WO1997015622A1 - Composition de resine olefinique cristalline - Google Patents

Composition de resine olefinique cristalline Download PDF

Info

Publication number
WO1997015622A1
WO1997015622A1 PCT/JP1996/003086 JP9603086W WO9715622A1 WO 1997015622 A1 WO1997015622 A1 WO 1997015622A1 JP 9603086 W JP9603086 W JP 9603086W WO 9715622 A1 WO9715622 A1 WO 9715622A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymerization
resin composition
olefin
resin
Prior art date
Application number
PCT/JP1996/003086
Other languages
English (en)
French (fr)
Inventor
Yuuta Kumano
Osamu Nisizawa
Kenji Takasaki
Masato Onoe
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP96935415A priority Critical patent/EP0857754B1/en
Priority to DE69629047T priority patent/DE69629047T2/de
Publication of WO1997015622A1 publication Critical patent/WO1997015622A1/ja
Priority to US09/051,802 priority patent/US6100347A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • C08L23/0823Copolymers of ethene with aliphatic cyclic olefins

Definitions

  • the present invention relates to an olefin resin composition excellent in mechanical properties, scratch resistance, heat resistance, moldability, and the like. More specifically, the present invention relates to a composition of a crystalline olefin resin and a polymer obtained by vinylene polymerization of a cyclic olefin, having a high elastic modulus, heat resistance, and high surface hardness.
  • crystalline olefin resin compositions such as polyethylene and polypropylene have been widely used because of their good cost-performance balance.
  • high performance is being achieved by blending fillers and elastomers, or by polymer alloying with engineering plastics.
  • improvement of scratch resistance which is a disadvantage of the olefin resin, is also required.
  • the composition is colored due to polar groups contained in engineering plastics and compatibilizers. This may hinder the good hue characteristic of the olefin resin. Further, as long as the orefin-based resin is a matrix, the defect of scratch resistance still remains.
  • the temperature is about 50 to 100 ° C, and when the temperature is exceeded, the rigidity is rapidly reduced, and the heat resistance of the olefin resin is greatly impaired (see Comparative Examples 4 to 6).
  • blending a copolymer of a cyclic orefin and a one-year-old olefin with an orefin-based resin improves mechanical properties such as elastic modulus (Japanese Patent Application Laid-Open No. No. 8 052, No. 3 ⁇ 2 10 0 3 4 No. 8, No. 4 3 5 3 5
  • Japanese Patent Application Laid-Open No. 4-2729737 reports that crystalline polymers and low molecular weight An improvement in heat resistance, transparency, and mechanical properties of a composite polymer sheet comprising a hydrogenated product of a ring-opened polymer of a cyclic olefin having a transition point of 100 or more is disclosed.
  • the hydrogenated product of a low-molecular-weight ring-opened polymer does not have a very high glass transition point, and if the glass transition point is lower than the melting point of the crystalline olefin resin, the original crystallinity can be reduced. It is not preferable because the high temperature heat resistance of the olefin resin is impaired.
  • the hydrogenated product of the ring-opened polymer of cyclic olefin disclosed in the embodiment of this publication has a molecular weight of 800,000 and a glass transition point of 135 ° C. This glass transition point is lower than the melting point of the crystalline olefin-based resin, and cannot exhibit the high-temperature elastic modulus, which is one of the effects of the present invention. If the molecular weight is to be increased in order to increase the glass transition point, the molecular weight will be out of the range of the molecular weight in which the effect of the present invention is exhibited, and the effect of the present invention will not be obtained.
  • 5-770655 discloses improvements in mechanical properties, heat resistance, transparency and thermoformability of a composition obtained by mixing a thermoplastic resin with a norbornene-based polymer.
  • the norbornene-based polymer disclosed herein is a high-molecular-weight polymer, and has a different molecular weight range from the cyclic olefin-based polymer in the present invention.
  • the effects of the present invention are also different.
  • the improvement rate of the elastic modulus was not obtained as high as that of the present invention in the case of the high molecular weight norbornene-based polymer (see Examples 1 to 4 and Comparative Example 2). Disclosure
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, have found that the use of a specific resin composition can solve the above problems, thereby completing the present invention.
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, have found that the use of a specific resin composition can solve the above problems, thereby completing the present invention.
  • the present invention provides a crystalline olefin resin composition
  • a crystalline olefin resin composition comprising the following component (A): 99 to 40% by weight and component (B): 1 to 60% by weight.
  • (B) A polymer obtained by vinylene polymerization of a cyclic olefin having a weight average molecular weight of 1,000 to less than 10,000 and a glass transition point of 140 to 400 ° C.
  • a conventional high molecular weight cyclic olefin polymer blend alloy can be used. Can not get, high The fact that it exhibits a high room temperature elasticity, scratch resistance and heat resistance was very surprising.
  • the crystalline olefin polymer specified in the present invention When the cyclic olefin polymer specified in the present invention is added to the crystalline olefin resin, the crystalline olefin polymer has a specific structure and a specific molecular weight. It is molecularly compatible with the amorphous part of For this reason, the amorphous portion, which is originally soft rubber and has poor heat resistance, is hardened and has improved heat resistance, and has high room temperature elastic modulus, scratch resistance, and heat resistance that cannot be obtained from conventional knowledge. It is considered that the effects of the present invention such as the above can be obtained.
  • the effect obtained by the present invention is considered to be different from that of the alloy with the above-mentioned filler blend and engineering plastic, and the expression mechanism is different from that of the alloy and the like. Even so, it is considered that higher performance can be achieved without impairing the effects of the conventional technology.
  • FIG. 1 is a diagram showing a comparison of the temperature dependence of the storage elastic modulus ( ⁇ ′: Storage Modulus) and the loss elastic modulus ( ⁇ ′ ′: Loss Modulus) of Example 3 and Comparative Example 1.
  • FIG. 2 is a diagram showing a comparison of the temperature dependence of the storage elastic modulus and the loss elastic modulus of Comparative Example 1 and Comparative Example 2.
  • the crystalline olefin resin composition of the present invention is basically formed from the following components.
  • Examples of the crystalline olefin resin used in the present invention include ⁇ , represented by ethylene, propylene, 1-butene, 3-methyl-11-butene, 4-methyl-11-pentene, 1-hexene, and 1-pentene.
  • represented by ethylene, propylene, 1-butene, 3-methyl-11-butene, 4-methyl-11-pentene, 1-hexene, and 1-pentene.
  • represented by ethylene, propylene, 1-butene, 3-methyl-11-butene, 4-methyl-11-pentene, 1-hexene, and 1-pentene.
  • represented by ethylene, propylene, 1-butene, 3-methyl-11-butene, 4-methyl-11-pentene, 1-hexene, and 1-pentene.
  • the crystallinity of these polymers calculated from the density method is 20 to 100%, preferably 30 to 90%, particularly preferably 40 to 85%.
  • the JI K-K72 03 in compliance with the measured flexural modulus from 1.000 to 30.000 kg / cm 2, preferably 2, 000 to 20, 0001 ⁇ Bruno 0111 2, particularly preferably 3, 000 to 1 7, 000 kg / cm 2 are preferred.
  • the melt flow rate (MFR) of the polymer is not particularly limited, but the value measured at 230 ° C and 2.16 kg according to ASTM-D 1238 is usually 0.001 to 200 gZ10 minutes, preferably 0.01 to 200 gZ10 minutes. Optimally within the range of 100 g / l 0 minutes.
  • Examples of the crystalline olefin-based resin include so-called low-pressure polyethylene, medium-pressure polyethylene, high-pressure polyethylene, linear low-density polyethylene, and other ethylenic resins, stereoregular polypropylene, and stereoregular poly1-1-butene. And steric regular poly-1-methyl-1-butene, stereoregular poly-4-methyl-1-pentene, and the like.
  • a stereoregular propylene-based resin hereinafter, referred to as a propylene-based resin
  • a propylene-based resin is preferable.
  • propylene-based resin a homopolymer of propylene or a random or block copolymer of propylene having a propylene component of 70 mol% or more, preferably 80 mol% or more, and the above-mentioned olefins is preferable.
  • JI KK 7 a homopolymer of propylene or a random or block copolymer of propylene having a propylene component of 70 mol% or more, preferably 80 mol% or more, and the above-mentioned olefins is preferable.
  • the melt flow rate (MFR) of the polymer is not particularly limited, but may be 2 in accordance with ASTM-D1238.
  • the value measured at 2.16 kg at 30 ° C. is usually in the range of 0.001 to 100 gZl 0 minutes, preferably 0.01 to 70 to 10 minutes.
  • propylene homopolymer is particularly preferred.
  • propylene resins can be used alone or as a mixture of two or more of the above resins, and can usually be appropriately selected from commercially available resins.
  • the cyclic orthoolefin polymer used in the present invention includes monocyclic cycloolefins such as cyclobutenes, cyclopentenes and cyclohexenes and polycyclic cycloolefins such as norbornenes and tricyclo-3-decenes.
  • cyclic olefins used as monomers include cyclopentenes such as cyclobutene, cyclopentene, and 4-methylcyclopentene; cyclohexenes such as cyclohexene, 3-methylcyclohexene, and 3-vinylcyclohexene.
  • Norbornenes such as monocyclic cycloolefins, norbornene, 1-methylnorbornene, 5-ethylidene-12-norbornene, methylenenorbornene, 5-vinyl-12-norbornene, 5-methylene-12-norbornene, etc.
  • the cyclic olefin polymer can be used to obtain ethylenically unsaturated cyclic olefins.
  • a polymer is obtained by vinylene polymerization in which addition polymerization proceeds through a sum bond.
  • the polymerization method of the vinylene polymer of cyclic olefin is not particularly limited, and may be any of conventional polymerization forms, for example, a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method.
  • the method of (1) may be used, but a slurry polymerization method, a solution polymerization method and a bulk polymerization method are preferred. Also, a batch type or a continuous type may be used.
  • the organic transition metal compound and the organoaluminum oxy compound which are components of the polymerization catalyst for the cyclic olefin polymer, are added to the polymerization system independently of the presence or absence of monomers, respectively, in the polymerization system.
  • the catalyst system may be formed by bringing both into contact with each other at the same time, or each catalyst component may be brought into contact in advance to form a catalyst system before being added to the polymerization system, and then introduced into the polymerization system.
  • the order in which the catalyst components are brought into contact with each other to form the catalyst system is not particularly limited, and can be in any order.
  • the formation of the catalyst system can be carried out, for example, by bringing the components into contact with each other in an inert solvent under an inert gas atmosphere.
  • Preferred examples of the catalyst for producing a cyclic olefin polymer of the present invention include the following.
  • an erosion medium system containing a catalyst component represented by any of the following two general formulas and alumoxane is preferably used.
  • Me is a Group 4 transition metal, such as Zr, Hf
  • each (C 5 R m ) is cyclopentagenenyl or substituted cyclopentagenenyl, and each R is the same or different.
  • Hydrogen alkyl having 1 to 20 carbon atoms, alkenyl, aryl, alkylaryl or arylalkyl.
  • X is two (C 5 R réelle) rings, or (C 5 R m ) an alkylene having 1 to 4 carbon atoms which bridges the ring and Y.
  • a is an integer of 0 or 1 to 4
  • Each Q is the same or different and has 1 to 20 carbon atoms, alkyl, alkenyl, alkylaryl, or arylalkyl.
  • Q is an alkylidene group having 1 to 20 carbon atoms.
  • Y is an oxygen, nitrogen, phosphorus or sulfur atom.
  • m shows the number of 0-4.
  • the polymerization temperature is generally one 78 to 150 C, preferably - 30 to 80 which is a component of the c
  • the catalyst system is in the range of ° C the organic transition metal compound and the amount of the organoaluminum O carboxymethyl compound, purposefully It is arbitrary within the following range. For example, in the case of solution polymerization system, the amount is 10 one 7-10 2 Mi Rimoru Z liters of the organic transition metal compound, the range of especially the 10_ 4 -10 Mi Rimoru / liter is preferred.
  • the amount of the aluminumoxy compound to be used is preferably such that the molar ratio of the aluminum transition metal is usually 10 to 100.000, particularly 100 to 10.000.
  • the amount of the cyclic olefin used as the monomer is preferably in such a range that the molar ratio of the above-mentioned transition metal compound to the raw material monomer is usually 1-1,000,000, preferably 100-100,000.
  • Methods for adjusting the molecular weight of the polymer include selection of the type and amount of each catalyst component, polymerization temperature, polymerization time, and the like, and a method of polymerization in the presence of hydrogen.
  • polymerization solvents conventionally used in this type of polymerization method for example, halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, pentane, hexane, heptane, octane, etc.
  • halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, pentane, hexane, heptane, octane, etc.
  • Aliphatic hydrocarbons, alicyclic hydrocarbons such as cyclopentane and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, petroleum fractions such as gasoline, kerosene, gas oil, and the like Can be used.
  • aromatic hydrocarbons are particularly preferred.
  • the molecular weight of the cyclic olefin polymer is such that the weight average molecular weight (Mw) (in terms of polypropylene'nonone) measured by gel permeation chromatography (GPC) is less than 1.000-10,000, preferably 1.500-7. 000, particularly preferably in the range of 2,000 to 5.000.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the Mw is less than 1,000, the heat resistance of the crystalline olefin resin is lowered, which is not preferable.
  • the Mw is 10,000 or more, the high elastic modulus and scratch resistance, which are the effects of the present invention, are not exerted. Absent.
  • the glass transition temperature of the cyclic offset polymer measured by a differential scanning calorimeter is 140 to 400. C, preferably 160-350.
  • cyclic olefin polymers a polycyclic cyclic olefin polymer containing a polycyclic cyclic olefin as a main component as a monomer is preferable because the effects of the present invention can be suitably exhibited.
  • R "to R 12 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a substituent containing a halogen atom.
  • R 9 and R 11 or R 12 are Or R 1 D and R 11 or R 12 may be linked to each other to form a ring, m is 0 or an integer of 1 or more, and n is an integer of 1 or more.
  • R l to R 12 and m may be different in each unit.
  • the polymorphic olefin polymer may be a single polymer of a single polycyclic olefin, a co-polymer of several polymorphic olefins, or a polycyclic polymer. Copolymers of 3 ⁇ 4-shaped olefins and ⁇ -shaped olefins are exemplified.
  • norbornenes are used as monomers, those using norbornenes is, it is easy to control molecular weight during the polymerization, the norbornene-based polymer high polymerization activity resulting preferred c using the norbornenes Examples thereof include a homopolymer of a single mild norbornene, a copolymer of a plurality of types of norbornenes, and a copolymer of a norbornene and another cyclic olefin.
  • norbornene-based polymers a homopolymer of a single type of norbornene or a copolymer of a norbornene and another cyclic olefin is preferable, and a homopolymer of a single type of norbornene is particularly preferable because of its high polymerization yield.
  • These cyclic olefin polymers can be used alone or as a mixture of a plurality of the above polymers.
  • copolymerization with an aromatic vinyl compound such as ⁇ -olefin such as ethylene and propylene, styrene, a-methyl styrene and the like may be performed within a range not significantly impairing the effects of the present invention. No problem.
  • the orefin-based resin composition of the present invention contains the following additional components in addition to the above components (A) and (B) as long as the effects of the present invention are not significantly impaired. Can be done.
  • the additional component may include an elastomer.
  • Elastomers are advantageous because their rigidity and impact resistance can be adjusted.
  • any of an olefin type elastomer and a styrene type elastomer can be used.
  • Olefin-based elastomers include copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene and 1-hexene, copolymers of these with non-conjugated gens, and 1-hexenes and the like.
  • ethylene elastomers and propylene elastomers are particularly preferred in view of quality and stability.
  • ethylene / propylene copolymer rubber EPM
  • ethylene / 1-butene copolymer rubber ethylene / 1-butene copolymer rubber
  • ethylene 'propylene / 1-butene copolymer rubber ethylene ⁇ propylene' non-conjugated gen copolymer rubber (EPDM)
  • EPDM ethylene ⁇ propylene' non-conjugated gen copolymer rubber
  • Ethylene .1-butene non-conjugated diene copolymer rubber ethylene 'propylene' 1-butene non-conjugated diene copolymer rubber Etc.
  • non-conjugated diene examples include dicyclopentadiene, 1.4-hexadiene, cyclooctadiene, dicyclooctadiene, methylenenorbornene, 5-ethylidene-12-norbornene, 5-vinyl-2-norbornene, —Methylene-1,2-norbornene, 5-methyl-1,4-hexadiene, 7-methyl-1] .6-butadiene.
  • Styrene-based elastomers include elastomer-like random or block copolymers of styrene-based compounds such as styrene and monomethylstyrene with conjugated gens such as 1,3-butadiene and isoprene, and hydrogenation of these copolymers. Things.
  • styrene-based elastomers a copolymer of a styrene-based compound and a conjugated gen is preferable, and the block copolymer is most preferably represented by the following general formula (2).
  • is a polymer block composed of a styrene compound
  • B is a conjugated diene polymer block
  • n is an integer of 1 to 20
  • the ratio of the A block to the whole molecule is 1 to 50% by weight. Is.
  • the number average molecular weight of these copolymers is from 10,000 to 1,000,000, preferably from 50.000 to 250,000.
  • these styrene-based elastomers include styrene.butadiene random copolymer, styrene 'isoprene random copolymer, styrene.butadiene.styrene triblock copolymer, styrene'isoprene.styrene triblock copolymer, Styrene-butadiene radial block copolymer with polystyrene block at the end, styrene-isoprene radial block copolymer with polystyrene block at the end, styrene'butadiene multi-block copolymer, styrene ⁇ isoprene multi-block Styrene / conjugated gen block copolymers such as copolymers and those obtained by hydrogenating them are exemplified.
  • styrene-based elastomers is a hydrogenated styrene.conjugated genblock copolymer.
  • an olefin-based elastomer is preferably used because the surface of the molded article is hardly roughened.
  • filler is convenient because they can adjust rigidity and dimensional stability.
  • any of inorganic or organic fillers can be used, and the shape thereof may be plate-like, granular, spherical, fibrous, or irregular.
  • natural silica such as quartz, synthetic silica produced by a wet method or a dry method
  • natural silicate such as kaolin, myriki, talc, asbestos: calcium silicate
  • synthetic silicate such as aluminum silicate
  • hydrogenation Metal hydroxides such as magnesium and aluminum hydroxide: metal oxide compounds such as alumina and titania: metal powders such as calcium carbonate, aluminum, and bronze
  • wood powders carbon black
  • Fibrous substances such as alumina fiber
  • polymer liquid crystal substances potassium titanate whiskers, magnesium sulfate whiskers, aluminum borate whiskers, calcium carbonate whiskers, magnesium borate whiskers, zinc oxide whiskers Rikiichi, silicon carbide whiskers, silicon nitride whiskers, sapphire whiskers, beriri Such as whisker first class of Wisuka One class, and the like.
  • My strength preferred are My strength, talc, calcium carbonate, potassium titanate whiskers, magnesium sulfate whiskers, aluminum borate whiskers, calcium carbonate whiskers, and glass male fibers. These are My power, talc, potassium titanate whiskers and magnesium sulfate whiskers.
  • fillers may be surface-treated with a surfactant, a coupling agent or the like.
  • One type of filler may be used alone or in combination.
  • Various fillers can be appropriately selected from commercially available ones.
  • additives examples include plasticizers such as paraffin oil and petroleum resin or fluidity improvers; olefin-based liquid rubber, conjugated-gen-based liquids. Agents for rubber and the like; coloring agents; antioxidants; neutralizing agents; light stabilizers; ultraviolet inhibitors; antistatic agents; lubricants; nucleating agents: dispersing aids; Modifiers; crosslinking agents; flame retardants and the like.
  • the mixing ratio of each of the above components constituting the resin composition of the present invention is usually the component (A) based on the total of the crystalline olefin resin of the component (A) and the cyclic olefin polymer of the component (B).
  • the crystalline olefin resin of the component (B) is in the range of 99 to 40% by weight, preferably 97 to 50% by weight, particularly preferably 95 to 60% by weight. Is in the range of 1 to 60% by weight, preferably 3 to 50% by weight, particularly preferably 5 to 40% by weight. If the content of the component (B) is less than 1% by weight, the effect of the present invention will not be sufficiently exhibited, and if it is more than 60% by weight, the moldability of the composition itself will decrease, which is not preferable.
  • the resin composition of the present invention is produced by mixing each of the above components.
  • the method of mixing these components is not particularly limited, and a mixing method in a molten state by heat, a method in an arbitrary organic solvent, Any method such as a mixing method in a dissolved state and a mixing method in a polymerization state may be used, and any one of the above methods may be used in combination.
  • a conventionally known kneading machine such as a Brabender plaster, a single-screw or twin-screw extruder, a high-speed screw-type kneader, a Banbury mixer, a kneader-plender, and a roll is used. Anything can be used.
  • the above components are dissolved in an organic solvent at the same time, or a solution in which each component is separately dissolved in an organic solvent is mixed, and then the organic component is mixed. There are methods such as removing the solvent.
  • the organic solvent include halogenated hydrocarbons such as methylene chloride and 1,2-dichloroethane, aliphatic hydrocarbons such as pentane, hexane, heptane and octane, and alicyclic hydrocarbons such as cyclopentane and cyclohexane.
  • Aromade hydrocarbons such as benzene, toluene, and xylene
  • petroleum fractions such as gasoline, kerosene, and gas oil, and mixed solvents thereof
  • aromatic hydrocarbons are particularly preferred. Examples include aromatic hydrocarbons such as quinylene and toluene, aliphatic hydrocarbons such as cyclohexane and decalin, halogenated hydrocarbons such as chloroform and methylene chloride, and the like.
  • Examples of the mixing method in the polymerization state include a method of mixing a polymerization solution obtained by solution polymerization of each component, and a two-stage polymerization method of polymerizing one component and then polymerizing and mixing the other component. it can.
  • Examples of a combination of any of the above methods include a method of mixing in an organic solvent in a dissolved state, kneading in a molten state after removing the solvent, and a method of crystallizing the component (A) in a molten state.
  • a method of polymerizing the crystalline olefin resin of the component (A) in an organic solvent in which a polymer component is dissolved is exemplified.
  • the molding can be performed by a usual method. That is, any molding method such as injection molding, injection compression molding, gas injection, compression molding, and extrusion molding (sheet molding, film molding, blow molding, pipe molding) may be used.
  • any molding method such as injection molding, injection compression molding, gas injection, compression molding, and extrusion molding (sheet molding, film molding, blow molding, pipe molding) may be used.
  • molded products have a good balance of mechanical properties and are excellent in scratch resistance, so they can be used for various industrial parts, such as automotive exterior parts such as automobile bumpers, side moldings, wheel caps, and spoilers, and instruments. Automotive interior parts such as panels, levers, knobs, and linings, pots, vacuum cleaners, washing machines, refrigerators, lighting equipment, appliances such as audio equipment, miscellaneous goods such as empty boxes and storage cases, etc. Or it can be used as a packaging film.
  • automotive exterior parts such as automobile bumpers, side moldings, wheel caps, and spoilers, and instruments.
  • Automotive interior parts such as panels, levers, knobs, and linings, pots, vacuum cleaners, washing machines, refrigerators, lighting equipment, appliances such as audio equipment, miscellaneous goods such as empty boxes and storage cases, etc. Or it can be used as a packaging film.
  • the molding conditions and test method for obtaining a test sample from the resin composition manufactured in each example are as follows.
  • the “parts” in the examples are parts by weight.
  • the polymerization operation was carried out under exactly the same conditions as in Polymerization Example 1, except that the amount of norbornene charged was 50 g, and the toluene solution of methyl isobutylalumoxane (concentration: 113 mgZml) was 38.4 ml in place of polymethylalumoxane. To obtain a white solid. The yield was 39.1 g. As a result of measurement of the molecular weight by GPC, Mw was 45,000 and Mn was 2.13. In the DSC measurement, the decomposition of the polymer started before the glass transition point, and the glass transition point could not be measured. This is designated as sample PNB (4).
  • Each component shown in Table 1 and Table 2 was dissolved in dry blend or xylene solvent at 140 ° C, then precipitated in methanol, separated by filtration, and dried to obtain a preblended mixture. . Next, the obtained mixture was kneaded with a Laboplastomill kneader (manufactured by Toyo Seiki Seisaku-sho, Ltd.) under the conditions of 25 (TC, 50 rpm, 5 minutes), and then pulverized to obtain a granular composition.
  • a Laboplastomill kneader manufactured by Toyo Seiki Seisaku-sho, Ltd.
  • a 2mm-thick test piece breath-formed at 250 ° C is cut out into a 50mm length and 5mm width, and a solid viscoelasticity measurement device (RS All, manufactured by Rheometrics FIRST, RS All) is used to measure the Temperature dependence of storage modulus ( ⁇ ') and loss modulus ( ⁇ ") was measured under the conditions.
  • RS All manufactured by Rheometrics FIRST, RS All
  • test piece A 31.5 mm long, 6.2 mm wide, and 3 mm thick test piece was injection molded and used with an Izod impact tester (Minimax CS 183T I type manufactured by Custom Scientific). The tip R 0.25 mm. The depth of the Izod with a notch of 1.2 mm was measured at 23 ° C.
  • Component (A) Olefin resin
  • the storage elastic modulus at 23 ° C measured by a solid viscoelasticity measuring device was 1.78 GPa.
  • the 23 Modulus of elasticity measured with a solid viscoelasticity measuring device was 1.90 GPa.
  • P P (3) The flexural modulus measured according to JIS-K 7 203 is 16,20.
  • PNB (1) The molecular weight measured by GPC measured in Polymerization Example 1 is Mw200
  • PNB (2) The molecular weight measured by GPC measured in Polymerization Example 2 was Mw320.
  • PNB (3) a norbornene homopolymer having a molecular weight of Mw4700, Mw / Mn of 1.68, and a glass transition point of 240 ° C. by DSC measurement, produced in Polymerization Example 3, which is measured by GPC.
  • PNB (4) The molecular weight measured by GPC measurement produced in Polymerization Example 4 is Mw45,
  • Petroleum resin (1) E scorez 5320 manufactured by Exxon Chemical Japan
  • Petroleum resin (2) Arakawa Chemical Co. ⁇ Alcon P 140
  • Table 1 shows that, compared to Comparative Example 1, the resin composition of the present invention has significantly improved elastic modulus near room temperature.
  • the elastic modulus on the high temperature side is equal to or higher than that of unmodified polypropylene, and it can be seen that the heat resistance is maintained or improved. It can also be seen that the surface hardness has been improved.
  • Table 2 also shows that the same effect can be obtained by changing the type of polypropylene.
  • FIG. 1 shows the temperature dependence of the storage modulus ( ⁇ ⁇ : Storage Modulus) and the loss modulus ( ⁇ Los '': Loss Modulus) of Example 3 and Comparative Example 1
  • FIG. 2 shows the temperature dependence of Comparative Example 1 and Comparative Example 2. The gender comparison is shown.
  • FIG. 2 shows that Comparative Example 2 has a low effect of improving the elastic modulus.
  • the added cyclic olefin polymer having a high molecular weight is not compatible with the amorphous portion of the propylene resin, and is similar to the conventional polymer alloy. It seems to exist as a domain.
  • the crystalline olefin resin composition of the present invention has a high room temperature elastic modulus which cannot be obtained from conventional knowledge, It shows excellent scratch resistance and heat resistance, and is useful as an automobile component.
  • the effect obtained by the present invention is considered to have a different mechanism of expression from the filler blend of the prior art and alloying with engineering plastics, etc., so that the effects of filler blending, alloying with engineering plastics, etc., are considered. Even when used in combination with technology, higher performance can be achieved without impairing the effects of the conventional technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書 結晶性ォレフィン系榭脂組成物
技術分野
本発明は、 力学的性質、 耐傷付き性、 耐熱性、 成形性等に優れたォレフィン系 樹脂組成物に関するものである。 さらに詳しくは、 本発明は高弾性率、 耐熱性、 高表面硬度を有する、 結晶性ォレフィン系榭脂と環状ォレフィンのビ二レン重合 による重合体との組成物に関するものである。
背景技術
従来、 ポリエチレンやポリプロピレン等の結晶性ォレフィン系樹脂組成物は、 コストー性能バランスの良さから広く用いられている。 そしてさまざまな用途の 要求性能を満たすために、 フイラ一やエラス卜マーをブレンドしたり、 ェンジ二 ァリングプラスチック等とのポリマーァロイ化等の手法によって高性能化が図ら れている。 近年、 特に自動車部材などでは、 燃費向上を目的とした樹脂部材の軽 量化に伴う肉薄化のために、 材料自身の高剛性化等が強く求められている。 また、 ォレフィン系樹脂の欠点である耐傷付き性の改良も要求されている。
しかしながら、 このような従来の手法においては、 以下に示すような問題点が あつ 7 0
すなわち、 フイラーをォレフイン系榭脂にブレンドする場合、 少量であればォ レフィン系樹脂の持つ成形性、 低比重などの特性を保持したまま剛性は向上する ものの、 その剛性の向上には限界がある。 またより剛性を高めようとフィラーを 大量にブレン ドすると、 組成物としての流れ性、 成形性の低下等をもたらし、 ォ レフィン系樹脂の特性を損なうばかりではなく、 比重の増大により軽量化という 目的にも沿わなくなってしまう。 このようなことから、 ベースとなるォレフィン 系樹脂自身の剛性を向上させる必要性がでている。
また、 各種エンジニアリングプラスチックとォレフィン系榭脂とのァロイ化に おいても、 高剛性化のためには高価なエンジニアリングプラスチックを大量に添 加する必要があること、 また多くの場合、 相溶化剤を必要とすることなどから、 ォレフィ ン系榭脂の持つ低コストという特徴を阻害してしまう。 また、 ェンジ二 ァリングプラスチックや相溶化剤の中に含まれる極性基のために、 組成物が着色 してしまい、 ォレフィン系榭脂の持つ特徴である色相の良さを阻害する場合があ る。 またォレフィ ン系榭脂がマトリックスである限り、 耐傷付き性の欠点は依然 そのまま残っている。
ォレフィン系樹脂に、 石油樹脂あるいは水素添加石油樹脂等の脂環族系のオリ ゴマーを添加することで高弾性率化、 高透明性等を図る報告は数多くされている
(特公昭 4 1— 7 9 5 8号公報、 同 4 9一 3 0 2 6 3号公報、 特開昭 4 7— 2 2
4 4 9号公報、 同 5 0— 1 1 6 5 3 6号公報、 同 5 5— 8 6 8 3 0号公報、 同 6
3— 3 5 6 4 2号公報等) 。 しかしながらこれらの組成物においては、 室温付近 の弾性率は向上するものの、 添加する脂環族系のオリゴマーのガラス転移点が、
5 0〜1 0 0 °C程度であり、 その温度を越えると急激に剛性が低下してしまい、 ォレフィン系樹脂の持つ耐熱性を大きく損なっている (比較例 4〜6参照) 。 また、 ォレフィ ン系樹脂に、 環状ォレフィ ンとひ一才レフィ ンとの共重合体を プレンドすることで、 弾性率等の機械的性質を改良するという報告は数多くある (特開平 1一 3 1 8 0 5 2号公報、 同 3— 2 1 0 3 4 8号公報、 同 4一 3 5 3 5
4 0号公報、 同 5— 5 1 4 1 3号公報、 同 5— 2 6 2 8 9 8号公報、 同 6— 4 1 3 6 1号公報、 同 6— 3 1 6 6 6 0号公報等) 。 しかしながらこれらの方法では 弾性率の向上割合が低く、 また、 表面硬度の向上は認められなかった (比較例 3 参照) 。
またォレフィン系樹脂に、 環状ォレフィ ンの開環重合体またはその水素添加物 をブレンドすることで弾性率等の機械的性質を改良するという報告も数多くある (特開昭 5 5— 1 4 2 0 3 6号公報、 特開平 1一 1 6 8 7 5 1号公報、 同 4— 2 7 2 9 3 7号公報、 同 4— 3 5 3 5 4 0号公報、 同 4一 3 7 2 6 3 5号公報、 同 5 - 2 6 2 8 9 8号公報、 同 6— 3 1 6 6 6 0号公報等) 。 しかしながら、 環状 ォレフィンの開環重合体では、 その主鎖中に二重結合が生成するため耐熱性、 耐 候性が非常に悪くなり好ましくない。 そのため二重結合を水素添加して飽和させ る必要がある。 しかしながら、 水素添加操作をすることは、 製造工程において、 —工程が増えてしまうこと、 水素添加操作が煩雑なこと、 また、 安全性の面から 非常に高価な装置を必要とすることなどから、 非常にコス卜がかかり好ましくな い。
また、 特開平 4— 2 7 2 9 3 7 ' 報には、 結晶性ポリマーと低分子 のガラ ス転移点が 1 0 0 以上の環状ォレフィンの開環重合体の水素添加物からなる、 複合ポリマーシートの耐熱性、 透明性、 機械特性の改良が開示されている。 しか し一般に、 低分子量の開環重合体の水素添加物ではそのガラス転移点があまり高 くならず、 そのガラス転移点が、 結晶性ォレフイ ン系樹脂の融点以下であると、 元々の結晶性ォレフィン系樹脂の高温耐熱性を損ない好ましくない。 該公報の実 施例に開示されている環状ォレフィンの開環重合体の水素添加物は、 分子量 8 0 0 0でガラス転移点が 1 3 5 °Cである。 このガラス転移点では、 結晶性ォレフィ ン系樹脂の融点以下であり、 本発明の効果の一つである高温弾性率を発現するこ とはできない。 またガラス転移点を上げるために分子量を上げようとすると、 本 発明の効果を示す分子量範囲を逸脱してしまい、 本発明の効果は得られない。 また、 特開平 5— 7 0 6 5 5号公報には、 ノルボルネン系重合体に熱可塑性樹 脂を混合した組成物について力学的性質、 耐熱性、 透明性、 熱成形性の改良が開 示されているが、 ここで開示されているノルボルネン系重合体は高分子量体であ り、 本発明における環状ォレフィ ン系重合体とはその分子量範囲が異なる。 当然 発明の効果も異なり、 例えば、 弾性率の向上率は、 高分子量体のノルボルネン系 重合体では、 本発明の効果ほどは得られなかった (実施例 1〜4、 比較例 2参照) 発明の開示
本発明者らは上記課題に鑑みて鋭意研究を重ねた結果、 特定の樹脂組成物を用 いることによって、 上記課題を解決することができるとの知見を得て、 本発明を 完成するに至った。
すなわち本発明は、 下記の成分 (A ) 9 9 ~ 4 0重量%及び成分 (B ) 1〜6 0重量%からなることを特徴とする結晶性ォレフィン系樹脂組成物を提供するも のである。
(A ) 結晶性ォレフィン系樹脂
( B ) 重量平均分子量 1 , 0 0 0〜 1 0. 0 0 0未満かつガラス転移点 1 4 0 °C 〜4 0 0 °Cである環状ォレフィンのビ二レン重合による重合体。
本発明の結晶性ォレフィン系樹脂組成物において、 特定構造、 特定分子量の環 状ォレフィン重合体を結晶性ォレフィン系樹脂に添加することによって、 従来の 高分子量の環状ォレフィン重合体ブレンド ·ァロイの知見からは得られない、 高 い室温弾性率、 耐傷付き性、 耐熱性を示すという事実は、 非常に驚くべきことで あった。
このような効果の発現する理由は、 定かではないが、 以下のような理由による ものと考えている。 結晶性ォレフィン系榭脂に本発明で規定されている環状ォレ フィ ン重合体を添加した際、 該琛状ォレフィ ン重合体が特定構造、 特定分子量で あるため、 結晶性ォレフイ ン系樹脂中の非晶部と分子相溶的に相溶する。 そのた め、 元来は柔らかいゴム状で、 耐熱性の劣る非晶部を、 硬く し、 また耐熱性を向 上し、 従来の知見からは得られない高い室温弾性率、 耐傷性、 耐熱性等の本発明 の効果が得られるものと考える。
また、 本発明で得られる効果は、 前述のフイラ一ブレンドおよびエンジニアプ ラスチックとのァロイ等とは、 発現機構が異なると考えられるため、 フィラーブ レンド、 エンジニアリ ングプラスチックとのァロイ等の技術と併用しても、 該従 来技術の効果を阻害することなく、 より高性能化が図れると考えられる。
図面の簡単な説明
図 1は、 実施例 3と比較例 1の貯蔵弾性率 (Ε ' : Storage Modulus) および損 失弾性率 (Ε ' ' : Loss Modulus) の温度依存性の比較を示す図である。
図 2は、 比較例 1と比較例 2の咛蔵弾性率および損失弾性率の温度依存性の比 較を示す図である。
発明を実施するための最良の形態
〔1〕 結晶性ォレフィ ン系樹脂組成物
( 1 ) 構成成分
本発明の結晶性ォレフィ ン系榭脂組成物は、 下記に示す構成成分から基本的に 形成されるものである。
成分 (A ) :結晶性ォレフィ ン系樹脂
本発明で使用する結晶性ォレフイン系樹脂としては、 エチレン、 プロピレン、 1ーブテン、 3—メチル一 1ーブテン、 4—メチルー 1一ペンテン、 1—へキセ ン、 及び 1一ベンテン等で代表される α—才レフィ ンの単独重合体、 或は α—才 レフイン同志の共重合体、 または、 上記な一才レフイン類とビニルエステル、 ァ クリル酸またはその誘導体、 有機ゲイ素化合物等との共重合体、 或は該ォレフィ ン系樹脂への各種不飽和単量体のグラフト重合体を挙げることができる。 これら重合体の、 密度法から計算した結晶化度は 20〜100%、 好ましくは 30〜90%、 特に好ましくは 40〜85%のものである。 また J I K-K72 03に準拠して測定した曲げ弾性率が、 1.000〜30.000 k g/cm2, 好ましくは2, 000〜20, 0001< ノ01112、 特に好ましくは 3, 000〜1 7, 000 k g/ cm2のものが好適である。 また、 該重合体のメルトフロレ一ト (MFR) については特に制限されないが、 ASTM— D 1238に準拠して 2 30°C、 2.16 kgで測定した値が通常 0.001~200 gZ10分、 好ましく は 0.01〜100 g/l 0分の範囲内であるのが最適である。
前記結晶性ォレフイン系樹脂としては、 例えば、 いわゆる低圧法ポリエチレン、 中圧法ポリェチレン、 高圧法ポリェチレン、 線状低密度ポリェチレン等のェチレ ン系榭脂、 立体規則性ポリプロピレン、 立体規則性ポリ一 1—ブテン、 立体規則 性ポリ一 3—メチルー 1—ブテン、 立体規則性ポリ一 4—メチルー 1—ペンテン 等の、 立 規則性 一才レフイン系樹脂を挙げる事ができる。 これらの結晶性ォ レフイン系樹脂の中では、 立体規則性プロピレン系樹脂 (以下、 プロピレン系樹 脂と記す) が好ましい。
このプロピレン系樹脂としては、 プロピレンの単独重合体、 或は、 プロピレン 成分が 70モル%以上、 好ましくは 80モル%以上からなるプロピレンと前記 —ォレフィン類とのランダム又はプロック共重合体が良く、 中でも J I K-K 7
203に準拠して測定した曲げ弾性率が、 1, 000〜30, 000 k gZcm2、 好ましくは S. O O O S O. O O O k gZcm2 特に好ましくは 8, 000〜1 7, 000 k gZ cm2のものが好適である。 また、 該重合体のメルトフ口レート (MFR) については特に制限されないが、 ASTM— D 1238に準拠して 2
30°C、 2.16 kgで測定した値が通常 0.001〜100 gZl 0分、 好ましく は0.01〜70 ノ10分の範囲内であるのが最適である。
またこれらプロピレン系樹脂の中でも、 特に好ましくはプロピレン単独重合体 が挙げられる。
これらのプロピレン系榭脂は上記樹脂を単独で、 あるいは複数種混合した混合 物として使用することができ、 通常、 市販の樹脂の中から適宜選んで使用するこ とができる。
成分 (B) :環状ォレフィ ン重合体 本発明で使用する環状ォレフィ ン重合体は、 シクロブテン類、 シクロペンテン 類、 シクロへキセン類等の単環式環状ォレフィ ン及びノルボルネン類、 トリシク ロー 3—デセン類等の多環式環状ォレフィ ンの中から選ばれる、 単一種の環状ォ レフイ ンのビニレン重合による単独重合体、 或は、 複数種の環状ォレフィ ン同志 のビニレン重合による共重合体であって、 その重量平均分子量が 1.000〜1 0, 000未満、 かつガラス転移温度が 140〜400°Cの範囲に入るものであ る。
モノマーとして用いられる環状ォレフィ ンの例としては、 シクロブテン、 シク 口ペンテン、 4—メチルシクロペンテン等のシクロペンテン類、 シクロへキセン、 3—メチルシクロへキセン、 3 -ビニルンクロへキセン等のシクロへキセン類等 の単環式環状ォレフィ ン、 ノルボルネン、 1—メチルノルボルネン、 5—ェチリ デン一 2—ノルボルネン、 メチレンノルボルネン、 5—ビニル一 2—ノルボルネ ン、 5—メチレン一 2—ノルボルネン、 等のノルボルネン類、 トリンクロ [4, 3, 0, 12· 5] —3—デセン、 2—メチルトリ ンクロ [4, 3, 0, 12.5] —3— デセン等の卜リシクロー 3—デセン類、 ジシクロペン夕ジェン (トリンクロ [ 4 , 3.0.12·5] —3, 7—デカジエンまたはトリ シクロ [4, 3, 0, 12·5] —3. 8—デカジエン) 、 7—メチルジシクロペンタジェン等のジシクロペン夕ジェン 類、 テトラシクロ [ 4 , 4.0 , 12· 5, 17' 1 0] — 3— ドデセン、 8—メチルテト ラシクロ [4, 4.0, 12.5, 17· 10] —3—ドデセン、 5, 10—ジメチルテトラ シクロ [4, 4, 0, 12· 5, 17· 10] — 3— ドデセン等のテトラシクロ一 3— ドデ セン類、 ペンタンク口 [6, 5, 1. I3·6, Ο2·7, 09· 13] — 4一ペンタデセン、 10—メチルペン夕シクロ [6.5, 1, I3' 6.02· 7.09' 13] —4—ペンタデセ ン、 ペン夕シクロ [4, 7, 0, 12· 5, 08· 13, 19- 12] — 3—ペン夕デセン等のぺ ンタシクロペンタデセン類、 ペンタンク口 [6, 5 , 1 , 13· 6, 02' 7, 09· 13] -
4.10—ペンタデカジエン、 ペンタンク口 [6.5.1 , 13· 6, 02· 7, 09· 13] —
4.11—ペンタデカジェン等のペンタシクロデカジェン類、 へキサシクロ [6, 6, 1. I3· 6, 110- 13, 02· 09· 14] 一 4一へプタデセン類等の多璟式環状ォレ フィ ンを挙げることができる。
環状ォレフィ ン重合体は、 特定の有機遷移金属化合物と有機アルミニウムォキ シ化合物を触媒成分として用いることにより、 環状ォレフィ ンのエチレン性不飽 和結合を介して付加重合が進行するビニレン重合により重合体が得られる。
環状ォレフィンのビ二レン重合体の重合方法については特に制限はなく、 慣用 の重合形式、 例えば、 スラリー重合法、 気相重合法、 塊状重合法、 溶液重合法お よび懸濁重合法等のいずれの方法を用いても良いが、 スラリー重合法、 溶液重合 法および塊状重合法が好適である。 またバッチ式でも連続式でもよい。
環状ォレフィン重合体の重合触媒の構成成分である有機遷移金属化合物および 有機アルミニゥムォキシ化合物は、 モノマーの存在下あるいは非存在下を問わず、 それぞれ别々に重合系に添加して重合系内で両者を接触させて触媒系を形成させ てもよいし、 重合系に添加する前に各触媒成分を予め接触させて触媒系を形成さ せてから重合系内に導入してもよい。 ここで触媒系を形成させるベく各触媒成分 を接触させる場合の順序については特に制限はなく、 任意の順序によることがで きる。
触媒系の形成は、 例えば不活性溶媒中で、 不活性ガス雰囲気下、 各成分を接触 させることにより行うことができる。
本発明の環状ォレフィン重合体の製造触媒の好適な例として、 下記のものを例 示することができる。
すなわち、 次の 2つの一般式のいずれかで表される触媒成分とアルモキサンを 含んでなる蝕媒系が好適に用いられる。
Figure imgf000009_0001
もしくは
( C 5 R J X a Y bM e Q 3 - b
式中、 M eは 4族の遷移金厲、 例えば Z r、 H f であり、 各 (C 5 R m) はシクロ ペンタジェニル又は置換シクロペンタジェニルであり、 各 Rは同一もしくは異な るもので、 水素、 炭素数 1〜2 0のアルキル、 アルケニル、 ァリール、 アルキル ァリールもしくはァリールアルキル基からなる群から選択したものである。 Xは 2つの (C 5 R„) 環を、 または (C 5 R m) 環と Yを橋架けする炭素数 1〜4のァ ルキレンまたはゲイ素である。 aは 0又は 1〜4の整数、 bは 0又は 1の整数で あり、 a = 0のとき b = 0である。 各 Qは同一もしくは異なるもので、 炭素数 1 〜2 0のァリール、 アルキル、 アルケニル、 アルキルァリールもしくはァリール アルキル基、 またはハロゲンであり、 Qは炭素数 1 ~ 2 0のアルキリデン基であ り、 Yは酸素、 窒素、 リ ンまたは硫黄原子である。 mは 0〜4の数を示す。
なお、 本発明の環状ォレフィ ン重合体は、 上記の触媒を用いて重合する際に、 所望の分子量の重合体を得るために、 適当な量の水素を添加することができる。 重合温度は、 通常一 78〜150 C、 好ましくは— 30〜80°Cの範囲である c また触媒系の構成成分である有機遷移金属化合物および有機アルミニウムォキシ 化合物の使用量は、 合目的的な範囲内において任意である。 例えば溶液重合系の 場合は、 有機遷移金属化合物の使用量は 10一7〜 102ミ リモル Zリッ トル、 特 に 10_4〜10ミ リモル/リッ トルの範囲が好ましい。 アルミニウムォキシ化合 物の使用量はアルミニウム 遷移金属のモル比が通常 10〜 100.000、 特 に 100~10.000となるような範囲が好ましい。 モノマーとして使用する 環状ォレフィ ンの使用量は、 原料モノマーノ上記遷移金属化合物のモル比が通常 1-1, 000, 000, 好ましくは 100〜 100, 000となるような範囲が 好ましい。 また、 重合体の分子量を調節する方法としては、 各触媒成分の種類や 使用量、 重合温度、 重合時間等の選択、 さらには水素存在下での重合による方法 等が上げられる。
重合溶媒を用いる場合には、 この種の重合法において従来から用いられてきた 重合溶媒、 例えば塩化メチレン、 1, 2—ジクロロエタン等のハロゲン化炭化水 素類、 ペンタン、 へキサン、 ヘプタン、 オクタン等の脂肪族炭化水素類、 シクロ ペンタン、 シクロへキサン等の脂環族炭化水素類、 ベンゼン、 トルエン、 キシレ ン等の芳香族炭化水素類、 ガソリ ン、 灯油、 軽油等の石油留分、 またはこれらの 混合溶媒を用いることができる。 これらの中でも芳香族炭化水素類が特に好まし い。
該環状ォレフィ ン重合体の分子量は、 ゲルパーミエーシヨ ンクロマトグラフィ 一 (GPC) で測定した重量平均分子量 (Mw) (ポリプロビ'ノン換算) が 1. 000-10, 000未満、 好ましくは 1.500〜 7, 000、 特に好ましくは 2, 000〜 5.000の範囲のものである。 Mwが 1, 000未満では、 結晶性 ォレフィン系榭脂の耐熱性を低下させ好ましくないし、 また 10, 000以上で あると、 本発明の効果である高弾性率、 耐傷付き性が発揮されず好ましくない。 また該環状ォレフィ ン重合体の示差走査型熱量計での測定によるガラス転移温 度は、 140~400。C、 好ましくは 160〜350。C、 より好ましくは 180 〜300°Cの範囲のものである。 140°C未満では本発明の効果である高弾性率 が得られず、 400°C超過では本発明の樹脂組成物の製造方法が煩雑となり好ま しくない。
これらの環状ォレフィン重合体の中では、 モノマーとして多環式環状ォレフィ ンを主成分とする多環式環状ォレフィ ン重合体が、 本発明の効果を好適に発揮し て好ましい。
その構造の例としては次式 (1) に示すようなものがある。
Figure imgf000011_0001
(式中、 R"~R12は、 それぞれ独立して、 水素原子、 炭素数 1〜20の炭化 水素基またはハロゲン原子等を含む置換基を示す。 R 9と R 11または R 12とは、 または R1 Dと R11または R12とは、 互いに連結して環を形成していてもよい。 m は 0または 1以上の整数である。 nは 1以上の整数を示す。 また、 この式で表さ れるュニッ 卜単位の繰り返し連鎖において、 各ュニッ ト単位で Rl〜R12および mがそれぞれ異なっていても構わない。 )
この多琛式琛状ォレフィン重合体としては、 単一種の多環式琛状ォレフィンの 単独重台体、 ί 数種の多^式琛状ォレフイ ン同志の共重台体、 あるいは、 多環式 ¾状ォレフィ ンと単^式 状ォレフィンの共重合体等が挙げられる。
またモノマーとして用いる多環式環状ォレフィ ンの中では、 ノルボルネン類を 用いたものが、 重合時の分子量制御が容易であり、 高重合活性が得られ好ましい c このノルボルネン類を用いたノルボルネン系重合体としては、 単一穏のノルボ ルネン類の単独重台体、 複数種のノルボルネン類同志の共重合体、 あるいは、 ノ ルボルネン類と他環状ォレフィンの共重合体等が挙げられる。 またこれらノルボルネン系重合体の中でも、 単一種のノルボルネン類の単独重 合体、 ノルボルネン類と他環状ォレフィンとの共重合体が好ましく、 特に単一種 のノルボルネン単独重合体が重合収率が高く好ましい。 これらの環状ォレフィン 重合体は上記重合体を単独で、 あるいは複数種混合した混合物として使用するこ とができる。
また、 該環状ォレフイン重合体において、 本発明の効果を著しく損なわない範 囲において、 エチレン、 プロピレン等の α—ォレフィ ン、 スチレン、 a —メチル スチレン等の芳香族ビニル化合物等と共重合することは差し支えない。
なお、 本発明のォレフィン系樹脂組成物を構成する各成分 (A ) および (B ) について、 好ましいものとして上記した成分同士の組み合わせが最適のものであ ることは言うまでもない。
成分 (C ) :付加的成分
本発明のォレフィ ン系榭脂組成物の中には、 上記成分 (A ) および (B ) の外 に、 本発明の効果を著しく損なわない範囲で、 以下に示すような付加的成分を含 有させることができる。
該付加的成分としては、 エラストマ一類を挙げることができる。 エラス卜マー 類は、 剛性や耐衝擊性などの調整ができるので好都合である。
ここでエラストマ一類としては、 ォレフィン系エラストマ一およびスチレン系 エラストマ一のいずれも使用することができる。
ォレフィン系エラス卜マーとしては、 エチレン、 プロピレン、 1ーブテン、 1 一へキセン等の α—ォレフィ ン同志の共重合体、 あるいはこれらと非共役ジェン との共重合体、 あるいは 1—へキセン等の高級 α—才レフィンの単独重合体であつ て、 エラストマ一状の重合体であり、 1 0 0 °Cで測定したムーニー粘度 M L 1 + 4 が、 通常 1〜2 0 0、 好ましくは 5 ~ 1 5 0、 特に好ましくは 7 ~ 1 0 0の範囲 のものが使用できる。 これらのォレフィ ン系エラス卜マーの中ではエチレン系ェ ラストマ一、 プロピレン系エラストマ一が品質および安定性の点で特に好ましい。 具体的にはエチレン .プロピレン共重合ゴム (E P M) 、 エチレン . 1—ブテ ン共重合ゴム、 エチレン 'プロピレン . 1—ブテン共重合ゴム、 エチレン♦プロ ピレン '非共役ジェン共重合ゴム (E P D M) 、 エチレン . 1—ブテン非共役ジ ェン共重合ゴム、 エチレン 'プロピレン ' 1ーブテン ·非共役ジェン共重台ゴム 等がある。 上記非共役ジェンの具体例としては、 ジシクロペンタジェン、 1.4 —へキサジェン、 シクロォクタジェン、 ジシクロォクタジェン、 メチレンノルボ ルネン、 5—ェチリデン一 2—ノルボルネン、 5—ビニルー 2—ノルボルネン、 5—メチレン一 2—ノルボルネン、 5—メチルー 1, 4一へキサジェン、 7—メ チル一 ] .6—才クタジェン等を挙げることができる。
スチレン系エラストマ一としては、 スチレン、 一メチルスチレン等のスチレ ン系化合物と、 1, 3—ブタジエン、 イソプレン等の共役ジェンとのエラストマ ー状ランダムまたはプロック共重合体およびこれら共重合体の水素添加物である。 これらスチレン系エラストマ一の中では、 スチレン系化合物と共役ジェンの共重 合体が好ましく、 これらブロック共重合体は、 次の一般式式 (2) で表されるも のが最適である。
一般式 (2)
(A-B) π + 1、 または
A- (Β-Α) „、 または
B— (A-B) η +1
(上記式中の Αはスチレン系化合物よりなる重合体プロック、 Bは共役ジェン重 合体ブロックであり、 nは 1~20の整数、 Aブロックの全体の分子に占める割 合は 1〜50重量%である。 )
これら共重合体の数平均分子量は 10, 000〜1, 000, 000、 好ましく は 50.000〜 250, 000である。
これらスチレン系エラストマ一の具体例としては、 スチレン .ブタジエンラン ダム共重合体、 スチレン ' イソプレンランダム共重合体、 スチレン .ブタジエン . スチレントリブロック共重合体、 スチレン 'イソプレン .スチレントリブロック 共重合体、 ポリスチレンプロックが末端であるスチレン ·ブタジエンラジアルブ 口ック共重合体、 ポリスチレンブロックが末端であるスチレン ·ィソプレンラジ アルブロック共重合体、 スチレン 'ブタジエンマルチブロック共重合体、 スチレ ン♦ィソプレンマルチブロック共重合体等のスチレン ·共役ジェンブロック共重 合体およびこれらを水素添加したもの等を挙げることができる。 これらスチレン 系エラストマ一の中で好ましいものは水素添加されたスチレン .共役ジェンブロッ ク共重合体である。 このようなエラストマ一成分の中でも、 特にォレフィン系エラストマ一が成形 体の表面荒れが起こりにくいために好んで使用される。
また付加的成分としては、 前記の他にフイラ一類を挙げることができる。 フィ ラー類は、 剛性や寸法安定性などの調整ができるので好都合である。 ここでフィ ラー類としては、 無機系または有機系フイラ一のいずれも使用することができ、 その形状は、 板状、 粒状、 球状、 繊維状のもの、 或は不定形状のものでもよい。 具体的には、 石英等の天然シリカ、 湿式法または乾式法で製造した合成シリカ ; カオリン、 マイ力、 タルク、 石綿等の天然珪酸塩:珪酸カルシウム;珪酸アル ミニゥム等の合成珪酸塩;水素化マグネシウム、 水酸化アルミニウム等の金属水 酸化物:アルミナ、 チタニア等の金属酸化化合物:炭酸カルシウム、 アルミニゥ ム、 ブロンズ等の金属粉;木粉: カーボンブラック ;ガラス繊維、 炭素雄維、 ァ ラミ ド繊維、 アルミナ繊維等の繊維状物質;高分子液晶物質: チタン酸カリウム ゥイスカー、 硫酸マグネシウムゥイスカー、 ほう酸アルミニウムゥイス力一、 炭 酸カルシウムゥイス力一、 ほう酸マグネシウムゥイス力一、 酸化亜鉛ゥイス力一、 炭化珪素ゥイスカー、 窒化珪素ゥイスカー、 サファイアゥイスカー、 ベリリアウイ スカ一等のゥィスカ一類などが挙げられる。
これらの中で好ましいものとしては、 マイ力、 タルク、 炭酸カルシウム、 チタ ン酸カリウムゥイスカー、 硫酸マグネシウムゥイスカー、 ほう酸アルミニウムウイ スカー、 炭酸カルシウムゥイスカーおよびガラス雄維であり、 特に好ましいもの はマイ力、 タルク、 チタン酸カリウムゥイスカーおよび硫酸マグネシウムゥイス カーである。
これらのフイラ一類は、 界面活性剤、 カップリング剤等で表面処理を施したも のでもよい。 またフイラ一類は、 単独でも複数種併用してもかまわない。 各種フィ ラーは市販の中から適宜選んで用いる事ができる。
またその他の付加的成分としては、 例えば添加剤類を挙げる事ができ、 具体例 としては、 パラフィ ンオイル、 石油樹脂等の可塑剤類ないしは流動性改良剤;ォ レフィン系液状ゴム、 共役ジェン系液状ゴム等の钦化剤類;着色剤類;酸化防止 剤頦;中和剤類;光安定剤類;紫外線防止剤類;帯電防止剤類;滑剤類;核剤類 :分散助剤類;分子量調整剤類;架橋剤類;難燃剤類等を挙げる事ができる。
( 2 ) 配合量比 本発明の樹脂組成物を構成する上記各成分の配合の量比としては、 成分 (A) の結晶性ォレフィン系樹脂と成分 (B ) の環状ォレフィン重合体の合計に対し、 通常、 成分 (A) の結晶性ォレフィン系樹脂は 9 9〜4 0重量%、 好ましくは 9 7〜5 0重量%、 特に好ましくは 9 5〜6 0重量%の範囲であり、 成分 (B ) の 環状ォレフィン重合体は 1 ~ 6 0重量%、 好ましくは 3〜5 0重量%、 特に好ま しくは 5〜4 0重量%の範囲である。 成分 (B ) が 1重量%より少ないと本発明 の効果が十分に現れず、 また、 6 0重量%より多いと組成物自体の成形性が低下 して好ましくない。
( 3 ) 混合
上記の各構成成分を混合することによって、 本発明の樹脂組成物が製造される これら構成成分の混合方法には特に制限はなく、 熱による溶融状態での混合法、 任意の有機溶媒中での溶解状態での混合法、 重合状態での混合法等、 いずれの方 法でもよく、 また前記のいずれかの方法を組み合わせて採用してもよい。
熱による溶融状態での混合法としては、 例えばブラベンダープラス卜グラフ、 一軸または二軸押出機、 強力スクリユー型混練機、 バンバリ一ミキサー、 ニーダ 一プレンダー、 ロール等の従来知られている混練機であればいかなるものでも使 用できる。
また、 任意の有機溶媒中での溶解状態での混合法としては、 上記構成成分を同 時に有機溶媒に溶解、 または、 各構成成分を別々に有機溶媒に溶解したものを混 合し、 その後有機溶媒を除く方法等がある。 有機溶媒としては、 塩化メチレン、 1 , 2—ジクロロェタン等のハロゲン化炭化水素類、 ペンタン、 へキサン、 ヘプ タン、 オクタン等の脂肪族炭化水素類、 シクロペンタン、 シクロへキサン等の脂 環族炭化水素類、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素類、 ガソリ ン、 灯油、 軽油等の石油留分、 またはこれらの混合溶媒等を用いることができる。 これらの中でも芳香族炭化水素類が特に好ましい。 例としては、 キンレン、 トル ェン等の芳香族炭化水素、 シクロへキサン、 デカリン等の脂肪族炭化水素、 クロ 口ホルム、 塩化メチレン等のハロゲン化炭化水素などが挙げられる。
重合状態での混合法としては、 各構成成分を溶液重合した重合液を混合する方 法、 どちらかの一成分を重合した後に他成分を重合して混合する二段重合方法等 を挙げることができる。 前記の方法のいずれかの方法を組み合わせる例としては、 有機溶媒中で溶解状 態で混合し、 溶媒を取り除いた後にさらに溶融状態で混練する方法、 溶融状態の 成分 (A ) の結晶性ォレフイ ン系樹脂に、 成分 (B ) の環状ォレフィ ン重合体成 分を少量の有機溶媒で膨潤させたものを加え溶融混合しながら有機溶媒を取り除 く方法、 または、 成分 (B ) の環状ォレフィ ン重合体成分を溶解した有機溶媒中 で、 成分 (A ) の結晶性ォレフイ ン系樹脂を重合する方法等が挙げられる。
〔2〕 樹脂組成物の成形体
本発明のォレフィン系樹脂組成物は、 各種成形法が適応でき、 それにより目的 とする成形体を得ることができる。
成形は通常の方法によって行うことができる。 すなわち、 射出成形、 射出圧縮 成形、 ガスインジヱクシヨン、 圧縮成形、 押出成形 (シート成形、 フィルム成形、 ブロー成形、 パイプ成形) 等のいずれの成形方法であってもかまわない。
これら成形体は、 機械的物性のバランスがよく、 かつ耐傷付き性に優れること から、 各種工業部品、 例えば自動車のバンパー、 サイ ドモール、 ホイ一ルキヤッ プ、 スポイラ一類等の自動車外装部品、 インスツルメントパネル、 レバー、 ノブ、 内張り等の自動車内装部品、 ポッ ト、 掃除機、 洗濯機、 冷蔵庫、 照明器具、 ォー ディォ機器等の電気製品、 カラ一ボックス、 収納ケース等の曰用雑貨品、 あるい は包装用フィルム等として利用することができる。
(実施例)
以下に実施例および比較例を挙げ、 本発明をさらに具体的に説明する。
各実施例において製造された樹脂組成物からの試験試料を得るための成形条件 および試験方法は以下に示すとおりである。 なお、 実施例中の 「部」 は重量部で ある。
<琛状ォレフィ ン重合体 >
重合例 1
1リッ トルのオートクレーブ中に、 ノルボルネン (C 7 H 1 0) 1 0 gを含むト ルェン溶液 4 5 0 m I 、 およびポリメチルアルモキサンのトルエン溶液 (濃度 8 5 m /m 1 ) 5 1 . 3 m lを加え、 7 0 °Cで 1 5分撹拌した。 次に触媒として シクロペンタジェニルジルコニウムトリクロリ ド 6 5 . 7 m gを加え、 重合温度 7 0 °Cで 4時間反応操作を行った。 反応混合物を、 塩酸酸性メタノール溶波に添 加し、 沈殿した白色個体を at別後、 洗液が中性になるまでメタノールで繰り返し 洗浄した。 その後得られた白色個体 (ノルボルネンの単独重合体) を減圧乾燥さ せた。 重合体の収量は 5.5 gであった。 G PCによる分子量測定の結果、 Mw は 2000、 MwZMnは 1.28であった。 また DS C測定の結果、 ガラス転 移点は 180°Cであった。 13C— NMRからは、 重合はランダムに進行しており、 また環構造を保持したままであることがわかった。 これを試料 PNB (1) とす る。
重合例 2
重合例 1において、 ノルボルネン仕込量を 30 gとした以外は、 全く同様な条 件で重合操作を行って白色個体を得た。 収量は 25.3 gであった。 GPCによ る分子量測定の結果、 Mwは 3200、 MwZMnは 1.51であった。 また D S C測定の結果、 ガラス転移点は 210°Cであった。 13C— NMRからは、 重合 はランダムに進行しており、 また環構造を保持したままであることがわかった。 これを試料 PNB (2) とする。
重合例 3
重合例 1において、 ノルボルネン仕込量を 50 gとした以外は、 全く同様な条 件で重合操作を行って白色個体を得た。 収量は 44.8 であった。 GPCによ る分子量測定の結果、 Mwは 4700、 Mw/Mnは 1.68であった。 また D S C測定の結果、 ガラス転移点は 240°Cであった。 13C— NMRからは、 重合 はランダムに進行しており、 また環構造を保持したままであることがわかった。 これを試料 PNB (3) とする。
重合例 4
重合例 1において、 ノルボルネン仕込量を 50 gとし、 ポリメチルアルモキサ ンの代わりにメチルイソブチルアルモキサンのトルエン溶液 (濃度 113mgZ m l ) 38.4m 1とした以外は、 全く同様な条件で重合操作を行って白色個体 を得た。 収量は 39.1 gであった。 G P Cによる分子量測定の結果、 Mwは 4 5, 000、 Mwノ Mnは 2. 13であった。 また D S C測定ではガラス ¾移点よ り先にポリマーの分解が始まり、 ガラス転移点は測定できなかった。 これを試料 PNB (4) とする。
G PC測定条件 装置: Waters社製、 GPC 150C カラム:昭和電工製、 A D 80 MZ S x3
溶媒:オルトジクロロベンゼン 温度 140°C
流速: 1.0 m 1 分 澳度 2 Omg Ίη 1
1 R: 3.42^ 注入量 200 ^ 1
以上の条件で G P C測定から、 ポリプロピレン換算の重量平均分子量を算出し た。
DS C測定条件
装置:セイコー電子社製、 DS C— S S 5200
昇温速度: 2 (TCZ分
サンプル量: 1 Omg
実施例 1〜 11、 比較例 1〜 8
表 1および表 2に示した各成分をドライブレン ド、 もしくはキシレン溶媒中 1 40°Cで各成分を溶解した後メタノール中で析出し、 濾別、 乾燥させて、 プレブ レンドした混合物を得た。 次にこの得られた混合物を、 ラボプラス卜ミル混練機 (東洋精機製作所社製) で、 25 (TC、 50 r pm、 5分間の条件で混練した後、 粉砕して粒状の組成物を得た。 なお溶融混練に際して、 各成分の台計量 10 Ofi 量部に対して安定剤として 0. 1重量部の 4—メチルー 2.6—ジー t—ブチルフエ ノールと、 0.1重量部のィルガノックス 1010 (チバガイギ一社製) を添加 した。
得られた粒状の組成物をプレス成形、 もしくは射出成形機 〔カスタムサイェン ティフィック (Custom Scientific) 社製、 ミ二マツクス C S 183MMXJ を用いて、 250°C、 金型冷却温度 40°Cで試験片を射出成形し、 下記の方法に よって、 その物性を測定評価した。 結果を表 1および表 2に示す。
( 1 ) 貯蔵弾性率
250°Cでブレス成形した厚さ 2mmの試験片を、 長さ 50mm、 幅 5mmに 切り出し、 固体粘弾性測定装置 (レオメ トリックファーイ一スト社製、 RS All) を用いて、 周波数 1 H zの条件で貯蔵弾性率 (Ε') および損失弾性率 (Ε") の温度依存性を測定した。
(2) 表面硬度 長さ 40mm、 幅 30mm、 厚さ 3 mmの試験片を射出成形し、 微小硬度計 (明石製作所社製、 MVK—F Hardness Tester) を用いて、 表面のピツカ ース硬度を測定した。
(3) アイゾッ ド衝擊強度
長さ 3 1. 5mm、 幅 6. 2mm、 厚さ 3 mmの試験片を射出成形し、 アイゾッ ド衝擎試験機 (カスタムサイェンティフィ ック社製ミニマックス C S 1 83T I 型) を用いて、 先端 R 0. 25mm. 深さ 1. 2 mmのノツチ付きのアイゾッ ド衙 擎強度を 23 °Cで測定した。
なお、 表 1および表 2中の配合成分は次のとおりである。
成分 (A) :ォレフィン系樹脂
P P (1) : J I S -K 7 203に準拠して測定した曲げ弾性率が 1 1, 90
0 k g/cm\ 230°C、 2. 1 6 k gで測定した MF Rが 0. 6 /1 0分であるプロピレン単独重合体。 固体粘弾性測定装置 で測定した 23 °C貯蔵弾性率は、 1. 78 G P aであった。
P P (2) : J I S-K 7203に準拠して測定した曲げ弾性率が 1 4, 30
0 k g/cm 230°C、 2. 1 6 k gで測定した MF Rが 1 5 g/l 0分であるプロピレン単独重合体。 固体粘弾性測定装置で 測定した 23 狞蔵弾性率は、 1. 90 G P aであった。
P P (3) : J I S-K 7 203に準拠して測定した曲げ弾性率が 1 6, 20
0 k g/cm 230°C、 2. 1 6 k gで測定した M F Rが 30 gZl 0分、 かつエチレン含量が 4重量%であるプロピレン ·ェ チレンブロック共重合体。 固体粘弾性測定装置で測定した 23°C 貯蔵弾性率は、 2. 06 G P aであった。
成分 (B) :環状ォレフィ ン重合体
PNB (1) :重合例 1で製造した、 G P C測定による分子量が、 Mw200
0、 Mw/Mn 1. 28、 D S C測定によるガラス転移点が 1 80 °Cであるノルボルネン単独重合体。
PNB (2) :重合例 2で製造した、 G P C測定による分子量が、 Mw320
0、 Mw/Mn 1. 5 1 D S C測定によるガラス転移点が 2 10 °Cであるノルボルネン単独重合体。 PNB (3) :重合例 3で製造した、 GPC測定による分子量が、 Mw470 0、 Mw/Mn 1.68、 D S C測定によるガラス転移点が 2 40 °Cであるノルボルネン単独重合体。
比較成分
PNB (4) :重合例 4で製造した、 G PC測定による分子量が、 Mw45,
000、 Mw/Mn 2. 13であるノルボルネン単独重合体。 エチレン '環状ォレフィン共重合体:
特開昭 61 - 168708号公報記載の方法で重合した、 エチレン含量 6 2モル%、 G PCによる分子量が、 Mw53, 000、 Mw/Mn 2.21 、 DS C測定によるガラス転移点 159°Cであるエチレン ·テトラシクロ [4, 4, 0. I2'5, I7' 10] —3—ドデセンランダム共重合体。
石油樹脂 (1) :ェクソンケミカルジャパン社製 E scorez 5320
Mw600/Mn 340. ガラス転移点 70。C
石油樹脂 (2) :荒川化学社製 ·アルコン P 140
Mw 870、 ガラス転移点 71 °C
表 1
実 施 例 比 較 例
2 3 4 5 6 7 2 3 4 5 6
80 80 80 80 90 70 60 100 80 80 80 80 80
20
20 20 10 30 40
20
20
20
20 20
Figure imgf000021_0001
20 ブレブレンド法 ドライ ドライ 溶液 ドライ ト'ライ ド'ライ ドライ 溶液 ドライ ドライ 溶液 ドライ
23°C 2.91 2.89 3.02 2.78 2.78 2.97 3.09 1.76 2.14 2.12 2.59 2.57 2.97
E' 00°C 0.49 0.53 0.58 0.63 0.56 0.68 0.81 0.43 0.61 0.64 0.19 0.26一 0.22
(GPa) 50°C 0.06 0.10 0.11 0.14 0.12 0.13 0.13 0.09 0.16 0.11 0.03 0.05一 0.04 表面硬度 (kgf/mm2) 9.25 9.18 9.20 8.00 8.90 9.22 9.25 7.23 7.20 7.25 10.7 10.1 10.0
Izod(kg'Ci!i/ci2) 3.3 3.6 3.1 3.0 3.6 2.6 2.5 3.1 3.4 3.2 3.2 3.4
表 2
Figure imgf000022_0001
表 1より、 比較例 1と比較して本発明の樹脂組成物は、 室温付近の弾性率が大 幅に向上していることがわかる。 高温側の弾性率も未変性のポリプロピレンと同 等以上であり、 耐熱性も保持あるいは向上していることがわかる。 また表面硬度 も向上していることがわかる。
これらに対して、 比較例 2、 3に示す分子量の高い環状ォレフィ ン重合体を添 加しても、 その室温弾性率の向上効果は低く、 また表面硬度の向上はみられない c また、 比較例 4、 5、 6に示す石油樹脂類を添加した系では、 室温弾性率、 表 面硬度とも向上しているが、 高温側の弾性率の低下が著しく耐熱性が非常に低下 してしまっている。
表 2からも、 ポリプロピレンの種類を変えても同様な効果が得られることがわ 力、る。
図 1に実施例 3と比較例 1の、 また図 2に比較例 1と比較例 2の、 貯蔵弾性率 ( Ε ' : Storage Modulus) および損失弾性率 (Ε ' ' : Loss Modulus) の温度依存 性の比較を示す。
図 1において、 貯蔵弾性率を比較すると、 既に述べたように比較例 1と比較し て本発明の樹脂組成物の弾性率が向上していることがわかる。 また、 損失弾性率 を比較すると、 比較例 1では 0 °c付近にプロピレン系樹脂のガラス転移点に由来 するピークが見られる力 本発明の組成物においてはこのピークが広く高温側に シフト ·ブロード化していることがわかる。 これは、 添加した特定構造、 特定分 子量の環状ォレフィン重合体がプロピレン系樹脂の非晶部に分子相溶的に相溶し ていることを示唆している。
図 2において、 比較例 2では、 弾性率の向上効果が低いことがわかる。 また、 損失弾性率のピークのシフト ·ブロード化がみられないことから、 添加した分子 量の高い環状ォレフィン重合体はプロピレン系樹脂の非晶部には相溶せず、 従来 のポリマーァロイと同様にドメインとして存在しているものと思われる。
産業上の利用可能性
本発明の結晶性ォレフィン系樹脂組成物は、 特定構造、 特定分子量の環状ォレ フィン重合体を結晶性ォレフィン系樹脂に添加することによって、 従来の知見か らは得られない高い室温弾性率、 俊れた耐傷付き性および耐熱性を示し、 自動車 部材等として有用である。
また、 本発明で得られる効果は、 從来技術のフィラーブレンドおよびェンジ二 ァプラスチックとのァロイ化等とは、 発現機構が異なると考えられるため、 フィ ラーブレンド、 エンジニアリングプラスチックとのァロイ化等の技術と併用して も、 従来技術の効果を阻害することなく、 より高性能化を図ることができる。

Claims

請 求 の 範 囲
1. 下記の成分 (A) 99〜40重童%及び成分 (B) 1〜60重量%からなる ことを特徴とする結晶性ォレフィン系榭脂組成物:
(A) 結晶性ォレフィン系榭脂、
(B) 重量平均分子量 1, 000〜 10.000未満かつガラス転移点 140 。C〜400°Cである環状ォレフィンのビ二レン重合による重合体。
2. 結晶性ォレフイン系樹脂が、 プロピレンの単独重合体、 プロピレンと他の α —ォレフインとのランダム共重合体またはプロック共重合体である請求項 1に 記載の樹脂組成物。
3. 環状ォレフィ ンのビニレン重合による重合体が、 多環式環状ォレフィ ン重合 体である請求項 1に記載の樹脂組成物。
4. 環状ォレフィン重合体が、 結晶性ォレフイン系樹脂中の非晶部と分子相溶的 に相溶している請求項 1に記載の樹脂組成物。
5. 多環式環状ォレフィ ン重合体が、 ノルボルネン系重合体である、 請求項 3に 記載の樹脂組成物。
6. ノルボルネン系重合体が、 単一種のノルボルネン単独重合体である請求項 5 に記載の樹脂組成物。
PCT/JP1996/003086 1995-10-23 1996-10-23 Composition de resine olefinique cristalline WO1997015622A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96935415A EP0857754B1 (en) 1995-10-23 1996-10-23 Crystalline olefin resin composition
DE69629047T DE69629047T2 (de) 1995-10-23 1996-10-23 Kristalline olefinharzzusammensetzung
US09/051,802 US6100347A (en) 1995-10-23 1998-10-23 Crystalline olefin resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7274341A JPH09111058A (ja) 1995-10-23 1995-10-23 結晶性オレフィン系樹脂組成物
JP7/274341 1995-10-23

Publications (1)

Publication Number Publication Date
WO1997015622A1 true WO1997015622A1 (fr) 1997-05-01

Family

ID=17540313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003086 WO1997015622A1 (fr) 1995-10-23 1996-10-23 Composition de resine olefinique cristalline

Country Status (5)

Country Link
US (1) US6100347A (ja)
EP (1) EP0857754B1 (ja)
JP (1) JPH09111058A (ja)
DE (1) DE69629047T2 (ja)
WO (1) WO1997015622A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204199A (ja) * 1996-11-19 1998-08-04 Mitsubishi Chem Corp 多孔質成形体
DE19738051A1 (de) * 1997-09-01 1999-03-04 Targor Gmbh Spritzgieß-Artikel aus Metallocen-Polypropylen
ITMI20051823A1 (it) * 2005-09-29 2007-03-30 Safta Spa Sistemi di imballaggio flessibile e procedimenti per la loro fabbricazione
JP5564945B2 (ja) * 2007-06-22 2014-08-06 日本ゼオン株式会社 樹脂組成物およびこれを用いたフィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168751A (ja) * 1987-12-25 1989-07-04 Zeon Kasei Co Ltd 易加工性形状記憶組成物
JPH04272937A (ja) * 1991-02-28 1992-09-29 Toray Ind Inc ポリマーシート
JPH05271487A (ja) * 1992-03-26 1993-10-19 Idemitsu Kosan Co Ltd 樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2009903A1 (en) * 1989-02-14 1990-08-14 Takeshi Shiraki Thermoplastic resin composition
DE19536043A1 (de) * 1995-09-28 1997-04-10 Hoechst Ag Polyolefinfolie mit Cycloolefinpolymer, Verfahren zu ihrer Herstellung und ihre Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168751A (ja) * 1987-12-25 1989-07-04 Zeon Kasei Co Ltd 易加工性形状記憶組成物
JPH04272937A (ja) * 1991-02-28 1992-09-29 Toray Ind Inc ポリマーシート
JPH05271487A (ja) * 1992-03-26 1993-10-19 Idemitsu Kosan Co Ltd 樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0857754A4 *

Also Published As

Publication number Publication date
JPH09111058A (ja) 1997-04-28
EP0857754B1 (en) 2003-07-09
DE69629047D1 (de) 2003-08-14
US6100347A (en) 2000-08-08
EP0857754A1 (en) 1998-08-12
DE69629047T2 (de) 2004-06-03
EP0857754A4 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JP3656324B2 (ja) プロピレン/エチレン−α−オレフィン系ブロック共重合体及びその製造方法
CA2117699C (en) Propylene polymer compositions
TWI480339B (zh) A crosslinking composition, a method for producing a crosslinked composition, and a molded product
CN106977808B (zh) 热塑性弹性体组合物及其成型品
WO2000069964A1 (en) Thermoplastic filled membranes of propylene copolymers
US6630538B1 (en) Polypropylene thermoplastic elastomer compositions having improved processing properties and physical property balance
EP1408080B1 (en) Polyolefin resin composition
US7851540B2 (en) Resin composition and molded body made from same
WO2004108824A1 (ja) プロピレン系樹脂組成物
US5753755A (en) Resin composition and molded article of the same
JPH051185A (ja) 強度に優れた熱可塑性樹脂組成物及びその製造法
JPH09309982A (ja) ポリプロピレン系樹脂組成物
JP4083467B2 (ja) 自動車外装用樹脂組成物
JPH0753766B2 (ja) α−オレフイン系ランダム共重合体の製造法
WO1997015622A1 (fr) Composition de resine olefinique cristalline
JP3598428B2 (ja) 樹脂組成物およびその成形物
JPH03255145A (ja) 熱可塑性樹脂組成物
JP3656321B2 (ja) オレフィン系ブロック共重合体及びその製造方法
JPH09194646A (ja) ポリプロピレン系樹脂組成物
JP3516783B2 (ja) ポリプロピレン系樹脂組成物
JP5498207B2 (ja) 架橋組成物、架橋組成物の製造方法、成形体
JP2001520246A (ja) 環式モノマーを含有するポリオレフィンのガラス転移温度の降下
JP3757497B2 (ja) ポリプロピレン系樹脂組成物
JPH10158442A (ja) ポリプロピレン系樹脂組成物
JP2001172335A (ja) エチレン−1−ブテンランダム共重合体およびそれを用いたポリプロピレン樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996935415

Country of ref document: EP

Ref document number: 09051802

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996935415

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996935415

Country of ref document: EP