WO1998018165A1 - Cellule de memoire et procede de fabrication d'une cellule de memoire remanente - Google Patents

Cellule de memoire et procede de fabrication d'une cellule de memoire remanente Download PDF

Info

Publication number
WO1998018165A1
WO1998018165A1 PCT/DE1997/002127 DE9702127W WO9818165A1 WO 1998018165 A1 WO1998018165 A1 WO 1998018165A1 DE 9702127 W DE9702127 W DE 9702127W WO 9818165 A1 WO9818165 A1 WO 9818165A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
polysilicon layer
cell
trench
micro
Prior art date
Application number
PCT/DE1997/002127
Other languages
German (de)
English (en)
Inventor
Martin Kerber
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1998018165A1 publication Critical patent/WO1998018165A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the invention relates to a dual-gate memory cell with a selection transistor and a memory transistor. Furthermore, the invention relates to a method for producing a non-volatile memory cell with a floating gate, in particular a dual-gate memory cell.
  • Non-volatile memory cells are characterized in that the information content of the memory cells is retained for a long time even after the supply voltage has been switched off.
  • the charge is stored in a polysilicon structure that is completely insulated, the so-called floating gate.
  • When programming and deleting the floating gate relatively high voltages are applied to an overlying control gate, but also to an associated drain area.
  • the different requirements for electrically programmable non-volatile flash memories with regard to maximum programming cycles, neighboring signal-to-noise ratio etc. mean that different embodiments of cells have to be provided simultaneously on one chip.
  • stacked gate cell the split gate cell and the dual gate cell.
  • the simplest cell is the stacked gate cell, in which the control gate only controls the transistor channel via the floating gate.
  • the storage function is achieved by shifting the threshold voltage due to the non-volatile charge in the floating gate.
  • a transistor is connected in series. This can be controlled by the control gate.
  • Such an embodiment is achieved with the split gate cell.
  • teter transistor can also be designed as a separately executed selection transistor.
  • Such cells are called dual-gate cells. This cell is also called a FLOTOX memory cell.
  • a thin polysilicon layer is applied to a gate oxide in order to produce a floating gate.
  • An interpolydielectric is applied and structured on it.
  • another polysilicon layer is applied and structured to form a control gate.
  • a different method is used for producing a dual-gate cell than for producing a stacked-gate cell.
  • a somewhat larger area must be available in the production of a dual-gate cell, since the selection transistor is formed separately from the control gate and at least the distance that can be resolved by phototechnology lies between them.
  • the invention is based on the object of creating a dual-gate cell of the type mentioned at the outset which requires a particularly small area. Furthermore, a method for producing such a dual-gate cell is to be created, with which other embodiments of non-volatile memory cells with a floating gate can also be produced.
  • the object is achieved in that the memory transistor and the selection transistor are arranged closely adjacent to one another, and the selection transistor and the memory transistor are separated by a micro-trench.
  • the micro-trench which is also referred to as a micro-trench, is advantageously arranged between a floating gate of the memory transistor and a selection gate of the selection transistor, a control gate of the selection transistor covering the floating gate and the selection gate Gate at least partially overlapped.
  • This dual gate cell is extremely small and has the same functionality as an EEPROM memory cell.
  • a leakage oxide for implanting a channel doping is generated, the leakage oxide is removed in a tunnel area, a tunnel oxide is generated, a first polysilicon layer is applied, in the first polysilicon layer using a micro-trench technique a narrow trench is created in the tunnel area, an interpolydielectric which covers the trench, applied and then optionally structured, a second polysilicon layer is applied, and structuring to produce a split-gate cell, a dual-gate cell or a stacked - Gate cell performed.
  • the final structuring is combined with the underlying interpolydielectric layer and the tunnel area using a uniform method for all three cell types such that either a stacked-gate cell, a split-gate cell or a dual-gate Cell is generated.
  • a further advantage is that the electrical isolation between a selection transistor and the control gate is self-aligned during the manufacture of the dual-gate cell, as a result of which a smaller area is achieved.
  • the process management differs from known methods by the steps described in the structuring of the flash cells. The preceding process steps for the production of deep wells and of field oxide and also the subsequent process steps for the production of drains of the transistors and a metallization for metallic contacting are known.
  • the first polysilicon layer is advantageously thicker than the second polysilicon layer. This measure is taken because in some areas the final structuring of the second polysilicon layer already takes place Part of the first polysilicon layer is removed.
  • the thickness of the polysilicon layers must be selected so that in this etching step the first polysilicon is not removed as far as the gate oxide underneath, since otherwise the gate oxide would also be removed when the interpolydielectric is subsequently removed.
  • the thicker first polysilicon layer also achieves a better coupling factor and a larger outer surface of the floating gate.
  • the micro-trench technology is advantageously implemented in such a way that an intermediate layer is first applied, a nitride spacer is produced on the intermediate layer and the intermediate layer outside the nitride spacer is oxidized. The nitride spacer is then removed and the oxidized intermediate layer is used as a mask for anisotropic etching.
  • a trench can be created, which is also called a microtrench, the width of which is determined by the width of the spacer and is thus significantly smaller than a structural fineness that can be achieved by phototechnology.
  • the interpolydielectric is preferably only structured when a split gate cell is produced.
  • the structuring of the interpolydielectric can be dispensed with and all contacts to the first polysilicon can be realized with the final structuring.
  • the interpolydielectric is also advantageously deposited conformally, since this results in improved reliability, in particular at the edges of the first polysilicon layer.
  • the final structuring advantageously consists of a three-stage, isotropic etching process in which the first Step the second polysilicon layer, in the second step the interpolydielectric and in the third step the first polysilicon layer is structured.
  • Figures 1 to 5 different stages of the method for producing a non-volatile memory cell
  • Figure 6 is a split gate cell with the associated
  • Figure 7 shows a dual gate cell with the associated
  • Figure 8 shows a stacked gate cell with the associated
  • a scatter oxide 1 for implanting the channel doping for NMOS and PMOS transistors is oxidized.
  • a gate oxide mask 2 also called split GOX mask, the scatter oxide 1 is removed in a tunnel area in which a thin oxide will later be required.
  • the gate oxide mask 2 is produced using a first photo technique. Figure 1 shows this state of the process.
  • a tunnel oxide 3 is then oxidized, which at the same time also forms the gate oxide for the low-voltage transistors.
  • the existing leakage oxide 1 is oxidized to the desired thickness. In these areas, the oxide is composed of the scatter oxide 1 and the tunnel oxide 3.
  • This process status is shown in FIG. 2.
  • a first polysilicon layer 4 is deposited thereon. This first layer of silicon must be sufficiently thick.
  • a micro trench is produced in the first polysilicon layer 4 in the region of the thinner tunnel oxide 3. This is done by first applying an intermediate layer 5, on which a thin nitride spacer 6 is produced in a known manner by nitride deposition on a phototechnically generated structural edge. A second photo technique is used.
  • the intermediate layer 5 is oxidized, the nitride spacer 6 acting as an oxidation barrier.
  • the nitride spacer 6 and the underlying, non-oxidized intermediate layer 5 are removed, so that the remaining intermediate layer 5 serves as an etching mask for anisotropic trench etching.
  • FIG. 8 A micro-trench 8 produced in this way is shown in FIG. Arrows 7 show a self-adjusted arsenic connection implantation which is introduced into the trenches in order to increase a possibly critical contact resistance and to establish reliable insulation by means of an implantation region 9.
  • FIG. 5 An interpolydielectric 10 is applied conformally to the first polysilicon layer 4, which conformally covers the micro trench 8, but does not necessarily fill it up. In the illustration in FIG. 5, however, the micro trench 8 is completely filled. With a third photo technique, the interpolydielectric 10 is removed wherever an electrical connection to the first polysilicon layer 4 is desired. The interpolydielectric 10 is generally structured such that it remains in the tunnel area in which only the thin tunnel oxide 3 is present and is removed outside this area. This is followed by the deposition of a second, somewhat thinner polysilicon layer 11, with which the micro-trenches 8 are completely filled at the latest.
  • a mask 12 is applied for a fourth photo technique, with which the layer sequence of thin second polysilicon layer 12, interpolydielectric 10 and first polysilicon layer 4 is structured in a three-stage isotropic etching process.
  • the interpolydielectric 10 was previously removed using the third photo technique, part of the thicker polysilicon layer 4 lying underneath is already etched during the first etching step.
  • the thicknesses of the polysilicon layers 4 and 11 must therefore be selected such that the thicker polysilicon layer 4 is not removed as far as the underlying gate oxide 3 in this first etching step.
  • the second polysilicon layer 11 can be removed by means of a fifth photo technique and an isotropic etching step, wherever the first polysilicon layer 4 underneath is to be contacted, or where the capacitance between the polysilicon layers is to be as small as possible.
  • CMOS transistors and non-volatile memory cells are continued with the generation of the transistor drains and a metallization in a known manner.
  • a split gate cell, a dual gate cell or a stacked gate cell is optionally produced.
  • FIG. 6 shows a split gate cell and an associated circuit symbol in the left area.
  • This split gate cell is achieved by adjusting the mask 12 shown in FIG.
  • a floating gate 13 is formed from a partial area of the first polysilicon layer 4.
  • a prior structuring of the interpolydielectric 10 is necessary in order to establish the connection shown in the left area between the second poly to obtain silicon layer 11 and first polysilicon layer 4.
  • the dual gate cell shown in FIG. 7 can be generated with this method.
  • a circuit symbol of this dual-gate cell is shown in the left-hand area of FIG.
  • a selection transistor is arranged on the left and a memory transistor is arranged on the right.
  • the memory transistor is formed by the floating gate 13 and an overlying control gate, which is formed by the second polysilicon layer 11.
  • a selection gate of the selection transistor is formed by a region of the first polysilicon layer 4 which is separated from the floating gate 13 by the micro trench 8.
  • FIG. 8 shows a stacked gate cell which can also be produced from the method shown in FIGS. 1 to 5.
  • structuring of the interpolydielectric is not absolutely necessary, so that the interpolydielectric is only structured together with the first polysilicon layer and the second polysilicon layer during the final structuring.
  • the micro trench is only required for the separation of the floating gates from memory cells adjacent in the direction of the control gates.
  • the interpolydielectric 10 is used in all memory cells to isolate the floating gate 13 and control gate.

Abstract

L'invention concerne un procédé permettant de fabriquer, au choix, une cellule à double grille, une cellule à grille en deux parties ou une cellule à grille sous forme de pile. Selon ledit procédé, on crée une microtranchée (8) dans une première couche de silicium polycristallin (4). La microtranchée (8) et un interpolydiélectrique (10) garantissent une isolation électrique de zones de la première couche de silicium polycristallin (4) par rapport à une deuxième couche de silicium polycristallin (11). Grâce à l'ajustage d'un masque (12) il est possible de produire, au choix, une des trois cellules de mémoire susmentionnées. En outre, ledit procédé permet d'obtenir une cellule à double grille d'un encombrement particulièrement faible.
PCT/DE1997/002127 1996-10-18 1997-09-19 Cellule de memoire et procede de fabrication d'une cellule de memoire remanente WO1998018165A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19643185.9 1996-10-18
DE19643185A DE19643185C2 (de) 1996-10-18 1996-10-18 Dual-Gate-Speicherzelle und Verfahren zur Herstellung einer nichtflüchtigen Speicherzelle

Publications (1)

Publication Number Publication Date
WO1998018165A1 true WO1998018165A1 (fr) 1998-04-30

Family

ID=7809200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002127 WO1998018165A1 (fr) 1996-10-18 1997-09-19 Cellule de memoire et procede de fabrication d'une cellule de memoire remanente

Country Status (2)

Country Link
DE (1) DE19643185C2 (fr)
WO (1) WO1998018165A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553725B2 (en) 2005-07-20 2009-06-30 Samsung Electronics Co., Ltd. Nonvolatile memory devices and methods of fabricating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106804A1 (de) * 2001-02-14 2002-09-05 Infineon Technologies Ag Informationsredundante nichtflüchtige Halbleiterspeicherzelle sowie Verfahren zu deren Herstellung und Programmierung
EP1405340B1 (fr) 2001-07-03 2012-12-26 Nxp B.V. Procédé de fabrication d'un transistor de mémoire non-volatile ayant une grille de sélection adjacente à l'empilement des grilles de contrôle et flottante

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111086A2 (fr) * 1982-11-13 1984-06-20 Ibm Deutschland Gmbh Procédé pour la fabrication de structures à dimensions sub-micrométriques et application de ce procédé pour la fabrication de régions d'isolation diélectrique profondes à largeur sub-micrométrique dans un corps semi-conducteur
US4988635A (en) * 1988-06-07 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing non-volatile semiconductor memory device
US4989054A (en) * 1988-08-26 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Non-volatile semiconductor memory device using contact hole connection
US5066992A (en) * 1989-06-23 1991-11-19 Atmel Corporation Programmable and erasable MOS memory device
US5445983A (en) * 1994-10-11 1995-08-29 United Microelectronics Corporation Method of manufacturing EEPROM memory device with a select gate
DE19534780A1 (de) * 1995-09-19 1997-03-20 Siemens Ag Verfahren zum Erzeugen sehr kleiner Strukturweiten auf einem Halbleitersubstrat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411781A (ja) * 1990-04-28 1992-01-16 Nec Corp 一括消去型不揮発性半導体記憶装置
JP2658910B2 (ja) * 1994-10-28 1997-09-30 日本電気株式会社 フラッシュメモリ装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111086A2 (fr) * 1982-11-13 1984-06-20 Ibm Deutschland Gmbh Procédé pour la fabrication de structures à dimensions sub-micrométriques et application de ce procédé pour la fabrication de régions d'isolation diélectrique profondes à largeur sub-micrométrique dans un corps semi-conducteur
US4988635A (en) * 1988-06-07 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing non-volatile semiconductor memory device
US4989054A (en) * 1988-08-26 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Non-volatile semiconductor memory device using contact hole connection
US5066992A (en) * 1989-06-23 1991-11-19 Atmel Corporation Programmable and erasable MOS memory device
US5445983A (en) * 1994-10-11 1995-08-29 United Microelectronics Corporation Method of manufacturing EEPROM memory device with a select gate
DE19534780A1 (de) * 1995-09-19 1997-03-20 Siemens Ag Verfahren zum Erzeugen sehr kleiner Strukturweiten auf einem Halbleitersubstrat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553725B2 (en) 2005-07-20 2009-06-30 Samsung Electronics Co., Ltd. Nonvolatile memory devices and methods of fabricating the same

Also Published As

Publication number Publication date
DE19643185A1 (de) 1998-05-07
DE19643185C2 (de) 1998-09-10

Similar Documents

Publication Publication Date Title
DE10129958B4 (de) Speicherzellenanordnung und Herstellungsverfahren
DE4016346C2 (de) Nichtflüchtige Halbleiterspeichervorrichtung und ein Verfahren zu ihrer Herstellung
DE19747776C2 (de) Flash-Halbleiterspeicher mit Stapelgate und Verfahren zu dessen Herstellung
DE19612948B4 (de) Verfahren zur Herstellung einer Halbleitereinrichtung mit vertiefter Kanalstruktur
DE19617632C2 (de) Verfahren zur Herstellung einer nichtflüchtigen Speicherzelle
DE69432568T2 (de) Selbstjustierende flash-eeprom-zelle mit doppelbit-geteiltem gat
DE4404270C2 (de) Halbleiterspeichervorrichtungen, die Information elektrisch schreiben und löschen können und Verfahren zur Herstellung derselben
DE19808182C1 (de) Elektrisch programmierbare Speicherzellenanordnung und ein Verfahren zu deren Herstellung
DE102004006505B4 (de) Charge-Trapping-Speicherzelle und Herstellungsverfahren
DE10201314A1 (de) Feldeffekttransitor und Verfahren zum Herstellen eines Halbleiterbauteils mit einem solchen
DE10234996B4 (de) Verfahren zur Herstellung einer Transistoranordnung mit Trench-Transistorzellen mit Feldelektrode
DE10206057B4 (de) Nichtflüchtiges Speicherbauelement und Verfahren zu seiner Herstellung
DE19732870C2 (de) Nichtflüchtige Speicherzelle mit hoher Koppelkapazität und Verfahren zu ihrer Herstellung
DE10231966A1 (de) Feldeffekttransistor, zugehörige Verwendung und zugehöriges Herstellungsverfahren
WO2004107435A1 (fr) Dispositif memoire a semi-conducteur nrom et procede de fabrication dudit dispositif
DE10063443B4 (de) Verfahren zur Herstellung einer Elektrode eines mittels Feldeffekt steuerbaren Halbleiterbauelements und mittels Feldeffekt steuerbares Halbleiterbauelement
EP1518277B1 (fr) Procede pour produire un champ de cellule memoire nrom
DE10220922A1 (de) Flash-Speicherzelle und Herstellungsverfahren
DE102005001904A1 (de) Halbleiterspeicher, Halbleiterbauteil und Verfahren zu deren Herstellung
DE19643185C2 (de) Dual-Gate-Speicherzelle und Verfahren zur Herstellung einer nichtflüchtigen Speicherzelle
DE3920451C2 (de) EPROM-Zellstruktur mit einer Graben-Isolation und Verfahren zur Herstellung derselben
DE10225410A1 (de) Verfahren zur Herstellung von NROM-Speicherzellen mit Grabentransistoren
EP0852066B1 (fr) Procede de creation des regions source d'une zone de cellule de memoire flash eeprom
DE10140047B4 (de) Verfahren zur Herstellung von Transistoren in integrierten Halbleiterschaltungen
DE19929618B4 (de) Verfahren zur Herstellung einer nichtflüchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR MX RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase