WO1998017411A1 - Verfahren zum optimieren der bandbreitenverteilung an den enden eines eine walzstrasse durchlaufenden bandes - Google Patents
Verfahren zum optimieren der bandbreitenverteilung an den enden eines eine walzstrasse durchlaufenden bandes Download PDFInfo
- Publication number
- WO1998017411A1 WO1998017411A1 PCT/DE1997/002433 DE9702433W WO9817411A1 WO 1998017411 A1 WO1998017411 A1 WO 1998017411A1 DE 9702433 W DE9702433 W DE 9702433W WO 9817411 A1 WO9817411 A1 WO 9817411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameters
- strip
- neural network
- driving curve
- curve
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
- B21B37/22—Lateral spread control; Width control, e.g. by edge rolling
Definitions
- the invention relates to a method for optimizing the strip width distribution at the ends of a strip passing through a rolling mill.
- One of the main problems when rolling strips is to achieve a rectangular basic shape with a constant width over the length of the strip.
- Vertical compression rolls in the rolling mill are used to control the strip width.
- the upsetting rollers are driven with a constant pitch, the belt generally becomes narrower at the belt ends, i.e. the belt head and the belt foot, than in the middle section due to the asymmetrical material flow and other effects.
- the position of the upsetting rollers can be adjusted while the strip is running, whereby the adjustment as the strip ends pass in the form of short strokes, so-called “short strokes", is further increased relative to the middle part.
- This adjustment of the strip head and the strip base is carried out accordingly a driving curve ("Short stroke control (SSC) driving curve”), which can be defined by predetermined parameters.
- SSC short stroke control
- the object of the invention is to produce a desired bandwidth distribution at the belt ends as well as possible by specifying a driving curve for the setting position of the compression rollers. According to the invention, the object is achieved by the methods specified in independent claims 1, 2, 3 and 4.
- the determination of the parameters for the formation of the driving curve, according to which the setting position of the upsetting rollers is adjusted as the strip ends pass, is thus carried out on the basis of predictions about the rolling process by neural networks, whereby on-line training of the neural networks on the rolling process the predictions are constantly improving.
- Separate neural networks are preferably used for the tape head and the tape foot. Separate neural networks can be used for successive runs of the same band, that is to say with several upsetting stitches. If the number of compression stitches is permanently fixed, a single neural network can also be used to determine the parameters for the driving curves of the compression rollers in the successive compression stitches.
- FIG. 1 shows an example of the width distribution of a rolled strip and a driving curve derived therefrom for the upsetting rollers for correcting the width distribution
- Figure 2 shows an example of the basic control structure of a rolling mill with a unit for determining parameters for defining the driving curve
- FIG. 9 shows a more detailed concept based on the example according to FIG. 8 for determining the driving curve parameters.
- the diagram in Figure 1 shows an example of ⁇ the width distribution y of a strip over its length 1 when passing through a rolling mill, in addition to horizontal and vertical flat rolling to strip thickness control edging rolls for bandwidth controller includes.
- a travel curve f which in the example shown consists of two, separately for the belt head and the belt foot and for each pass of the same belt , so every compression stitch, adjustable straight sections.
- the driving curve f is described by four parameters in the form of two adjustment correction values a x and a 2 and two length coordinates 1 1 and 1 2 .
- the adjustment correction values a x and a 2 relate to the roller spacing, so that the travel of the two upsetting rollers is half as large.
- Figure 2 shows the basic control structure for a
- Rolling mill 3 in which an optimization of the actual strip width distribution y of a strip 4 passing through the rolling mill 3 takes place in accordance with a predetermined target strip width distribution y B ⁇ ll .
- the rolling mill 3 is a roughing mill which has one or more horizontal stands with flat rolls 5, a vertical stand with upsetting rolls 6 being arranged upstream of the last and, if required, further horizontal stands, here the last two horizontal stands.
- relevant process parameters x of the rolling process are calculated in advance in a pre-calculation unit 7 on the basis of setpoints SW and primary data PD and with access to mathematical models 8 of the rolling process, and a basic automation 9 is given up, which thus presets the Walz Given 3 carries out.
- a measured value detection device 10 relevant measured variables of the rolling process are continuously detected by means of a measured value detection device 10.
- the measured variables are fed to the basic automation 9 for the fulfillment of control functions and to a post-calculation unit 11.
- the post-calculation unit 11 accesses the same mathematical models 8 as the pre-calculation unit 7 and adapts the associated model parameters on the basis of the measured variables representing the actual course of the rolling process. In this way, the prediction for the next strip 4 to be rolled is continuously improved and adapted to the real process.
- the parameters s for the driving curve f are first determined in a unit 13 as a function of the predetermined target bandwidth distribution y eoll and the pre-calculated process parameters x and with access to at least one neural network 14 which provides a prediction of the compression processes at the ends of the strip .
- the actual bandwidth distribution y ist is measured at the exit of the rolling mill 3 by means of a width measuring device 15 and with this and the process parameters x recalculated in the recalculation unit 11 after an adaptation of the neural network 14 performed.
- the number of neural networks 14 used is concerned, separate neural networks are preferably used for the tape head and the tape foot.
- 4 separate neural networks can be used for successive runs of the same band. If the number of upsetting stitches varies from band to band, the use of separate neural networks for the larger stitch numbers is disadvantageous because there is less training data.
- FIGS. 3 and 4 show a first possibility of realizing the unit 13 in two operating states.
- a neural forward model 140 is used as the neural network, which maps the compression process in its natural cause / effect relationship.
- the input variables of the neural network 140 in its training phase consist of the recalculated process parameters x after and the parameters s is the driving curve, which is converted by means of a conversion unit 16 from the measured driving curve f i ⁇ , according to which the compression rollers 6 are moved during the rolling process. be determined.
- the neural network 140 provides a prediction for the bandwidth distribution y, which is compared with the measured actual bandwidth distribution y iBt .
- the neural network 140 is adapted as a function of the error ⁇ y determined in this way, so that it provides the most accurate possible prediction of the bandwidth distribution y thus achieved for predetermined parameters s of the driving curve and existing process parameters x.
- FIG. 4 shows how the optimal parameters s opt of a driving curve are determined, with which a predetermined target bandwidth distribution y eoll is achieved.
- starting values s ⁇ tart are first specified for the driving curve parameters s by a computing unit and are fed to the adapted neural network 140 together with the pre-calculated process parameters x.
- This provides a prediction for the bandwidth distribution y, which is compared with the target bandwidth distribution y ⁇ on .
- Bandwidth distribution y ⁇ oll a predetermined limit value
- the start values s etart are changed by an amount ⁇ s.
- the neural network 140 provides a new prediction for the bandwidth distribution y, which is again compared with the target bandwidth distribution y soll .
- the parameters are changed stepwise s for the travel curve as long as the amount .DELTA.s until the deviation between the predicted bandwidth distribution y and to the target bandwidth distribution y the predetermined limit value no longer exceeds.
- the parameters s determined in this way correspond to the desired optimal parameters s opt of the driving curve with which the setting position of the upsetting rollers 6 is controlled.
- two neural networks 140 and 141 are used, of which the first neural network 140, as in the example in FIGS. 3 and 4, a forward neural model and the second neural network 141 describes the reversal of the natural cause / effect relationship is the backward neural model.
- FIG. 5 shows, in a first operating state of the unit 13 the first neural network 140 is trained in the same way as has already been described with reference to FIG. 3.
- the embodiment shown in Figure 7 for the unit 13 includes a neural network is a neural reverse model 141 corresponding to the delivered in Figures 5 and 6.
- This neural network 141 in the adapted state in response to a predetermined desired bandwidth distribution is y and the pre-calculated process parameters x a prediction for the parameters s of the driving curve, according to which the position of the upsetting rollers 6 is adjusted during the belt pass.
- the measured actual bandwidth distribution y actual and the recalculated process parameters x are fed as input variables after the neural network 141, the network response s of which are determined using the conversion unit 16 from the measured driving curve f actual actual driving curve parameters s is compared.
- the neural network 141 is adapted as a function of the error ⁇ s determined in the process.
- the embodiment shown in Figure 8 for the unit 13 is the prerequisite basis that if an error occurs in the width of distribution, ie with a deviation Dy between the target bandwidth distribution y eoll and the measured actual bandwidth distribution y lst the running curve f ⁇ et for Upsetting rollers 6 must be changed by the amount of this deviation ⁇ y in order to compensate for the error.
- a neural backward model can therefore be used as the neural network 142. To the target bandwidth distribution y is fixed once and for all, for. B. for a rectangular shape
- the neural network 142 supplies a prediction for the parameters s of the driving curve f based on the pre-calculated process parameters x, on the basis of which the compression rollers 6 are preset.
- the desired target bandwidth distribution y target is compared with the measured actual bandwidth distribution y iet .
- the measured driving curve f i ⁇ t is corrected into a target driving curve f soll , whose associated parameters s should be determined by means of a conversion unit 18.
- the neural network 142 provides because of it now supplied recalculated process parameter X according to a prediction for the traveling curve parameters s, with parameters s eoll the target f traveling curve to be compared, the thus obtained error .DELTA.s is used for adaptation of the neural network 142 .
- the conversion interface between the driving curve f and its parameters s in the example shown the conversion unit 18, can of course also be set differently by converting the parameters s predicted by the neural network 142 into a predicted driving curve f and the predicted driving curve f is compared with the target travel curve f ⁇ oll . This also follows from the following example.
- FIG. 9 shows a more detailed concept based on the example of FIG. 8 for determining the driving curve f for the upsetting rollers 6.
- the process parameters x and x according to which the driving curve f is determined include the bandwidth b (i), strip thickness d (i) and strip temperature T (i) after each compression stitch i
- the employment correction values a x d) and a 2 (i) are calculated as the product of the network outputs o k lying between -1 and +1 and the respective width decreases ⁇ b (i) of band 4. This has the effect that none of the employment correction values a ⁇ i) and a 2 (i) can be greater than the respective decrease in width ⁇ b (i).
- the length coordinates l x ) and l 2 (i) are specified as experience values by a device 19.
- the length coordinate 1 2 (1) which corresponds to the length of the area of action of the upsetting rollers 6 in the first upsetting stitch on the belt 4, is set, for example, to 3 times the slab width and to 2 times the slab width for the belt foot.
- the values for the length coordinates determined in this way relate to the strip 4 after it has left the rolling mill 3 when the strip width distribution is measured.
- these values must therefore still be passed through during each belt pass Rolling mill 3 strip stretching to the strip length before the respective pass i in relation to the length of the strip 4 after leaving the rolling mill 3 can be converted.
- This conversion takes place on the basis of the temperature T (i), width b (i) and thickness d (i) of the strip 4 before the respective upsetting stitch i, the temperature, width and thickness of the strip 4 after leaving the rolling train 3 and the expansion coefficient ⁇ .
- the driving curve parameters a x (i) and a 2 ) predicted by the neural network 142 on the basis of the pre-calculated process parameters x and the driving curve parameters l ⁇ i) and l 2 (i) specified via the unit 19 are sent to the basic automation 9 for setting the rolling train 3 to hand over.
- the width distribution y actual and the travel curve f actual of the compression rollers 6 are measured point by point using the measured value detection device 10 and the width measuring device 15.
- the error Dy between the predetermined desired bandwidth distribution y is first n and the measured actual bandwidth distribution y ⁇ t and then the desired travel curve f set from the measured travel curve f 1BT and the error Dy here z.
- seven predetermined support points j are calculated. The calculation is performed for the data points so f n, - the target -Fahrkurve f ⁇ oll in total for all upsetting bites i; that is, the target travel curve f BO n is the sum of the target travel curves f sol id) of the individual upsetting stitches i.
- the neural network 142 delivers on the basis of those fed to it after the strip 4 has passed through the rolling mill 3 recalculated process parameters x according to predictions about the employment correction values a ⁇ i) and a 2 (i), from which in a unit 21 at the support points j support values f j resulting from the predicted employment correction values a ⁇ i) and a 2 (i) in total be calculated for all upsetting stitches i resulting in predicted total travel curve f.
- the error ⁇ f j becomes the square error summed up over all support points
- the rolling mill 3 of the exemplary embodiment shown in FIG. 1 is a roughing mill.
- this is measured at the end of the cooling section and fed to the device 13 for determining the driving curve parameters s.
Landscapes
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mechanical Engineering (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Metal Rolling (AREA)
- Feedback Control In General (AREA)
- Milling Processes (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/297,230 US6418354B1 (en) | 1996-10-23 | 1997-10-21 | Optimizing the band width at the band ends on a mill train |
CA002269489A CA2269489C (en) | 1996-10-23 | 1997-10-21 | Method of optimizing the band width distribution at the ends of a band passing through a mill train |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19644132A DE19644132B4 (de) | 1996-10-23 | 1996-10-23 | Verfahren zum Optimieren der Bandbreitenverteilung an den Enden eines eine Walzstraße durchlaufenden Bandes |
DE19644132.3 | 1996-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998017411A1 true WO1998017411A1 (de) | 1998-04-30 |
Family
ID=7809818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1997/002433 WO1998017411A1 (de) | 1996-10-23 | 1997-10-21 | Verfahren zum optimieren der bandbreitenverteilung an den enden eines eine walzstrasse durchlaufenden bandes |
Country Status (7)
Country | Link |
---|---|
US (1) | US6418354B1 (de) |
KR (1) | KR100347198B1 (de) |
CN (1) | CN1104975C (de) |
CA (1) | CA2269489C (de) |
DE (1) | DE19644132B4 (de) |
RU (1) | RU2157284C1 (de) |
WO (1) | WO1998017411A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102303050A (zh) * | 2011-06-03 | 2012-01-04 | 攀钢集团有限公司 | 一种粗轧宽度自学习的方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001347318A (ja) * | 2000-06-08 | 2001-12-18 | Mitsubishi Heavy Ind Ltd | 板幅調整装置及び板幅調整方法 |
DE10036971A1 (de) * | 2000-07-28 | 2002-02-28 | Siemens Ag | Verfahren zur Ferndiagnose eines technologischen Prozesses |
DE10116273A1 (de) * | 2001-03-31 | 2002-10-10 | Sms Demag Ag | Verfahren zum Betreiben einer Walzstraße sowie eine entsprechend ausgebildete Walzstraße |
KR20040035977A (ko) * | 2002-10-14 | 2004-04-30 | 주식회사 포스코 | 열간압연작업에서의 슬라브 폭조정방법 |
DE10339766A1 (de) * | 2003-08-27 | 2005-04-07 | Siemens Ag | Verfahren und Einrichtung zur Steuerung einer Anlage zur Herstellung von Stahl |
AT500764A1 (de) * | 2004-05-19 | 2006-03-15 | Voest Alpine Ind Anlagen | Verfahren zur berechnung der geometrischen form von walzgut |
CN101403890B (zh) * | 2008-11-08 | 2010-06-09 | 山西太钢不锈钢股份有限公司 | 利用神经元网络分类建模法提高模型预报精度的方法 |
CN102974622B (zh) * | 2012-12-21 | 2015-03-11 | 山西太钢不锈钢股份有限公司 | 带钢头尾宽度短行程控制的参数补偿方法及控制方法 |
CN103920722B (zh) * | 2013-01-11 | 2016-02-24 | 宝山钢铁股份有限公司 | 一种热连轧机飞剪带钢定位方法 |
CN103678893B (zh) * | 2013-12-03 | 2016-08-17 | 太原理工大学 | 一种用于特殊钢种的规则建模方法 |
CN104249084B (zh) * | 2014-09-26 | 2016-06-01 | 成都金自天正智能控制有限公司 | 一种提高热连轧生产时带钢头尾部宽度精度的方法 |
CN109513749B (zh) * | 2018-11-01 | 2020-06-02 | 北京首钢股份有限公司 | 一种热轧带钢头尾部宽度控制方法及装置 |
CN112974543B (zh) * | 2019-12-12 | 2022-09-09 | 上海梅山钢铁股份有限公司 | 一种热轧薄规格带钢的船型曲线的优化方法 |
JP7447779B2 (ja) * | 2020-12-21 | 2024-03-12 | 東芝三菱電機産業システム株式会社 | 圧延材の形状制御システム |
CN113695404B (zh) * | 2021-09-03 | 2024-01-23 | 北京北科麦思科自动化工程技术有限公司 | 一种带钢热连轧宽度控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623417A (ja) * | 1992-07-06 | 1994-02-01 | Nippon Steel Corp | 熱間粗圧延における板幅制御装置 |
JPH07303909A (ja) * | 1994-05-16 | 1995-11-21 | Nippon Steel Corp | 熱間粗圧延における板幅セットアップ自動修正装置 |
DE19522494A1 (de) * | 1994-07-07 | 1996-01-18 | Siemens Ag | Verfahren zum Walzen eines Metallbandes |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4248072A (en) * | 1978-07-25 | 1981-02-03 | Aichi Steel Works, Limited | Method of and apparatus for producing plate material having uniform width and lengthwise thickness variation |
JPS59189011A (ja) * | 1983-04-12 | 1984-10-26 | Ishikawajima Harima Heavy Ind Co Ltd | 圧延材の蛇行及び横曲り制御方法及びその装置 |
JPS6224809A (ja) | 1985-07-23 | 1987-02-02 | Nippon Steel Corp | 熱間圧延における板幅制御方法 |
DE3821990A1 (de) * | 1988-06-30 | 1990-01-11 | Schloemann Siemag Ag | Regelung fuer profilstrassen |
US5193066A (en) * | 1989-03-14 | 1993-03-09 | Kabushiki Kaisha Kobe Seiko Sho | Equipment for adjusting the shape of a running band-like or plate-like metal material in the width direction |
JPH04252302A (ja) * | 1991-01-28 | 1992-09-08 | Kawasaki Steel Corp | 連続圧延機における制御モデルの同定方法及び連続圧延機の制御方法 |
JP3136183B2 (ja) * | 1992-01-20 | 2001-02-19 | 株式会社日立製作所 | 制御方法 |
JPH06224809A (ja) * | 1993-01-22 | 1994-08-12 | Toshiba Corp | 携帯型無線通信装置 |
JPH07124618A (ja) * | 1993-11-05 | 1995-05-16 | Toshiba Corp | 竪型圧延機の板幅制御装置 |
DE19505694C1 (de) * | 1995-02-20 | 1996-07-04 | Siemens Ag | Einrichtung zur Dickenregelung von Walzgut |
DE59505012D1 (de) * | 1995-03-16 | 1999-03-11 | Siemens Ag | Verfahren und vorrichtung zur führung eines prozesses |
DE19642918C2 (de) * | 1996-10-17 | 2003-04-24 | Siemens Ag | System zur Berechnung des Enddickenprofils eines Walzbandes |
-
1996
- 1996-10-23 DE DE19644132A patent/DE19644132B4/de not_active Expired - Lifetime
-
1997
- 1997-10-21 US US09/297,230 patent/US6418354B1/en not_active Expired - Fee Related
- 1997-10-21 KR KR1019997003517A patent/KR100347198B1/ko not_active IP Right Cessation
- 1997-10-21 WO PCT/DE1997/002433 patent/WO1998017411A1/de active IP Right Grant
- 1997-10-21 CA CA002269489A patent/CA2269489C/en not_active Expired - Fee Related
- 1997-10-21 CN CN97199181A patent/CN1104975C/zh not_active Expired - Fee Related
- 1997-10-21 RU RU99111084/02A patent/RU2157284C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623417A (ja) * | 1992-07-06 | 1994-02-01 | Nippon Steel Corp | 熱間粗圧延における板幅制御装置 |
JPH07303909A (ja) * | 1994-05-16 | 1995-11-21 | Nippon Steel Corp | 熱間粗圧延における板幅セットアップ自動修正装置 |
DE19522494A1 (de) * | 1994-07-07 | 1996-01-18 | Siemens Ag | Verfahren zum Walzen eines Metallbandes |
Non-Patent Citations (6)
Title |
---|
HIROSHI UMEDA ET AL: "APPLICATION OF PREDICTIVE CONTROL THEORY IN HOT STRIP MILL", PROCEEDINGS OF THE 1995 IEEE IECON: INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION, ORLANDO, NOV. 6 - 10, 1995 SIGNAL PROCESSING AND CONTROL, ROBOTICS VISION AND SENSORS, EMERGIN TECHNOLOGIES, AND FACTORY AUTOMATION, vol. 2 OF 2, 6 November 1995 (1995-11-06), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 786 - 791, XP000559308 * |
LINDHOFF D ET AL: "ERFAHRUNGEN BEIM ENSATZ NEURONALER NETZE IN DER WALZWERKSAUTOMATISIERUNG", STAHL UND EISEN, vol. 114, no. 4, 18 April 1994 (1994-04-18), pages 49 - 53, 208, XP000449399 * |
MARTINETZ T ET AL: "NEURONALE NETZE ZUR STEUERUNG VON WALZSTRASSEN", AUTOMATISIERUNGSTECHNISCHE PRAXIS - ATP, vol. 38, no. 10, October 1996 (1996-10-01), pages 28, 30 - 32, 34 - 36, 41/42, XP000640083 * |
PATENT ABSTRACTS OF JAPAN vol. 018, no. 227 (M - 1597) 25 April 1994 (1994-04-25) * |
PATENT ABSTRACTS OF JAPAN vol. 096, no. 003 29 March 1996 (1996-03-29) * |
SHAW D A ET AL: "LTV STEEL INDIANO HARBOR WORKS' 84-IN. HOT STRIP MILL AUTOMATIC WIDTH CONTROL USING HYDRAULIC EDGER", IRON AND STEEL ENGINEER, vol. 71, no. 8, 1 August 1994 (1994-08-01), pages 43 - 51, XP000465144 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102303050A (zh) * | 2011-06-03 | 2012-01-04 | 攀钢集团有限公司 | 一种粗轧宽度自学习的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE19644132A1 (de) | 1998-04-30 |
DE19644132B4 (de) | 2005-07-07 |
RU2157284C1 (ru) | 2000-10-10 |
KR100347198B1 (ko) | 2002-08-03 |
US6418354B1 (en) | 2002-07-09 |
CA2269489A1 (en) | 1998-04-30 |
CA2269489C (en) | 2007-03-20 |
CN1104975C (zh) | 2003-04-09 |
CN1234755A (zh) | 1999-11-10 |
KR20000052719A (ko) | 2000-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998017411A1 (de) | Verfahren zum optimieren der bandbreitenverteilung an den enden eines eine walzstrasse durchlaufenden bandes | |
DE69102280T2 (de) | Verfahren und anlage zum herstellen von direkt einer warmwalzstrasse erzeugter stahlbandcoils mit kaltwalzeigenschaften. | |
DE112012006981B4 (de) | Verfahren zur Herstellung von Bandstahl mit verschiedenen Zieldicken in der Längsrichtung mit einer kontinuierlichen Warmwalzstraße | |
EP0121148B1 (de) | Verfahren zum Herstellen von Walzband mit hoher Bandprofil- und Bandplanheitsgüte | |
DE19522494C2 (de) | Verfahren zum Walzen eines Metallbandes | |
DE4309986A1 (de) | Verfahren und Vorrichtung zum Walzen eines Walzbandes | |
EP3271092B1 (de) | Verfahren zum herstellen von metallbändern | |
EP1070557A2 (de) | Verfahren zum Planieren von Metallbändern | |
DE60016999T2 (de) | Verfahren und Vorrichtung zum Regeln der Bandform beim Bandwalzen | |
EP0715019A2 (de) | Verfahren und Vorrichtung zum Behandeln einer Materialbahn | |
DE2457696A1 (de) | Regelsystem fuer bandtemperatur | |
DE3006544C2 (de) | Vorrichtung zur Steuerung der Breite einer Bramme beim Warmvorwalzen | |
WO2013110399A1 (de) | Verfahren zur bearbeitung von walzgut in einem warmwalzwerk | |
DE69913538T2 (de) | Verfahren und Vorrichtung zur Planheitsregelung | |
DE19503363A1 (de) | Einrichtung und Verfahren zum Regeln der Planheit und/oder Spannungsverteilung von gewalzten Metallbändern | |
DE3026229C2 (de) | ||
DE3943093C2 (de) | Verfahren zur Regelung der Planheit eines in einem Walzgerüst hergestellten Bandes und Vorrichtung zu seiner Durchführung | |
WO1996028770A1 (de) | Verfahren und vorrichtung zur führung eines prozesses | |
EP0734795B1 (de) | Verfahren zur Dickenvorsteuerung beim Folienwalzen | |
DE4391396C2 (de) | Verfahren zum Walzen von H-Profilstahl | |
DE3401894A1 (de) | Verfahren zum herstellen von walzband mit hoher bandprofil- und bandplanheitsguete | |
DE19644131C2 (de) | Verfahren zum Optimieren der Bandbreitenverteilung an den Enden eines eine Walzstraße in einem oder mehreren Stichen durchlaufenden Bandes | |
DE3425129A1 (de) | Verfahren zur walzenkuehlung an einem kaltwalzwerk | |
DE1527610B2 (de) | Vorrichtung zum Walzen von etwa gleiche Querschnittshöhe und -breite aufweisenden Knüppeln, Stangen u.a. Stabstahlerzeugnissen | |
DE60113132T2 (de) | Blechbreitenregelung beim warmbandwalzen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97199181.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN KR MX RU US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2269489 Country of ref document: CA Ref document number: 2269489 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997003517 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1999/003811 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09297230 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997003517 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019997003517 Country of ref document: KR |