WO1997030962A1 - PROCESS FOR PREPARING FREE α-HYDROXY ACIDS FROM AMMONIUM SALTS THEREOF - Google Patents

PROCESS FOR PREPARING FREE α-HYDROXY ACIDS FROM AMMONIUM SALTS THEREOF Download PDF

Info

Publication number
WO1997030962A1
WO1997030962A1 PCT/JP1997/000528 JP9700528W WO9730962A1 WO 1997030962 A1 WO1997030962 A1 WO 1997030962A1 JP 9700528 W JP9700528 W JP 9700528W WO 9730962 A1 WO9730962 A1 WO 9730962A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
group
acid
hydroxy
heating
Prior art date
Application number
PCT/JP1997/000528
Other languages
English (en)
French (fr)
Inventor
Koichi Hayakawa
Original Assignee
Nippon Soda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co., Ltd. filed Critical Nippon Soda Co., Ltd.
Priority to EP97904631A priority Critical patent/EP0884300B1/en
Priority to US09/125,710 priority patent/US6066763A/en
Priority to DE69709705T priority patent/DE69709705T2/de
Priority to JP53000197A priority patent/JP3923528B2/ja
Priority to AU17351/97A priority patent/AU1735197A/en
Publication of WO1997030962A1 publication Critical patent/WO1997030962A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing ⁇ -hydroxy acid, which is useful as a synthetic raw material for various medicines and agricultural chemicals, a food additive or a feed additive.
  • the most common conventional method for chemically synthesizing ⁇ -hydroxy acid is a method of hydrolyzing high hydroxy nitrile with a mineral acid such as sulfuric acid.
  • mineral salts such as ammonium bisulfate are generated in the same amount or more, and the mineral salts must be treated, which causes a problem of a large amount of waste disposal.
  • Metals of ⁇ -hydroxy acid obtained by biological methods such as microbial fermentation of a mixture containing saccharides or by hydrolyzing ⁇ -hydroxynitrile with a hydrolase produced by a microorganism. It is also known to obtain a free ⁇ -hydroxy acid from a salt or an ammonium salt by reacting a mineral acid such as sulfuric acid or using an ion-exchange resin. Generate similar problems.
  • Another chemical synthesis method is to hydrolyze ⁇ -hydroxynitrile using an inorganic base such as sodium hydroxide.
  • an inorganic base such as sodium hydroxide.
  • it in order to obtain ⁇ - hydroxy acid, it must be neutralized with a mineral acid or the like. At this time, the same amount of mineral acid salt is generated, and the same problem of waste disposal occurs. .
  • the process for producing free acids from ammonium carboxylate includes unsaturated P97 / A method of adding unsaturated water to an ammonium salt of a fatty acid by adding a small amount of water and completely removing ammonia at a temperature of 80 ° C or higher in an organic solvent while removing ammonia to obtain an unsaturated fatty acid (UK Patent Publication 9677352 ), (Meta) An organic solvent that azeotropes with water is added to a 10 to 50% aqueous solution of ammonium acrylate ammonium salt, and the mixture is heated to 60 to 100 ° C and water is azeotropically distilled off.
  • a method for obtaining (meta) acrylic acid by distilling off ammonia (Japanese Patent Application Laid-Open No. 54-115153) is to supply water to a 10 to 80% aqueous solution of ammonium salt of acidic amino acid.
  • There is known a method in which ammonia and water are distilled off by heating while heating to obtain an acidic amino acid Japanese Patent Application Laid-Open No. 7-330696).
  • An object of the present invention is to provide a method for producing a free acid of ⁇ -hydroxy acid in a high yield from an ammonium salt of hydroxy acid in a method that does not cause a problem of waste treatment.
  • the present invention provides a first step of heating an ammonium salt of ⁇ -hydroxy acid represented by the following general formula [I] in a solvent-free or organic solvent to remove generated ammonia and water, followed by adding water
  • This is a process for producing hydroxy acid comprising a second step of ripening and maturation.
  • R represents a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, a cycloalkyl group which may have a substituent, Moyo Alkoxy group, aryl group which may have a substituent, aryloxy group which may have a substituent, saturated heterocyclic group which may have a substituent or a substituent. Represents an unsaturated heterocyclic group.
  • the ⁇ -hydroxy acid to be used in the present invention is a compound represented by the formula [I].
  • R represents a hydrogen atom, an alkyl group (which may have a substituent such as a halogen atom, an alkylthio group, an alkoxy group, or an acyl group); a (halogen atom, an alkylthio group, an alkoxy group, an acyl group)
  • An alkenyl group (which may have a substituent such as a halogen atom, an alkylthio group, an alkoxy group, or an acyl group), a cycloalkyl group which may have a substituent, (It may have a substituent such as a halogen atom, an alkylthio group, an alkoxy group, or an acyl group.)
  • An alkoxy group or (It may have a substituent such as a halogen atom, an alkylthio group, an alkoxy group, or an acyl group.
  • aryl group which may have a substituent such as a halogen atom, an alkylthio group, an alkoxy group, an acyl group, etc.), an aryloxy group, or a (halogen atom, Rukiruchi O group, an alkoxy group, which may have a substituent such as Ashiru group)
  • Wakashi Ku saturated denotes an unsaturated heterocyclic group.
  • Nitrogen, oxygen, and sulfur are hetero atoms such as 2-phenyl, 3-phenyl, 2-pyrrolyl, 3-pyrrolyl, 2-furyl, and 3-furyl.
  • a 3- to 7-membered heterocyclic group containing at least one kind is exemplified.
  • ⁇ -Hydroxy acid specifically, glycolic acid, lactic acid, mandelic acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ -hydroxyvaleric acid, ⁇ -hydric acid Oral xylisovaleric acid, -hydroxyoctanoic acid, ⁇ -hydroxy-3 -butenoic acid, ⁇ -hydroxy-13 -clopropionic acid, -hydroxy-4 -methylthiobutyric acid, ⁇ -hydroxy-2- Examples include pyridyl acetic acid, ⁇ -hydroxy-2-acetic acid, ⁇ -hydroxy-2-pyrrolacetic acid, ⁇ -hydroxy-2-furyl acetic acid, and the like.
  • the ammonium salt of ⁇ -hydroxy acid can be produced by a method in which ⁇ -hydroxynitrile is hydrolyzed by a hydrolase produced by a microorganism. Further, when ⁇ -hydroxy acid is obtained as a metal salt by a hydrolysis reaction of ⁇ -hydroxynitrile with an inorganic base or a microbial reaction, for example, Japanese Patent Application Laid-Open No. It can be converted to ammonium salt in the same way as shown in Figure 7.
  • the present invention is a production method comprising the following two steps.
  • ⁇ -Hydroxy acid ammonium salt is heated in a solvent-free or organic solvent to form low molecular weight poly- ⁇ -hydroxy acids while removing water and ammonia.
  • the first step is to remove the water and ammonia while heating the ammonium salt of ⁇ -hydroxy acid to make it a low molecular weight poly- ⁇ -hydroxy acid.
  • the reaction system may be in a reduced pressure state.
  • various distillation apparatuses can be used.
  • the reaction temperature is usually in the range of 40 to 200 ° C, preferably 60 to 170 ° C.
  • the pressure of the reaction system is 0.1 to 7 It is performed in the range of 60 mmHg.
  • the end point of the reaction is the point at which the distillation of water and ammonia has ceased, but the remaining ammonia can be recovered and recycled as ⁇ -hydroxyammonium ammonium salt after the reaction. If desired, the reaction can be stopped during the reaction.
  • the purity of the ⁇ -hydroxy acid obtained can be improved by replacing inert gases such as nitrogen, argon, and helium. .
  • inert gases such as nitrogen, argon, and helium.
  • introducing an inert gas into the reaction solution improves the efficiency of removing the ammonia.
  • an organic solvent that can be used in the first step an organic solvent that does not react with hydroxylic acid and ammonia can be used, and an organic solvent having a boiling point of 40 or more can be used, and an azeotropic solvent with water is preferable.
  • an organic solvent having a boiling point of 40 or more can be used, and an azeotropic solvent with water is preferable.
  • ⁇ -hydroxy acid amide may be formed as a by-product, which is formed by the reaction of dissolved ammonium with low-molecular-weight poly- ⁇ -hydroxy acid. .
  • the by-product rate can be suppressed to 2% or less by selecting an organic solvent, adjusting the degree of reduced pressure, or increasing the evaporation area.
  • Otsu no a-hydroxyamide is hydrolyzed in the second step to form ⁇ -hydroxyammonium salt, which further reduces the by-product rate.
  • the ammonia distilled off in the first step can be recovered as ammonia gas, which has high utility value.
  • the amount of water to be added is usually 0.1 to 10 times by weight of the residual weight after the completion of the first step reaction, and preferably 0.2 to 3 times by weight.
  • the reaction temperature is 50 to 100 ° C. when the reaction is performed under atmospheric pressure, but the reaction may be performed under pressure. If a pressure-resistant reactor is used, the reaction can be performed at 100 to 300 ° C., preferably 120 to 170 ° C., and the reaction time can be shortened.
  • the low molecular weight poly-hydroxy acids are hydrolyzed into hydroxy acid, and a part of the ⁇ -hydroxy acid amide by-produced in the first step is also added. It is hydrolyzed to ⁇ -hydroxy ammonium salt.
  • ⁇ -hydroxy acid can be mostly obtained as a free acid, but part of the ⁇ -hydroxy acid amide and by-product ⁇ -hydroxy acid amide remaining in the first step Reacts with ammonia produced by hydrolysis, and may remain as ⁇ -hydroxyammonium salt.
  • the ⁇ -hydroxyammonium ammonium salt formed in the system can be recycled as a starting material in the first step.
  • water is distilled off from the obtained aqueous solution of ⁇ -hydroxy acid, whereby free ⁇ -hydroxy acid having a purity of 80% or more can be obtained.
  • any organic solvent which is insoluble in water and dissolves the free acid of the hydroxy acid can be used without particular limitation. Examples thereof include toluene, ethyl acetate, methyl isoptyl ketone, ⁇ -butanol, diisopropyl ether, and dichloroethane.
  • continuous extraction by countercurrent distribution can also be employed, and by this operation, the recovery of the free acid of ⁇ -hydroxy acid can be improved.
  • the free ⁇ -hydroxy acid can be precipitated in an aqueous solution after the reaction in the second step instead of extraction with an organic solvent, followed by filtration and isolation.
  • the aqueous solution from which free ⁇ -hydroxy acid was obtained by the above method that is, the filtrate obtained by separating the aqueous layer or crystals after extraction with the organic solvent, was recycled as a starting material in the first step after port shrinkage. Is possible.
  • a rectification tube was attached to a 100 ml flask equipped with a stirrer and a thermometer. At the top, a fractionation head equipped with a thermometer and a reflux condenser was attached. At the fractionation head, the distilling organic solvent and water were separated, and only the organic solvent was returned to the rectification tube and refluxed.
  • Into this 10 Om1 flask add 14.20 g of an aqueous solution containing 5.3.4 mimol of ⁇ -hydroxy-4—methylthiobutyric acid ammonium salt and 40 m1 of xylene, and add about 150 The mixture was heated and stirred in an oil bath at ° C.
  • the total amount of the solution after the reaction was 58.8 g. After the reaction, the solution was concentrated under reduced pressure, and 5.
  • Example 2 An apparatus similar to that of Example 1 was assembled, and into this 100 ml flask, 5.84 g of an aqueous solution containing ammonium salt of 45.61 mimol and 40 ml of xylene were added. The mixture was heated and stirred in an oil bath at 0 ° C. At the beginning of the reaction, an azeotrope of xylene and water rose to the top of the column, and the temperature at the top was 92-93. As the reaction proceeded, water was distilled off, and the temperature at the top of the column gradually increased to reach the xylene boiling point of about 140. During the reaction, most of the ammonia was discharged from the top of the reflux condenser as gas except for the amount dissolved in the distillate.
  • Example 2 The same apparatus as in Example 1 was assembled, and into this 100 ml flask were placed 10.46 g of an aqueous solution containing 5.8.78 millimoles of ammonium mandelic acid and 40 ml of xylene. The mixture was heated and stirred in an oil bath at about 150 ° C. At the beginning of the reaction, an azeotropic mixture of xylene and water rose to the top of the column, and the temperature at the top was 92 to 93 ° C. As the reaction progressed, water was distilled off and the temperature at the top of the column gradually increased to reach the boiling point of xylene of about 140 ° C. During the reaction, ammonia was discharged as gas from the top of the reflux condenser.
  • Example 2 An apparatus similar to that in Example 1 was assembled, and an aqueous solution containing a-hydroxy-14-ammonium salt 43.24 mimol 10.01 g and anisol 50 0 m 1 was placed in an oil bath at about 170 ° C., and heated and stirred. As the reaction proceeded, water was distilled off and the temperature at the top of the column gradually increased to reach the boiling point of anisol at about 156 ° C. During the reaction, most of the ammonia, other than that dissolved in the distillate, was discharged as gas from the top of the reflux condenser. After heating under reflux for 4 hours, anisol was distilled off under reduced pressure to obtain 6.78 g of an oil.
  • Example 2 The same apparatus as in Example 1 was assembled, and in this 10 O ml flask, 10 ⁇ 12 g of an aqueous solution containing 4-hydroxyammonium ammonium salt 4 ⁇ 3. Put 50 ml of one rubetiyl ether, about 150. The mixture was placed in a C oil bath and stirred with heating. As the reaction proceeded, water was distilled off and the temperature at the top of the column gradually increased to reach the boiling point of ethylene glycol getyl ether at about 121 ° C. During the reaction, most of the ammonia, other than that dissolved in the distillate, was discharged as gas from the top of the reflux condenser.
  • the by-product rate of the hydroxy-4-methylthiobutyric acid amide and the yield of the free acid of the hydroxy-4-methylthiobutyric acid were calculated to be 1.1% and 90%, respectively, in consideration of the dimer integration. 9%. 8th clothing
  • a 50 m flask equipped with a stirrer, thermometer and gas inlet tube was fitted with a straight tube, and a distillation head equipped with a thermometer and a reflux condenser was installed at the top of the straight tube.
  • a distillation head equipped with a thermometer and a reflux condenser was installed at the top of the straight tube.
  • Into this 50 ml flask 5.09 g of an aqueous solution containing 20.6 1 mmol of ⁇ -hydroxyl-4-methylthiobutyrate ammonium salt and 20 ml of diethylene glycol dimethyl ether were added. The mixture was heated and stirred in an oil bath at 144 ° C.
  • reaction solution nitrogen gas is introduced into the reaction solution at a rate of 100 m 1 / min, and water existing in the raw materials and water generated during the reaction are azeotroped with diethylene glycol dimethyl ether. As a result, it was distilled out of the reaction system. Most of the ammonia produced during the reaction was discharged from the top of the reflux condenser as gas, except for the amount dissolved in the distillate.
  • the temperature of the reaction solution was about 115 ° C at the beginning of the reaction due to the presence of a large amount of water, but gradually increased as the reaction proceeded, and was constant at about 130 ° C. .
  • a 50 ml flask equipped with a stirrer and a thermometer was fitted with a straight tube, and a distillation head equipped with a thermometer and a reflux condenser was attached to the top of the straight tube.
  • the top of the reflux condenser was connected to a water pump so that the pressure inside the reaction system was reduced.
  • 5.0 g of an aqueous solution containing 20.25 mmol of ⁇ -hydroxy-4-methylthiobutyric acid ammonium salt and 25 ml of diethylene glycol dimethyl ether were added, and the mixture was heated to about 110 ° C. The mixture was heated and stirred in an oil bath.
  • the inside of the reaction system was adjusted to 600 to 65 OmmHg with a water flow pump, and water existing in the raw materials and water generated during the reaction were mixed with diethylene glycol dimethyl ether. Distilled out of the reaction system as an azeotrope. Most of the ammonia produced during the reaction, except for the amount dissolved in the distillate, was absorbed by the water-jet pump as gas.
  • the temperature of the reaction solution was 90 to 93 ° C at the beginning of the reaction, but gradually increased as the reaction proceeded, and was constant at about 100 ° C. After the reaction for 4 hours, diethylene glycol dimethyl ether was distilled off under reduced pressure to obtain 4.08 g of an oil.
  • the content was 57 millimoles, and the others were poly- ⁇ -hydroxy-4-methylthiobutyric acids.
  • the residual solution obtained after the reaction was transferred to an autoclave with an internal volume of about 60 ml, added with 20 ml of water, and placed in an oil bath at 170 to 1750C for 4 hours. Heated. The internal pressure during heating was 3 kgf / cm 2 . After cooling to room temperature, the reaction solution was transferred to a 50 ml eggplant flask, and water was distilled off under reduced pressure to obtain 7.45 g of an oil.
  • Table 12 According to the analysis results, the residual ratio of ammonia was 6.2.
  • the yield of ⁇ -hydroxy-4-methylthiobutyrate amide and the free acid of ⁇ -hydroxy-4-methylthiobutyrate were determined by dimer integration. The calculated values were 0.4% and 83.2%, respectively. Table 12
  • Ammonium lactate salt 7 9.58 g Aqueous solution containing 9.04 g of an aqueous solution was charged into a 50-ml small flask, and 11 to 14 mmHg, 118 to 1 using a rotary evaporator. Heating was carried out at 20 ° C for 6 hours to remove generated ammonia and water. The total amount of the remaining reaction solution was 6.62 g, which contained 6.31 millimoles of ammonium lactate, 1.04 millimoles of lactamide, and the others contained polylactic acid. It was kind.
  • Ammonium mandelic acid salt 4.5.84 A solution containing 9.04 g of mimol was charged into a 50-ml eggplant-shaped flask, and 0.5 to 0 mmHg, 1 was prepared using a rotary evaporator. The mixture was heated for 4 hours under the condition of 18 to 120 to remove generated ammonia and water. The total amount of the remaining reaction solution was 6.09 g, which contained 1.38 mmol of ammonium mandelate and 0.49 mmol of mandelamide. Polymandelic acids. The residual solution obtained after the reaction was transferred to an autoclave having an internal volume of about 60 ml, added with 20 ml of water, and placed in an oil bath at 170 to 175 ° C and heated for 4 hours. .
  • the internal pressure during heating was 3 kgf Z cm 2 .
  • the reaction solution was transferred to a 50 ml eggplant flask, and water was distilled off under reduced pressure to obtain 6.92 g of crystals.
  • the analysis results are shown in Table 14. According to the analysis results, the residual ratio of ammonia was 3.6%, and the yield of free acid with respect to the charged ammonium salt of mandelic acid was 92.9%.
  • the method of the present invention is suitable and advantageous from an industrial viewpoint for the following various reasons.
  • Residual ammonia and by-product ⁇ -hydroxy acid amide can be separated from free ⁇ -hydroxy acid as ⁇ -hydroxy ammonium salt after the hydrolysis reaction, and can be recovered and recycled.
  • the present invention is a method for industrially and efficiently producing a free acid from an ammonium salt of ⁇ -hydroxy acid, and its industrial significance is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

明 細 書
α ー ヒ ドロキシ酸のァンモニゥム塩から遊離酸の製造方法
技術分野 :
本発明は、 種々の医薬 · 農薬等の合成原料、 食品添加物や飼料添加剤と して有 用である α — ヒ ドロキシ酸の製造方法に関する。
背景技術、
従来の最も一般的な α - ヒ ドロキシ酸の化学的合成法は、 ひ ー ヒ ドロキシニ 卜 リ ルを硫酸等の鉱酸を用いて加水分解する方法である。 しかし、 この場合同当量 以上の重硫安等の鉱酸塩が生成し、 この鉱酸塩は処理されなければならず、 大量 の廃棄物処理の問題を生じる。
また、 糖を含有する混合物を微生物発酵する等の生物学的方法や α - ヒ ドロキ シニ ト リ ルを微生物の生産する加水分解酵素により加水分解する方法により得ら れる α — ヒ ドロキシ酸の金属塩やアンモニゥム塩から、 硫酸等の鉱酸を反応させ たりィォン交換樹脂を用いることにより遊離の α — ヒ ドロキシ酸を得る方法も知 られているが、 いずれの方法においても大量の鉱酸塩が生成し、 同様な問題が生 じる。
—方、 廃棄物となる鉱酸塩を生成させない方法と して、 ひ ー ヒ ドロキシ酸のァ ンモニゥム塩にアルコールを添加してエステル化する方法 (特開平 7 — 1 9 4 3 8 7 ) を利用して、 一旦エステルを得たのち酸触媒を用いて加水分解する方法が 知られている。 しかし、 この方法では、 新たな添加物と して、 アルコールおよび 酸触媒を使用する必要があり、 これら添加物は回収しなければならず、 工業的に 有利な製造方法とは言いがたい。
また, もう一つの化学的合成法と して、 α — ヒ ドロキシニ ト リ ルを水酸化ナ リ ウム等の無機塩基を用いて加水分解する方法がある。 この場合は、 α — ヒ ドロ キシ酸を得るためには、 鉱酸等で中和しなければならないが、 この際、 同等量の 鉱酸塩が生成し、 同様な廃棄物処理の問題が生じる。
さ らに、 カルボン酸アンモニゥム塩から遊離酸を製造する方法と して、 不飽和 P97/ 脂肪酸のァンモニゥム塩に少量の水を添加し有機溶媒中で 8 0 °C以上の温度で全 還流させながらアンモニアを遊離除去し不飽和脂肪酸を得る方法 (英国特許公開 9 6 7 3 5 2 ) 、 (メ タ) ァク リル酸ァンモニゥム塩の 1 0〜 5 0 %水溶液に水 と共沸する有機溶媒を加え 6 0〜 1 0 0 °Cに加熱し水を共沸留去すると同時にァ ンモニァを留去し (メ タ) アク リル酸を得る方法 (特開昭 5 4 — 1 1 5 3 1 7 ) 、 酸性ァ ミ ノ酸アンモニゥム塩の 1 0 ~ 8 0 %水溶液に水を供給しつつ加熱して アンモニアと水を留去させ酸性ァ ミ ノ酸を得る方法 (特開平 7 — 3 3 0 6 9 6 ) 等が知られている。
しかしながら、 これらの方法では、 原理的にカルボン酸の酸解離定数が高い値 を示すものでは容易に脱アンモニアする力く、 α— ヒ ドロキシ酸のように p K aが 4以下の強酸では、 カルボン酸アンモニゥム塩からのアンモニゥムィォンの解離 度が小さ く 、 脱ァンモニァが困難であり、 大部分のアンモニアを除去するのに、 長時間の反応を要したり、 大量の有機溶媒あるいは大量の水の添加を必要とする 。 本発明者がこれら 3つの方法を α — ヒ ドロキシ酸の製造に適用したと ころ、 い ずれの方法においても α— ヒ ドロキシ酸ァンモニゥム塩が 5 0 %以上残存し、 ェ 業的製造方法と しては不適当であった。 発明の開示 :
本発明の課題は、 廃棄物処理の問題が生じない方法で、 ひ ー ヒ ドロキシ酸のァ ンモニゥム塩から α — ヒ ドロキシ酸の遊離酸を高収率で製造する方法を提供する ものである。
本発明は、 下記一般式 〔 I 〕 で示される α— ヒ ドロキシ酸のアンモニゥム塩を 無溶媒または有機溶媒中で加熱し、 生成するアンモニアと水を除外する第一工程 、 続いて、 水を添加し加熟する第二工程からなるひ ー ヒ ドロキシ酸の製造方法で ある。
R - C H - C O O- Ν Η 4 + 〔 I 〕
0 Η
(式中、 Rは水素原子、 置換基を有してもよいアルキル基、 置換基を有してもよ いアルケニル基、 置換基を有してもよいシク ロアルキル基、 置換基を有してもよ いアルコキシ基、 置換基を有してもよいァ リ ール基、 置換基を有してもよいァ リ ールォキシ基、 置換基を有してもよい飽和複素環基又は置換基を有していてもよ い不飽和複素環基を表す。 )
以下、 本発明を詳細に説明する。
本発明の対象となる α — ヒ ドロキシ酸は、 式 〔 I 〕 で表される化合物である。
R - C H - C O O— Ν Η 〔 I 〕
0 Η
式 〔 I 〕 中、 Rは、 水素原子、 (ハロゲン原子、 アルキルチオ基、 アルコキシ 基、 ァシル基等の置換基を有してもよい) アルキル基、 (ハロゲン原子、 アルキ ルチオ基、 アルコキシ基、 ァシル基等の置換基を有してもよい) アルケニル基、 (ハロゲン原子、 アルキルチオ基、 アルコキシ基、 ァシル基等の置換基を有して もよい) 置換基を有してもよいシク ロアルキル基、 (ハロゲン原子、 アルキルチ ォ基、 アルコキシ基、 ァシル基等の置換基を有してもよい) アルコキシ基、 (ハ ロゲン原子、 アルキルチオ基、 アルコキシ基、 ァシル基等の置換基を有してもよ い) ァ リ ール基、 (ハロゲン原子、 アルキルチオ基、 アルコキシ基、 ァシル基等 の置換基を有してもよい) ァ リ ールォキシ基、 又は (ハロゲン原子、 アルキルチ ォ基、 アルコキシ基、 ァシル基等の置換基を有してもよい) 飽和若し く は不飽和 複素環基を表す。
好ま し く は、 水素原子、 メチル、 ェチル、 プロ ピル、 イ ソプロ ピル、 プチル、 イ ソプチル、 t 一ブチル、 ペンチル基等の C 1 〜C 6 アルキル基、 (フ ッ素、 塩 素、 臭素等のハロゲン原子、 メチルチオ、 ェチルチオ、 プロ ピルチオ、 イ ソプロ ピルチオ、 プチルチオ基等のアルキルチオ基で) 置換されてもよい C 1 〜C 6 ァ ルキル基、 ビニル、 ァ リル、 2 —ブテニル、 3 —ブテニル基などの C 2〜 C 6 ァ ルケニル基、 フヱニル基、 2 — ピリ ジル基、 3 _ ピリ ジル基、 4 一 ピリ ジル基、
2 —チェニル基、 3 —チェニル基、 2 — ピロ リ ル基、 3 - ピロ リ ル基、 2 —フ リ ル基および 3 —フ リ ル基等の異種原子と して窒素、 酸素、 硫黄を少な く と も一種 含む 3〜 7員複素環基が挙げられる。
α — ヒ ドロキシ酸と して、 具体的には、 グリ コール酸、 乳酸、 マンデル酸、 α ー ヒ ドロキシ酪酸、 α — ヒ ドロキシイ ソ酪酸、 α — ヒ ドロキシ吉草酸、 α — ヒ ド 口キシィ ソ吉草酸、 ー ヒ ドロキシオクタ ン酸、 α — ヒ ドロキシー 3 —ブテノ ン 酸、 α ヒ ドロキシ一 3 —クロ口プロピオン酸、 ー ヒ ドロキシー 4 ーメ チルチ ォ酪酸、 α — ヒ ドロキシ— 2 — ピリ ジル酢酸、 α ヒ ドロキシ— 2 —チェ二ル酢 酸、 α — ヒ ドロキシ— 2 — ピロ リ ル酢酸、 α — ヒ ドロキシ— 2 —フ リ ル酢酸など を挙げることができる。
α ヒ ドロキシ酸のアンモニゥム塩は、 α ヒ ドロキシニ ト リ ルを微生物の生 産する加水分解酵素により加水分解する方法により、 製造することができる。 また、 無機塩基による α - ヒ ドロキシニ ト リ ルの加水分解反応または微生物反 応等により、 α ヒ ドロキシ酸が金属塩と して得られる場合には、 例えば、 特開 平 7 1 9 4 3 8 7 に示されたと同じ方法でアンモニゥム塩に変換できる。 すな わち、 α — ヒ ドロキシ酸の金属塩の水溶液に Ν Η 3 および C O 2 を添加すること により、 α — ヒ ドロキシ酸アンモニゥム塩に変換することができ、 本発明の方法 に供することができる。 本発明は、 以下の二つの工程からなる製造法である。
ィ) 第一工程
α — ヒ ドロキシ酸のアンモニゥム塩を、 無溶媒または有機溶媒中、 加熱するこ とにより、 低分子量ポ リ ー α — ヒ ドロキシ酸類とさせつつ、 水とア ンモニアを除 去する工程。
口) 第二工程
大部分のアンモニアが除去した後 (第一工程反応終了後) 、 水を添加して加熱 することにより、 低分子量ポリ — α ヒ ドロキシ酸類が加水分解され、 遊離の α - ヒ ドロキシ酸を得る工程。
第一工程は、 α— ヒ ドロキシ酸のァンモニゥム塩を加熱することにより、 低分 子量ポリ α ヒ ドロキシ酸類とさせつつ水とアンモニアを除外する ものである 。 この際、 反応系は減圧状態にしても良い。
第一工程では種々の蒸留装置が利用でき、 蒸発面積を增加させるために、 撹拌 装置付きのもの、 液膜を形成させる ものが特に有利である。 反応温度は通常 4 0 〜 2 0 0 °C、 特に 6 0〜 1 7 0 °Cの範囲が好ま しい。 反応系の圧力は 0 . 1 〜 7 6 0 m m H gの範囲で実施される。 反応の終点は水およびア ンモニアの留出がお さま った時点となるが、 残存するア ンモニアは反応後 α — ヒ ドロキシ酸ア ンモニ ゥム塩と して回収リサイ クルすること もできるので、 所望により反応途中で止め ること もできる。 α — ヒ ドロキシ酸の種類により酸化を受けやすいひ ー ヒ ドロキ シ酸の場合では、 窒素、 アルゴン、 ヘリ ウム等の不活性ガスの置換により、 得ら れる α — ヒ ドロキシ酸の純度が向上する。 また、 大気圧下で反応する際、 不活性 ガスを反応液中に導入すると、 ァンモニァの除外効率が向上する。
第一工程で使用することのできる有機溶媒と しては、 ひ ー ヒ ドロキシ酸及びァ ンモユアと反応しない、 沸点 4 0て以上の有機溶媒が使用でき、 水と共沸する も のが好ま しい。 例えば、 ベンゼン、 トルエン、 キシ レン、 メ シチ レ ン、 エチ レン グリ コ一ルジェチルエーテル、 エチ レ ングリ コ一ルジメ チルェ一テル、 ジェチ レ ングリ コールジメ チルエーテル、 ジイ ソブチルエーテル、 ジ η — ブチルエーテル 、 ァニソ一ル、 デカ ンが挙げられる。
なお、 第一工程の反応において、 α — ヒ ドロキシ酸ア ミ ドが副成する場合があ るが、 これは低分子量ポリ ー α — ヒ ドロキシ酸に溶存ァンモニァが反応して生成 するものである。 この場合、 有機溶媒の選択、 減圧度の調整または蒸発面積を増 加させるこ とによ って、 副成率を 2 %以下に抑えることができる。 また、 乙の a 一 ヒ ドロキシ酸ァ ミ ドは第二工程で加水分解され、 α — ヒ ドロキシ酸ァンモニゥ ム塩になるので、 副成率がさ らに減少する。
なお、 第一工程おいて留出するァンモニァはアンモニアガスと して回収するこ とができ、 利用価値が高い。
第二工程は、 第一工程の反応後、 水を添加して加熱する ものである。 水の添加 量は、 第一工程反応終了後の釜残重量の 0 . 1 〜 1 0倍重量部が通常使われ、 好 ま しく は 0 . 2 〜 3倍重量部が良い。 反応温度は大気圧下で反応した場合、 5 0 〜 1 0 0 °Cであるが、 加圧で反応しても良い。 耐圧反応装置を用いれば、 1 0 0 ~ 3 0 0 °C好ま しく は 1 2 0 〜 1 7 0 °Cで反応することができ、 反応時間を短縮 することができる。
第二工程の反応により、 低分子量ポリ — ー ヒ ドロキシ酸類は加水分解され、 ひ ー ヒ ドロキシ酸となり、 第一工程で副成した α — ヒ ドロキシ酸ア ミ ドも一部加 水分解されて α — ヒ ドロキシ酸ア ンモニゥ厶塩となる。
第二工程反応終了後、 α —ヒ ドロキシ酸は大部分遊離の酸と して得ることが出 来るが、 一部は第一工程で残存したァンモニァと副成 α - ヒ ドロキシ酸ァ ミ ドの 加水分解により生成したア ンモニアと反応して、 α — ヒ ドロキシ酸アンモニゥム 塩と して残存する場合がある。 しかし、 系内で生成した α— ヒ ドロキシ酸アンモ 二ゥム塩は第一工程の出発原料と してリサイ クルできるので特に問題はない。 第二工程反応終了後、 得られた α — ヒ ドロキシ酸の水溶液から水を留去するこ とによって、 純度 8 0 %以上の遊離の α — ヒ ドロキシ酸を得ることができる。 さ らに純度の良い α - ヒ ドロキシ酸を得るには、 適当な有機溶媒で抽出し、 有機溶 媒を留去するのが好ま しい。 抽出に用いられる有機溶媒と しては、 水に不溶で、 ひ ー ヒ ドロキシ酸の遊離酸を溶解する有機溶媒ならば特に制限な く 使用できる。 例えば、 トルエン、 酢酸ェチル、 メ チルイ ソプチルケ ト ン、 η —ブタ ノ 一ル、 ジ イ ソプロ ピルエーテル、 ジク ロロェタ ンを挙げることができる。 有機溶媒抽出に 際しては、 向流分配による連続抽出も採用することができ、 この操作により、 α ー ヒ ドロキシ酸の遊離酸の回収率を向上させることができる。 α — ヒ ドロキシ酸 が結晶性のものについては、 有機溶媒による抽出に代えて、 第二工程反応後水溶 液中に遊離の α — ヒ ドロキシ酸を析出させ、 ろ過、 単離すること もできる。 上記方法で遊離の α - ヒ ドロキシ酸を得た後の水溶液、 すなわち有機溶媒抽出 後の水層あるいは結晶を分離したろ過ろ液は、 '港縮後第一工程の出発原料と して リサイ クルが可能である。
【実施例】
以下に実施例を挙げて、 本発明を更に詳細に説明する。 尚、 α - ヒ ドロキシ酸 、 α — ヒ ドロキシ酸ア ミ ド、 ポリ 一 ひ ー ヒ ドロキシ酸の分折は、 高速液体クロマ ト グラフィ 一により、 またアンモニアの分析は、 N A D Η〜グルタ ミ ン酸脱水素 酵素を用いる紫外部吸光度測定法 (Methods of Enzymatic Analysis, Bergmeyer H. U. ed.. 3rd ed. , vol.8, pp.454-461) により定量した。
[実施例 1 ]
撹拌機、 温度計を備えた 1 0 0 m l フラスコに精留管を取り付け、 精留管の塔 頂には温度計、 還流冷却器を備えた分留頭を取り付けた。 分留頭では留出してく る有機溶媒と水を分液し、 有機溶媒のみを精留管に戻し還流させるようにした。 この 1 0 O m 1 フラスコに、 α ヒ ドロキシ— 4 — メ チルチオ酪酸アンモニゥ厶 塩 5 3. 4 0 ミ リモルを含む水溶液 1 4. 2 0 gとキシレン 4 0 m 1 を入れ、 約 1 5 0 °Cの油浴に付け加熱撹拌した。 反応当初はキシレンと水の共沸混合物が塔 頂まで上昇し、 塔頂温は 9 2 ~ 9 3てを示した。 反応が進行するとと もに水が留 出分離され、 塔頂温は徐々に上昇してキシレンの沸点約 1 4 0 °Cに達した。 反応 の間、 ァンモニァは留出水に溶解する分以外の大部分はガスと して還流冷却器の 塔頂から排出した。 4時間加熱還流した後、 キシレ ンを減圧留去して 7. 6 8 g のオイルを得た。 このオイルを内容積が約 6 0 m 1 のォ一 ト ク レーブに移し、 水 2 0 m l を加え、 約 1 5 0 で 4 時間加熱撹拌した。 加熱中内圧は約 3 k g f / c m2 を示した。 室温まで冷却した後、 反応液を 5 O m l ナスフラスコに移し、 水を減圧留去して、 9. 5 6 gのオイルを得た。 分析結果を第 1 表に示す。 分析 結果よりア ンモニアの残存率は 3. 4 %であった。 α ヒ ドロキシ— 4 メ チル チォ酪酸ァ ミ ドの副成率及び α - ヒ ドロキシー 4 ーメ チルチオ酪酸の遊離酸の収 率を、 ダイマー体を考慮して計算すると、 それぞれ 0. 9 %、 9 0. 4 %であつ た。 第 1 表
Figure imgf000009_0001
(注) 単位 ミ リ 乇ノレ
H M B A α ヒ ド Dキシ一 4 メ チルチオ酪酸
H M B - A m α; ヒ ドロキシ一 4 メチルチオ酪酸ァ ト" H M B - D i : α ヒ ドロキシ— 4 ー メ チルチオ酪酸の鎖状ダイマ一 N H + : ァンモニゥム塩
[比較例 1 ]
英国特許第 9 6 7 3 5 2号公報記載の方法に準じて実施した。 撹拌機、 温度計 、 還流冷却器を備えた 5 O m l フラスコに、 a ヒ ドロキシ— 4 — メ チルチオ酪 酸ア ンモニゥム塩 1 9. 5 0 ミ リモルを含む水溶液 3. 8 0 £と水 1 . 0 ni 1 を 入れ、 均一溶液と した。 これにさ らに トルエン 2 3. 0 m l を加え、 I 2 0 °Cの 油浴に付け撹拌しながら加熱還流した。 反応液の温度は 1 0 0〜 1 0 3 °Cを示し 、 還流冷却器塔頂からはアンモニアガスが発生した。 4 時間加熱還流した後、 ト ルェンと水を減圧留去して、 3. 8 2 gのオイルを得た。 分析結果を第 2表に示 す。 分析結果より ァ ンモニァの残存率は 7 0. 3 %であり、 ひ ー ヒ ドロキシ 4 —メ チルチオ酪酸の遊離酸の収率は、 ダイマ一体を考慮して 2 2. 1 %であった
Figure imgf000010_0001
(注) 単位、 化合物の略号は表 1 と同様である。
[比較例 2 ]
特開昭 5 4 — 1 1 5 3 1 7号公報記載の方法に準じて実施した。 撹拌機、 温度 計、 単蒸留塔 (内径 1 0 mm, 高さ 1 0 c m) 、 冷却器を備えた 2 0 0 m 1 フラ スコに、 a ヒ ドロキシ一 4 —メ チルチオ酪酸アンモニゥム塩 2 5. 8 8 ミ リ モ ルを含む 5 0重量%水溶液および トルエン 1 1 5 m l を入れ、 乾燥空気を気相部 に少量導入しつつ加熱撹拌した。 トルエンと水の共沸混合物が留出すると同時に アンモニアガスが発生した。 留出開始後約 4 0分で共沸留出は止ま り、 殆ど 卜ノレ ェンのみの留出となってから約 1 0分で反応を終了した。 留出液の総量は 6 4.
5 g、 反応後液の総量は 5 8. 8 gであった。 この反応後液を減圧濃縮し、 5.
6 gのオイルを得た。 分析結果を第 3表に示す。 分析結果よりアンモニアの残存 率は 5 6. 6 %であり、 α - ヒ ドロキシー 4 —メチルチオ酪酸の遊離酸の収率は 、 ダイマー体を考慮して 3 2. 8 %であった。 3
Figure imgf000011_0001
(注) 単位、 化合物の略号は表 1 と同様である
[比較例 3 ]
特開平 7 — 3 3 0 6 9 6号公報記載の方法に準じて実施した。 撹袢機、 温度計 、 滴下口一 卜、 単蒸留塔 (内径 1 0 mm, 高さ 1 0 c m) 、 冷却器を備えた 5 0 m l フラスコに、 α — ヒ ドロキシ一 4 ー メ チルチオ酪酸ア ンモニゥム塩 5 1 . 8 1 ミ リ モルを含む水溶液 1 0. 3 5 gと水 1 2 m l を入れ、 大気圧下、 キヤ ビラ リ 一から微量窒素を流しながら、 7 0 に予熱した水を 2 0 m 1 Zh rで連続的 に供給し、 ボ トムフラスコを 1 5 0 °C油浴中で加熱して、 卜 ップ留出温度 9 9〜 1 0 0 °C、 留出速度 2 0 m 1 Zh rで、 滞留液量を略一定に保ちながらァンモニ ァ水を留出させ、 約 4時間かけて合計約 8 0 m l のアンモニア水を得た。 反応後 液の総量は 2 1 . 9 m 1 であった。 分析結果を第 4表に示す。 分析結果よりアン モニァの残存率は 7 0 . 8 %であり、 α — ヒ ドロキシー 4 ーメチルチオ酪酸の遊 離酸の収率は、 ダイマー体を考慮して 2 1 . 9 %であった。 第 4 表
Figure imgf000012_0001
(注) 単位、 化合物の略号は表 1 と同様である。 [実施例 2 ]
実施例 1 と同様の装置を組み、 この 1 0 0 m 1 フラスコ中に乳酸アンモニゥム 塩 4 5 . 6 1 ミ リモルを含む水溶液 5 . 8 4 gとキシレ ン 4 0 m 1 を入れ、 約 1 5 0 °Cの油浴に付け加熱撹拌した。 反応当初はキシレンと水の共沸混合物が塔頂 まで上昇し塔頂温は 9 2 〜 9 3てを示した。 反応が進行すると と もに水が留出分 離され、 塔頂温は徐々に上昇してキシ レンの沸点約 1 4 0でに達した。 反応の間 、 ァンモニァは留出水に溶解する分以外の大部分はガスと して還流冷却器の塔頂 から排出した。 以上合計 4時間、 加熱還流撹拌した後、 キシ レンを減圧留去して 4 . 0 8 gのオイルを得た。 このオイルを内容積が約 6 0 m 1 のォー ト ク レーブ に移し、 水 2 0 m 1 を加え、 約 1 5 0 。Cで 4時間加熱撹拌した。 加熱中内圧は約 3 k g f / c m 2 を示した。 室温まで冷却した後、 反応後液を 5 0 m 1 ナスフラ スコに移し、 水を減圧留去して 4 . 5 2 gのオイルを得た。 分析結果を第 5表に 示す。 分析結果よりアンモニアの残存率は 7 . 6 %であり、 乳酸ア ミ ドの副成率 は 1 . 2 %であった。 乳酸の遊離酸の収率は 8 9 . 9 %であった。 第 5 表
Figure imgf000013_0001
(注) 単位 : ミ リ モル L A : 乳酸 L A— A m : 乳酸ァ ミ ド [実施例 33
実施例 1 と同様の装置を組み、 この 1 0 0 m l フラスコ中にマンデル酸アンモ 二ゥム塩 5 8. 7 8 ミ リモルを含む水溶液 1 0. 4 6 gとキシレン 4 0 m 1 を入 れ、 約 1 5 0 °Cの油浴に付け加熱撹拌した。 反応当初はキシレンと水の共沸混合 物が塔頂まで上昇し塔頂温は 9 2〜 9 3 °Cを示した。 反応が進行するとと もに水 が留出分離され、 塔頂温は徐々に上昇してキシレンの沸点約 1 4 0 °Cに達した。 反応の間、 ア ンモニアはガスと して還流冷却器の塔頂から排出した。 以上合計 4 時間、 加熱還流撹拌した後、 キシレンを減圧留去して 7. 3 8 gのオイルを得た 。 このオイルを内容積が約 6 0 m l のォ一 ト ク レーブに移し、 水 2 O m i を加え 、 約 1 5 0 で 4時間加熱撹拌した。 加熱中内圧は約 3 k g f Z c m2 を示した 。 室温まで冷却した後、 反応後液を 5 0 m 1 ナスフラ スコに移し、 水を減圧留去 して 9. 6 3 gのオイルを得た。 分析結果を第 6表に示す。 分析結果よりアンモ ニァの残存率は 2. 8 %であり、 マンデル酸ア ミ ドの副成率は 1 . 8 %であった 。 マンデル酸の遊離酸の収率は 9 3. 5 %であった。 第 6 表
Figure imgf000014_0001
(注) 単位 : ミ リ モル MA : マ ンデル酸 M A— A m : マ ンデル酸ア ミ ド
[実施例 4 ]
実施例 1 と同様の装置を組み、 この 1 0 O m l フラスコ中に、 a— ヒ ドロキシ 一 4 —メチルチオ酪酸アンモニゥム塩 4 3. 2 4 ミ リモルを含む水溶液 1 0. 0 1 gとァニソール 5 0 m 1 を入れ、 約 1 7 0 °Cの油浴に付け加熱搜拌した。 反応 が進行するとと もに水が留出分離され、 塔頂温は徐々に上昇してァニソ一ルの沸 点約 1 5 6 °Cに達した。 反応の間、 アンモニアは留出水に溶解する分以外の大部 分はガスと して還流冷却器の塔頂から排出した。 4時間加熱還流した後、 ァニソ ―ルを減圧留去して 6. 7 8 gのオイルを得た。 このオイルを内容積が約 6 0 m 1 のォ一 ト ク レーブに移し、 水 2 0 m l を加え、 約 1 5 0 "Cで 4時間加熱撹拌し た。 加熱中、 内圧は約 3 k g f Z c m2 を示した。 室温まで冷却した後、 反応液 を 5 0 m l ナスフラスコに移し、 水を減圧留去して 7. 6 1 gのオイルを得た。 分析結果を第 7表に示す。 分析結果よりア ンモニアの残存率は 3. 7 %であった 。 a— ヒ ドロキシ— 4 —メチルチオ酪酸ァ ミ ドの副成率及びひ — ヒ ドロキシー 4 ーメ チルチオ酪酸の遊離酸の収率を、 ダイマ一体を考慮して計算すると、 それぞ れ 1. 0 %、 9 0. 1 %であった。 第 Ί 表
Figure imgf000015_0001
(注) 単位、 化合物の略号は表 1 と同様である。 [実施例 5 ]
実施例 1 と同様の装置を組み、 この 1 0 O m l フラ スコ中に、 ー ヒ ドロキシ — 4 ーメチルチオ酪酸ア ンモニゥム塩 4 3 . 了 2 ミ リモルを含む水溶液 1 0 · 1 2 g とエチレングリ コ一ルジェチルエーテル 5 0 m 1 を入れ、 約 1 5 0 。Cの油浴 に付け加熱撹拌した。 反応が進行するとと もに水が留出分離され、 塔頂温は徐々 に上昇してエチレングリ コールジェチルエーテルの沸点約 1 2 1 °Cに達した。 反 応の間、 アンモニアは留出水に溶解する分以外の大部分はガスと して還流冷却器 の塔頂から排出した。 4時間加熱還流した後、 エチレングリ コ一ルジェチルエー テルを減圧留去して 6 . 9 4 gのオイルを得た。 このオイルを内容積が約 6 0 m 1 のォー 卜ク レーブに移し、 水 2 0 m 1 を加え、 約 1 5 0 °Cで 4 時間加熱撹拌し た。 加熱中内圧は約 3 k g f ノ c m 2 を示した。 室温まで冷却した後、 反応液を 5 0 m 1 ナスフラ スコに移し、 水を減圧留去して 7 . 5 8 gのオイルを得た。 分 析結果を第 8表に示す。 分析結果よりアンモニアの残存率は 3 . 8 %であった。 ひ ー ヒ ドロキシー 4 ーメ チルチオ酪酸ア ミ ドの副成率及びひ ー ヒ ドロキシー 4 一 メチルチオ酪酸の遊離酸の収率を、 ダイマ 一体を考慮して計算すると、 それぞれ 1 . 1 %、 9 0 . 9 %であった。 第 8 衣
Figure imgf000016_0001
(注) 単位、 化合物の略号は表 1 と同様である。
[実施例 6 ]
撹拌機、 温度計、 ガス導入管を備えた 5 0 m 】 フラスコに直管を取り付け、 直 管の塔頂には温度計、 還流冷却器を備えた分留頭を取り付けた。 この 5 0 m l フ ラスコに、 α - ヒ ドロキシ一 4 ー メ チルチオ酪酸ア ンモニゥム塩 2 0 . 6 1 ミ リ モルを含む水溶液 5 . 0 9 gとジエチレングリ コールジメ チルエーテル 2 0 m 1 を入れ、 約 1 4 5 °Cの油浴に付け加熱撹拌した。 この際、 窒素ガスを反応液中に 1 0 0 m 1 / m i nの速度で導入し、 原料中にあらかじめ存在する水及び反応中 生成する水を、 ジエチレングリ コールジメチルェ一テルとの共沸物と して、 反応 系外に留出させた。 また、 反応中生成するアンモニアは、 留出液に溶解する分以 外の大部分をガスと して還流冷却器の塔頂から排出した。 反応液の温度は、 反応 当初は水が多く存在するため、 1 1 5 °C程度であるが、 反応が進行するとと もに 徐々に上昇して、 ほぼ 1 3 0 °Cで一定であった。 2時間反応後、 ジエチ レングリ コールジメチルェ一テルを減圧留去して 3 . 6 5 gのオイルを得た。 このオイル を 5 0 m l ナスフラスコに移し、 水 2 0 m l を加え、 1 0 0 °Cで 4 時間加熱還流 撹拌した。 室温まで冷却した後、 反応液の分析を行った。 分析結果を第 9表に示 す。 分析結果よりァンモニァの残存率は 4 . 3 %であった。 ひ ー ヒ ドロキシー 4 —メチルチオ酪酸ァ ミ ドの副成率及び α — ヒ ドロキシ— 4 —メ チルチオ酪酸の遊 離酸の収率を、 ダイマ一体を考慮して計算すると、 それぞれ 1 . 1 %、 9 2 . 7 %であった。 第 9 表
Figure imgf000017_0001
(注) 単位、 化合物の略号は表 1 と同様である
[実施例 7 ]
撹拌機、 温度計を備えた 5 0 m 1 フラスコに直管を取り付け、 直管の塔頂には 温度計、 還流冷却器を備えた分留頭を取り付けた。 還流冷却器の塔頂を水流ボン プに連結し、 反応系内が減圧状態になるようにした。 この 5 0 m 1 フラスコに、 α— ヒ ドロキシー 4 ーメチルチオ酪酸アンモニゥム塩 2 0. 2 5 ミ リモルを含む 水溶液 5. 0 O gと ジエチレングリ コールジメチルエーテル 2 5 m l を入れ、 約 1 1 0 °Cの油浴に付け加熱撹拌した。 この際、 水流ポンプで反応系内が 6 0 0〜 6 5 O mmH gになるように調整し、 原料中にあらかじめ存在する水及び反応中 生成する水を、 ジエチレングリ コールジメチルェ一テルとの共沸物と して、 反応 系外に留出させた。 また、 反応中生成するアンモニアは、 留出液に溶解する分以 外の大部分をガスと して水流ポンプに吸収させた。 反応液の温度は、 反応当初 9 0〜 9 3 °Cであるが、 反応が進行するとと もに徐々に上昇して、 ほぼ 1 0 0てで 一定であった。 4時間反応後、 ジエチレングリ コールジメ チルエーテルを減圧留 去して 4. 0 8 gのオイルを得た。 このオイルを 5 0 m 1 ナスフラスコに移し、 水 2 O m l を加え、 1 0 0 °Cで 4時間加熱還流撹拌した。 室温まで冷却した後、 反応液の分析を行った。 分析結果を第 1 0表に示す。 分析結果よりアンモニアの 残存率は 1. 1 %であった。 α — ヒ ドロキシー 4 —メチルチオ酪酸ア ミ ドの副成 率及び α— ヒ ドロキシー 4 —メチルチオ酪酸の遊離酸の収率を、 ダイマー体を考 慮して計算すると、 それぞれ 1. 9 %、 9 3. 4 %であった。 P97/00 28
第 1 0 表
Figure imgf000018_0001
(注) 単位、 化合物の略号は表 1 と同様である。 [実施例 8 ]
α — ヒ ドロキシ— 4 ーメチルチオ酪酸アンモニゥム塩 4 5. 9 5 ミ リ モルを含 む水溶液 9. 1 8 gを 5 0 m l ナスフラスコに仕込み、 ロータ リ一エバポ レ一夕 一を用い、 0. 8〜1 . 5 mmH g, 1 2 0〜 1 2 5ての条件下で 4時間加熱し 、 発生するアンモニア及び水を除外した。 残存した反応液の総量は 7. 2 9 gで あり、 これには α — ヒ ドロキシー 4 ーメ チルチオ酪酸アンモニゥム塩が 3. 0 6 ミ リモル、 α — ヒ ドロキシー 4 —メチルチオ酪酸ア ミ ド力く 0. 8 7 ミ リ モル含ま れており、 その他はポリ 一 α— ヒ ドロキシ _ 4 ーメ チルチオ酪酸類であつた。 こ こに得られた反応後残液に水 2 2 m 1 を加え、 大気圧下で加熱還流を 2 0時間行 つた。 室温まで冷却した後、 メチルイ ソプチルケ ト ン 2 5 m 1 で 3回抽出した。 有機層を集め濃縮したと ころ、 7. 0 8 gのオイルが得られた。 抽出後の水層も 同様濃縮したと ころ、 0. 8 l gのオイルが得られた。 分析結果を第 1 1 表に示 す。 分析锆果ょりァンモユアの残存率は 7. 0 %であり、 α — ヒ ドロキシー 4 一 メチルチオ酪酸ア ミ ドの副成率及び α — ヒ ドロキシー 4 ーメチルチオ酪酸の遊離 酸の収率を、 ダイマ一体を考慮して計算すると、 それぞれ 1 . 0 %、 8 1 . 9 % であった。 第 1 1 表
Figure imgf000019_0001
(注) 単位、 化合物の略号は表 1 と同様である。 [実施例 9 ]
α — ヒ ドロキシ— 4 ーメチルチオ酪酸アンモニゥム塩 4 6. 3 1 ミ リモルを含 む水溶液 9. 2 5 gを 5 0 m l ナスフラスコに仕込み、 口一タ リ一エバポレー夕 一を用い、 0. 8〜 し 5 mm H g, 1 3 5〜 1 4 0 °Cの条件下で 4時間加熱し 、 発生するア ンモニア及び水を除外した。 残存した反応液の総量は 7. 2 0 gで あり、 これには α—ヒ ドロキシー 4 ーメチルチオ酪酸アンモニゥ厶塩が 2. 5 4 ミ リモル、 α — ヒ ドロキシ— 4 ーメチルチオ酪酸ア ミ ドが 0 . 5 7 ミ リモル含ま れており、 その他はポリ ー α — ヒ ドロキシー 4 ーメチルチオ酪酸類であつた。 こ こに得られた反応後残液を内容積約 6 0 m l のォ一 ト ク レーブに移し、 水 2 0 m 1 を加え、 1 7 0 ~ 1 7 5 °Cの油浴に付け 4時間加熱した。 加熱中内圧は 3 k g f / c m2 を示した。 室温まで冷却した後、 反応後液を 5 0 m l ナスフラ スコに 移し、 水を減圧留去して 7. 4 5 gのオイルを得た。 分析結果を第 1 2表に示す 。 分析結果よりァンモニァの残存率は 6. 2 であり、 α — ヒ ドロキシ— 4 — メ チルチオ酪酸ァ ミ ドの副成率及び α — ヒ ドロキシー 4 ーメチルチオ酪酸の遊離酸 の収率を、 ダイマ一体を考慮して計算すると、 それぞれ 0. 4 %、 8 3. 2 %で あった。 第 1 2 表
Figure imgf000020_0001
(注) 単位、 化合物の略号は表 1 と同様である。 [実施例 1 0 ]
乳酸ア ンモニゥム塩 7 9. 5 8 ミ リ モルを含む水溶液 9. 0 4 gを 5 0 m l ナ スフラスコに仕込み、 ロータ リ ーエバポレー夕一を用い、 1 1 〜 1 4 mmH g, 1 1 8〜 1 2 0 °Cの条件下で 6時間加熱し、 発生するア ンモニア及び水を除外し た。 残存した反応液の総量は 6. 6 2 gであり、 これには乳酸アンモニゥム塩が 6. 3 1 ミ リモル、 乳酸ア ミ ド力く 1 . 0 4 ミ リモル含まれており、 その他はポリ 乳酸類であった。 ここに得られた反応後残液を内容積約 6 0 m l のォ一 卜 ク レ一 ブに移し、 水 3 0 m 1 を加え、 1 5 0〜 1 5 5 °Cの油浴に付け 3時間加熱した。 加熱中内圧は 3 k g f ノ c m2 を示した。 室温まで冷却した後、 反応後液を 5 0 m 1 ナスフラスコに移し、 約 8 0 %水溶液になるまで減圧濃縮して 9. 1 1 gの オイルを得た。 分析結果を第 1 3表に示す。 分析結果よりアンモニアの残存率は 8. 9 %であり、 乳酸の仕込みアンモニゥム塩に対する遊離酸の収率は 9 0. 1 %であった。 第 1 3 表
Figure imgf000021_0001
(注) 単位、 化合物の略号は表 5 と同様である。 [実施例 1 1 ]
マ ンデル酸ア ンモニゥム塩 4 5. 8 4 ミ リモルを含む水溶液 9. 0 6 gを 5 0 m 1 ナスフラスコに仕込み、 ロータ リ一エバポレー夕一を用い、 0. 5〜 し 0 mmH g, 1 1 8〜 1 2 0での条件下で 4時間加熱し、 発生するァンモニァ及び 水を除外した。 残存した反応液の総量は 6. 0 9 gであり、 これにはマンデル酸 ァンモニゥ厶塩が 1 . 3 8 ミ リモル、 マンデル酸ァ ミ ドが 0. 4 9 ミ リモル含ま れており、 その他はポリマンデル酸類であった。 こ こに得られた反応後残液を内 容積約 6 0 m l のオー ト ク レーブに移し、 水 2 0 m l を加え、 1 7 0〜 1 7 5 °C の油浴に付け 4時間加熱した。 加熱中内圧は 3 k g f Z c m2 を示した。 室温ま で冷却した後、 反応後液を 5 0 m l ナスフラスコに移し、 水を減圧留去して 6. 9 2 gの結晶を得た。 分析結果を第 1 4表に示す。 分析結果よりア ンモニアの残 存率は 3. 6 %であり、 マンデル酸の仕込みアンモニゥム塩に対する遊離酸の収 率は 9 2. 9 %であった。
第 1 4 表
Figure imgf000022_0001
(注) 単位、 化合物の略号は表 6 と同様である。 (発明の効果)
本発明方法は、 以下の種々の理由により、 工業的観点から好適でありかつ有利 である。
すなわち、
ィ) α — ヒ ドロキシ酸アンモニゥムから遊離の α — ヒ ドロキシ酸を製造するに際 して、 アンモニアをアンモニアガスと して除外するため、 アンモニゥム塩廃棄物 が生じない。
口) 触媒や中和のための添加物等の新たな物質を添加しなく ても良いため、 製造 コス ト上有利である。
ハ) 残存アンモニアおよび副成 α — ヒ ドロキシ酸ア ミ ドは、 加水分解反応後 α - ヒ ドロキシ酸アンモニゥム塩と して、 遊離の α — ヒ ドロキシ酸と分離でき、 回収 リサイ クルできる。 産業上の利用の可能性 :
以上説明したように、 本発明は、 α — ヒ ドロキシ酸のアンモニゥム塩から遊離 酸を、 工業的に有利に効率よ く製造する方法であり、 その産業的意義は大きい。

Claims

請 求 の 範 囲
1. 式 〔 I 〕 で示される α ヒ ドロキシ酸のアンモニゥム塩を加熱し、 生成する ァンモニァと水を除去したのち、 水を添加し加熱することを特徴とする α ヒ ド ロキシ酸の製造方法。
R - C H - C O O" ΝΗ4 + 〔 I〕
0 Η
(式中、 Rは水素原子、 置換基を有してもよいアルキル基、 置換基を有してもよ いアルケニル基、 置換基を有してもよいシクロアルキル基、 置換基を有してもよ いアルコキシ基、 置換基を有してもよいァ リ ール基、 置換基を有してもよいァ リ —ルォキン基、 置換基を有してもよい飽和複素環基又は置換基を有していてもよ い不飽和複素環基を表す。 )
2. 式 〔 I 〕 で示される α ヒ ドロキシ酸のアンモニゥム塩を減圧下加熱し、 生 成するァンモニァと水を除去したのち、 水を添加し加熱することを特徵とする α ヒ ドロキシ酸の製造方法。
R— C H— C O O— ΝΗ4 + 〔 I〕
I
0 Η
(Rは、 前記と同じ意味を表す。 )
3. 式 〔 I 〕 で示される α ヒ ドロキシ酸のアンモニゥ厶塩を有機溶媒中で加熱 し、 生成するアンモニアと水を除去したのち、 水を添加し加熱することを特徴と する α ヒ ドロキシ酸の製造方法。
R— C H— C〇〇— ΝΗ4 + 〔 I〕
Ο Η
(式中、 Rは、 前記と同じ意味を表す。 )
4. 式 〔 I 〕 で示される α— ヒ ドロキシ酸のアンモニゥム塩を加熱し、 生成する ア ンモニアと水を除去したのち、 水を添加し加熱することを特徴とする α _ ヒ ド 口キシ酸の製造方法。
R - C H - C O O" ΝΗ, + 〔 I〕
I
0 Η
(式中、 Rは、 水素原子、 (ハロゲン原子もし く はじ 1〜C 6のアルキルチオ基 で置換されていてもよい) C 1〜C 6アルキル基、 C 2〜C 6アルケニル基、 フ ェニル基、 2— ピリ ジル基、 3— ピリ ジル基、 4 一 ピリ ジル基、 2 —チェニル基 、 3 —チェニル基、 2 — ピロ リ ル基、 3 — ピロ リ ル基、 2 —フ リ ル基及び 3— フ リ ル基からなる群から選ばれる一種の基を表す。 )
5. 式 〔 I 〕 で示される α— ヒ ドロキシ酸のァンモニゥム塩を加熱し、 生成する ァンモニァと水を除去したのち、 水を添加し加熱することを特徴とする a _ ヒ ド 口キシ酸の製造方法。
R - C H - C OO" NH, + 〔 I〕
I
0 H
(式中、 Rは、 水素原子、 C 1 〜C 6アルキル基、 じ 1〜じ 6ァルキルチォじ 1 〜C 6アルキル基又はフヱニル基を表す。 )
PCT/JP1997/000528 1996-02-26 1997-02-25 PROCESS FOR PREPARING FREE α-HYDROXY ACIDS FROM AMMONIUM SALTS THEREOF WO1997030962A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP97904631A EP0884300B1 (en) 1996-02-26 1997-02-25 Process for preparing free alpha-hydroxy acids from ammonium salts thereof
US09/125,710 US6066763A (en) 1996-02-26 1997-02-25 Process for preparing free α-hydroxy acids from ammonium salts thereof
DE69709705T DE69709705T2 (de) 1996-02-26 1997-02-25 Verfahren zur herstellung von freien alpha-hydroxysäuren aus ammoniumsalzen
JP53000197A JP3923528B2 (ja) 1996-02-26 1997-02-25 α―ヒドロキシ酸のアンモニウム塩から遊離酸の製造方法
AU17351/97A AU1735197A (en) 1996-02-26 1997-02-25 Process for preparing free alpha-hydroxy acids from ammonium salts thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP6367296 1996-02-26
JP8/63672 1996-02-26
JP7323096 1996-03-04
JP8/73230 1996-03-04
JP32341196 1996-11-19
JP8/323411 1996-11-19

Publications (1)

Publication Number Publication Date
WO1997030962A1 true WO1997030962A1 (en) 1997-08-28

Family

ID=27298246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000528 WO1997030962A1 (en) 1996-02-26 1997-02-25 PROCESS FOR PREPARING FREE α-HYDROXY ACIDS FROM AMMONIUM SALTS THEREOF

Country Status (9)

Country Link
US (1) US6066763A (ja)
EP (1) EP0884300B1 (ja)
JP (1) JP3923528B2 (ja)
CN (1) CN1085195C (ja)
AU (1) AU1735197A (ja)
DE (1) DE69709705T2 (ja)
ES (1) ES2166972T3 (ja)
TW (1) TW425387B (ja)
WO (1) WO1997030962A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132836A (ja) * 2003-10-09 2005-05-26 National Institute Of Advanced Industrial & Technology カルボン酸系化合物の製造方法
JP2007254354A (ja) * 2006-03-23 2007-10-04 National Institute Of Advanced Industrial & Technology コハク酸系組成物、コハク酸ジアルキル等及びその製造方法。
JP2007297340A (ja) * 2006-05-01 2007-11-15 Asahi Kasei Chemicals Corp 高純度グリコール酸水溶液の製造法
WO2009013909A1 (ja) * 2007-07-25 2009-01-29 Nippon Soda Co., Ltd. α-ヒドロキシ酸アンモニウム塩からのα-ヒドロキシ酸の製造方法
US8940934B2 (en) 2008-06-20 2015-01-27 Asahi Kasei Chemicals Corporation Production process of α-hydroxy acids

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791668B1 (fr) * 1999-04-02 2001-05-04 Rhone Poulenc Animal Nutrition Procede de preparation d' beta-hydroxy acides
US6784317B2 (en) * 2001-05-02 2004-08-31 Mitsubishi Gas Chemical Company, Inc Production of quaternary ammonium salt of hydroxycarboxylic acid and quarternary ammonium salt of inorganic acid
JP2004532855A (ja) * 2001-05-07 2004-10-28 カーギル インコーポレイテッド カルボン酸およびその誘導体の調製方法
US20030017181A1 (en) * 2001-05-31 2003-01-23 Rood Gloria A. Dermatological compositions and methods
US6773873B2 (en) * 2002-03-25 2004-08-10 Advanced Technology Materials, Inc. pH buffered compositions useful for cleaning residue from semiconductor substrates
JP4696496B2 (ja) * 2004-08-18 2011-06-08 住友化学株式会社 2−ヒドロキシ−4−メチルチオ酪酸の製造方法
WO2006069129A1 (en) * 2004-12-22 2006-06-29 E.I. Dupont De Nemours And Company Method for the production of glycolic acid from ammonium glycolate by direct deammoniation
DE102008040193A1 (de) * 2008-07-04 2010-01-07 Evonik Röhm Gmbh Verfahren zur Herstellung freier Carbonsäuren
DE102008040415A1 (de) 2008-07-15 2010-01-21 Evonik Röhm Gmbh Thermisches Salzspalten von Ammoniumcarboxylaten
DE102009001008A1 (de) 2009-02-19 2010-08-26 Evonik Degussa Gmbh Reaktivextraktion von freien organischen Säuren aus deren Ammoniumsalzen
DE102009009580A1 (de) 2009-02-19 2010-08-26 Evonik Degussa Gmbh Verfahren zur Herstellung freier Säuren aus ihren Salzen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115317A (en) * 1978-02-25 1979-09-07 Nitto Chem Ind Co Ltd Preparation of acrylic acid or methacrylic acid
JPS63264546A (ja) * 1987-04-20 1988-11-01 Asahi Chem Ind Co Ltd 工業廃酸を利用したカルボン酸の製造法
JPH07330696A (ja) * 1994-06-01 1995-12-19 Mitsubishi Chem Corp 酸性アミノ酸の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB967352A (en) * 1962-05-17 1964-08-19 Distillers Co Yeast Ltd Production of unsaturated aliphatic acids
US4212994A (en) * 1978-07-03 1980-07-15 The Dow Chemical Company Process for the preparation of carboxylic acid
EP0040254B1 (en) * 1980-05-16 1983-07-13 The Dow Chemical Company Process for preparing carboxylic acids by reaction of alkali metal carboxylates and liquid cation exchange agents
JP3428686B2 (ja) * 1993-07-23 2003-07-22 関東電化工業株式会社 1,1−ジクロロ−1−フルオロエタンの製造法
DE4341770A1 (de) * 1993-12-08 1995-06-14 Basf Ag Verfahren zur Herstellung von Milchsäureestern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115317A (en) * 1978-02-25 1979-09-07 Nitto Chem Ind Co Ltd Preparation of acrylic acid or methacrylic acid
JPS63264546A (ja) * 1987-04-20 1988-11-01 Asahi Chem Ind Co Ltd 工業廃酸を利用したカルボン酸の製造法
JPH07330696A (ja) * 1994-06-01 1995-12-19 Mitsubishi Chem Corp 酸性アミノ酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0884300A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132836A (ja) * 2003-10-09 2005-05-26 National Institute Of Advanced Industrial & Technology カルボン酸系化合物の製造方法
JP2007254354A (ja) * 2006-03-23 2007-10-04 National Institute Of Advanced Industrial & Technology コハク酸系組成物、コハク酸ジアルキル等及びその製造方法。
JP2007297340A (ja) * 2006-05-01 2007-11-15 Asahi Kasei Chemicals Corp 高純度グリコール酸水溶液の製造法
WO2009013909A1 (ja) * 2007-07-25 2009-01-29 Nippon Soda Co., Ltd. α-ヒドロキシ酸アンモニウム塩からのα-ヒドロキシ酸の製造方法
JP5143838B2 (ja) * 2007-07-25 2013-02-13 日本曹達株式会社 α−ヒドロキシ酸アンモニウム塩からのα−ヒドロキシ酸の製造方法
US8940934B2 (en) 2008-06-20 2015-01-27 Asahi Kasei Chemicals Corporation Production process of α-hydroxy acids

Also Published As

Publication number Publication date
ES2166972T3 (es) 2002-05-01
US6066763A (en) 2000-05-23
JP3923528B2 (ja) 2007-06-06
DE69709705T2 (de) 2002-06-13
EP0884300A4 (en) 1999-09-01
EP0884300A1 (en) 1998-12-16
DE69709705D1 (de) 2002-02-21
AU1735197A (en) 1997-09-10
CN1211971A (zh) 1999-03-24
TW425387B (en) 2001-03-11
EP0884300B1 (en) 2001-11-21
CN1085195C (zh) 2002-05-22

Similar Documents

Publication Publication Date Title
WO1997030962A1 (en) PROCESS FOR PREPARING FREE α-HYDROXY ACIDS FROM AMMONIUM SALTS THEREOF
JPWO2007018221A1 (ja) 2−ヒドロキシエステル化合物の製造方法
TWI414512B (zh) α-羥基羧酸酯之製備方法
AU7762291A (en) Improved process for the rapid production of cyclic esters
TW200829548A (en) Process for preparing alpha-hydroxycarboxylic acids
JP5390770B2 (ja) 無水酢酸と酢酸エステルの同時製造
WO1999000350A1 (fr) Procede de production d'acides libres a partir de carboxylates d'ammonium
JPH0525086A (ja) アクリル酸エステルのミカエル付加物の分解方法
JP2003507444A (ja) 脂肪酸エステルの脂肪酸への非腐食性の接触加水分解
US5091544A (en) Process for rapid conversion of oligomers to cyclic esters
JPH07228590A (ja) 蔗糖脂肪酸エステルの製造方法
JPH1129538A (ja) 飽和脂肪族カルボン酸アミドの製造方法
JP2943523B2 (ja) アクリル酸エステルのミカエル付加物から有用化合物を製造する方法
RU2165407C2 (ru) СПОСОБ ПОЛУЧЕНИЯ СВОБОДНЫХ α-ГИДРОКСИКИСЛОТ ИЗ ИХ АММОНИЕВЫХ СОЛЕЙ (ВАРИАНТЫ)
JPS585171B2 (ja) フホウワアルコ−ルノセイゾウホウ
CN110256387B (zh) 一种医药中间体的制备方法
JPH04230241A (ja) α−ヒドロキシエステルの合成法
JPH1087795A (ja) ポリエステルの製造方法
JP3818785B2 (ja) α,β−ジカルボニル化化合物のための製造方法
WO1987004431A1 (en) Process for preparing 2-unsubstituted imidazoles
JP3175334B2 (ja) N−(α−アルコキシエチル)−カルボン酸アミドの製造法
JP2946944B2 (ja) アルキルアミノフェノール類の製造方法
JPH02235850A (ja) ヒドロキシ―N―アシル―α―アミノ酸誘導体、そのオリゴマ―及びラクトンの製造方法
JP2004010528A (ja) α−オキソカルボン酸の製造法
JPH10130219A (ja) ケタジン及び水加ヒドラジンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97192573.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997904631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09125710

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997904631

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1997904631

Country of ref document: EP