WO1997034962A9 - - Google Patents

Info

Publication number
WO1997034962A9
WO1997034962A9 WO9734962A9 WO 1997034962 A9 WO1997034962 A9 WO 1997034962A9 WO 9734962 A9 WO9734962 A9 WO 9734962A9
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage agent
group
oily substance
oily
Prior art date
Application number
Other languages
English (en)
Publication date

Links

Definitions

  • Heat storage agent and method for manufacturing the same heat storage material and method for manufacturing the same, and heat storage device
  • the present invention relates to a heat storage agent for use in heat storage or cold storage utilizing latent heat due to phase change, which is suitably used for air conditioning in buildings, etc., and a method for producing the same, a heat storage device and a heat storage material having the heat storage agent, It relates to the manufacturing method of
  • Latent heat is a phenomenon in which heat is stored at the time of phase change from solid to liquid and heat is released at the time of phase change from liquid to solid.
  • oily substances such as paraffins and higher alcohols are relatively high at about 40 to 60 cal / g, exceeding 30 cal / g, due to phase change between the liquid phase and the solid phase.
  • the high latent heat of melting can be used, and by the selection or mixing of the oily substance, the melting point can be freely set from a low temperature of 120 ° C. to a high temperature range of over 100 ° C. ing.
  • nucleating agent such as zeolite powder be added to hydrocarbons such as nitrogen to prevent supercooling.
  • nucleating agents are possessed by the nucleating agent, in particular, by separating the nucleating agent from the liquid hydrocarbon due to the difference in specific gravity while the hydrocarbon is in liquid state. Can not give sufficient effect to hydrocarbon Have the problem of
  • a gelling agent such as an amide, an ester, an amine salt of 1 N-asylamino acid, or 12-hydroxystearic acid 5 6-10 3 2 7 3
  • a thermal storage medium consisting of a foam-like container filled with a foam carrying a mixture of 2 paraffins and di-benzidene sulfide in the form of an isolated island (JP-A-5 7-9 6 0 7 8),
  • a latent heat storage device Japanese Patent Application Laid-Open No. 6-5686 6) in which paraffin gelled in a gel form with a coagulant is inserted into a force cell
  • Heat storage material obtained by mixing 4 paraffins and hydrocarbon-based organic polymer by mechanical means Japanese Patent Laid-Open No. 4 583 8 7)
  • Mating by the above-mentioned mechanical means means By mixing at least one component in the melt of at least one component in both the organic component and the hydrocarbon-based organic polymer, or by dissolving at least water preferably or at high temperature. Also in the state where it can be flow-deformed by external force, it means the operation of stirring, mixing and kneading),
  • a storage agent obtained by dispersing, in water or brine, a rod-like substance in which oil absorbing resin has absorbed baraffine Japanese Patent Application Laid-Open No. 6-16050
  • Thermal storage tank for solid particulate matter obtained by absorbing oil into resinous resin A heat storage device (for example, Japanese Patent Application Laid-Open No. Hei 4 1 2 7 8 1 8 6), which is mounted so as to be able to exchange heat with a heat storage body such as water, for example.
  • the paraffin absorbed in the oil-absorptive resin is dispersed in a medium such as water in a minute volume unit. Configuration.
  • a heat storage agent or heat storage device does not freeze at a target temperature or within a predetermined time, and can not efficiently take out the heat amount accumulated by heating or cooling. That is, there is a problem that sufficient heat storage efficiency can not be obtained.
  • the heat storage agent proposed in the above-mentioned publication 7 has a problem that the latent heat of the heat storage agent becomes low because the equilibrium absorption capacity of paraffin in the oil absorbing resin, boriorefin, is low. There is. Furthermore, in order to prevent the exudation of paraffin from the heat storage agent, it is necessary to crosslink the surface of polyethylene glycol or the like and to melt the paraffin, in addition to There is a problem that the absorption needs to be performed under high temperature conditions.
  • the heat storage material is a gel-like molded product in advance, or the heat storage material is a molded product mixed with the binder component, so that contact with the medium is made.
  • the heat storage material which is a molded body in a complex-shaped container which can increase the surface area, for example, in a thin tube, donut or coil container. It is difficult to fill molded products without gaps in the container, and there is a problem that the reduction of the filling rate leads to the reduction of the thermal efficiency.
  • the filling operation is performed in a state where the heat storage material is melted to become a liquid to become a liquid. It is not possible to substantially fill containers with low heat resistance such as polyvinyl chloride, etc., and it is high heat resistance but expensive resin material, and corrosion resistance but expensive. It also has the disadvantage of being used only as a container made of stainless steel or the like.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a heat storage agent having good heat storage efficiency and high safety, a method of manufacturing the same, a heat storage device, a heat storage material and a method of manufacturing the same. And there. Disclosure of the invention
  • the inventors of the present invention have an oily gel body containing an oil absorbing resin and an oily substance having a heat storage property, and the unit volume of the oily gel body is 0. It has been found that a heat storage agent having a size of 0 1 cm 3 or more, a heat storage device having the heat storage agent, and a heat storage material have good heat storage efficiency and are also excellent in safety.
  • the heat storage agent of the present invention comprises an oily gel body comprising an oil absorbing resin and an oily substance having a heat storage property, and the unit volume of the oily gel body is 0. It is characterized by being 0. 1 cm 3 3 ⁇ 4. According to the above configuration, when the unit volume of the oily gel body is 0.01 cm 3 or more, the supercooling of the oily substance can be suppressed, so that a heat storage agent with high heat storage efficiency can be obtained. . Further, since the oily gel body has an oil absorbing resin and an oily substance having a heat storage property, the above oily substance does not cause any parturition from the oily gel body, or even if parturition occurs, It is very slight.
  • the heat storage agent does not exude or fluidize the oily substance when the oily substance is liquefied or when the oily substance is separated from the oily gel body, and the flame retardancy and the fire resistance during fire It is significantly reduced. That is, the heat storage agent is more safe than conventional heat storage agents. In addition, the supercooling of the oily substance is suppressed, and the heat transfer from the liquid phase to the solid phase is performed in a short time, so that the heat storage efficiency can be made extremely high compared to the conventional heat storage agent.
  • Another heat storage agent of the present invention comprises, in order to solve the above-mentioned problems, a granular oily gel body comprising a granular oil absorbing resin and an oily substance having a thermal storage property, and the oily gel body comprises They are in contact with each other with their individual interfaces.
  • the oily gel body maintains its cushion, so that the volume change at the time of freeze-thaw of the oily substance is alleviated, and the IE force to the container and the strain of the container are alleviated.
  • the oily gel body maintains its granular form, the exudation of the oily substance from the oily gel body is suppressed.
  • the above-mentioned heat storage agent is an aggregate (solid body) of granular oily gel bodies, even if the oily substance exudes from one oily gel body constituting the above-mentioned heat storage agent, Since the oily substance exuded by the other oily gel adjacent to the oily gel is absorbed, the oily substance from the entire heat storage agent is absorbed. Exudation is suppressed.
  • the oily substance is a compound having a heat storage property by phase conversion between a liquid phase and a solid phase.
  • the supercooling of the oily substance can be further enhanced, and the phase change in both directions between the liquid phase and the solid phase is performed in a short time, and the heat storage efficiency is compared with the conventional one.
  • An extremely high heat storage agent can be obtained.
  • the heat storage agent be obtained by suspension polymerization or suspension polycondensation of the oil absorbing resin.
  • an oily gel body having a more spherical shape when the oil-absorbent resin obtained by the above-mentioned suspension polymerization or suspension polycondensation absorbs an oily substance, an oily gel body having a more spherical shape can be obtained.
  • the above continuum can be formed more densely because it is easier to aggregate as compared with the case of (amorphous) aggregate, and the above additive is added and mixed more uniformly. be able to.
  • Still another heat storage agent of the present invention is characterized in that, in order to solve the above problems, an oil-absorbent resin having an equilibrium absorption capacity of 3 g / g or more at 25'C to pendan decane and an oily substance having heat storage property And the unit volume of the oily gel body is 0.01 cm 3 or more.
  • Still another heat storage agent of the present invention is characterized in that, in order to solve the above-mentioned problems, 8
  • the oily gel body that is, the heat storage agent according to the present invention can be produced at a relatively low temperature. It is possible to prevent the separation of the oily substance from the oily gel body, reduce the exudation of the oily substance than ever before, and make it a highly safe heat storage agent with extremely reduced flammability and fire spreadability in case of fire. This will be possible.
  • the equilibrium absorption capacity of the oil-based material in the oil absorbing resin is 3 g / g or more, the heat storage agent using the oil absorbing resin can increase its latent heat amount, thereby improving the heat storage efficiency. It can be an excellent heat storage agent.
  • the heat storage device of the present invention is characterized by having any one of the above-mentioned heat storage agents in order to solve the above-mentioned problems.
  • the heat storage material of the present invention is characterized in that the above-mentioned heat storage agent is filled in a container in order to solve the above-mentioned problems.
  • the mixture is treated as a container having a flowability. And gelation in the container to reduce the flowability of the mixture.
  • the continuum of the oily gel body when the continuum of the oily gel body is formed, the continuum is easily formed in close contact with each other in the container, so that the air bubbles are difficult to intervene in the heat storage agent. For this reason, in the oily gel body as a heat storage agent to be obtained, the adhesion to the heat transfer surface in the device for cooling or heating becomes good, and a heat storage material excellent in heat transfer property can be obtained. it can.
  • Another method of producing a heat storage agent according to the present invention is, in order to solve the above-mentioned problems, a polymer formed by polymerizing a monomer component in an oil-based substance having heat storage property and polymerizing the above-mentioned monomer component.
  • a polymer formed by polymerizing a monomer component in an oil-based substance having heat storage property and polymerizing the above-mentioned monomer component.
  • coalescence it is characterized in that the oily substance is retained so that the fluidity of the oily substance liquefied by phase change is lowered.
  • the heat storage agent can be obtained in which leakage of the oily substance, such as exudation of the oily substance, is caused when the heat is stored, dissipated, frozen, and thawed. It is possible to stably obtain a highly safe heat storage agent which is ignitered or suppressed.
  • the polymer obtained by polymerizing the monomer component has a crosslinked structure.
  • the monomer component may further include a crosslinkable monomer having at least two or more unsaturated groups having a polymerizability in the molecule, It is desirable to form a crosslinked structure with the above-mentioned crosslinkable monomer by polymerization.
  • the monomer component may further comprise a reactive monomer having a functional group for crosslinking, and the monomer component may be copolymerized in an oil substance. It is preferable to form a cross-linked structure by crosslinking the functional groups with a cross-linking agent in the state where the combined polymer contains the above-mentioned oily substance.
  • the polymer since the polymer has a crosslinked structure, it is possible to further reduce the leakage of the oil substance such as exudation of the heat storage agent holding the oil substance. As a result, it is possible to stably obtain a heat storage agent of higher safety, in which the ignition to the oily substance is suppressed.
  • the combination of the functional group possessed by the reactive monomer and the functional group possessed by the crosslinking agent may further be selected from the group consisting of a carboquinyl group, a hydroquinol group, a mercapto group, an amino group and an amino group.
  • a combination of at least one functional group selected from the group consisting of a mid group and at least one functional group selected from a group consisting of an isocyanate group, an epoxy group and a carboxylic acid anhydride group I would like to
  • the combination of the functional group possessed by the reactive monomer and the functional group possessed by the cross-linking agent is selected from the above combinations, thereby reducing the residual amount of unreacted functional group. You can get a union. Therefore, by holding the oily substance in the polymer, it is possible to obtain a heat storage agent that does not impair the heat storage characteristics of the oil substance, and it is possible to improve the heat storage property.
  • the reactive monomer have a hydroxyl group and the crosslinking agent has at least two isocyanate groups.
  • a polymer in which the residual amount of unreacted functional groups is reduced can be obtained, so a heat storage agent that does not inhibit the heat storage characteristics of the oily substance can be obtained. Furthermore, according to the above-mentioned method, it becomes possible to gelate the above-mentioned oily substance at a low temperature. Therefore, it is necessary to use oil- It is possible to obtain a heat storage agent that can be held in a gel state and has excellent long-term stability and heat storage properties.
  • the monomer component further contains 50% by weight or more of a monomer having a solubility parameter of 9 or less.
  • the heat storage agent which stably holds the oily substance even in the liquefied state by the monomer component containing 50 weight or more of the monomer whose solubility parameter is 9 or less It is possible to obtain stable and improve long-term stability.
  • Another method of producing a heat storage material according to the present invention is as follows: any one of the above-described methods of producing a heat storage agent according to any of the above, and charging a monomer component or a polymer before crosslinking into a container in a liquid state; It is characterized by being cured inside.
  • FIG. 1 is a schematic view showing an embodiment of the heat storage agent of the present invention.
  • FIG. 2 is a schematic view showing a conventional heat storage agent.
  • the heat storage agent according to the present invention comprises an oily gel body comprising an oil absorbing resin and an oily substance having a heat storage property.
  • the heat-accumulating oily substance used in the present invention is a substance which has a latent heat storage property due to a phase change between the liquid phase and the solid phase in a specific temperature range, and is substantially insoluble or hardly soluble in water. It is not particularly limited as long as Specific examples of such an oily substance include, for example, n-paraffins such as tetradecane, pentene decane, hexadecane and the like, raffine, raffine wax, isoparadine, and polyethylene glycol. Paraffins such as hex; fatty acids such as stearic acid and palmitic acid; fatty acid esters such as butyl stearate; and alcohols such as decanol and dodecyl alcohol.
  • n-paraffins such as tetradecane, pentene decane, hexadecane and the like, raffine, raffine wax, isoparadine, and polyethylene glycol.
  • oily substances may be used alone or in combination of two or more. You may mix and use.
  • paraffins are particularly preferable in that high latent heat of melting can be obtained together with a definite solidification point, and the solidification point can be freely selected.
  • the oil absorbing resin used in the present invention is not particularly limited as long as it is a resin capable of absorbing the oil substance, but it is not less than 0.5 g, preferably 3 g per 1 g of oil absorbing resin.
  • An oil-absorbent resin capable of absorbing an oily substance of g or more, more preferably 8 g or more is preferred.
  • parafin particularly an oil-absorbent resin having an equilibrium absorption capacity of 3 g / g or more at 25 ° C. to pendan decane, or a temperature 10 ° C. higher than the melting point of the oily substance used.
  • Particularly preferred is an oil absorbing resin having an equilibrium absorption capacity of 3 g / g or more for the oily substance.
  • the above-mentioned oil-absorptive resin is, for example, a monomer having a solubility parameter (SP value) of 9 or less and having one polymerizable group in the molecule (hereinafter, for convenience of explanation, a single amount) It can be easily obtained by polymerizing the monomer component containing the body (A)).
  • SP value solubility parameter
  • the solubility parameter is a parameter that is generally used as a measure of the polarity of a compound, and in the present invention, a value derived by substituting the cohesive energy constant of Hoy into the formula of Small [unit ( cal / cm 3 ) 1/2 ] is applied.
  • the polymerizable group contained in the monomer (A) is, for example, a polymerizable group capable of polymerizing the oil-absorptive resin by a polymerization method such as radical polymerization, radiation polymerization, addition polymerization, and polycondensation. It is not something to be done.
  • monomers having a polymerizable unsaturated group which can easily produce an oil absorbing resin by radical polymerization hereinafter, for convenience of explanation, monomers (a) and It is preferred to use
  • the monomer (a) include propylene (meta) atallate, n-butyl (meta) acrylate, and iso-butyl (meta).
  • dinonyl phenyl (meta) extract At alate rate, dinonyl phenyl (meta) extract, n- ⁇ ⁇ (basic) snap rate, Mentil (meta) clear rate, isobornyl TA) Relate, dibutyl maleate, di-dodecyl Unsaturated carboxylic acid esters such as resin, dodecyl crotonate and di-dodecyl itanate; (di) butyl (meth) acrylate, (di) dodecyl
  • Hydrogen group-containing (meth) acrylic acid alicyclic vinyl compound such as vinyl ether and the like; hydrocarbon having a hydrocarbon group such as dodecyl ether; vinyl vinyl acetate, lauryl acid Vinyl esters having a hydrocarbon group such as vinyl phosphate, vinyl palmitate and vinyl stearate; butyl vinyl ether, dodecyl vinyl ether and the like Binirue ether having a hydrocarbon group: styrene-les emissions, t one Puchirusuchire down, but aromatic Zokubi alkenyl compounds such as Okuchirusuchi les emissions are exemplified, but the invention is not particularly limited.
  • the above monomer (A) is not particularly limited as long as it is a monomer satisfying the above conditions, and it is possible to use, for example, a monomer other than the above monomer (a). Bornene monomers and the like can be used.
  • a desired oil-absorbing resin can be easily obtained by adopting a polymerization method such as open polymerization or radial polymerization. It is possible.
  • monomers (A) may be used alone or in combination of two or more.
  • the monomer (a) is preferable, and among them, it has at least one aliphatic hydrocarbon group having 3 to 30 carbon atoms, and an alkyl (meth) (meth) ) Alkylate, alkylaryl (meta) acrylate, alkyl (meta) acrylate, alkylaryl (meta) acrylate, fatty acid vinyl Monomers selected from the group consisting of esters, alkyl vinyl ethers and alkyl styrenes (hereinafter referred to as monomers (a ′) for convenience of explanation), oil absorption having superior oil substance absorption performance and oil retention performance It is more preferable because it can obtain a resin.
  • monomers having at least one aliphatic hydrocarbon group having 4 to 24 carbon atoms are more preferable, and fats having 8 to 18 carbon atoms are more preferable.
  • monomers having at least i group hydrocarbon groups are particularly preferred.
  • the above solubility parameter is 9 or more, and one polymerizable nonmolecular in the molecule
  • the monomer having a saturated group include, for example, (meth) acrylic acid, acrylic acid, maleic anhydride, fumaric acid, hydrochloroethyl B) Acrylics, polyethylene glycol (meta) acrylics, Mete- tipoly ethylene glycol (meta) acrylics, etc.
  • crosslinkable monomer specifically, for example, ethylene glycol (meta) atlate rate, diesel core (meta) cure, bolieci ringate.
  • alkylene oxide adducts of polyhydric alcohols eg, glycerol, trimethylolpropane, tetramethylolmethane, etc.
  • Polyfunctional (meta) acrylates obtained by esterification with acrylic acid-divinylbenzene etc. may be mentioned. These other monomers may be used alone or in combination of two or more.
  • the amount of each of the above monomers that is, the content of the above monomer ( ⁇ ) in the monomer component is preferably 50% by weight or more, and more preferably 70% by weight or more. Right. If the content of the monomer (A) is less than 50% by weight, it may not be possible to obtain an oil absorbing resin having an excellent oil substance absorbing performance, which is not preferable.
  • the above-mentioned other monomers in the monomer component may be used within a range of 50% by weight or less within the range of 15 so as not to impair the physical properties of the oil-absorbing resin to be obtained.
  • the content of the crosslinkable monomer in the monomer component is 0.01% to 4% by weight.
  • Blending is preferred. That is, when the monomer component contains a crosslinkable monomer, the blending ratio of each monomer is the total amount of monomers other than the crosslinkable monomer, including the monomer (A).
  • Cross-linkable monomer 0.0 1% by weight to 4% by weight relative to 6% by weight 99.99% by weight (however, the total amount of each monomer, that is, the total amount of monomer components is 1 Q is 0% by weight, and the proportion of the monomer (A) in the monomer component is preferably 50% by weight or more.
  • the proportion of the crosslinkable monomer in the monomer component exceeds 4% by weight, the crosslink density of the oil-absorbing resin to be obtained becomes too high to absorb a large amount of oily substances, which is preferable. Absent. Further, when the ratio of the crosslinkable monomer is less than 0.01% by weight, the remarkable effect due to the addition of the crosslinkable monomer can not be obtained.
  • the above-mentioned monomer component further contains a crosslinkable monomer, it is effective in introducing a crosslinked structure into the oil-absorbing resin to be obtained and suppressing the solubility of the oil-absorbing resin in the oily substance. It is.
  • the oil absorbing resin has a crosslinked structure, control of the oil absorption ratio becomes easy, and fluidization and exudation of the oily substance can be prevented. As a result, it is possible to secure the shape retention of the oily gel after oil absorption.
  • the elution component is reduced, the phase change temperature of the oily substance can be clarified and freezing point depression can be prevented.
  • oil absorbing resin in addition to the polymers of the above monomer components, for example, styrene Z butadiene copolymer; hydrogenated styrene Z butadiene copolymer; styrene / butadiene / isoprene copolymer Polymer; ethylene / propylene copolymer; polymer copolymerized with ethylene / propylene as the third component; dimethyl siloxane such as dimethyl methacrylate (meta) acrylate Copolymer; Sulfonated ethylene / propylene terpolymer; Polyvinyl alcohol; Polysorbentene; Polyisoprene: Polyacrylonitrile; Acrylonitrile / Butadiene Copolymer Polymer: isobutylene / isoprene copolymer: Polychlorobrene, Chlorinated phenol, Polychlorinated peptyl, Polybrominated peptyl,
  • oil absorbing resins other than polyolefins and polymers having high crystallinity themselves, in particular, having at least one aliphatic hydrocarbon group having 3 to 3 carbon atoms, And alkyl (meta) atallate, alkylaryl (meta) atallate, alkyl (meta) alkylamide, alkylaryl (meta) acrylate, lipid Oil absorbing resin formed by polymerizing a monomer component containing 50% by weight or more of at least one monomer (unsaturated compound) selected from the group consisting of vinyl ester, alkyl vinyl ester and alkyl styrene It is preferable because it is possible to obtain a heat storage agent which has good compatibility with the oily substance and less exudation of the oily substance.
  • the oil absorbing resin particularly, C 4 -C 4 fatty carbonized oil It has at least one hydrogen group, and it is alkyl (meth) atallate, alkyl aryl (meta) atallate, alkyl (meta) alkyl amide, alkyl aryl (meth) Monomer containing at least 50% by weight or more of at least one monomer (unsaturated compound) selected from the group consisting of acrylic acid, vinyl ester of fatty acid, alkyl vinyl ester, and hydroxyl ester
  • the compatibility between the oil absorbing resin and the oil substance is further improved, and a heat storage agent without bleeding of the oil substance can be obtained.
  • the oil absorbing resin in particular, it has at least one aliphatic hydrocarbon group having 8 to 18 carbon atoms, and an alkyl (meth) atelate, an alkyl aryl ( (Meta) Alkylate, Alkyl (Meta) Alkylamide, Alkylaryl (Meta) Alkylamide, Fatty Acid Vinyl Ester, Alkyl Vinyl Ester and Alkyl Styrene
  • an oil absorbing resin formed by polymerizing a monomer component containing at least 50% by weight of at least one monomer (unsaturated compound) is used, an oily gel body having appropriate flexibility can be obtained.
  • adhesion of the obtained heat storage agent to the heat transfer surface in the device for cooling or heating is improved, and the heat transfer property is also improved.
  • the oil absorbing resin polymerizes a monomer component containing 50% by weight or more of an alkyl (meth) atelate among the above monomers, it is possible to freeze and melt it.
  • the transparency of the oily gel body is maintained high even by repetition, so it is possible to obtain a heat storage agent having light transparency.
  • the oil absorbing resin polyolefin such as polyethylene, a polymer having high crystallinity, or the like may be used. However, these polymers may be used.
  • the resin is used as an oil-absorptive resin, it is necessary to, for example, coat the surface of the oil-absorptive resin or crosslink the surface, or stick the oily substance, in order to prevent the exudation of the oily substance.
  • oil absorbing resins made of boolithyene etc. can not be impregnated with oily substances unless the temperature is high.
  • an oil absorbing resin other than a polymer having high crystallinity and crystallinity for example, as described above, a single amount Oil absorbing resin formed by polymerizing at least one monomer selected from the body (a ′), oil absorbing resin having an equilibrium absorption capacity at 25′C to pentadecane of 3 g / g or more, or It is preferable to use an oil absorbing resin having an equilibrium absorption capacity of 3 g / g or more at a temperature 10 ° C. higher than the melting point of the oily substance used.
  • the above oil absorbing resin since the oily substance can be impregnated at a relatively low temperature, the above-mentioned oily gel, that is, the heat storage agent according to the present invention can be manufactured at a relatively low temperature. At the same time, separation of the oily substance from the oily gel body is prevented, the exudation of the oily substance is smaller than before, and a highly safe heat storage agent with extremely reduced flammability and fire spread property in case of fire is obtained. be able to.
  • the heat storage agent using the oil absorbing resin can increase its latent heat amount, so A heat storage agent excellent in efficiency can be obtained.
  • the method for producing the oil-absorptive resin used in the present invention is not particularly limited, and various methods described above, for example, radical polymerization, radiation polymerization, addition polymerization, polycondensation, etc., may be used. The method can be adopted.
  • the oil absorbing resin is prepared, for example, by dispersing the above-mentioned monomer component in an aqueous medium in the presence of a protective colloid agent and a surfactant, and then performing suspension polymerization with a polymerization initiator such as oil-soluble radical polymerization initiator. It is easy to manufacture by Also, if necessary, the monomer component can be dissolved in a water-insoluble organic solvent and then suspension polymerization can be carried out.
  • the above-mentioned protective core agent and surfactant are not particularly limited, and the amount thereof to be used is also not particularly limited.
  • Specific examples of the above-mentioned protective colloid agent include polyvinyl alcohol, sodium pi xycetyl cellulose, gelatin and the like.
  • the surfactant for example, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, polyoxy ethylene alkyl ether, fatty acid iron oxide etc. Be These protective colloid agents and surfactants may be used alone or in combination of two or more kinds.
  • the above-mentioned polymerization initiator is not particularly limited, but specifically, for example, organic peroxides such as benzyl peroxide, lauroyl peroxide, hydrogenated hydroxide and the like. Substances such as 2,2′-azo compounds such as 2,2′-abbisy sobutyronitol, 2,2′-azobisdimethyvaleroniryl and the like. Only one type of these polymerization initiators may be used, or two or more types may be mixed and used as appropriate. The amount of these polymerization initiators used is preferably in the range of 0.1% by weight to 5% by weight with respect to the above-mentioned monomer components, although it depends on the kind, the used amount, etc. of the monomer components. Yes. Further, the polymerization temperature at the time of carrying out the above-mentioned polymerization reaction is not particularly limited, and preferably 0 ° C. to 15 (in the range of TC, monomer components or heavy twenty two
  • the polymerization time at the time of carrying out the above polymerization reaction is not particularly limited either, and depending on the kind of the above monomer component, polymerization initiator, etc., the amount thereof used, the reaction temperature etc. It may be set appropriately so that the reaction is completed.
  • suspension polymerization or suspension polycondensation is preferable because after the polymerization, a granular oil absorbing resin, particularly, a spherical oil absorbing resin can be directly obtained. If the oil-absorbent resin is in the form of a gutter, the surface area of the oil-absorbent resin is increased, and the rate of absorption of an oily substance can be improved.
  • the oily gel body used in the heat storage agent of the present invention is prepared by absorbing and swelling a liquid-phase oily substance in the above-mentioned oil-absorptive resin under the temperature condition above the freezing point of the oily substance. You can get it easily.
  • the oil-absorbent resin may be heated for the purpose of shortening the time for absorbing the oily substance.
  • the proportion of the oil absorbing resin and the oily substance used that is, the content of the oil absorbing resin and the oil substance in the oily gel is not particularly limited, but the oil absorbing resin is 4 wt% to 20 wt%. It is preferable to set it in the range of 6% by weight and in the range of 6% by weight to 80% by weight of the oily substance.
  • the proportion of the oil absorbing resin is less than 4% by weight, the oil substance can not be completely absorbed and swelled, which may cause exudation and fluidization when the oil substance is in a liquid phase.
  • the proportion of the oil absorbing resin exceeds 20% by weight, the content of the oil-based substance is small, so that the latent heat of phase change of the obtained heat storage agent may be reduced.
  • the oil absorbing resin is in the form of a brow, when the oil absorbing resin absorbs an oily substance, it can expand in a similar shape to obtain a bluish oily gel body. ° 97/34962 PC so-called leak 89
  • the oily gel body 1 is in the form of particles, and these oily gel bodies 1 are in contact with each other while having individual interfaces. It is preferable to have The heat storage agent 2 has the above-described structure, and has the voids formed by the oily gel bodies 1 ... which are in contact with each other. For this reason, the volume change at the time of freezing and thawing of the oily substance is alleviated, and the pressure on the container and the strain of the container are alleviated. In addition, since the oily gel body maintains its particulate form, the exudation of the oily substance from the oily gel body 1 is suppressed.
  • the heat storage agent 2 is an aggregate (continuous body) of the oily gel bodies 1 ... having a granular structure, the oily substance stains from one oily gel body 1 ... that constitutes the heat storage agent 2. Even if the oily gel body 1 is released, the oily substance exuded by the other oily gel body 1 in contact with the oily gel body 1 is absorbed, so that the exudation of the oily substance from the entire heat storage agent 2 can be suppressed.
  • the heat storage agent is an assembly of the oily gel body 1 having a wedge shape and the void is formed by the oily gel bodies 1 adjacent to each other, supercooling is suppressed and various additions are made. It is possible to uniformly add agents such as heat transfer improvers, nucleating agents, flame retardants and the like. And, in particular, when the above-mentioned oily gel body 1 is spherical, it becomes easier to aggregate as compared with the case where the above-mentioned oily gel body 1 ... is a collection of granular variants, While being able to form more densely, the said additive can be added and mixed more uniformly.
  • spherical oil gel 1 is particularly preferable.
  • the oily gel body 1 obtained from the oil-absorptive resin becomes an aggregate of lyophobic variants, Compared with the case of using the spherical oily gel body 1, the uniformity when the additive is added is inferior.
  • the oil absorbing resin is formed into particles, the oil absorbing resin tends to contain air bubbles because the oil absorbing operation needs to be performed, and there is a possibility that air bubbles are contained inside the obtained oily gel body 1. .
  • the average particle diameter of the independent unit in the granular oil absorbing resin used in the present invention is preferably 5 mm or less, more preferably 3 mm or less, and particularly preferably 1 mm or less. . If the average particle size is 5 mm or less, the time to form the continuous phase (continuum) of the oily gel body 1 ... becomes short, so that the productivity is improved. Further, when the average particle diameter is equal to or less than im, heating at a high temperature is not required, and the continuous phase (continuum) can be easily formed at a relatively low temperature.
  • the above-mentioned particulate oil-absorbing resin is one having a high molecular weight or a crosslinked structure, it is less likely to dissolve at the interface after absorbing the oily substance, and the particulate It is not particularly limited as long as it is bonded such that a clear interface exists between the oily gel bodies 1.
  • oily gel bodies 1 ... have individual interfaces means that, for example, if the heat storage agent 2, that is, the continuous body of oily gel bodies 1 ... is stirred in water, etc. It can be confirmed by separating into oily gel 1.
  • oil absorption resin polyethylene pellet or SEBS (styrene-ethylene-butyl-butyl-styrene-block polymer) powder was used.
  • a conventional oil-absorptive resin as shown in FIG. 2, when the oil-absorptive resin absorbs an oily substance to form an oily gel body 1, a granular oily gel body 1 ...
  • the heat storage agent 3 in the form of a mass is obtained by bringing the two into contact with each other, melting and integrating them.
  • the heat storage agent 3 when the heat storage agent 3 is a large integrated gel, the heat storage agent 3 may cause exudation of the oil substance due to distortion due to volume change during freezing and thawing of the oil substance. Therefore, no clear interface can be seen in the heat storage agent 3.
  • the above-mentioned oil-absorptive resin can be adopted as a method of producing the above-mentioned oil-absorptive resin.
  • the above oil absorbing resin is obtained by bulk polymerization, for example, the above monomer component is poured into a mold in the presence of a polymerization initiator and preferably heated at 50 ° C. to 150 ° C. By this, it is possible to easily obtain an oil absorbing resin.
  • the above-mentioned polymerization initiator the same polymerization initiator as the above-mentioned polymerization initiator can be used.
  • the oil absorbing resin may be obtained as a bulk, and if necessary, the obtained bulk is subjected to an operation such as grinding to adjust the particle size. Oil absorbing resin may be obtained as a granular material. Also, in order to improve the oil absorption speed of the oil absorbing resin, the oil absorbing resin of the present invention can be obtained by mixing it with a water-insoluble compound within the range that does not reduce the oil absorption performance of the oil absorbing resin. Good.
  • the water-insoluble compound is not particularly limited as long as it is a water-insoluble or poorly water-soluble compound having a solubility of 1 g or less in 100 g of water.
  • water-insoluble compound examples include, for example, silica and talc. And minerals such as diatomite; metals such as iron and alumina; inorganic salts such as calcium carbonate: organic acid salts such as gold and stone; and resins such as polystyrene, polyethylene and polyvinyl acetate; Organic compounds such as wax; textiles such as cotton and pulp are burnt.
  • minerals such as diatomite; metals such as iron and alumina; inorganic salts such as calcium carbonate: organic acid salts such as gold and stone; and resins such as polystyrene, polyethylene and polyvinyl acetate; Organic compounds such as wax; textiles such as cotton and pulp are burnt.
  • powdery compounds which can effectively prevent the oil-repellent resin from being powdered in a small amount, and their solubility in 100 g of water at 20 ° C. is 1 g or less.
  • powders of metal salts of organic acids and hydrophobic inorganic compound powders having a methanol value or 25 wt% or less.
  • the above-mentioned methanol value is a measure representing the degree of hydrophobization of a water-insoluble compound, and is expressed by the volume percentage of methanol in an aqueous methanol solution in which the water-insoluble compound can be wetted.
  • the unit volume (continuous body) of the oily gel in the heat storage agent is preferably 0.01 cm 3 or more, and 10 c ⁇ ⁇ 3 or more. Some are more preferable, and 100 cm 3 or more is particularly preferable.
  • the oily substance is supercooled and it is not preferable because it may cause failure unless it is frozen at a target temperature or for a predetermined time. That is, when the unit volume of the oily gel body is less than 0.01 cm 3 , the oily substance becomes supercooled and it becomes difficult to cause a phase change between the liquid phase and the solid phase. For this reason, the whole oily gel does not freeze, and the heat accumulated by heating or cooling can not be sufficiently removed. Moreover, in such an oily gel body, an oily substance separates while freezing and thawing are repeated.
  • the unit volume of the above-mentioned oily substance is 0.01 cm 3 or more. Since there is no overcooling of the oily substance and the phase change from liquid phase to solid phase is performed in a short time, the heat storage has a high freezing rate in a short time and has extremely high heat storage efficiency as compared with the conventional. Can be obtained.
  • the heat storage agent not only causes supercooling of the oily substance, but does not cause any separation of the oily substance, Even if separation occurs, it is negligible. Moreover, the heat storage agent does not exude out of the oily substance when the oily substance is liquefied or when the oily substance is separated from the oily gel body, and there is no mobilization and fluidization of the oily substance. It is significantly reduced.
  • the heat storage agent of the present invention is configured to have the above-mentioned oily gel body so as to have a unit volume of 0.1 cm 3 or more.
  • the unit volume of the above-mentioned oily gel body refers to the volume of the oily gel body, or the volume of the oily gel body which forms a continuous phase (continuous body) upon contact.
  • the state in which the unit volume of the above-mentioned oily gel body is 0.01 cm 3 or more is either an oily gel body or a lump such as sheet-like, rectangular solid, spherical or cylindrical shape with 0.01 cm 3 or more.
  • the state of forming an object, or a plurality of oily gel bodies consisting of a scale-like substance having a scale of less than 0.01 cm 3 are in contact with each other and as a result, at least 0.1 cm 3 or more. Indicates the state of forming a continuous phase (continuum).
  • a state in which the oily gel does not form a continuous phase (continuum) of 0.01 cm 3 or more means a plurality of oily gels consisting of particles or microstructures smaller than 0.1 cm 3. Is divided by other than the composition of the oily gel body, for example, an oily gel body less than 0.01 cm 3 or a large amount of water or metal powder forming a continuous phase (continuous body). State dispersed in very small volume units Indicates
  • the heat storage agent may contain a substance other than the component of the oily gel body as long as a unit volume of 0.01 cm 3 or more can be held.
  • the heat storage agent according to the present invention further contains a noncombustible substance, the safety of the heat storage agent can be further improved.
  • the non-combustible substance is not particularly limited as long as it can reduce the heat of combustion and the fire spreadability of the heat storage agent. Water and inorganic powders are preferable.
  • the mixing ratio of the above-mentioned oily gel body and the non-combustible substance has an oil gel amount capable of obtaining a desired heat storage amount from the heat storage agent. It is preferable to use an oily gel in a range of more than 0 and 80% by weight or less and a non-flammable material in a proportion of 20% by weight or more and less than 100% by weight.
  • the content of the oily gel in the heat storage agent is 40% by weight or more. If the ratio of the above noncombustible substance is less than 20% by weight, the remarkable effect due to the addition of the noncombustible substance may not be obtained. That is, the effect of reducing the heat of combustion of the heat storage agent may be reduced.
  • the heat storage agent when the heat storage agent contains a substance other than the component of the oily gel body, for example, it may be obtained by cutting or crushing a scaly oily gel body or a massive oily gel body.
  • a heat storage agent may be obtained by charging the obtained oily gel in a non-combustible substance such as water and stirring as necessary, or the non-combustible non-flammable oily gel may It is also possible to obtain a heat storage agent by adding an organic substance, an aqueous gel body, etc. and, if necessary, crushing or stirring and mixing. In any case, the dispersion state, mixed state, etc. are also limited. Instead, it is sufficient if the oily gel body holds a unit volume of 0.01 cm 3 or more. Further, the method of stirring and mixing the oily gel body and the substance other than the component of the oily gel body is not particularly limited.
  • the heat storage agent of the present invention can be used as it is for cooling or heating for the purpose of heat storage or cold storage, but can also be used in the form of a heat storage device. That is, the heat storage device according to the present invention has the heat storage agent, and can be used, for example, as a heat storage material in which the heat storage agent is filled in a container, or the heat storage agent is filled in the container as it is or After being used as a heat storage material, it can also be used as a heat storage system of various forms by filling it in a water heat storage tank or the like and immersing it. That is, as long as the heat storage device according to the present invention has the heat storage agent, the form, the method of use, and the like are not particularly limited.
  • the container for charging the heat storage agent is not particularly limited as long as the oil substance constituting the oil-based gel does not leak, and it is not limited to permeation of the liquid such as water or the gas such as air.
  • a variety of containers can be employed, such as containers having a property or sealed containers.
  • the material of these containers depends on the type of the above-mentioned oil substance etc. Specifically, for example, polyvinyl chloride, polypropylene, polyethylene, nylon, polyurethane, etc. Synthetic resins; Natural fibers such as cotton, silk and cellulose: Metals such as iron and aluminum.
  • paraffin as the above-mentioned oily substance
  • the oil-based resin is absorbed and swollen in advance with an oil-absorbing resin, and the obtained oil-based gel is filled with the non-combustible substance, if necessary, in the container and sealed. Can be easily manufactured.
  • the oil-absorptive resin is absorbed in the container to absorb the oil-based substance. It is also possible to adopt a method of obtaining an oily gel.
  • the heat storage material of the present invention is prepared by mixing the three oil-absorptive resin and the oil-based substance, and then filling the mixture in the container in a fluid state where the mixture has fluidity. It can also be produced by gelation in the container to reduce fluidity, preferably by finally making the composition non-flowable (oily gel).
  • the heat storage agent in the above-mentioned container has a unit volume of 0.01 cm 3 .
  • the heat storage agent is not preferable because of supercooling.
  • the heat storage device such as the heat storage material of the present invention may be used after being formed into any shape according to the application, such as a flat shape, a cylindrical shape, a rectangular solid shape, a spherical shape, a sausage shape, a doughnut shape, a disk shape. it can.
  • the heat storage device such as the above-mentioned heat storage material may contain a non-combustible substance such as water or an inorganic hydrated salt, or another filler.
  • a non-combustible substance such as water or an inorganic hydrated salt, or another filler.
  • the specific gravity can also be adjusted by filling the inorganic powder or the like.
  • the method for filling or immersing the heat storage agent and the heat storage material in a water heat storage tank or the like is not particularly limited.
  • (i) 0.10 cm 3 A method in which a lump or cake of oily gel body having the above unit volume is introduced as it is into a water heat storage tank, and suspended or dispersed in water,
  • (Iii) A plate-like heat storage material is accumulated in the water heat storage tank at an interval that can secure a water flow passage
  • (iv) A method of making a circular heat sink-like heat storage material stand in a water heat storage tank Various methods can be adopted.
  • the amount of the heat storage agent or the heat storage material to be charged or immersed in the water heat storage tank or the like may be appropriately determined in accordance with the intended heat gain. Therefore, when the water heat storage tank is divided into a plurality of chambers, the heat storage agent or the heat storage material may be introduced into all the compartments, or only a necessary amount may be introduced into only the necessary compartments. .
  • the heat storage agent according to the present invention may be used as it is, the heat storage device can significantly increase the heat storage amount.
  • the heat storage agent according to the present invention comprises an oil-based gel containing an oil-absorptive resin and an oil-based substance having a heat storage property, and the unit volume of the oil-based gel is 0.1 cm.
  • the configuration is three or more.
  • the heat storage agent according to the present invention is configured such that the oily substance is a compound having a heat storage property by phase conversion between a liquid phase and a solid phase.
  • another heat storage agent according to the present invention comprises a granular oily gel body comprising granular oil absorbing resin and an oily substance having a heat storage property, and the oily gel body has an individual interface. They are in contact with each other as they are.
  • the oil absorbing resin is obtained by suspension polymerization or suspension polymerization.
  • Still another heat storage agent according to the present invention is a heat storage oil material having a melting point of X ° C.
  • An oil-based gel body comprising an oil-absorptive resin having an equivalent absorption capacity of 3 g / g or more and the oil-absorptive substance, and a unit volume of the oil-based gel body is 0.01 cm 3 or more.
  • the temperature at which the equilibrium absorption capacity is 3 g / g or more is 25 ° C.
  • a heat storage device is configured to have any of the above-mentioned heat storage agents.
  • the heat storage material according to the present invention is configured by filling any of the above-mentioned heat storage agents in a container.
  • the method for producing a heat storage material of the present invention after mixing the oil absorbing resin and the oily substance having a ripening property, the mixture is filled in a container in a flowable state, and the gel is contained in the container. It is a method to reduce the fluidity, preferably, to make it non-fluid.
  • the overcooling of the oily substance does not occur, it is possible to obtain a heat storage agent having a high heat storage efficiency.
  • the oily gel body has an oil absorbing resin and an oily substance having heat storage property, the above-mentioned oily substance does not completely separate from the oily gel body, or the separation does not occur at all. .
  • the heat storage agent is free from the exudation and fluidization of the oily substance when the oily substance is liquefied or when the oily substance is separated from the oily gel body, and the flammability and the spread of fire during fire are remarkable.
  • the reduced safety is high.
  • the phase change from the liquid phase to the solid phase is performed in a short time without supercooling of the oily substance, it is possible to obtain a very high heat storage agent compared to the conventional heat storage efficiency.
  • the heat storage agent maintains the oily gel body in a granular or more preferably spherical shape, the volume change during freezing and thawing of the oily substance is alleviated, and the oily substance exudes from the oily gel body. Is suppressed.
  • the heat storage agent Since an aggregate (continuous body) of a granular oily gel body, even if an oily substance exudes from one oily gel body constituting the above-mentioned heat storage agent, the other adjacent to the oily gel body can be obtained. Since the oily substance that has exuded by the oily gel body is absorbed, the exudation of the oily substance from the heat storage agent is suppressed. In addition, since the voids are formed by the adjacent oily gel bodies, supercooling can be suppressed and various additives can be uniformly added.
  • the heat storage agent can be impregnated with the oily substance at a relatively low temperature
  • the oily gel body that is, the heat storage agent according to the present invention can be produced at a relatively low temperature. And the separation of the oily substance from the oily gel body is prevented, the leakage of the oily substance is smaller than before, and the heat storage agent with high safety, which is extremely reduced in flammability and fire spread during a fire You can get it.
  • the equilibrium absorption capacity of the oily substance in the oil absorbing resin is 3 g / g or more
  • the heat storage agent using the oil absorbing resin can increase its latent heat amount, so It is possible to obtain an efficient heat storage agent.
  • the heat storage device or the heat storage material using the above-mentioned heat storage agent has high heat storage efficiency and excellent safety.
  • the continuum of the oily gel body when the continuum of the oily gel body is formed, the continuum is easily formed in close contact with each other in the container, so that air bubbles are not easily intervened in the heat storage agent. Therefore, in the obtained oily gel body as a heat storage agent, the adhesion to the heat transfer surface in the device for cooling or heating becomes good, and a heat storage material excellent in heat transfer property can be obtained.
  • the heat storage agent, the heat storage device and the heat storage material of the present invention are used for air conditioning of buildings, hot water supply equipment, heat retention and insulation of food plants and chemical plants, building materials for floor heating and wall heating, It can be used in a wide range of fields such as warm and cold transport systems and solar heat collectors.
  • Oil-absorbing resin was obtained.
  • the oil absorption property is obtained by immersing 20 parts of the oil absorbing resin thus obtained in 80 parts of pendan dican (solidifying point: 10) as an oily substance at 60 ° C. for 48 hours.
  • the resin was made to absorb and swell pentadecane to obtain an oily gel as a heat storage agent (hereinafter referred to as a heat storage agent (1)).
  • the mixed solution was added to the above flask and stirred at 400 rpm to obtain a uniform solution.
  • the temperature of the flask is raised to 8 O'C, and stirred at this temperature for 2 hours, and then the temperature is further raised to 90 'C and stirred for 2 hours to carry out the polymerization reaction. It went.
  • the resulting granular reaction product is separated by filtration, washed with water, and dried at 60 ° C. to absorb an oil with a particle size of i 0 0 m to ⁇ 0 0 0 / im I got a resin.
  • the oil absorbing resin By soaking 10 parts of the oil absorbing resin thus obtained in 90 parts of pentadecane at normal temperature for 2 hours, the oil absorbing resin absorbs and swells the pendan decane, and the heat storage agent (hereinafter referred to as a heat storage agent An oily gel was obtained as 2).
  • a heat storage agent (3) having a continuous gun phase of an oily gel body having a unit volume of 0.20 cm 3 or more was obtained.
  • Example 2 10 parts of the granular oil-absorbing resin 10 obtained in Example 2 was used as an oil substance in paraffin wax (Nippon Seiki Co., Ltd .; product number 130, freezing point: 55).
  • the oil-absorbing resin was allowed to absorb and expand paraffinic oil by spreading it for 24 hours at 0 ° C to obtain an oily gel as a heat storage agent (hereinafter referred to as a heat storage agent (5)). .
  • Example 2 Into the same flask as in Example 2, 180 g of pennula decane was charged, and the temperature was raised to 9 O'C while stirring under a nitrogen gas flow. In this flask, 20 g of 12-hydroxystearic acid as a gelling agent was added, stirred for 5 minutes at 300 rpm, and cooled to obtain an oil absorbing resin. A heat storage agent for comparison (hereinafter referred to as a heat storage agent (6)) was obtained.
  • a heat storage agent (6) A heat storage agent for comparison
  • Example 2 Into the same flask as in Example 2, 180 g of pentadecane was charged, and the temperature was raised to 140 with stirring under a nitrogen gas flow. Amino acid in this flask 20 g of a system oil gelling agent (manufactured by Ajinomoto Co., Inc .; trade name GP-I), stirred for 2 hours at 300 rpm, and cooled, a heat storage agent for comparison which does not use an oil absorbing resin (Hereafter, it is described as a heat storage agent (7)).
  • a system oil gelling agent manufactured by Ajinomoto Co., Inc .; trade name GP-I
  • the heat storage agent (3) obtained in Example 3 is charged into a polyvinyl chloride cylindrical pipe having a diameter of 4 cm and a height of 25 cm, and a polyvinyl chloride plug is attached to each end of the cylindrical pipe.
  • a heat storage material hereinafter referred to as a heat storage material (I) was obtained.
  • this heat storage material (I) was soaked for 5 hours in the heat storage water tank kept at 7. And have the following, the minimum attainable temperature of the water temperature in the dewar measures put the heat storage material (I) in advance 3 0 e C Deyuwa bottle containing water 6 0 O ml of, based on the foregoing calculation Deshiki The freezing rate of pentadecane was calculated. The results are shown in Table 2. The
  • a unit volume volume of about 260 cm is obtained by charging the heat storage agent (2) obtained in Example 2 in the same container as the polyvinyl chloride circular pie-shaped pipe used in Example 6.
  • a heat storage material (hereinafter referred to as a heat storage material ( ⁇ )) having a continuous phase of an oily gel body of 3 was obtained.
  • the heat storage material (IU) is charged by filling the heat storage agent (8) in the same container as the polyvinyl chloride cylindrical pipe used in Example 6. It is noted that).
  • heat storage material UV a material (hereinafter referred to as heat storage material UV) was obtained.
  • a comparative heat storage agent (9) having a structure in which the unit volume was dispersed to not more than 0.50 cm 3 was obtained. Thereafter, the heat storage material (hereinafter referred to as a heat storage material (V)) was obtained by charging the heat storage agent (9) in the same container as the polyvinyl chloride circular cigar used in Example S. Next, using the heat storage material (V), the freezing ratio of Penyu decane in the heat storage material (V) was calculated in the same manner as in Example 6. The results are shown in Table 2.
  • the oil absorbing resin is in the form of a bowl-like oily gel, as shown in FIG. It is a state of being in contact with each other while having it. For this reason, in the heat storage agent 2, a gap is always held between the granular oily gel bodies 1. By this void, the volume change at the time of freezing and thawing of the oily substance is alleviated, and the soaking of the oily substance from the oily gel 1 is suppressed.
  • the oil-absorbing resin can be used as an oil-based material. It is absorbed to form a granular oily gel body, and the oily gel bodies contact each other to become a heat storage agent in a state in which the flowability is reduced, preferably in a state in which the flowability is absent.
  • This heat storage agent is more excellent in heat conductivity because it generates less air bubbles inside and near the heat transfer surface.
  • the heat storage agent can prevent the exudation and fluidization of the oily substance.
  • the heat storage material using the heat storage agent has a significantly higher freezing rate than the conventional heat storage material
  • the heat storage material according to the present embodiment is a conventional heat storage material. It can be seen that the heat accumulation efficiency is superior to that of the heat storage material.
  • the method for producing a heat storage agent according to the present invention comprises polymerizing a monomer component in an oil-based substance having a heat storage property, preferably in the presence of an oil-soluble radical polymerization initiator, to obtain the above monomer component
  • the above-mentioned oily substance is retained in a polymer formed by polymerization so that the fluidity of the oily substance liquefied by phase change is reduced.
  • the polymer obtained by polymerizing the monomer component has a cross-linked structure in order to maintain a stable state of holding an oily substance.
  • the monomer component should contain a crosslinkable monomer having at least two or more polymerizable unsaturated groups in the molecule, or It is preferable to include a reactive monomer having a functional group for crosslinking.
  • the monomer component contains a reactive monomer
  • a polymer obtained by copolymerizing the above-mentioned monomer component in an oily substance, in the state containing the above-mentioned oily substance, the above-mentioned functional group by the crosslinking agent The polymer is crosslinked to obtain a polymer having a crosslinked structure.
  • the above-mentioned heat storage property oily substance inhibits the polymerization of the above-mentioned monomer component and the cross-linking of the above-mentioned polymer at an ordinary temperature (25'C) and under normal pressure (1 atm). It is not particularly limited as long as it can store and release thermal energy such as sensible heat storage, latent heat storage, chemical reaction heat storage, etc. However, it has a high heat storage density, and it is near a constant temperature Because it is possible to store heat in the heat source, it is possible to use a latent heat storage that uses the latent heat during phase change or phase change Substances having heat storage capacity are preferred.
  • Examples of such an oily substance capable of storing latent heat include hydrocarbon compounds such as alcohols, esters, ethers, paraffin and the like. Among these, preference is given to paraffin, and particularly preferred is pen- utecan as paraffin.
  • the heat storage agent can be manufactured simply and stably because the temperature range of the melting point is widely distributed in each of the paraffins having different structures, and the paraffins having various melting points are respectively selected. It is because it can.
  • the hydrocarbon compound specifically, C 1 4 ⁇ (:: s para off fin, C] 5 ⁇ C, 6 para off fin, pen evening deca emissions, C 1 4 Para off fin, C 1 6 para full fin like Intermediate para full fin which is liquid at room temperature or, high pole paraffin is solid at room temperature, or, and higher alcohols Ichiru was One had been i Dekanoru can be exemplified.
  • oil-soluble radical polymerization initiator examples include the aforementioned organic peroxides and the aforementioned abu compounds.
  • the above-mentioned oil-soluble radical polymerization initiator can generally be used in the range of 0.1 to 5% by weight with respect to the monomer component.
  • the polymerization temperature is a temperature at which the used oily substance can maintain its liquid state depending on the melting point of the oily substance, the type of monomer component and the type of polymerization initiator, and is within the range of 0 to 150'C. Choose as appropriate However, it is preferably 0 to 8 0 'C.
  • the above monomer components include one polymerizable unsaturated group in the molecule, a monomer (f) as a main component, and at least two polymerizable unsaturated groups in the molecule. And monomer components containing the above-mentioned crosslinkable monomer (b).
  • the blending ratio of the above monomer (f) to the crosslinkable monomer (b) is, based on the total of them, the monomer (f) 96 to 99.9 9 wt%, crosslinkability Monomer (b) 0.01 to 4% by weight (however, the sum of monomer ( ⁇ ) and crosslinkable monomer (b) is 100% by weight) is preferable.
  • Examples of the monomer ( ⁇ ) include those having the aforementioned solubility parameter (SP value) of 9 or less and having at least i polymerizable unsaturated groups in the molecule, for example, unsaturated carboxylic acid
  • a vinyl ether having an aliphatic hydrocarbon group, an aromatic vinyl compound and the like can be mentioned, and one or two or more of these monomers can be used.
  • (meth) acrylic amide having a hydrocarbon group (di) butyl (meth) acrylic amide, (di) dodecyl (meth) acrylic amide, (di) stearyl (Meta) Acrylamide, (Di) butylphenyl (meta) Acrylamide, (Di) octylphenyl (Meta) Acrylamide, etc. may be mentioned.
  • Examples of such information include: one hex, one decimal, one decimal, one decimal, one decimal, and so on.
  • Examples of alicyclic vinyl compounds include vinylcyclohexane and the like.
  • Examples of the aliphatic ether having an aliphatic hydrocarbon group include dodecylaryl ether and the like.
  • Examples of vinyl esters having an aliphatic hydrocarbon group include vinyl hexanoate, vinyl laurate, vinyl palmitate, and vinyl stearate.
  • Examples of vinyl ethers having an aliphatic hydrocarbon group include pentyl vinyl ether and dodecyl vinyl ether.
  • Examples of the aromatic vinyl compound include styrene, t- pentylene, octylstyrene and the like.
  • the more palatable property is obtained by reducing the fluidity of the liquefied oily substance to retain the oily substance in the form of gel or solid.
  • the more palatable property is obtained by reducing the fluidity of the liquefied oily substance to retain the oily substance in the form of gel or solid.
  • monomers (f) selected from the group consisting of at least one unsaturated compound as a main component.
  • the crosslinkable monomer (b) is a monomer having at least two polymerizable unsaturated monomers in the molecule, and examples thereof include the crosslinkable monomers described above. .
  • a functional group which contains the above-mentioned single monomer (f) as a main component and is chemically bonded to a cross-linking agent described later Mention may be made of those comprising a reactive monomer (c) having a group, and one polymerizable unsaturated group.
  • the mixing ratio of the above monomer (f) to the reactive monomer (c) is, based on the total of them, monomers (f) 90 to 99.9 5 wt%, reactive single The monomer (5 c) 0.000-0. 0 wt% (wherein the total of the monomer (f) and the reactive monomer (c) is 100 wt%) is preferred.
  • a reactive monomer (C) a compound having a condensable functional group (X) which forms a chemical bond by condensation with a condensable functional group (Y) possessed by a crosslinking agent described later If it is As such a condensable functional group (X), 0 is a carboxyl group, a hydroxyl group, a carboxyl group, a nitrile group, an amino group, an amide group, an isocyanate group, an epoxy Groups and polymerizable unsaturated groups of acid anhydrides.
  • the reactive monomer (C) for example, a vinyl-based monomer having a carboxyl group, a vinyl-based monomer having a hydroxyl group, a mercaptic group, etc.
  • Vinyl monomers having an epoxy group, vinyl monomers having an epoxy group, acid anhydrides having a polymerizable unsaturated group, and the like, and one or more of these monomers may be used. it can.
  • vinyl-based monomer having a lipoxyl group examples include (meth) acrylic acid, fumaric acid and itaconic acid.
  • vinyl-based monomers having a hydroxyl group hydroquinone (meth) acrylate, borate ester mono (meth) ester completed, propylene glycol mono (Meta) Alpha Rate, Boli Data Collection Mono (Meta) Attribute Rate, Green Seri (Meta) Rate, Tri-Methylol Propane (Meta) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • Examples of the vinyl-based monomer having a mercapto group include vinyl mercaptan and mercaptoethyl (meth) acrylate.
  • Examples of vinyl monomers having a ditolyl group include (meth) acrylic monomers.
  • Examples of vinyl-based monomers having an amino group include aminoethyl (meth) acetate, vinyl pyridine and the like.
  • Examples of vinyl-based monomers having an amide group include (meth) acrylamide and the like.
  • Examples of vinyl monomers having an isocyanate group include vinyl isocyanate and the like.
  • Examples of vinyl-based monomers having epoxy S include glycidyl (meth) acrylate and the like.
  • Examples of the acid anhydride having a polymerizable unsaturated group include maleic anhydride and the like.
  • the above-mentioned crosslinking agents have at least two condensable functional groups (Y 2) in the molecule. It is appropriately selected depending on the condensable functional group (X.sub.2) contained in the polymer.
  • a crosslinking agent dimethylol phenol or dimethylol phenol which can be condensed when the condensable functional group (X) is a carboxyl group, a mercapto group, a dithiol group, or an epoxy group And phenol resins such as
  • crosslinking agent examples include condensation functional group (X), carboxyl group and hydroxyl group, which can be condensed if they are melamine, benzoguanamine, urea and the like.
  • condensation functional group (X) examples include amino resins obtained by condensation condensation of a monocompound and formaldehyde or alcohol.
  • the condensation functional group (X) power ⁇ a carboxyl group, an isocyanate group, an epoxy group which can be condensed if it is an epoxy group
  • examples include polyvalent amino compounds such as diethylenediamine and tetraethylenediamine.
  • a condensing functional group (X) a carboxyl group, a hydroquinyl group, a mercapto group, an isocyanate group, an amide group, an amino group and an epoxy group are preferable.
  • Hexamethylene diisocyanate, isophorone diisocyanate, p-phenyldiisocyanate, 2, 4-toluene diisocyanate, 2, 6- Toluene diisocyanate, 1,5-naphthalenedisocyanate, and blocked isocyanate compounds such as these isocyanates and condensation products of methanol and phenol etc. may be mentioned.
  • crosslinking agent examples include condensation functional group (X), isocyanato group and epoxy group, which can be condensed, malonic acid, succinic acid, succinic acid, phenolic acid, tylephate.
  • condensation functional group (X) isocyanato group
  • epoxy group which can be condensed, malonic acid, succinic acid, succinic acid, phenolic acid, tylephate.
  • polyvalent luponic acid such as boric acid Be
  • water-free phthalic acid pyrrolic acid which can be condensed if it is a condensable functional group (X) is a hydroxyl group, an isocyanate group or an epoxy group. It includes acid anhydrides such as tonic acid anhydride and benzophthalic anhydride carboxylic acid.
  • condensation is possible if it is a condensable functional group (X), or a hydroxyl group, a mercapto group, an amino group or an amide group.
  • Aldehyde compounds such as alde- ide can be mentioned.
  • cross-linking agent examples include condensation functional group (X), hydroxyl group, isocyanate group, epoxy group, condensation group which can be condensed, etc.
  • condensation functional group (X) examples include polyhydric alcohols such as pyrene glycol and hexanediol.
  • examples of the crosslinkable functional group (X), a carboxyl group, a hydroxyl group, a mercapto group and an isocyanato group can be condensed.
  • Eboxy compounds such as glycidyl ether, hexamethyl glycidyl ether, bisphenol A diglycidyl ether and polypropylene glycol diglycidyl ether may be mentioned.
  • each compound as such a crosslinking agent is appropriately determined depending on the type of the condensation functional group (X) contained in the polymer, and these types or two or more types may be used.
  • condensable functional group (X) and the crosslinkable functional group (Y) are a carboxyl group, a hydroxyl group, a mercaptic group At least one functional group selected from the group consisting of amino groups, amino groups and amide groups, and at least one group selected from the group consisting of isocyanate groups, epoxy groups and carboxylic acid anhydride groups A combination of two functional groups.
  • the condensable functional group (X) and the condensable functional group (Y) of the crosslinking agent from the above combination, it is possible to obtain a polymer in which the residual amount of the unreacted functional group is reduced. Therefore, by causing the polymer to retain the oily substance, it is possible to obtain a heat storage agent that does not impair the heat storage characteristics of the oily substance K.
  • the ratio of the crosslinking agent to be used to the polymer to be crosslinked is from the relationship between the number of moles of the condensable functional group (X) which is a constituent unit of the polymer and the number of moles of the condensable functional ( ⁇ ) of the crosslinking agent. It is preferable that the number of moles of the condensable functional group (Y) is in the range of 0.1 to 10 as determined per 1 mol of the condensable functional group (X).
  • the number of moles of the condensable functional group (Y) is 1 mole of the condensable functional group (X)
  • the crosslinking reaction may be carried out at a temperature of 0 to 80 and cured.
  • a compound having a condensable functional group (X) or a condensable functional group (Y) and a reactive group capable of polycondensing may be added in advance or after the crosslinking reaction.
  • the above-mentioned condensable functional group (X) or the condensable functional group (Y) is a polyvalent isocyanate, a long-chain carboxylic acid etc. can be used as the above-mentioned compound. Remaining each of the functional groups (X) and (Y) unreacted is not preferable because it may impair the heat storage characteristics of the oily substance.
  • the amount of monomer (f) having a solubility parameter of 1 (SP value) or less in the monomer component is not less than the total amount of the monomer component.
  • the proportion 20 is 50% by weight or more, more preferably 70% by weight or more.
  • a monomer ( ⁇ ⁇ ⁇ ) having a solubility parameter (SP value) of 9 or less in the monomer component.
  • a monomer having one polymerizable unsaturated group in a molecule having a solubility parameter (SP value) of more than 9 at a ratio of less than 50% by weight in one part, and the above-mentioned crosslinkable monomer (b And other monomers different from the reactive monomer (c) may be contained.
  • methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meta) acrylate and the like can be mentioned.
  • the oil-soluble radical polymerization initiator described above is used in the state in which an oily substance and a monomer component are mutually dissolved in an aqueous solvent, mixed and suspended.
  • a method of suspension polymerization in the coexistence can also be used.
  • the suspension polymerization is carried out by using the monomer component in a protective colloid agent or surfactant in an aqueous medium such as water. It is carried out by, for example, dispersing in a state of suspended particles in a dissolved aqueous surfactant solution, and polymerizing using, for example, an oil-soluble radical polymerization initiator. If necessary, the monomer component may be dissolved in advance in a water-insoluble organic solvent, and then the solution may be suspension-polymerized in an aqueous solvent.
  • Examples of the above-mentioned protective colloid agent include polyvinyl alcohol, hydrogel hydroxyethyl cellulose, gelatin and the like, and examples of the above-mentioned surfactant include sodium alkylsulfonate and sodium alkylbenzene sulfonate. And polyoxyethylene alkyl ether, fatty acid stalk and the like.
  • Additives include metal powder (iron, copper etc.), metal fiber, metal oxide, metal oxide, carbon fiber, etc. for improving heat transfer, and sand for adjusting specific gravity. , Clay, stone, metal powder (lead, iron, etc.) included 0
  • additives include water, water gel, metal powder, inorganic compounds (such as calcium carbonate) for the purpose of imparting flame resistance, and flame retardants (such as bromine, chlorine, and phosphorus). Flame retardancy includes reduction of flammability, prevention of fire spread, extinction of flash point due to water vapor, and reduction of heat of combustion.
  • additives include metal powder, high molecular weight paraffin (wax), and the like for supercooling prevention, waxes for adjusting the solidification point, and oxidation prevention and aging. Include antioxidants (phenolic, thio, linic, etc.) for the purpose of preventing serious deterioration.
  • antioxidants phenolic, thio, linic, etc.
  • colorants pigments, antistatic agents and antifungal agents as needed.
  • a clathrate compound may be added to the oily substance to adjust the latent heat resistance of the oily substance.
  • a clathrate compound may be added to the oily substance to adjust the latent heat resistance of the oily substance.
  • clathrate compounds C 4 ⁇ ⁇ ⁇ ⁇ ⁇ 1 7 Eta 2 ⁇ , (C ⁇ 3) 3 ⁇ ⁇ 1 0. 2 5 ⁇ 2 0, (C 4 ⁇ ,) * NC H0 2 ⁇ 3 2 Eta 2 ⁇ , (C * ⁇ g) 4 ⁇ C ⁇ 3 C 0 2 - and the like 3 2 Eta 2 ⁇ .
  • an additive amount of such an additive for example, when calcium carbonate is used as an additive in order to reduce the flammability, calcium carbonate is added in an amount of 10 to 4 with respect to the total amount of the oily substance and the polymer. It is preferable to add 0% by weight.
  • the amount of calcium carbonate added is less than 10% by weight, the heat The fire spread prevention effect is not enough. Also, if the amount of calcium carbonate added exceeds 40% by weight, the content of the oily substance relatively decreases and the heat storage amount decreases, which is not preferable.
  • the fluidity of the oily substance retained in the polymer decreases even if the freeze-thaw of the oily substance is reversed due to heat accumulation and heat release.
  • the oily substance can be kept in a gel state or solid state more stably than before. Therefore, for example, even when a metal powder or the like having a large specific gravity difference with the oily substance such as one or more is used as an additive, the additive is uniformly dispersed in the agent for accumulating. Since the effect of the above-mentioned additive can be more effectively exhibited.
  • the present invention By the cross-linked structure of the polymer in the heat storage agent, the above-mentioned additive and the oily substance are held within the above-mentioned cross-linked structure, and separation of the additive and the oily substance with each other can be avoided. The effects of the above additives can be more effectively exhibited.
  • the method of manufacturing the heat storage material of the present invention is a method to 0 cured in a vessel .
  • 1 oil substance and monomer component containing a crosslinkable monomer are charged into a container in a liquid state, and the above monomer component is contained in the oil substance.
  • a method of bulk crosslinking polymerization and curing in the coexistence of an oil soluble radical polymerization initiator (casting polymerization), 2 Reactive monomer A mixture of a polymer before crosslinking obtained by polymerizing a monomer component containing it in an oily substance in the coexistence of an oil-soluble radical polymerization initiator, and a crosslinking agent, the above functional group and a crosslinking agent
  • the liquid state is charged into a container and filled, and the above crosslinking is completed in the container and cured (casting polymerization).
  • the shape of the container described above is not particularly limited. However, as the shape of the container, when used for building air conditioning, increase the contact surface area with the medium for transferring heat in the heat storage tank. Since it is preferable to use a hollow tube shape having a bent portion, a coil shape, a spherical shape, a circular quotient shape or the like, a plate shape is preferable when used for floor heating.
  • the material of the above-mentioned container it is possible to prevent corrosion between the medium for transferring heat, the oily substance and the polymer, and for many years in the aqueous medium.
  • the material is not particularly limited as long as it has long-term durability such as long-term water resistance at the time of immersion S, but it is inexpensive, and polyvinyl chloride having excellent formability is preferable.
  • a container consisting of a transparent cylindrical pipe made of polyvinyl chloride having a diameter of 4 cm and a height of 25 cm, in which a poly (vinyl chloride) lid was fused at the lower part, was prepared.
  • a mixed solution was prepared by mixing 0.2 g of 4-methyoxy 2,4-dimethylvaleronitrile and 160 g of pendecane as an oily substance so as to be uniform with each other.
  • the above mixed solution was filled into the above container, and nitrogen was sufficiently introduced into the mixed solution from the gas introduction pipe attached to the upper part of the above container to replace oxygen in the above mixed solution with nitrogen. .
  • the mixed solution is polymerized and crosslinked by being left standing in a constant-temperature bath kept at 40 ° C. for 8 hours while maintaining the nitrogen atmosphere, and the pendent is allowed to It was visually confirmed that the polymer held in the container was formed, and then the heat transfer agent of this example 10 was removed by removing the gas introduction pipe.
  • the temperature in the flask was further raised to 90 ° C. and maintained for 2 hours to complete the polymerization, thereby forming a polymer in which the pen decane was retained in the form of gel.
  • the content in the flask is filtered under reduced pressure to obtain a rod-like (average particle diameter of 0.3 mm) product as a heat storage agent (11) of the present Example 1 and then the above-mentioned product is obtained.
  • a heat storage material (11) of this example 11 was obtained by filling the container described in the example 10 above.
  • the solution 1 and the solution 2 are simultaneously added dropwise to the inside of the flask over 1 hour to carry out the polymerization reaction, and then the temperature in the flask is raised to 80 ° C. and maintained for 2 hours for polymerization.
  • a solution consisting of 2.3 g of toluene diisocyanate as a cross-linking agent, 0.2 g of dibutyltin dilaurate, and 100 g of an oily substance and 100 g of penubodecane as a dilution liquid with respect to the above flask.
  • the heat storage agent (12) of the present example 12 consisting of a gel-like one containing decane and retained, and a heat storage material (12) using it were obtained.
  • Example 1 1 The flask described in Example 1 1 was charged with 160 g of pendentene, and the temperature was raised to 90 ° C. with stirring under a nitrogen stream. Into this flask, 40 g of 12-hydroxystearic acid as a gelling agent was added, and the mixture was stirred at 300 rpm for 5 minutes, and then filled into the container described in Example 10 above. The mixture was allowed to cool to room temperature to obtain a comparative heat storage agent (4) and a comparative heat storage material (4) using the same.
  • Example 1 1 The flask described in Example 1 1 was charged with 160 g of pendentene, and the temperature was raised to 140′C while stirring under a nitrogen stream. Into this flask, 40 g of an amino acid-based oil gelling agent (manufactured by Ajinomoto Co., Ltd .: trade name GP-1) was added, and the mixture was stirred at 300 rpm for 5 minutes. It was filled in the container described and allowed to cool to room temperature to obtain a comparative heat storage agent (5) and a comparative heat storage material (5) using it.
  • an amino acid-based oil gelling agent manufactured by Ajinomoto Co., Ltd .: trade name GP-1
  • heat storage materials (10) to (12) and comparison heat storage materials (4) to (6) were put into the thermostatic chamber, respectively, and 2 'CX 8 hours and 30 ° CX 8 hours were set. According to the time program to be used, the freeze-thaw of penyu decane as an oily substance is repeated 20 times, and the presence or absence of separation of liquid penyudecane is visually observed from each gel or solid heat storage agent. confirmed.
  • the heat storage agent (13) is also introduced into the thermostatic chamber, and it is used as an oily substance according to a time program in which 40 times X 8 hours and 60 degrees CX 8 hours are set as one set. After repeated freezing and thawing of the paraffin mix 20 times, the presence or absence of separation of the liquid paraffin mix was visually confirmed from the gel or solid heat storage agent (13).
  • the heat storage agent according to the present invention is a comparative heat storage agent (4) to It was found that the stability over time was superior to (6).
  • the container is filled with the comparative heat storage agent (5) and (6) which is melted and heated to a high temperature, particularly in the comparative heat storage material (6). It was found that the deformation of the above container was observed, and it was inappropriate to use a thermoplastic synthetic resin such as polyvinyl chloride as the material of the above container.
  • the oily substance having combustibility stores heat, so even if it is in a liquefied state due to phase change, the oily substance is reduced in fluidity to gel or solid. It is possible to keep it stable and prevent leakage from the container, and also to prevent leakage of the oily substance from the container even under normal conditions of freezing, melting back for heat dissipation ⁇ heat storage. Since the physical properties are excellent in temporal stability, it is possible to prevent the ignition of the leaked oily substance and the like, and it is possible to reliably and easily manufacture a heat storage agent which is highly safe and whose safety is stable with time. It is a thing.
  • the heat storage material may contain a monomer component which is in a liquid state at normal temperature or a polymer before crosslinking in a container at a temperature of 80 ° or less.
  • the oily substance is obtained in the form of gel or solid in a container by polymerization or crosslinking at C or near normal temperature.
  • the heat storage agent can be densely filled in the above container, and a synthetic resin such as polyvinyl chloride which is excellent in water resistance but inferior in heat resistance is used as the material of the container. Even in the above container, the heat storage agent is densely and easily And, it can be stably filled, and as in the prior art, only expensive containers made of high heat resistance but expensive resin materials, corrosion resistant but expensive stainless steel, etc. can be used. Since the inconvenience can be avoided, the heat storage material can be manufactured inexpensively and stably.
  • the container may be formed into a complicated shape, for example, a tube shape, a doughnut shape, or a coil shape to increase the contact surface area with the heat transfer medium.
  • the heat storage agent can be packed densely and easily in the above container by filling the polymer component or polymer before crosslinking in the liquid state into the container and polymerizing or crosslinking, and the heat transfer efficiency is improved.
  • the improved heat storage material can be manufactured stably and easily.
  • the heat storage agent, the ripening device and the heat storage material of the present invention have excellent heat storage properties and heat transfer properties, as well as high safety, so they can be used for air conditioning in buildings, hot water supply facilities, food plants and chemical plants. It can be used in a wide range of fields such as heat insulation and insulation, floor heating and wall heating building materials, heat insulation and insulation transportation systems, and solar heat collectors.
  • the method of producing a heat storage material of the present invention and the method of producing a heat storage material have excellent thermal storage properties and heat conductivity, as well as high safety, thereby achieving high industrial applicability. It is possible to easily and stably manufacture a heat storage material and a heat storage material having the

Description

明細書 蓄熱剤およびその製造方法、 蓄熱材およびその製造方法、 蓄熱装置 技術分野
本発明は、 ビル空調などの冷暖房に好適に用いられる、 相変化による 潜熱を利用した蓄熱あるいは蓄冷に用いられる蓄熱剤およびその製造方 法、 該蓄熱剤を有する蓄熱装置および蓄熱材、 その蓄熱材の製造方法に 関するものである。
背景技術
従来より、 熱をエネルギーとして家庭用や産業用に用いる場合に、 熱 の発生源とそれを用いる場所とが異なったり、 熱を発生させた時とそれ を利用する時とが相違したりするときにおいて、 熱を運搬、 または一時 的に貯蔵する媒体、 いわゆる蓄熱体を用いるこ とが提案されている。
このような蓄熱体と しては、 その蓄熱体の熱容量を利用した顕熱や、 蓄熱体の相変化による潜熱を利用したものが知られている。 潜熱とは、 固体から液体への相変化時に蓄熱し、 液体から固体への相変化時に放熱 する現象である。
跋熱を利用した蓄熱体と して、 水、 石塊、 各種金属類などが知られて いるが、 これら顕熱を利用したものは、 熱容量が低く 蓄熱密度か小さい ため蓄熱槽を大き くする必要があるという不都合や、 熱を取り出す際の 熱の温度蝠が大き く なるため、 熱源および熱の利用先の温度に制限を生 じることがあるという不都合を有している。 —方、 潜熱を利用した蓄熱体としては、 無機水和塩、 パラ フ ィ ン等の 炭化水素が提案されている。 しかしなから、 無機水和塩については、 一 般に過冷却が大き く、 実用上、 融点以下となっても凍結が阻害されて放 熱される熱密度が著しく低下するといった重大な障害を招来することが あるという欠点が知られている。
このこ とから、 バラフィ ン等の炭化水素からなる油性物質を用いた蓄 熱剤の開発が盛んに行われている。 中でも、 パラ フ ィ ンや高級アルコー ル等の油性物質は、 液相と固相との間の相変化により、 3 0 ca l / gを 越える、 約 4 0〜 6 0 ca l / と比較的高い融解潜熱を利用でき、 また 、 油性物質の選択、 あるいは、 混合によって、 その融点が、 一 2 0ての 低温から 1 0 0 'Cを越える高温域まで自由に設定できる点で高い注目を 集めている。
しかしながら、 これら油性物質は、 その殆どが可燃性物質に属するた め、 液状となった際に漏洩し、 引火や延焼等の危険が生じるという問題 点や、 このようなパラ フ ィ ン等の炭化水素においても、 長期間、 高温に さらされると、 その物性に劣化か生じ、 過冷却による弊害か大き く なる という問題点を有している。
また、 このようなパラフィ ン等の炭化水素における、 長期間、 高温に さらされると、 その物性に劣化が生じ、 過冷却による弊害が大き く なる という問題点をを回避するために、 上記パラフ ィ ン等の炭化水素に、 ゼ ォライ ト粉末のような造核剤を添加して過冷却を防止するこ とが提案さ れている。 しかしながら、 このような造核剤は、 使用している間に、 特 に炭化水素が液状の間に、 比重差で造核剤が液状の炭化水素から分離す ることにより、 造核剤が有する充分な効果を炭化水素に付与できな くな るという問題点を有している。
また、 このようなパラフ ィ ン等の炭化水素は、 それを潜熱蓄熱用の蓄 熱剤として用いる場合、 上記蓄熱剤が屋内で大量に用いられるこ とから 、 可燃性である蓄熱剤の使用に対する消防法などの規制に適合させるた め、 液化時に流動することによる容器から外部への漏れを防止する対策 が必要となるという問題点を有している。
そこで、 上記問題点を解決するために、 例えば、
① N—ァシルア ミ ノ酸のア ミ ド、 エステル、 ア ミ ン塩、 または、 1 2 — ヒ ドロキシステアリ ン酸等のゲル化剤によってバラフィ ンをゲル化さ せた蓄熱材料 (特開昭 5 6 - 1 0 3 2 7 3号公報) 、
②パラ フ ィ ンとジ—ベン ジ リ デンソルビ トールとの混合物を孤島状に 担持した発泡体を、 袋状の密閉容器に充塡してなる蓄熱体 (特開昭 5 7 - 9 6 0 7 8号公報) 、
③凝固剤によりゼリ一状にゲル化させたパラフィ ンを力ブセルに針入 してなる潜熱蓄熱装置 (特開平 6 - 5 8 6 8 6号公報) 、
④パラ フィ ンと炭化水素系有機高分子とを機械的手段により混合して なる蓄熱材 (特開平 4 一 8 5 3 8 7号公報) (上記機械的手段にての混 合とは、 パラフィ ン類と炭化水素系有機高分子の双方中の少なく とも 1 成分の溶融物に残余の成分が少なく とも蟛潤好ま しく は溶解することに より、 あるいは高温度により、 混合対象となる何れの成分も外力にて流 動変形し得る状態において、 攪拌、 混合、 混練する操作を意味する) 、
⑤吸油性樹脂にバラフィ ンを吸収させた拉状物を、 水やブライ ンに分 散させてなる蓄煞剤 (特開平 6 - 1 1 6 5 5 0号公報) 、
⑥粒状吸油性樹脂にバラ フィ ンを吸収させた固体の微粒状物を蓄熱槽 内に例えぱ水等の蓄熱体と熱交換可能に装充した蓄熱装置 (特開平 4一 2 7 8 1 8 6号公報) 、
⑦ポリエチレン等のポリ オレフィ ンからなるペレツ トにパラフィ ンを 含浸させてなる蓄熱剤 (特開昭 6 2 - 2 7 7 4 8 4号公報および特開平 2 - 1 7 0 8 8 7号公報) 等が提案されている。
しかしながら、 上記①〜④の各公報で用いられている蓄熱剤は、 何れ もパラフィ ンの相変化 (凝固融解) の繰り返しによ りバラ フ ィ ンの多量 のしみ出しや流動化を生じるため、 容器やカプセルの破袋時にパラフ ィ ンが漏洩し、 引火や延焼を引き起こす危険性を有している。
一方、 上記⑤および⑥の各公報で提案されている蓄熱剤あるいは蓄熱 装置は、 何れも吸油性樹脂に吸収されたパラ フ ィ ンが水等の媒体中に微 細な容積単位で分散されている構成である。 このような蓄熱剤あるいは 蓄熱装置は、 目的の温度や所定の時間内で凍結せず、 加熱あるいは冷却 により蓄積した熱量を効率良く取り出すことができない。 つまり、 充分 な蓄熱効率を得ることができないという問題点を有している。
また、 上記⑦の公報で提案されている蓄熱剤は、 吸油性樹脂であるボ リオレフィ ンにおけるパラフィ ンの平衡吸収倍率が低いため、 該蓄熱剤 の潜熱量が低く なるという問題点を有している。 さ らに、 該蓄熱剤から のパラフィ ンのしみ出しを防止するために、 ボリェチレン等を表面コ一 トゃ表面架橋したり、 パラフィ ンを增粘させる必要があり、 加えて、 パ ラフィ ンの吸収を高温の条件下で行う必要もあるなどといった問題点を 有している。
また、 上記従来の各公報では、 蓄熱材料が予めゲル状の成形物、 また は、 蓄熱材がバイ ンダ成分に混合した成形物であるため、 媒体との接触 表面積を大き くできる複雑な形状の容器中、 例えば細いチューブ状、 ド —ナツ状、 またはコイル状の容器中に、 成形体である蓄熱体を充塡する のに手間取るという問題を有すると共に、 上記成形物を容器内に隙間な しに充填するこ とが困難であり、 充塡率の低下から熱効率の低下も招来 するという問題を有している。
その上、 上記従来の①に記載の方法で得られた蓄熱材料では、 容器中 に充塡する際に、 上記蓄熱材料を液状とするために溶融させて高温とな る伏態で充塡作業を行う必要があるため、 ポリ塩化ビニル製等の耐熱性 の低い容器に対し実質的には充塡できず、 高耐熱性を有するが高価な樹 脂材料や、 耐腐食性を有するが高価なステンレスなどからなる容器にし か用いられないという不都合も生じている。
本発明は、 上記従来の問題点に鑑みなされたものであり、 その目的は 、 蓄熱効率が良く、 安全性が高い蓄熱剤およびその製造方法、 蓄熱装置 並びに蓄熱材およびその製造方法を提供するこ とにある。 発明の開示
本願発明者等は、 上記目的を達成すべく鋭意検討した結果、 吸油性樹 脂と蓄熱性を有する油性物質とを含む油性ゲル体を有し、 かつ、 該油性 ゲル体の単位容積が 0 . 0 1 c m 3 以上である蓄熱剤および該蓄熱剤を 有する蓄熱装置並びに蓄熱材が、 蓄熱効率が良く、 しかも、 安全性にも 優れていることを見い出して本発明を完成させるに至った。
即ち、 本発明の蓄熱剤は、 前記の課題を解決するために、 吸油性樹脂 と蓄熱性を有する油性物質とを含む油性ゲル体を有し、 かつ、 該油性ゲ ル体の単位容積が 0 . 0 1 c m 3 ¾上であることを特徴としている。 上記構成によれば、 上記油性ゲル体の単位容棲が 0 . 0 1 c m 3 以上 であるこ とにより、 油性物質の過冷却を抑制できるため、 蓄熱効率の高 い蓄熱剤を得るこ とができる。 また、 油性ゲル体が、 吸油性樹脂と蓄熱 性を有する油性物質とを有しているため、 上記油性物質は油性ゲル体か らの分雜が全く起こらないか、 分雜が起こっても、 ごく僅かである。 このため、 該蓄熱剤は、 油性物質が液伏化した場合、 あるいは、 油性 ゲル体から油性物質が分離した場合における油性物質のしみ出しや流動 化が無く、 引火性や火災時の延焼性が著しく低減されている。 つま り、 該蓄熱剤は、 従来の蓄熱剤より も安全性が高いものとなっている。 加え て、 油性物質の過冷却が抑制され、 液相から固相への栢変化が短時間に 行われるため蓄熱効率が従来と比較して極めて高い蓄熱剤とすることが できる。
本発明の他の蓄熱剤は、 前記の課題を解決するために、 粒状の吸油性 樹脂と蓄熱性を有する油性物質とを含む粒状の油性ゲル体を有し、 かつ 、 該油性ゲル体が、 個々の界面を有したまま相互に接触しているもので のる。
上記構成によれば、 油性ゲル体が拉伏を維持するため、 油性物質の凍 結融解時における容積変化が緩和され、 容器への IE力、 容器の歪が緩和 される。 また、 油性ゲル体が粒状を維持するため、 該油性物質の上記油 性ゲル体からのしみ出しが抑制される。
また、 上記蓄熱剤では、 粒状の油性ゲル体の集合体 (連铙体) である ことから、 たとえ、 上記蓄熱剤を構成する 1個の油性ゲル体から油性物 質がしみ出したとしても、 該油性ゲル体に隣接する他の油性ゲル体によ つてしみ出した油性物質が吸収されるので、 蓄熱剤全体からの油性物質 のしみ出しは抑えられる。
加えて、 互いに、 隣接する油性ゲル体によって空隙が形成されている ことから、 過冷却が抑えられると共に、 各種添加剤、 例えば、 伝熱向上 剤、 発核剤、 難燃剤等を均一に添加するこ とができる。 したかって、 上 記構成では、 優れた伝熱性ゃ蓄熱性を有すると共に、 安全性を向上させ たものとするこ とが可能となる。
上記蓄熱剤は、 さ らに、 上記油性物質が、 液相と固相との相変換によ り蓄熱性を有する化合物であることが好ま しい。
上記構成でよれば、 油性物質の過冷却を、 より一層轻'减でき、 液相と 固相との間での双方向における相変化が短時間に行われるため蓄熱効率 が従来と比較して極めて高い蓄熱剤を得ることができる。
上記蓄熱剤は、 さ らに、 上記吸油性樹脂が懸濁重合または懸濁重縮合 により得られるものであることが望ま しい。
上記構成によれば、 上記懸濁重合または懸濁重縮合によって得られる 吸油性樹脂に油性物質を吸収させると、 より球状に近い油性ゲル体が得 られるため、 上記油性ゲル体が粒状の異形物 (不定型) の集合体である 場合と比較して、 より凝集し易く なることから、 上記連続体をより密に 形成するこ とができると共に、 上記添加剤をより一層均一に添加、 混合 することができる。
本発明のさらに他の蓄熱剤は、 前記の課題を解決するために、 ペン夕 デカンに対する 2 5 'Cにおける平衡吸収倍率が 3 g / g以上の吸油性榭 脂と蓄熱性を有する油性物質とを含む油性ゲル体を有し、 かつ、 該油性 ゲル体の単位容積が 0 . 0 1 c m 3 以上のものである。
本発明のさらに他の蓄熱剤は、 前記の課題を解決するために、 蓄熱性 8
を有する油性物質の融点を X 'Cとすると、 (X + 1 0 ) °cにおける該油 性物質に対する平衡吸収倍率が 3 g / g以上の吸油性樹脂と該吸油性物 質とを含む油性ゲル体を有し、 かつ、 該油性ゲル体の単位容積が 0 . 0 1 c m 3 以上のものである。
上記の各構成によれば、 比較的低い温度で油性物質を含浸するこ とが できるこ とから、 比較的低い温度で前記油性ゲル体、 つま り、 本発明に かかる蓄熱剤を製造するこ とができると共に、 油性ゲル体からの油性物 質の分離が防止され、 従来よりも油性物質のしみ出しが少なく 、 引火性 や火災時の延焼性が著しく低減された安全性の高い蓄熱剤とするこ とが 可能となる。 加えて、 上記吸油性樹脂における油性物質の平衡吸収倍率 が 3 g / g以上であるため、 該吸油性樹脂を用いた蓄熱剤は、 その潜熱 量をより高くすることができるので、 蓄熱効率に優れた蓄熱剤とするこ とができる。
本発明の蓄熱装置は、 前述の課題を解決するために、 上記蓄熱剤の何 れかを有するこ とを特徴と している。
本発明の蓄熱材は、 前述の課題を解決するために、 上記蓄熱剤を容器 に充塡してなることを特徵としている。
上記の各構成によれば、 前述の何れかに記載の蓄熱剤を用いるこ とに よって、 蓄熱効率が良く、 安全性にも優れた蓄熱装置または蓄熱材とす ることができる。
本発明の蓄熱材の製造方法は、 前述の課題を解決するために、 拉状の 吸油性樹脂と蓄熱性を有する油性物質とを混合した後、 該混合物を、 流 動性を有する状態で容器に充填し、 該容器内でゲル化させて、 上記混合 物の流動性を低下させるこ とを特徵としている。 上記方法によれば、 油性ゲル体の連続体形成時に、 該連続体が上記容 器内において互いに密接して形成され易く なるため、 蓄熱剤内部に気泡 が介在し難く なる。 このため、 得られる蓄熱剤と しての油性ゲル体にお いて、 冷却或いは加温のための装置における伝熱面への密着性が良好と なり、 伝熱性に優れた蓄熱材を得ることができる。
本発明の他の蓄熱剤の製造方法は、 前述の課題を解決するために、 蓄 熱性を有する油性物質中で、 単量体成分を重合して、 上記単量体成分を 重合してなる重合体中に、 相変化により液化する油性物質の流動性が低 下するように上記油性物質を保持させることを特徴としている。
上記の方法によれば、 単量体成分を重合してなる重合体を、 油性物質 中で形成することにより、 上記重合体中に、 相変化により液化する油性 物質の流動性が低下するように上記油性物質を保持させて、 油性物質を ゲル状または固体状とするこ とができる。 よって、 上記方法では、 熱を 貯蔵 · 放熱する際の凍結 · 融解を揉り返した時の油性物質のしみ出し等 の漏出が轻弒された蓄熱剤を得ることができることから、 油性物質への 引火か抑制された安全性が高い蓄熱剤を安定に得るこ とができる。
上記の蓄熱剤の製造方法は、 さらに、 単量体成分を重合して得られた 重合体については、 架橋構造を有するものが好ま しい。
上記の蓄熱剤の製造方法は、 さらに、 単量体成分が、 重合性を有する 不飽和基を分子中に少なく とも 2個以上有する架橋性単量体を含み、 上 記単量体成分を共重合させることにより、 上記架橋性単量体によって架 橋構造を形成するものが望ま しい。
上記の蓄熱剤の製造方法は、 さらに、 単量体成分が、 架橋のための官 能基を備えた反応性単量体を含み、 上記単量体成分を油性物質中で共重 合させた重合体を、 上記油性物質を含有した状態で、 架樣剤により官能 基間を架榇させて架榇構造を形成するものが好ま しい。
上記の各方法によれば、 重合体が架橋構造を有するこ とから、 油性物 質を保持した蓄熱剤を、 油性物質のしみ出し等の漏出が、 より軽減され たものとするこ とができることから、 油性物質への引火が抑制された、 より一層安全性が高い蓄熱剤を安定に得るこ とが可能となる。
上記の蓄熱剤の製造方法は、 さらに、 上記反応性単量体が有する官能 基と架橋剤が有する官能基との組み合わせが、 カルボキンル基、 ヒ ドロ キンル基、 メルカプト基、 ア ミ ノ基およびア ミ ド基からなる群より選ば れる群から選ばれる少なく とも 1 つの官能基と、 ィ ソンアナ一 卜基、 ェ ポキシ基および無水カルボン酸基からなる群より選ばれる少なく とも 1 つの官能基との組合せであることか好ま しい。
上記の方法によれば、 反応性単量体が有する官能基と架檎剤が有する 官能基との組合せが上記組合せから選ばれることで、 未反応の官能基の 残存量が低滅された重合体を得ることができる。 従って、 該重合体に油 性物質を保持させることにより、 該油性物質の蓄熱特性を阻害しない蓄 熱剤を得ることができて、 蓄熱性を向上できる。
上記の蓄熱剤の製造方法は、 さらに、 上記反応性単量体においては、 ヒ ドロキシル基を有するとともに、 架橋剤が少なく とも 2個のイ ソシァ ナ一 ト基を有することが望ま しい。
上記の方法によれば、 未反応の官能基の残存量が低減された重合体を 得るこ とができるので、 油性物質の蓄熱特性を阻害しない蓄熱剤を得る ことができる。 さらに、 上記の方法によれば、 上記油性物質を低温でゲ ル化するこ とが可能となる。 このため、 耐熱容器でな く とも油性物質を ゲル状で保持することができるとともに、 長期安定性ゃ蓄熱性に優れた 蓄熱剤を得ることができる。
上記の蓄熱剤の製造方法は、 さらに、 単量体成分においては溶解度パ ラメ一夕一が 9以下の単量体を 5 0重量%以上含むこ とが望ま しい。 上記の方法によれば、 単量体成分が、 溶解度パラメーター 9以下の単 量体を 5 0重量 以上含むことにより、 油性物質を、 それが液化した状 態であっても安定に保持する蓄熱剤を安定に得るこ とが可能となり、 長 期安定性を改善できる。
本発明の他の蓄熱材の製造方法は、 上記の何れに記載の蓄熱剤の製造 方法を用い、 単量体成分または架橋前の重合体を、 液体の状態で容器に 充塡した後、 容器内で硬化させることを特徴としている。
上記の方法によれば、 油性物質と、 例えば単量体成分または架樣前の 重合体との混合物を常温付近となる比較的低い温度で液状とすることが 容易に可能なこ とから、 上記油性物質と単量体成分または架撩前の重合 体とを容器中に密に充填することが容易にできる。
铳いて、 上記単量体成分または架撩前の重合体を上記容器中で常温付 近となる比較的低い温度にて重合または架橋させることにより、 得られ た蓄熱剤を、 油性物質が重合体中に保持された伏態で上記容器中に密に 充塡できる。
このこ とから、 上記方法では、 さらに、 蓄熱剤に保待された、 蓄熱性 を有する油性物質を容器中により多く充塡できるから、 上記油性物質に よる蓄熱効率が従来より改善された蓄熱材を安定に得るこ とが可能とな る o
その上、 上記方法では、 液体の状態である、 例えば単量体成分または 架橋前の重合体を例えば常温付近で重合または架橋させて容器内にて硬 化させることによって、 用いる容器に対して耐熱性等を考慮する必要性 が軽減される。 このこ とから、 耐熱性等を特に考慮しない安価な素材を 容器に用いることが可能となるので、 蓄熱材が安価に、 かつ確実に得ら れる。 図面の簡単な説明
図 1 は、 本発明の蓄熱剤における実施の一形態を示す模式図である。 図 2は、 従来の蓄熱剤を示す模式図である。 発明を実施するため最良の形態
以下に本発明の実施の一形態についてさらに詳しく説明する。
本発明にかかる蓄熱剤は、 吸油性樹脂と蓄熱性を有する油性物質とを 含む油性ゲル体を有している。
本発明において用いられる蓄熱性を有する油性物質としては、 特定の 温度領域において、 液相と固相との間の相変化により潜熱蓄熱性を有し 、 実質的に水に不溶あるいは難溶性の物質であれば特に限定されるもの ではない。 このような油性物質としては、 具体的には、 例えば、 テ トラ デカン、 ペン夕デカン、 へキサデカン等の n —パラフィ ン、 ノ、'ラフィ ン ワ ッ クス、 イ ソパラ フ ィ ン、 ボリ エチレ ンワ ッ クス等のパラ フ ィ ン類 ; ステアリ ン酸、 パルミ チン酸等の脂肪酸類 ; ステア リ ン酸ブチル等の脂 肪酸エステル類 ; デカノ一ル、 ドデシルアルコール等のアルコール類等 が挙げられる。
これら油性物質は、 一種類のみを用いてもよいし、 適宜、 二種類以上 を混合して用いてもよい。 これら油性物質のなかでも、 高い融解潜熱が 明確な凝固点とともに得られること、 凝固点が自由に選べるこ と等の利 点から、 パラフィ ン類が特に好ましい。
また、 本発明において用いられる上記吸油性樹脂としては、 上記油性 物質の吸収が可能な樹脂であれば、 特に限定されるものではないが、 吸 油性樹脂 l g当たり 0. 5 g以上、 好ましく は 3 g以上、 より好ま しく は 8 g以上の油性物質の吸収が可能な吸油性樹脂が好ま しい。 そのなか でも、 パラフィ ン、 特に、 ペン夕デカンに対する 2 5 °Cにおける平衡吸 収倍率が 3 g/g以上を有する吸油性樹脂、 或いは、 用いる油性物質の 融点より も 1 0 'C高い温度における、 該油性物質に対する平衡吸収倍率 が 3 g/g以上を有する吸油性樹脂が特に好ま しい。
上記の吸油性樹脂は、 例えば、 溶解度パラメ—ター (S P値) が 9以 下で、 かつ、 分子中に 1個の重合性基を有する単量体 (以下、 説明の便 宜上、 単量体 (A) と称する) を含む単量体成分を重合するこ とによつ て容易に得るこ とができる。
溶解度パラメーターとは、 化合物の極性を表す尺度と して一般的に用 いられているパラメーターであり、 本発明では、 Small の計算式に Hoy の凝集エネルギー定数を代入して導いた値 〔単位 (ca l / c m3)1 /2 〕 を適用している。
上記単量体 (A) が有する重合性基としては、 例えば、 ラジカル重合 、 放射線重合、 付加重合、 重縮合等の重合方法により吸油性樹脂の重合 が可能な重合性基であれば、 特に限定されるものではない。 上記単量体 ( A) のなかでも、 ラジカル重合により簡便に吸油性樹脂を製造できる 重合性不飽和基を有する単量体 (以下、 説明の便宜上、 単量体 ( a ) と 称する) を用いるこ とが好ましい。
上記単量体 ( a ) と しては、 具体的には、 例えば、 プロ ピル (メ タ) アタ リ レー ト、 n—ブチル (メ タ) ァク リ レー ト、 i s o—ブチル (メ タ ) アタ リ レー ト、 t 一ブチル (メ タ) ァク リ レー ト、 2 —ェチルへキン ル (メ タ) ァ ク リ レー ト、 n—ォクチル (メ タ) ア タ リ レー ト、 ドデシ ル (メ タ) アタ リ レー ト、 ステア リ ル (メ タ) ァク リ レー ト、 フ エニル (メ タ) ァ ク リ レー ト、 ォクチルフ エニル (メ タ) ァ ク リ レー ト、 ノニ ルフ エニル ( メ タ) アタ リ レー ト、 ジノニルフ エニル (メ タ) ァ ク リ レ ー ト、 ンク πへキンル (メ タ) ァ ク リ レー ト、 メ ンチル (メ タ) ァ ク リ レー ト、 イ ソボルニル (メ タ) ァ ク リ レー ト、 ジブチルマ レエー 卜、 ジ ドデシルマ レエー ト、 ドデシルク ロ トネー ト、 ジ ドデシルイ タ コネー ト 等の不飽和カルボン酸エステル ; (ジ) ブチル (メ タ) アク リ ルア ミ ド 、 (ジ) ドデシル (メ タ) アク リ ルア ミ ド、 (ジ) ステ了 リ ル ( メ タ) アク リ ルア ミ ド、 (ジ) ブチルフ エニル (メ 夕) ア ク リ ルア ミ ド、 (ジ ) ォクチルフ エニル (メ タ) アク リ ルア ミ ド等の、 炭化水素基を有する (メ タ) ア ク リ ルア ミ ド : ビニルンク口へキサン等の脂環式ビニル化合 物 ; ドデシルァ リ ルエーテル等の炭化水素基を有するァ リ ルエーテル ; 力プロ ン酸ビニル、 ラウ リ ン酸ビニル、 パル ミ チン酸ビニル、 ステア リ ン酸ビニル等の、 炭化水素基を有する ビニルエステル ; ブチルビニルェ —テル、 ドデシルビ二ルェ一テル等の、 炭化水素基を有する ビニルエー テル : スチ レ ン、 t 一プチルスチレ ン、 ォクチルスチ レ ン等の芳香族ビ ニル化合物等が挙げられるが、 特に限定される ものではない。
上記単量体 (A ) と しては、 上記の条件を満たす単量体であれば、 特 に限定される ものではな く、 上記単量体 ( a ) 以外にも、 例えば、 ノ ル ボルネン系単量体等を用いることができる。 上記単量体 (A ) として例 えばノルボルネン系単量体を用いる場合には、 開瓚重合も しく はラジカ ル重合等の重合方法を採用することにより、 容易に所望する吸油性樹脂 を得るこ とができる。
これら単量体 (A ) は、 一種類のみを用いてもよいし、 適宜、 二種類 以上を混合して用いてもよい。 上記単量体 (A ) のなかでも単量体 ( a ) が好ま しく、 そのなかでも、 炭素数 3〜 3 0の脂肪族炭化水素基を少 なく とも 1 個有し、 かつ、 アルキル (メタ) ァク リ レー ト、 アルキルァ リ ール (メ タ) ァク リ レー ト、 アルキル (メ タ) ア ク リ ルア ミ ド、 アル キルァ リ ール (メ タ) アク リ ルア ミ ド、 脂肪酸ビニルエステル、 アルキ ルビニルエーテルおよびアルキルスチレンからなる群より選ばれる単量 体 (以下、 説明の便宜上、 単量体 (a' ) と称する) 、 より優れた油性 物質吸収性能および保油性能を有する吸油性樹脂を得ることができるの でより好ま しい。 さらに、 上記単量体 (a' ) のなかでも、 炭素数 4〜 2 4 の脂肪族炭化水素基を少なく とも 1 個有する単量体がより一層好ま し く、 炭素数 8〜 1 8の脂肪族炭化水素基を少なく とも i 個有する単量体 が特に好ま しい。
また、 上記単量体成分中に必要に応じて含まれるその他の単量体、 即 ち、 単量体 (A ) 以外のその他の単量体としては、 該単量体 (A ) と共 重合可能可能な単量体であれば、 特に限定されるものではない。 上記そ の他の単量体としては、 例えば、 溶解度パラメーターが 9以上で、 かつ 、 分子中に 】 個の重合性不飽和基を有する単量体や、 分子中に少な く と も 2個の重合性不飽和基を有する架橋性単量体等が挙げられる。
上記溶解度パラメーターが 9以上で、 かつ、 分子中に 1 個の重合性不 飽和基を有する単量体と しては、 具体的には、 例えば、 (メ タ) アタ リ ル酸、 ア ク リ ロニ ト リ ル、 無水マレイ ン酸、 フマル酸、 ヒ ドロキンェチ ル (メ タ) ァク リ レー ト、 ボリ エチ レ ングリ コール (メ タ) ァ ク リ レー ト、 メ トキシボリ エチレ ングリ コール (メ タ) ァ ク リ レー ト等が挙げら れる。
また、 上記架橋性単量体と しては、 具体的には、 例えば、 エチ レ ング リ コールジ (メ タ) アタ リ レー ト、 ジエチ レ ングリ コールジ (メ タ) ァ ク リ レー ト、 ボリエチレ ングリ コ一ルジ (メ タ) ァ ク リ レー ト、 ポリ エ チ レ ングリ コールー ボリ ブロ ビレ ングリ コ一ルジ (メ タ) ァ ク リ レー ト 、 プロ ピレ ングリ コールジ (メ タ) アタ リ レー ト、 ボリ プロ ピレ ング リ コールジ ( メ タ) アタ リ レー ト、 し 3 —ブチ レ ングリ コールジ (メ タ ) アタ リ レー ト、 ネオペンチルグリ コールジ (メ タ) アタ リ レー ト、 】 , 6 —へキサンジオールジ (メ タ) ア タ リ レー ト、 N , Ν ' ー メチレ ン ビスア ク リ ルア ミ ド、 Ν , N ' 一プロ ピレ ン ビスア ク リ ルア ミ ド、 グリ セ リ ン ト リ (メ タ) アタ リ レー ト、 ト リ メチロールプロパン ト リ (メ タ
) ァ ク リ レー ト、 テ ト ラ メチロールメ タ ンテ ト ラ (メ タ) ァ ク リ レー ト
、 多価アルコール (例えぱ、 グリ セ リ ン、 ト リ メチロールプロパンある いはテ ト ラ メチロールメ タ ン等) のアルキレ ンォキシ ド付加物と (メ 夕
) ア ク リ ル酸とのエステル化によって得られる多官能 (メ タ) ァ ク リ レ — トゃジビニルベンゼン等が挙げられる。 これらその他の単量体は、 一種類のみを用いてもよいし、 適宜、 二種 類以上を混合して用いてもよい。
上記各単量体の使用量、 即ち、 単量体成分中における上記単量体 ( Α ) の含有量は、 5 0重量%以上が好ま し く 、 7 0重量%以上がさ らに好 ま しい。 上記単量体 ( A ) の含有量が 5 0重量%未満であれば、 優れた 油性物質吸収性能を有する吸油性樹脂を得るこ とができなく なる虞れか あるので好ま しくない。
また、 単量体成分における上記その他の単量体は、 5 0重量%以下の 範囲内において、 得られる吸油性樹脂の物性を損なわない 15囲で用いれ ばよい。
例えば、 該単量体成分が架榇性単量体を含む場合には、 単量体成分中 における架橋性単量体の含有量が 0 . 0 0 1重量%〜 4重量%となるよ うに配合することが好ま しい。 つまり、 該単量体成分が、 架橋性単量体 を含む場合における各単量体の配合割合は、 単量体 (A ) を含む、 架橋 性単量体以外の単量体の合計量 9 6重量 9 9 . 9 9 9重量%に対し て、 架橋性単量体 0 . 0 0 1 重量%〜 4重量% (但し、 各単量体の合計 量、 即ち、 単量体成分の総量は 1 Q 0重量%であり、 単量体成分中の単 量体 (A ) の割合は、 5 0重量%以上である) が好ま しい。
単量体成分中における架橋性単量体の割合が 4重量%を越えると、 得 られる吸油性樹脂の架橋密度が高くなりすぎて多量の油性物質を吸収す ることができなく なるため好ま しくない。 また、 上記架檎性単量体の割 合が 0 . 0 0 1 重量%未満では、 該架橋性単量体を添加したことによる 顕著な効果が得られない。
上記単量体成分がさ らに架撟性単量体を含むこ とは、 得られる吸油性 樹脂に架橋構造を導入し、 該吸油性樹脂の油性物質に対する可溶性を抑 制する上で効果的である。 該吸油性樹脂が架橋構造を有することで吸油 倍率のコン トロールが容易になり、 油性物質の流動化やしみ出しを防止 するこ とができる。 この結果、 吸油後の油性ゲル体の保形性を確保することが可能となる 。 また、 溶出成分が低減されることから、 油性物質の相変化温度が明確 になると共に、 凝固点降下を防止するこ とができる。
上記吸油性樹脂としては、 上記の単量体成分の重合体以外にも、 たと えば、 スチレン Zブタジエン共重合体 ; 水添スチレン Zブタジエン共重 合体 ; スチ レ ン /ブタ ジエン/イ ソプレ ン共重合体 ; エチ レ ン/プロ ピ レン共重合体 ; エチ レ ン /プロ ピレ ンに第 3成分か共重合された重合体 ; ジメ チルシロキンル (メ タ) ァク リ レー ト等のジメチルシロキサン含 有共重合体 ; スルホン化工チ レ ン/プロ ピレ ンターポリ マー ; ボリ ブ夕 ジェン : ボリ イ ソプチ レ ン ; ポリ イ ソプレ ン : ポリ ア ク リ ロニ ト リ ル ; アク リ ロニ ト リ ル /ブタ ジエン共重合体 ; イ ッブチ レ ン/イ ソプレ ン共 重合体 : ポリ クロロブレ ン、 塩素化ホ'リエチ レ ン、 ポリ塩素化プチル、 ボリ臭素化プチル、 ク口ルスルホン化ボリェチレン等のハロゲン含有重 合体等を挙げることができる。
これら吸油性樹脂のなかでも、 ポリオレ フイ ンや、 自らか高い結晶性 を有する重合体以外の吸油性樹脂、 特に、 炭素数 3〜 3 0 の脂肪族炭化 水素基を少なく とも 1 個有し、 かつ、 アルキル (メ タ) アタ リ レー ト、 アルキルァ リ ール (メ タ) アタ リ レー ト、 アルキル (メ タ) アルキルァ ミ ド、 アルキルァ リ ール (メ タ) アク リ ルア ミ ド、 脂昉酸ビニルエステ ル、 アルキルビニルエステルおよびアルキルスチレンからなる群より選 ばれる少なく とも 1種の単量体 (不飽和化合物) を 5 0重量%以上含む 単量体成分を重合してなる吸油性樹脂が、 油性物質との相溶性が良く、 油性物質のしみ出しが少ない蓄熱剤を得るこ とができるので好ま しい。
さらに、 上記吸油性樹脂として、 特に、 炭素数 4〜 2 4の脂防族炭化 水素基を少なく とも 1個有し、 かつ、 アルキル (メタ) アタ リ レー ト、 アルキルァ リ ール (メ タ) アタ リ レー ト、 アルキル (メ タ) アルキルァ ミ ド、 アルキルァ リ ール (メタ) ア ク リ ルア ミ ド、 脂昉酸ビニルエステ ル、 アルキルビニルエステルおよび了ルキルスチレ ンからなる群より選 ばれる少なく とも 1 種の単量体 (不飽和化合物) を 5 0重量%以上含む 単量体成分を重合してなる吸油性樹脂を用いれば、 該吸油性樹脂と油性 物質との相溶性がさ らに向上し、 油性物質のしみ出しの無い蓄熱剤を得 ることができる。
さらに、 上記吸油性樹脂として、 特に、 炭素数 8 〜 1 8 の脂肪族炭化 水素基を少な く と も 1 個有し、 かつ、 アルキル ( メ タ) ア タ リ レー ト、 アルキルァ リ ール (メ タ) ァ ク リ レー ト、 アルキル (メ タ) アルキルァ ミ ド、 ァルキルァ リ ール (メ タ) アク リ ルア ミ ド、 脂肪酸ビニルエステ ル、 アルキルビニルエステルおよびアルキルスチレンからなる群より選 ばれる少なく とも 1 種の単量体 (不飽和化合物) を 5 0重量%以上含む 単量体成分を重合してなる吸油性樹脂を用いれば、 適度な柔軟性を有す る油性ゲル体を得ることができるので、 上記の効果に加えて、 得られる 蓄熱剤の、 冷却或いは加温のための装置における伝熱面への密着性が良 好となり、 伝熱性が向上するという効果をも奏する。
また、 上記吸油性樹脂が、 上記単量体のなかでも、 特に、 アルキル ( メ タ) アタ リ レー トを 5 0重量%以上含有する単量体成分を重合してな る場合、 凍結融解の繰り返しによっても油性ゲル体の透明性が高く維持 されるため、 光透過性を有する蓄熱剤を得るこ とができる。
尚、 上記吸油性樹脂としては、 ボリエチレン等のポリオレフイ ンや、 高い結晶性を有する重合体等を用いることもできるが、 これらの重合体 を吸油性樹脂として用いる場合には、 油性物質のしみ出しを防止するた めに、 例えば、 該吸油性樹脂表面に表面コー トや表面架橋を施したり、 油性物質を增粘する必要がある。 また、 ボリエチ レ ン等からなる吸油性 樹脂は、 高温にしなければ油性物質を含浸するこ とができない。
従って、 より製造が容易で安全性の高い蓄熱剤を得るためには、 上記 吸油性樹脂として、 ポリオレフィ ンゃ高い結晶性を有する重合体以外の 吸油性樹脂、 例えば、 上記のように、 単量体 (a' ) から選ばれる少なく とも 1種の単量体を重合してなる吸油性樹脂や、 ペンタデカ ンに対する 2 5 'Cにおける平衡吸収倍率が 3 g / g以上の吸油性樹脂、 或いは、 用 いる油性物質の融点より も 1 0 °C高い温度における平衡吸収倍率か 3 g / g以上の吸油性樹脂を用いるこ とが好ま しい。
上記吸油性樹脂を用いれば、 比較的低い温度で油性物質を含浸するこ とができることから、 比較的低い温度で前記油性ゲル体、 つま り、 本発 明にかかる蓄熱剤を製造することができると共に、 油性ゲル体からの油 性物質の分離が防止され、 従来より も油性物質のしみ出しが少な く、 引 火性や火災時の延焼性が著しく低減された安全性の高い蓄熱剤を得るこ とができる。
特に、 上記吸油性樹脂における油性物質の平衡吸収倍率が 3 g / g以 上であれば、 該吸油性樹脂を用いた蓄熱剤は、 その潜熱量をより高くす るこ とができるので、 蓄熱効率に優れた蓄熱剤を得ることができる。 本発明において用いられる上記吸油性樹脂の製造方法は、 特に限定さ れるものではなく、 上記した種々の方法、 例えば、 ラジカル重合、 放射 線重合、 付加重合、 重縮合等、 従来公知の種々の重合方法を採用するこ とができる。 該吸油性樹脂は、 例えば、 上記単量体成分を、 保護コロイ ド剤ゃ界面 活性剤の存在下で水性媒体に分散させた後、 油溶性ラジカル重合開始剤 等の重合開始剤により懸濁重合することにより容易に製造するこ とがで きる。 また、 必要により、 該単量体成分を水不溶性の有機溶剤に溶解さ せてから懸濁重合するこ ともできる。
上記保護コ口ィ ド剤ゃ界面活性剤としては、 特に限定されるものでは なく、 また、 その使用量も特に限定されるものではない。 上記保護コロ イ ド剤としては、 具体的には、 例えば、 ボリ ビニルアルコール、 ヒ ド π キシェチルセルロース、 ゼラチン等が挙げられる。 また、 界面活性剤と しては、 具体的には、 例えば、 アルキルスルホン酸ナ ト リ ウム、 アルキ ルベンゼンスルホン酸ナ ト リ ゥ厶、 ボリ ォキシエチレ ンアルキルエーテ ル、 脂肪酸石鹼等が举げられる。 これら保護コロイ ド剤ゃ界面活性剤は 、 一種類のみを用いてもよいし、 適宜、 二種類以上を混合して用いても よい。
また、 上記重合開始剤としては、 特に限定されるものではないが、 具 体的には、 例えばベンゾィルバーオキン ド、 ラウロイルパーォキシ ド、 ク メ ンハイ ド口バーオキシ ド等の有機過酸化物 ; 2 , 2 ' —アブビスィ ソブチロニ ト リ ル、 2 , 2 ' ーァゾビスジメ チルバレロニ ト リ ル等の了 ゾ化合物等が挙げられる。 これら重合開始剤は、 一種類のみを用いても よいし、 適宜、 二種類以上を混合して用いてもよい。 これら重合開始剤 の使用量は、 単量体成分の種類や使用量等にもよるが、 上記単量体成分 に対して、 0 . 1重量%〜 5重量%の範囲内で用いることが好ま しい。 また、 上記重合反応を行う際の重合温度は、 特に限定されるものでは ないか、 好ま しく は 0 °C〜 1 5 (TCの範囲内において、 単量体成分や重 2 2
合開始剤等の種類等に応じて適宜設定すればよい。 さ らに、 上記重合反 応を行う際の重合時間も、 特に限定されるものではなく 、 上記単量体成 分や重合開始剤等の種類やその使用量、 反応温度等に応じて、 上記反応 が終了するように、 適宜設定すればよい。
これらの方法のうち、 懸濁重合または懸'濁重縮合が、 重合後、 粒伏の 吸油性樹脂、 特に、 球状の吸油性樹脂を直接得ることができるこ とから 好ま しい。 上記吸油性樹脂が拉状であれば、 吸油性樹脂の表面積が大き く なり、 油性物質の吸収速度を向上させることができる。
つま り、 本発明の蓄熱剤において用いられる油性ゲル体は、 上記吸油 性樹脂中に、 液相状態の油性物質を、 該油性物質の凝固点以上の温度条 件下で吸収 · 膨潤させることにより、 容易に得るこ とができる。 上記吸 油性樹脂中に液相状態の油性物質を吸収膨潤させる際には、 吸油性樹脂 が油性物質を吸収するための時間を短縮する目的で加熱してもよい。 上記吸油性樹脂と油性物質との使用割合、 つま り、 油性ゲル体中の吸 油性樹脂および油性物質の含有量は、 特に限定されるものではないが、 吸油性樹脂 4重量%〜 2 0重量%の範囲内、 および、 油性物質 9 6重量 %〜 8 0重量%の範囲内とすることが好ま しい。
上記吸油性樹脂の割合が 4重量%未満であれば、 油性物質を完全に吸 収、 膨潤しきれず、 油性物質が液相状態になった場合のしみ出しや流動 化を生じる虞れがある。 一方、 上記吸油性樹脂の割合が 2 0重量%を越 えると、 油性物質の含有量が少ないため、 得られる蓄熱剤の相変化潜熱 が小さ く なる ¾れがある。
さらに、 上記吸油性樹脂が拉状であれば、 該吸油性樹脂が油性物質を 吸収したときに、 相似形に膨張して拉状の油性ゲル体を得るこ とができ ° 97/34962 PC謂漏 89
2 3
る。 即ち、 図 1 に示すように、 本発明の蓄熱剤 2は、 油性ゲル体 1 が粒 状であり、 これら油性ゲル体 1 …同士が、 個々の界面を有したまま相互 に接触している構造を有しているこ とが好ま しい。 上記蓄熱剤 2は、 上 記構造を有していることで、 互いに接触する油性ゲル体 1 …によって形 成される空隙を互いに有している。 このため、 油性物質の凍結融解時に おける容積変化が緩和され、 容器への圧力、 容器の歪が緩和される。 ま た、 油性ゲル体が粒状を維持するため、 該油性物質の上記油性ゲル体 1 …からのしみ出しが抑制される。
また、 上記蓄熱剤 2が、 粒伏の油性ゲル体 1 …の集合体 (連続体) で あることから、 たとえ、 上記蓄熱剤 2を構成する 1 個の油性ゲル体 1 … から油性物質がしみ出したとしても、 該油性ゲル体 1 に膦接する他の油 性ゲル体 1 によってしみ出した油性物質が吸収されるので、 蓄熱剤 2全 体からの油性物質のしみ出しは抑えられる。
また、 上記蓄熱剤 2力 拉状の油性ゲル体 1 …の集合体であると共に 、 互いに、 隣接する油性ゲル体 1 …によって空隙が形成されていること から、 過冷却が抑えられると共に、 各種添加剤、 例えば、 伝熱向上剤、 発核剤、 難燃剤等を均一に添加することができる。 そして、 特に、 上記 油性ゲル体 1 が球状であれば、 上記油性ゲル体 1 …が粒状の異形物の集 合体である場合と比較して、 より凝集し易く なることから、 上記連铳体 をより密に形成することができると共に、 上記添加剤をより一層均一に 添加、 混合するこ とができる。
従って、 上記吸油性樹脂の製造方法と しては、 球状の吸油性樹脂、 ひ いては球状の油性ゲル体 1 を得ることができる懸濁重合または懸溺重縮 合が特に好ましい。 尚、 懸濁重合または懸 IS重縮合以外の方法を用いて拉伏の吸油性樹脂 を得た場合、 該吸油性樹脂から得られる油性ゲル体 1 …は拉伏の異形物 の集合体となり、 球状の油性ゲル体 1 を用いた場合と比較して、 添加剤 を添加した際の均一性に劣る。 また、 吸油性樹脂を粒状とする際に、 解 ^操作を必要とするこ とから、 該吸油性樹脂は気泡を含み易く、 得られ る油性ゲル体 1 内部に気泡が含まれる處れがある。
また、 本発明において用いられる粒状の吸油性樹脂における独立単位 の平均粒径は、 好ま しく は 5 m m以下であり、 より好ま しく は 3 m m以 下であり、 特に好ま しく は 1 m m以下である。 該平均粒 ί圣か 5 m m以下 であれば、 油性ゲル体 1 …の連続相 (連続体) を形成する時間が短く な るため生産性が向上する。 また、 上記平均粒径が i m m以下であれば、 高温での加熱を必要とせず、 比較的低温で上記連続相 (連続体) を形成 することが容易にできる。
さ らに、 上記の粒状の吸油性樹脂は、 高分子量化されたものや架橋構 造を有するものであることが好ま しいが、 油性物質を吸収した後に界面 の溶解が少なく、 瞵合う粒状の油性ゲル体 1 …同士との間に、 明確な界 面が存在するように結合されるものであれば特に制限されるものではな い。
上記油性ゲル体 1 …同士が個々の界面を有していることは、 例えば、 該蓄熱剤 2、 即ち、 油性ゲル体 1 …の連镜体を、 例えば、 水中等で攪拌 すれば、 個々の油性ゲル体 1 …に分離することによって確認するこ とが できる。
—方、 上記吸油性樹脂としてボリエチ レ ンペレ ッ トや S E B S (スチ レ ン一エチ レ ン Zブチ レ ン一スチレ ンブロ ッ クポリマー) 粉末を用いた 場合、 即ち、 従来の吸油性樹脂を用いた場合には、 図 2に示すように、 吸油性樹脂が油性物質を吸収して油性ゲル体 1 を形成する際に、 粒状の 油性ゲル体 1 …同士が互いに接触、 融解して一体化することにより、 塊 状の蓄熱剤 3が得られる。
このように、 蓄熱剤 3が大きな一体化ゲルである場合、 該蓄熱剤 3は 、 油性物質の凍結融解時の容積変化によるひずみによって、 油性物質の しみ出しが起こる場合がある。 従って、 該蓄熱剤 3 には明確な界面が見 られなく なる。
さ らに、 上記吸油性樹脂の製造方法としては、 塊状重合法を採用する こ ともできる。 上記吸油性樹脂を塊状重合法により得る場合には、 例え ば、 上記単量体成分を、 重合開始剤の存在下で型に流し込み、 好ま しく は 5 0 °C〜 1 5 0てに加熱するこ とによって、 容易に吸油性樹脂を得る ことができる。 上記重合開始剤としては、 前記例示の重合開始剤と同様 の重合開始剤を用いるこ とができる。
該塊状重合を採用する場合には、 塊状物として吸油性樹脂を得てもよ いし、 さらに、 必要に応じて、 得られた塊状物に粉砕等の操作を加えて 粒度調整を行なう こ とによって、 粒状物として吸油性樹脂を得てもよい 。 また、 上記吸油性樹脂の油性物質吸収速度を向上させる目的で、 吸油 性樹脂の油性物質吸収性能を低下させない範囲内で、 水不溶性の化合物 と混合することにより、 拉伏の吸油性樹脂としてもよい。
上記水不溶性化合物としては、 0ての水 1 0 0 gに対する溶解度が 1 g以下の水不溶性または水難溶性を示す化合物であれば特に限定され るものではない。
上記水不溶性化合物としては、 具体的には、 例えば、 シリ カやタルク や珪藻土等の鉱物類 ; 鉄ゃアル ミ ナ等の金属類 ; 炭酸カルシウム等の無 機塩類 : 金厲石鹼等の有機酸塩類 ; ボリ スチレ ン、 ポリエチレ ン、 ポリ 酢酸ビニル等の樹脂類 ; ヮッ クス等の有機化合物類 ; 綿、 パルプ等の織 維類等が举げられる。 これら水不溶性化合物は、 一種類のみを用いても よ く、 適宜、 二種類以上を混合して用いてもよい。
これら水不溶性化合物のなかでも、 僅かな使用量で吸油性樹脂の継粉 化を有効に防止できる粉体形状の化合物が好ま しく、 2 0 °Cの水 1 0 0 gに対する溶解度が 1 g以下の有機酸金属塩や、 メ タ ノ ール値か 2 5重 量%以下の疎水性無機化合物の粉体が特に好ま しい。 上記メ タ ノ ール値 とは、 水不溶性化合物の疎水化度を表す尺度であり、 水不溶性化合物が 湿潤可能となるメタノ ール水溶液中のメタノ一ルの容量%で表される。
また、 本発明にかかる蓄熱剤において、 該蓄熱剤中における上記油性 ゲル体の単位容積 (連铳体) は、 0 . 0 1 c m 3 以上であるこ とが好ま しく、 1 0 c πι 3 以上であるこ とがより好ま しく、 1 0 0 c m 3 以上で あることが特に好ま しい。
上記油性ゲル体の単位容積か 0 . 0 1 c m 3 未満であれば、 油性物質 が過冷却状態となり、 目的の温度や、 所定の時間內で凍結しないといつ た不具合が生じるので好ま しく ない。 つま り、 油性ゲル体の単位容積が 0 . 0 1 c m 3 未満であれば、 油性物質が過冷却状態となり、 液相と固 相との相変化が起こ りにく くなる。 このため、 油性ゲル体全体が凍結せ ず、 加熱あるいは冷却により蓄積した熱量を充分に取り出すこ とができ ない。 しかも、 このような油性ゲル体は、 凍結融解を繰り返すうちに、 油性物質が分離する。
これに対し、 上記油性物質の単位容接が 0 . 0 1 c m 3 以上であるこ とで、 油性物質の過冷却が無く、 液相から固相への相変化が短時間に行 われるため、 短い時間で高い凍結率を有し、 従来と比較して極めて高い 蓄熱効率を有する蓄熱剤を得ることができる。
さらに、 上記油性物質の単位容積が 0. 0 1 c m3 以上であることで 、 該蓄熱剤は、 油性物質の過冷却か生じないだけでなく、 油性物質の分 離が全く起こ らないか、 分離が起こっても、 ごく僅かである。 しかも、 該蓄熱剤は、 油性物質が液状化した場合、 あるいは、 油性ゲル体から油 性物質が分離した場合における油性物質のしみ出しゃ流動化が無く、 引 火性や火災時の延焼性が著しく低減されている。
即ち、 本発明の蓄熱剤は、 上記油性ゲル体を、 その単位容積が 0. 0 1 c m 3 以上となるように有している構成である。 上記油性ゲル体の単 位容積とは、 油性ゲル体一塊あるいは接触により連続相 (連続体) をな す油性ゲル体の容積を示すものである。
つまり、 上記油性ゲル体の単位容積が 0 . 0 1 c m3 以上である状態 とは、 油性ゲル体か、 0 . 0 1 c m3 以上の例えばシー ト状、 直方体、 球状、 円筒状等の塊状物を形成している状態や、 0 . 0 1 c m 3 未満の 拉状物ゃ徴钿構造物からなる複数の油性ゲル体が互いに接触しあつて結 果的に 0. 0 1 c m3 以上の連铳相 (連続体) を形成している状憨を示 す。
また、 油性ゲル体が 0 . 0 1 c m3 以上の連镜相 (連続体) を形成し ない状態とは、 0. 0 1 c m3 未満の粒状物や微細構造物からなる複数 の油性ゲル体が、 油性ゲル体の構成物以外によって分裂されている状態 を示し、 例えば、 0. 0 1 c m 3 未満の油性ゲル体か、 連続相 (連梡体 ) を形成する大量の水中や金属粉体中に微紬な容積単位で分散した状態 を示す。
また、 該蓄熱剤は、 0 . 0 1 c m 3 以上の単位容積を保持できる範囲 で、 油性ゲル体の構成物¾外の物質を含んでいてもよい。 特に、 本発明 にかかる蓄熱剤がさ らに不燃性物質を含むこ とで、 蓄熱剤の安全性をさ らに向上させるこ とができる。 上記不燃性物質としては、 蓄熱剤の燃焼 熱量及び延焼性を低減できるものてあれば特に限定されるものではない カ^ 水や無機粉体が好ま しい。
本発明の蓄熱剤が不燃性物質を含む場合における上記油性ゲル体と不 燃性物質との配合割合は、 該蓄熱剤か所望する蓄熱量を得るこ とができ る油性ゲル体量を有してさえいれば、 油性ゲル体が 0を越えて 8 0重量 %以下の範囲内および不燃性物質が 2 0重量%以上、 1 0 0重量%未満 の割合で用いるこ とが好ま しい。
但し、 得られる蓄熱剤の単位あたりの蓄熱量の点から、 蓄熱剤中にお ける油性ゲル体の含有量は、 4 0重量%以上であるこ とがさ らに好ま し い。 尚、 上記不燃性物質の割合が 2 0重量%未満では、 不燃性物質を添 加したこ とによる頭著な効果が得られない ¾れがある。 つま り、 蓄熱剤 の燃焼熱量を低減させる効果が小さ く なる虞れがある。
このよ う に、 該蓄熱剤が油性ゲル体の構成物以外の物質を含む場合に は、 例えば、 拉状の油性ゲル体、 あるいは、 塊状の油性ゲル体を裁断す るか解砕して得られた油性ゲル体を、 水等の不燃性物質中に投入し、 必 要に応じて攪拌することによつて蓄熱剤を得てもよいし、 塊伏ゃ拉伏の 油性ゲル体に上記不燃性物質や水性ゲル体等を添加し、 必要に応じて解 砕したり、 攬拌、 混合するこ とによって蓄熱剤を得てもよい。 何れの場 合においても、 その分散状態、 あるいは混合伏態等は特に限定されるも のではなく 、 油性ゲル体が 0 . 0 1 c m 3 以上の単位容積を保持してさ えいればよい。 また、 油性ゲル体と油性ゲル体の構成物以外の物質とを 攪拌、 混合する方法等も特に限定されるものではない。
本発明の蓄熱剤は、 蓄熱あるいは蓄冷を目的として、 そのまま冷却あ るいは加温して用いることができるが、 蓄熱装置の形で使用するこ とも できる。 即ち、 本発明にかかる蓄熱装置は、 該蓄熱剤を有し、 例えば、 該蓄熱剤を容器に充塡した蓄熱材として用いるこ ともできる し、 該蓄熱 剤をそのまま、 あるいは、 容器に充塡して蓄熱材と した後、 水蓄熱槽等 に充塡したり漫漬させるこ とにより、 種々 の形態の蓄熱システムと して 用いることもできる。 つまり、 本発明にかかる蓄熱装置は、 該蓄熱剤を 有していれば、 その形態および使用方法等は、 特に限定されるものでは ない。
上記蓄熱剤を充墳するための容器とは、 上記油性ゲル体を構成する油 性物質が漏れ出さない構造であれば特に限定されるものではなく、 水等 の液体や空気等の気体に対する透過性を有する容器、 あるいは、 密閉型 の容器等、 種々の容器を採用することができる。 これらの容器の材質と しては、 上記油性物質等の種類にもよるが、 具体的には、 例えば、 ボリ 塩化ビニル、 ボリ プロ ピレ ン、 ボリエチレン、 ナイ ロ ン、 ボリ ウ レ タ ン 等の合成樹脂 ; 木綿、 絹、 セルロース等の天然維維 : 鉄、 アル ミ等の金 属等が挙げられる。 例えば、 上記油性物質としてパラフィ ンを用いる場 合には、 上記材質としては、 ポリ塩化ビニルを用いることが好ま しい。 本発明の蓄熱材は、 ①予め吸油性樹脂に油性物質を吸収 ' 膨潤させた 後、 得られた油性ゲル体を、 必要に応じて不燃性物質と共に、 前記容器 中に充塡し、 封印することで容易に製造するこ とができる。 さらに、 本 発明の蓄熱材を製造するためのより簡便な方法として、 ②吸油性樹脂と 油性物質とを別々 に容器中に充埴した後、 容器中で吸油性樹脂中に油性 物質を吸収させるこ とによって油性ゲル体を得る方法を採用する こ と も できる。 加えて、 本発明の蓄熱材は、 ③吸油性樹脂と油性物質とを混合 した後、 該混合物を、 該混合物が流動性を有する伏態 (スラ リ ー伏) で 前記容器中に充¾し、 該容器内でゲル化させて流動性が低下した状態、 好ましく は、 最終的に流動性が無い状態 (油性ゲル体) とするこ とによ つても製造することができる。
これらの方法の中でも、 上記③の方法か、 油性ゲル体の連続体形成時 に、 該連続体が上記容器内において互いに密接して形成され易く なるた め、 蓄熱剤内部に気泡が介在し難くなる。 このため、 伝熱性に優れた蓄 熱材を得るこ とができるので好ま しい。 この場合にも、 上記容器中の蓄 熱剤は、 単位容積が 0 . 0 1 c m 3 てあることが好ま しい。 単位容積か 0 . 0 1 c m 3 以下である場合、 該蓄熱剤が過冷却するため好ま しく な い。
また、 本発明の蓄熱材等の蓄熱装置は、 扳伏、 円筒状、 直方体状、 球 状、 ソーセージ状、 ドーナツ状、 円盤状等、 用途にあわせてあらゆる形 態に成形して用いるこ とができる。
さらに、 上記蓄熱材等の蓄熱装置は、 水や無機水和塩等の不燃性物質 や、 他の充填物を含有していてもよい。 例えば、 水等に該蓄熱材を浮遊 させて用いる場合、 無機粉体等を充填することによって比重を調整する こともできる。
また、 該蓄熱剤および蓄熱材を水蓄熱槽等に充填または浸漬する方法 としては、 特に限定されるものではなく、 例えば、 (i ) 0 . 0 1 c m 3 以上の単位容積を有する油性ゲル体の塊伏物や拉状物を水蓄熱槽にその まま投入し、 水に浮遊あるいは分散させる方法、 (Π )球状の蓄熱材を水 に浮遊あるいは分散させる方法、 (i i i ) 板状の蓄熱材を通水路を確保で きる間隔で水蓄熱槽中に積闉する方法、 (i v)円茼状ゃ直方体状の蓄熱材 を水蓄熱槽中に自立させる方法など、 種々の方法を採用するこ とができ る。
また、 水蓄熱槽等に充塡あるいは浸漬される蓄熱剤または蓄熱材の量 は目的の増熱量に合わせて適宜決定すればよい。 従って、 水蓄熱槽が複 数室に分画されている場合、 上記蓄熱剤または蓄熱材は、 全ての区画に 投入してもよく、 必要な量を必要な区画にのみだけ投入してもよい。
このよ うに、 本発明にかかる蓄熱剤は、 そのまま用いてもよいが、 蓄 熱装置とするこ とで蓄熱量をさ らに大幅に増大するこ とができる。 以上のように、 本発明にかかる蓄熱剤は、 吸油性樹脂と蓄熱性を有す る油性物質とを含む油性ゲル体を有し、 かつ、 該油性ゲル体の単位容積 が 0 . 0 1 c m 3 以上である構成である。 加えて、 本発明にかかる蓄熱 剤は、 上記油性物質が、 液相と固相との相変換により蓄熱性を有する化 合物である構成である。
また、 本発明にかかる他の蓄熱剤は、 粒状の吸油性樹脂と蓄熱性を有 する油性物質とを含む粒状の油性ゲル体を有し、 かつ、 該油性ゲル体が 、 個々の界面を有したまま相互に接触している構成である。
上記各蓄熱剤においては、 上記吸油性樹脂が懸濁重合または懸濁重縮 合により得られるものであることが好ま しい。
さらに、 本発明にかかる更に他の蓄熱剤は、 蓄熱性を有する油性物質 の融点を X °Cとすると、 (X + 1 0 ) 'Cにおける該油性物質に対する平 衡吸収倍率が 3 g / g以上の吸油性樹脂と該吸油性物質とを含む油性ゲ ル体を有し、 かつ、 該油性ゲル体の単位容積が 0 . 0 1 c m 3 以上であ る構成であり、 特に、 上記油性物質がペンタデカンである場合は、 上記 平衡吸収倍率が 3 g / g以上となる温度が 2 5 °Cとなることが好ま しい。
また、 本発明にかかる蓄熱装置は、 上記蓄熱剤の何れかを有する構成 である。 さらに、 本発明にかかる蓄熱材は、 上記蓄熱剤の何れかを容器 に充塡してなる構成である。
さらに、 本発明の蓄熱材の製造方法は、 吸油性樹脂と蓄熟性を有する 油性物質とを混合した後、 該混合物を、 流動性を有する状態で容器に充 填し、 該容器内でゲル化させて流動性が低下した状態、 好ま しく は、 流 動性が無い伏態にする方法である。
上記の構成によれば、 油性物質の過冷却が生じないため、 蓄熱効率の 高い蓄熱剤を得ることができる。 また、 油性ゲル体が、 吸油性樹脂と蓄 熱性を有する油性物質とを有しているため、 上記油性物質は油性ゲル体 からの分離が全く起こらないか、 分離が起こってもごく僅かである。
このため、 該蓄熱剤は、 油性物質が液状化した場合、 あるいは、 油性 ゲル体から油性物質が分離した場合における油性物質のしみ出しゃ流動 化が無く、 引火性や火災時の延焼性が著しく低減された安全性が高いも のとなつている。 加えて、 油性物質の過冷却か無く、 液相から固相への 相変化が短時間に行われるため蓄熱効率が従来と比較して極めて高い蓄 熱剤を得るこ とができる。
また、 該蓄熱剤は、 油性ゲル体が粒状、 より好ま しく は球状を維持す るため、 油性物質の凍結融解時における容積変化が緩和され、 該油性物 質の上記油性ゲル体からのしみ出しが抑制される。 また、 上記蓄熱剤が 、 粒状の油性ゲル体の集合体 (連続体) であるこ とから、 たとえ、 上記 蓄熱剤を構成する 1 個の油性ゲル体から油性物質がしみ出したとしても 、 該油性ゲル体に隣接する他の油性ゲル体によつてしみ出した油性物質 が吸収されるので、 蓄熱剤からの油性物質のしみ出しは抑えられる。 加 えて、 互いに、 隣接する油性ゲル体によって空隙が形成されていること から、 過冷却が抑えられると共に、 各種添加剤を均一に添加するこ とが できる。
さ らに、 該蓄熱剤は、 比較的低い温度で油性物質を含浸することかで きるこ とから、 比較的低い温度で前記油性ゲル体、 つまり、 本発明にか かる蓄熱剤を製造するこ とができると共に、 油性ゲル体からの油性物赏 の分離が防止され、 従来より も油性物質のしみ出しか少なく、 引火性や 火災時の延焼性か著しく低減された安全性の高い蓄熱剤を得るこ とがで きる。 加えて、 上記吸油性樹脂における油性物質の平衡吸収倍率が 3 g / g以上であるため、 該吸油性樹脂を用いた蓄熱剤は、 その潜熱量をよ り高くするこ とができるので、 蓄熱効率に優れた蓄熱剤を得ることかで きる。 加えて、 上記蓄熱剤を用いた蓄熱装置または蓄熱材は、 蓄熱効率 が良く、 安全性にも優れたものとなる。
さ らに、 上記製造方法によれば、 油性ゲル体の連続体形成時に、 該連 続体が上記容器内において互いに密接して形成され易く なるため、 蓄熱 剤内部に気泡が介在し難く なる。 このため、 得られる蓄熱剤としての油 性ゲル体において、 冷却或いは加温のための装置における伝熱面への密 着性が良好となり、 伝熱性に優れた蓄熱材を得ることができる。
本発明の蓄熱剤および蓄熱装置並びに蓄熱材は、 ビルの空調用、 給湯 設備、 食品工場や化学工場の保温や保冷、 床暖房や壁暖房の建材用、 保 温や保冷の輪送システム、 太陽熱コレクタ一等、 幅広い分野に利用する こ とができる。
以下、 実施例および比較例により、 本発明をさ らに詳細に説明するが 、 本発明はこれらにより何ら限定されるものではない。 また、 蓄熱材中 のペン夕デカンの凍結率は下記の算出式により算出した。
ペンタデカ ン凍結率 (%) = (A— S ) / (A— B) x l 0 0
A ; 塩化ビニルと蓄熱剤との頭熱により到達する理論最低温度 (で) B ; 塩化ビニルと蓄熱剤との顕熱およびペン夕デカンが 1 0 0 %凍結 すると仮定した場合の融解潜熱の合計により到達する理論最低温度 (て )
S ; 実则最低到達温度 (で)
なお、 以下の実施例および比較例に記載の 「部」 は、 「重量部」 を示 す。
〔実施例 1 〕
温度計およびガス導入管を備えた 1 0 c m x 1 0 c m X 1 c mの ト レ ィ状のガラス製注型重合用型に、 単量体 (A) としてのイ ソブチルメ タ ク リ レー ト ( S P値 : 7. 5 ) 5 9. 7 6 2部およびステアリルァク リ レー ト ( S P値 ; 7. 9 ) 3 9. 8 4 2部と、 架橋性単量体としての 1 , 6 —へキサンジオールジアタ リ レー ト 0. 3 9 6部と、 重合開始剤と しての 2 , 2 ' 一アブビスジメチルバレロニ ト リル 0. 1 部とからなる 混合溶液を注入した。 次に、 該混合溶液を窒素ガス気流下で 5 0 °Cに昇 温した後、 該温度で 2時間保持し、 その後さらに 8 0 °Cに昇温して 2時 間保持することにより、 重合反応を行った。
反応終了後、 放冷し、 得られたゲル状物を型から剥離させることによ り、 吸油性樹脂を得た。 得られた吸油性樹脂 2 0部を、 油性物質と して のペン夕デカ ン (凝固点 ; 1 0て) 8 0部に 6 0 °Cで 4 8時間浸潰させ ることにより、 該吸油性樹脂にペンタデカ ンを吸収 · 膨潤させて、 蓄熱 剤 (以下、 蓄熱剤 ( 1 ) と記す) としての油性ゲル体を得た。
次に、 該蓄熱剤 ( 1 ) 2 0 0 gを透明ガラス製容器に充塡して恒温槽 内に投入し、 2 'C X 8時間および 3 0 'C X 8時間を i セッ ト とするタイ ムプログラムによりペンタデカンの凍結融解を 2 0回繰り返した後、 菴 熱剤 ( 1 ) からのペンタデカンの分離の有無を目視により確認した。 こ の結果を表 1 に示す。
〔実施例 2〕
温度計、 攪拌機、 ガス導入管および還流冷却器を備えた 5 0 0 m 1 フ ラスコに、 保護コロイ ド剤としてのゼラチン 3部を水 3 0 0部に溶解し て仕込んだ。 次に、 このフラスコ内を窒素置換し、 フラスコ内の水溶液 を窒素気流下で攪拌しながら 4 O 'Cに昇温した。 一方、 単量体 (A ) と しての ドデシルァク リ レー ト ( S P値 ; 7 . 9 ) 9 9 . 8 2 3部、 架橋 性単量体としてのエチレングリ コールジァク リ レー ト 0 . 1 7 7部、 お よび重合開始剤としてのベンブイルバーオキシ ド 0 . 5部を混合するこ とにより混合溶液を調製した。 その後、 上記フラスコ内に該混合溶液を —度に加え、 4 0 0 rpmで攪拌することにより、 均一溶液とした。 次い で、 フ ラスコ內の温度を 8 O 'Cに昇温し、 該温度で 2時間攪拌し、 その 後さらに 9 0 'Cに昇温して 2時間檁拌することにより、 重合反応を行つ た。
反応終了後、 得られた粒状の反応生成物を澳別し、 水で洗浄した後、 6 0てで乾燥させることにより粒径 i 0 0 m〜 〖 0 0 0 /i mの吸油性 樹脂を得た。 得られた吸油性樹脂 1 0部をペンタデカ ン 9 0部に常温で 2時間浸瀵させることにより、 該吸油性樹脂にペン夕デカンを吸収 . 膨 張させて、 蓄熱剤 (以下、 蓄熱剤 ( 2 ) と記す) としての油性ゲル体を 得た。
次に、 該蓄熱剤 ( 2 ) を用いて、 実施例 1 と同様の方法により蓄熱剤 ( 2 ) からのペンタデカンの分離の有無を目視により確認した。 この結 果を表 1 に示す。
〔実施例 3〕
実施例 1 で得られた蓄熱剤 ( 1 ) 1 5 0 gを、 1 辺 3 mmの立方体状 に裁断した後、 水不溶性化合物としての炭酸カルシウム 5 0 g中に加え て 1 分間緩やかに混合するこ とにより、 単位容積 0. 0 2 7 c m3 以上 の油性ゲル体の連銃相を有する蓄熱剤 (以下、 蓄熱剤 ( 3 ) と記す) を 得た。
次に、 該蓄熱剤 ( 3 ) を用いて、 実施例 1 と同様の方法により蓄熱剤 ( 3 ) からのペンタデカンの分離の有無を目視により確認した。 この結 果を表 1 に示す。
〔実施例 4〕
平均拉径約 5 0 0 mのボリ ノ ルボルネン系粒状吸油性樹脂 (フ ラ ン ス CdP Chemie社製、 商品名ノーソ レッ クス) 2 0部をペン夕デカ ン 8 0部に常温で 2時間 ¾漬させることにより、 該吸油性樹脂にペン夕デカ ンを吸収、 膨潤させて蓄熱剤 (以下、 蓄熱剤 ( 4 ) と記す) としての油 性ゲル体を得た。
次に、 該蓄煞剂 ( 4 ) を用いて、 実施例 1 と同様の方法により蓄熱剤 ( 4 ) からのべンタデカンの分離の有無を目視により確認した。 この結 果を表 1 に示す。
〔実施例 5 )
実施例 2で得られた粒状の吸油性樹脂 1 0部を、 油性物質としてのパ ラフィ ンワ ッ クス( 日本精蠟株式会社製 ; 品番 1 3 0、 凝固点 : 5 5 て) 8 0部に 8 0てで 2 4時間漫瀵させるこ とにより、 該吸油性樹脂に パラフィ ンヮ ッ クスを吸収、 膨張させて蓄熱剤( 以下蓄熱剤 ( 5 ) と記 す) としての油性ゲル体を得た。
次に、 該蓄熱剤 ( 5 ) 2 0 0 gを透明ガラス製容器に充填して恒温槽 内に投入し、 4 0 °C X 8時間および 7 0 °C X 8時間を 1 セッ ト とする夕 ィ厶ブログラムによりパラ フ ィ ンヮ ッ クスの凍結融解を 2 0回繰り返し た後、 蓄熱剤 ( 5 ) からのパラフィ ンワッ クスの分離の有無を目視によ り確認した。 この結果を表 1 に示す。
〔比較例 1 〕
実施例 2 と同様のフラスコにペン夕デカン 1 8 0 gを仕込み、 窒素気 流下で攪拌しながら 9 O 'Cに昇温した。 このフラスコ内に、 ゲル化剤と しての 1 2 - ヒ ドロキシステアリ ン酸 2 0 gを加え、 3 0 0 rpmで 5分 間攬拌した後、 冷却することにより、 吸油性樹脂を用いない比較用の蓄 熱剤 (以下、 蓄熱剤 ( 6 ) と記す) を得た。
次に、 該蓄熱剤 ( 6 ) を用いて、 実施例 1 と同様の方法により蓄熱剤 ( 6 ) からのペンタデカンの分雜の有無を目視により確認した。 この結 果を表 1 に示す。
〔比較例 2〕
実施例 2 と同様のフラスコにペンタデカ ン 1 8 0 gを仕込み、 窒素気 流下で攬拌しながら 1 4 0てに昇温した。 このフラスコ内に、 ア ミ ノ酸 系油ゲル化剤 (味の素株式会社製 ; 商品名 G P - I ) 2 0 gを加え、 3 0 0 rpmで 2時間攪拌した後、 冷却することにより、 吸油性樹脂を用 いない比較用の蓄熱剤 (以下、 蓄熱剤 ( 7 ) と記す) を得た。
次に、 該蓄熱剤 ( 7 ) を用いて、 実施例 1 と同様の方法により蓄熱剤 ( 7 ) からのペン夕デカ ンの分離の有無を目視により確認した。 この結 果を表 1 に示す。
表 1
Figure imgf000040_0001
〔実施例 6〕
実施例 3で得られた蓄熱剤 ( 3 ) を、 直径 4 c m、 高さ 2 5 c mのボ リ塩化ビニル製円筒状パイプに充¾し、 その両端に塩化ビニル製の栓を 装着するこ とにより蓄熱材 (以下、 蓄熱材 ( I ) と記す) を得た。
次に、 この蓄熱材 ( I ) を、 7でに保たれた蓄熱水槽に 5時間浸潰し た。 次いて、 予め 3 0 eCの水 6 0 O m l を入れたデュヮー瓶に該蓄熱材 ( I ) を入れてデュワー瓶内の水温の最低到達温度を測定し、 前述の算 出式に基づいてペンタデカンの凍結率を算出した。 この結果を表 2に示 す。
〔実施例 Ί〕
実施例 2で得られた蓄熱剤 ( 2 ) 2 0 0 gを実施例 6で用いたボリ塩 化ビニル製円商状パイブと同様の容器に充塡するこ とにより単位容積約 2 6 0 c m3 の油性ゲル体の連続相を有する蓄熱材 (以下、 蓄熱材 (Π ) と記す) を得た。
次に、 該蓄熱材 (Π) を用いて、 実施例 6 と同様の方法により蓄熱材 ( [() 中のペン夕デカンの凍結率を算出した。 この結果を表 2に示す。
表 1
Figure imgf000041_0001
〔実施例 8〕
実施例 2で得られた蓄熱剤 ( 2 ) 1 4 0 g中に、 予め水 5 9 gを吸水 性樹脂 (株式会社日本触媒製 ; 商品名 アクアリ ッ ク C A) l gに吸収 させて得た水性ゲル体を添加し、 1分間緩やかに混合するこ とにより単 位容積約 1 8 0 c m3 の油性ゲル体の連続相中に水性ゲル体が分散した 構造を有する蓄熱剤 (以下、 蓄熱剤 ( 8 ) と記す) を得た。
その後、 該蓄熱剤 ( 8 ) を実施例 6で用いたボリ塩化ビニル製円筒状 パイブと同様の容器に充塡するこ とにより蓄熱材 (以下、 蓄熱材(IU) と記す) を得た。
次に、 該蓄熱材(UI) を用いて、 実施例 6 と同様の方法により蓄熱材 (III) 中のペン夕デカンの凍結率を算出した。 この結果を表 2に示す。 〔実施例 9〕
実施例 2で得られた粒状の吸油性樹脂 1 0部、 油性物質と してのペン 夕デカ ン 7 0部、 および不燃性物質としての炭酸カルシウム 2 0部を 1 分間緩やかに混合して流動性のあるスラ リ ーを得た。 次いで、 このスラ リ ー 2 0 0 gを、 下部にボリ塩化ビニル製の蓋を融着した直径 4 c m、 高さ 2 5 c mのポリ塩化ビニル製円茼状パイブからなる容器に流動性の ある状態で充填した。 その後、 容器の上部にボリ塩化ビニル製の蓋を融 着し、 1 0分間静置するこ とにより、 流動性のない、 単位容積約 2 0 4 c m3 の油性ゲル体の連続相を有する蓄熱材 (以下、 蓄熱材 UV)と記す ) を得た。
次に、 該蓄熱材(IV)を用いて、 実施例 6 と同様の方法により蓄熱材 U V)中のベン夕デカ ンの凍結率を算出した。 この結果を表 2 に示す。
〔比較例 3〕
界面活性剤としてのポリオキンエチレンアルキルエーテル (株式会社 日本触媒製 ; 商品名 ソフタノ ール 1 2 0 ) 1 . 5部および; —カラギ 一ナン 4. 0 gを水 1 5 0 g中に溶解させた水溶液を 8 0 eCに昇温した 後、 不燃性物質としての塩化カ リウム 0. 3 gを加えて 7 5 °Cで 1 0分 間混合した。 次いで、 この水溶液を 5 5 'Cまで冷却した後、 実施例 2で 得られた蓄熱剤 ( 2 ) 1 0 0 gを混合して均一分散させ、 さらに冷水で 急冷するこ とにより油性ゲル体が単位容積 0. 0 0 5 c m 3 以下に微分 散した構造を有する比較用の蓄熱剤 ( 9 ) を得た。 その後、 該蓄熱剤 ( 9 ) を実施例 Sで用いたボリ塩化ビニル製円商状 パイブと同様の容器に充¾することにより蓄熱材 (以下、 蓄熱材 (V ) と記す) を得た。 次に、 該蓄熱材 (V ) を用いて、 実施例 6 と同様の方 法により蓄熱材 (V ) 中のペン夕デカンの凍結率を算出した。 この結果 を表 2に示す。
表 1 および表 2の結果から明らかなように、 本実施例で得られた蓄熱 剤は、 油性物質の分離が全く起こらないか、 分雜が起こ っても、 ごく僅 かである。
特に、 本発明の蓄熱剤では、 吸油性樹脂が拉状の油性ゲル体となって いる場合、 図 1 に示すように、 蓄熱剤 2は、 粒状の油性ゲル体 1 …が個 々の界面を有したまま相互に接触している伏態となつている。 このため 、 蓄熱剤 2には、 粒状油性ゲル体 1 …同士の間に常に空隙が保持されて いる。 この空隙によって、 油性物質の凍結融解時における容積変化が緩 和され、 該油性物質が上記油性ゲル体 1 …からしみ出すこ とは抑制され る。
また、 上記拉状の吸油性樹脂を油性物質と混合した後、 流動性を有す る伏態で容器に充塡して蓄熱材を製造する方法を用いると、 上記吸油性 樹脂が油性物質を吸収して粒状の油性ゲル体となり、 該油性ゲル体が相 互に接触しあって流動性の低下した状態、 好ま しく は、 流動性の無い状 態の蓄熱剤となる。 この蓄熱剤はその内部や伝熱面付近に気泡の発生が 少ないため、 伝熱性により優れたものとなる。
従って、 該蓄熱剤は、 油性物質のしみ出しや流動化を防ぐこ とができ ることが判る。 また、 該蓄熱剤を用いた蓄熱材は、 従来の蓄熱材と比較 して凍結率が著しく高いことから、 本実施例にかかる蓄熱材は、 従来の 蓄熱材より も蓄熟効率に優れていることが判る。
次に、 本発明にかかる実施の他の形態について説明すれば、 以下の通 りである。
本発明の蓄熱剤の製造方法は、 蓄熱性を有する油性物質中で、 好ま し く は油溶解性ラジカル重合開始剤の存在下、 単量体成分を重合して、 上 記単量体成分を重合してなる重合体中に、 相変化により液化する油性物 質の流動性が低下するように上記油性物質を保持させる方法である。 ま た、 上記単量体成分から得られた重合体と、 油性物質とが基本的に相溶 する (極性的に近いもの同士) 組合せを選定するのが好ま しい。
上記蓄熱剤では、 単量体成分を重合させた重合体は、 架橋構造を有す ることが、 油性物質を保持する状態を、 より安定に維持するために好ま しい。 このような架撟構造を重合体に対し付与するため、 単量体成分に は、 重合性を有する不飽和基を分子中に少なく とも 2個以上有する架橋 性単量体を含むこと、 あるいは、 架橋のための官能基を備えた反応性単 量体を含むこ とが好ま しい。
単量体成分が反応性単量体を含む場合、 上記単量体成分を油性物質中 で共重合させた重合体を、 上記油性物質を含有した状態で、 架榇剤によ り上記官能基間を架橋して架橋構造を有する重合体が得られる。
前述の蓄熱性を有する油性物質としては、 常温 ( 2 5 'C ) 付近、 常圧 ( 1 気圧) において、 油性の、 かつ、 上記単量体成分の重合や上記重合 体の架榇も阻害することか回避されるもので、 顕熱蓄熱、 潜熱蓄熱、 化 学反応蓄熱などの熱エネルギーを貯蔵し、 放出できるものであれば、 特 に限定されないが、 蓄熱密度が高いこ と、 一定温度付近での蓄 ' 放熱が 可能なこ とから、 相変化、 または、 相転移の際の潜熱を利用する潜熱蓄 熱を蓄熱性として有する物質が好ま しい。
このような潜熱蓄熱が可能な油性物質としては、 例えば、 アルコール 類、 エステル類、 エーテル類、 パラ フ ィ ンなどの炭化水素化合物を挙げ ることができる。 これらの中で、 好ま しく はパラフィ ン、 特に好ま しく は、 パラフィ ンとしてのペン夕デカンである。
これは、 パラフィ ンが、 単量体成分や重合体を容易に溶解し、 また、 上記単量体成分の重合や上記重合体の架橋の際の多官能化合物と反応せ ず上記架橋も阻害することが回避されるものであり、 その上、 容易に入 手でき、 さらに、 広範囲な温度範囲に用いるこ とができる蓄熱剤を、 簡 便に、 かつ、 安定にそれぞれ製造することができるからである。
上記蓄熱剤を、 簡便に、 かつ、 安定に製造するこ とができるのは、 構 造が互いに異なる各パラフィ ンにおいて融点の温度範囲が広く分布して おり種々な融点を有するパラフィ ンをそれぞれ選定できるからである。 上記炭化水素化合物としては、 具体的には、 C 1 4〜(: : sパラ フ ィ ン、 C 】 5〜 C , 6パラ フ ィ ン、 ペン夕デカ ン、 C 1 4パラ フ ィ ン、 C 1 6パラ フ ィ ンなど常温で液体である中級パラ フ ィ ン、 または、 常温で固体である高 极パラフィ ン、 あるいは、 i ーデカノールといつた高級アルコ一ルなど を挙げることができる。
前記の油溶解性ラジカル重合開始剤としては、 例えば、 前述の有機過 酸化物や、 前述のアブ化合物などを挙げることができる。 上記の油溶解 性ラジカル重合開始剤は、 一般に、 単量体成分に対して 0 . 1 〜 5重量 %の範囲内で用いることができる。 重合温度は、 油性物質の融点や単量 体成分の種類や重合開始剤の種類により、 用いた油性物質が液体伏を維 持できる温度であり、 かつ、 0〜 1 5 0 'Cの範囲内で適宜選択すること ができるが、 より好ま しく は 0 〜 8 0 'Cである。
前記の単量体成分としては、 分子中に 1 個の重合性不飽和基を有する 、 単量体 ( f ) を主成分に、 および分子中に少なく とも 2個の重合性不 飽和基を有する、 前述の架橋性単量体 ( b ) を含む単量体成分を挙げる ことができる。
上記の単量体 ( f ) と架榇性単量体 ( b ) との配合割合は、 それらの 合計に対し、 単量体 ( f ) 9 6〜 9 9 . 9 9 9重量%、 架橋性単量体 ( b ) 0 . 0 0 1 〜 4重量% (ただし単量体 ( ί ) および架橋性単量体 ( b ) の合計は 1 0 0重量%である) か好ま しい。
単量体 ( ί ) としては、 前述の溶解度パラメーター ( S P値) が 9以 下で、 分子中に少な く とも i 個の重合性不飽和基を有するものが挙げら れ、 例えば不飽和カルボン酸エステル、 炭化水素基を有する (メ タ) ァ ク リ ルア ミ ド、 ーォレフ イ ン、 脂環式ビニル化合物、 脂肪族炭化水素 基を有するァ リ ルエーテル、 脂防族炭化水素基を有する ビニルエステル 、 脂肪族炭化水素基を有するビニルエーテル、 芳香族ビニル化合物など を挙げるこ とができ、 これらの単量体を 1 種または 2種以上用いるこ と ができる。
不飽和カルボン酸エステルと しては、 メチル (メ タ) アタ リ レー ト、 ェチル (メ タ) ァ ク リ レー ト、 プロ ピル (メ タ) ァ ク リ レー 卜、 ブチル (メ タ) ァク リ レー ト、 i so—プチル ( メ タ) アタ リ レー ト、 t -プチ ル (メ 夕) ア タ リ レー ト、 2 —ェチルへキシル (メ タ) ァ ク リ レー ト、 n —才クチル (メ タ) アタ リ レー ト、 ドデシル (メ タ) ァ ク リ レー ト、 ステア リ ル (メ タ) アタ リ レー ト、 フ エニル (メ タ) ァク リ レー ト、 ォ クチルフ エ二ル (メ タ) ァ ク リ レー ト、 ノ ニルフ エニル (メ タ) ァク リ レー ト、 ジノニルフエニル (メ タ) ァク リ レー 卜、 シク ロへキシル (メ 夕) アタ リ レー ト、 メ ンチル (メ タ) ァク リ レー ト、 イ ソボニル (メ タ :) アタ リ レー ト、 ジブチル (メ タ) ァク リ レー ト、 ジブチルマ レエー ト 、 ジ ドデシルマ レエー ト、 ドデシルク ロ ト ネー ト、 ジ ドデシルイ 夕 コネ 一ト等が挙げられる。
炭化水素基を有する (メタ) ァク リルアミ ドとしては、 (ジ) ブチル (メ タ) アク リ ルア ミ ド、 (ジ) ドデシル (メ タ) ア ク リ ルア ミ ド、 ( ジ) ステア リ ル (メ タ) アク リ ルア ミ ド、 (ジ) ブチルフ エニル (メ タ ) アク リ ルア ミ ド、 (ジ) ォクチルフ エニル (メ タ) ア ク リ ルア ミ ド等 が挙げられる。
な 一ォレフ ィ ンと しては、 1 一へキセン、 1 ーォクテン、 イ ソォクテ ン、 1 一 ノ ネ ン、 1 ーデセ ン等が挙げられる。 脂環式ビニル化合物とし ては、 ビニルシクロへキサン等が挙げられる。 脂肪族炭化水素基を有す るァ リ ルエーテルとしては、 ドデシルァリルエーテル等が挙げられる。 脂肪族炭化水素基を有するビニルエステルとしては、 力プロ ン酸ビ二 ル、 ラウ リ ン酸ビニル、 パル ミ チン酸ビニル、 ステア リ ル酸ビニル等が 挙げられる。 脂肪族炭化水素基を有するビニルエーテルと しては、 プチ ルビニルエーテル、 ドデシルビニルエーテル等が挙げられる。 芳香族ビ ニル化合物としては、 スチ レ ン、 t -プチルスチ レ ン、 ォクチルスチ レ ン 等が挙げられる。
これらの中でも、 液化した油性物質の流動性を低下させて上記油性物 質をゲル状または固体状にして保持する、 より便れた性質を、 得られた 重合体に対し与える単量体としては、 少なく とも 1 個の炭素数 1 ~ 3 0 の脂肪族^化水素基を有し、 かつ、 アルキル (メ タ) 了 ク リ レー ト、 ァ ルキルァ リ ール (メ タ) アタ リ レー ト、 アルキル (メ タ) ア ク リ ルア ミ ド、 アルキルァリ ール (メ タ) アク リ ルア ミ ド、 脂防酸ビニルエステル 、 アルキルスチレンおよびひ -ォレフィ ンからなる群より選ばれる、 少 なく とも一種の不飽和化合物を主成分とする単量体 ( f ) が特に好ま し い。
前記の架榇性単量体 ( b ) としては、 分子中に少なく とも 2個の重合 性不飽和単量体を有する単量体であって、 例えば、 前述の架橋性単量体 が挙げられる。
また、 前述の単量体成分と異なる他の単量体成分と しては、 前述の単° 量体 ( f ) を主成分として含み、 かつ、 後述する架撟剤と化学的に結合 する官能基、 および 1 個の重合性不飽和基を有する反応性単量体 ( c ) を含むものを挙げることができる。
上記の単量体 ( f ) と反応性単量体 ( c ) との配合割合は、 それらの 合計に対し、 単量体 ( f ) 9 0〜 9 9 . 9 9 5重量%、 反応性単量体 (5 c ) 0 . 0 0 5 ~ 1 0重量% (ただし単量体 ( f ) および反応性単量体 ( c ) の合計は 1 0 0重量%である) が好ま しい。
このような反応性単量体 ( C ) としては、 後述する架撟剤が有する縮 合性官能基 (Y ) と縮合して化学的な結合を形成する縮合性官能基 (X ) を有する化合物であればよい。 このような縮合性官能基 (X ) と して0 は、 カルボキシル基、 ヒ ドロキシル基、 メ ルカプ ト基、 ニ ト リ ル基、 ァ ミ ノ基、 ア ミ ド基、 イソシアナ一ト基、 エポキシ基、 酸無水物の重合性 不飽和基が挙げられる。
反応性単量体 ( C ) としては、 例えば、 カルボキシル基を有するビニ ル系単量体、 ヒ ドロキシル基を有するビニル系単量体、 メ ルカプ ト基を 有するビニル系単量体、 二ト リル基を有するビニル系単量体、 ア ミ ノ基 を有する ビニル系単量体、 ァ ミ ド基を有する ビニル系単量体、 ィ ソ シァ ナ一 ト基を有するビニル系単量体、 エポキシ基を有するビニル系単量体 、 重合性不飽和基を有する酸無水物などを挙げることかでき、 これらの 単量体を 1 種または 2種以上用いることができる。
力ルポキシル基を有するビニル系単量体と しては、 (メタ) アク リ ル 酸、 フマル酸、 ィタコン酸などが挙げられる。 ヒ ドロキシル基を有する ビニル系単量体としては、 ヒ ドロキンェチル (メ タ) ァク リ レー ト、 ボ リ エチ レ ン グ リ コールモノ ( メ タ) 了 ク リ レー ト、 プロ ピレ ン グリ コー ルモノ ( メ タ) ア タ リ レー ト、 ボリ プロ ピレ ン グ リ コールモノ ( メ タ) アタ リ レー ト、 グ リ セ リ ン (メ タ) ァク リ レー ト、 ト リ メチロールプロ パン (メ タ) ァク リ レー ト、 ヒ ド πキンスチ レ ン等が挙げられる。
メルカプ ト基を有するビニル系単量体としては、 ビニルメルカブタ ン 、 メルカプトェチル (メタ) アタ リ レー ト等が挙げられる。 二 ト リ ル基 を有する ビニル系単量体としては、 (メ タ) ア ク リ ロニ ト リ ル等か挙げ られる。 ァ ミ ノ基を有するビニル系単量体と しては、 ア ミ ノエチル (メ 夕) アタ リ レー ト、 ビニルピリ ジン等が挙げられる。
ァ ミ ド基を有するビニル系単量体としては、 (メタ) ァク リ ルァ ミ ド 等が挙げられる。 イソシアナ一ト基を有する ビニル系単量体としては、 ビニルイソシアナー ト等が挙げられる。 エポキシ Sを有する ビニル系単 量体としては、 グリ シジル (メタ) ァク リ レー ト等が挙げられる。 重合 性不飽和基を有する酸無水物としては、 無水マレイ ン酸などが挙げられ る。
前記の架橋剤は、 分子中に少なく とも 2個の縮合性官能基 (Y ) を有 するものであり、 重合体に含有された縮合性官能基 (X ) に応じて適宜 選定される。 このような架榇剤の例としては、 縮合性官能基 (X ) が、 カルボキシル基、 メルカプト基、 二ト リル基、 エポキシ基である場合に 縮合可能な、 ジメチロールフエノールやボリ メチロールフエノ ール等の フ ヱ ノ ール樹脂が挙げられる。
上記架橋剤の他の例と しては、 縮合性官能基 (X ) 力く、 カ ルボキシル 基、 ヒ ドロキシル基である場合に縮合可能な、 メ ラ ミ ン、 ベンゾグアナ ミ ン、 尿素などのァ ミ ノ化合物とホルムアルデヒドゃアルコールとを付 加縮合したァ ミ ノ樹脂が挙げられる。
上記架橋剤のさらに他の例と しては、 縮合性官能基 (X ) 力 <、 カルボ キシル基、 イ ソシアナ一 ト基、 エポキシ基である場合に縮合可能な、 へ キサメチレンジア ミ ンゃジエチレン ト リア ミ ンゃテ トラエチレ ンペン夕 ミ ンなどの多価了 ミ ノ化合物が挙げられる。
上記架橋剤のさらに他の例としては、 縮合性官能基 ( X ) 力 カ ルボ キシル基、 ヒ ドロキンル基、 メルカプト基、 イ ソシアナ一 ト基、 ア ミ ド 基、 ア ミ ノ基、 エポキシ基である場合に縮合可能な、 へキサメチレンジ イ ソ シアナー ト、 イ ソホロ ン ジイ ソ シアナー ト、 p—フ エ二 レ ン ジイ ソ シアナー ト、 2 , 4 — ト ルエン ジィ フ シアナ一 ト、 2 , 6 — ト ルエン ジ イ ソシアナー ト、 1 , 5 —ナフタ レンジイ ソシアナ一 ト、 およびこれら のイ ソシアナー トとメタノールゃフヱノール等を縮合させたブロ ッ ク ド イソシアナ一 トなどのイソシアナ一 ト化合物が挙げられる。
上記架橋剤のさらに他の例としては、 縮合性官能基 ( X ) 、 イソシ アナー ト基、 エポキシ基である場合に縮合可能な、 マロン酸ゃコハク酸 ゃァジピン酸ゃフ夕ル酸ゃチレ フ夕ル酸などの多価力ルポン酸が挙げら れる。
上記架撟剤のさらに他の例と しては、 縮合性官能基 (X ) 力 ヒ ドロ キシル基、 イソシアナ一 ト基、 エポキシ基である場合に縮合可能な、 無 水フタル酸ゃピロメ リ ッ ト酸無水物やベンゾフヱノ ンテ トラカルボン酸 無水物などの酸無水物が挙げられる。
上記架橋剤のさ らに他の例としては、 縮合性官能基 (X ) か、 ヒ ドロ キシル基、 メルカプト基、 ア ミ ノ基、 ア ミ ド基である場合に縮合可能な 、 グリオキザルゃテレフタルアルデヒ ドなどのアルデヒ ド化合物が挙げ られる。
上記架橋剤のさらに他の例としては、 縮合性官能基 (X ) 力 ヒ ドロ キシル基、 イ ソシアナ一ト基、 エポキシ基である場合に縮合可能な、 ェ チレ ングリ コールやジエチレングリ コール、 プロ ピレングリ コールやへ キサンジオールなどの多価アルコールが挙げられる。
上記架撩剤における、 さ らに他の例としては、 縮合性官能基 (X ) 力、 、 カルボキシル基、 ヒ ドロキシル基、 メルカプト基、 イ ソ シアナ一 ト基 である場合に縮合可能な、 トルエングリ シジルエーテルやへキサメチレ ングリ シジルエーテルやビスフエノール Aジグリ シジルエーテルやボリ プロピレングリ コールジグリ シジルエーテルなどのェボキシ化合物が挙 げられる。
このような架橋剤としての各化合物は、 重合体に含有されている縮合 性官能基 (X ) の種類によりその組合せが適宜定められ、 これらの 〗 種 または 2種以上用いられる。
これらの中で特に好ま しい縮合性官能基 (X ) と、 架橋剤の縮合性官 能基 (Y ) との組合せは、 カルボキシル基、 ヒ ドロキシル基、 メルカプ ト基、 ア ミ ノ基およびア ミ ド基からなる群より選ばれる少なく とも 1 つ の官能基と、 イ ソシアナ一ト基、 エポキシ基、 無水カルボン酸基からな る群より選ばれる少なく とも 1 つの官能基との組合せである。
上記の組合せから縮合性官能基 (X ) と架橋剤の縮合性官能基 (Y ) とを選択することにより、 未反応の官能基の残存量が低減された重合体 を得ることができる。 従って、 該重合体に前記油性物質を保持させるこ とにより、 該油性物 Kの蓄熱特性を阻害しない蓄熱剤を得るこ とができ る。
そして、 特に上記縮合性官能基 (X ) がヒ ドロキシル基であり、 架橋 剤の縮合性官能基 (Y ) がィ ソシアナ一 卜基である組合せ、 つま り、 上 記反応性単量体がヒ ドロキシル基を有し、 架橋剤が分子中に少なく とも
2個のイ ソシアナ一ト基を有するものである組合せを選択するこ とによ り、 油性物質を低温でゲル化することが可能となる。 このため、 耐熱容 器でな く とも油性物質をゲル状で保持することができるとともに、 長期 安定性に優れた蓄熱剤を得ることができる。
架橋させる重合体に対し、 用いられる架橋剤の比率は、 重合体の構成 単位である縮合性官能基 (X ) のモル数と、 架橋剤が有する縮合性官能 ( γ ) のモル数の関係から決定され、 縮合性官能基 (X ) 1 モルに対 する縮合性官能基 (Y ) のモル数が 0 . 1〜 i 0の範囲内であるこ とが 好ま しい。
縮合性官能基 ( Y ) のモル数が縮合性官能基 (X ) モル数 1 に対して
0 . 1 未満である場合、 架橋が充分に行えず強度の低い、 架橋された重 合体しか得られないことがあるので好ま しくない。 一方、 1 0を越えた 場合、 油性物質を多く保持するといつた優れた性質を有する架檎された 重合体が形成されなく なることがあるので好ま しくない。
このような架橋剤を用いて有効な蓄熱剤を得るには、 単量体成分を重 合させた架橋前の重合体と、 架榇剤とを混合した後、 架橋反応が進行す る前に、 例えば容器內に混合物を注入し、 油性物質が溶融して液体状を
5 維持でき、 かつ、 0〜 8 0でといった温度下で架橋反応させて硬化させ ればよい。 また、 必要に応じて、 各種重合反応や架橋反応を促進する触 媒を選択し用いることにより反応速度を速めることも可能である。
さ らに、 架橋反応後に上記縮合性官能基 (X ) および縮合性官能基 ( Y ) がそれぞれ未反応で残存することを抑制するために、 上記架橋反応 i ° を阻害しない範囲内で、 これら縮合性官能基 (X ) または縮合性官能基 ( Y ) と重縮合可能な反応基を有する化合物を、 予めまたは架橋反応後 に添加してもよい。 例えば、 上記縮合性官能基 (X ) または縮合性官能 基 ( Y ) が多価イ ソシアナ一 トである場合には、 上記化合物と しては、 長鎖カルボン酸などを用いることができる。 上記各官能基 (X ) および ( Y ) が、 それぞれ未反応で残存することは、 油性物質の蓄熱特性を損 なうおそれがあるので好ま しくない。
本発明の実施の他の形態では、 単量体成分中における、 溶解度パラ メ 一夕一 ( S P値) が 9以下の単量体 ( f ) の使用量は、 単量体成分の全 体に対して 5 0重量%以上、 より好ま しく は 7 0重量%以上となる割合 20 である。 上記単量体 ( f ) の使用量が 5 0重量%未満のときは、 得られ た蓄熱剤における、 保持できる油性物質の含有率が著しく低下すること があり、 望ま しく ない。
上記では、 単量体成分中に溶解度パラメーター ( S P値) が 9以下の 単量体 ( ί ) が 5 0重量%以上含有されている必要があるが、 単量体成 分中に 5 0重量%未満の割合で溶解度パラメーター ( S P値) が 9を越 える分子中に 1 個の重合性不飽和基を有する単量体で、 前述の架榇性単 量体 ( b ) および反応性単量体 ( c ) と異なる他の単量体が含有されて いてもよい。
このような単量体としては、 例えばメ トキシボリエチレングリ コール (メタ) アタ リ レー ト、 フエノキシボリエチレングリ コール (メ タ) ァ ク リ レー ト等が挙げられる。
本発明の蓄熱剤の製造方法において、 油性物質と、 単量体成分とを水 系溶媒中で互いに相溶させて混合し懸濁させた状態にて、 前述の油溶解 性ラジカル重合開始剤の共存下において懸¾重合させる方法 (水中懸濁 重合) を用いるこ ともできる。
このように、 水等の水系溶媒中において例えば懸濁重合を用いる場合 、 その懸濁重合は、 前記単量体成分を、 水などの水系媒体中に保護コロ イ ド剤や、 界面活性剤を溶解した例えば界面活性剤水溶液中に、 懸濁粒 子の状態にて分散させて、 例えば油溶解性ラジカル重合開始剤を用いて 重合させることにより行われる。 なお、 必要に応じて、 前記単量体成分 を、 予め水不溶性の有機溶媒に溶解させてから、 その溶液を水系溶媒中 にて懸濁重合させることもできる。
上記保護コロイ ド剤としては、 ポリ ビニルアルコール、 ヒ ドロキンェ チルセルロース、 ゼラチンなどを挙げることができ、 また、 上記界面活 性剤としては、 アルキルスルホン酸ナ ト リ ウム、 アルキルベンゼンスル ホン酸ナ ト リウム、 ポリオキシエチレンアルキルエーテル、 脂肪酸石鹼 などを挙げることができる。
本発明の蓄熱剤の製造方法では、 さらに添加剤を加えるこ とも可能で ある。 添加剤としては、 伝熱向上のための、 金属粉 (鉄、 銅など) 、 金 厲繊維、 金属酸化物、 力一ボン、 カーボンファイバ一等が挙げられ、 ま た、 比重調整のための砂、 拈土、 石、 金属粉 (鉛、 鉄など) が挙げられ 0
他の添加剤としては、 難燃性付与のための水、 水ゲル、 金属粉、 無機 化合物 (炭酸カルシウム等) 、 難燃剤 (臭素系、 塩素系、 リ ン系など) が挙げられる。 なお、 難燃性には、 燃焼性の低減、 延焼防止、 水蒸気に よる引火点の消滅、 燃焼熱量低減効果などを含む。
他の添加剤としては、 過冷却防止用と して、 金属粉、 高分子パラフィ ン (ワッ クス) 等が挙げられ、 凝固点調整のために、 ワッ クス類が挙げ られ、 また、 酸化防止や経時的な劣化防止のための、 酸化防止剤 (フ ノール系、 チォ系、 リ ン系など) が挙げられる。 また、 さ らに他の添加 剤として、 必要に応じて、 着色剤、 顔料、 帯電防止剤、 防菌剤を添加す るこ とも可能である。
さらに他の添加剤としては、 油性物質の潜熱性を調整するための包接 化合物を油性物質に対し添加してもよい。 上記包接化合物と しては、 C 4 Ηβ · 〇 · 1 7 Η2 〇、 ( C Η3 ) 3 Ν · 1 0. 2 5 Η2 0、 ( C 4 Η, ) * NC H02 · 3 2 Η2 〇、 ( C * Η g ) 4 Ν C Η 3 C 02 - 3 2 Η2 〇などを挙げることができる。
このような添加剤の添加量としては、 例えば、 燃焼性を低減させるた めに、 炭酸カルシウムを添加剤として用いるとき、 油性物質と重合体と の合計量に対し、 炭酸カルシウムを 1 0〜 4 0重量%添加するこ とが好 ま しい。
炭酸カルシウムの添加量が 1 0重量%未満では、 燃料熱量低減効果や 延焼防止効果が充分ではない。 また、 炭酸カルシウムの添加量が 4 0重 量%を越えると、 相対的に油性物質の含有率が低下して蓄熱量が低下す るので好ま しくない。
このような各添加剤を本発明の蓄熱剤に対し添加した場合、 蓄熱 . 放 熱のために油性物質の凍結 解を操り返しても、 重合体中に保持させ た油性物質の流動性を低下させて、 油性物質をゲル状態または固体状態 に、 従来より安定に維持するこ とができる。 このため、 例えば、 金属粉 のように、 油性物質との間に 1 以上といった大きな比重差を有するもの を添加剤と して用いた場合でも、 その添加剤を蓄熟剤内に均一な伏態で° 保持できるから、 上記添加剤の効果をより有効に発揮させるこ とが可能 となる。
また、 添加剤と油性物質との間の溶解度パラメ一夕一の数値の差が 2 以上雜れているというように、 添加剤と油性物質との間の相溶性が劣る 場合でも、 本発明の蓄熱剤における重合体が有する架橋構造によ り、 上5 記添加剤と油性物質とが上記架橋構造内に保持され、 上記添加剤と油性 物質とが互いに分雜するこ とが回避できて、 上記添加剤の有する効果を より有効に発揮できるものとなる。
本発明の蓄熱材の製造方法は、 上記の蓄熱剤の製造方法を用い、 単量 体成分または架橋前の重合体を、 液体状態で容器に充填して、 容器内で0 硬化させる方法である。
すなわち、 上記蓄熱材の製造方法としては、 ① 油性物質と、 架橋性 単量体を含む単量体成分とを液体状態にて容器内に投入し、 油性物質中 にて上記単量体成分を、 油溶解性ラジカル重合開始剤の共存下において 塊状架橋重合させて硬化させる方法 (注型重合) 、 ② 反応性単量体を 含む単量体成分を、 油性物質中にて油溶解性ラジカル重合開始剤の共存 下において重合させた架橋前の重合体と、 架橋剤とを混合した混合物を 、 上記官能基と架撟剤とによる架橋が完了する前に、 液体状態にて容器 內に投入して充塡し上記架橋を容器内て完了させて硬化させる法 (注型 重合) 等が挙げられる。
上記の①および②による方法では、 油性物質と単量体成分または架橋 前の重合体とを常温付近において液体伏態とすることか容易に可能であ ることから、 上記油性物質と単量体成分または架橋前の重合体とを容器 中に密に充塡するこ とが容易にできる。 铙いて、 上記単量体成分または 架橋前の重合体を上記容器中で常温付近にて重合または架橋させるこ と により、 上記単量体成分を重合させて硬化させた架撟重合体を、 油性物 質を保持した伏態で上記容器中に密に充塡できる。
したがって、 上記方法では、 油性物質を保持した重合体を容器内に充 塡するといった手間が従来より簡便となる一方、 重合体に保持された蓄 熱性を有する油性物質を容器中に、 より密に、 かつ、 より多く 充填でき るから、 上記油性物質による熱効率が従来より改善された蓄熱材を得る ことができる。
前述の容器の形伏については、 特に限定されるものではないが、 容器 の形状として、 ビル空調に用いる場合では、 蓄熱槽内にて熱を伝達する 媒体との接触表面擠を大き くすることが好ま しいことから、 折れ曲がつ たチューブ状や、 コイル状や、 球状、 円商状などの中空部を有するもの が好ま しく、 床暖房に用いる場合には板状が望ま しい。
上記の容器の材質としては、 熱を伝達するための媒体や油性物質や重 合体との間にて互いに腐食しないで、 かつ、 水系の媒体中に長年にわた り浸 Sされる際の長期間の耐水性といった経時的な耐久性を有するもの であれば特に限定されるものではないが、 安価であり、 成形性に優れた ボリ塩化ビニルなどが好ま しい。
本発明の実施の他の形態について、 各実施例に基づいて、 さらに説明 すれば、 以下の通りであるが、 本発明の実施の他の形態は、 以下の実施 例に限定されるものではない。
〔実施例 1 0 〕
まず、 下部にボリ塩化ビニル製の蓋を融着した直径 4 c m、 高さ 2 5 c mのポリ塩化ビニル製透明円筒状パイプからなる容器を調製した。 次 に、 単量体成分としてのドデシル了ク リ レー ト ( S P値 : 7 . 9 ) 3 9 およびェチレ ングリ コールジメタク り レー ト 0 . 8 g、 重合開始剤と しての 2, 2 ' —アブビス ( 4 ー メ トキシー 2 , 4 — ジメチルバレ ロニ ト リル 0 . 2 g、 並びに油性物質としてのペン夕デカン 1 6 0 gを互い に均一となるように混合した混合溶液を調製した。
その後、 上記混合溶液を、 前記容器中に充塡し、 上記の容器の上部に 装着したガス導入管より窒素を混合溶液中に充分に導入して、 上記混合 溶液内の酸素を窒素に置換した。
次いで、 この容器を、 その窒素棼囲気を保ちながら 4 0 'Cに保温され た恒温槽中に 8時間静置することにより混合溶液が、 重合し ·架橋して 、 ペン夕デカ ンをゲル伏に保持した重合体が形成されたのを目視にて確 認した後、 ガス導入管を除く こ とにより、 本実施例 1 0 の蓄熱剤 ( 1 0
) およびそれを用いた蓄熱材 ( 1 0 ) を得た。
〔実施例 1 1 〕
温度計、 攙拌機、 ガス導入管および還流冷却器を備えた 1 リ ッ トルの フラスコに、 ゼラチン 6 gを水 5 9 4 gに溶解して仕込み、 攪拌下、 フ ラスコ内を窒素置換し、 窒素気流下にて 8 O 'Cに加熱した。
その後、 単量体成分としての ドデシルァク リ レー ト 3 9 gおよびェチ レングリ コールジメ タク リ レー 卜 0. 8 g、 重合開始剤としてのベンゾ ィルパ一ォキシ ド 0. 2 g、 並びに油性物質としてのペン夕デカ ン 1 6 0 gを互いに均一となるように混合した混合溶液を、 上記フラスコ内に —度に加え、 4 0 0 r pmの条件下で混合しながら、 窒素気流下にて 2 時間、 懸濁重合反応を行った。
その後、 さ らに、 フラスコ内を 9 0 °Cに昇温し、 2時間維持して重合 を完了させて、 ペン夕デカンをゲル状に保持した重合体を形成させた。 重合完了後、 フラスコ内の内容物から減圧ろ過により拉状 (平均粒径 0 . 3 mm) の生成物を本実施例 1 1 の蓄熱剤 ( 1 1 ) として得た後、 上 記生成物を、 前記実施例 1 0に記載の容器内に充填する こ とによ り、 本 実施例 1 1 の蓄熱材 ( 1 1 ) を得た。
〔実施例 1 2〕
温度計、 攪拌機、 ガス導入管、 2つの滴下ロー トおよび還流冷却器を 備えた 5 0 0 ミ リ リ ッ トルのフラスコに、 油性物質としてのペン夕デカ ン 1 0 gを仕込み、 攪拌下、 フラスコ内を窒素匱換し、 窒素気流下にて 6 5 'Cに加熱した。
次いで、 1つの滴下ロー トに、 単量体成分としての 2—ェチルへキシ ルアタ リ レー ト (S P値 : 7. 8 ) 3 8 gおよびヒ ドロキシェチルァク リ レー ト 2 g、 並びに油性物質としてのペン夕デカン 4 0 gからなる溶 液①を、 さらに別の滴下ロー トに、 重合開始剤として 2 , 2 ' 一ァゾビ ス ( 4 ーメ トキン一 2. 4—ジメチルバレロニ ト リル 0. l g、 並びに 油性物質および希釈液としてのペンタデカン 1 0 gからなる溶液②をそ れぞれ仕込んだ。
铳いて、 前記フラスコ内に対し、 溶液①および溶液②を同時に I 時間 かけて滴下し、 重合反応を行い、 その後、 さらに、 フラスコ内を 8 0 °C に昇温し、 2時間維持して重合を完了させて、 架橋前の重合体を得た。 放冷後、 上記フラスコ内に対し、 架橋剤としての トルエンジイ ソシァ ナー ト 2 . 3 g、 ジブチルスズジラウレー ト 0 . l g、 並びに油性物質 および希釈液としてのペン夕デカン 1 0 0 gからなる溶液③を加えて混 合した後、 直ちに、 上記フ ラスコ内の内容物を前記実施例 1 0 に記載の 容器に充塡し、 常温で、 4時間静置して、 架橋させることにより、 ペン 夕デカンを含有して保持したゲル状のものからなる本実施例 1 2の蓄熱 剤 ( 1 2 ) およびそれを用いた蓄熱材 ( 1 2 ) を得た。
〔実施例 1 3 〕
まず、 単量体成分と しての ドデンルアタ リ レー ト ( S P値 : 7 . 9 ) 3 9 gおよびエチレングリ コールジメ夕ク リ レー ト 0 . 8 g、 重合開始 剤と しての 2 . 2 ' —ァゾビス ( 2, 4 ージメチルバレロニ ト リ ル) 0 . 2 gからなる混合溶液を、 予め 6 O 'Cで融解させた油性物質としての 融点 5 0 'Cのパラフ ィ ンワ ッ クス (日本製蠟株式会社製、 製品名 1 0 ) 1 6 0 g中に加え、 互いに均一となるように混合し混合溶液を調製し た。 その後、 上記混合溶液を前記実施例 1 0 と同様に調製したボリ塩化 ビニル製透明円筒状パイプからなる容器に充填した。
次いで、 恒温槽内で該容器を 6 O 'Cに保ちながら、 容器上部に装着し たガス導入管より、 窒素を混合溶液中に十分に導入して、 上記混合溶液 内の酸素を窒素に置換した。 さらに、 この容器を、 窒素雰囲気を保ちな がら 6 0 'Cで 8時間静置するこ とにより、 混合溶液が重合し、 架橋して パラ フ ィ ンワ ッ クスをゲル状に保持した重合体が形成されたのを目視し た後、 ガス導入管を除く ことにより、 蓄熱剤 ( 1 3 ) およびそれを用い た蓄熱材 ( 1 3 ) を得た。
次に、 本発明の実施の他の形態の特徴点を示すための、 各比較例につ いて以下に説明する。
〔比較例 4〕
前記実施例 1 1 に記載のフラスコに対し、 ペン夕デカ ン 1 6 0 gを仕 込み、 窒素気流下にて攙拌しながら 9 0 °Cに昇温した。 このフラスコ内 に、 ゲル化剤と しての 1 2— ヒ ドロキシステアリ ン酸 4 0 gを加え、 3 0 0 r p mで 5分間攪拌した後、 前記実施例 1 0に記載の容器中に充塡 し、 室温まで放冷して比較蓄熱剤 ( 4 ) およびそれを用いた比較蓄熱材 ( 4 ) を得た。
〔比較例 5〕
前記実施例 1 1 に記載のフラスコに対し、 ペン夕デカ ン 1 6 0 gを仕 込み、 窒素気流下にて攪拌しなから 1 4 0 'Cに昇温した。 このフ ラスコ 内に、 ァ ミ ノ酸系油ゲル化剤 (味の素株式会社製 : 商品名 G P - 1 ) 4 0 gを加え、 3 0 0 r p mで 5分間攪拌した後、 前記実施例 1 0に記載 の容器中に充填し、 室温まで放冷して比較蓄熱剤 ( 5 ) およびそれを用 いた比較蓄熱材 ( 5 ) を得た。
〔比較例 6〕
未架榇の高密度ポリ エチレ ン (密度 : 0. 9 4 5、 M〗 : 0. 4 ) 2 6部と、 ペン夕デカン 1 0 0部とを、 1 3 O 'Cに温度調節した 2本ロー ルで混練混合して均一な組成物とした。 ついで、 上記組成物を平均粒径約 3 mmのペレ ッ ト とし、 このペレ ツ ト 1 2 6部、 ビュル ト リ メ トキシシラン 2. 4部、 およびジク ミ ルパー ォキシ ド 0. 1 8部を密閉容器で予備混合し、 この混合物をシリ ンダー 温度 2 0 0てに調整した押出機で押出し、 前記実施例 1 0 に記載の容器 中に充填した後、 7 0 °C温水に 2 4時間浸浪して架橋させるこ とによ り 、 比較蓄熱剤 ( 6 ) およびそれを用いた比較蓄熱材 ( 6 ) を得た。
次に、 上記の実施例 1 0〜 1 3および比較例 4〜 6の方法にて得られ た蓄熱剤 ( 1 0 ) 〜 ( 1 3 ) 、 蓄熱材 ( 1 0 ) 〜 ( 1 3 ) 、 比較蓄熱剤 ( 4 ) 〜 ( 6 ) および比較蓄熱材 ( 4 ) 〜 ( 6 ) について、 それぞれ経 時的な物性変化について測定した。
すなわち、 蓄熱材 ( 1 0 ) 〜 ( 1 2 ) および比較蓄熱材 ( 4 ) 〜 ( 6 ) をそれぞれ恒温槽内に投入し、 2 'C X 8時間と 3 0 °C X 8時間を 1 セ ッ トとするタイムプログラムにより、 油性物質としてのペン夕デカンの 凍結溶解を 2 0回操り返した後、 ゲル状または固体状の各蓄熱剤から、 液体状のペン夕デカ ンの分離の有無を目視により確認した。
また、 蓄熱剤 ( 1 3 ) も上記と同様に恒温槽内に投入し、 4 0て X 8 時間と 6 0 °C X 8時間を 1 セ ッ トとするタイムプロ グラムによ り、 油性 物質としてのパラフィ ンヮ ッ クスの凍結溶解を 2 0回繰り返した後、 ゲ ル状または固体状の蓄熱剤 ( 1 3 ) から、 液体状のパラフィ ンヮ ッ クス の分離の有無を目視により確認した。
それらの結果、 蓄熱材 ( 1 0 ) 〜 ( 1 2 ) では、 それらの蓄熱剤 ( 1 0 ) 〜 ( 1 2 ) において、 相変化により液化したペン夕デカ ンの分離か 観察されず、 また、 蓄熱材 ( 1 3 ) でも、 蓄熱剤 ( 1 3 ) において、 液 化したパラフィ ンヮ ッ クスの分雜は観察されなかったが、 比較蓄熱材 ( 4 ) 〜 ( 6 ) では、 それらの比較蓄熱剤 ( 4 ) 〜 ( 6 ) における液化し たペンタデカ ンの分離が観察されたことから、 本発明に係る蓄熱剤は、 比較蓄熱剤 ( 4 ) 〜 ( 6 ) と比べて経時的な安定性に優れているこ とが 分かった。
また、 比較蓄熱材 ( 5 ) · ( 6 ) では、 特に比較蓄熱材 ( 6 ) におい て、 溶融して高温となっている比較蓄熱剤 ( 5 ) · ( 6 ) を容器に充填 したこ とに起因する、 上記容器の変形がそれぞれ観察され、 上記容器の 素材としてボリ塩化ビニル等の熱可塑性の合成樹脂を用いるのが不適で あることが判つた。
よって、 本発明の蓄熱剤の製造方法は、 可燃性を有する油性物質が蓄 熱のため、 相変化によって液化した状態であっても、 油性物質を、 その 流動性を低下させてゲル状または固体状にて安定に保持して、 容器から の漏出を防止できると共に、 放熱 · 蓄熱のために凍結 · 溶解を緣り返す 通常の使用条件においても、 容器からの油性物質の漏出を回避するとい つた物性の経時的な安定性に優れるから、 漏出した油性物質への引火等 が防止されて安全性が高く、 かつ、 その安全性が経時的に安定な蓄熱剤 を確実に、 かつ容易に製造できるものである。
また、 本発明の蓄熱材の製造方法では、 蓄熱材が、 常温にて液体の状 態である単量体成分または架橋前の重合体を容器内にて、 8 0て以下て ある 4 0 °Cや常温付近で重合または架撟させるこ とにより、 容器内にお いて油性物質をゲル状または固体伏にして得られる。
このこ とから、 上記方法は、 蓄熱剤を上記容器内に密に充塡でき、 か つ、 耐水性には優れているが耐熱性に劣るボリ塩化ビニル等の合成樹脂 を容器の材質として用いても、 上記容器内に蓄熱剤を、 密に、 容易に、 かつ、 安定に充¾できて、 従来のように、 高耐熱性を有するが高価な樹 脂材料や、 耐腐食性を有するが高価なステン レス等を素材と した高価な 容器しか用いられないという不都合を回避できるこ とから、 蓄熱材を安 価に、 かつ安定に製造することができるものとなっている。
さらに、 上記方法では、 熱を伝達する媒体との接触表面積を増加させ るため容器が複雑な形状、 例えば紬ぃチューブ状、 ドーナツ状、 または コイル状に成型しても、 比較的低温にて単量体成分または架橋前の重合 体を液体の状態で容器内に充填して重合または架橋させるこ とにより、 上記容器内に蓄熱剤を密に、 かつ容易に充填できて、 熱の伝達効率が向 上した蓄熱材を安定に、 簡便に製造できるものとなっている。 産業上の利用可能性
本発明の蓄熱剤および蓄熟装置並びに蓄熱材は、 優れた蓄熱性および 伝熱性を有すると共に、 高い安全性を備えているこ とから、 ビルの空調 用、 給湯設備、 食品工場や化学工場の保温や保冷、 床暖房や壁暖房の建 材用、 保温や保冷の輪送システム、 太陽熱コ レクタ一等、 幅広い分野に 利用することができる。
本発明の蓄熱剤の製造方法、 および蓄熱材の製造方法では、 優れた蓄 熱性および伝熱性を有すると共に、 高い安全性を備えているこ とによつ て、 高度な産業上の利用可能性を有する蓄熱剤や蓄熱材を、 簡便に、 か つ安定に製造するこ とができる。

Claims

請求の範囲
1 .
吸油性樹脂と蓄熱性を有する油性物質とを含む油性ゲル体を有し、 か つ、 該油性ゲル体の単位容積が 0. 0 1 c m3 以上である蓄熱剤。
2.
油性物質は、 液相と固相との相変換により蓄熱性を有する化合物であ る請求項 1 記載の蓄熱剤。
3.
粒伏の吸油性樹脂と蓄熱性を有する油性物質とを含む粒状の油性ゲル 体を有し、 かつ、 該油性ゲル体は、 個々の界面を有したまま相互に接触 している蓄熱剤。
4.
ペン夕デカンに対する 2 5 'Cにおける平衡吸収倍率か 3 g / g以上の 吸油性樹脂と蓄熱性を有する油性物質とを含む油性ゲル体を有し、 かつ 、 該油性ゲル体の単位容擠が 0. 0 1 c m 3 以上である蓄熱剤。
5.
蓄熱性を有する油性物質の融点を X'Cとすると、 (Χ τ 1 0 ) てにお ける該油性物質に対する平衡吸収倍率が 3 g/ g以上の吸油性樹脂と該 油性物質とを含む油性ゲル体を有し、 かつ、 該油性ゲル体の単位容積か 0. 0 1 c m3 以上である蓄熱剤。
6.
吸油性樹脂は、 懸溷重合または懸濁重縮合により得られるものである 請求項 1 ないし 5の何れか 1 項に記載の蓄熱剤。
7. 吸油性樹脂は、 平均粒径 5 m m以下である請求項 1 ない し 5 の何れか 1 項に記載の蓄熱剤。
8 .
吸油性樹脂は、 少なく とも I 個の炭素数 3〜 3 0の脂肪族炭化水素基 を有し、 かつ、 アルキル (メ タ) ァク リ レー 卜、 アルキルァ リ ール (メ 夕) アタ リ レー 卜、 アルキル (メタ) アク リ ルア ミ ド、 アルキルァリ ー ノレ (メ タ) アク リ ルア ミ ド、 脂肪族ビニルエステル、 ァルキル ビニルェ 一テルおよびアルキルスチレ ンからなる群より選ばれる少な く と も 1 種 の不飽和化合物を 5 0重量%以上含有してなる単量体成分を重合して得 られたものである請求項 1 ないし 5の何れか 1 項に記載の蓄熟剤。
9 .
吸油性樹脂は、 アルキル (メ タ) ァク リ レー トを 5 0重量%以上含有 してなる単量体成分を重合して得られたものである請求項 8 に記載の蓄 熱剤。
1 0 .
脂肪族炭化水素基は、 炭素数 4〜 2 4のものである請求項 8 に記載の 蓄熱剤。
1 1 .
脂肪族炭化水素基は、 炭素数 8〜 1 8のものである請求項 8 に記載の 蓄熱剤。
1 2 .
吸油性樹脂は架橋構造を有するものである請求項 8に記載の蓄熱剤。
1 3 .
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を有する蓄熱装置。
1 4 .
請求項 1 ないし 1 2の何れか I 項に記載の蓄熱剤を容器に充塡してな る蓄熱材。
1 5 .
吸油性樹脂と蓄熱性を有する油性物質とを混合した後、 該混合物を、 流動性を有する状態で容器に充塡し、 該容器内でゲル化させて、 該混合 物の流動性を低下させる蓄熱材の製造方法。
1 6 .
蓄熱性を有する油性物質中で、 単量体成分を重合して、
上記単量体成分を重合してなる重合体中に、 相変化により液化した油 性物質の流動性が低下するように上記油性物質を保持させる蓄熱剤の製 造方法。
1 7 .
単量体成分を重合して得られた重合体は、 架橋構造を有する請求項 1 6記載の蓄熱剤の製造方法。
1 8 .
単量体成分は、 重合性を有する不飽和基を分子中に少なく と も 2個以 上有する架橋性単量体を含み、
上記単量体成分を共重合させることによって、 上記架橋性単量体によ る架橋構造を形成する請求項 1 7記載の蓄熱剤の製造方法。
1 9 .
単量体成分は、 架橋のための官能基を備えた反応性単量体を含み、 上記単量体成分を油性物質中で共重合させた重合体を、 上記油性物質 を含有した状態で、 架摘剤により官能基間を架檎させて架檎構造を形成 する請求項 1 7記載の蓄熱剤の製造方法。
2 0 .
上記反応性単量体が有する官能基と架橋剤が有する官能基の組み合わ せか、 カルボキシル基、 ヒ ドロキシル基、 メルカブト基、 ア ミ ノ基およ び了 ミ ド基からなる群より選ばれる少なく とも 1 つの官能基と、 イ ソシ アナ一ト基、 エポキシ基および無水カルボン酸基からなるからなる群よ り選ばれる少なく とも I つの官能基との組合わせである請求項 1 9記載 の蓄熱剤の製造方法。
2 1 .
反応性単量体は、 ヒ ドロキシル基を有するとともに、 架橋剤か少なく とも 2個のイ ソンアナ一ト基を有する請求項 1 9記載の蓄熱剤の製造方 法。
2 2 .
単量体成分は、 溶解度パラメータ一が 9以下の単量体を 5 0重量%以 上含むものである請求項 1 6ないし 2 1 の何れか 1 項に記載の蓄熱剤の 製造方法。
2 3 .
請求項 1 6ないし 2 1 の何れか 1 項に記載の蓄熱剤の製造方法を用い- 単量体成分を、 液体の状態で容器に充¾し、 容器内で硬化させる蓄熱 材の製造方法。 補正書の請求の範囲
[ 1 9 9 7年 9月 8ョ ( 0 8 . 0 9 . 9 7 ) 国際事務局受理:出願 ¾初の請求の範囲 2 4— 2 9は補 if-された :他の請求の範囲は変更なし。 ( 2頁) ]
2 0 .
上記反応性単量体が有する官能基と架橋剤が有する官能基の組み仓ゎ せが、 カルボキシル基、 ヒ ドロキシル基、 メルカブト基、 ア ミ ノ基およ 5 び了 ミ ド基からなる群より Sばれる少なく とも 1 つの官能基と、 ィソシ アナ一卜基、 エポキシ基および無水カルボン酸基からなるからなる群よ り選ばれる少なく とも 1 つの官能基との組合わせである請求項 1 9記載 の蓄熱剤の S造方法。
2 1 .
1 0 反応性単量体は、 ヒ ドロキシル基を有するとともに、 架樓剤が少なく とも 2個のイ ソシアナ一ト Sを有する請求項 1 9記載の蓄熱剤の製造方 法。
2 2 .
単 fi体成分は、 溶解度パラメ一ターが 9以下の単量体を 5 0重 & %以 1 5 上含むものである請求項 1 6ないし 2 1 の何れか 1 項に記載の蓄熱剤の 製造方法。
2 3 .
講求項 1 6ないし 2 1 の何れか 1 項に記載の蓄熱剂の製造方法を用い、 単量体成分を、 液体の状 35で容器に充 «し、 容器内で硬化させる番熱 20 材の »造方法。
2 4 . (追加)
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を、
ビルの空調用、 給 ¾設備、 食品工場や化学工場の保温や保冷、 床暖房 や壁暖房の建材用、 保温や保冷の輸送システム、 太接熱コレクターから
補正された用紙 (条約第 19条) なる群から選択される一つに用いる蓄熱剤の使用方法。
2 5 . (追加)
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を、 水やブラインに 浮遊あるいは分散させて用いる蓄熱方法。
2 6 . (追加)
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を容器に充塡してな る蓄熱材を、 水やブラインに浮遊あるいは分散させて用いる蓄熱方法。
2 7 . (追加)
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を容器に充塡してな る、 球伏の蓄熱材を、 水やブラインに浮遊あるいは分散させて用いる蓄 熱方法。
2 8 . (追加)
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を容器に充塡してな る、 板状の蓄熱材を、 通水路を確保できる間隔で水蓄熱槽中に積層して 用いる蓄熱方法。
2 9 . (追加)
請求項 1 ないし 1 2の何れか 1項に記載の蓄熱剤を容器に充塡してな る、 円筒状や直方体状の蓄熱材を水蓄熱槽中に自立させて用いる蓄熱方 法
補正された用紙 (条約第 19条)

Family

ID=

Similar Documents

Publication Publication Date Title
US7842750B2 (en) Polymer composition containing a heat accumulating phase-change material, a process for producing such a composition and a product in which such a composition is included
EP0827997B1 (en) Production method of thermal storage materials
US4537695A (en) Thermal energy storage compositions
IE49097B1 (en) Thermal energy storage material
EP3733276B1 (en) Method for low temperature microencapsulation of phase change materials
WO2005097935A9 (en) Polymer composition contains a heat accumulating phase change material, a process for producing such a coposition and product which includes such a composition
CN110114436A (zh) 冷结晶材料和在热量储存中利用冷结晶的方法
JPH11152465A (ja) 蓄熱装置およびその製造方法
JPH0617041A (ja) 蓄熱材
WO1997034962A9 (ja)
JP4668541B2 (ja) 蓄熱材、その製造方法、加温あるいは冷却システムおよび蓄熱性物品、および共重合体
JP3638072B2 (ja) 蓄熱剤の製造方法および蓄熱材の製造方法
JPH11323321A (ja) 蓄熱剤組成物の製造方法および蓄熱材の製造方法
JP4242631B2 (ja) 熱搬送媒体及びその製造方法、並びに、それを用いた空調システム
CN103108899A (zh) 包含微胶囊化潜热蓄热器材料的聚酰胺模制品
JPH1180723A (ja) 蓄熱剤およびその製造方法並びに蓄熱材の製造方法
JPH10251627A (ja) 複合粒子、その製造方法および熱搬送媒体
JPH09310064A (ja) 蓄熱剤およびその製造方法並びに蓄熱装置並びに蓄熱材
US4673520A (en) Thermal energy storage compositions
JPH1192758A (ja) 蓄熱剤組成物およびその製造方法
JPH0931452A (ja) 蓄熱剤組成物と空調システム
EP0133803B1 (en) Thermal energy storage compositions
JPH0472871B2 (ja)
JP2000241090A (ja) 蓄熱槽に充填される蓄熱剤およびその製造方法並びに蓄熱槽に充填された蓄熱剤を用いた熱交換方法
JPH1171579A (ja) 蓄熱剤