された第 2の導体と、 前記第 1 の導体に形成された 複数の第 1 の開口部と、 前記第 2の導体に形成された複数の第 2の 開口部と、 少なく とも前記複数の第 1 の開口部を覆うように前記第 1 の導体から間隔を隔てて配置された第 1 の導電体板と、 少なく と も前記複数の第 2の開口部を覆うように前記第 2の導体から間隔を 隔てて配置された第 2の導電体板と、 前記複数の第 1 の開口部と前 記複数の第 2の開口部により決定される複数の共振部と、 前記複数 の共振部のうちの第 1 の共振部群により構成される第 1 のフィル夕 と、 前記複数の共振部のうち前記第 1 の共振部群とは別の第 2の共 振部群により構成される第 2のフィル夕と、 前記誘電体基板の厚み 方向に前記誘電体基板から間隔を隔てて配置される支持部材と、 前 記支持部材上に形成される電極とを有している。
請求項 1 3に係る誘電体デュプレクサでは、 前記電極により構成さ れ、 前記第 1 の共振部群の中の少なく とも一つと電磁界結合する第 1 の入出力端子電極と、 前記電極により構成され、 前記第 2の共振 部群の中の少なく とも一つと電磁界結合する第 2の入出力端子電極 と、 前記電極により構成され、 前記第 1 の共振部群の中の少なく と も一つ及び前記第 2の共振部群の少なく とも一つと電磁界結合する 第 3の入出力端子電極とを有している。
請求項 1 4に係る誘電体デュプレクサでは、 前記電極を周波数調整 用電極として用いている。
請求項 1 5に係る誘電体デュプレクサでは、 前記支持部材が誘電体 基板であり、 前記電極は前記支持部材の両主面に形成され、 前記両 主面の電極に開口部が形成され、 前記開口部により共振部が形成さ れている。
請求項 1 6に係る誘電体デュプレクサでは、 前記第 1 の開口部及び 前記第 2の開口部が複数存在することにより、 前記第 1 の開口部と 前記第 2の開口部により決定される共振部が複数存在している。 請求項 1 7に係る誘電体デュプレクサでは、 前記支持部材上に前記 複数の共振部間を電磁界結合させる結合電極を形成している。
請求項 1 8に係る誘電体デュプレクサでは、 複数の前記支持部材が 前記誘電体基板に対して前記誘電体基板の厚み方向に配置している。 請求項 1 9に係る発振器では、 誘電体基板と、 前記誘電体基板の一 方主面に形成された第 1 の導体と、 前記誘電体基板の他方主面に形 成された第 2の導体と、 前記第 1 の導体に形成された第 1 の開口部 と、 前記第 2の導体に形成された第 2の開口部と、 少なく とも前記 第 1 の開口部を覆うように前記第 1 の導体から間隔を隔てて配置さ れた第 1 の導電体板と、 少なく とも前記第 2の開口部を覆うように 前記第 2の導体から間隔を隔てて配置された第 2の導電体板と、 前 記第 1 の開口部と前記第 2の開口部により決定される共振部と、 前 記誘電体基板の厚み方向に前記誘電体基板から間隔を隔てて配置さ れる支持部材と、 前記支持部材上に形成され、 前記共振部に電磁界 結合することにより共振回路を構成する主線路と、 前記共振回路に 接続される負性抵抗回路とを有している。
請求項 2 0に係る発振器では、 前記共振回路は発振周波数可変回路 を有している。
請求項 2 1 に係る発振器では、 前記発振周波数可変回路は電圧によ つて制御されている。
請求項 2 2に係る発振器では、 前記誘電体基板の第 1 の導体と第 2 の導体の少な〈 ともどちらかを前記第 1 の導電体板または前記第 2 の導電体板に接続されている。 請求項 2 3に係る発振器では、 前記 誘電体基板の第 1 の導体と第 2の導体を接続している。
以上のような構成により、 全体的に小形化が可能で、 隣接する共 振器間の結合を容易に調整でき、 自由に配線設計が行える誘電体共 振器、 誘電体フィルタ、 誘電体デュプレクサ、 発振器を提供するこ とができる。 図面の簡単な説明 図 1 は、 第 1 の実施形態に係る誘電体共振器の分解斜視図である。 図 2は、 第 2の実施形態に係る誘電体フィルタの分解斜視図であ
'ο) ο
図 3は、 第 2の実施形態の第 1 の変形例に係る誘電体フィルタの 分解斜視図である。
図 4は、 第 2の実施形態の第 2の変形例に係る誘電体フィルタの 分解斜視図である。
図 5は、 第 2の実施形態の第 3の変形例に係る誘電体フィル夕の 分解斜視図である。
図 6は、 第 3の実施形態に係る誘電体デュプレクサの分解斜視図 である。
図 7は、 第 4の実施形態に係る電圧制御発振器の分解斜視図であ る ο
図 8は、 図 7の X— X線断面図である。
図 9は、 第 4の実施形態の第 1 の変形例に係る電圧制御発振器の 断面図である。
図 1 0は、 第 4の実施形態の第 2の変形例に係る電圧制御発振器 の断面図である。
図 1 1 は、 第 4の実施形態の第 3の変形例に係る電圧制御発振器 の断面図である。
図 1 2は、 本願出願人が先に提案した誘電体フィルタの分解斜視 図である。
図 1 3は、 従来の電圧制御発振器の分解斜視図である。 発明を実施するための最良の形態 以下、 本発明の第 1 の実施の形態を図 1 を用いて説明する。 図 1 は第 1 の実施の形態に係る誘電体フ共振器の分解斜視図である。 図 1 に示すように、 誘電体共振器 1 は、 誘電体基板 2と、 支持部 材 3 a、 3 bと導電体板 4 a、 4 bから構成されている。
誘電体基板 2は、 一定の比誘電率を有し、 その両主面に円形状の 開口部を有する導体 2 a、 2 bが両主面の開口部が互いに対向する ように形成されることにより構成されている。 また、 誘電体基板 2 の導体 2 a、 2 bの開口部は所定の周波数に応じた大きさに設定さ れている。 この開口部により共振部が構成される。
支持部材 3 aは、 絶縁性の基板であり、 誘電体基板 2と平行に配置 されている。 また、 支持部材 3 aには、 誘電体基板 2と対向する面 に電極 5が形成されている。 電極 5は伝送線路として機能し誘電体 基板 2の導体 2 a、 2 bの開口部が構成する共振部と電磁界結合し ている。
支持部材 3 bは、 支持部材 3 aと同様に絶縁性の基板であり、 支持 部材 3 aとは異なる側に、 誘電体基板 2と平行に配置されている。 支持部材 3 aには誘電体基板 2と対向する面に電極 6が形成されて いる。 電極 6は周波数調整用電極として機能し、 この電極 6の面積 を増減させることにより、 対向する誘電体基板 2に形成された共振 部の共振周波数を調整することができる。
誘電体基板 2と支持部材 3 a、 3 bとを一定の間隔で保持するため に、 誘電体基板 2と支持部材 3 aの間及び誘電体基板 2と支持部材 3 bの間にはスぺーサ 9が配置されている。
このように構成することにより、 開口部及びそれに挟まれた部分 の誘電体基板が共振部として働くので、 1 つの共振部を有する誘電 体共振器 1 が得られる。 また、 このように、 本実施の形態の構成で は、 電極を開口部に近付けて構成できるので、 電極を共振部と同一 基板に形成する構成に比べて、 より強い結合が得られる。 また、 伝 送線路を別基板に形成したので、 電極を共振部と同一基板に形成す る構成に比べて、 横方向の寸法をその分小さ〈することができる。 次に、 本発明の第 2の実施の形態を図 2を用いて説明する。 図 2 は第 2の実施の形態に係る誘電体フィル夕の分解斜視図である。 図 2に示すように、 誘電体フィルタ 1 1 は、 誘電体基板 1 2、 支 持部材 1 3と導電体板 1 4 a、 1 4 bから構成されている。
誘電体基板 1 2は、 一定の比誘電率を有し、 その両主面に 3つの 円形状の開口部を有する導体 1 2 a、 1 2 bが両主面の開口部が互 いに対向するように形成されることにより構成されている。 また、 誘電体基板 1 2の導体 1 2 a、 1 2 bの開口部は所定の周波数に応 じた大きさに設定されている。
支持部材 1 3は、 誘電体基板 1 2と同様に一定の比誘電率を有す る誘電体基板であり、 その両主面に 2つの円形状の開口部を有する 電極 1 3 a、 1 3 bが両主面の開口部が互いに対向するように形成 されることにより構成されている。 支持部材 1 3の電極 3 a、 3 b の開口部も誘電体基板 1 2と同様に所定の周波数に応じた大きさに 設定されている。
また、 支持部材 1 3は、 電極 1 3 bの 2つの開口部がそれぞれ、 誘電体基板 1 2の導体 1 2 aの 3つの開口部のうち 2つと重なるよ うに誘電体基板 1 2から一定の間隔をおいて配置されている。 誘電 体基板 1 2と支持部材 1 3とを一定の間隔で保持するために、 誘電 体基板 1 2と支持部材 1 3の間にはスぺ—サ 1 9、 1 9が配置され ている。
支持部材 1 3の電極 1 3 b側には、 その両端部に入力用コプレナ —線路 1 5 aと出力用コプレナ一線路 1 5 bが形成されている。 入 力用コプレナ一線路 1 5 aは誘電体基板 1 2の導体 1 2 aの 3つの 開口部の両端のうちの一つと重なる位置に配置されており、 出力用 コプレナ一線路 1 5 bは誘電体基板 1 2の電極 1 2 aの 3つの開口 部の両端のうちの他の一つと重なる位置に配置されている。
導電体板 1 4 a、 1 4 bは、 開口部付近で誘電体基板 1 2、 支持 部材 1 3から所定間隔隔てて、 誘電体基板 1 2、 支持部材 1 3を挟 むように配置固定されており、 入力用コプレナ一線路 1 5 aと出力 用コプレナ一線路 1 5 bとが導電体板 1 4 a、 1 4 bから突出して いる。
このように構成することにより、 開口部及びそれに挟まれた部分 の誘電体基板が共振部として働くので、 5段の共振部からなる誘電 体フィルタ 1 1 が得られる。 このように、 本実施の形態の構成では 5段に限らず多段の誘電体フィル夕を構成する場合、 一枚の誘電体 基板に多段の共振部を形成した場合に比べて誘電体基板の横方向の 寸法を小さくすることができる。 また、 誘電体基板 1 2に形成した 共振部と支持部材 1 3に形成した共振部がそれぞれ交互に結合する ことになるので、 誘電体基板 1 2と支持部材 1 3の間隔を変化させ ることにより、 あるし、は、 誘電体基板 2の共振部と支持部材 3の共 振部との重なる面積を変化させることにより、 共振部同士の結合を 変化させることができる。 特に、 従来のような同一基板における隣 接する共振部同士の横方向の間隔を小さ〈する方法に比べて、 誘電 体基板 1 2と支持部材 1 3の間隔を小さ〈する方が共振部間の間隔 を小さ〈することができるので、 より強い結合を得ることができる。 また、 図 2では 2枚の誘電体基板に共振部を形成した誘電体フィ ルタについて説明したが、 これに限るものではなく、 例えば、 図 3 に示すように 3枚の基板それぞれに共振器を形成してもよい。
図 3は第 2の実施の形態の第 1 の変形例に係る誘電体フィルタの 分解斜視図である。 なお、 図 2と同じ部分には同じ符号を付し、 詳 細な説明は省略する。
図 3に示すように、 図 2と異なる点は、 支持部材 1 3の電極 1 3 a 側に結合電極 1 7 a、 1 7 bが追加されている点と、 支持部材 1 6 が追加されている点である。
すなわち、 支持部材 1 3の電極 1 3 a側には、 その両端部に結合電 極 1 7 a、 1 7 bが形成されている。 結合電極 1 7 aは、 スルーホ —ルを介して入力用コプレナ一線路 1 5 aと電気的に接続されてお り、 結合電極 1 7 bは、 スルーホールを介して出力用コプレナ一線 路 1 5 bと電気的に接続されている。
また、 支持部材 1 6は、 一定の比誘電率を有し、 その両主面に 2 つの円形状の開口部を有する電極 1 6 a、 1 6 bが両主面の開口部 が互いに対向するように形成されることにより構成されている。 支 持部材 1 6の電極 1 6 a、 1 6 bの開口部は、 誘電体基板 1 2の導 体の開口部及び支持部材 1 3の電極の開口部の周波数とは異なる周 波数になるような大きさに設定されている。 支持部材 1 6の電極 1
6 の 2つの開口部は、 支持部材 1 3の結合電極 1 7 a、 1 7 bと 対向している。 また、 支持部材 1 3と支持部材 1 6とを一定の間隔 で保持するために、 支持部材 1 3と支持部材 1 6の間にはスぺ一サ
9が配置されている。 これによつて支持部材 1 6に形成された開口 部によって設定される共振部は結合電極 1 7 a、 1 7 bに結合する ことによって卜ラップとして働き、 不所望の周波数を減衰させるこ とができる。
このように構成することにより、 、 2段の卜ラップ共振部を有し. 5段の共振部からなる誘電体フィルタ 1 1 aが得られる。 さらに、 第 2の実施の形態の第 2の変形例について図 4を用いて 説明する。 図 4は第 2の実施の形態の変形例に係る誘電体フィルタ の分解斜視図である。 なお、 図 2に示す第 2の実施の形態と同じ部 分には同じ符号を付し、 詳細な説明は省略する。
図 4に示すように、 誘電体フィルタ 2 1 は、 誘電体基板 2 2、 支 持部材 2 3と導電体板 4 a、 4 bから構成されている。
誘電体基板 2 2は、 一定の比誘電率を有し、 その両主面に 3つの 円形状の開口部を有する導体 2 2 a、 2 2 bが両主面の開口部が互 いに対向するように形成されることにより構成されている。 また、 誘電体基板 2 2の導体 2 2 a 2 2 bの開口部は所定の周波数に応 じた大きさに設定されている。 また、 誘電体基板 2 2の導体 2 2 a 側には、 その両端部に入力用コプレナ一線路 2 5 aと出力用コプレ ナー線路 2 5 bが形成されている。
支持部材 2 3は、 絶縁性の基板であり、 その一方主面に 3つの円 形状のス 卜 リップ電極 2 3 bが形成されることにより構成されてい る。 また、 支持部材 2 3はス 卜リップ電極 2 3 b、 2 3 c、 2 3 d が形成された一方主面が、 誘電体基板 2 2の導体 2 2 aの 3つの開 口部とそれぞれ重なるように誘電体基板 2 2から一定の間隔をおい て配置されている。
また、 誘電体基板 2 2と支持部材 2 3とを一定の間隔で保持する ために、 誘電体基板 2 2と支持部材 2 3の間にはスぺ一サ 9が配置 されている。
このように構成することにより、 支持部材 2 3のス トリップ電極 2 3 bを削除する、 あるいは、 ス トリップ電極 2 3 bに導体を付加 する、 支持部材 2 3と誘電体 2 2との間の距離を変化させる等の手 法により、 各共振部の共振周波数を変化させることができる。 すな わち、 従来では共振部を形成した誘電体基板自体の導体を削除して いたために共振部を形成した誘電基板における電磁界が乱れて不要 なスプリアスが発生していたのに対して、 本実施の形態では共振部 を形成した誘電体基板以外の支持部材で調整しているためそのよう な問題が生じない。
次に、 第 2の実施の形態の第 3の変形例について図 5を用いて説 明する。 図 5は第 2の実施の形態の第 3の変形例に係る誘電体フィ ルタの分解斜視図である。 なお、 第 2の実施の形態の第 1 の変形例 として示した図 3に示す誘電体フィルタ 1 1 aと同じ部分には同じ 符号を付し、 詳細な説明は省略する。
本実施の形態が図 3に示す第 2の実施の形態の第 1 の変形例と異 なる点は、 図 3では 2つ目の支持部材 1 6が誘電体基板 1 2と同様 に共振部を有していたのに対して、 本実施の形態では 2つ目の支持 部材 3 3にス トリ ップライ ンを有する点である。
すなわち、 図 5に示すように、 誘電体フィルタ 3 1 は、 誘電体基 板 1 2、 支持部材 1 3、 支持部材 3 3と導電体板 1 4 a、 1 4 bか ら構成されている。
支持部材 3 3は、 絶縁性の基板であり、 その一方主面に一本のス トリップライン 3 3 aが形成されることにより構成されている。 ま た、 支持部材 3 3はス 卜リ ップ電極 3 3 aが形成された一方主面が、 支持部材 1 3の電極 3 aの 2つの開口部の両方と重なるように支持 部材 1 3から一定の間隔をおいて配置されている。 支持部材 1 3と 支持部材 3 3とを一定の間隔で保持するために、 支持部材 1 3と支 持部材 3 3の間にはスぺーサ 1 9が配置されている。
この基板 3 3のス トリップライン 3 3 aにより、 支持部材 1 3に 形成された 2つの共振部間の結合を取ることができる。
このように構成することにより、 5段の共振器からなる誘電体フ ィルタ 3 1 において 2段目の共振部と 4段目の共振部が跳び結合す ることにより、 誘電体フィル夕のフィルタ特性に極を形成すること ができる。 すなわち、 この跳び結合の結合の強さを調整することに より極を不所望の周波数に合わせれば、 不所望の周波数を減衰する ことができる。
次に、 第 3の実施の形態について図 6を用いて説明する。 図 6は、 第 3の実施の形態に係る誘電体デュプレクサの分解斜視図である。 図 6に示すように、 誘電体デュプレクサ 4 1 は、 誘電体基板 4 2、
4 3、 支持部材 4 6と導電体板 4 4 a、 4 4 bから構成されている。 誘電体基板 4 2は、 一定の比誘電率を有し、 その両主面に 3つの 円形状の開口部を有する導体 4 2 a、 4 2 bが両主面の開口部が互 いに対向するように形成されることにより構成されている。 また、 誘電体基板 4 2の導体 4 2 a、 4 2 bの開口部は所定の周波数に応 じた大きさに設定されている。 また、 誘電体基板 4 2の導体 4 2 b 側には両端の開口部のうち一方に近接するようにコプレナ—線路 4
5 aが形成されている。
誘電体基板 4 3は、 一定の比誘電率を有し、 その両主面に 3つの 円形状の開口部を有する導体 4 3 a、 4 3 bが両主面の開口部が互 いに対向するように形成されることにより構成されている。 また、 誘電体基板 4 3の導体 4 3 a、 4 3 bの開口部は所定の周波数に応 じた大きさに設定されている。 また、 誘電体基板 4 3の導体 4 3 b 側には両端の開口部のうち一方に近接するようにコプレナ—線路 4
5 bが形成されている。
支持部材 4 6は、 多層構造になっており低誘電率の支持基板 4 6 aの両主面のほぼ全面に電極 4 6 b、 4 6 cが形成され、 その一端 部に低誘電率の支持基板 4 7 a、 4 8 aが積層されて構成されてい る
支持基板 4 6 aに形成された電極 4 6 b側の面の一端部には電極 4 6 bと絶縁されたコプレナ一線路 4 5 cが形成されており、 コプ レナ一線路 4 5 cの一端には支持基板 4 6 aに形成された電極 4 6 c側の面まで貫くスルーホールが形成されている。 支持基板 4 6 a の他方の面におけるスルーホールの周囲には電極 4 6 cが形成され ておらず、 電極 4 6 cとスルーホールが接続されないようになって いる。
支持基板 4 7 aは、 支持基板 4 6 aに形成されたコプレナ—線路 4 5 cの上に積層されている。 また、 支持基板 4 7 aには支持基板 4 6 aに接する面とは反対側の面にス トリ ップライ ン 4 7 bが形成 されており、 ス ト リップライ ン 4 7 bの一端には支持基板 4 6 aの 他方の面まで貫くスルーホールが形成されている。 ス トリップライ ン 4 7 bはスルーホールを介してコプレナ一線路 4 5 cに接続され ている。
支持基板 4 8 aは、 支持基板 4 6 aを挟んで支持基板 4 7 aと対 向するように積層されている。 また、 支持基板 4 8 aには支持基板 4 6 aに接する面とは反対側の面にス 卜リップライン 4 8 bが形成 されており、 ス ト リップライン 4 8 bの一端には支持基板 4 8 aの 他方の面まで貫くスルーホールが形成されている。 ス トリップライ ン 4 8 bはスルーホール 4 8 dとスルーホール 4 6 dを介してコプ レナ一線路 4 5 cに接続されている。
誘電体基板 4 2と支持部材 4 6の間及び誘電体基板 4 3と支持部 材 4 6の間には、 スぺ一サ 4 9 a、 4 9 bが配置されており、 それ それの間を一定間隔に隔てた状態で保持している。 誘電体基板 4 2 と支持部材 4 6の間のスぺーサ 4 9 bは支持基板 4 7 aとスぺーサ 4 9 aを合わせた高さ寸法と同じ高さ寸法を有しており、 誘電体基 板 4 2と支持部材 4 6が平行になるように配置している。 同様に誘 電体基板 4 3と支持部材 4 6の間のスぺーサ 4 9 bは支持基板 4 8 aとスぺ一サ 4 9 aを合わせた高さ寸法と同じ高さ寸法を有してお り、 誘電体基板 4 3と支持部材 4 6が平行になるように配置してい る o
このように構成することにより、 誘電体基板 4 2に形成された 3 つの共振部からなるフィル夕と誘電体基板 4 3に形成された共振部 からなるフィル夕の 2つのフィルタが得られる。 この時、 コプレナ —線路 4 5 cをアンテナに接続し、 コプレナ一線路 4 5 aを受信機 に接続し、 コプレナ一線路 4 5 bを送信機に接続すれば、 誘電体デ ュプレクサ 4 1 はアンテナ共用器として利用できる。
なお、 第 2、 第 3の実施の形態では入出力構造としてコプレナ一線 路を用いたがこれに限るものではなく、 例えばス トリ ップラインや マイクロス 卜リ ップライン、 スロッ トライン等、 接続する対象に応 じてどのような伝送線路を形成してもよい。 その他入出力構造とし てはループやプローブ等を別体で形成してもよい。
次に、 第 4の実施の形態について図 7、 図 8を用いて説明する。 図 7は、 第 4の実施の形態に係る電圧制御発振器の分解斜視図であり、 図 8は図 7の X— X線断面図である。 なお、 図 1 3に示した従来の 電圧制御発振器 1 1 1 と同じ部分には同じ符号を付し、 詳細な説明 は省略する。
図 7に示すように、 電圧制御発振器 5 1 は、 誘電体基板 5 2と、 支 持部材である配線基板 1 1 3と、 導電体板である上金属ケース 1 3 0及び下金属ケース 1 3 1 により構成されている。
誘電体基板 5 2は、 一定の比誘電率を有し、 その両主面に円形状の 開口部を有する導体 5 2 a、 5 2 bが両主面の開口部が互いに対向 するように形成されることにより構成されている。 また、 誘電体基 板 5 2の導体 5 2 a、 5 2 bの開口部は所定の周波数に応じた大き さに設定されている。 この開口部により共振部が構成される。
配線基板 1 1 3上には、 主線路を構成するマイクロス 卜リップ線路 1 1 4と副線路を構成するマイクロス 卜リツプ線路 1 1 5が誘電体 基板 5 2の導体 5 2 bの開口部と図 1 7の上から下を見た方向にお いて重なるように形成されている。
配線基板 1 1 3の上には低誘電率のスぺ—サ 5 9が配置され、 図 8 に示すように、 誘電体基板 5 2を配線基板 1 1 3から一定の間隔を 保つて配置できるように固定している。
このように、 本実施の形態の構成では、 従来構造に比べて共振部の 厚みを薄〈することができるので、 電圧制御発振器自体の高さも従 来構造に比べて薄くすることができる。 すなわち、 誘電体基板 5 2 に形成される共振部に必要な空間は従来の誘電体ブロックからなる T E 01 6モー ド誘電体共振器に比べて、共振器自体の厚み及び共振 に必要な空間ともに小さいため、 電圧制御発振器の低背化が可能で おる。
次に、 第 4の実施の形態の第 1 の変形例について図 9を用いて説明 する。 図 9は、 図 8と同じ部分における電圧制御発振器の断面図で ある。 なお、 図 1 3に示した従来の電圧制御発振器 1 1 1及び図 7 に示した第 4の実施の形態の電圧制御発振器と同じ部分には同じ符 号を付し、 詳細な説明は省略する。
図 7の第 4の実施形態と異なるのは、 本変形例の電圧制御発振器 6 1 が、 板ばね 6 3を有している点にある。
図 9に示すように誘電体基板 5 2の導体 2 aと上金属ケース 1 3 0 の天井面とを板ばね 6 3により電気的に接続している。 上金属ケ一 ス 1 3 0を下金属ケース 1 3 1 に嵌合させた時に、 この板ばね 6 3 が橈んで誘電体基板 5 2に押し付けられることにより誘電体基板 5 2が固定される。 このように導電性を有する板ばね 6 3によって、 誘電体基板 5 2の導体 5 2 aと上金属ケース 1 3 0とが電気的に接 続されて、 両者の電位が同じになった状態で固定されているため安 定した発振周波数を得ることができる。
なぜなら、 板ばねが無い場合、 誘電体基板 5 2と上導体ケース 1 3 0との距離が変化し、 上下導体ケース 1 3 0、 1 3 1 内での電磁界 分布が乱れるからである。 すなわち、 上下導体ケース 1 3 0、 1 3 1 内での電磁界分布が乱れると、 不所望の周波数が誘電体基板 5 2 に形成された共振部の通過域に近づき、 不所望の周波数を発振する 恐れがある。 本変形例では、 このような不所望の発振を板ばね 6 3 により防止している。
なお、 本変形例では導電性を有する板ばねにより、 誘電体基板 5 2 と上導体ケース 1 3 0を接続したが、 例えば、 スぺーサ 5 9を導電 性の材質で形成して、 上導体ケース 1 3 1 と接続するようにしても よい。 要は上下導体ケースと誘電体基板の導体が電気的に接続され ていればどのような構成でも不所望の発振を防止することができる。 さらに、 第 4の実施の形態の第 2の変形例について図 1 0を用いて 説明する。 図 1 0は、 図 8と同じ部分における電圧制御発振器の断 面図である。 なお、 図 1 3に示した従来の電圧制御発振器 1 1 1 及 び図 9に示した第 4の実施の形態の第 1 の変形例に係る電圧制御発 振器と同じ部分には同じ符号を付し、 詳細な説明は省略する。
図 9の第 4の実施の形態の第 1 の変形例と異なるのは、 本変形例の 電圧制御発振器 7 1 では、 誘電体基板 7 2に短絡導体 7 2 cを形成 し 7 点、にあ "S o
図 1 0に示すように、 誘電体基板 7 2は、 一定の比誘電率を有し、 その両主面に円形状の開口部を有する導体 7 2 a、 7 2 bが両主面 の開口部が互いに対向するように形成されることにより構成されて いる。 また、 誘電体基板 7 2の導体 7 2 a、 7 2 bの開口部は所定 の周波数に応じた大きさに設定されている。 この開口部により共振 部が構成される。 さらに、 導体 7 2 a、 7 2 bは誘電体基板 7 2の 側面に形成された短絡導体 7 2 cによって接続されている。
このように、 誘電体基板 7 2の導体 7 2 aと導体 7 2 bが電気的に 接続されることにより、 誘電体基板 7 2の厚み方向の中心からみて 上下の電磁界分布を同じにすることができるため、 安定した発振周 波数を得ることができる。
なぜなら、 導体 7 2 aと導体 7 2 bが電気的に接続されない場合、 誘電体基板 7 2の厚み方向の中心からみて上下の電磁界分布が不均 —となるからである。 すなわち、 電体基板 7 2の厚み方向の中心か らみて上下の電磁界分布が不均一となると、 不所望の周波数が誘電 体基板 7 2に形成された共振部の通過域に近づき、 不所望の周波数 を発振する恐れがある。 本変形例では、 このような不所望の発振を 短絡導体 7 2 cにより防止している。
さらに、 第 4の実施の形態の第 3の変形例について図 1 1 を用いて 説明する。 図 1 1 は、 図 8と同じ部分における電圧制御発振器の断 面図である。 なお、 図 1 3に示した従来の電圧制御発振器 1 1 1 及 び図 9に示した第 4の実施の形態の第 1 の変形例に係る電圧制御発 振器と同じ部分には同じ符号を付し、 詳細な説明は省略する。
図 9の第 4の実施の形態の第 1 の変形例と異なるのは、 本変形例の 電圧制御発振器 8 1 では、 誘電体基板 8 2に貫通穴 8 2 cと短絡導 体 8 2 dを形成した点にある。
図 1 1 に示すように、 誘電体基板 8 2は、 一定の比誘電率を有し、 その両主面に円形状の開口部を有する導体 8 2 a、 8 2 bが両主面 の開口部が互いに対向するように形成されることにより構成されて いる。 また、 誘電体基板 8 2の導体 8 2 a、 8 2 bの開口部は所定 の周波数に応じた大きさに設定されている。 この開口部により共振 部が構成される。
さらに、 誘電体基板 8 2にはその厚み方向を貫通する貫通穴 8 2 c が形成されており、 貫通穴の内周面には短絡導体 8 2 dが形成され ている。 短絡導体 8 2 dによって誘電体基板 8 2の導体 8 2 a、 8 2 bは電気的に接続されている。
このような構成により図 1 0に示した第 4の実施の形態の第 2の変 形例と同じ効果を得ることができる。
なお、 第 4の実施形態及びその変形例では電圧制御発振器を用いて 説明したがこれに限るものではなく、 例えば発振周波数を可変する 機能のない通常の発振器を構成することも可能である。 また、 第 1 、 第 2、 第 3、 第 4の実施の形態では誘電体基板と支 持部材間を一定の距離に保っためにスぺーサを用いたが、 これに限 るものではなく、 例えば、 導電体板を誘電体基板や支持部材よりも 大きく してその内部に収容できるようにし、 内壁に突起等を設けて これによつて誘電体基板や支持部材を保持してそれぞれの距離を一 定にするようにしてもよく、 要は間隔を一定の距離に保つことがで きればよい。 また、 スぺーザの形状もどのような形状であってもよ い o
以上のように、 本発明では、 従来同一の誘電体基板上に配置して いた共振器や伝送線路等の回路素子を誘電体基板と支持部材に分け て構成することにより、 誘電体共振器、 誘電体フィルタ等の全体の 横方向の寸法を小型化することができる。
特に、 請求項 2、 請求項 1 1 、 請求項 1 8に係る発明では、 支持 部材を複数にしてさらに載置する回路素子を分けることができるよ うにしたので、 さらに部品全体の横方向の寸法を小型化することが できる。
また、 請求項 8、 請求項 1 5に係る発明では、 誘電体基板に共振 部を形成し、 支持部材にも共振部を形成して誘電体基板の共振部と 支持部材の共振部が重なるように配置しているので、 誘電体基板に 構成した共振部と支持部材に形成した共振部との間隔を小さくする ことで共振部同士の結合を強〈することができる。
さらに、 請求項 3、 請求項 6、 請求項 1 3に係る発明では、 共振部 と同一の誘電体基板上に形成されていた入出力用の伝送線路を別の 支持部材に形成しているので、 部品実装状態に置ける横方向の寸法 を小さくできる。
また、 請求項 1 0、 請求項 1 7に係る発明では、 跳び結合用の伝送 線路も同一の誘電体基板に形成する従来の構成に比べて、 部品実装 状態に置ける横方向の寸法を小さくできる。
そして、 請求項 1 9に係る発明では、 誘電体基板に開口部を有する 導体を形成することにより構成された共振部を用いており、 誘電体 基板の厚みが従来の T E 01 <5モ— ド誘電体共振器よりも薄いため、 従来の発振器に比べて薄型化することができ、 全体的に小型化でき る。 また、 誘電体基板に開口部を有する導体を形成することにより 構成された共振部を用いているので、 電磁界の閉じ込め性がよく、 開口部付近に配置された電極にのみ結合して、 他の電極には結合し ない。 したがって、 他の電極は導体の開口部付近を除けばどこに配 置してもよいため、 配線の設計を自由に行うことができる。
また、 請求項 2 2に係る発明では、 誘電体基板の導体を導電体板 に電気的に接続しているので、 安定した発振周波数特性を得ること ができる。 さらに、 請求項 2 3に係る発明では、 誘電体基板の両主 面の導体を電気的に接続しているので、 安定した発振周波数特性を 得ることができる。 産業上の利用の可能性 上記記載より明らかなように、 本発明による誘電体共振器及び誘 電体フィルタ、 誘電体デュプレクサ、 発振器は、 例えば移動体通信 システム用の端末、 基地局等の各種電子装置に広範囲に応用される。

Claims

請求の範囲
1 . 誘電体基板と、
前記誘電体基板の一方主面に形成された第 1 の導体と、
前記誘電体基板の他方主面に形成された第 2の導体と、
前記第 1 の導体から前記誘電体基板が露出するように前記第 1 の導 体に形成された第 1 の開口部と、
前記第 2の導体から前記誘電体基板が露出するように前記第 2の導 体に形成された第 2の開口部と、
少なく とも前記第 1 の開口部を覆うように前記第 1 の導体から間隔 を隔てて配置された第 1 の導電体板と、
少なく とも前記第 2の開口部を覆うように前記第 2の導体から間隔 を隔てて配置された第 2の導電体板と、
前記第 1 の開口部と前記第 2の開口部により決定される共振部と、 前記誘電体基板の厚み方向に前記誘電体基板から間隔を隔てて配置 される支持部材と、
前記支持部材上に形成される電極とを有することを特徴とする誘電 体共振器。
2 . 複数の前記支持部材が前記誘電体基板に対して前記誘電体 基板の厚み方向に配置されたことを特徴とする請求項 1記載の誘電 体共振器。
3 . 前記電極により伝送線路が構成されたことを特徴とする請 求項 1 または請求項 2記載の誘電体共振器。
4. 前記電極が周波数調整用電極であることを特徴とする請求 項 1 または請求項 2記載の誘電体共振器。
5 . 誘電体基板と、
前記誘電体基板の一方主面に形成された第 1 の導体と、
前記誘電体基板の他方主面に形成された第 2の導体と、 前記第 1 の導体から前記誘電体基板が露出するように前記第 1 の導 体に形成された第 1 の開口部と、
前記第 2の導体から前記誘電体基板が露出するように前記第 2の導 体に形成された第 2の開口部と、
少なく とも前記第 1 の開口部を覆うように前記第 1 の導体から間隔 を隔てて配置された第 1 の導電体板と、
少なく とも前記第 2の開口部を覆うように前記第 2の導体から間隔 を隔てて配置された第 2の導電体板と、
前記第 1 の開口部と前記第 2の開口部により決定される共振部と、 前記誘電体基板の厚み方向に間隔を隔てて配置される支持部材と、 前記支持部材上に形成される電極とを有することを特徴とする誘電 体フィ ルタ。
6. 前記電極により前記共振部に電磁界結合する入出力端子電 極が構成されたことを特徴とする請求項 5記載の誘電体フィルタ。
7 . 前記電極が周波数調整用電極であることを特徴とする請求 項 5記載の誘電体フィル夕。
8. 前記支持部材が誘電体基板であり、 前記電極は前記支持部 材の両主面に形成され、 前記両主面の電極に開口部が形成され、 前 記開口部により共振部が形成されたことを特徴とする請求項 5記載 の誘電体フィルタ。
9. 前記第 1 の開口部及び前記第 2の開口部が複数存在するこ とにより、 前記第 1 の開口部と前記第 2の開口部により決定される 共振部が複数存在することを特徴とする請求項 5、 請求項 6、 請求 項 7または請求項 8記載の誘電体フィルタ。
10. 前記支持部材上に前記複数の共振部間を電磁界結合させる 結合電極を形成することを特徴とする請求項 9記載の誘電体フィル タ。
1 1 . 複数の前記支持部材が前記誘電体基板に対して前記誘電体 基板の厚み方向に配置されたことを特徴とする請求項 5、 請求項 6、 請求項 7、 請求項 8、 請求項 9または請求項 1 0記載の誘電体フィ ルタ。
1 2 . 誘電体基板と、
前記誘電体基板の一方主面に形成された第 1 の導体と、
前記誘電体基板の他方主面に形成された第 2の導体と、
前記第 1 の導体に形成された複数の第 1 の開口部と、
前記第 2の導体に形成された複数の第 2の開口部と、
少なく とも前記複数の第 1 の開口部を覆うように前記第 1 の導体 から間隔を隔てて配置された第 1 の導電体板と、
少なく とも前記複数の第 2の開口部を覆うように前記第 2の導体 から間隔を隔てて配置された第 2の導電体板と、
前記複数の第 1 の開口部と前記複数の第 2の開口部により決定され る複数の共振部と、
前記複数の共振部のうちの第 1 の共振部群により構成される第 1 の フィルタと、
前記複数の共振部のうち前記第 1 の共振部群とは別の第 2の共振部 群により構成される第 2のフィルタと、
前記誘電体基板の厚み方向に前記誘電体基板から間隔を隔てて配置 される支持部材と、
前記支持部材上に形成される電極とを有することを特徴とする誘電 体デュプレクサ。
13 . 前記電極により構成され、 前記第 1 の共振部群の中の少な く とも一つと電磁界結合する第 1 の入出力端子電極と、
前記電極により構成され、 前記第 2の共振部群の中の少な〈 とも一 つと電磁界結合する第 2の入出力端子電極と、
前記電極により構成され、 前記第 1 の共振部群の中の少なく とも一 つ及び前記第 2の共振部群の少なく とも一つと電磁界結合する第 3 の入出力端子電極とを有することを特徴とする請求項 1 2記載の誘 電体デュプレクサ。
1 4. 前記電極が周波数調整用電極であることを特徴とする請求 項 1 2または請求項 1 3記載の誘電体デュプレクサ。
1 5 . 前記支持部材が誘電体基板であり、 前記電極は前記支持部 材の両主面に形成され、 前記両主面の電極に開口部が形成され、 前 記開口部により共振部が形成されたことを特徴とする請求項 1 2記 載の誘電体デュプレクサ。
1 6 . 前記第 1 の開口部及び前記第 2の開口部が複数存在するこ とにより、 前記第 1 の開口部と前記第 2の開口部により決定される 共振部が複数存在することを特徴とする請求項 1 2、 請求項 1 3、 請求項 1 4または請求項 1 5記載の誘電体デュプレクサ。
1 7 . 前記支持部材上に前記複数の共振部間を電磁界結合させる 結合電極を形成することを特徴とする請求項 1 5または請求項 1 6 記載の誘電体デュプレクサ。
1 8. 複数の前記支持部材が前記誘電体基板に対して前記誘電体 基板の厚み方向に配置されたことを特徴とする請求項 1 2、 請求項 1 3、 請求項 1 4、 請求項 1 5、 請求項 1 6または請求項 1 7記載 の誘電体デュプレクサ。
1 9 . 誘電体基板と、
前記誘電体基板の一方主面に形成された第 1 の導体と、 前記誘電体基板の他方主面に形成された第 2の導体と、 前記第 1 の導体に形成された第 1 の開口部と、
前記第 2の導体に形成された第 2の開口部と、
少なく とも前記第 1 の開口部を覆うように前記第 1 の導体から間 隔を隔てて配置された第 1 の導電体板と、
少なく とも前記第 2の開口部を覆うように前記第 2の導体から間 隔を隔てて配置された第 2の導電体板と、 前記第 1 の開口部と前記第 2の開口部により決定される共振部と、 前記誘電体基板の厚み方向に前記誘電体基板から間隔を隔てて配 置される支持部材と、
前記支持部材上に形成され、 前記共振部に電磁界結合することによ り共振回路を構成する主線路と、
前記共振回路に接続される負性抵抗回路と、
を有することを特徴とする発振器。
20. 前記共振回路は発振周波数可変回路を有することを特徴と する請求項 1 9記載の発振器。
21 . 前記発振周波数可変回路は電圧によって制御されることを 特徴とする請求項 2 0記載の発振器。
22. 前記誘電体基板の第 1 の導体と第 2の導体の少なく ともど ちらかを前記第 1 の導電体板または前記第 2の導電体板に接続され たことを特徴とする請求項 1 9、 請求項 2 0または請求項 2 1記載 の発振器。
23. 前記誘電体基板の第 1 の導体と第 2の導体を接続したこと を特徴とする請求項 1 9、 請求項 2 0、 請求項 2 1 または請求項 2 2記載の発振器。
PCT/JP1997/004454 1996-12-12 1997-12-05 Resonateur dielectrique, filtre dielectrique, duplexeur dielectrique et oscillateur WO1998026470A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/319,823 US6172572B1 (en) 1996-12-12 1997-12-05 Dielectric resonator, dielectric filter, dielectric duplexer, and oscillator
JP52647398A JP3177988B2 (ja) 1996-12-12 1997-12-05 誘電体共振器及び誘電体フィルタ、誘電体デュプレクサ、発振器
EP97946113A EP0945913A4 (en) 1996-12-12 1997-12-05 DIELECTRIC RESONATOR, DIELECTRIC FILTER, DIELECTRIC DUPLEXER AND OSCILLATOR
NO19992862A NO321147B1 (no) 1996-12-12 1999-06-11 Dielektrisk resonator, filter og duplekser, og oscillator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33237696 1996-12-12
JP8/332376 1996-12-12
JP9/42392 1997-02-26
JP4239297 1997-02-26

Publications (1)

Publication Number Publication Date
WO1998026470A1 true WO1998026470A1 (fr) 1998-06-18

Family

ID=26382073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004454 WO1998026470A1 (fr) 1996-12-12 1997-12-05 Resonateur dielectrique, filtre dielectrique, duplexeur dielectrique et oscillateur

Country Status (7)

Country Link
US (1) US6172572B1 (ja)
EP (1) EP0945913A4 (ja)
JP (1) JP3177988B2 (ja)
KR (1) KR100303435B1 (ja)
CN (1) CN1182624C (ja)
NO (1) NO321147B1 (ja)
WO (1) WO1998026470A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917231A2 (en) * 1997-10-28 1999-05-19 Murata Manufacturing Co., Ltd. Dielectric filter, dielectric duplexer, and communication device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789533B1 (fr) * 1999-02-05 2001-04-27 Thomson Csf Oscillateur a resonateur dielectrique accordable en tension
JP4302229B2 (ja) * 1999-03-29 2009-07-22 マスプロ電工株式会社 有線放送システムの分岐装置
JP3786044B2 (ja) * 2002-04-17 2006-06-14 株式会社村田製作所 誘電体共振器装置、高周波フィルタおよび高周波発振器
KR100894803B1 (ko) * 2002-06-11 2009-04-30 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨 반도체 필터 회로 및 방법
JP2004032184A (ja) * 2002-06-24 2004-01-29 Murata Mfg Co Ltd 高周波モジュール、送受信装置および高周波モジュールの特性調整方法
FR2850792A1 (fr) * 2003-02-03 2004-08-06 Thomson Licensing Sa Filtre compact en guide d'onde
JP3901130B2 (ja) * 2003-06-18 2007-04-04 株式会社村田製作所 共振器、フィルタおよび通信装置
JP4186986B2 (ja) * 2003-06-18 2008-11-26 株式会社村田製作所 共振器、フィルタおよび通信装置
WO2005034280A1 (ja) * 2003-09-30 2005-04-14 Murata Manufacturing Co., Ltd. 誘電体共振器装置、発振器および送受信装置
JP4011553B2 (ja) * 2004-01-29 2007-11-21 日本電波工業株式会社 誘電体共振器を用いた高周波発振器
KR101331494B1 (ko) * 2007-11-16 2013-11-21 삼성전자주식회사 튜너블 rf 공진기
KR101077011B1 (ko) 2009-06-09 2011-10-26 서울대학교산학협력단 미세가공 공동 공진기와 그 제조 방법 및 이를 이용한 대역통과 필터와 발진기
KR20210026787A (ko) 2019-09-02 2021-03-10 이동진 기능성 잠수교
CN115036659B (zh) * 2022-06-24 2023-07-14 南通先进通信技术研究院有限公司 一种基片集成的易馈电圆柱形介质谐振器滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134548A (en) * 1975-05-19 1976-11-22 Nec Corp Microwave band-pass filter
JPS5383556A (en) * 1976-12-29 1978-07-24 Fujitsu Ltd Oscillator
JPS5418260A (en) * 1977-07-11 1979-02-10 Nec Corp Microwave band pass filter
JPS6271305A (ja) * 1985-09-24 1987-04-02 Murata Mfg Co Ltd 誘電体共振器
JPH01144801A (ja) * 1987-12-01 1989-06-07 Fujitsu Ltd 誘電体フィルタ
JPH08265015A (ja) * 1995-03-22 1996-10-11 Murata Mfg Co Ltd 誘電体共振器及び高周波帯域通過フィルタ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575699A (en) * 1984-11-23 1986-03-11 Tektronix, Inc. Dielectric resonator frequency selective network
JP3464820B2 (ja) * 1993-03-25 2003-11-10 松下電器産業株式会社 誘電体積層共振器および誘電体フィルタ
JP3115149B2 (ja) * 1993-03-31 2000-12-04 日本碍子株式会社 積層型誘電体フィルタ
JP3529848B2 (ja) * 1993-08-24 2004-05-24 松下電器産業株式会社 誘電体フィルタ
JPH0856102A (ja) * 1994-06-08 1996-02-27 Fuji Elelctrochem Co Ltd 積層誘電体フィルタ
JP2897117B2 (ja) * 1995-09-19 1999-05-31 株式会社村田製作所 周波数可変型誘電体共振器
JPH10178302A (ja) * 1996-10-18 1998-06-30 Matsushita Electric Ind Co Ltd 誘電体積層フィルタ及び通信装置
JP3087664B2 (ja) * 1996-11-06 2000-09-11 株式会社村田製作所 誘電体共振器装置及び高周波モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134548A (en) * 1975-05-19 1976-11-22 Nec Corp Microwave band-pass filter
JPS5383556A (en) * 1976-12-29 1978-07-24 Fujitsu Ltd Oscillator
JPS5418260A (en) * 1977-07-11 1979-02-10 Nec Corp Microwave band pass filter
JPS6271305A (ja) * 1985-09-24 1987-04-02 Murata Mfg Co Ltd 誘電体共振器
JPH01144801A (ja) * 1987-12-01 1989-06-07 Fujitsu Ltd 誘電体フィルタ
JPH08265015A (ja) * 1995-03-22 1996-10-11 Murata Mfg Co Ltd 誘電体共振器及び高周波帯域通過フィルタ装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IEICE TRANS. ELECTRON., Vol. E79-C, No. 5, May 1996, ISHIKAWA et al., "Planar Type Dielectric Resonator Filter at Millimeter-Wave Frequency", pp. 679-684. *
PAPERS C-132 FROM THE ELECTRONICS SOCIETY CONVENTION OF IEICE, 1995, ISHIKAWA et al., "Planer Circuit 60GHz Dielectric Resonator Using High Dielectric Constant Substrate (in Japanese)". *
PAPERS OF TECHNICAL MEETING ON ELECTRONIC DEVICES EDD-95-54, 1995, ISHIKAWA et al., "Millimeter-Wave Filter 1 (Planer Circuit Dielectric Filter) (in Japanese)", pp. 83-92. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917231A2 (en) * 1997-10-28 1999-05-19 Murata Manufacturing Co., Ltd. Dielectric filter, dielectric duplexer, and communication device
EP0917231A3 (en) * 1997-10-28 2000-12-27 Murata Manufacturing Co., Ltd. Dielectric filter, dielectric duplexer, and communication device
US6201456B1 (en) * 1997-10-28 2001-03-13 Murata Manufacturing Co., Ltd. Dielectric filter, dielectric duplexer, and communication device, with non-electrode coupling parts

Also Published As

Publication number Publication date
CN1182624C (zh) 2004-12-29
EP0945913A4 (en) 2000-11-08
CN1240538A (zh) 2000-01-05
NO321147B1 (no) 2006-03-27
KR20000057534A (ko) 2000-09-25
KR100303435B1 (ko) 2001-09-29
JP3177988B2 (ja) 2001-06-18
NO992862D0 (no) 1999-06-11
EP0945913A1 (en) 1999-09-29
NO992862L (no) 1999-06-11
US6172572B1 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
WO1998026470A1 (fr) Resonateur dielectrique, filtre dielectrique, duplexeur dielectrique et oscillateur
JP3087664B2 (ja) 誘電体共振器装置及び高周波モジュール
US6255914B1 (en) TM mode dielectric resonator and TM mode dielectric filter and duplexer using the resonator
US6529094B1 (en) Dielectric resonance device, dielectric filter, composite dielectric filter device, dielectric duplexer, and communication apparatus
US20030129957A1 (en) Multilayer LC filter
KR100394811B1 (ko) 고주파 회로 모듈, 필터, 듀플렉서 및 통신 장치
KR100365452B1 (ko) 유전체필터,유전체듀플렉서및통신장치
US6087911A (en) Dielectric filter, duplexer, and communication system
KR100326949B1 (ko) 유전체 필터, 송/수신 공유기 및 통신 장치
EP0183485B1 (en) Dielectric resonator frequency selective network
JPH10327002A (ja) 誘電体共振器、誘電体フィルタ、共用器ならびに通信機装置
KR100263643B1 (ko) 유전체 공진 장치 및 고주파수 모듈
KR20010021163A (ko) 유전체 듀플렉서 및 통신 기기
JPH11308008A (ja) 誘電体共振器装置、誘電体フィルタ、発振器、共用器および電子機器
US20050116797A1 (en) Electronically tunable block filter
US6937118B2 (en) High-frequency circuit device, resonator, filter, duplexer, and high-frequency circuit apparatus
KR100258788B1 (ko) 동축선 공진기의 절반구조를 이용한 대역 통과 여파기
JPH11145709A (ja) 誘電体共振器及びそれを用いた誘電体フィルタ、誘電体デュプレクサ、発振器、高周波モジュール
KR20000033100A (ko) 유전체 필터
JPH03181205A (ja) 誘電体フィルタ
JPH11330817A (ja) 誘電体共振器装置、誘電体フィルタ、発振器および電子機器
JPH03124101A (ja) 誘電体フィルタ
JPH06326504A (ja) 誘電体フィルタ
KR20040007077A (ko) 일체형 유전체 필터
JP2000124701A (ja) 誘電体共振器、発振器、誘電体フィルタ、誘電体デュプレクサ、通信機装置、誘電体共振器の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180610.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FI FR GB SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997946113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997005243

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09319823

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997946113

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005243

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005243

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997946113

Country of ref document: EP