WO1998014307A1 - Outil superabrasif et son procede de fabrication - Google Patents

Outil superabrasif et son procede de fabrication Download PDF

Info

Publication number
WO1998014307A1
WO1998014307A1 PCT/JP1997/003369 JP9703369W WO9814307A1 WO 1998014307 A1 WO1998014307 A1 WO 1998014307A1 JP 9703369 W JP9703369 W JP 9703369W WO 9814307 A1 WO9814307 A1 WO 9814307A1
Authority
WO
WIPO (PCT)
Prior art keywords
superabrasive
layer
grains
forming
holding layer
Prior art date
Application number
PCT/JP1997/003369
Other languages
English (en)
French (fr)
Inventor
Kosuke Mitsui
Toshio Fukunishi
Kazunori Kadomura
Yukio Shimizu
Yoshio Kouta
Masaaki Yamanaka
Akio Hara
Original Assignee
Osaka Diamond Industrial Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8280227A external-priority patent/JPH10109270A/ja
Priority claimed from JP2953797A external-priority patent/JPH10202529A/ja
Priority claimed from JP09029538A external-priority patent/JP3086663B2/ja
Priority claimed from JP9083223A external-priority patent/JPH10235553A/ja
Priority claimed from JP11609097A external-priority patent/JPH10291162A/ja
Priority claimed from JP16959397A external-priority patent/JPH11867A/ja
Application filed by Osaka Diamond Industrial Co. filed Critical Osaka Diamond Industrial Co.
Priority to EP97941208A priority Critical patent/EP0870578A4/en
Priority to KR1019980703950A priority patent/KR100293863B1/ko
Priority to US09/077,024 priority patent/US6312324B1/en
Publication of WO1998014307A1 publication Critical patent/WO1998014307A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/02Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters
    • B24B3/06Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters of face or end milling cutters or cutter heads, e.g. of shank type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • B24B37/16Lapping plates for working plane surfaces characterised by the shape of the lapping plate surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor

Definitions

  • the present invention generally relates to a superabrasive tool having a superabrasive layer in which superabrasive grains are held by a binder or the like, and a method of manufacturing the same. More specifically, the present invention relates to a superabrasive tool such as a superabrasive grindstone, a superabrasive dresser, and a superabrasive lap surface plate, and a method of manufacturing the same.
  • the super-abrasive grindstone include a grindstone using super-abrasive grains such as diamond and cubic boron nitride (CBN).
  • a super abrasive dresser is a diamond dresser used for dressing a conventional grindstone such as WA, GC (JIS type) or vitrified pond CBN grindstone etc. attached to a grinder etc. with high accuracy. Is mentioned.
  • the superabrasive lapping plate include a diamond lapping plate used for lapping silicon silicon, ceramics, optical glass, cemented carbide, cermet, and metal materials. Background art
  • a superabrasive grindstone which combines superabrasive grains such as diamond and CBN with metal, resin, or vitrifide.
  • a superabrasive grindstone in which superabrasive grains are held in a single layer, a superabrasive grain held and fixed on a base (base metal) by an electroplating method is known.
  • Such a superabrasive grindstone is called an electrodeposited superabrasive grindstone.
  • the superabrasive grains are fixed on a base metal to such an extent that they contact each other. The concentration may be too high for some purposes.
  • Means for improving the flow of the grinding fluid and removing chips are adopted by a method such as locally forming a grain-free portion.
  • the thickness of the plating layer is set to be at least 1/2 of the diameter of the superabrasive grains in order to secure the holding power of the superabrasive grains.
  • a superabrasive grindstone in which superabrasive grains are fixed on a base metal by a filter material layer is known.
  • an alloy composed of nickel, cobalt, and chromium, or an alloy composed of silver, copper, and titanium uses the property of easily wetting the surface of the diamond abrasive grains, and using this alloy.
  • the so-called brazing method in which diamond grains are fixed directly on a base metal, is also known.
  • the surface roughness of the surface to be ground is determined by the number of effective abrasive grains per unit surface area of the grinding wheel.
  • the effective number of abrasive grains with respect to the grain size and the degree of concentration of the abrasive grains, and there are the following problems depending on the size of the abrasive grains.
  • a grindstone using a relatively large abrasive grain that is, a coarse stone, has a strong holding power for the abrasive grain, has little abrasive dropout, and has a good flow of the grinding fluid.
  • the accuracy of the ground surface is low and the surface roughness is large.
  • a grindstone using relatively small grain size that is, a fine grain
  • the holding power of the abrasive grains is weak, the abrasive grains often fall off, and the flow of the grinding fluid is poor. For this reason, a grinding wheel using fine grains has a low grinding performance, grinding becomes impossible with only a small wear of the abrasive grains, and the life of the grinding wheel is short.
  • a diamond mouth one-piece dresser is, for example, as disclosed in Japanese Patent Application Laid-Open No. 59-47162, a diamond abrasive having a cylindrical shape. What is fixed to the outer peripheral surface of the base in a single layer is well known.
  • diamond rotary dresser As another example of a diamond rotary dresser, one disclosed in Japanese Patent Publication No. 1-22115 is known. These diamond rotary dressers have a wide range of action and are used for dressing conventional grinding wheels such as WA and GC (JIS type) or CBN grinding wheels with high precision.
  • WA and GC JIS type
  • CBN CBN grinding wheels with high precision.
  • the method of fixing the diamond grains tightly on the base, smoothing the tip of the diamond grains to make the surface acting on dressing flat, and improving the dressing accuracy is a method of diamond. It is used in the Monde Rotary dresser.
  • the rubbing process is to supply the free abrasive grains mixed with the lapping liquid to the lapping surface and the workpiece, apply the pressure to the lapping surface and the workpiece and apply them together.
  • the lapping plate used for conventional lapping is made of iron.
  • a lapping plate made of spheroidal graphite and iron is often used for lapping silicon wafers.
  • the lapping plate has the ability to maintain flatness over a long period of time, the material is uniform and has no uneven hardness, there is no structural defect that causes scratches on the surface of the workpiece, It is required to have the ability to hold grains.
  • iron is often used as a material for lapping plates.
  • the conventional lapping process consumes a large amount of free abrasive grains, which results in a large amount of a mixture of used free abrasive grains, cutting chips, and lapping liquid, that is, sludge, resulting in deterioration of the working environment and pollution. It was a big problem.
  • one object of the present invention is to improve the precision of the surface to be ground, to have a large holding force for the superabrasive grains, to reduce the loss and dropout of the superabrasive grains, and to have a good flow of the grinding fluid.
  • An object of the present invention is to provide a superabrasive stone and a method for manufacturing the same.
  • an object of the present invention is to provide a superabrasive tool, such as a superabrasive grindstone, a superabrasive dresser, a superabrasive lapping plate, and a method of manufacturing the same, which can improve the processing accuracy. It is. Disclosure of the invention
  • a superabrasive tool includes a base and a superabrasive layer formed on the base.
  • the superabrasive layer includes a superabrasive, and a retaining layer that holds the superabrasive and adheres to the base.
  • a concave portion is formed on the surface of the superabrasive grain exposed from the holding layer.
  • Recesses include recesses from any form of superabrasive surface, such as grooves, holes, and the like.
  • the concave portion is also formed on the surface of the holding layer. More preferably, the concave portion formed on the surface of the superabrasive and the concave portion formed on the surface of the holding layer are formed continuously.
  • the recess is formed on the surface of the superabrasive protruding from the holding layer. More preferably, the surface of the protruding superabrasive has a flat surface, and a concave portion is formed in the flat surface.
  • the surface of the exposed superabrasive has a flat surface, and the flat surface forms substantially the same plane as the surface of the holding layer.
  • the flat surface of the superabrasive grains protrude at least 10 ⁇ m or more from the surface of the holding layer. Therefore, the term “substantially the same plane” here includes a surface height deviation of about 10 / im.
  • a ⁇ portion is formed on the surface of the holding layer. More preferably, the concave portion formed on the surface of the superabrasive and the concave portion formed on the surface of the holding layer are formed continuously.
  • the holding layer preferably includes a plating layer, or includes a brazing material layer.
  • Examples of the superabrasive tool to which the present invention is directed include a superabrasive grindstone, a superabrasive dresser, a superabrasive lapping plate, and the like.
  • the method for manufacturing a superabrasive tool according to the present invention comprises the steps of: forming a holding layer for holding and fixing the superabrasive grains on a base so that the surface thereof is partially exposed; Forming a recess by irradiating the surface of the exposed superabrasive with a laser beam.
  • the method for manufacturing a superabrasive tool of the present invention further includes a step of forming a recess by irradiating the surface of the holding layer with a laser beam. More preferably, in the step of forming the concave portion on the surface of the superabrasive grains and the surface of the holding layer, the surface of the superabrasive grains exposed from the holding layer and the surface of the holding layer are continuously irradiated with a laser beam. And forming a concave portion continuously.
  • the step of forming a concave portion includes forming a concave portion by irradiating a laser beam to a surface of the superabrasive particles protruding from the holding layer. Including.
  • the method further comprises a step of flattening the surface of the superabrasive grain exposed from the retaining layer substantially uniformly, and irradiating the laser beam.
  • the step of forming the recesses includes irradiating the surface of the superabrasive with a laser beam after flattening the surface.
  • the step of flattening the surface of the superabrasive grain is to flatten the surface of the superabrasive grain so that the exposed surface of the superabrasive grain forms substantially the same plane as the surface of the holding layer.
  • the method for producing a superabrasive tool according to the present invention further comprises a step of irradiating a laser beam to the surface of the holding layer to form a recess, wherein the surface of the superabrasive and the surface of the holding layer have a recess.
  • the step of forming includes forming a concave portion by continuously irradiating a laser beam to connect the flattened surface of the superabrasive grains and the surface of the holding layer.
  • the step of forming the holding layer includes forming a plating layer or forming a brazing material layer.
  • the step of forming the holding layer including the plating layer preferably includes the following steps.
  • the mold with the superabrasive grains is immersed in the plating solution of the first metal to partially cover the surface of the superabrasive grains with a thickness less than 1 ⁇ 2 of the average grain size of the superabrasive grains.
  • 1st metal plating Forming a layer.
  • the superabrasive grinding wheel improves the sharpness and processing accuracy, improves the accuracy of the surface to be ground, reduces the surface roughness, and increases the holding power of the abrasive. Thereby, the loss and dropout of the abrasive grains can be reduced, and the flow of the grinding fluid can be improved.
  • a superabrasive dresser With a superabrasive dresser, dressing resistance can be reduced, sharpness and accuracy can be improved, and vibration during dressing can be prevented, so that dressing accuracy can be improved.
  • a concave portion is formed only on the surface of the super-abrasive that dresses the shoulders and edges of the grindstone, or the super-abrasive is applied only to the portion of the workpiece that requires shaping accuracy.
  • the super-abrasive lapping plate uses fixed abrasives instead of conventional loose abrasives, so that sludge generation can be reduced and higher precision can be achieved. It is possible to maintain a flat surface and perform highly efficient rubbing.
  • the first feature of the superabrasive grindstone according to the present invention is that it combines the advantages of a conventional grindstone using fine grains and a grindstone using coarse grains to increase the concentration of abrasive grains. It is based on a completely new idea that allows the number of effective abrasive grains to be increased without the need.
  • the protruding portion of the superabrasive grains in the abrasive grain layer is divided by grooves to provide a plurality of abrasive grain end faces.
  • the protrusion from the binder as a holding layer is processed into a flat surface, and a groove is provided on the flat surface to make the super-abrasive abrasive surface
  • a groove is provided on the flat surface to make the super-abrasive abrasive surface
  • a sharp cutting edge portion by forming a groove on the surface where the superabrasive grains protrude without processing the protruding part of the superabrasive grains from the binder as a holding layer into a flat surface. Further, it is not necessary to form grooves on the protruding surfaces of all superabrasive grains, and the superabrasive grains may be present without grooves. Grooves may be formed in the protruding portions of the ultra-f grains that have been partially flattened by, for example, ruling.
  • the particle diameter of the super-abrasive grains is 50 ⁇ m or more, more preferably, By using superabrasive grains having a particle size in the range of # 20 to # 40, a better effect can be obtained.
  • a resin can be used in addition to metal and vitrify. Since the superabrasive layer is formed as a single layer, it is preferable to use a metal having a high bonding force as the material of the bonding material.
  • the metal is preferably formed by electroplating or brazing.
  • the superabrasive grains When the protruding surface of the superabrasive grains is applied flatly, the superabrasive grains are held on the base by the above-described binder, and then the protruding ends of the superabrasive grains are raised to a high level by tooling. To form a flat surface with a uniform thickness, and irradiate a laser beam to the flat surface of each abrasive grain to form a groove.
  • the abrasive surface is formed by super-abrasive grains having a relatively large particle diameter. Surface roughness occurs.
  • the protruding height of the superabrasive grains is made substantially uniform to form a flat surface at the tip of the abrasive grains, or the flat surface is formed without flattening the protruding surface of the superabrasive grains.
  • the grooves are formed by irradiating the projecting surface with a laser beam, a large number of abrasive grain end faces are formed on the flat surface or the projecting surface. The end faces of these abrasive grains act as cutting or wiping edges, increasing the number of effective abrasive grains.
  • the superabrasive grains forming the abrasive surface have a large particle size, the superabrasive grains adhere to the base by electroplating as described above, or alloy or silver mainly composed of nickel-cobalt-chromium.
  • a stable and strong abrasive surface can be formed by melting an alloy mainly composed of titanium-copper, that is, by bonding superabrasive grains to a base by brazing.
  • the holding force for holding the superabrasives is higher than when the superabrasives are fixed to the base by electroplating such as nickel plating. be able to.
  • the protrusion amount of the superabrasive grains can be increased.
  • the so-called chip pocket can be enlarged according to the brazing method.
  • the space in the surface portion of the superabrasive layer formed by the projections of the superabrasive grains having a large particle size and the surface of the holding layer is enlarged by the grooves formed in the projections. Since the chips generated by grinding are reduced by dividing the cutting edges by these grooves, the flow of the grinding fluid and the removal of the chips are smooth, and the sharpness is improved.
  • the number of effective abrasive grains must be increased by forming grooves on the exposed surface of the superabrasive grains and the surface of the holding layer.
  • the grinding wheel can be regenerated until the required grinding performance is obtained.
  • the grindstone configured as described above can be dressed when necessary or each time it is used.
  • the superabrasive grindstone As described above, in the superabrasive grindstone according to the present invention, a relatively large coarse superabrasive can be used, so that the absolute value of the depth of burial in the holding layer is a fine superabrasive. Deeper than a whetstone using. Therefore, the degree of bonding by the retaining layer is strong, and the loss and dropout of superabrasive grains due to grinding are small.
  • Grooves are provided on the protruding surface or the flattened exposed surface of the superabrasive grains, and a large number of almost uniformly aligned end faces of the abrasive grains are divided by the grooves as if fine superabrasive grains are used. Since it is formed, the number of effective abrasive grains increases with respect to the particle diameter and the degree of concentration of superabrasive grains. Therefore, the sharpness of the grinding wheel can be improved, and the accuracy of the surface to be ground can be increased.
  • the grindstone of the present invention facilitates, for example, changing to machining using fixed abrasive grains instead of machining using free abrasive grains conventionally used in high-quality machining of electronic and optical parts. be able to.
  • grooves are formed in diamond abrasive grains fixed to a diamond rotary dresser.
  • the exposed surface of diamond grains protruding from the surface of the holding layer of the diamond rotary dresser A groove is formed by irradiating a laser beam on the exposed surface of the diamond grains, which is substantially flush with the surface of the retaining layer, to divide the abrasive surface of the diamond grains.
  • the inventors of the present invention have conducted further trial production research on the above diamond rotary dresser, and as a result, forming grooves on the exposed surface of the diamond grain and dividing the projected end face or the flattened exposed end face of the diamond grain, They discovered that it was not necessary to do it all over the surface on which the dresser worked. For example, in the dressing of a grindstone having a shoulder, a groove is formed only on the surface of the surface on which the dresser acts to dress the shoulder of the grindstone, which burns hard. Alternatively, in the area where dressing is required for grinding stones, where precision is particularly required, the amount of truing of the diamond layer is large and the flat area of the diamond grains increases, resulting in reduced sharpness. To form Forming grooves only in the necessary parts in this way is the most effective in manufacturing and using the dresser.
  • the dresser according to the present invention similarly to the grindstone, relatively large coarse superabrasive grains can be used, so that the holding force of the holding layer is strong, and the superabrasive grains due to grinding are less likely to be lost or dropped. Also, in the dresser of the present invention, the sharpness and precision of the dresser can be improved because the number of effective abrasive grains is increased with respect to the diameter and concentration of the abrasive grains used.
  • the grooves can be formed in a regular or irregular shape like a grid by irradiating a laser beam on the surface on which the dresser acts, so that the number of grooves, the spacing between grooves, By selecting the angle at which the grooves intersect, it is possible to provide a dresser with improved sharpness and precision. In particular, by forming grooves only on the shoulders of the grindstone and on the parts where dressing is required for precision, it is possible to reduce the resistance value and the occurrence of vibration during dressing without causing end face burning during dressing. .
  • the superabrasive lapping plate according to the present invention solves the conventional problem by changing from processing using loose abrasives to processing using fixed abrasives. Processing with fixed abrasive By doing so, the generation of sludge is extremely reduced, it is possible to work in a clean environment, and it is possible to maintain the high-precision lapping surface of the lapping plate for a long period of time, and to improve the efficiency of lapping work Can be. For this reason, grooves are formed in the diamond grains fixed to the diamond wrap platen of the present invention. That is, the diamond grains sticking out of the surface of the binder layer serving as the holding layer of the diamond wrap platen are fixed to the exposed surface of the diamond grains sticking out or almost flush with the surface of the holding layer. A groove is formed by irradiating the surface with a laser beam, and the abrasive surface of the diamond grains is divided.
  • the superabrasive tool instead of forming a groove by irradiating the exposed surface of the superabrasive with a laser beam to divide the abrasive surface of the superabrasive, the superabrasive is exposed.
  • a laser beam By irradiating the surface with a laser beam, one or more holes are formed.
  • the diameter and the depth of the hole are preferably 20 ⁇ m or more, and more preferably the diameter of the hole is 50 ⁇ m or more and the depth of the hole is 30 ⁇ m or more.
  • a hole is formed at the exposed surface of the holding layer holding the superabrasive grains and at the boundary between the exposed surface of the superabrasive grains and the exposed surface of the holding layer.
  • the exposed surface or the protruding surface from the holding layer is processed into a flat surface by using coarse abrasive particles having a relatively low concentration, and one or two pieces are formed on the flat surface.
  • coarse abrasive particles having a relatively low concentration By forming the above hole and the peripheral edge of the hole acts as a cutting edge, it is possible to increase the effective number of abrasive grains as if it were a grinding surface using super-abrasive grains with high concentration. Wear. If the superabrasives used are prismatic and the protruding surface is flat from the beginning, or if the superabrasives have extremely uniform exposed surfaces, flattening such as truing Processing may be omitted. Of course, holes may be formed in the exposed surface without flattening the exposed surface of the superabrasive.
  • the diameter of the hole formed on the exposed surface of the superabrasive is at least 50 // m and the depth is at least 30 // m, it is necessary to make the periphery of the hole act as a cutting edge. It is necessary considering the emission of powder. It is preferable to use relatively large superabrasive grains having substantially uniform grain sizes. Further, the particle size of the superabrasive particles is preferably 50 / im or more. If a particle size in the range of # 20 to # 40 is selected, a better effect can be obtained. Further, the holes are formed not only in the exposed portions of the superabrasive grains but also in the exposed portions of the retaining layer and at the boundary between the exposed portions of the superabrasive grains and the exposed portions of the retaining layer.
  • the holes are formed on the entire surface of the exposed portion of the superabrasive layer including the holding layer, and the opening area of the hole is at least 20% of the total surface area of the exposed portion of the superabrasive layer. It is preferred that
  • the peripheral edge of the holes acts as a cutting blade or a razor blade, and the same effect as increasing the number of effective abrasive grains can be obtained. Therefore, the accuracy of the surface to be processed can be improved. Also, since the holes are isolated from each other, it is presumed that the presence of these holes is unlikely to cause damage to the superabrasive tool due to the pressing force during grinding.
  • FIG. 1 is a perspective view showing a cup-type grindstone to which the present invention is applied.
  • FIG. 2 is a sectional view showing a cup-type grindstone to which the present invention is applied.
  • FIG. 3 is a perspective view showing a straight grinding wheel to which the present invention is applied.
  • FIG. 4 is a sectional view showing a straight-type grindstone to which the present invention is applied.
  • FIG. 5 is a perspective view showing a rotary dresser to which the present invention is applied.
  • FIG. 6 is a sectional view showing a rotary dresser to which the present invention is applied.
  • FIG. 7 is a sectional view showing a rotary dresser having a shoulder to which the present invention is applied.
  • FIG. 8 is a sectional view showing a rotary dresser having an end face to which the present invention is applied.
  • FIG. 9 is a perspective view showing a lap surface plate to which the present invention is applied.
  • FIG. 10 is a sectional view showing a lap surface plate to which the present invention is applied.
  • FIG. 11 is a schematic view showing laser processing when a laser beam is irradiated in the normal direction to the grinding surface of the cup-type grindstone to which the present invention is applied.
  • FIG. 12 is a schematic view showing a laser beam applied when a laser beam is irradiated in a normal direction on the working surface or the grinding surface of a straight grindstone or a rotary dresser to which the present invention is applied.
  • FIG. 13 is a schematic view showing laser processing when a laser beam is irradiated in a tangential direction and a normal direction on a grinding surface of a straight-type grindstone or a rotary dresser to which the present invention is applied.
  • FIG. 14 is a schematic diagram showing laser processing when a laser beam is irradiated in a normal direction on a grinding surface of a lap surface plate to which the present invention is applied.
  • FIGS. 15 to 22 are partial cross-sectional views showing various forms of grooves or holes formed in exposed portions where superabrasive grains protrude from the holding layer according to the present invention.
  • FIGS. 23 to 30 are partial cross-sectional views showing various forms of grooves or holes formed on the flat surface in which the exposed surface of the superabrasive grains projecting from the holding layer is flattened according to the present invention. It is.
  • FIGS. 31 to 38 are partial cross-sectional views showing various forms of grooves or holes formed when the exposed surface of the superabrasive and the exposed surface of the holding layer are in the same plane according to the present invention. You.
  • FIGS. 39 to 41 are partial plan views showing the arrangement of grooves formed on the exposed surface of the superabrasive grains and / or the exposed surface of the holding layer according to the present invention.
  • FIG. 42 is an enlarged partial cross-sectional view showing a protruding end surface of a superabrasive in the superabrasive grindstone of Example 1.
  • FIG. 43 is a photomicrograph showing the state of the polished surface of the superabrasive grindstone of Example 1 after the lapping process and before the laser beam irradiation.
  • FIG. 44 is a micrograph showing the state of the polished surface of the superabrasive grindstone of Example 1 after being irradiated with a laser beam.
  • FIG. 45 is a view showing a longitudinal side surface of the superabrasive grindstone of Example 2 before truing is performed.
  • FIG. 46 is a cross-sectional view showing a superabrasive layer used for explaining a manufacturing process of the superabrasive grindstone of Example 2.
  • FIG. 47 is a cross-sectional view showing a superabrasive layer used for explaining the manufacturing process after FIG. 46 in the superabrasive grinding wheel of Example 2.
  • FIG. 48 is a diagram showing the relationship between the particle size of superabrasive grains and the number of effective abrasive grains between the conventional superabrasive grindstone and the superabrasive grindstone according to the present invention.
  • FIG. 49 is a partial cross-sectional view showing a part of the superabrasive layer in the superabrasive stone of Example 3.
  • FIG. 50 is a photomicrograph showing the state of the polished surface of the superabrasive grindstone of Example 3.
  • FIG. 51 is a diagram showing an embodiment in which dressing is performed using a diamond rotary dresser in the sixth embodiment.
  • FIG. 52 is a diagram showing a form in which dressing is performed using a diamond rotary dresser in the seventh embodiment.
  • FIG. 53 is a partial cross-sectional view showing a cross section of a diamond layer in the diamond wrap plate of Examples 9 and 10.
  • FIG. 54 is a diagram showing a comparison of the processing speed of the rubbing processing between Examples 9 and 10 and the conventional example.
  • FIG. 55 is a partial cross-sectional view showing a cross section of a superabrasive layer of a superabrasive tool having holes formed therein.
  • FIG. 56 is a micrograph showing the surface of the superabrasive layer of the superabrasive tool with holes formed therein.
  • a super-abrasive grain grinding wheel 101 has a superabrasive grain layer 10 formed on one end face of a cylindrical base 20.
  • the cup type superabrasive grindstone 101 has a mounting shaft hole 30. By rotating around the mounting shaft hole 30, the surface of the rotating superabrasive layer 10 of the cup-type superabrasive grinding wheel 101 comes into contact with the workpiece to perform grinding.
  • the cup-type superabrasive grindstone 101 has a diameter D and a width of a grinding surface.
  • the straight type superabrasive grindstone 102 has a cylindrical base 2.
  • the super-abrasive layer 10 is formed on the outer peripheral surface of No. 0.
  • the grinding is performed by the grinding surface of the rotating superabrasive layer 10 contacting the workpiece. It is.
  • the straight superabrasive grindstone 102 has a diameter D and a thickness T.
  • a superabrasive grain dresser for example, a diamond mouth dresser 103 has a superabrasive grain layer 10 formed on the outer peripheral surface of a base 20.
  • the superabrasive dresser 103 By rotating the superabrasive dresser 103 around the mounting shaft hole 30, the surface of the superabrasive layer 10 comes into contact with the surface of the grindstone, thereby performing a dressing process on the grindstone. As shown in FIG. 6, the superabrasive dresser 103 has a diameter D and a thickness T.
  • the superabrasive dresser 104 has a superabrasive layer 10 formed on the outer peripheral surface of a base 20.
  • the base 20 has a shoulder 21, and a superabrasive layer 10 is also formed on the shoulder 21.
  • the grooves are formed only in the superabrasive layer 10 located at the shoulder 21 according to the present invention.
  • the superabrasive dresser 105 has a superabrasive layer 10 formed on the outer peripheral surface of a base 20.
  • the base 20 has end faces 22 and 23 facing each other.
  • a superabrasive layer 10 is also formed on these end faces 22 and 23.
  • the grooves according to the present invention are preferably formed only in the superabrasive layer located at shoulders 22 and 23.
  • the super-abrasive dressers 104 and 105 shown in FIGS. 7 and 8 also have mounting shaft holes 3
  • the surface of the rotating superabrasive grain layer 10 comes into contact with the grinding surface of the grinding wheel, and the dressing process of the grinding wheel is performed.
  • the superabrasive lapping plate according to the present invention is, for example, a diamond lapping platen 106 in which a superabrasive grain layer 10 is fixed on one end surface of a base 20. You. By rotating the superabrasive lap surface plate 106 around the mounting shaft hole 30, the lapping process can be performed while applying pressure to the surface of the rotating superabrasive layer 10 and rubbing the workpiece. Done. As shown in FIG. 10, the superabrasive lapping plate 106 has a diameter D and a thickness T.
  • any of the above superabrasive tools diamond, cubic boron nitride (CBN), or the like is used as the superabrasive constituting the superabrasive layer 1 ⁇ .
  • a metal material is used for the base 20, and in particular, iron or the like is used for the base 20 of the superabrasive lapping plate 106.
  • a laser beam 50 is irradiated from the laser processing apparatus 40 onto the surface of the superabrasive grain layer 10 in the normal direction.
  • the super-abrasive layer 10 of the straight-type super-abrasive grindstone 102 and the super-abrasive dressers 10 3, 10 4 and 10 5 The laser beam 50 may be irradiated from the tangential direction.
  • the surface of the superabrasive layer 10 is irradiated with a laser beam 50 from the normal direction. I do.
  • the superabrasive layer 10 is composed of superabrasive grains 11, a nickel plating layer 16 holding superabrasive grains 11, and nickel plating. And a bonding material layer 17 for bonding the layer 16 to the base 20.
  • the superabrasive grains 11 are held by the filter material layer 18 and are directly fixed to the base 20. .
  • the exposed portions of the superabrasive grains 11 are not flattened and are in an uneven state.
  • a plurality of grooves 12 are formed on the exposed surface of superabrasive grains 11.
  • grooves 12 are formed on the surface of the superabrasive grains 11 that are not flattened, and the surface of the nickel plating layer 16 or the brazing material layer 18 as a holding layer is formed.
  • a groove 13 is formed in the groove.
  • holes 14 are formed on the unplanarized exposed surface of superabrasive grains 11.
  • holes 14 are formed in the exposed surface of the superabrasive grains 11 that are not planarized, and the nickel plating layer 16 or the brazing material layer 18 as a holding layer is formed.
  • a hole 15 is formed in the surface of the.
  • the exposed portion of the superabrasive grains 11 has a flat surface 19. 9 1 7 Various forms of grooves or holes for PT / JP97 03369 will be described.
  • the superabrasive layer 10 is composed of the superabrasive 11 and the nickel plating layer 1 holding the superabrasive 11. 6 and a bonding material layer 17 for bonding the nickel plating layer 16 to the base 20.
  • superabrasive layer 10 holds superabrasive grain 11 and superabrasive grain 11 And a brazing material layer 18 that is directly fixed to the base 20.
  • grooves 12 are formed only on flat surface 19 of superabrasive grain 11.
  • FIGS. 25 and 26 not only are grooves 12 formed in the flat surface 19 of the superabrasive grains 11 but also a nickel plating layer 16 or a brazing material layer 18 as a holding layer.
  • Grooves 13 are also formed on the surface of.
  • holes 14 are formed in the flat surface 19 of the superabrasive grain 11.
  • Fig. 29 and Fig. 3 ⁇ not only are the holes 14 formed in the flat surface 19 of the superabrasive grains 11, but also the eccentric layer 16 as a holding layer or brazing material layer Holes 15 are also formed on the surface of 18.
  • superabrasive layer 10 is composed of superabrasive particles 11 and a nickel plating layer holding superabrasive particles 11. 16 and a bonding material layer 17 for fixing the nickel plating layer 16 to the base 20.
  • the superabrasive layer 10 holds the superabrasive grains 11, the superabrasive grains 11 and the base. And a filter material layer 18 fixed to the base 20.
  • grooves 12 are formed on flat surface 19 of superabrasive grain 11.
  • 12 is formed on the flat surface 19 of the superabrasive grain 11, and the groove 13 is formed on the nickel plating layer 16 or the brazing material layer 18 as a holding layer.
  • holes 14 are formed in flat surface 19 of superabrasive grain 11.
  • a hole 14 is formed on the flat surface 19 of the superabrasive grain 11 and a hole 15 is formed on the nickel plating layer 16 or the brazing material layer 18 as a holding layer. Formed on the surface.
  • the groove 12 is formed only on the exposed surface of the superabrasive grain 11.
  • the multiple grooves 12 are formed so as to be orthogonal to each other, and are arranged in a grid pattern.
  • the pitch P between the grooves is set to a predetermined value, the laser beam is emitted. Irradiation forms a grid-like groove.
  • a large number of grooves 12 extending in a grid pattern in the vertical and horizontal directions are formed not only on the exposed surface of the superabrasive grains 11 but also on the nickel layer as a holding layer. It is formed so as to extend also to the surface of the brazing layer 16 or the brazing material layer 18.
  • a large number of grooves 12 extending obliquely and intersecting with each other are formed on the exposed surface of the superabrasive grains 11 and the nickel plating layer 16 or the brazing material layer 18 as a holding layer. It may be formed to extend to the surface. Also in this case, the distance between the grooves extending in parallel with each other, ie, the groove pitch P, is set to a predetermined value, and the laser beam is relatively moved at a predetermined interval to irradiate the laser beam. A groove is formed.
  • a force-up type superabrasive grain 101 as shown in FIGS. 1 and 2 was produced.
  • the diameter D of the grinding wheel is 1 2 5 mm, the width W t of the abrasive surface was 7 mm.
  • Diamond particles having a particle size of # 18Z20 (particle size: 800-10000 / zm) were used as superabrasive particles.
  • the super-abrasive layer 10 was formed by holding and fixing the diamond particles on the base of the grindstone by nickel plating. After that, as shown in Fig. 23, the surface of the superabrasive grains 11 protruding from the nickel plating layer 16 was subjected to a ringing process using a diamond wheel of grain size # 120 (to remove a thickness of about 30 ⁇ m). Then, a flat surface 19 was formed.
  • Fig. 43 shows a micrograph (magnification: 40x) showing the state after the grinding of the ground surface.
  • the surface of the superabrasive layer 10 was irradiated with a laser beam 50 from a laser application device 40 in the normal direction.
  • the irradiation conditions of the laser beam on the polishing surface were such that the input value was 5 kHz and the output was 2.5 W using a YAG laser.
  • the irradiation pitch of the laser beam was 50 ⁇ m.
  • the grooves are formed by laser beam irradiation, as shown in Fig. 1, by applying a force-up type superabrasive grindstone 101 to the mounting shaft hole 30 at a peripheral speed of 250 to 500 mm / min. This was done by rotating.
  • the cross section of the groove 12 formed on the flat surface 19 of the superabrasive grain 11 as described above is shown in FIG.
  • the pitch P between the grooves is 50 ⁇ ⁇ ⁇ ⁇
  • the width W of the groove is 30 ⁇ m, and the length W of the flat part between the grooves.
  • the length L of the flat surface was 800 to 100 ⁇ m, and the depth H of the groove was 14 to 18 ⁇ m.
  • Fig. 44 a micrograph (magnification: 40x) showing the arrangement of grooves formed by irradiating the grinding surface with a laser beam after tooling is shown in Fig. 44.
  • Fig. 44 those that appear black have regular grooves formed by laser beam irradiation on the flat surface of diamond particles, and a flat portion of 20 ⁇ m square that forms a vivid cross-cut blade is formed. However, some of the ground parts are observed.
  • the grid-like portion serves as a cutting blade or a rake blade, and small chips are generated as in a grindstone using fine grains, and grinding proceeds.
  • the chips and the grinding fluid are filled with a gap between the protruding portion of the superabrasive grains 11 and the nickel plating layer 16 as a holding layer and the flatness of the superabrasive grains 11. It flows smoothly through the space of the groove 12 formed in the surface 19.
  • the superabrasive grains 11 are coarse grains and are firmly held deep and firmly in the nickel plating layer 16, there is no hindrance caused by falling off.
  • the depth and width of the grooves, the number of grooves, the presence or absence of crossing of the grooves, and whether the crossing angle between the grooves is the same on the left and right can be freely selected depending on the work, grinding conditions, and the like.
  • the superabrasive grain of the present invention has a special configuration of the grinding surface, so that the superabrasive grains need to be one layer.
  • the protruding end surface of the superabrasive is not flat, a laser beam is applied after forming a flat surface by performing tooling. Therefore, it is not always necessary that the superabrasive grains have a substantially uniform particle size, or that the protruding amounts thereof are not uniform.
  • the grain size of the super-abrasive grains is not substantially uniform, the number of super-abrasive grains that cannot form a groove on the flat surface of the super-abrasive grains will increase, and the desired effect will be sufficiently obtained. Can not be.
  • the protruding amount of the superabrasive grains is almost uniform, it is easy to apply the tooling.Also, even if the removal amount by tooling is small, it may be necessary to apply the tooling in some cases. There is an effect that a predetermined groove can be formed without the need. Therefore, as proposed by the inventors of the present invention in Japanese Patent Application Laid-Open No. Hei 8-229298, a grindstone in which the protruding amount of superabrasive grains is uniform is manufactured, and a laser beam is applied to the grindstone. It is preferable to perform groove processing.
  • FIG. 45 is a view showing a longitudinal side surface of the straight superabrasive grindstone 102 before truing is performed.
  • FIGS. 46 and 47 are cross-sectional views showing a superabrasive layer used to explain a manufacturing process for making the protruding amounts of the superabrasive grains substantially uniform.
  • a manufacturing method for equalizing the protruding amounts of the superabrasive grains will be described with reference to these drawings.
  • super abrasive grains 11 composed of diamond particles with a particle size of # 30/40 are applied to the surface of a carbon mold 60 by a conductive adhesive such as a synthetic resin containing copper powder. Spray 1 layer with layer 70 and keep.
  • the mold 60 was directly or heated to cure the resin, and then immersed in a copper plating solution to form a copper plating layer 80 having a thickness of 60 to 100 ⁇ m. Next, the plating solution was changed to form a nickel plating layer 16 having a thickness of 1.5 mm on the copper plating layer 80 and completely covering the superabrasive grains 11.
  • Copper pyrophosphate 75-: I 05 g / ⁇
  • Nickel sulfate 250 g ⁇
  • Nickel chloride 45 g /
  • the mold 60 is removed. Destroyed and removed.
  • the thickness of the bonding material layer 17 is 2 mm; the force can be increased or decreased as needed.
  • the mold 5 may be removed before the nickel plating layer 16 and the base 20 are joined.
  • the entire base 20 or only the plated portion was immersed in a copper etching solution to dissolve and remove the copper plated layer 80.
  • the etching was performed by electrolytic etching, but may be performed by chemical etching.
  • the Nigel plating layer 16 does not dissolve, the nickel plating layer 16 holds the superabrasive grains 11 firmly, and only the predetermined thickness of the copper plating layer 80 is reduced. By being completely dissolved and removed, a substantially uniform protrusion amount of the superabrasive grains 11 is secured. If the resin of the conductive adhesive remains on the surface of the copper-plated layer 80, the resin may be removed by thermal decomposition or isolating.
  • the method of bonding the superabrasive grains 11 to the mold 60 using a conductive adhesive was described.
  • superabrasive grains such as diamond particles were suspended in a plating solution.
  • the superabrasive grains may be bonded to the surface of the mold together with the formation of the adhesive layer.
  • the superabrasive grains 11 composed of diamond grains having a grain size of # 30/40 (average grain size of 62 ⁇ m) have a nickel plating layer 1 with a thickness of about 1.5 mm. It protruded almost uniformly from the surface of No. 6 at a height of 60 to 100 / m.
  • Nickel plating layer 16 and bonding material layer 17 that integrally joins the outer edge of steel base 20 was a layer made of a low melting point alloy with a thickness of about 2 mm.
  • the nickel plating layer 16 sufficiently adhered and fixed the superabrasive grains 11 without loosening the periphery of the superabrasive grains 11.
  • the diameter D of the straight-type superabrasive grindstone 102 is 70 mm
  • the diameter D of the mounting shaft hole 30 is D.
  • the thickness T was 22 mm.
  • Example 1 As in Example 1, a flat surface was formed directly or on the grinding surface of the straight type superabrasive grindstone manufactured as described above, and then the grooves were formed by irradiating a laser beam. Formed on the protruding surface of the abrasive grains. In this case, as shown in FIG. 13, the irradiation direction of the laser beam 50 may be either normal or tangential to the superabrasive layer.
  • the shape accuracy, roundness and surface roughness of the surface of the die 60 where the superabrasive particles 11 are bonded by the copper plating layer 80 are not changed, and the uniformity of the protrusion height of the superabrasive particles 11 is maintained. Reflected once. Therefore, it is important to pay attention to the material of the die 60, the selection of the die processing, the surface finish of the die, and the like.
  • the fixed surface of the mold 60 is ground and the shape accuracy and roundness are less than 1.5 ⁇ m and the surface roughness is less than 1.5 ⁇ m
  • the protruding height of superabrasive grains 11 was almost uniform.
  • 4 8 is a conventional superabrasive grindstone, Example 2 in accordance therefor; ⁇ 3 with fabricated superabrasive grindstone superabrasive grains having a grain size (/ m) and effective number of abrasive grains (Z cm 2 ) Is a graph on a logarithmic scale showing the relationship with.
  • the square black dots are the measurement results indicating the relationship between the particle size of the superabrasive grains and the number of effective abrasive grains before forming the grooves according to the second embodiment.
  • the square black spots are measured on a superabrasive grindstone in a state where the protruding amounts of the superabrasive grains are made substantially uniform and the height of the protruding end surface is made uniform.
  • the protrusion amount of the superabrasive grains is uniformed and the height of the protruding end face is made uniform, and then the grooves are formed by irradiating the laser beam according to the present invention, the protruding end face as shown by a large circle black dot It can be seen that the number of effective abrasive grains has increased due to the division.
  • the black dots in the small circles were measured on a conventional superabrasive wheel (conventional wheel). "After tooling" was measured on the superabrasive grindstone before forming the grooves in Example 2, and "Laser processing” was measured on the superabrasive grindstone after forming the grooves according to Example 2. Are shown.
  • the superabrasive grindstone of the present invention uses coarse superabrasive grains to be equivalent to fine grains. Alternatively, a higher effective number of abrasive grains can be realized. This means that it is possible to increase the abrasive grain space including the tip pocket of each superabrasive grain, which contributes to improving the grinding accuracy and the sharpness of the grindstone.
  • a cup-type superabrasive grain 101 as shown in FIGS. 1 and 2 was produced.
  • the diameter D of the power-up-type ultrasonic grinder 1 0 1 was 1 2 5 mm, the width of the abrasive surface W t is 7 mm.
  • Diamond particles having a particle size of # 18Z20 (particle size of 800 to 100 ⁇ m) were used as superabrasive particles. The diamond particles were used as a holding layer and fixed to the grindstone base by a nickel plating layer.
  • the exposed surface of the diamond particles was smoothed with a diamond grindstone having a particle size such that the protruding surface of the fixed diamond particles was flush with the surface of the nickel plating layer to form a flat surface. Then, while rotating the grindstone at a peripheral speed of 250 to 50 Omm / min, the flat surface is irradiated with a laser beam 50 from the normal direction as shown in Fig. 11 to obtain super abrasive grains. Grooves were formed to connect the flat surface of the diamond particles as the surface and the surface of the nickel plating layer as the holding layer.
  • the laser beam used was a YAG laser.
  • the laser beam irradiation conditions were an input value of 5 kHz and an output of 2.5 W. In this way, as shown in FIG. 33, grooves 12 were formed on flat surface 19 of superabrasive grains 11, and grooves 13 were also formed on the surface of nickel plating layer 16.
  • the inter-groove pitch P is 50 ⁇ m and parallel to the same direction.
  • a grid-like groove having 16 to 20 extending grooves was formed.
  • FIG. 50 corresponds to FIG. 40 and is a micrograph (magnification: ⁇ 160) showing the arrangement of grooves formed by irradiating a laser beam onto the trued grinding surface after the tooling. .
  • the flat surface of the diamond particles is seen in pale black color, and the diamond particles are regularly irradiated with the laser beam. It can be observed that a large groove is formed continuously on the surface of the nickel plating layer which looks white.
  • edges of these grooves act as cutting edges or rake edges, causing grinding to proceed as small chips as grinding stones using fine diamond particles.
  • the diamond particles are coarse particles and are held firmly deeply and firmly in the nickel plating layer as a holding layer, there is no trouble caused by falling off.
  • the depth and width of the grooves, the number of grooves, the presence or absence of crossing between grooves, and whether the crossing angle between grooves should be the same on the left and right can be freely selected depending on the workpiece and grinding conditions.
  • the superabrasive grindstone of the present invention has a special configuration of the grinding surface, so that the superabrasive needs to have one layer.
  • the laser beam is irradiated after forming the flat surface by the threading as in the above-described embodiment. They do not need to be aligned.
  • the particle diameters are not substantially uniform, the number of superabrasive grains that cannot form a groove on a flat surface increases, and the predetermined action and effect cannot be obtained for + minutes.
  • the diameters of the superabrasive grains are substantially uniform, it is easy to perform the truing process, and even if the removal amount by the truing process is small, and in some cases, the truing process is not performed. There is an effect that a predetermined groove can be formed.
  • a diamond mouth one-piece dresser was manufactured as a straight superabrasive dresser 103 as shown in FIGS. 5 and 6, a diamond mouth one-piece dresser was manufactured.
  • the diameter D of the diamond rotary dresser was 80 mm, and the thickness T was 25 mm.
  • grooves were formed in the superabrasive layer 10.
  • Diamond particles having a particle size of 50/60 (particle size: 260 to 320 / m) were used as the superabrasive particles 11.
  • the superabrasive grains 11 were held by a nickel plating layer 16 as a holding layer, and were joined to a steel base 20 via a joining material layer 17 made of a low melting point alloy.
  • the groove 12 was formed on the flat surface 19 of the superabrasive grain 11, and the groove 13 was formed on the surface of the nickel plating layer 16.
  • Grooves 11 and 13 were formed as follows.
  • the protruding exposed surface of superabrasive grain 1 1 is smoothed by a diamond grindstone to a thickness of 3 ⁇ m, so that the flat surface 19 of the superabrasive grain 11 and the surface of the nickel plating layer 16 are flush with each other. Processed like did.
  • a groove was formed by irradiating the surface of the superabrasive layer 10 with a laser beam 50 from a tangential direction.
  • the laser beam used was a YAG laser.
  • the output of the laser beam was 40W.
  • the grooves were formed by irradiating a laser beam while rotating the dresser at a peripheral speed of 250 to 50 OmmZmin.
  • the shape of the groove thus formed was as follows.
  • the groove pitch was 0.5 mm
  • the groove width was 0.03 to 0.08 mm
  • the groove depth was 0.03 mm.
  • a conventional grinding wheel mounted on a horizontal axis surface grinder was dressed under the following conditions using the diamond opening dresser.
  • a horizontal axis surface grinder made by Okamoto Machine Tool was used as the grinder.
  • the drive unit of the Diamond Rotary Dresser was a drive unit SGS-50 manufactured by Osaka Diamond Doe Co., Ltd.
  • the shape of the conventional grindstone to be dressed had an outer diameter of 300 mm and a thickness of 10 mm, and was WA 80 K (model of JIS).
  • the dressing conditions were a peripheral speed ratio of 0.28 (down dress), a cutting speed of 1.9 mmZmin, and a cutting amount of 4 mm.
  • the resistance at the time of dressing was compared with that of a conventional diamond rotary dresser without grooves.
  • the dressing resistance value of the conventional diamond-shaped one-piece dresser without a groove was 4.0 N / 10 mm in the normal direction and 0.5 NZ 10 mm in the tangential direction.
  • the dressing resistance value of the diamond rotary dresser manufactured in this example was 2.5 N / 1 Omm in the normal direction and 0.25 N / 1 Omm in the tangential direction.
  • the diamond rotary dresser of the present invention which has been subjected to groove processing by laser beam irradiation, has a resistance value at the time of dressing of at least 40 to 50 ° / 0 lower than that of the conventional product, and does not generate vibration. Smooth dressing was possible. The precision of the dressed whetstone was also very good.
  • a diamond rotary dresser was manufactured as a straight superabrasive dresser 103 as shown in FIGS.
  • the diameter D of the diamond rotary dresser was 80 mm and the thickness T was 25 mm.
  • Grooves as shown in Fig. 24 were formed on the exposed surface of the superabrasive layer.
  • Grooves 12 were formed on flat surface 19 of superabrasive grains 11 composed of diamond grains.
  • the superabrasive grains 11 were fixed to the base 20 via a brazing material layer 18 made of an Ag—Cu—Ti alloy.
  • Example 5 the particle size of the superabrasive grains 11, the shape of the groove 12, and the shape and material of the base 20 were the same as those of the Example 4, except that the superabrasive grains were added to the base 20. 11 is directly fixed by the brazing material layer 18.
  • This adhesion is achieved by applying a paste-like brazing material to the surface of the base material 18, placing the superabrasive grains 11 by hand, placing it in a furnace, heating it to melt the brazing material, and then cooling it. It was done by Therefore, in Example 4, the exposed surface of the superabrasive grains 11 is almost flush with the surface of the nickel plating layer 16 (see FIG. 33), but in Example 5, the exposed surface of the superabrasive grains 11 is exposed. The surface protrudes from the surface of the brazing material layer 18 as a holding layer. The end faces of the protruding superabrasive grains 11 were flattened by smoothing, and a laser beam was irradiated on the flat faces in the same manner as in Example 4 to form grooves. In this case, the truing process can be omitted.
  • This brazed diamond rotary dresser has a larger protrusion amount of diamond particles than the diamond rotary dresser of Example 4 and has an extremely large abrasive grain space, so that swarf removal during dressing is smooth. It has the excellent characteristics of not only low dressing resistance but also no clogging.
  • the tip of the blade of the superabrasive grain 11 having each diamond particle force is increased to a plurality, that is, the number of effective abrasive grains is increased. Therefore, sharpness and accuracy are also improved.
  • the required time was able to be shortened by about 30% or more in comparison with the dressing using the conventional product.
  • the activated Ag-Cu-Ti-based brazing filler metal used as the brazing filler metal in Example 5 is excellent in that the diamond and the steel constituting the base can be easily and strongly fixed.
  • the hardness of the brazing material is as low as about HV100, the brazing material is eroded from the surface one after another by the contact of the chips, even if the diamond particles do not wear during dressing. Has dropped the diamond particles There is concern that the service life of diamond rotary dressers will be shortened rapidly.
  • the brazing material in order to prevent the brazing material from being eroded from the chips, it is very effective to include hard particles in the brazing material to improve the wear resistance of the brazing material.
  • hard particles child 1/2 or less of the particle diameter of the diamond of the diamond particles used in the mouth one Tali dresser, CBN, S i C abrasives, lambda 1 2 ⁇ 3 abrasive grains, of such WC particles, one By including the above in the brazing material, erosion of the brazing material can be prevented.
  • the content ratio of these hard particles is used in the range of 10 to 50% by volume based on the volume of the brazing material, and 30 to 50 volumes. / 0 is more preferable.
  • a nickel plating layer can be formed by a so-called reverse plating method and a groove is provided in the nickel plating layer in the same manner as in the second embodiment.
  • the superabrasive layer according to the present invention can also be formed by sintering a metal powder or an alloy powder known as a metal bond and forming a groove in a material formed as a holding layer. .
  • a dresser having a form in which superabrasive grains are fixed using a brazing material can achieve the highest dressing accuracy and has low dressing resistance.
  • a single dresser in which superabrasive grains are fixed using a brazing filler metal layer has a long life, and the manufacturing time can be shortened.
  • a diamond rotary dresser was manufactured as a superabrasive dresser 104 as shown in FIG.
  • Diamond particles having a particle size of # 50/60 (particle size: 260 to 320 / m) were used as superabrasive particles.
  • a nickel plating layer was used as the holding layer, and the superabrasive grains were held in a single layer using a so-called inversion plating method as shown in Example 2 and joined to a steel base.
  • the dresser is rotated at a peripheral speed of 250 to 50 It was formed by irradiating a laser beam while rotating at 0 mm / min.
  • the laser beam 50 was applied tangentially to the superabrasive layer.
  • the laser beam used was a YAG laser.
  • the output of the laser beam was 40 W.
  • the groove 12 is formed on the flat surface 19 of the superabrasive grain 11, and the groove 1 3 Was formed on the surface of the nickel plating layer 16.
  • the groove pitch is a 0.3 mm threaded groove, the groove opening width is 0.03 to 0.08 mm, and the groove depth is 0.03 mm.
  • micrograph (magnification: 200 times) showing the arrangement of the grooves formed in a grid pattern by laser beam irradiation as described above was the same as that shown in FIG.
  • the dresser 104 was arranged and the grinding wheel 200 was dressed as shown in FIG.
  • the workpiece 300 was ground with a grinding wheel 200 having an outer diameter of 300 ⁇ 11 (JIS model), and the grinding wheel 200 was dressed with a diamond rotary dresser 104 having an outer diameter of 120 mm.
  • a superabrasive layer 10 is formed on the outer peripheral surface of the base 20 of the diamond rotary dresser 104. Grooves are formed in shoulder 21 of superabrasive layer 10 as described above.
  • the outer peripheral shape of the grindstone 200 is formed corresponding to the stepped portions 301 and 302 of the work 300. Arrows shown in FIG.
  • the conventional whetstone to be dressed was WA80K in the model of JIS.
  • the dressing conditions were a peripheral speed ratio of 0.3 (down dress), a cutting speed of 1. Omm / min, and a cutting amount of 4 mm.
  • the resistance value at the time of dressing in Example 6 was compared with that of a conventional diamond mouth one-piece dresser without groove processing.
  • the dressing resistance of the conventional diamond rotary dresser without grooves was 6.0 N / 10 mm in the normal direction and 0.8 N / 1 Omm in the tangential direction.
  • the dressing resistance value of the diamond rotary dresser of Example 6 was 4.0 NZl 0 mm in the normal direction and 0.4 NZ 10 mm in the tangential direction.
  • a diamond rotary dresser was manufactured as a superabrasive dresser 105 having an outer peripheral shape as shown in FIG. Fabrication of the dresser 105 and formation of the groove were performed in the same manner as in Example 6. The grooves were formed by irradiating the laser beam from the tangential direction only to the end faces 22 and 23 of the dresser 105 shown in FIG. A schematic cross section of the superabrasive layer in which the grooves are formed is as shown in FIG. In order to confirm the performance of the dresser manufactured in this way, the dresser manufactured in Example 7 was used to dress the conventional grindstone under the same conditions as in Example 6, as shown in FIG. A diamond rotary dresser was arranged as a 0 mm superabrasive dresser 105.
  • Work 300 is ground with a conventional grindstone 200 such as WA or GC (JIS model) with an outer diameter of 3.55 mm, and the grindstone 200 is ground with a diamond rotary dresser 1 with a diameter of 150 mm. Dressed at 0-5.
  • a superabrasive layer 10 is formed on the outer peripheral surface of the base 20 of the diamond rotary dresser 105. As described above, grooves are formed only on the end faces 22 and 23 of the superabrasive layer 10 by the laser beam.
  • the dressing resistance value of the diamond opening dresser of the seventh embodiment was also reduced as compared with the dressing resistance value of the conventional diamond rotary dresser without grooves.
  • the diamond-based dresser with grooves formed by laser beam irradiation according to the present invention has a resistance value at the time of dressing that is reduced by at least 30 to 50% as compared with a conventional product, and generates vibration. And smooth dressing was possible. The precision of the dressed whetstone was also very good.
  • Diamond rotary dressers 104 and 105 having the same shape as in Examples 6 and 7 were manufactured by changing the holding layer from a nickel plating layer to a brazing material layer.
  • FIG. Grooves 12 are formed on flat surface 19 of superabrasive grains 11 made of diamond particles.
  • the superabrasive grains 11 are held by a brazing material layer 18 made of an Ag—Cu—Ti alloy and fixed to the base 20.
  • the particle diameter of the diamond particles, the shape of the groove 12, the shape and the material of the base 20 are the same as in Examples 6 and 7, except that the diamond particles are used as the superabrasive particles 11 on the base 20. That is, it was directly fixed by the material layer 18.
  • the brazed diamond rotary dresser manufactured in this manner has a larger protrusion amount of the diamond particles than in Examples 6 and 7 and an extremely large abrasive space as described above. It has excellent features that powder is smoothly removed and that not only low dressing resistance but also no clogging occurs.
  • the tip of the blade of each superabrasive grain 11 is increased to a plurality, that is, the number of effective abrasive grains is increased. The accuracy is improved.
  • the activated filter material of the g-Cu-Ti system used as the brazing material in Example 8 is excellent in that it can easily and strongly adhere the diamond to the steel constituting the base.
  • the hardness of the activated brazing filler metal is as low as about HV100, even if the diamond particles do not wear during grinding or dressing, this brazing filler layer can be removed from the surface by the contact of cuttings. There is a concern that the erosion will occur one after another, eventually dropping the diamond particles and shortening the life of the diamond rotary dresser.
  • hard particles in the brazing material to improve the wear resistance of the brazing material.
  • hard substance particles 1/2 or less of the particle diameter of Daiyamondo particles used to form the abrasive surface diamond, CBN, among S i C, A 1 2 0 3, hard particles of WC or the like, one or more Erosion can be prevented by including the brazing material in the brazing material.
  • the content ratio of these hard particles is 10 to 50 volumes based on the volume of the filter medium. Used within the range of / 0 , 30 to 50 volumes. / 0 is more preferable.
  • a nickel plating layer is formed by a reverse plating method, and a groove is formed in a superabrasive layer, or a metal powder or an alloy powder known as a metal bond is sintered.
  • the diamond rotary dresser of the invention can be manufactured.
  • a brazed diamond rotary dresser in which superabrasive grains are fixed by a brazing material layer as described above has the highest dressing accuracy and the lowest dressing resistance.
  • it is possible to shorten the dresser manufacturing time by selectively flattening only predetermined portions of the dressing action surface, for example, only the shoulders and end faces, and selectively performing groove processing.
  • the dresser of the present invention since the dresser of the present invention has a special configuration of the dressing action surface, it is necessary that the superabrasive grains have one layer.
  • the surface of the superabrasive layer is not flat, a laser beam is applied after forming a flat surface by tooling, so the grain size of the superabrasive particles is not necessarily uniform. Well ,.
  • the diameters of the superabrasive grains are not substantially uniform, the number of superabrasive grains that cannot form a groove on a flat surface increases, and the desired effect cannot be obtained. Les ,.
  • the particle diameters of the superabrasives are almost uniform, it is easy to perform the truing process, and in some cases, even if the removal amount by the truing process is small, the A predetermined groove can be formed without performing processing.
  • a diamond lapping plate was manufactured as a superabrasive lapping plate 106 as shown in FIG. 9 and FIG.
  • the diameter D of the diamond wrap plate 106 was 30 Omm, and the thickness T was 3 Omm. Only one superabrasive layer was fixed on the surface of the base 20.
  • grooves 12 are formed on the flat surface 19 of superabrasive grains 11 composed of diamond particles having a particle size of # 30/40 (particle size: 43 to 65 ⁇ ). Formed.
  • the superabrasive grains 11 were fixed on the base 20 by the brazing material layer 18.
  • the superabrasive grains 11 are fixed by applying a paste-like brazing material to the base 20, placing diamonds as superabrasive grains into a furnace, heating, melting the brazing material, and then cooling. And was done by. Therefore, the protruding end face of superabrasive grain 11 protruded from the surface of brazing filler metal layer 18 as a holding layer.
  • the tip of the protruding superabrasive grains 11 was flattened by tooling, and a laser beam was irradiated on the flat surface to form a groove.
  • the grooves were formed by irradiating the surface of the superabrasive layer 10 with a laser beam 50 in the normal direction, as shown in FIG.
  • the laser beam used was a YAG laser.
  • the power of the laser beam was 2.5 W.
  • grooves 12 arranged as shown in FIG. 39 were formed.
  • the pitch P between the grooves is 25 ⁇ m
  • the width W of the groove is 20 ⁇ m
  • the depth H of the groove is 20 ⁇ m
  • the length of the flat portion between the grooves is W.
  • the diamond lapping plate manufactured in this way has high efficiency and high accuracy without supplying loose abrasive unlike the conventional spheroidal graphite-iron lapping plate because the diamond particles themselves cut the workpiece. Lapping is now possible. That is, the diamond wrap surface plate of the present invention has an excellent feature that almost no sludge is generated. Sludge contains only a small amount of chips from the workpiece when the workpiece is rubbed. Since the generation of sludge is extremely low in this way, not only is it possible to work in a clean environment, but also there is less pollution.
  • the diamond lapping plate of the present invention has diamond particles on its surface as super-abrasive grains, it has extremely excellent wear resistance and uniform hardness as compared with the conventional spheroidal graphite-iron lapping plate.
  • the ability to maintain the flatness of the surface plate is also very high. Therefore, high flatness and high parallelism can be stably provided to the workpiece to be wrapped over a long term.
  • the diamond lapping plate of the present invention does not have any defect corresponding to the structural defect which is the most serious problem in the spheroidal graphite-iron lapping plate. Therefore, scratches due to defects do not occur.
  • Fig. 54 shows the result of rubbing a silicon wafer by attaching this diamond drap plate to a lapping machine.
  • the rubbing processing shown in FIG. 54 was performed under the following processing conditions.
  • the pressure was 200 g / cm 2
  • the rotation speed was 40 rev / min
  • the working fluid was water
  • the working fluid supply was 10 cc / min
  • the workpiece was a silicon wafer having a diameter of 50 mm.
  • a black triangle plot indicated as “lap surface plate 1” indicates the measurement results obtained with the diamond lap surface plate of Example 9.
  • the processing speed with the diamond wrap plate of Example 9 was about three times that of the conventional spheroidal graphite-iron wrap plate using alumina with a particle size of 5 ⁇ m as loose abrasive. .
  • the surface roughness of the silicon wafer after the lapping was also good.
  • Example 9 In the same manner as in Example 9, a diamond wrap surface plate as shown in FIGS. 9 and 10 was produced.
  • the difference from the diamond wrap plate of Example 9 is that in FIG. 53, the pitch P between the grooves is 35 ⁇ m and the length W of the flat portion between the grooves. was 15 ⁇ m.
  • the other shapes and dimensions of the diamond wrap plate, the method of forming the grooves and the dimensions were the same as in Example 9.
  • FIG. 54 shows the results.
  • a black square plot indicated as “lap surface plate 2” indicates the measurement results obtained by the diamond lap surface plate of Example 10.
  • the processing speed with the diamond lapping plate of Example 10 was the same as that of the conventional spheroidal graphite-iron lapping plate using alumina with a particle size of 12 ⁇ m as loose abrasive. About three times the speed. The surface roughness of the silicon wafer after the lapping was also good.
  • a force-up type superabrasive grain 101 as shown in FIGS. 1 and 2 was manufactured.
  • the diameter D of the grinding wheel was 125 mm and the width of the grinding surface was 7 mm.
  • a flat surface was formed by removing the tip of the superabrasive grains by a thickness of 30 ⁇ m with a diamond grindstone having a grain size of # 120. Thereafter, as shown in FIG. 11, the surface of the superabrasive layer 10 was intermittently irradiated with a laser beam in the normal direction to form holes in the flat surface of the superabrasive.
  • the laser beam used was a YAG laser. The output of the laser beam was 2.5 W.
  • the cross section of the superabrasive layer including the holes thus formed is as shown in FIG.
  • the hole dimensions are shown in Figure 55.
  • the hole diameter was 50 ⁇ m
  • the hole depth H was 30 to 50 ⁇ m
  • the spacing between holes 14 was 100 ⁇ m. That is, a hole 14 was formed at an intersection of a pitch of 100 ⁇ m in a grid pattern.
  • a diamond rotary dresser as a superabrasive dresser 103 as shown in FIGS. 5 and 6 was manufactured.
  • the diameter D of the dresser was 80 mm, and the thickness T was 20 mm.
  • Diamond particles having a particle size of # 50/60 (average particle size: 300 ⁇ m) were used as superabrasive particles.
  • the superabrasive grains were fixed to the base 20 by a so-called reverse plating method as described in Example 2.
  • a hole was formed on the flat surface of the superabrasive grains by irradiating the superabrasive layer 10 with a laser beam intermittently in the vertical direction.
  • the laser beam used was a YGA laser.
  • the power of the laser beam was 2.5 W.
  • a superabrasive layer 10 having holes 14 as shown in FIG. 27 was formed.
  • the hole diameter was 50 ⁇ m
  • the hole depth was 30 to 50 ⁇ m
  • the pitch between the holes 14 was 100 ⁇ m.
  • the performance was confirmed using the diamond rotary dresser manufactured as described above.
  • a horizontal axis surface grinder was used as a grinder.
  • Drive of rotary dresser The equipment used was made by Osaka Diamond Industry Co., Ltd. (model SGS-50).
  • WA 80 K JIS type was used as the grinding wheel to be dressed, and the outer diameter of the grinding wheel was 300 mm and the width was 15 mm.
  • the dressing conditions were a peripheral speed ratio of 0.3 and a cutting speed of 2 mm / min.
  • the dressing resistance value is 20 to 30 as compared with the conventional single-piece dresser. /. Reduced.
  • the exposed portion of the superabrasive grains and the nickel plating layer serving as the holding layer that constitutes the superabrasive layer are straddled over the boundary between the exposed portions and the exposed portions of the holding layer.
  • a hole may be formed.
  • FIG. 56 is a micrograph (magnification: 50 ⁇ ) showing the arrangement of holes formed in the superabrasive layer according to another embodiment different from the above embodiment.
  • the super-abrasive grains appear in the black frame appearing in a peninsula shape from the top, and the holes appear in the super-abrasive grains in black dots. Holes are also formed on the surface of the nickel plating layer. Therefore, there are cases where holes 14 are formed only on the flat surface 19 of the superabrasive grain 11 as shown in FIG. 27, and on the flat surface 19 of the superabrasive grain 11 as shown in FIG. 29. Holes 14 are formed, and holes 15 may also be formed on the surface of nickel plating layer 16.
  • the tool By irradiating a laser beam to the superabrasive layer of a superabrasive tool whose sharpness has been reduced by use to form holes, the tool can be reused.
  • a diamond mouth piece dresser 103 as shown in Fig. 5 and Fig. 6 was manufactured.
  • the dresser had a diameter D of 10 O mm and a thickness T of 15 mm.
  • Dresser using each of the diamond particles 1 PT JP97 / 03369 Made.
  • a nickel plating layer was used as the holding layer. After fixing the superabrasive grains on the base so that the exposed surface of the superabrasive grains protrudes from the surface of the nickel plating layer, use a diamond wheel of grain size # 120 at the tip of the superabrasive grains. The crane was applied.
  • a laser beam 50 is irradiated from the tangential direction to the superabrasive layer as shown in Fig. 13 to form a thread-shaped groove.
  • a laser beam 50 is irradiated from the tangential direction to the superabrasive layer as shown in Fig. 13 to form a thread-shaped groove.
  • the groove depth was 20 m
  • the groove width was 20 ⁇ m.
  • a cylindrical grinder made by Toyoda Machine was used as the grinder.
  • the conventional grindstone used WA60K (model of JIS), had an outer diameter of 300 mm and a thickness of 5 mm.
  • the rotational speed of the conventional grindstone was set at 180 rpm and the peripheral speed was set at 28 m / sec.
  • the rotational speed of the diamond rotary dresser was set to 200 rpm and the peripheral speed was set to 1 mZ sec.
  • the cutting speed was 1 / mZ rev with respect to the conventional grindstone, and the cutting amount was 0.02 mm.
  • the dressing out was set to 1 sec.
  • Table 1 shows the dressing resistance measurement results.
  • the superabrasive tool according to the present invention is capable of dressing a grindstone using a superabrasive such as diamond, cubic boron nitride (CBN), a conventional grindstone attached to a grinder, or the like. It is useful as a super-abrasive dresser used for polishing, a super-abrasive lapping plate used for lapping of silicon wafers, etc., and is particularly suitable for high-precision machining.
  • a superabrasive dresser used for polishing
  • a super-abrasive lapping plate used for lapping of silicon wafers, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

明細書 超砥粒工具とその製造方法 技術分野
この発明は、 一般的には超砥粒を結合材等によつて保持した超砥粒層を有する 超砥粒工具とその製造方法に関するものである。 より特定的には、 この発明は、 超砥粒砥石、 超砥粒ドレッサー、 超砥粒ラップ定盤などの超砥粒工具とその製造 方法に関するものである。 超砥粒砥石としては、 ダイヤモンド、 立方晶窒化硼素 ( C B N) 等の超砥粒を用いた砥石が举げられる。 超砥粒ドレッサーは、 研削盤 等に取付けられた、 WA、 G C ( J I Sの型式) 等の在来砥石またはビトリファ ィ ドポンド C B N砥石等を高精度にドレッシングするのに利用されるダイヤモン ドロ一タリ ドレッサーが挙げられる。 超砥粒ラップ定盤としては、 シリコンゥェ ノ、、 セラミックス、 光学ガラス、 超硬合金、 サーメッ 卜、 金属材料などのラッピ ング加工に用いられるダイヤモンドラップ定盤が挙げられる。 背景技術
まず、 超砥粒工具の 1種である超砥粒砥石としては、 ダイヤモンド、 C B Nな どの超砥粒を、 メタル、 レジンまたはビトリフアイ ドで結合したものが知られて いる。 また、 超砥粒を単層に保持した形の超砥粒砥石としては、 超砥粒を電気め つき法によって基台 (台金) の上に保持して固定したものが知られている。 この ような超砥粒砥石は電着超砥粒砥石と呼ばれ、 通常、 超砥粒が互いに接触する程 度に台金の上に固着されているため、 この砥石を用いて行なわれる研削の目的に よっては集中度が高すぎる場合がある。 この対策としては、 (1 ) 砥石の砥面に 研削溝を設ける、 (2 ) 台金に局部的に絶縁塗料を塗るなどの方法で局部的に電 気めつきを妨げ、 砥面に超砥粒のない部分を局部的に形成する、 等の方法で研削 液の流れを良好にしたり、 切粉を排除するための手段が採用されている。
一方、 めっき層の厚みは、 超砥粒の保持力を確保するために超砥粒の直径の 1 / 2以上とされている。 上述のような電着超砥粒砥石に対して、 超砥粒がろぅ材層によって台金の上に 固着された超砥粒砥石が知られている。 たとえば、 ダイヤモンド砥粒については、 ニッケルとコバルトとクロムとからなる合金、 または銀と銅とチタンとからなる 合金が、 ダイヤモンド砥粒の表面を容易に濡らす特性を利用して、 この合金を用 いてダイヤモンド砥粒を台金の上に直接固着するという、 いわゆるろう付け方法 も知られている。
さらに、 高精度でかつ高品位の加工を達成するための砥石として、 微細なダイ ャモンド粒子を用いたポーラスレジンボンド砥石が提案されている。 この砥石で はポーラス部によってチップポケッ卜の増加等が図られている。
被研削面の面粗さは、 砥石の単位表面積当りの有効砥粒数によって決定される とされている。 しカゝし、 砥粒の粒径と集中度に対して有効砥粒数をどのようにし て把握するかは必ずしも明確ではなく、 砥粒の粒径の大小によって次のような問 題があった。
比較的粒径の大きな砥粒、 すなわち粗粒を用いた砥石では、 砥粒の保持力が強 く、 砥粒の脱落が少なく、 研削液の流れも良好である。 しかしながら、 被研削面 の精度は低く、 その面粗さが大きい。 一方、 比較的粒径の小さい砥粒、 すなわち 細粒を用いた砥石では、 被研削面の精度を高く し、 その面粗さを小さくすること は可能である。 しかしながら、 砥粒の保持力が弱く、 砥粒の脱落が多く、 研削液 の流れも悪い。 このため、 細粒を用いた砥石では、 研削性能が低く、 砥粒が少し 摩耗するだけで研削不可能となり、 砥石の寿命が短い。
次に、 超砥粒工具の 1種であるダイヤモンド口一タリ ドレッサーとしては、 た とえば特開昭 5 9 - 4 7 1 6 2号公報に開示されているように、 ダイヤモンド砥 粒を円筒形の基台の外周面に単層で固着したものがよく知られている。
また、 別のダイヤモンドロータリ ドレッサーの例としては、 特公平 1— 2 2 1 1 5号公報に開示されているものが知られている。 これらのダイヤモンドロータ リ ドレッサーは、 作用する幅が広く、 高精度に WA、 G C ( J I Sの型式) 等の 在来砥石または C B N砥石等をドレッシングするのに用いられる。 ダイヤモンド 粒を密に基台の上に固着し、 ダイヤモンド粒の先端部をツル一イングしてドレツ シングに作用する面を平坦面にしてドレッシング精度を向上させる手段がダイヤ モンドロータリ ドレッサーにおいて採用されている。
ところが、 ダイヤモンド粒の先端部に平坦面が形成されることにより、 ダイヤ モンド口一タリ ドレッサーの切れ味が低下する。 このため、 WA、 G C等の在来 砥石または C B N砥石等をドレッシングする際のドレッシング抵抗が大きくなる。 その結果、 ドレッシング時に振動が発生し、 その振動が砥石の整形精度、 すなわ ち砥石への転写精度に悪影響を及ぼす等の問題があった。
また、 超砥粒工具の 1種として超砥粒ラップ定盤がある。 最近、 半導体装置に おける高集積化や金属加工、 セラミックス加工における超精密化などの急速な技 術革新により、 ラッビング加工において被加工物の平面度と平行度の高精度化が 要求されている。 この加工に用いられるラッピングマシンの精度だけでなく、 ラ ップ定盤に対する精度、 特性などの要求も高度になってきている。
ラッビング加工とは、 ラップ定盤と工作物の問にラップ液に混合した遊離砥粒 を供給して、 ラップ定盤と工作物に圧力を加えながらすり合わせ、 遊離砥粒の転 動作用と引つ搔き作用により工作物を削り、 高精度な表面を得る加工法をいう。 従来のラッピング加工に用いられるラップ定盤は踌鉄で作られている。 たとえ ば、 シリコンウェハのラッピング加工に多く用いられるものに球状黒鉛铸鉄製ラ ップ定盤がある。 ラップ定盤には、 長期間にわたって平面の精度維持が可能なこ と、 材料が均一で硬さにむらがないこと、 工作物の表面にスクラッチを発生させ る原因となる铸造欠陥がないこと、 砥粒の保持能力があること等が求められる。 以上の要件を満たすため、 ラップ定盤の材料として铸鉄がよく用いられている。 ところが、 従来のラッピング加工に際しては、 遊離砥粒を多く消費するため、 使用済みの遊離砥粒と切粉とラップ液の混合物、 すなわちスラッジが大量に発生 し、 作業環境の悪化と公害の発生が大きな問題となっていた。
したがって、 この発明の 1つの目的は、 被研削面の精度を向上させることがで き、 超砥粒の保持力が大きく、 超砥粒の欠損や脱落が少なく、 かつ研削液の流れ も良好な超砥粒砥石とその製造方法を提供することである。
また、 この発明のもう 1つの目的は、 ドレッシング抵抗を低减させることがで き、 それによつてドレッシング時の振動発生を防止し、 ドレッシング精度を向上 させることが可能な超砥粒ドレッサーとその製造方法を提供することである。 さらに、 この発明の別の目的は、 スラッジの発生を少なくすることができ、 高 精度でかつ高能率のラッビング加工を施すことが可能な超砥粒ラップ定盤とその 製造方法を提供することである。
要約すれば、 この発明の目的は、 加工精度を向上させることが可能な、 超砥粒 砥石、 超砥粒ドレッサー、 超砥粒ラップ定盤などの超砥粒工具とその製造方法を 提供することである。 発明の開示
この発明に従った超砥粒工具は、 基台と、 基台の上に形成された超砥粒層とを 備える。 超砥粒層は、 超砥粒と、 その超砥粒を保持しかつ基台の上に固着する保 持層とを含む。 保持層から露出した超砥粒の表面には凹部が形成されている。 凹部は溝、 穴等のあらゆる形態の超砥粒表面から窪んだ部分を含む。
この発明の超砥粒工具の好ましい実施の形態によれば、 保持層の表面にも凹部 が形成されている。 さらに好ましくは、 超砥粒の表面に形成された凹部と保持層 の表面に形成された凹部とは連なつて形成されている。
また、 この発明の超砥粒工具の好ましい別の実施の形態によれば、 凹部は、 保 持層から突出した超砥粒の表面に形成されている。 さらに好ましくは、 この突出 した超砥粒の表面は平坦面を有し、 その平坦面に凹部が形成されている。
さらに、 この発明の超砥粒工具のもう 1つの実施の形態によれば、 露出した超 砥粒の表面は平坦面を有し、 その平坦面が保持層の表面とほぼ同一平面を形成し ている。 しかし、 超砥粒の平坦面は、 保持層の表面から少なくとも 1 0 μ m以上 突出しているのが好ましい。 したがって、 ここで 「ほぼ同一平面」 とは 1 0 /i m 程度の表面高さのずれを含むものとする。 この実施の形態の場合にも、 保持層の 表面に囬部が形成されているのが好ましい。 さらに好ましくは、 超砥粒の表面に 形成された凹部と保持層の表面に形成された凹部とは連なつて形成されている。 この発明の超砥粒工具において保持層は、 好ましくはめつき層を含み、 または ろう材層を含む。
この発明が対象とする超砥粒工具としては、 超砥粒砥石、 超砥粒ドレッサ一、 超砥粒ラップ定盤等が挙げられる。 この発明に従った超砥粒工具の製造方法は、 その表面が部分的に露出するよう に超砥粒を保持しかつ固着する保持層を基台の上に形成する工程と、 その保持層 から露出した超砥粒の表面にレーザビームを照射することにより、 凹部を形成す る工程とを備える。
好ましくは、 この発明の超砥粒工具の製造方法は、 保持層の表面にレーザビー ムを照射することにより、 凹部を形成する工程をさらに備える。 さらに好ましく は、 超砥粒の表面と保持層の表面に凹部を形成する工程は、 連続してレーザビ一 ムを照射することにより、 保持層から露出した超砥粒の表面と保持層の表面とに 連なって凹部を形成することを含む。
この発明の超砥粒工具の製造方法の別の実施の形態によれば、 凹部を形成する 工程は、 保持層から突出した超砥粒の表面にレーザビームを照射することにより、 凹部を形成することを含む。
さらにこの発明の超砥粒工具の製造方法のもう 1つの実施の形態によれば、 保 持層から露出した超砥粒の表面をほぼ均一に平坦化させる工程をさらに備え、 レ —ザビームを照射することにより、 凹部を形成する工程は、 超砥粒の表面を平坦 化させた後、 その表面にレーザビームを照射することを含む。 この場合に、 好ま しくは、 超砥粒の表面を平坦化させる工程は、 露出した超砥粒の表面が保持層の 表面とほぼ同一平面を形成するように超砥粒の表面を平坦化させることを含む。 さらに好ましくは、 この発明の超砥粒工具の製造方法は、 保持層の表面にレーザ ビームを照射することにより、 凹部を形成する工程をさらに備え、 超砥粒の表面 と保持層の表面に凹部を形成する工程は、 連続してレーザビ一ムを照射すること により、 超砥粒の平坦化させられた表面と保持層の表面とに連なつて凹部を形成 することを含む。
好ましくは、 この発明の超砥粒工具の製造方法において保持層を形成する工程 は、 めっき層を形成すること、 またはろう材層を形成することを含む。
めっき層を含む保持層を形成する工程は、 以下の工程を含むのが好ましい。
( i ) 型の表面に超砥粒を導電性接着剤層によって付着させる工程。
( ϋ ) 超砥粒が付着した型を第 1の金属のめっき液に浸漬して、 超砥粒の平 均粒径の 1 Ζ 2未満の厚みで部分的に超砥粒の表面を被覆する第 1の金属のめつ き層を形成する工程。
( iii ) 第 1の金属のめっき層の上に超砥粒を完全に被覆する厚みで第 1の金 属と異なる第 2の金属のめっき層を形成する工程。
( iv) 接合材層を介在して基台に第 2の金属のめっき層を固着する工程。 ( V ) 超砥粒から型を除去する工程。
(vi ) 第 1の金属のめっき層をエッチングにより除去して超砥粒の表面を部 分的に均一に露出させる工程。
上述の特徴を備えたこの発明の超砥粒工具においては、 工具の種類別に以下の 作用効果を達成することができる。
まず、 超砥粒砥石では、 切れ味や加工精度が良好になり、 被研削面の精度が向 上し、 その面粗さを小さくすることができるとともに、 砥粒の保持力を高めるこ とができ、 それにより砥粒の欠損や脱落を少なくすることができ、 また研削液の 流れも良好にすることができる。
超砥粒ドレッサ一では、 ドレッシング抵抗を低減させることができ、 切れ味や 精度が向上するとともに、 ドレッシング時の振動の発生を防止させることができ、 ドレッシング精度を向上させることができる。 特に超砥粒ドレッサーでは、 砥石 の肩部や端部をドレッシングする超砥粒の表面のみに凹部を形成することにより、 あるいは被加工物において整形精度の要求される部分のみに対応して超砥粒の表 面に凹部を形成することにより、 砥石の形状に応じてドレッシング精度を高めた 超砥粒ドレッサ一を構成することができる。
また、 超砥粒ラップ定盤では、 従来の遊離砥粒を用いた加工に代えて、 固定砥 粒を用いて加工が行なわれるので、 スラッジの発生を少なくすることができ、 さ らに高精度な平面を維持することが可能となり、 能率の高いラッビング加工を行 なうことができる。
具体的には、 この発明に従った超砥粒砥石の第 1の特徴は、 従来の細粒を用い た砥石と粗粒を用いた砥石のそれぞれの長所を兼ね備え、 砥粒の集中度を高める ことなく有効砥粒数を増加させることが可能な、 全く新しい着想に基づくもので ある。 それを実現する方法として、 本発明では、 砥粒層における超砥粒の突出部 を溝によって分割し、 複数の砥粒端面を設ける。 この方法によれば、 相対的に集 中度の低い、 大きな超砥粒の粗粒を用い、 その保持層としての結合材からの突出 部を平坦面に加工し、 その平坦面の上に溝を設けて超砥粒の砥面を分割して複数 の砥粒端面を形成し、 あたかも集中度の高い細粒の砥面のように有効砥粒数を増 大することができる。 用いる超砥粒が角柱形で、 突出部に平坦面が最初から存在 するもの、 または突出部の高さが極めて均一に揃っている場合には、 ツル一イン グなどの平坦化加工を省略することができる。 また、 溝は複数本交差して設け、 あたかも碁盤の目のように形成されるのが好ましい。
なお、 保持層としての結合材からの超砥粒の突出部を平坦面に加工しないで超 砥粒の突出した表面に溝を形成することにより、 鋭利な切れ刃部分を形成するこ ともできる。 また、 すべての超砥粒の突出した表面に溝を形成する必要はなく、 溝が形成されていなレ、超砥粒が存在していてもよい。 部分的にッルーィングなど の平坦化加ェを施した超 f 粒の突出部に溝を形成してもよい。
比較的大きな粒径の超砥粒を用レ、る場合には、 その粒径がほぼ揃つたものを用 いるのが好ましく、 超砥粒の粒径は 5 0 μ m以上、 より好ましくは、 # 2 0〜# 4 0の範囲内の粒度の超砥粒を用いることにより、 より良好な効果を得ることが できる。
超砥粒を保持する保持層としてめつき層を用いる場合には、 超砥粒の突出量を ほぼ均一に揃えて砥石を製作することにより、 超砥粒の突出面を平坦に加工する のを省略することが可能となる。 また、 平坦化された超砥粒の突出面に形成され る溝も、 レーザビームの照射方法を調整することにより、 その深さと幅、 複数の 溝が碁盤目状に交差する角度等を選択することができる。 これにより、 砥石の切 れ味と切粉の排除とを良好にし、 研削精度を高めることができる。
超砥粒を保持する保持層として用いられる結合材は、 メタル、 ビトリフアイ ド の他、 レジンも用いることができる。 超砥粒層が単層で形成されるので、 結合力 の高いメタルを結合材の材料として用いるのが好ましい。 メタルは、 電気めつき またはろう付けによって形成するのが好ましい。
超砥粒の突出面を平坦に加ェする場合には、 上記の結合材によつて超砥粒を基 台の上に保持した後、 超砥粒の突出端をツル一イングにより、 その高さをほぼ均 一に揃えて平坦面を形成し、 各砥粒の平坦面にレ一ザビームを照射して溝を形成 P P 7 する。
上述のように、 比較的粒径の大きな超砥粒によって砥面を形成するので、 本来 ならば、 このような超砥粒の砥面を備える砥石で研削すれば、 被加工面に比較的 大きな表面粗さが生ずる。 しかし、 本発明では、 超砥粒の突出高さをほぼ均一に 揃えて砥粒の先端部に平坦面を形成し、 あるいは超砥粒の突出面を平坦化させな い状態で、 その平坦面または突出面にレ一ザビームを照射して溝を形成している ので、 この平坦面または突出面において多数の砥粒端面が形成される。 これらの 砥粒端面が切れ刃またはさらえ刃として働き、 有効砥粒数を増大させる。 このよ うに構成された超砥粒砥石を用いることにより、 被加工面の精度を向上させるこ とができ、 その表面粗さを小さくすることができる。
一方、 砥面を形成する超砥粒の粒径が大きいので、 上述のような電気めつきに よる超砥粒の基台への固着、 またはニッケル一コバルト一クロムを主体とする合 金または銀一チタンー銅を主体とする合金を溶融させることによる、 すなわちろ う付けによる超砥粒の基台への固着により、 安定して強固な砥面を形成すること ができる。 ろう付けによって超砥粒を基台に固着した方が、 ニッケルめっき等の 電気めつきによつて超砥粒を基台に固着した場合に比べて、 超砥粒を保持する保 持力を高めることができる。 したがって、 ろう付け法によって超砥粒を固着した 場合、 超砥粒の突出量を大きくすることができる。 その結果、 ろう付け法によれ ば、 いわゆるチップポケットを大きくすることができる。 たとえば、 ニッケルめ つきによって超砥粒を固着する場合には、 超砥粒の粒径の 5 0 %以上をニッケル めっきによって保持する必要があるのに対し、 ろう付け法によれば、 超砥粒の粒 径の 2 0〜 3 0 %をろう材層によって保持するだけで十分な保持力を超砥粒に与 えることができる。
また、 粒径の大きな超砥粒の突出部と保持層の表面とによつて形成される超砥 粒層の表面部分の空間は、 突出部に形成された溝によって拡大される。 研削によ る切粉は、 これらの溝による切れ刃の分割によって小さくなるので、 研削液の流 れと切粉の排除が円滑になり、 切れ味が向上する。
以上のように保持層の表面より突出した超砥粒の表面に溝を形成することによ り、 有効砥粒数と超砥粒層の表面部分の空間とを増大させることができることを 述べたが、 超砥粒の露出表面と保持層の表面とがほぼ同一の平面で平坦化された 砥石においても、 レ一ザビームの照射方法を調整することにより、 溝の深さと幅、 複数の溝によって形成される碁盤目状の交差の角度等を選択することにより、 有 効砥粒数を増大させることができる。 この場合、 使用によって砥面が平坦になつ た砥石を再生利用する場合に、 溝を超砥粒の露出表面と保持層の表面とに形成す ることによつて有効砥粒数を増大させることができ、 所定の研削性能が得られる までに砥石を再生することができる。 また、 上記のように構成された砥石は、 必 要により使用に際し、 または使用の都度ドレッシングを施すことができる。
以上説明したように、 本発明に従った超砥粒砥石では、 比較的大きな粗粒の超 砥粒を用いることができるので、 保持層中への埋没深さの絶対値が微粒の超砥粒 を用いた砥石よりも深い。 したがって、 保持層による結合度が強く、 研削による 超砥粒の欠損や脱落が少なレ、。
超砥粒の突出面または平坦化された露出面には溝が設けられ、 あたかも微粒の 超砥粒が用いられているようにほぼ均一に揃つた多数の砥粒端面が溝によって分 割されて形成されているので、 超砥粒の粒径 ·集中度に対して有効砥粒数が増加 する。 そのため、 砥石の切れ味を良好にし、 被研削面の精度を高めることができ る。 用いる超砥粒の粒径を揃え、 さらに保持層の表面からの超砥粒の突出高さを 揃えた場合には、 それによつて有効砥粒数が増加し、 さらに超砥粒の突出面にレ 一ザビームを照射することによって溝を形成することにより、 有効砥粒数を増加 させることができる。 さらに、 超砥粒の突出面または平坦化された露出面にレー ザビームを照射することにより、 碁盤目のような規則的な、 または不規則な溝を 形成し、 溝の本数、 溝間の問隔、 溝が交差する角度等を選択することにより、 切 れ味、 研削精度にさらに優れた超砥粒砥石を提供することができる。 したがって、 本発明の砥石は、 たとえば、 電子 ·光学部品などの高品位加工において従来用い られていた遊離砥粒を用いた加工に代えて、 固定砥粒を用いた加工に変更するの を促進することができる。
本発明に従った超砥粒ドレッサーでは、 たとえばダイヤモンドロータリ ドレツ サ一に固着されたダイヤモンド砥粒に溝が形成されている。 すなわち、 ダイヤモ ンドロータリ ドレッサーの保持層の表面から突出したダイヤモンド粒の露出表面 に、 または保持層の表面とほぼ同一平面にあるダイヤモンド粒の露出表面に、 レ 一ザビームを照射することにより、 溝を形成し、 ダイャモンド粒の砥面を分割す る。 これにより、 ドレッシング時の抵抗値を低減することができ、 ドレッシング 時の振動の発生を防止するとともに、 ドレッシング精度を一層向上させ、 能率の 高いドレッシング作業を行なうことができる。
本願発明者らは、 上記のダイヤモンドロータリ ドレッサーについてさらに試作 研究を重ねた結果、 ダイヤモンド粒の露出面に溝を形成し、 ダイヤモンド粒の突 出端面または平坦化された露出端面を分割することは、 必ずしもドレッサーの作 用する全表面にわたって行なう必要がないことを発見した。 たとえば、 肩部を有 する砥石のドレッシング等においては、 ドレッサーの作用する表面のうち、 焼け を生じゃすい砥石の肩部をドレッシングするのに作用する表面部分のみに溝を形 成する。 あるいは特に精度の要求される砥石の部分をドレッシングする部分につ いては、 ダイヤモンド層のツルーィング量が多く、 ダイヤモンド粒の平坦部面積 が増加することにより、 切れ味が低下するため、 この部分のみに溝を形成する。 このように必要な部分のみに溝を形成するのがドレッサーの製作上、 使用上最も 効果的である。
本発明に従ったドレッサーにおいても、 砥石と同様に、 比較的大きな粗粒の超 砥粒を用いることができるので、 保持層による結合力が強く、 研削による超砥粒 の欠損や脱落が少ない。 また、 本発明のドレッサーにおいても、 用いた砥粒の粒 径 ·集中度に対して有効砥粒数が増加されているので、 ドレッサーの切れ味と精 度を向上させることができる。 さらに、 溝は、 ドレッサーの作用する面にレーザ ビームを照射して、 碁盤目のような規則的な、 または不規則な形状に形成するこ とができるので、 溝の本数、 溝間の間隔、 溝が交差する角度等を選択することに より、 切れ味と精度とをさらに高めたドレッサーを提供することができる。 特に 砥石の肩部や精度の要求される部分をドレッシングする部分のみに溝を形成する ことにより、 ドレッシング時において端面焼けを生じることなく、 ドレッシング 時の抵抗値と振動の発生も低減することができる。
本発明に従った超砥粒ラップ定盤は、 遊離砥粒を用いた加工から固定砥粒を用 いた加工に変更することにより、 従来の問題を解消する。 固定砥粒を用いて加工 することにより、 スラッジの発生が極めて少なくなり、 クリーンな環境での作業 を可能にし、 さらに長期にわたって高精度なラップ定盤の平面を維持することが 可能であり、 ラッピング加工作業の能率を高めることができる。 このために、 本 発明のダイヤモンドラップ定盤に固着されたダイヤモンド粒に溝が形成されてい る。 すなわち、 ダイヤモンドラップ定盤の保持層としての結合材層の表面から突 出して固着されたダイヤモンド粒の露出表面に、 または保持層の表面とほぼ同一 平面で露出するように固着されたダイヤモンド粒の表面にレーザビームを照射す ることにより溝を形成し、 ダイャモンド粒の砥面を分割する。
また、 この発明に従った超砥粒工具では、 超砥粒の露出表面にレーザビームを 照射することにより溝を形成して超砥粒の砥面を分割する代わりに、 超砥粒の露 出表面にレーザビームを照射することにより、 1個または 2個以上の穴を形成す る。 この穴の直径と深さは 2 0 μ m以上であるのが好ましく、 さらに好ましくは 穴の直径が 5 0 μ m以上、 穴の深さが 3 0 μ m以上である。 さらに、 超砥粒を保 持する保持層の露出表面と、 超砥粒の露出表面と保持層の露出表面との間の境界 とに穴が形成されているのがより好ましい。
上記の構成において、 相対的に集中度の低い、 粗粒の超砥粒を用いて、 保持層 からの露出面または突出面を平坦面に加工し、 その平坦面の上に 1個または 2個 以上の穴を形成して穴の周縁部が切れ刃として作用することにより、 あたかも集 中度の高い細粒の超砥粒を用いた砥面のように有効砥粒数を増大させることがで きる。 用いる超砥粒が角柱形でその突出面が最初から平坦面である場合には、 ま たは超砥粒の露出面の高さが極めて均一に揃っている場合には、 ツルーィング等 の平坦化加工を省略してもよい。 もちろん、 超砥粒の露出面を平坦化させずに穴 を露出面に形成してもよい。
超砥粒の露出面に形成される穴の直径が 5 0 // m以上で深さが 3 0 // m以上で あることは、 穴の周縁部を切れ刃として作用させるために、 また切粉の排出を考 慮すると必要である。 比較的大きな超砥粒は、 その粒径のほぼ均一に揃ったもの を用いるのが好ましい。 また、 超砥粒の粒径は 5 0 /i m以上であるのが好ましく、 # 2 0〜 # 4 0の範囲内の粒度を選択すれば、 より良好な作用効果を得ることが できる。 さらに、 穴が超砥粒の露出部だけでなく、 保持層の露出部と、 超砥粒の露出部 と保持層の露出部との間の境界とに形成されることにより、 一層切れ味の良好な、 切屑の排出に優れた超砥粒工具を得ることができる。 穴は、 保持層を含む超砥粒 層の露出部全面に形成されているのが効果的であり、 穴の開口部面積は超砥粒層 の露出部の全表面積に対して 2 0 %以上であることが好ましい。
穴を超砥粒の露出面に形成した超砥粒工具によれば、 穴の周縁部が切れ刃また はさらえ刃として働き、 有効砥粒数を増大させたのと同様の効果が得られる。 し たがって、 被加工面の精度を向上させることができる。 また、 穴は互いに孤立し ているので、 これらの穴の存在が起因となって、 研削時に加圧力によって超砥粒 工具に破損が生ずる恐れは少ないものと推定される。 図面の簡単な説明
図 1は、 この発明が適用されるカップ型砥石を示す斜視図である。
図 2は、 この発明が適用されるカツプ型砥石を示す断面図である。
図 3は、 この発明が適用されるストレート型砥石を示す斜視図である。
図 4は、 この発明が適用されるストレ一ト型砥石を示す断面図である。
図 5は、 この発明が適用されるロータリ ドレッサーを示す斜視図である。
図 6は、 この発明が適用されるロータリ ドレッサーを示す断面図である。
図 7は、 この発明が適用される肩部を備えたロータリ ドレッサ一を示す断面図 である。
図 8は、 この発明が適用される端面を備えたロータリ ドレッサーを示す断面図 である。
図 9は、 この発明が適用されるラップ定盤を示す斜視図である。
図 1 0は、 この発明が適用されるラップ定盤を示す断面図である。
図 1 1は、 この発明が適用されるカップ型砥石の砥面に対して法線方向にレ一 ザビームを照射する場合のレーザ加工を示す模式図である。
図 1 2は、 この発明が適用されるストレート型砥石またはロータリ ドレッサー の作用面または砥面に対して法線方向にレーザビームを照射する場合のレーザ加 ェを示す模式図である。 図 1 3は、 この発明が適用されるス トレート型砥石またはロータリ ドレッサー の砥面に対して接線方向と法線方向にレーザビームを照射する場合のレーザ加工 を示す模式図である。
図 1 4は、 この発明が適用されるラップ定盤の砥面に対して法線方向にレ一ザ ビームを照射する場合のレーザ加工を示す模式図である。
図 1 5〜図 2 2は、 この発明に従って、 保持層から超砥粒が突出している露出 部に形成される溝または穴の種々の形態を示す部分断面図である。
図 2 3〜図 3 0は、 この発明に従って、 保持層から突出している超砥粒の露出 面が平坦化され、 その平坦面に形成される溝または穴の種々の形態を示す部分断 面図である。
図 3 1〜図 3 8は、 この発明に従って、 超砥粒の露出面と保持層の露出面とが 同一平面にある場合に形成される溝または穴の種々の形態を示す部分断面図であ る。
図 3 9〜図 4 1は、 この発明に従って、 超砥粒の露出面または/および保持層 の露出面に形成される溝の配置を示す部分平面図である。
図 4 2は、 実施例 1の超砥粒砥石において超砥粒の突出端面を示す拡大部分断 面図である。
図 4 3は、 実施例 1の超砥粒砥石において砥面をツル一ィング加工した後、 レ —ザビームを照射する前の砥面の状態を示す顕微鏡写真である。
図 4 4は、 実施例 1の超砥粒砥石においてレーザビームを照射した後の砥面の 状態を示す顕微鏡写真である。
図 4 5は、 実施例 2の超砥粒砥石においてツルーィング加工を施す前の縦断側 面を示す図である。
図 4 6は、 実施例 2の超砥粒砥石の製造工程を説明するために用いられる、 超 砥粒層を示す断面図である。
図 4 7は、 実施例 2の超砥粒砥石において図 4 6の後の製造工程を説明するた めに用いられる、 超砥粒層を示す断面図である。
図 4 8は、 従来の超砥粒砥石と本発明による超砥粒砥石との間で超砥粒の粒径 と有効砥粒数との関係を示す図である。 98 1 7 P 図 4 9は、 実施例 3の超砥粒砥石において超砥粒層の一部を示す部分断面図で ある。
図 5 0は、 実施例 3の超砥粒砥石の砥面の状態を示す顕微鏡写真である。 図 5 1は、 実施例 6においてダイヤモンドロータリ ドレッサーを用いてドレツ シングする形態を示す図である。
図 5 2は、 実施例 7においてダイヤモンドロータリ ドレッサーを用いてドレツ シングする形態を示す図である。
図 5 3は、 実施例 9と 1 0のダイヤモンドラップ定盤においてダイャモンド層 の断面を示す部分断面図である。
図 5 4は、 実施例 9, 1 0と従来との問でラッビング加工の加工速度の比較を 示す図である。
図 5 5は、 穴が形成された超砥粒工具の超砥粒層の断面を示す部分断面図であ る。
図 5 6は、 穴が形成された超砥粒工具の超砥粒層の表面を示す顕微鏡写真であ る。 発明を実施するための最良の形態
まず、 本発明が適用される超砥粒工具の種類について説明する。
図 1に示すように、 力ップ型超砥粒砥石 1 0 1は、 円筒形状の基台 2 0の一方 端面に超砥粒層 1 0が形成されている。 カツプ型超砥粒砥石 1 0 1は取付軸穴 3 0を有する。 この取付軸穴 3 0を中心として回転させることによりカップ型超砥 粒砥石 1 0 1の回転する超砥粒層 1 0の面が被加工物に接触して研削が行なわれ る。 また、 図 2に示すように、 カップ型超砥粒砥石 1 0 1は、 直径 Dを有し、 砥 面の幅 を有する。
また、 図 3に示すように、 ス トレート型超砥粒砥石 1 0 2は、 円筒状の基台 2
0の外周面に超砥粒層 1 0が形成されている。 取付軸穴 3 0を中心にしてス トレ ―ト型超砥粒砥石 1 0 2を回転させることにより、 回転する超砥粒層 1 0の砥面 が被加工物に接触することによって研削が行なわれる。 図 4に示すように、 スト レ一ト型超砥粒砥石 1 0 2は直径 Dと厚み Tを有する。 図 5に示すように、 超砥粒ドレッサーは、 たとえばダイヤモンド口一タリ ドレ ッサー 1 0 3は、 基台 2 0の外周面に超砥粒層 1 0が形成されている。 取付軸穴 3 0を中心にして超砥粒ドレッサ一 1 0 3を回転させることにより、 超砥粒層 1 0の面が砥石の面に接触することにより砥石のドレッシング処理が行なわれる。 図 6に示すように、 超砥粒ドレッサー 1 0 3は直径 Dと厚み Tを有する。
図 7に示すように、 超砥粒ドレッサー 1 0 4は、 基台 2 0の外周面に超砥粒層 1 0が形成されている。 基台 2 0は肩部 2 1を有し、 この肩部 2 1にも超砥粒層 1 0が形成されている。 後述するように、 本発明に従って溝は肩部 2 1に位置す る超砥粒層 1 0のみに形成されるのが好ましい。
また、 図 8に示すように、 超砥粒ドレッサー 1 0 5は、 基台 2 0の外周面に超 砥粒層 1 0が形成されている。 基台 2 0は互いに対向する端面 2 2と 2 3を備え ている。 これらの端面 2 2と 2 3の上にも超砥粒層 1 0が形成されている。 この 発明に従った溝は、 肩部 2 2と 2 3に位置する超砥粒層のみに形成されるのが好 ましい。
なお、 図 7と図 8に示される超砥粒ドレッサー 1 0 4と 1 0 5も、 取付軸穴 3
0を中心として回転することにより、 回転する超砥粒層 1 0の面が砥石の砥面に 接触して砥石のドレツシング処理が行なわれる。
図 9に示すように、 本発明に従った超砥粒ラップ定盤は、 たとえばダイヤモン ドラップ定盤 1 0 6は、 基台 2 0の一方端面の上に超砥粒層 1 0が固着されてい る。 取付軸穴 3 0を中心にして超砥粒ラップ定盤 1 0 6を回転させることにより、 回転する超砥粒層 1 0の面に工作物を圧力を加えてすり合わせた状態でラッピン グ加工が行なわれる。 図 1 0に示されるように超砥粒ラップ定盤 1 0 6は直径 D と厚み Tを有する。
以上のいずれの超砥粒工具においても超砥粒層 1 ϋを構成する超砥粒としては ダイヤモンド、 立方晶窒化硼素 (C B N) 等の砥粒が用いられる。 基台 2 0とし ては金属製の材料が用いられ、 特に超砥粒ラップ定盤 1 0 6の基台 2 0には铸鉄 等が用いられる。
次に、 以上説明した各種の超砥粒工具の超砥粒層の表面に溝または穴を形成す る方法について説明する。 図 1 1に示すように、 力ップ型超砥粒砥石 1 0 1の超砥粒層の表面に対して法 線方向にレーザ加工装置 4 0からレーザビーム 5 0を照射することにより、 超砥 粒層 1 0の表面、 すなわち超砥粒または保持層の露出表面に溝または穴を形成す る。 図 1 2または図 1 3に示すように、 ストレート型超砥粒砥石 1 0 2、 超砥粒 ドレッサー 1 0 3と 1 0 4と 1 0 5の超砥粒層 1 0の表面に溝または穴を形成す る場合には、 レ一ザ加工装置 4 0からレーザビーム 5 0を超砥粒層 1 0の表面に 対して法線方向から照射する。 溝を形成する場合には、 図 1 3に示すようにスト レート型超砥粒砥石 1 0 2、 超砥粒ドレッサー 1 0 3と 1 0 4と 1 0 5の超砥粒 層 1 0に対して接線方向からレーザビーム 5 0を照射してもよレ、。 超砥粒ラップ 定盤 1 0 6の超砥粒層 1 0の表面に溝または穴を形成する場合には、 超砥粒層 1 0の表面に対して法線方向からレーザビーム 5 0を照射する。
以上のように超砥粒層 1 0の表面にレ一ザビームを照射することにより形成さ れる溝または穴の種々の形態について説明する。
図 1 5〜図 2 2に示されるように、 超砥粒 1 1の露出部が突出している場合の 溝または穴の形態について説明する。 図 1 5、 図 1 7、 図 1 9および図 2 1では、 超砥粒層 1 0は、 超砥粒 1 1と、 超砥粒 1 1を保持する二ッケルめっき層 1 6と、 ニッケルめっき層 1 6を基台 2 0に接合する接合材層 1 7とを備えている。 これ に対して、 図 1 6、 図 1 8、 図 2 0および図 2 2に示すように、 超砥粒 1 1はろ ぅ材層 1 8によって保持され、 基台 2 0に直接固着されている。
図 1 5と図 1 6に示すように、 超砥粒 1 1の露出部は平坦化されておらず、 凸 凹の状態である。 超砥粒 1 1の露出表面に複数個の溝 1 2が形成されている。 図 1 7と図 1 8に示すように、 平坦化されていない超砥粒 1 1の表面に溝 1 2が形 成され、 保持層としてのニッケルめっき層 1 6またはろう材層 1 8の表面に溝 1 3が形成されている。 図 1 9と図 2 0で示される実施の形態では、 超砥粒 1 1の 平坦化されていない露出表面に穴 1 4が形成されている。 図 2 1と図 2 2に示す 実施の形態では、 平坦化されていない超砥粒 1 1の露出表面に穴 1 4が形成され、 保持層としてのニッケルめっき層 1 6またはろう材層 1 8の表面に穴 1 5が形成 されている。
図 2 3〜図 3 0に示すように、 超砥粒 1 1の露出部が平坦面 1 9を備えている 9 1 7 P T/JP97 03369 場合の溝または穴の種々の形態について説明する。 図 2 3、 図 2 5、 図 2 7およ び図 2 9の実施の形態では、 超砥粒層 1 0は、 超砥粒 1 1と、 超砥粒 1 1を保持 するニッケルめっき層 1 6と、 ニッケルめっき層 1 6を基台 2 0に接合するため の接合材層 1 7とを備えている。 一方、 図 2 4、 図 2 6、 図 2 8および図 3 0で 示される実施の形態では、 超砥粒層 1 0は、 超砥粒 1 1と、 超砥粒 1 1を保持し かつ基台 2 0に直接固着するろう材層 1 8とを備えている。
図 2 3と図 2 4に示すように、 超砥粒 1 1の平坦面 1 9のみに溝 1 2が形成さ れている。 図 2 5と図 2 6に示すように、 超砥粒 1 1の平坦面 1 9に溝 1 2が形 成されるだけでなく、 保持層としてのニッケルめっき層 1 6またはろう材層 1 8 の表面にも溝 1 3が形成されている。 図 2 7と図 2 8に示すように、 超砥粒 1 1 の平坦面 1 9に穴 1 4が形成されている。 図 2 9と図 3◦に示すように、 超砥粒 1 1の平坦面 1 9に穴 1 4が形成されているだけでなく、 保持層としてのエッケ ノレめつき層 1 6またはろう材層 1 8の表面にも穴 1 5が形成されている。
図 3 1〜図 3 8に示すように、 超砥粒 1 1の露出表面が保持層としての二ッケ ルめっき層 1 6またはろう材層 1 8の表面と同一平面にある場合の溝または穴の 各種形態について説明する。 図 3 1、 図 3 3、 図 3 5および図 3 7で示される実 施の形態では、 超砥粒層 1 0は、 超砥粒 1 1と、 超砥粒 1 1を保持するニッケル めっき層 1 6と、 ニッケルめっき層 1 6を基台 2 0に固着する接合材層 1 7とを 備える。 一方、 図 3 2、 図 3 4、 図 3 6および図 3 8に示される実施の形態では、 超砥粒層 1 0は、 超砥粒 1 1と、 超砥粒 1 1を保持しかつ基台 2 0に固着するろ ぅ材層 1 8とを備える。
図 3 1と図 3 2に示すように、 溝 1 2が超砥粒 1 1の平坦面 1 9に形成されて いる。 図 3 3と図 3 4に示すように、 1 2が超砥粒 1 1の平坦面 1 9に形成さ れ、 溝 1 3が保持層としてのニッケルめっき層 1 6またはろう材層 1 8の表面に 形成されている。 図 3 5と図 3 6に示すように、 穴 1 4が超砥粒 1 1の平坦面 1 9に形成されている。 図 3 7と図 3 8に示すように、 穴 1 4が超砥粒 1 1の平坦 面 1 9に形成され、 穴 1 5が保持層としてのニッケルめっき層 1 6またはろう材 層 1 8の表面に形成されている。
次に、 超砥粒工具の超砥粒層に形成される溝の配置の実施の形態について説明 する。 図 3 9に示される実施の形態では、 溝 1 2は超砥粒 1 1の露出面のみに形 成されている。 多数本の溝 1 2は互いに直交するように形成され、 碁盤目状に配 置されている。 横方向に互いに平行に延びる多数本の溝 1 2、 および縦方向に互 いに平行に延びる多数本の溝 1 2間の距離、 すなわち溝間ピッチ Pが所定の値に 設定されてレーザビームを照射することにより碁盤目状の溝が形成される。 また、 図 4 0に示される実施の形態では、 縦方向と横方向に碁盤目状に延びる 多数本の溝 1 2が超砥粒 1 1の露出面だけでなく、 保持層としての二ッケルめつ き層 1 6またはろう材層 1 8の表面にも延びるように形成されている。
さらに、 図 4 1に示すように、 斜め方向に延びて互いに交差する多数本の溝 1 2が超砥粒 1 1の露出面と保持層としてのニッケルめっき層 1 6またはろう材層 1 8の表面とに延びるように形成されてもよい。 この場合にも、 互いに平行に延 びる溝 1 2問の距離、 すなわち溝問ピッチ Pが所定の値に設定されて所定の間隔 ずつレーザビームを相対的に移動させて照射することにより、 碁盤目状の溝が形 成される。
(実施例 1 )
図 1と図 2に示すような力ップ型超砥粒砥石 1 0 1を作製した。 砥石の直径 D は 1 2 5 m mであり、 砥面の幅 W tは 7 m mであった。 超砥粒として粒度 # 1 8 Z 2 0 (粒径 8 0 0〜 1 0 0 0 /z m) のダイャモンド粒子を用いた。 二ッケルめ つきによってダイヤモンド粒子を砥石の基台の上に保持しかつ固着することによ り超砥粒層 1 0を形成した。 その後、 図 2 3に示すように、 ニッケルめっき層 1 6より突出した超砥粒 1 1の表面を粒度 # 1 2 0のダイヤモンド砥石によってッ ル一イング (約 3 0 μ mの厚み分を除去) して、 平坦面 1 9を形成した。 砥面を ツル一イングした後の状態を示す顕微鏡写真 (倍率: 4 0倍) は図 4 3に示され ている。
その後、 図 1 1に示すように超砥粒層 1 0の表面に対して法線方向にレーザ加 ェ装置 4 0からレーザビーム 5 0を照射した。 この砥面へのレーザビームの照射 条件は、 Y A Gレーザを用いて、 入力値を 5 k H z、 出力を 2 . 5 Wとした。 こ のレーザビーム照射により、 図 2 3に示すように溝 1 2を超砥粒 1 1の平坦面 1 9に形成した。 また、 図 3 9に示すように、 レーザビームの照射ピッチを 5 0 μ m、 ピッチ数を 1 6〜2 0とすることにより、 溝間ピッチ Pが 5 0 // m、 同一方 向に平行に延びる溝の数が 1 6〜2 0の溝を形成した。 レ一ザビーム照射による 溝の形成は、 図 1に示すような力ップ型超砥粒砥石 1 0 1を取付軸穴 3 0を中心 にして周速 2 5 0〜5 0 0 m m/m i nで回転させることによって行なわれた。 以上のようにして超砥粒 1 1の平坦面 1 9に形成された溝 1 2の断面は図 4 2 に示されている。 溝間ピッチ Pは 5 0 μ χη ^ 溝の幅 Wは 3 0 μ m、 溝間平坦部の 長さ W。は 2 0 / m、 平坦面の長さ Lは 8 0 0〜 1 0 0 0 μ m、 溝の深さ Hは 1 4〜: 1 8 μ mであった。
図 3 9に対応して、 ツル一イング後の砥面にレーザビームを照射することによ つて形成された溝の配置を示す顕微鏡写真 (倍率: 4 0倍) は図 4 4に示されて いる。 図 4 4において、 黒く見えるものはダイヤモンド粒子の平坦面でレーザビ —ム照射により規則的な溝が形成され、 鮮やかな碁盤目状の刃となる 2 0 μ m四 方の平坦な部分が形成され、 一部には粉砕された部分が観察される。
この碁盤目状の部分が切れ刃またはすくい刃となって、 細粒を用いた砥石のよ うに小さく切粉を生じさせて研削が進行する。 切粉や研削液は、 図 2 3に示され る断面において、 超砥粒 1 1の突出部と保持層としてのニッケルめっき層 1 6と の間の空問と、 超砥粒 1 1の平坦面 1 9に形成された溝 1 2の空間とを通じて円 滑に流れる。 しかも、 超砥粒 1 1は粗粒でニッケルめっき層 1 6に深く しっかり と保持されているので、 脱落によって支障が生ずることもない。
溝の深さと幅、 本数、 溝の交差の有無、 溝間の交差角度を左右同一にするかど うか等は、 ワークや研削条件等により自由に選択することができる。
上記のように、 本発明の超砥粒砥石は、 砥面の構成を特別な構成にしているの で、 超砥粒を 1層とすることが必要である。
また、 超砥粒の突出端面が平坦面でない場合には、 ツル一イング加工を施すこ とにより、 平坦面を形成してからレーザビームを照射する。 したがって、 必ずし も超砥粒の粒径がほぼ均一に揃っていなくても、 またその突出量が揃っていなく てもよい。
し力 しながら、 超砥粒の粒径がほぼ均一に揃っていないと、 超砥粒の平坦面上 に溝が形成され得ない超砥粒が増加することによって所定の作用効果を十分に得 ることができない。 超砥粒の突出量がほぼ均一に揃っていれば、 ツル一イング加 ェを施すのが容易であり、 またツル一イング加工による除去量が少なくても、 場 合によってはッルーィングカ卩ェを施さなくても所定の溝を形成することができる という効果がある。 したがって、 本願発明者らが特開平 8— 2 2 9 8 2 8号公報 で提案したように、 超砥粒の突出量を揃えた砥石を製作し、 その砥面にレーザビ —ムを照射して溝加工を施すのが好ましい。
(実施例 2 )
図 4 5は、 ツルーィング加工を施す前のストレ一ト型超砥粒砥石 1 0 2の縦断 側面を示す図である。 図 4 6と図 4 7は、 超砥粒の突出量をほぼ均一に揃えるた めの製造工程を説明するために用いられる、 超砥粒層を示す断面図である。 以下、 これらの図を参照して超砥粒の突出量を揃えるための製造方法について説明する。 図 4 6に示すように、 カーボン製の型 6 0の表面に、 粒度 # 3 0 / 4 0のダイ ャモンド粒子からなる超砥粒 1 1を銅の粉末入り合成樹脂のような導電性接着剤 層 7 0で 1層に散布し保持する。 この型 6 0をそのまま、 または加熱して樹脂を 硬化した後、 銅のめっき液中に浸漬して、 厚み 6 0〜 1 0 0 μ mの銅めつき層 8 0を形成した。 次にめっき液を替えて、 銅めつき層 8 0の上に超砥粒 1 1を完全 に被覆する厚み 1 . 5 m mのニッケルめっき層 1 6を形成した。
銅めつきとニッケルめっきのそれぞれの条件は以下のとおりであった。
銅めつき
液の組成
ピロリン酸銅: 7 5〜: I 0 5 g /^
金属銅: 2 6〜3 6 g
ピロリン酸カリウム: 2 8 0〜3 7 0 g
アンモニア水: 2〜5 c
光沢剤: 1〜4 c c Z f
めっき条件
電流密度: 0 . 2 Λ/ d m 2
温度: 4 5〜 5 0。C
二ッケルめっき 液の組成
硫酸ニッケル: 2 5 0 g ^
塩化ニッケル: 4 5 g /
ホウ酸: 4 0 g Z £
光沢剤: 1 g
めっき条件
電流密度: 1 AZ d m 2
温度: 4 5〜 5 0 °C
次に、 図 4 7に示すように、 低融点合金からなる接合材層 1 7によってニッケ ルめっき層 1 6を鋼製の基台 2 0の外縁に一体的に結合した後、 型 6 0を破壊し て除去した。 接合材層 1 7の厚みは 2 m mとした力;、 必要により増減することが できる。 また、 ニッケルめっき層 1 6と基台 2 0との接合前に型 5を除去しても よい。
その後、 基台 2 0の全体を、 またはめつき部分のみを銅のエッチング液中に浸 漬して銅めつき層 8 0を溶解除去した。 この場合、 エッチングは電解エッチング によって行なわれたが、 化学エッチングによって行なうこともできる。 この際、 二ッゲルめつき層 1 6は溶解せず、 ニッケルめっき層 1 6による超砥粒 1 1の保 持は強固であり、 かつ予め設定された銅めつき層 8 0の厚み分だけが完全に溶解 除去されることにより、 超砥粒 1 1のほぼ均一な突出量が確保されている。 なお、 銅めつき層 8 0の表面に導電性接着剤の樹脂の残存が認められるときには、 その 樹脂を加熱分解または磯械加工によつて除去すればょレ、。 また、 上記の実施例で は、 超砥粒 1 1を導電性接着剤を用いて型 6 0に接着する方法について示したが、 めっき液中にダイャモンド粒子などの超砥粒を浮遊させてめつき層の形成ととも に超砥粒を型の表面に接合させてもよい。
上述のようにして形成されたストレート型超砥粒砥石 1 0 2の縦断側面は図 4
5に示されている。 図 4 5に示すように、 粒度 # 3 0 / 4 0 (平均粒径 6 0 2 μ m) のダイャモンド粒子からなる超砥粒 1 1は、 約 1 . 5 mmの厚みの二ッケル めっき層 1 6の表面から 6 0〜 1 0 0 / mの高さでほぼ均一に突出していた。 二 ッケルめっき層 1 6と鋼製の基台 2 0の外縁とを一体的に接合する接合材層 1 7 は、 厚み約 2 mmの低融点合金からなる層であった。 また、 ニッケルめっき層 1 6は、 超砥粒 1 1の周辺部がゆるむことなく十分に超砥粒 1 1を密着固定してい た。 なお、 ス トレ一ト型超砥粒砥石 1 0 2の直径 Dは 7 0 mm、 取付軸穴 3 0の 穴径 D。は 3 5 mm, 厚み Tは 2 2 mmであった。
以上のように製作されたストレート型超砥粒砥石の砥面に実施例 1と同様に、 直接、 またはツル一イング加工により平坦面を形成した後に、 レーザビームを照 射して、 溝を超砥粒の突出面に形成した。 この場合、 図 1 3に示すようにレーザ ビーム 5 0の照射方向は、 超砥粒層に対して法線方向または接線方向のいずれで もよい。
なお、 超砥粒 1 1が銅めつき層 8 0によって固着される型 6 0の固着面の形状 精度、 真円度および表面粗さは、 そのまま、 超砥粒 1 1の突出高さの均一度とし て反映される。 したがって、 型 6 0の材質、 型の加工の選択、 型の表面仕上げ等 に留意することが重要である。 ちなみに、 型 6 0の固着面を研削加工して形状精 度と真円度を 1 . 5 μ m以内、 表面粗さを 1 . 5 μ m R m a X以内に仕上げた型 を使用した場合、 超砥粒 1 1の突出高さがほぼ均一であった。
図 4 8は、 従来の超砥粒砥石と、 実施例 2に従つて製作された超砥粒砥石との ^3で超砥粒の粒径 (/ m) と有効砥粒数 (Z c m 2 ) との関係を示す対数目盛に よるグラフである。 図 4 8において四角の黒点は、 実施例 2に従って溝を形成す る前の超砥粒の粒径と有効砥粒数との関係を示す測定結果である。 すなわち、 四 角の黒点は、 超砥粒の突出量をほぼ均一に揃え、 突出端面の高さを均一にした状 態の超砥粒砥石に関して測定されたものである。 これに対して、 超砥粒の突出量 を揃え、 突出端面の高さを均一にした後、 本発明に従ってレーザビームの照射に よつて溝を形成すると、 大きな丸の黒点で示すように突出端面が分割されて有効 砥粒数が増大していることがわかる。 なお、 小さな丸の黒点は従来の超砥粒砥石 (従来のホイール) に関して測定されたものである。 「ツル一イング後」 は実施 例 2において溝を形成する前の超砥粒砥石に関して測定されたもの、 「レーザ加 ェ」 は実施例 2に従って溝を形成した後の超砥粒砥石に関して測定されたものを 示している。
このように、 本発明の超砥粒砥石では、 粗粒の超砥粒を用いて、 細粒と同等ま たはそれ以上の有効砥粒数を実現することができる。 このことは、 各超砥粒のチ ップポケットを含む砥粒空間を増大させることができることを意味し、 研削精度 とともに砥石の切れ味を向上させることに寄与する。
(実施例 3 )
図 1と図 2に示すようなカツプ型超砥粒砥石 1 0 1を作製した。 力ップ型超砥 粒砥石 1 0 1の直径 Dは 1 2 5 m m, 砥面の幅 W tは 7 mmであった。 超砥粒と して粒度 # 1 8 Z 2 0 (粒径 8 0 0〜 1 0 0 0 μ m) のダイヤモンド粒子を用い た。 このダイヤモンド粒子を保持層としてニッケルめっき層によって砥石の基台 に固着した。
固着されたダイヤモンド粒子の突出面がニッケルめっき層の表面と同一平面に なるように粒度せ 1 2 0のダイヤモンド砥石によってダイヤモンド粒子の露出面 をツル一イング加工して、 平坦面を形成した。 その後、 砥石を周速 2 5 0〜5 0 O mm/m i nで回転させながら、 図 1 1に示すようにその平坦面に法線方向か らレーザビーム 5 0を照射することにより、 超砥粒としてのダイャモンド粒子の 平坦面と保持層としてのニッケルめっき層の表面とに連なる溝を形成した。 レー ザビームは Y A Gレ一ザを用いた。 レーザビームの照射条件としては、 入力値 5 k H z , 出力 2 . 5 W、 とした。 このようにして、 図 3 3に示すように溝 1 2が 超砥粒 1 1の平坦面 1 9に形成され、 また満 1 3がニッケルめっき層 1 6の表面 にも形成された。
また、 図 4 0に示すように、 レーザビームの照射ピッチを 5 0 μ m、 ピッチ数 を 1 6〜 2 0として照射することにより、 溝間ピッチ Pが 5 0 μ m、 同一方向に 平行に延びる溝の本数が 1 6〜 2 0の碁盤目状の溝を形成した。
図 4 9に示すように、 超砥粒 1 1の平坦面 1 9に溝 1 2が形成され、 ニッケル めっき層 1 6の表面に溝 1 3が形成された。 超砥粒 1 1の平坦面の長さ Lは 8 0 0〜 1 0 0 0 μ m、 溝の幅 Wは 3 0 m、 溝の深さ Hは 1 4〜: I 8 // m、 溝間平 坦部の長さ W0は 2 0 μ mであった。 図 5 0は、 図 4 0に対応し、 ツル一イング 後、 そのツルーィングされた砥面にレーザビームを照射して形成された溝の配置 を示す顕微鏡写真 (倍率: 1 6 0倍) である。 図 5 0において薄墨色に見えるの がダイヤモンド粒子の平坦面であり、 レーザビームを照射することにより規則的 な溝が、 白く見えるニッケルめっき層の表面に連なって形成されていることが観 察される。
これらの溝の端縁が切れ刃またはすくい刃として作用し、 細粒のダイヤモンド 粒子を用いた砥石のように小さな切粉を生じさせて研削が進行する。 しかもダイ ャモンド粒子は粗粒で保持層としてニッケルめっき層に深く強固に保持されてい るので、 脱落による支障が生ずることもない。
溝の深さと幅、 溝の本数、 溝間の交差の有無、 溝間の交差角度を左右同一にす るかどうか等は、 ワークと研削条件などによって自由に選択できる。
上述のように、 本発明の超砥粒砥石は、 砥面の構成を特別な構成にしているの で、 超砥粒は 1層とすることが必要である。 また、 超砥粒層の表面が平坦面でな い場合には、 上記実施例のようにツル一ィングにより平坦面を形成してからレー ザビームを照射するので、 必ずしも超砥粒の粒径が揃っていなくてもよい。 しかしながら、 粒径がほぼ均一に揃っていないと、 平坦面の上に溝を形成する ことができない超砥粒が増加し、 所定の作用効果を+分に得ることができない。 超砥粒の粒径がほぼ均一に揃っていれば、 ツルーィング加工を施すことが容易で あり、 またツル一イング加工による除去量が少なくても、 場合によってはツル一 ィング加工を施さなくても所定の溝を形成できる効果がある。
(実施例 4 )
図 5と図 6に示すようなストレート型の超砥粒ドレッサー 1 0 3としてダイヤ モンド口一タリ ドレッサーを作製した。 ダイヤモンドロータリ ドレッサーの直径 Dは 8 0 mm、 厚み Tは 2 5 mmであった。
図 3 3に示すように超砥粒層 1 0に溝を形成した。 超砥粒 1 1として粒度: 5 0 / 6 0 (粒径: 2 6 0〜 3 2 0 / m) のダイヤモンド粒子を用いた。 超砥粒 1 1は保持層としてニッケルめつき層 1 6によつて保持され、 低融点合金からなる 接合材層 1 7を介して鋼製の基台 2 0に接合された。 溝 1 2は超砥粒 1 1の平坦 面 1 9に形成され、 溝 1 3はニッケルめっき層 1 6の表面に形成された。
溝 1 1と 1 3の形成は、 以下のようにして行なわれた。 超砥粒 1 1の突出した 露出表面をダイヤモンド砥石によって 3 μ mの厚み分ツル一イングして、 超砥粒 1 1の平坦面 1 9とニッケルめっき層 1 6の表面とが同一平面になるように加工 した。 その後、 図 1 3に示すように超砥粒層 1 0の表面に接線方向からレーザビ ーム 50を照射することにより、 溝を形成した。 レーザビームは Y AGレーザを 用いた。 レ一ザビームの出力は 40Wであった。 ドレッサーを周速 250〜50 OmmZm i nで回転させながら、 レーザビームを照射することにより、 溝を形 成した。 このようにして形成された溝の形状は以下のとおりであった。 溝ピッチ は 0. 5 mmのねじ状の溝、 溝の開口幅は 0. 03〜0. 08 mm、 溝の深さは 0. 0 3 mmであった。
以上のようにして製作されたダイヤモンドロータリ ドレッサーの性能を確認す るため、 横軸平面研削盤に取付けた在来砥石をそのダイヤモンド口一タリ ドレツ サ一によつて以下の条件でドレッシングした。 研削盤は岡本工作機械製横軸平面 研削盤を用いた。 ダイヤモン ドロータリ ドレッサーの駆動装置は大阪ダイヤモン ドエ業株式会社製駆動装置 S G S— 50型を用いた。 ドレッシングされる在来砥 石の形状は、 外径が 3 00 mm、 厚みが 1 0 mmであり、 その型式は WA 80 K ( J I Sの型式) であった。 ドレッシング条件は、 周速度比が 0. 28 (ダウン ドレス) 、 切込速度が 1. 9mmZm i n、 切込量が 4mmであった。
上記のドレッシング時の抵抗値を、 溝加工されていない従来のダイヤモンドロ 一タリ ドレッサーによるものと比較した。 溝なしの従来のダイャモンド口一タリ ドレッサ一のドレッシング抵抗値は、 法線方向が 4. 0 N/ 1 0 mm, 接線方向 は 0. 5 NZ 1 0 mmであった。 これに対して、 本実施例で製作されたダイャモ ンドロータリ ドレッサーのドレッシング抵抗値は、 法線方向が 2. 5 N/1 Om m、 接線方向が 0. 2 5 N/ 1 Ommであった。
このように、 本発明のレーザビーム照射によって溝加工を施したダイヤモンド ロータリ ドレッサーは、 従来品に比べてドレッシング時の抵抗値が少なくとも 4 0〜50°/0低減し、 振動を発生させることなく、 円滑なドレッシングが可能であ つた。 また、 ドレッシングされた砥石の精度も極めて良好であった。
(実施例 5 )
図 5と図 6に示すようなス トレ一ト型超砥粒ドレッサー 1 03としてダイヤモ ンドロータリ ドレッサーを作製した。 ダイヤモンドロータリ ドレッサーの直径 D は 80mm、 厚み Tは 2 5 mmであった。 超砥粒層の露出表面には、 図 2 4に示すような溝を形成した。 ダイャモンド粒 子からなる超砥粒 1 1の平坦面 1 9に溝 1 2が形成された。 超砥粒 1 1は A g— C u - T i系の合金からなるろう材層 1 8を介して基台 2 0に固着された。
なお、 実施例 5において超砥粒 1 1の粒径、 溝 1 2の形状、 基台 2 0の形状と 材質は実施例 4と同様であり、 異なる点は、 基台 2 0に超砥粒 1 1をろう材層 1 8により直接固着したことである。
この固着は、 ペース ト状のろう材を基材 1 8の表面に塗布しておき、 超砥粒 1 1を手で配置した後、 炉に入れ、 加熱してろう材を溶融後、 冷却することにより 行なわれた。 したがって、 実施例 4においては、 超砥粒 1 1の露出面はニッケル めっき層 1 6の表面とほぼ同一平面にあるが (図 3 3参照) 、 実施例 5において は超砥粒 1 1の露出面は保持層としてのろう材層 1 8の表面より突出している。 この突出した超砥粒 1 1の端面をツル一イング加工によって平坦化し、 その平坦 面の上に実施例 4と同様にしてレーザビームを照射して溝を形成した。 この場合、 ツルーィング加工を省略することもできる。
このろう付け型のダイヤモンドロータリ ドレッサーは、 ダイヤモンド粒子の突 出量が実施例 4のダイャモンドロータリ ドレッサ一に比べて大きく、 砥粒空間が 極めて大きくなるので、 ドレッシング時の切粉の排除が円滑に行なわれ、 ドレツ シング抵抗が低いだけでなく、 目詰まりの発生がないという優れた特徴を有する。 また、 溝 1 2を形成することにより、 各ダイヤモンド粒子力 ^なる超砥粒 1 1 の刃の先端部は複数個に増加されることになり、 すなわち有効砥粒数が増加され ることになるので、 切れ味と精度も向上する。 ちなみに、 実施例 5に従って製作 されたダイヤモンドロータリ ドレッサ一を用いたドレッシングの場合、 その所要 時間は従来品によるドレッシングの場合に比べて 3 0 %程度以上短縮することが できた。
実施例 5においてろう材として用いた A g—C u— T i系の活性化ろう材は、 ダイャモンドと基台を構成する鋼とを容易に強く固着することができる点で優れ ている。 しかし、 そのろう材の硬度は H V 1 0 0程度と低いため、 ドレッシング 時にはダイャモンド粒子に摩損を生じさせることはなくても、 切粉の接触により、 ろう材が表面から次々に侵食されて、 遂にはダイャモンド粒子を脱落させてしま レ、、 ダイヤモンドロータリ ドレッサーの寿命を急速に縮める懸念がある。
そこで、 ろう材が切粉から侵食されるのを防止するために、 ろう材中に硬質粒 子を含有させてろう材の耐摩耗性を向上させることが非常に有効である。 硬質粒 子として、 口一タリ ドレッサーに使用されるダイヤモンド粒子の 1 / 2以下の粒 径のダイヤモンド、 C B N、 S i C砥粒、 Λ 1 23砥粒、 W C粒子等のうち、 1種類以上のものをろう材中に含有させることにより、 ろう材の侵食防止を図る ことができる。 これらの硬質粒子の含有割合は、 ろう材の体積に対して 1 0〜5 0体積%の範囲内で用いられ、 3 0〜5 0体積。 /0の範囲内がより好ましい。
実施例 4においては、 実施例 2と同様にしてニッケルめっき層をいわゆる反転 めっき法によって形成し、 そのニッケルめっき層に溝を設けることによつても実 施可能である。 また、 メタルボンドとして知られている金属粉や合金粉を焼結し て保持層として形成したものに溝を形成することによつても本発明に従つた超砥 粒層を形成するこはできる。 しかし、 実施例 5で示すようにろう材を用いて超砥 粒を固着した形態を備えたドレッサーが最も高いドレッシング精度を達成するこ とができ、 かつドレッシング抵抗が低い。 また、 ろう材層を用いて超砥粒を固着 した口一タリ ドレッサーは長い寿命を有し、 その製作時間も短縮することが可能 である。
(実施例 6 )
図 7に示すような超砥粒ドレッサー 1 0 4としてダイヤモンドロータリ ドレツ サーを製作した。 超砥粒として粒度 # 5 0 / 6 0 (粒径: 2 6 0〜3 2 0 / m) のダイヤモンド粒子を用いた。 保持層としてニッケルめっき層を採用し、 実施例 2で示すような、 いわゆる反転めつき法を用いて超砥粒を単層で保持し、 鋼製の 基台に接合した。
溝は、 図 7においてドレッサー 1 0 4の肩部 2 1に位置する超砥粒層の表面に 厚み 3 μ mだけツル一イング加工を施した後、 ドレッサ一を周速 2 5 0〜 5 0 0 mm/m i nで回転させながら、 レーザビームを照射することにより形成された。 図 1 3に示すように、 レーザビーム 5 0は超砥粒層に対して接線方向に照射され た。 レーザビームは Y A Gレーザを用いた。 レ一ザビームの出力は 4 0 Wであつ た。 図 3 3に示すように、 溝 1 2は超砥粒 1 1の平坦面 1 9に形成され、 溝 1 3 はニッケルめっき層 1 6の表面に形成された。 溝ピッチは 0. 3mmのねじ状の 溝であり、 溝の開口幅は 0. 03〜0. 08 mm、 溝の深さは 0. 03 mmであ つに。
以上のようにして、 レーザビーム照射により碁盤目状に形成された溝の配置を 示す顕微鏡写真 (倍率 200倍) は図 50に示すものと同様であつた。
製作されたダイヤモンドロータリ ドレッサーの性能を確認するため、 図 51に 示すようにドレッサー 104を配置して砥石 200をドレッシングした。 ワーク 300を外径 300^11«の\^八 ( J I Sの型式) 砥石 200によって研削すると ともに、 砥石 200を外径 1 20 mmのダイヤモンドロータリ ドレッサー 104 でドレッシングした。 ダイヤモンドロータリ ドレッサ一 1 04の基台 20の外周 面には超砥粒層 10が形成されている。 超砥粒層 10の肩部 2 1には、 上述のよ うにして溝が形成されている。 なお、 砥石 200の外周形状は、 ワーク 300の 段付部分 301と 302に対応して形成されている。 図 5 1において示される矢 印は、 それぞれ、 ワーク 300、 砥石 200、 ダイヤモンド口一タリ ドレッサー 104の回転方向を示す。 ドレッシングされる在来砥石は J I Sの型式で WA8 0Kであった。 ドレッシング条件は、 周速度比が 0. 3 (ダウンドレス) 、 切込 速度が 1. Omm/m i n、 切込量が 4mmであった。
実施例 6における ドレツシング時の抵抗値を、 溝加工していなレ、従来のダイャ モンド口一タリ ドレッサーによるものと比較した。 溝なしの従来のダイャモンド ロータリ ドレッサ一のドレッシング抵抗値は、 法線方向が 6. 0 N/ 1 0 mm、 接線方向が 0. 8N/1 Ommであった。 これに対して、 実施例 6のダイヤモン ドロータリ ドレッサーのドレッシング抵抗値は、 法線方向が 4. 0NZl 0mm、 接線方向が 0. 4 NZ 10 mmであった。
(実施例 7 )
図 8に示すような外周形状を有する超砥粒ドレッサ一 105としてダイヤモン ドロータリ ドレツサーを製作した。 ドレッサー 105の製作、 溝の形成は実施例 6と同様にして行なわれた。 なお、 溝は、 図 8に示されるドレッサー 105の端 面 22と 23にのみ、 レーザビームを接線方向から照射することにより形成され た。 溝が形成された超砥粒層の概略断面は図 33に示されるとおりである。 このようにして製作されたドレッサーの性能を確認するため、 実施例 6と同様 の条件で、 実施例 7において製作されたドレッサーによって在来砥石をドレッシ 図 5 2に示すように、 外径 1 5 0 m mの超砥粒ドレッサー 1 0 5としてダイヤ モンドロータリ ドレッサーを配置した。 ワーク 3 0 0を外径 3 5 5 m mの WA、 G C ( J I Sの型式) 等の在来砥石 2 0 0で研削するとともに、 その砥石 2 0 0 をタト径 1 5 0 m mのダイヤモンドロータリ ドレッサー 1 0 5でドレッシングした。 ダイヤモンドロータリ ドレッサー 1 0 5の基台 2 0の外周面には超砥粒層 1 0が 形成されている。 超砥粒層 1 0の端面 2 2と 2 3にのみ、 上述のようにして溝が レーザビームによって形成されている。
実施例 7のダイヤモンド口一タリ ドレッサーのドレツシング抵抗値も、 実施例 6と同様に、 溝なしの従来のダイヤモンドロータリ ドレッサーのドレッシング抵 抗値に比べて低減した。
このように、 本発明のレーザビーム照射によって溝加工を施したダイヤモンド 口一タリ ドレッサ一は、 従来品に比べてドレッシング時の抵抗値が少なくとも 3 0〜5 0 %低減し、 振動を発生させることなく、 円滑なドレッシングが可能であ つた。 また、 ドレッシングされた砥石の精度も極めて良好であった。
(実施例 8 )
実施例 6と 7と同様の形状のダイヤモンドロータリ ドレッサー 1 0 4と 1 0 5 を、 保持層をニッケルめっき層からろう材層に変更して製作した。
溝が形成された超砥粒層の概略断面は図 2 4に示されているとおりである。 ダ ィャモンド粒子からなる超砥粒 1 1の平坦面 1 9に溝 1 2が形成されている。 超 砥粒 1 1は A g— C u— T i系の合金からなるろう材層 1 8によって保持され、 基台 2 0に固着されている。 ダイヤモンド粒子の粒径、 溝 1 2の形状、 基台 2 0 の形状と材質は実施例 6と 7と同様であり、 異なる点は、 基台 2 0に超砥粒 1 1 としてダイヤモンド粒子をろう材層 1 8により直接固着したことである。
この固着は、 ぺ一ス ト状のろう材を基材 2 0に塗布し、 ダイヤモンド粒子を手 で置き、 炉に入れ、 加熱してろう材を溶融後、 冷却することにより行なわれた。 したがって、 実施例 6と 7においては図 3 3に示すように超砥粒 1 1の露出面は W 保持層としてニッケルめっき層 1 6の表面とほぼ同一平面にあるが、 実施例 8で は図 2 4に示すように超砥粒 1 1の露出面は保持層としてのろう材層 1 8の表面 より突出している。 その突出した先端部をッルーィング加工によって平坦化し、 その平坦面の上に実施例 6と 7と同様にしてレーザビームを照射することによつ て溝を形成した。 場合によってはツル一^ f ング加工を省略することもできる。 このようにして製作されたろう付け型のダイヤモンドロータリ ドレッサ一は、 上述のようにダイャモンド粒子の突出量が実施例 6と 7に比べて大きく、 砥粒空 間が極めて大きくなるので、 ドレッシング時の切粉の排除が円滑に行なわれ、 ド レッシング抵抗が低いだけでなく、 目詰まりの発生がない優れた特徴を有する。 また、 溝 1 2を形成することにより、 各超砥粒 1 1の刃の先端部は複数個に増 加されることになり、 すなわち有効砥粒数は増加されることになるので、 切れ味 と精度が向上する。
実施例 8においてろう材として用いた Λ g - C u - T i系の活性化ろぅ材は、 ダイャモンドと基台を構成する鋼とを容易に強く固着することができる点で優れ ている。 しかし、 活性化ろう材の硬度は H V 1 0 0程度と低いため、 研削やドレ ッシング時にはダイヤモンド粒子に摩損を生じさせることはなくても、 切粉の接 触により、 このろう材層が表面から次々と侵食されて、 遂にはダイヤモンド粒子 を脱落させてしまい、 ダイヤモンドロータリ ドレッサーの寿命を急速に縮める懸 念がある。
そこで、 このろう材層が切粉から侵食されるのを防止するため、 ろう材中に硬 質粒子を含有させてろう材の耐摩耗性を向上させることが非常に有効である。 硬 質粒子として、 砥面の形成に使用されるダイャモンド粒子の 1 / 2以下の粒径の ダイヤモンド、 C B N、 S i C、 A 1 2 0 3、 W C等の硬質粒子のうち、 1種類 以上のものをろう材中に含有させることにより、 侵食防止を図ることができる。 これらの硬質粒子の含有割合は、 ろぅ材の体積に対して 1 0〜 5 0体積。 /0の範囲 内で用いられ、 3 0〜5 0体積。 /0の範囲内がより好ましい。
実施例 6と 7のようにニッケルめっき層を反転めつき法によって形成し、 超砥 粒層に溝を形成することによって、 またはメタルボンドとして知られている金属 粉や合金粉を焼結して保持層を形成し、 超砥粒層に溝を形成することによって本 発明のダイヤモンドロータリ ドレッサーを製作することができる。 しかし、 上述 のようにろう材層で超砥粒を固着したろう付け型のダイャモンドロータリ ドレツ サ一は最もドレッシング精度が高く、 ドレッシング抵抗も低い。 しかも、 ドレツ シング作用面中の所定箇所のみ、 たとえば肩部や端面のみを選択的に平坦化し、 選択的に溝加工を施すことにより、 ドレッサーの製作時間を短縮することは可能 である。 また、 この選択された部分と他の部分との間で、 使用される超砥粒の粒 度、 集中度等を変更することにより、 より高度の複合化されたドレッシング作用 面を形成することができる。
上述のように、 本発明のドレッサーはドレツシング作用面の構成を特別な構成 にしているので、 超砥粒は 1層とすることが必要である。
また、 超砥粒層の表面が平坦面でない場合には、 ツル一イング加工により平坦 面を形成した後、 レ一ザビームを照射するので、 必ずしも超砥粒の粒径が均一に 揃っていなくてもよレ、。
しかしながら、 超砥粒の粒径がほぼ均一に揃っていない場合には、 平坦面の上 に溝を形成することができない超砥粒の数が増加し、 所定の作用効果を得ること ができなレ、。 超砥粒の粒径がほぼ均一に揃つている場合には、 ッルーィング加ェ を施すことが容易であり、 またツル一イング加工による除去量が少なくても、 場 合によってはツル一^ rング加工を施さなくても所定の溝を形成することができる。 また、 場合によっては、 使用により切れ味の低下したドレッサ一の超砥粒層の所 定部分のみにレ一ザビームを照射して溝を形成してドレッサーを再生させること もできる。
(実施例 9 )
図 9と図 1 0に示されるような超砥粒ラップ定盤 1 0 6としてダイヤモンドラ ップ定盤を製作した。 ダイヤモンドラップ定盤 1 0 6の直径 Dは 3 0 O m m、 厚 み Tが 3 O m mであった。 基台 2 0の表面上に超砥粒層が 1層だけ固着されたも のである。
図 5 3に示すように、 粒度 # 3 0 / 4 0 (粒径: 4 3 0〜6 5 0 μ πι) のダイ ャモンド粒子からなる超砥粒 1 1の平坦面 1 9に溝 1 2を形成した。 超砥粒 1 1 はろう材層 1 8によって基台 2 0の上に固着された。 超砥粒 1 1の固着は、 ペースト状のろう材を基台 2 0に塗布しておき、 超砥粒 としてダイヤモンドを配置して炉に入れ、 加熱してろう材を溶融後、 冷却するこ とによって行なわれた。 したがって、 超砥粒 1 1の突出端面は保持層としてろう 材層 1 8の表面よりも突出していた。 その突出した超砥粒 1 1の先端部をツル一 イング加工により平坦化し、 その平坦面上にレーザビームを照射して溝を形成し た。
溝の形成は、 図 1 4に示すようにレーザビーム 5 0を超砥粒層 1 0の表面に対 して法線方向に照射することによって行なわれた。 レーザビームは Y A Gレーザ を用いた。 レ一ザビームの出力は 2 . 5 Wであった。
レーザビームを網目状に照射することにより、 図 3 9に示すように配置された 溝 1 2を形成した。 このようにして、 図 5 3に示すように溝間のピッチ Pは 2 5 β m、 溝の幅 Wは 2 0 μ m、 溝の深さ Hは 2 0 μ m、 溝間平坦部の長さ W。は 5 μ mであった。
このようにして製作されたダイヤモンドラップ定盤は、 ダイヤモンド粒子自体 が工作物を削るので、 従来の球状黒鉛铸鉄製ラップ定盤のように遊離砥粒を供給 することなく、 高い能率で高い精度のラッピング加工が可能になった。 すなわち、 本発明のダイヤモンドラップ定盤は、 スラッジがほとんど発生しないという優れ た特徴を有する。 スラッジは、 工作物がラッビング加工されたときに工作物から 生じるわずかな切粉だけを含むからである。 このようにスラッジの発生が極めて 少ないので、 クリーンな環境での作業が可能になるだけでなく、 公害が発生する ことも少なレ、。
さらに、 本発明のダイヤモンドラップ定盤は、 その表面が超砥粒としてダイヤ モンド粒子を含むので、 従来の球状黒鉛鍀鉄製ラップ定盤に比べて極めて耐摩耗 性に優れ、 硬さも均一で、 ラップ定盤の平面精度の維持能力も非常に高い。 した がって、 ラッピング加工される工作物に高い平面精度と高い平行精度を長期問に わたって安定してもたらすことができる。
さらに加えて、 本発明のダイヤモンドラップ定盤は、 球状黒鉛踌鉄製ラップ定 盤で最も大きな問題とされている铸造欠陥に相当する欠陥が全く存在しない。 し たがって、 欠陥によるスクラッチが発生することもない。 次に、 実施例 9で製作されたダイャモンドラップ定盤の性能を確認するため、 従来のラップ定盤との比較実験を行なつた。 ラッピングマシンにこのダイャモン ドラップ定盤を取付けて、 シリコンウェハをラッビング加工した結果を図 5 4に 示す。
図 5 4に示すラッビング加工は以下の加工条件で行なった。 圧力を 2 0 0 g / c m 2 , 回転数を 4 0 r e v / m i n、 工作液を水、 工作液供給量を 1 0 c c / m i n、 工作物を直径 5 0 m mのシリコンウェハとした。
図 5 4において 「ラップ定盤 1」 として示された黒三角のプロットが実施例 9 のダイヤモンドラップ定盤による測定結果を示している。 それによれば、 実施例 9のダイヤモンドラップ定盤による加工速度は、 粒径 5 μ mのアルミナを遊離砥 粒として使用した従来の球状黒鉛铸鉄製ラップ定盤による加工速度の約 3倍であ つた。 また、 ラッピング加工後のシリ コンウェハの表面粗さも良好であった。
(実施例 1 0 )
実施例 9と同様にして図 9と図 1 0で示されるようなダイャモンドラップ定盤 を製作した。 実施例 9のダイヤモンドラップ定盤と異なる点は、 図 5 3において 溝間ピッチ Pが 3 5 μ m、 溝間平坦部の長さ W。が 1 5 μ mであった。 その他の ダイヤモンドラップ定盤の形状と寸法、 溝の形成方法と寸法等については実施例 9と同様にした。
実施例 1 0のダイヤモンドラップ定盤の性能を確認するため、 実施例 9と同様 の条件でシリコンウェハをラッビング加工した。 その結果を図 5 4に示す。 図 5 4において 「ラップ定盤 2」 と示された黒四角のプロッ トが実施例 1 0のダイヤ モンドラップ定盤による測定結果を示している。
図 5 4から明らかなように、 実施例 1 0のダイヤモンドラップ定盤による加工 速度は、 粒径 1 2 μ mのアルミナを遊離砥粒として使用した従来の球状黒鉛鍀鉄 製ラップ定盤による加工速度の約 3倍であった。 また、 ラッピング加工後のシリ コンウェハの表面粗さも良好であった。
(実施例 1 1 )
図 1と図 2に示されるような力ップ型超砥粒砥石 1 0 1を製作した。 砥石の直 径 Dは 1 2 5 m m , 砥面の幅 は 7 m mであった。 超砥粒として粒度 # 1 8 / T JP97
2 0 (平均粒径: 9 0 0 μ m) のダイヤモンド粒子を用いた。 超砥粒はニッケル めっき層によって基台 2 0の表面に固着した。
超砥粒の先端部を粒度 # 1 2 0のダイヤモンド砥石で 3 0 μ mの厚み分だけ除 去することにより平坦面を形成した。 その後、 図 1 1に示すように、 超砥粒層 1 0の表面に対して法線方向にレーザビームを断続的に照射することにより、 超砥 粒の平坦面に穴を形成した。 レ一ザビームは Y A Gレーザを用いた。 レーザビー ムの出力は 2 . 5 Wであった。
このようにして形成された穴を含む超砥粒層の断面は図 2 7に示されるとおり である。 穴の寸法は図 5 5に示されている。 穴の直径 は 5 0 μ m、 穴の深さ H】は 3 0〜 5 0 μ m、 穴 1 4間の間隔は 1 0 0 μ mであった。 すなわち、 ピッ チ 1 0 0 μ mの碁盤目状の交点に穴 1 4を形成した。
以上のようにして製作された力ップ型超砥粒砥石を用いて研削性能を確認した。 研削盤として立軸平面研削盤を用い、 工作物としてシリコン単結晶を用いた。 本 発明の穴が形成された力ップ型超砥粒砥石を用いると、 穴なしの力ップ型超砥粒 砥石に比べて、 研削抵抗は 2 0〜 3 0 %低減した。
(実施例 1 2 )
図 5と図 6に示されるような超砥粒ドレッサ一 1 0 3としてダイヤモンドロー タリ ドレッサーを製作した。 ドレッサーの直径 Dは 8 0 m m、 厚み Tは 2 0 m m であった。 超砥粒として粒度 # 5 0 / 6 0 (平均粒径: 3 0 0 μ m) のダイヤモ ンド粒子を用いた。 超砥粒の基台 2 0への固着方法は、 実施例 2で示されるよう な、 いわゆる反転めつき法によって行なった。
図 1 2に示すように超砥粒層 1 0に対してレーザビームを垂直方向に断続的に 照射することにより穴を超砥粒の平坦面に形成した。 レーザビームは Y G Aレー ザを用いた。 レーザビームの出力は 2 . 5 Wであった。
このようにして図 2 7に示されるような穴 1 4を有する超砥粒層 1 0が形成さ れた。 図 5 5に示すように穴の直径 は 5 0 μ m、 穴の深さ は 3 0〜5 0 μ m , 穴 1 4間のピッチは 1 0 0 μ mであった。
以上のようにして製作されたダイヤモンドロータリ ドレッサーを用いて性能を 確認した。 研削盤として横軸平面研削盤を用いた。 ロータリ ドレッサーの駆動装 置は大阪ダイヤモンド工業株式会社製 (型式 S G S— 5 0型) のものを用いた。 ドレッシングされる対象の砥石としては WA 8 0 K ( J I S型式) を用い、 砥石 の外径は 3 0 0 mm、 幅は 1 5 mmであった。 ドレッシング条件は周速度比が 0 . 3、 切込速度が 2 mm/m i nであった。
本発明の穴を備えたロータリ ドレッサーによれば、 従来の口一タリ ドレッサー に比べてドレッシング抵抗値が 2 0〜 3 0。/。低減した。
なお、 上述の実施例 1 1と 1 2において超砥粒を基台に固着して超砥粒層を形 成した段階で、 超砥粒の突出部の高さをほぼ均一に揃えるためのツルーィング加 ェを施した後、 1 0 0 / mのピッチでレーザビームの照射を断続して行ない、 位 置を変えながら、 穴を超砥粒の平坦面に形成した。 実施例 1 1と 1 2において露 出した超砥粒の先端部には単数または複数の穴が形成された。 しかし、 レーザビ ームの照射時に、 超砥粒の露出部と超砥粒層を構成する保持層としてのニッケル めっき層の露出部との間の境界にまたがるように、 また保持層の露出部に、 穴が 形成され得る。 このように超砥粒層の全表面に穴を形成することにより、 より性 能の優れた超砥粒工具を得ることができる。
図 5 6は、 上記の実施例とは別の実施例による超砥粒層に形成された穴の配置 を示す顕微鏡写真 (倍率: 5 0倍) である。 図 5 6において、 上部より半島状に 現れた黒枠内が超砥粒であり、 その超砥粒中に黒色に点々と現れているのが穴で ある。 穴はニッケルめっき層の表面にも形成されている。 したがって、 図 2 7の ように超砥粒 1 1の平坦面 1 9のみに穴 1 4が形成される場合もあれば、 図 2 9 に示すように超砥粒 1 1の平坦面 1 9に穴 1 4が形成され、 またニッケルめっき 層 1 6の表面にも穴 1 5が形成される場合もある。
使用により切れ味が低下した超砥粒工具の超砥粒層にレ一ザビームを照射して 穴を形成することにより、 工具の再生使用も可能となる。
(実施例 1 3 )
図 5と図 6に示されるようなダイヤモンド口一タリ ドレッサー 1 0 3を製作し た。 ドレッサーの直径 Dは 1 0 O mm、 厚み Tは 1 5 mmであった。 超砥粒とし て粒度 # 3 0 / 4 0 (粒径 4 0 0〜6 0 0 μ ιη) と粒度 # 5 0 6 0 (粒径 2 5 0〜3 2 0 // m) の 2種類のダイヤモンド粒子のそれぞれを用いたドレッサーを 1 P T JP97/03369 製作した。 保持層としてはニッケルめっき層を採用した。 超砥粒の露出面がニッ ケルめっき層の表面から突出するように超砥粒を基台の上に固着させた後、 超砥 粒の先端部に粒度 # 1 2 0のダイヤモンド砥石を用いてツル一^ rングカ卩ェを施し た。 その後、 ドレッサーを周速 2 5 0〜 5 0 0 mmZm i nで回転させながら、 図 1 3に示すようにレーザビーム 5 0を超砥粒層に対して接線方向から照射する ことによりねじ状の溝を形成した。 溝間ピッチとして 0 . 3 mm、 0 . 5 mmの 2種類のそれぞれのドレッサーを製作した。 溝の深さは 2 0; m、 溝の幅は 2 0 μ mであった。
上述のようにダイヤモンド粒子の粒径と溝のピッチとを異ならせて製作された 4種類のダイヤモンドロータリ ドレッサーを用いて在来砥石をドレッシングして、 その消費電力を比較した。 研削盤としては豊田ェ機製円筒研削盤を用いた。 在来 砥石は WA 6 0 K ( J I Sの型式) を用い、 外径が 3 0 0 m m、 厚みが 5 m mで あった。 在来砥石の回転数を 1 8 0 0 r . p . mとし、 周速度を 2 8 m/ s e c とした。 これに対してダイヤモンドロータリ ドレッサ一の回転数を 2 0 0 r . p . mとし、 周速度を 1 mZ s e cとした。 切込速度は在来砥石に対して 1 / mZ r e vとし、 切込量は 0 . 0 2 mmとした。 また、 ドレッシングアウトを 1 s e c とした。
ドレッシング抵抗値の測定結果は表 1に示される。
表 1
ドレツシング抵抗の変化 (単位: KW)
Figure imgf000038_0001
表 1から明らかなように、 溝加工が施されたダイヤモンドロータリ ドレッサ一 を用いると、 ドレッシング抵抗値が低減することがわかる。 特に溝間ピッチを小 さくすると、 ドレツシング抵抗値の低減の割合が大きくなり、 またダイャモンド 粒子の粒度を小さくすると、 ドレツシング抵抗値の低減割合が大きくなることが わ力 る。 産業上の利用可能性
以上のように、 この発明に従った超砥粒工具は、 ダイヤモンド、 立方晶窒化硼 素 (C B N) 等の超砥粒を用いた砥石、 研削盤等に取付けられた在来砥石等をド レツシングするのに利用される超砥粒ドレッサー、 シリコンウェハ等のラッピン ダカ卩ェに用いられる超砥粒ラップ定盤として有用であり、 特に高い精度の加工を 行なうのに適している。

Claims

請求の範囲
1. 基台 (20) と、
前記基台 (20) の上に形成された超砥粒層 (10) とを備え、
前記超砥粒層 (10) は、
超砥粒 (1 1) と、 前記超砥粒 (1 1) を保持しかつ前記基台 (20) の上に 固着する保持層 (1 6, 1 7 ; 1 8) とを含み、
前記保持層 (16, 1 7 ; 1 8) から露出した前記超砥粒 (1 1) の表面に凹 部 (1 2 ; 14) が形成されている、 超砥粒工具。
2. 前記凹部は溝 (1 2) である、 請求項 1に記載の超砥粒工具。
3. 前記凹部は穴 (14) である、 請求項 1に記載の超砥粒工具。
4. 前記保持層 (1 6, 1 7 ; 1 8) の表面に凹部 (1 3 ; 1 5) が形成されて いる、 請求項 1に記載の超砥粒工具。
5. 前記超砥粒の表面に形成された凹部 (1 2 ; 14) と前記保持層 (1 6, 1 7 ; 18) の表面に形成された凹部 (1 3 ; 1 5) とは連なって形成されている、 請求項 4に記載の超砥粒工具。
6. 前記凹部 (1 2, 14) は、 前記保持層 (1 6, 1 7 ; 1 8) から突出した 前記超砥粒 (1 1) の表面に形成されている、 請求項 1に記載の超砥粒工具。
7. 前記突出した超砥粒 (1 1) の表面は平坦面 (1 9) を有し、 その平坦面 (1 9) に前記凹部 (1 2, 14) が形成されている、 請求項 6に記載の超砥粒 工具。
8. 前記露出した超砥粒 (1 1) の表面は、 平坦面 (1 9) を有し、 その平坦面 (1 9) が前記保持層 (1 6, 1 7 ; 18) の表面とほぼ同一平面を形成してい る、 請求項 1に記載の超砥粒工具。
9. 前記保持層 (1 6, 1 7 ; 1 8) の表面に凹部 (1 3 ; 1 5) が形成されて いる、 請求項 8に記載の超砥粒工具。
10. 前記超砥粒の表面に形成された凹部 (1 2 ; 14) と前記保持層 (1 6, 1 ; 18) の表面に形成された凹部 (1 3 ; 1 5) とは連なって形成されてい る、 請求項 9に記載の超砥粒工具。
1 1. 前記保持層はめつき層 (16) を含む、 請求項 1に記載の超砥粒工具。
1 2. 前記保持層はろう材層 (1 8) を含む、 請求項 1に記載の超砥粒工具。
1 3. 当該超砥粒工具は、 超砥粒砥石 (10 1 ; 102) である、 請求項 1に記 載の超砥粒工具。
14. 当該超砥粒工具は、 超砥粒ドレッサー (103 ; 1 04 ; 105) である、 請求項 1に記載の超砥粒工具。
1 5. 当該超砥粒工具は、 超砥粒ラップ定盤 (1 06) である、 請求項 1に記載 の超砥粒工具。
1 6. その表面が部分的に露出するように超砥粒 (1 1) を保持しかつ固着する 保持層 (1 6, 1 7 ; 1 8) を基台 (20) の上に形成する工程と、
前記保持層 (1 6, 1 7 ; 1 8) から露出した前記超砥粒 (1 1) の表面にレ —ザビーム (1 50) を照射することにより、 凹部 (1 2 ; 14) を形成するェ 程とを備えた、 超砥粒工具の製造方法。
1 7. 前記保持層 (1 6, 1 7 ; 1 8) の表面にレーザビーム (50) を照射す ることにより、 凹部 (1 3 ; 1 5) を形成する工程をさらに備える、 請求項 1 6 に記載の超砥粒工具の製造方法。
1 8. 前記超砥粒 (1 1) の表面と前記保持層 (16, 1 7 ; 1 8) の表面に凹 部を形成する工程は、 連続してレーザビーム (50) を照射することにより、 前 記保持層 (1 6, 1 7 ; 1 8) から露出した超砥粒 (1 1) の表面と前記保持層 (16, 1 7 ; 1 8) の表面とに連なって凹部 (1 2 ; 14, 1 3 ; 1 5 ) を形 成することを含む、 請求項 1 7に記載の超砥粒工具の製造方法。
1 9- 前記凹部 (1 2 ; 14) を形成する工程は、 前記保持層 (1 6, 1 7 ; 1 8) から突出した前記超砥粒 (1 1) の表面にレ一ザビーム (50) を照射する ことにより、 凹部 (1 2 ; 14) を形成することを含む、 請求項 16に記載の超 砥粒工具の製造方法。
20. 前記保持層 (1 6, 1 7 ; 1 8) から露出した前記超砥粒 (1 1) の表面 をほぼ均一に平坦化させる工程をさらに備え、 前記レーザビーム (50) を照射 することにより、 凹部 (1 2 ; 14) を形成する工程は、 前記超砥粒 (1 1) の 表面を平坦化させた後、 その表面 (1 9) にレーザビーム (50) を照射するこ とを含む、 請求項 1 6に記載の超砥粒工具の製造方法。
21. 前記超砥粒 (1 1) の表面を平坦化させる工程は、 前記露出した超砥粒 (1 1) の表面が前記保持層 (1 6, 1 7 : 1 8) の表面とほぼ同一平面を形成 するように前記超砥粒 (1 1) の表面を平坦化させることを含む、 請求項 20に 記載の超砥粒工具の製造方法。
22. 前記保持層 (1 6, 1 7 ; 1 8) の表面にレーザビーム (50) を照射す ることにより、 凹部 ( 1 3 ; 1 5) を形成する工程をさらに備え、 前記超砥粒 (1 1) の表面と前記保持層 (1 6, 1 7 ; 1 8) の表面に凹部 (1 2 ; 14, 1 3 ; 1 5) を形成する工程は、 連続してレーザビーム (50) を照射すること により、 前記超砥粒 (1 1) の平坦化させられた表面 (1 9) と前記保持層 (1 6, 1 7 ; 1 8) の表面とに連なって凹部 (1 2 ; 14, 1 3 ; 1 5) を形成す ることを含む、 請求項 21に記載の超砥粒工具の製造方法。
23. 前記保持層を形成する工程は、 めっき層 (1 6) を形成することを含む、 請求項 1 6に記載の超砥粒工具の製造方法。
24. 前記保持層を形成する工程は、
型 (60) の表面に超砥粒 (1 1) を導電性接着剤層 (70) によって付着さ せる工程と、
前記超砥粒 (1 1) が付着した前記型 (60) を前記第 1の金属のめっき液に 浸潰して、 前記超砥粒 (1 1) の平均粒径の 1Z 2未満の厚みで部分的に前記超 砥粒 (1 1) の表面を被覆する第 1の金属のめっき層 (80) を形成する工程と、 前記第 1の金属のめっき層 (80) の上に前記超砥粒 (1 1) を完全に被覆す る厚みで前記第 1の金属と異なる第 2の金属のめっき層 (16) を形成する工程 と、
接合材層 (1 7) を介在して基台 (20) に前記第 2の金属のめっき層 (1 6) を固着する工程と、
前記超砥粒 (1 1) から前記型 (60) を除去する工程と、
前記第 1の金属のめっき層 (80) をエッチングにより除去して前記超砥粒 (1 1) の表面を部分的に均一に露出させる工程とを含む、 請求項 23に記載の 超砥粒工具の製造方法。
25. 前記保持層を形成する工程は、 ろう材層 (1 8) を形成することを含む、 請求項 1 6に記載の超砥粒工具の製造方法。
PCT/JP1997/003369 1996-09-30 1997-09-24 Outil superabrasif et son procede de fabrication WO1998014307A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97941208A EP0870578A4 (en) 1996-09-30 1997-09-24 SUSPERABRASIVE HIGHLY ABRASIVE TOOL AND METHOD FOR THE PRODUCTION THEREOF
KR1019980703950A KR100293863B1 (ko) 1996-09-30 1997-09-24 초지립공구와그제조방법
US09/077,024 US6312324B1 (en) 1996-09-30 1997-09-24 Superabrasive tool and method of manufacturing the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP8280227A JPH10109270A (ja) 1996-09-30 1996-09-30 超砥粒砥石及びその製造方法
JP8/280227 1996-09-30
JP9/29538 1997-01-28
JP2953797A JPH10202529A (ja) 1997-01-28 1997-01-28 超砥粒砥石及びその製造方法
JP9/29537 1997-01-28
JP09029538A JP3086663B2 (ja) 1997-01-28 1997-01-28 ダイヤモンドロータリードレッサ及びその製造方法
JP9/83223 1997-02-24
JP9083223A JPH10235553A (ja) 1997-02-24 1997-02-24 ダイヤモンドラップ定盤及びその製造方法
JP9/116090 1997-04-18
JP11609097A JPH10291162A (ja) 1997-04-18 1997-04-18 ダイヤモンドロータリードレッサ及びその製造方法
JP9/169593 1997-06-10
JP16959397A JPH11867A (ja) 1997-06-10 1997-06-10 超砥粒工具およびその製造方法

Publications (1)

Publication Number Publication Date
WO1998014307A1 true WO1998014307A1 (fr) 1998-04-09

Family

ID=27549466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003369 WO1998014307A1 (fr) 1996-09-30 1997-09-24 Outil superabrasif et son procede de fabrication

Country Status (4)

Country Link
US (1) US6312324B1 (ja)
EP (1) EP0870578A4 (ja)
KR (1) KR100293863B1 (ja)
WO (1) WO1998014307A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176909A (ja) * 2013-03-13 2014-09-25 Shingijutsu Kaihatsu Kk 高効率精密加工用研磨砥粒、それを用いた工具及びそれらの製法
JPWO2017203848A1 (ja) * 2016-05-27 2019-03-22 株式会社アライドマテリアル 超砥粒ホイール
CN117483739A (zh) * 2023-11-06 2024-02-02 郑州机械研究所有限公司 一种出刃高度可控的硬质合金串珠及其制备方法和应用

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868100B2 (en) 1997-04-04 2018-01-16 Chien-Min Sung Brazed diamond tools and methods for making the same
US9409280B2 (en) 1997-04-04 2016-08-09 Chien-Min Sung Brazed diamond tools and methods for making the same
US9221154B2 (en) 1997-04-04 2015-12-29 Chien-Min Sung Diamond tools and methods for making the same
US9199357B2 (en) 1997-04-04 2015-12-01 Chien-Min Sung Brazed diamond tools and methods for making the same
US9238207B2 (en) 1997-04-04 2016-01-19 Chien-Min Sung Brazed diamond tools and methods for making the same
US9463552B2 (en) 1997-04-04 2016-10-11 Chien-Min Sung Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods
SE513610C2 (sv) * 1998-02-03 2000-10-09 Sandvik Ab Skär för spånavskiljande bearbetning
WO2000006340A1 (en) * 1998-07-31 2000-02-10 Norton Company Rotary dressing tool containing brazed diamond layer
JP3770752B2 (ja) * 1998-08-11 2006-04-26 株式会社日立製作所 半導体装置の製造方法及び加工装置
US6755720B1 (en) * 1999-07-15 2004-06-29 Noritake Co., Limited Vitrified bond tool and method of manufacturing the same
US6834857B2 (en) * 2001-01-24 2004-12-28 Sabing H. Lee Game and method of playing
US6811579B1 (en) 2002-06-14 2004-11-02 Diamond Innovations, Inc. Abrasive tools with precisely controlled abrasive array and method of fabrication
US6957933B2 (en) * 2003-05-30 2005-10-25 Siderca S.A.I.C. Threading insert with cooling channels
US8393934B2 (en) 2006-11-16 2013-03-12 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
US9724802B2 (en) 2005-05-16 2017-08-08 Chien-Min Sung CMP pad dressers having leveled tips and associated methods
US8678878B2 (en) 2009-09-29 2014-03-25 Chien-Min Sung System for evaluating and/or improving performance of a CMP pad dresser
US9138862B2 (en) 2011-05-23 2015-09-22 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US8974270B2 (en) 2011-05-23 2015-03-10 Chien-Min Sung CMP pad dresser having leveled tips and associated methods
US8622787B2 (en) 2006-11-16 2014-01-07 Chien-Min Sung CMP pad dressers with hybridized abrasive surface and related methods
CN100465713C (zh) * 2005-06-20 2009-03-04 乐金显示有限公司 液晶显示设备用研磨机轮和用其制造液晶显示设备的方法
US20080292869A1 (en) * 2007-05-22 2008-11-27 Chien-Min Sung Methods of bonding superabrasive particles in an organic matrix
US9011563B2 (en) 2007-12-06 2015-04-21 Chien-Min Sung Methods for orienting superabrasive particles on a surface and associated tools
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
US8034137B2 (en) 2007-12-27 2011-10-11 3M Innovative Properties Company Shaped, fractured abrasive particle, abrasive article using same and method of making
TWI449597B (zh) * 2008-07-09 2014-08-21 Iv Technologies Co Ltd 研磨墊及其製造方法
KR20110074532A (ko) * 2008-09-16 2011-06-30 다이아몬드 이노베이션즈, 인크. 독특한 특징부를 가지는 연마 입자
JP5268599B2 (ja) * 2008-12-03 2013-08-21 株式会社ディスコ 研削装置および研削方法
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
BRPI0922318B1 (pt) 2008-12-17 2020-09-15 3M Innovative Properties Company Partículas abrasivas moldadas com sulcos
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
CN101829880A (zh) * 2009-03-10 2010-09-15 孙江强 铁路电气化用硅青铜排的生产工艺
TWI535527B (zh) * 2009-07-20 2016-06-01 智勝科技股份有限公司 研磨方法、研磨墊與研磨系統
US8480772B2 (en) 2009-12-22 2013-07-09 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
CN101920479A (zh) * 2010-04-13 2010-12-22 宁波超能液压有限公司 一种珩磨机的分度装置
CN102476316B (zh) * 2010-11-24 2013-07-03 李冬庆 数控雕铣机自动换刀刀库防护装置
BR112013016734A2 (pt) 2010-12-31 2019-09-24 Saint Gobain Ceramics partículas abrasivas com formas particulares e métodos de deformação de tais partículas
CN102363286B (zh) * 2011-03-01 2013-08-28 江苏华辰磨料磨具有限公司 一种微晶陶瓷结合剂磨钢坯砂轮
CN102248362B (zh) * 2011-04-30 2014-03-19 泰安广大化工机械有限公司 一种核电用稳压器封头的制造方法
CN102218639A (zh) * 2011-05-17 2011-10-19 洛阳市锅炉压力容器检验所 一种塔器筒体现场更换方法
CN102240968B (zh) * 2011-05-20 2013-04-10 上海工具厂有限公司 无机械手数控工具磨床的砂轮库
CN102229099A (zh) * 2011-05-22 2011-11-02 浙江省天台祥和实业有限公司 密封件研磨清洗机
CN102248367A (zh) * 2011-05-29 2011-11-23 杜广智 用于连杆的生产方法和生产装置
CN102229111B (zh) * 2011-06-07 2013-06-05 河南工业大学 金刚石形面约束自由磨粒变速挤磨超硬磨料砂轮修整方法
CN102240970B (zh) * 2011-06-27 2013-06-12 广东科达机电股份有限公司 一种新型锥齿轮驱动式抛光磨头
CN103764349B (zh) 2011-06-30 2017-06-09 圣戈本陶瓷及塑料股份有限公司 液相烧结碳化硅研磨颗粒
WO2013003830A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
CN102240971B (zh) * 2011-07-02 2013-05-29 安徽池州伟舜机电有限公司 磨管机工件快速装卸机构
CN102284908B (zh) * 2011-07-05 2013-04-24 珠海市旺磐精密机械有限公司 一种双端面研磨机的自动夹紧与卸料装置
CN102248411A (zh) * 2011-07-08 2011-11-23 常州大学 一种球面三转动并联运动装置
CN102248410B (zh) * 2011-07-08 2013-03-27 常州大学 一种三转动并联操作平台
CN102248419B (zh) * 2011-07-14 2013-03-27 宁波万盛轴业有限公司 轴连接用互锁套打孔工装
CN102248382B (zh) * 2011-07-18 2013-05-08 江阴市燎原锻压有限公司 一种风力发电机护环锻件的加工工艺
CN102284912B (zh) * 2011-08-29 2013-07-03 常州东基数控机械有限公司 一种磨边机冷却装置
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
CN102363285A (zh) * 2011-11-04 2012-02-29 西安东风仪表厂 磨料水射流切割喷头装置
EP3517245B1 (en) 2011-12-30 2023-12-13 Saint-Gobain Ceramics & Plastics Inc. Shaped abrasive particle and method of forming same
WO2013102176A1 (en) 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
EP3851248B1 (en) 2011-12-30 2024-04-03 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
WO2013106597A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
CN102528580B (zh) * 2012-02-03 2013-09-11 卓利华 无心磨床上切入磨削轴端颈部的自动装置
US9242346B2 (en) 2012-03-30 2016-01-26 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
IN2014DN10170A (ja) 2012-05-23 2015-08-21 Saint Gobain Ceramics
WO2014005120A1 (en) 2012-06-29 2014-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
RU2614488C2 (ru) 2012-10-15 2017-03-28 Сен-Гобен Абразивс, Инк. Абразивные частицы, имеющие определенные формы, и способы формирования таких частиц
CN103909477B (zh) * 2012-12-31 2016-02-17 宁波江丰电子材料股份有限公司 机械研磨修整轮的加工方法
JP2016503731A (ja) 2012-12-31 2016-02-08 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 粒子材料およびその形成方法
EP4364891A2 (en) 2013-03-29 2024-05-08 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
CN103465185A (zh) * 2013-09-13 2013-12-25 常熟市巨力砂轮有限责任公司 Cbn砂轮的制备方法
EP3043961A4 (en) * 2013-09-13 2017-04-12 Stora Enso Oyj Method for creating a grit pattern on a grindstone
JP2016538149A (ja) 2013-09-30 2016-12-08 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 形状化研磨粒子及び形状化研磨粒子を形成する方法
US9895787B2 (en) * 2013-12-20 2018-02-20 United Technologies Corporation Methods for modifying and adding features on grinding wheel surfaces
US9764445B2 (en) * 2013-12-20 2017-09-19 United Technologies Corporation Systems and methods for dressing grinding wheels
CA2934938C (en) 2013-12-31 2019-04-30 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
KR101884178B1 (ko) 2014-04-14 2018-08-02 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
US10557067B2 (en) 2014-04-14 2020-02-11 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
CN104084899B (zh) * 2014-07-05 2017-01-25 郑州磨料磨具磨削研究所有限公司 窄薄超硬材料砂轮环制备方法及实施该方法的夹具
CN104057405B (zh) * 2014-07-05 2016-08-17 郑州磨料磨具磨削研究所有限公司 砂轮节块制造方法及实施该方法的切割夹具
DE102014109613A1 (de) 2014-07-09 2014-09-04 Ewag Ag Verfahren zur Herstellung einer Werkstückfläche an einem stabförmigen Werkstück
CN104526580A (zh) * 2014-12-15 2015-04-22 江苏苏北砂轮厂有限公司 一种微晶陶瓷砂轮
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
CN104526590A (zh) * 2014-12-23 2015-04-22 常熟市巨力砂轮有限责任公司 双面凹带锥砂轮的制造方法
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
CN104589224B (zh) * 2015-01-26 2017-02-22 湖南大学 一种软脆材料加工磨具及其制造方法及对软脆材料加工的方法
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
CN107636109A (zh) 2015-03-31 2018-01-26 圣戈班磨料磨具有限公司 固定磨料制品和其形成方法
CA2988012C (en) 2015-06-11 2021-06-29 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2017014197A1 (ja) * 2015-07-17 2017-01-26 本田技研工業株式会社 電着工具、歯車研削用ねじ状砥石、電着工具の製造方法及び歯車研削用ねじ状砥石の製造方法
CN107405755B (zh) 2015-12-10 2019-03-22 联合材料公司 超硬磨料砂轮
US10399206B1 (en) * 2016-01-15 2019-09-03 Us Synthetic Corporation Polycrystalline diamond compacts, methods of fabricating the same, and methods of using the same
KR102422875B1 (ko) 2016-05-10 2022-07-21 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연마 입자들 및 그 형성 방법
SI3455321T1 (sl) 2016-05-10 2022-10-28 Saint-Gobain Ceramics & Plastics, Inc. Metode oblikovanja abrazivnih delcev
WO2018064642A1 (en) 2016-09-29 2018-04-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2018236989A1 (en) 2017-06-21 2018-12-27 Saint-Gobain Ceramics & Plastics, Inc. PARTICULATE MATERIALS AND METHODS OF FORMATION THEREOF
DE102017210799A1 (de) 2017-06-27 2018-12-27 Robert Bosch Gmbh Geformtes keramisches Schleifkorn sowie Verfahren zur Herstellung eines geformten keramischen Schleifkorns
CN109333385B (zh) * 2018-11-15 2020-10-02 哈尔滨工业大学 一种带有微结构的金刚石砂轮及其制备方法
WO2021133901A1 (en) 2019-12-27 2021-07-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429188A (en) * 1977-08-09 1979-03-05 Honda Motor Co Ltd Abrasive wheel for grinding machine and method of producing the same
JPH03196976A (ja) * 1989-12-26 1991-08-28 Nec Corp 切断砥石及びその製造方法
JPH04210381A (ja) * 1990-11-30 1992-07-31 Osaka Diamond Ind Co Ltd 研削砥石並びにその製造方法
JPH0796461A (ja) * 1993-09-29 1995-04-11 Komatsu Ltd 超砥粒砥石の調整方法及び超砥粒砥石並びに放電処理兼用ツルア
JPH08155838A (ja) * 1994-12-07 1996-06-18 Canon Inc 砥石の製造方法及び砥石
JPH08206960A (ja) * 1995-02-02 1996-08-13 Matsufumi Takatani 研磨工具及びその製造法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224380A (en) * 1978-03-28 1980-09-23 General Electric Company Temperature resistant abrasive compact and method for making same
JPS5558979A (en) * 1978-10-26 1980-05-02 Nippon Kinzoku Kakouhin Hanbai Kk Supersonic-used electrodeposition grinder
EP0114497B1 (en) * 1982-12-21 1988-05-11 De Beers Industrial Diamond Division (Proprietary) Limited Abrasive compacts and method of making them
US4550790A (en) * 1983-02-28 1985-11-05 Norton Christensen, Inc. Diamond rotating bit
JPS61257772A (ja) * 1986-05-08 1986-11-15 Toyoda Mach Works Ltd 砥石ツル−イング方法
FR2598644B1 (fr) * 1986-05-16 1989-08-25 Combustible Nucleaire Produit abrasif diamante thermostable et procede de fabrication d'un tel produit
JPH01164562A (ja) * 1987-12-18 1989-06-28 Brother Ind Ltd 研削砥石及びその製造方法
US5151107A (en) * 1988-07-29 1992-09-29 Norton Company Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof
IE892863L (en) * 1988-09-09 1990-03-09 Galderma Rech Dermatologique Abrasive compacts
US4923490A (en) * 1988-12-16 1990-05-08 General Electric Company Novel grinding wheels utilizing polycrystalline diamond or cubic boron nitride grit
US5190568B1 (en) * 1989-01-30 1996-03-12 Ultimate Abrasive Syst Inc Abrasive tool with contoured surface
US5906246A (en) * 1996-06-13 1999-05-25 Smith International, Inc. PDC cutter element having improved substrate configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429188A (en) * 1977-08-09 1979-03-05 Honda Motor Co Ltd Abrasive wheel for grinding machine and method of producing the same
JPH03196976A (ja) * 1989-12-26 1991-08-28 Nec Corp 切断砥石及びその製造方法
JPH04210381A (ja) * 1990-11-30 1992-07-31 Osaka Diamond Ind Co Ltd 研削砥石並びにその製造方法
JPH0796461A (ja) * 1993-09-29 1995-04-11 Komatsu Ltd 超砥粒砥石の調整方法及び超砥粒砥石並びに放電処理兼用ツルア
JPH08155838A (ja) * 1994-12-07 1996-06-18 Canon Inc 砥石の製造方法及び砥石
JPH08206960A (ja) * 1995-02-02 1996-08-13 Matsufumi Takatani 研磨工具及びその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0870578A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176909A (ja) * 2013-03-13 2014-09-25 Shingijutsu Kaihatsu Kk 高効率精密加工用研磨砥粒、それを用いた工具及びそれらの製法
JPWO2017203848A1 (ja) * 2016-05-27 2019-03-22 株式会社アライドマテリアル 超砥粒ホイール
US11123841B2 (en) 2016-05-27 2021-09-21 A.L.M.T. Corp. Super-abrasive grinding wheel
CN117483739A (zh) * 2023-11-06 2024-02-02 郑州机械研究所有限公司 一种出刃高度可控的硬质合金串珠及其制备方法和应用

Also Published As

Publication number Publication date
EP0870578A1 (en) 1998-10-14
US6312324B1 (en) 2001-11-06
KR100293863B1 (ko) 2001-09-17
EP0870578A4 (en) 2002-03-13
KR19990071674A (ko) 1999-09-27

Similar Documents

Publication Publication Date Title
WO1998014307A1 (fr) Outil superabrasif et son procede de fabrication
CA2519342C (en) High precision multi-grit slicing blade
EP2083967A1 (en) Conditioning tools and techniques for chemical mechanical planarization
JP3791610B2 (ja) 鏡面加工用超砥粒ホイール
JP2003511255A (ja) 研磨パッド用コンディショナーおよびその製造方法
WO1996023630A1 (fr) Arete de coupe superabrasive electroplaquee et son procede de fabrication
CN112677061B (zh) 一种钢铁打磨用钎焊金刚石磨盘及其制备方法
JPH10113878A (ja) 超砥粒ホイール及びその製造方法
JP2000024934A (ja) 鏡面加工用超砥粒砥石
JPH04135176A (ja) 無気孔型砥石の目直し法
JP3086670B2 (ja) 超砥粒砥石
JP2000326234A (ja) バリ取り用超砥粒ホイール
JP2002326166A (ja) 電着薄刃砥石とその製造方法
JP2001087943A (ja) 回転複合カッター
US20060068691A1 (en) Abrading tools with individually controllable grit and method of making the same
JP2002103231A (ja) 研削砥石の製造方法、研削砥石の製造装置、及び研削砥石
CN112677062B (zh) 一种打磨钢材磨盘的专用磨粒地貌、其金刚石磨盘与制备方法
JPH11216675A (ja) 高精度超砥粒ホイール
JPH10291162A (ja) ダイヤモンドロータリードレッサ及びその製造方法
JP3202191B2 (ja) 超砥粒砥石
JPH1199474A (ja) 鏡面加工用超砥粒砥石
JPH10202529A (ja) 超砥粒砥石及びその製造方法
JP2004268238A (ja) 電着工具およびその製造方法
JPH10202530A (ja) ダイヤモンドロータリードレッサ及びその製造方法
JP4896114B2 (ja) 電着工具の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997941208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09077024

Country of ref document: US

Ref document number: 1019980703950

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997941208

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980703950

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980703950

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997941208

Country of ref document: EP