WO1997009080A1 - Pen-type injector drive mechanism - Google Patents

Pen-type injector drive mechanism Download PDF

Info

Publication number
WO1997009080A1
WO1997009080A1 PCT/US1996/014266 US9614266W WO9709080A1 WO 1997009080 A1 WO1997009080 A1 WO 1997009080A1 US 9614266 W US9614266 W US 9614266W WO 9709080 A1 WO9709080 A1 WO 9709080A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofthe
medication
dosage
drive
plunger portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1996/014266
Other languages
English (en)
French (fr)
Inventor
Thomas P. Castellano
Paul H. Kovelman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visionary Medical Products Corp
Original Assignee
Visionary Medical Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU18606/97A priority Critical patent/AU1860697A/en
Application filed by Visionary Medical Products Corp filed Critical Visionary Medical Products Corp
Priority to JP51138997A priority patent/JP3835817B2/ja
Priority to DE69608567T priority patent/DE69608567T2/de
Priority to DK96932959T priority patent/DK0850079T3/da
Priority to AT96932959T priority patent/ATE193215T1/de
Priority to EP96932959A priority patent/EP0850079B1/en
Priority to CA002231481A priority patent/CA2231481C/en
Priority to ES96932959T priority patent/ES2149499T3/es
Publication of WO1997009080A1 publication Critical patent/WO1997009080A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • A61M5/31541Means preventing setting of a dose beyond the amount remaining in the cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • A61M5/31568Means keeping track of the total dose administered, e.g. since the cartridge was inserted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3146Priming, e.g. purging, reducing backlash or clearance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • A61M5/31543Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose piston rod reset means, i.e. means for causing or facilitating retraction of piston rod to its starting position during cartridge change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3155Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3156Mechanically operated dose setting member using volume steps only adjustable in discrete intervals, i.e. individually distinct intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31578Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod
    • A61M5/3158Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod performed by axially moving actuator operated by user, e.g. an injection button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31583Constructional features or modes of drive mechanisms for piston rods based on rotational translation, i.e. movement of piston rod is caused by relative rotation between the user activated actuator and the piston rod
    • A61M5/31585Constructional features or modes of drive mechanisms for piston rods based on rotational translation, i.e. movement of piston rod is caused by relative rotation between the user activated actuator and the piston rod performed by axially moving actuator, e.g. an injection button

Definitions

  • This invention relates to drive mechanisms for pen-type injectors, and more particularly to permanently engaged direct drive mechanisms for pen-type injectors that maintain a plunger on a piston of a medication cartridge in a pen-type injector.
  • One type of pen-type injector drive mechanism simply uses a push pump injector mechanism. To administer an injection, a user places the needle under the skin and repeatedly presses the injection button to inject a plurality of small dosages to inject a cumulative amount of required medication.
  • This type of drive mechanism suffers from several drawbacks. For instance, the constant pumping ofthe device can aggravate the injection site causing injury and pain. Also, a user must keep track ofthe number of depressions to determine if the proper amount of cumulative doses of medication have been injected.
  • Another type of pen-type injector drive mechanism uses a ratcheted plunger rod that allows a user to inject the medication with a single depression of the pen-injector.
  • the ratchet on the plunger rod prevents the plunger rod from moving backward when the pen- injector is being adjusted or when the pen-type injector is not in use.
  • this pen-type injector drive mechanism also suffers from several drawbacks. Typically, this drive mechanism is a one-way device and any incorrect dosages cannot be reset, so that the user must expel the incorrect injection amount and start over — thus, wasting medication.
  • the plunger rod extends out ofthe pen-type injector for a considerable length when a new medication cartridge is inserted in the pen-type injector, and only shortens as injections are given.
  • the device is awkward to use and transport, since the plunger rod often gets in the way when it is at its full length with a new cartridge.
  • Still another type of pen-type injector drive mechanism utilizes a complicated multi- piece direct drive mechanism that pulls the plunger away from a piston in the medication cartridge when the medication dosage is adjusted and set. While more accurate and convenient to use than the previously discussed mechanisms, this injector drive mechanism suffers from several drawbacks. For example, since the plunger is pulled away from the piston in the medication cartridge, the hydraulic load that maintains the pressure in the medication cartridge is removed and the fluid may leak out, or the rubber casket in the medication cartridge may change position which could result in inaccurate dosing.
  • the plunger rod is again formed from a plurality of pieces, and plunger rod may remain in position against the medication cartridge, while the dosage for an injection is being adjusted.
  • the drive mechanism suffers from several drawbacks, since this type of injector drive mechanism is an indirect drive mechanism, which requires the user to perform a number of adjustments in order to administer an injection. For example, the user must first disengage a driving portion ofthe drive mechanism from the plunger portion that remains against the medication cartridge. Then the user sets the dosage of the medication. Once the dosage is set, the user must re-engage the driving portion ofthe drive mechanism with the plunger portion, and then inject the medication. In addition, disengaging and reengaging the drive mechanism with the plunger portion may result in slight dosage inaccuracies.
  • a medication injection mechanism for delivering a dosage of medication from a medication cartridge having a piston, includes a two-piece drive shaft, a rachet mechanism, and a drive mechanism.
  • the two-piece drive shaft includes a plunger portion and a drive portion.
  • the plunger portion has an end that contacts the piston ofthe medication cartridge, ratchet teeth, members or ratchet receiving means disposed on the sides ofthe plunger portion that define a thickness ofthe plunger portion, and an opening to provide a passage through the plunger portion ofthe two-piece drive shaft.
  • the drive portion is formed by rails that are coupled together by a connector that passes through the opening in the plunger portion so that the drive portion is coupled to the plunger portion and can move relative to the plunger portion.
  • Each ofthe rails forming the drive portion has threads on a surface that extends beyond the defined thickness ofthe plunger portion.
  • the ratchet mechanism engages with the ratchet teeth, members or ratchet receiving means ofthe plunger portion to permit the movement ofthe plunger portion towards the piston ofthe medication cartridge and to inhibit movement ofthe plunger portion away from the piston ofthe medication cartridge.
  • the drive mechanism engages with the threads on the rails ofthe drive portion, but is free of contact with the ratchet teeth, members or ratchet receiving means on the plunger portion to adjust the position ofthe drive portion relative to the plunger portion so that the drive portion can be moved toward the piston ofthe medication cartridge a fixed distance and the plunger portion is moved a distance that is less than or equal to the fixed distance.
  • Fig. 1 is a perspective view of a pen-type injector in accordance with an embodiment ofthe present invention.
  • Fig. 2 is a front perspective view ofthe embodiment ofthe pen-type injector shown in Fig.l .
  • Fig. 3 is a partial cross-sectional and exploded side view of the pen-type injector shown in Fig. 2.
  • Fig. 4 is a simplified block flow diagram for the pen-type injector as shown in Fig. 1.
  • Fig. 5 is a cross-sectional view of the pen-type injector embodiment as shown along the line 5-5 in Fig. 2.
  • Fig. 6 is another cross-sectional view ofthe pen-type injector shown in Fig. 5, with the actuator in the released position.
  • Figs. 7(a)- 7(i) show exploded views and details of a drive mechanism in accordance with an embodiment ofthe present invention.
  • Fig. 7(a) is an exploded view ofthe drive mechanism.
  • Figs. 7(b) and 7(b) are an alternative embodiment for a portion of the drive mechanism.
  • Fig. 7(d) is a further exploded view of an actuator knob drive shaft shown in Fig. 7(a).
  • Figs. 7(e)- 7(f) show various views of a keyway bore in the actuator knob drive shaft shown in Fig. 7(a).
  • Figs. 7(g)- 7(i) show various views ofthe threaded drive shaft shown in Fig. 7(a).
  • Figs. 8-12 show various views ofthe drive mechanism in accordance with an embodiment ofthe present invention.
  • Fig. 13 is a cross-sectional view ofthe pen-type injector as shown along the line 13-
  • Fig. 14 is a cross-sectional view of an injection drive mechanism in accordance with an embodiment ofthe present invention.
  • Fig. 15 is an enlarged cross-sectional view ofthe embodiment shown in Fig. 14.
  • Fig. 16 is another cross-sectional view ofthe drive mechanism of Fig. 14 in a different axial position.
  • Fig. 17 is a side view of a plunger portion ofthe split, two-piece, threaded drive shaft in accordance with the embodiment shown in Fig. 14.
  • Fig. 18 is a cross-sectional view of the plunger portion ofthe split, two-piece, threaded drive shaft as shown along the line 18- 18 in Fig. 17.
  • Fig. 19 is a side view of one ofthe pair of members that forms the drive portion of the split, two-piece, threaded drive shaft in accordance with the embodiment shown in Fig. 14.
  • Fig. 20A is a cross-sectional view of one ofthe pair of members that forms the drive portion ofthe split, two-piece, threaded drive shaft as shown along the line 20-20 in Fig. 19.
  • Fig. 20B is a cross-sectional view of one of a pair of members that forms a drive portion ofthe split, two-piece, threaded drive shaft in accordance with another embodiment.
  • Fig. 21 is a side view ofthe pair of members coupled together to form the drive portion ofthe split, two-piece, threaded drive shaft, and which are shown oriented 90° to the plunger portion ofthe split drive shaft shown in Fig. 17.
  • Fig. 22A is a cross-sectional view ofthe plunger portion and the drive portion ofthe split, two-piece, threaded drive shaft coupled together to form a complete split, two-piece, threaded drive shaft as shown in Figs. 14-16.
  • Fig. 22B is a cross-sectional view ofthe plunger portion and a drive portion ofthe split, two-piece, threaded drive shaft coupled together to form a complete split, two-piece, threaded drive shaft in accordance with the embodiment ofthe drive portion shown in Fig. 20B.
  • Figs. 23 A-C are various views of a spring tensioner collar in accordance with the embodiment shown in Fig. 14.
  • Figs. 24A-C are various views of a medication cartridge tensioner and synchronizer in accordance with the embodiment shown in Fig. 14.
  • Figs. 25 A-C are various views of an end cap in accordance with the embodiment shown in Fig. 14.
  • Figs. 26A-C are various views ofa bi-directional ratchet gear in accordance with the embodiment shown in Fig. 14.
  • Figs. 27A-C are various views of a round drum in accordance with the embodiment shown in Fig. 14.
  • Figs. 28A-C are various views of a stationary synchronizer in accordance with the embodiment shown in Fig. 14.
  • Figs. 29A-C are various views of a dosage knob drive shaft in accordance with the embodiment shown in Fig. 14.
  • the invention is embodied in an improved drive mechanism which uses a split, two-piece drive shaft to provide improved dosage delivery.
  • Figs. 1-4 show one embodiment of a pen injector that utilizes a solid, one-piece drive shaft that was described in U.S. Patent Application Serial No. 08/396,420 filed February 28, 1995, and which is inco ⁇ orated herein by reference. Operation of this embodiment ofthe drive mechanism shown in Figs. 1-4 is relatively simple.
  • the user prepares the pen-type injector 10 by depressing the start button 38 to activate the microprocessor 32. If a new medication cartridge 22 is required, the user unscrews the medication cartridge housing 16 from the injection mechanism housing 14, and couples a pre-filled medication cartridge 22 to the injection mechanism 20 and the injection mechanism housing 14. Once the medication cartridge 22 is attached, the user rescrews the medication cartridge housing 16 onto the injection mechanism housing 14.
  • the user removes the protective needle cover 26, and attaches a disposable needle 28 to the needle base 24.
  • the user then holds the pen-type injector 10 with the disposable needle 28 pointing upward and rotates the actuator knob 12 to set a small amount of medication (typically 2-4 units).
  • the user then depresses the actuator knob 12 to eliminate the small amount of medication and remove the air from the disposable needle 28.
  • the user may also use a recall and delete function to delete the air removing injection from memory to prevent it from being stored with the other stored data. Alternatively, the user can mark this entry as an air removal injection, once it is stored in the memory. Depression ofthe actuator knob 12 delivers the set amount of medication.
  • the system then remains on for 60 seconds (although longer or shorter times may be used) after the actuator knob 12 has been depressed so that the user can delete the most recent entry, such as an air shot.
  • the pen-type injector powers itself down.
  • the user reattaches the protective needle cover 26 to prevent inadvertent needle pricks or damage to the disposable needle 28.
  • the user removes the protective needle cover 26 and, if present, the protective needle sheath 30.
  • the actuator knob 12 is released and the microprocessor 32 is activated.
  • the microprocessor 32 displays the time and the amount ofthe last injection on the display 34 in an alternating sequence for 5 seconds (although longer or shorter periods may be used) to remind the user ofthe last injection event. This substantially reduces the chance of "double dosing" (i.e., giving too much medication).
  • the pen-type injector 10 automatically zeros itself so that the user can dial in and set the dosage by rotating the actuator knob 12 in one direction (typically clockwise) until the desired amount ofthe medication to be injected is displayed on the display 34.
  • the display 34 changes in real time, and in preferred embodiments, an audible click or beep is heard as the user rotates the actuator knob 12. Also in preferred embodiments, each click represents an incremental change in the dosage selected (i.e., 0.1, 0.25, 0.5 or 1.0 units). In bi-directional models, the user can increase or decrease the amount of medication to be injected. However, the microprocessor 32 will not allow the user to set a dosage below zero or to select a dosage larger than the amount of medication remaining in the medication cartridge 22. If any incorrect dosage is selected or any step in the injection process is not properly performed, an error message will be displayed on the display 34.
  • the pen-type injector shuts down to conserve power in a "sleep mode.” Activation of a function button or turning the dosage knob 12 will reactivate the pen-type injector 10.
  • the user chooses an injection site, pushes the disposable needle 28 under the skin and depresses the actuator knob 12 down as far as it will go.
  • the actuator knob 12 automatically locks in the depressed position when the actuator is depressed completely and the injection is completed.
  • the microprocessor 32 stores the injection event in the RAM 44 by the date, the time and the amount of injected medication.
  • the user can activate the microprocessor 32 with the mode and clock setting panel 48 to review the recorded data as it is displayed on the display 34. The patient can then transcribe this information in a separate log book if desired.
  • the doctor can download all the stored injection information into an external computer via the data I/O port 46 to produce a report. The doctor can then review the data to spot trends and determine compliance with the medical regimen. If required, the doctor can update the program instructions in the pen-type injector 10 via the data I/O port 46 to provide reminder alarms at various times.
  • Figs. 5 and 6 show detailed cross-sectional views of a preferred embodiment of a direct drive injection mechanism 20 as shown along the line 5-5 in Fig. 2.
  • Figs. 7(a)- 7(i) show exploded views and details of the direct drive mechanism 20.
  • Figs. 8-12 show various views that detail the drive mechanism 20 shown in Figs. 5 and 6.
  • Fig. 13 is a cross-sectional view of the drive mechanism 20 along the line 13-13 shown in Fig. 6.
  • the drive mechanism 20 includes a dosage knob drive shaft 52, a tension spring 54, a lock nut 56, a display seat 58, an offset camshaft 60, an electronics mount 62, a ratchet spring 64, a ratchet collar 66, a drive calibrator 68, a ratchet gear 70, a synchronizer spring 72, a stationary synchronizer 74, a threaded drive shaft 76, a plunger 78, an end cap 80, a medication cartridge tensioner and synchronizer 82, and a medication cartridge piston 84 that are coupled as shown in Figs. 5- 12.
  • the dosage knob drive shaft 52 is coupled to a splined dosage actuator 53 by a splined retainer 55 (see Figs.
  • the splines 96 ofthe dosage knob drive shaft 52 are timed to the splines 96A ofthe splined dosage actuator 53 at a 45° rotational offset (alternative embodiments may use other angular rotational offsets).
  • the offset is referenced by the pre-determined fixed location ofthe splined retainer 55 during assembly to the tubular end of the drive shaft 52.
  • the dosage knob drive shaft 52, the dosage actuator 53, the splined retainer 55 and the dosage actuator knob 12 form a sub-assembly.
  • the sub-assembly is coupled to the threaded drive shaft 76 by a left-handed threaded locknut 56.
  • the threaded drive shaft 76 has a double keyway that runs the entire length ofthe threads on the threaded drive shaft 76 to allow the drive shaft 76 to move laterally in a keywayed bore 57 (see Figs. 5, 6 and 7(e)-7(i)) ofthe dosage knob drive shaft 52 along the centerline axis ofthe sub ⁇ assembly when the dosage actuator 53 is rotated in a clockwise or counter-clockwise direction for the purpose of selecting a dosage setting.
  • the double internal keyway in the splined end ofthe bore ofthe dosage knob drive shaft 52 is used to hold the threaded drive shaft 76 in a fixed position that prevents the threaded drive shaft 76 from rotating within the sub-assembly.
  • the left-handed threaded locknut 56 is a retainer that prevents the threaded drive shaft 76 from traveling past a stop 59 located in the end ofthe dosage knob drive shaft 52 (see Fig. 7(e)).
  • the threaded locknut 56 also determines the end ofthe stroke for the threaded drive shaft 76, which corresponds with a pre-determined position ofthe threaded drive shaft 76 to signify an empty medication cartridge.
  • the start button 38 is also coupled to the dosage actuator 53 to maintain the dosage actuator sub-assembly in a depressed position when the pen-type injector 10 is not being used, and to release the spring tensioned dosage actuator 53 and activate the microprocessor 32 when the pen-type injector 10 is to be used for an injection.
  • Contained within the internal housing ofthe dosage actuator sub-assembly is a tension spring 54 that is securely attached to the interior ofthe sub-assembly by the actuator knob 12. The purpose ofthe spring 54 is to hold the sub-assembly at a pre-determined tension to provide drive shaft dampening from the hydraulic loads produced during the injection cycle.
  • the tension spring 54 All free tolerances in the dosage actuator sub-assembly are taken up by the tension spring 54 to maintain the sub-assembly in a stable configuration and to help ensure injection dosage accuracy.
  • the starter button 38 When the starter button 38 is depressed, the synchronizer spring 72 displaces the entire dosage actuator sub-assembly along with the threaded drive shaft 76 and the drive calibrator 68 to move them into the activated position to select a dosage and inject the selected dosage of medication.
  • Tension spring 54 and ratchet spring 64 provide shock damping for the dosage actuator sub-assembly, when it is ejected to and stopped at the activated position.
  • the synchronizer spring 72 also facilitates maintaining the plunger 78 in a proper position with respect to the insulin cartridge piston 84 when the pen-type injector 10 is not being used, so as to minimize the effects of fluid expansion or contraction that could draw air into the insulin cartridge 22 during storage and change in atmospheric pressure.
  • the dosage knob drive shaft 52 that is assembled with the dosage actuator 53 has splines 96 which, when the dosage actuator 53 is in the depressed position, are locked in corresponding spline slots 98 ofthe injection mechanism housing 14 to prevent the dosage actuator 53, the splined retainer 55, the dosage actuator knob 12, the dosage knob drive shaft 52 and the threaded drive shaft 76 from being rotated.
  • the dosage actuator 53 ofthe dosage knob sub-assembly When the dosage actuator 53 ofthe dosage knob sub-assembly is released by the start button 38, the dosage actuator 53, the dosage actuator knob 12 and the dosage drive shaft 52 move in a direction away from the medication cartridge 22.
  • the splines 96 then slide clear ofthe spline slots 98 so that the dosage actuator 53, the dosage actuator knob 12, the dosage knob drive shaft 52 and the threaded drive shaft 76 can be rotated as a single unit. This allows the relative positioning of the threaded drive calibrator 68 and the threaded drive shaft 76 to be adjusted, resulting in the drive calibrator 68 being advanced or retarded in position to adjust the dosage of medication that will be injected by the pen-type injector 10.
  • the splines 96A ofthe dosage actuator 53 are coupled to internal spline slots 100 of the offset cam collar 60 which is coupled to the counter 40 mounted on the electronics mount 62.
  • the offset cam collar 60 has cam lobes 102 that are in operative contact with rocker switches (contact switches or the like) on the counter 40.
  • the rotation ofthe dosage knob actuator knob 12 sub-assembly also changes the axial positioning ofthe threaded drive calibrator 68 relative to the threaded drive shaft 76. This causes the drive calibrator 68 to advance or retard in position relative to the threaded drive shaft 76 depending on the direction of rotation ofthe dosage actuator 53 and dosage actuator 12 to adjust the dosage ofthe medication to be injected.
  • the pre-determined angle of rotation is 90° (although larger or smaller angles may be used).
  • a round drum with bar code stripes can be used in place ofthe offset cam collar, which would then utilize an anode/diode photosensitive receiver to facilitate counting of incremental movements ofthe plunger shaft in relation to the insulin cartridge septum position.
  • Fig. 7(c) illustrates an alternative to the offset camshaft 60 and cam lobes 102 that are operatively coupled with the rocker switches (not shown) on the counter 40.
  • the alternative is a round drum 60' having a plurality of thin bar code lines 102' and thick bar code lines 102" that are read by the counter through an optical sensor and light pipe (not shown).
  • the lines 102' and 102" are grouped in pairs of one thin line 102' next to one thick line 102".
  • the pairs are spaced at predetermined angles around the round drum 60' to represent increments to increase or decrease the dosage amount to be injected. In preferred embodiments, the pairs of lines are spaced at 90° increments around the round drum 60' (although larger or smaller increments may be used).
  • the optical sensor senses one direction of rotation ofthe round drum 60' by detecting a thin line 102' followed by a thick line 102" and then increments the counter 40 by one for each set of detected lines. Conversely, if the sensor detects a thick line 102" followed by a thin line 102', it determines that the rotation is in the opposite direction and decrements the counter 40 by one.
  • the lines may be a reflective material, rather than dark bar code lines.
  • the sensor may use infrared (IR) radiation or may use optical sensors that do not require light pipes.
  • the display seat 58 is adapted to hold the display 34 and the microprocessor 32.
  • the microprocessor 32 is coupled to the counter 40 that is mounted on the electronics mount 62 to determine the dosage of medication to be injected based upon the value in the counter 40.
  • the display seat 58 may also be used to hold the clip 36 to allow the pen-type injector 10 to be carried like a pen.
  • the ratchet spring 64 is permanently attached to the interior ofthe injection mechanism housing 14.
  • the ratchet spring 64 applies pressure to the ratchet collar 66 which in turn applies pressure to the ratchet gear 70.
  • the ratchet gear 70 has teeth 104 that mate correspondingly with teeth 106 on the stationary synchronizer 74.
  • the synchronizer spring 72 applies a counter-pressure on the stationary synchronizer 74 to maintain the ratchet gear 70 and the stationary synchronizer 74 in contact with each other.
  • a ratchet noise is produced as the ratchet gear 70 is rotated relative to the stationary synchronizer 74.
  • the stationary synchronizer 74 also has splines 92 which are coupled to corresponding spline slots 94 in the injection mechanism housing 14 to prevent the stationary synchronizer 74 from rotating. However, the splines 92 are slidably coupled to the spline slots 94 so that the stationary synchronizer can slide back and forth within the injection mechanism housing 14. This allows the medication cartridge 22 to increase the tension of the synchronizer spring 72 when the medication cartridge 22 is seated, and this increased tension causes the teeth 104 and 106 to engage.
  • Figs. 7(a), 7(d)-(i) and 8-12 illustrate a drive mechanism utilizing a mono-directional ratchet gear 70 and a corresponding mono-directional stationary synchronizer 74.
  • the teeth 104 and 106 on the ratchet gear 70 and the synchronizer 74, respectively, are shaped to permit setting the dosage in only a single direction. Thus, if a user goes past the required dosage, the user must either completely reset the pen or eject the currently set dosage.
  • Fig. 7(b) illustrates an alternative bi-directional ratchet gear 70' and a corresponding bi ⁇ directional stationary synchronizer 74' having teeth 104' and 106', respectively.
  • the shape of the teeth 104' and 106' are symmetrical, as opposed to the right angular teeth 104 and 106 on the gear 70 and synchronizer 74, to permit the dosage set by the counter 40 and displayed on the display 34 to be increased and decreased.
  • the drive calibrator 68 is threaded onto the threaded drive shaft 76 to determine the minimum and maximum positions in which the threaded drive shaft 76 can be moved to inject medication from the medication cartridge 22.
  • the drive calibrator 68 also performs as a rotational reference point to keep track ofthe incremental movement ofthe threaded drive shaft 76 so that the dosage of medication injected by the pen-type injector can be accurately determined.
  • An end ofthe drive calibrator 68 has splines 88 that engage corresponding spline slots 90 in the end cap 80 to hold the drive calibrator 68 in a rotationally fixed position.
  • the other side of the end cap 80 is coupled to the medication cartridge tensioner and synchronizer 82 which is used to secure a medication cartridge 22 to the injection housing 14.
  • the threaded drive shaft 76 is coupled to the medication cartridge piston 84 to inject medication in the medication cartridge 22 when the actuator knob 12 is depressed.
  • the illustrated direct drive mechanism only requires a single complete depression of the actuator knob 12 to inject different set amounts of medication.
  • the illustrated direct drive allows the user to accurately set various dosage values to be injected.
  • the drive mechanism 20 is capable of providing dosage accuracies of between 0.1 to 1.0-unit increments.
  • one drawback to this embodiment is that the plunger 78 is withdrawn from the piston 84 ofthe medication cartridge 22 when the dosage is to be set. This removes the constant pressure on the medication cartridge 22, and the piston 84 could back out ofthe medication cartridge, if the injector is subjected to a shock while setting the dosage or is dropped while the actuator knob 12 is released. Figs.
  • 14-29C illustrate another embodiment of a drive mechanism that utilizes a split, two-piece, threaded drive shaft to provide accurate medication dosing, and which overcomes the drawbacks of removing the plunger from the piston in the medication cartridge.
  • the drive mechanism maintains the plunger portion ofthe split, two-piece, threaded drive shaft in contact with the piston ofthe medication cartridge at all times, except for when a cartridge is being inserted or removed. This configuration prevents the piston from backing out and keeps the medication under constant pressure.
  • the actuator knob of the drive mechanism adjusts a drive portion ofthe split, two-piece, threaded drive shaft surrounding the plunger portion ofthe split, two-piece, threaded drive shaft to set the dosage.
  • both portions ofthe split, two-piece, threaded drive shaft move the end ofthe plunger portion forward a specified amount, and the injection is completed.
  • the plunger portion ofthe split, two-piece, threaded drive shaft is not retracted away from the piston in the medication cartridge after each injection.
  • the drive mechanism 120 includes a dosage knob drive shaft 152 (see Figs. 29A-C), a tension spring 154, a lock nut 156, a display seat 158, a round drum 160' (see Figs. 27A-C), an electronics mount 162, a ratchet spring 164, a spring tensioner and ratchet collar 166 (see Figs.
  • the drive mechanism 120 is embodied in a split, two-piece, threaded drive shaft 176 that includes a plunger portion 176A and drive portion 176B.
  • the plunger portion 176A includes a plunger 178 that rests against the piston 184 ofthe medication cartridge 122 to maintain the piston 184 in the forward position and to maintain the medication in the medication cartridge 122 under a constant pressure.
  • the drive portion 176B is permanently engaged with the drive mechanism 120 to facilitate easy dosage setting and injection delivery with a minimum of actions required from the user.
  • the user releases the start button 138, sets the dosage by rotating the actuator knob 112, and injects the medication with a single depression ofthe actuator knob 112. As shown in Figs.
  • preferred embodiments ofthe plunger portion 176 A are formed as a solid rod 1002 that has ratchet teeth 1004 on opposite sides ofthe rod 1002. Oriented 90° to the sides with the ratchet teeth 1004 are a pair of track slots 1006 cut into opposite sides ofthe rod 1002 for receiving the drive portion 176B ofthe split, two-piece, threaded drive shaft 176.
  • the ratchet teeth 1004 and the track slots 1006 may be arranged differently around the rod 1002.
  • the track slots 1006 have a substantially dovetail cross-section to facilitate rigidity and to maintain the drive portion 176B in the track slots 1006 when setting the dosage and administering an injection.
  • the track slots may use other cross-sectional shapes, such as rectangular, square, circular or the like.
  • the solid rod 1002 also has openings such as an oval aperture 1008 that is cut through the rod 1002 to provide a passage from one track slot 1006 to the other track slot 1006 on the opposite side ofthe rod 1002. This aperture 1008 is used to limit the rearward travel ofthe drive portion 176B when setting a dosage to be injected.
  • different shape apertures such as rectangular or the like may be used.
  • the ratchet teeth 1004 on the plunger portion 176A are engaged by a ratchet mechanism 1010 either formed as a part of or that is connected to the end ofthe stationary synchronizer 174'.
  • the ratchet teeth 1004 are cut so that each presents a slope surface towards the medication cartridge 122 and a vertical surface towards the actuator knob 1 12.
  • the plunger portion 176A can move forward, but not back, when a medication cartridge 122 is coupled to the drive mechanism 120.
  • the ratchet teeth 1004 are released when the medication cartridge 122 is removed.
  • different teeth shapes may be used, as long as forward movement is permitted and rearward movement ofthe plunger portion 176A is inhibited.
  • the ratchet teeth may be replaced with grooves or the like.
  • the ratchet mechanism 1010 is forced to engage the ratchet teeth 1004 as the medication cartridge 122 contacts and presses against a medication cartridge tensioner and synchronizer 182, when the medication cartridge 122 is threaded onto the injection housing 1 14.
  • the medication cartridge tensioner and synchronizer 182 has integral legs 1012 which pass through portals 1013 in the end cap 180 (see Figs. 24A-25C), which is fixed to the housing 1 14.
  • the integral legs 1012 contact the flat surface of a wedge cap 1014 which provides tension against the medication cartridge 122.
  • the wedge cap 1014 is pressed back against the ratchet mechanism 1010, and the compressive force ofthe wedge members 1015 sliding against the ratchet mechanism 1010 forces the ratchet mechanism 1010 down into contact with the ratchet teeth 1004 ofthe plunger potion 176A ofthe split, two-piece, threaded drive shaft 176. This locks the plunger portion 176A so that it can only be pushed forward.
  • a ratchet release spring 1016 moves the wedge cap 1014, and the medication cartridge tensioner and synchronizer 182 with the integral legs 1012 forward towards the medication cartridge, until the medication cartridge tensioner and synchronizer 182 contacts an intemal seat stop 1018 at the forward end ofthe injection housing 1 14.
  • the plunger portion 176A ofthe split, two- piece, threaded drive shaft 176 may be moved backward to receive a medication cartridge 122.
  • different ratchet mechanisms may be used so that the plunger portion 176A is inhibited from backward movement, such as a slip clutch, ratcheted camlock or the like, when a medication cartridge 122 is coupled to the injection housing 1 14.
  • the drive portion 176B ofthe split, two-piece, threaded drive shaft 176 is formed by a pair of rails 1020 that have a track portion 1022.
  • Each ofthe track portions 1022 are shaped to fit within the track slots 1006 ofthe plunger portion 176A.
  • the two rails 1020 are joined together by corresponding male 1023 and female 1024 connectors that pass through the aperture 1008 ofthe plunger portion 176 A, and which are permanently joined together, by adhesives, welds, snap fit or the like. In altemative embodiments, other connection methods may be used to join the two rails 1020 together. As shown in Fig. 20A, the rails 1020 have a cross-section that matches the dovetail cross-section ofthe track slots in the plunger portion 176A. Once connected together, the male 1023 connector and the female 1024 connector are used to bear against an end 1026 ofthe aperture 1008 in the plunger portion 176A.
  • each ofthe track slots 1006 ofthe plunger portion 176A includes a connector groove 1028, which is deep enough to permit the connectors 1023 and 1024 to slide in the track slots 1006 prior to being coupled together through the aperture 1008.
  • the rails 1020 contact the bottom ofthe track slots 1006 and cannot be removed, since the coupled connectors 1023 and 1024 prevent the rails 1020 from being withdrawn beyond a specific distance that is more than the maximum dosage that can be set by the drive mechanism 120.
  • the track portion 1022 of each rail 1020 in the area of the connectors 1023 and 1024 may be made slightly smaller than the cross-section ofthe track slots 1006. This will allow the rails 1020 to be flexed upward in the track slot 1006 to accommodate the connectors 1023 and 1024, until the connectors 1023 and 1024 reach and pass through the aperture 1008 in the rod 1002.
  • the connector groove 1028 may be omitted, if for example, the two rails each have a threaded bore and are connected together by a set screw or screw threaded into the threaded bore of each ofthe rails 1020. As shown in Figs. 20A and 22A, the rails 1020 extend beyond the radius ofthe rod
  • the rails 1020 have a drive engaging portion 1030 that has an exterior surface formed with threads 1032. These threads 1032 are coupled to the corresponding threads on the drive calibrator 168, which is rotated by the actuator knob 112 to set the dosage ofthe medication to be injected. As shown, the diameter between the threads 1032 on the coupled rails 1020 of the drive portion 176B ofthe split, two-piece, threaded drive shaft 176 is larger than the diameter or thickness ofthe rod 1002 with the ratchet teeth 1004, so that the ratchet teeth 1004, which would otherwise interfere with the drive mechanism 120 as the dosage is being set, cannot engage with the drive calibrator 168. Thus, the plunger portion 176A can be retained in the forward position by the ratchet mechanism 1010 engaging the ratchet teeth
  • the drive portion 176B can be withdrawn and adjusted by the drive calibrator 168 without contacting the ratchet teeth 1004 ofthe plunger portion 176A.
  • the engaging portion 1030 ofthe rails 120 has a larger radius than the rod 1002 and the ratchet teeth 1004.
  • the end cap 180 is fixed (by friction, adhesives or the like) to the splines in the housing 1 14 to resist rotational movement ofthe end cap 180.
  • the end cap 180 also includes protmsions 1060 on the interior ofthe end cap 180 that are shaped to prevent the drive shaft 176 from rotating while adjusting the dosage or depressing the actuator knob 1 12.
  • the ratchet mechanism 1010 when contacting the ratchet teeth 1004 ofthe plunger portion 176 A is positioned between the rails 1002 to resist rotation ofthe drive shaft 176.
  • the split, two-piece, threaded drive shaft 176 does not rotate and is in a fixed, angular orientation. Therefore, the drive mechanism 120 and the ratchet mechanism 1010 are also maintained in a fixed, angular orientation with respect to the portions 176A and 176B ofthe split, two-piece, threaded drive shaft.
  • Figs. 14-16 show that the drive mechanism 120 uses a round drum 160' (see also Figs. 7(c) and 27A-C) having a plurality of thin bar code lines 102' and thick bar code lines 102" that are read by the counter through an optical sensor 1050 and light pipe 1052.
  • the lines 102' and 102" are grouped in pairs of one thin line 102' next to one thick line 102".
  • the pairs are spaced at predetermined angles around the round drum 160' to represent increments to increase or decrease the dosage amount to be injected.
  • the pairs of lines are spaced at 90° increments around the round drum 160' (although larger or smaller increments may be used).
  • the optical sensor 1050 senses one direction of rotation ofthe round drum 160' by detecting a thin line 102' followed by a thick line 102" and then increments the counter 140 by one for each set of detected lines. Conversely, if the sensor 1050 detects a thick line 102" followed by a thin line 102', it determines that the rotation is in the opposite direction and decrements the counter 140 by one.
  • the lines may be a reflective material, rather than dark bar code lines.
  • the sensor 1050 may use infrared (IR) radiation or may use optical sensors that do not require light pipes 1052.
  • Figs. 14-16, 26A-C and 28 A-C illustrate that the drive mechanism uses a bi ⁇ directional ratchet gear 170' and a corresponding bi-directional stationary synchronizer 174' having teeth 104" and 106", respectively.
  • the shape ofthe teeth 104" and 106" are symmetrical, as opposed to the right angular teeth 104 and 106 on the gear 70 and synchronizer 74 (see Fig. 7(a)), to permit the dosage set by the counter 140 and displayed on the display 134 to be increased and decreased.
  • users can correct the set dosage if they go past the desired dosage amount, without having to reset the pen or ejecting the incorrectly set dosage.
  • a user depresses the start button 138 and retracts the drive mechanism 120 to its rearmost position by rotating the actuator knob 1 12. Then the user screws a medication cartridge 122 onto the injection housing 114, until it contacts and moves the medication cartridge tensioner and synchronizer 182 back towards the actuator knob 112.
  • the user depresses the start button 138. This releases the actuator knob 1 12 and moves the drive mechanism 120, along with the drive calibrator 168, back a fixed distance X. As the drive calibrator 168 moves back, it also pulls back the drive portion 176B ofthe split, two-piece, threaded drive shaft 176 a distance X, since it is directly coupled by the threads 1032 to the corresponding threads on the drive calibrator 168. However, the plunger portion 176A remains in position, because the ratchet mechanism 1010 and ratchet teeth 1004 inhibit rearward movement.
  • the connectors 1023 and 1024 joining the rails 1020 together move freely back a distance X through the aperture 1008 in the rod 1002 without bearing against the end ofthe aperture 1008 towards the actuator knob 112.
  • the length ofthe aperture 1008 exactly corresponds to the distance X to prevent negative dosages from being set.
  • longer lengths may be used, since contact at the rear ofthe aperture 1008 is not required if altemative techniques for preventing negative dosages from being set are used.
  • the drive mechanism is bi-directional, the user can adjust the dosage both ways to correct for over rotation ofthe actuator knob 1 12.
  • the user cannot rotate to a value of less than 0 units when a medication cartridge 122 is attached to the injection housing 114.
  • the drive calibrator 168 and dosage knob drive shaft 152 only move back a distance until they contact a wall 1062.
  • the user depresses the actuator knob 112 once, until the start button 138 re-engages the drive mechanism 120.
  • This moves the drive mechanism 120, along with the drive calibrator 168, forward the distance X toward the medication cartridge 122.
  • the drive portion 176B ofthe split, two-piece, threaded drive shaft 176 is also moved forward the distance X toward the medication cartridge 122.
  • the connectors 1023 and 1024 ultimately contact and bear against the end 1026 ofthe aperture 1008 ofthe plunger portion 176A.
  • the depression ofthe actuator knob 112 moves the plunger portion 176A forward past the ratchet mechanism 1010, which then engages the next tooth ofthe ratchet teeth 1004 to inhibit the rearward movement ofthe plunger portion 176 A after each increment of forward movement during the injection.
  • the user can easily set and administer the injection by depressing a button, rotating a knob, and then depressing the knob, without withdrawing the plunger 178 of the plunger portion 176A from the piston 184 ofthe medication cartridge 122. Also, the user is not required to use a complicated procedure to engage and disengage the drive mechanism 120 from the split, two-piece, threaded drive shaft 176, since the drive mechanism 120 is always engaged with the drive portion 176A.
  • the illustrated direct drive mechanism only requires a single complete depression of the actuator knob 1 12 to inject different set amounts of medication.
  • the illustrated direct drive allows the user to accurately set various dosage values to be injected.
  • the drive mechanism 120 is capable of providing dosage accuracies of between 0.1 to 1.0-unit increments. However, other dosage increments may be used.
  • Figs. 20B and 22B illustrate an altemative embodiment, which uses modified rails 1020' that wrap around the rod 1002 to provide greater rigidity and resistance to bending and flexing under the hydraulic loads experienced during administration of an injection.
  • the wrap around arrangement engagement portions 1030' ofthe rails 1020' leave open a ratchet channel 1034.
  • the ratchet channel 1034 permits the drive portion 176B to still slide past the ratchet mechanism 1010, which engages the ratchet teeth 1004 of the rod 1002 that are set within the ratchet channel 1034.
  • the drive shaft 176A and 176B are formed from metal and many ofthe other components in the drive mechanism are formed from plastic.
  • the drive shaft 176A and 176B and the various components ofthe drive mechanisms may be formed from metal, ceramics, plastics, composites or a combination of materials.

Landscapes

  • Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Fuel-Injection Apparatus (AREA)
PCT/US1996/014266 1995-09-08 1996-09-06 Pen-type injector drive mechanism Ceased WO1997009080A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU18606/97A AU1860697A (en) 1995-09-08 1995-09-08 Pen-type injector drive mechanism
JP51138997A JP3835817B2 (ja) 1995-09-08 1996-09-06 ペン型注射器用のドライブ機構
DE69608567T DE69608567T2 (de) 1995-09-08 1996-09-06 Antriebsmechanismus für schreibstiftartigen injektor
DK96932959T DK0850079T3 (da) 1995-09-08 1996-09-06 Drivmekanisme til injektiorer af pennetypen
AT96932959T ATE193215T1 (de) 1995-09-08 1996-09-06 Antriebsmechanismus für schreibstiftartigen injektor
EP96932959A EP0850079B1 (en) 1995-09-08 1996-09-06 Pen-type injector drive mechanism
CA002231481A CA2231481C (en) 1995-09-08 1996-09-06 Pen-type injector drive mechanism
ES96932959T ES2149499T3 (es) 1995-09-08 1996-09-06 Mecanismo de accionamiento para jeringas de tipo pluma.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US340995P 1995-09-08 1995-09-08
US60/003,409 1995-09-08
US08/706,609 US5820602A (en) 1995-09-08 1996-09-05 Pen-type injector drive mechanism
US08/706,609 1996-09-05

Publications (1)

Publication Number Publication Date
WO1997009080A1 true WO1997009080A1 (en) 1997-03-13

Family

ID=26671719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/014266 Ceased WO1997009080A1 (en) 1995-09-08 1996-09-06 Pen-type injector drive mechanism

Country Status (10)

Country Link
US (1) US5820602A (enExample)
EP (1) EP0850079B1 (enExample)
JP (1) JP3835817B2 (enExample)
AT (1) ATE193215T1 (enExample)
AU (1) AU1860697A (enExample)
CA (1) CA2231481C (enExample)
DE (1) DE69608567T2 (enExample)
DK (1) DK0850079T3 (enExample)
ES (1) ES2149499T3 (enExample)
WO (1) WO1997009080A1 (enExample)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19819409A1 (de) * 1998-04-30 1999-11-11 Schering Ag Injektionsvorrichtung
EP0937476A3 (en) * 1998-02-23 1999-11-17 Becton, Dickinson and Company Low-cost medication delivery pen
JP2001017545A (ja) * 1999-07-06 2001-01-23 Jcr Pharmaceuticals Co Ltd 薬剤溶解機構内蔵注射器
WO2010037241A1 (de) * 2008-09-30 2010-04-08 Tecpharma Licensing Ag Injektionsvorrichtung mit exakt feststellbarer kolbenstange
EP2258424A3 (en) * 2001-05-16 2011-10-19 Eli Lilly and Company Medication injector apparatus with drive assembly that facilitates reset
WO2011154486A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
EP2319565A3 (en) * 2001-02-14 2013-07-17 Novo Nordisk A/S Electronically controlled device
WO2015074982A1 (en) * 2013-11-22 2015-05-28 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
EP2729202B1 (en) 2011-07-07 2018-05-16 Novo Nordisk A/S Drug delivery injection pen with add-on dose capturing and display module
US10682469B2 (en) 2017-12-04 2020-06-16 Novo Nordisk A/S Drug delivery system with magnetic ring and sensors arranged in a ring pattern
US11554215B2 (en) 2017-06-08 2023-01-17 Novartis Ag Injection device and injection solution transferring system
US11596747B2 (en) 2017-09-22 2023-03-07 Novo Nordisk A/S Accessory device for drug delivery device
US12239826B2 (en) 2018-12-04 2025-03-04 Novo Nordisk A/S Drug delivery assembly with moving sensor system

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730723A (en) 1995-10-10 1998-03-24 Visionary Medical Products Corporation, Inc. Gas pressured needle-less injection device and method
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6277099B1 (en) * 1999-08-06 2001-08-21 Becton, Dickinson And Company Medication delivery pen
US6585698B1 (en) * 1999-11-01 2003-07-01 Becton, Dickinson & Company Electronic medical delivery pen having a multifunction actuator
WO2001060311A1 (de) * 2000-02-16 2001-08-23 B D Medico S.A.R.L. Verfahren zur rekonstitution einer injektionsflüssigkeit, und injektionsgerät zur durchführung eines solchen verfahrens
US6607508B2 (en) 2000-04-27 2003-08-19 Invivotech, Inc. Vial injector device
US6663602B2 (en) 2000-06-16 2003-12-16 Novo Nordisk A/S Injection device
US6986760B2 (en) * 2000-08-02 2006-01-17 Becton, Dickinson And Company Pen needle and safety shield system
AU2001280762A1 (en) * 2000-08-02 2002-02-13 Becton, Dickinson And Company Pen needle and safety shield system
AU2001289589A1 (en) 2000-09-22 2002-04-02 Novo-Nordisk A/S A medication delivery device
US6387078B1 (en) * 2000-12-21 2002-05-14 Gillespie, Iii Richard D. Automatic mixing and injecting apparatus
IL156245A0 (en) * 2000-12-22 2004-01-04 Dca Design Int Ltd Drive mechanism for an injection device
US6899699B2 (en) * 2001-01-05 2005-05-31 Novo Nordisk A/S Automatic injection device with reset feature
MXPA03008316A (es) 2001-03-14 2004-09-10 Penjet Corp Metodo y sistema para remover gas disuelto de una solucion.
US6613010B2 (en) 2001-04-13 2003-09-02 Penjet Corporation Modular gas-pressured needle-less injector
EP1427463A2 (en) 2001-04-27 2004-06-16 PenJet Corporation Method and apparatus for filling or refilling a needle-less injector
AU2012200045B2 (en) * 2001-05-16 2013-10-10 Eli Lilly And Company Medication injector apparatus with drive assembly that facilitates reset
USD462760S1 (en) 2001-06-13 2002-09-10 Eli Lilly And Company Medication delivery apparatus
JP4288156B2 (ja) * 2001-07-16 2009-07-01 イーライ リリー アンド カンパニー 充填用に回転かつ注射用にプル・プッシュ形式の投薬装置
DE10163328B4 (de) * 2001-07-30 2005-08-11 Tecpharma Licensing Ag Verabreichungsgerät mit Verdrehsicherung
DE10163327A1 (de) 2001-07-30 2003-02-27 Disetronic Licensing Ag Reservoirmodul mit Kolbenstange
DE10137408A1 (de) * 2001-07-31 2003-03-13 W J Huk Druckgeschützte Injektionsspritze
US6824526B2 (en) 2001-10-22 2004-11-30 Penjet Corporation Engine and diffuser for use with a needle-less injector
GB0201686D0 (en) * 2002-01-25 2002-03-13 Dca Design Consultants Ltd Improvements in and relating to a medicament delivery device
AU2003209095A1 (en) 2002-02-11 2003-09-04 Antares Pharma, Inc. Intradermal injector
US6979316B1 (en) 2002-05-23 2005-12-27 Seedlings Life Science Ventures Llc Apparatus and method for rapid auto-injection of medication
EP1391794A1 (en) * 2002-07-23 2004-02-25 Novo Nordisk A/S Device with time indicating means
DE10237258B4 (de) * 2002-08-14 2006-09-21 Tecpharma Licensing Ag Injektionsvorrichtung
US20040039337A1 (en) * 2002-08-21 2004-02-26 Letzing Michael Alexander Portable safety auto-injector
US7081109B2 (en) * 2002-08-22 2006-07-25 Baxa Corporation Sterile docking apparatus and method
DE10250629A1 (de) * 2002-10-30 2004-05-19 Tecpharma Licensing Ag Verfahren und Vorrichtung zur Anzeige und Dosierung bei der Verabreichung eines Produkts
US7018356B2 (en) 2002-10-31 2006-03-28 Wise Roger R Method and apparatus for adjusting the contents of a needle-less injector
GB0304822D0 (en) 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
GB0304823D0 (en) 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
DE10351732B4 (de) * 2003-07-10 2010-10-21 Tecpharma Licensing Ag Konfiguration einer Injektionsvorrichtung
US8932264B2 (en) 2003-08-11 2015-01-13 Becton, Dickinson And Company Medication delivery pen assembly with needle locking safety shield
KR101121317B1 (ko) 2003-08-12 2012-03-09 일라이 릴리 앤드 캄파니 기계적 확대율을 갖는 삼중 나사식 쓰레드를 갖는 약제투여 장치
IL157981A (en) 2003-09-17 2014-01-30 Elcam Medical Agricultural Cooperative Ass Ltd Auto injector
WO2005046559A2 (en) 2003-11-06 2005-05-26 Lifescan, Inc. Drug delivery pen with event notification means
IL160891A0 (en) 2004-03-16 2004-08-31 Auto-mix needle
AU2005291585B2 (en) 2004-10-04 2011-04-07 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
AU2005298946B2 (en) 2004-10-21 2011-06-09 Novo Nordisk A/S Injection device with torsion spring and rotatable display
PL1804865T3 (pl) 2004-10-21 2010-03-31 Novo Nordisk As Mechanizm wkręcania dla nawijanych penów
US11590286B2 (en) 2004-11-22 2023-02-28 Kaleo, Inc. Devices, systems and methods for medicament delivery
US10737028B2 (en) 2004-11-22 2020-08-11 Kaleo, Inc. Devices, systems and methods for medicament delivery
DE102004063648A1 (de) * 2004-12-31 2006-07-20 Tecpharma Licensing Ag Injektions- oder Infusionsgerät mit Lebensdauer-Ermittlungseinrichtung
DE102004063664A1 (de) * 2004-12-31 2006-07-20 Tecpharma Licensing Ag Echtzeitanzeige für eine Vorrichtung zur dosierten Verabreichung eines Produkts
PL1843809T3 (pl) 2005-01-21 2017-09-29 Novo Nordisk A/S Automatyczne urządzenie wstrzykujące z górnym mechanizmem wyzwalania
DK1850892T4 (da) 2005-01-24 2023-06-06 Antares Pharma Inc Forfyldt nål-assisteret sprøjtejetinjektor
US9022980B2 (en) 2005-02-01 2015-05-05 Kaleo, Inc. Medical injector simulation device
US8231573B2 (en) * 2005-02-01 2012-07-31 Intelliject, Inc. Medicament delivery device having an electronic circuit system
US8206360B2 (en) 2005-02-01 2012-06-26 Intelliject, Inc. Devices, systems and methods for medicament delivery
NZ560516A (en) 2005-02-01 2010-12-24 Intelliject Inc A delivery system where a medicant is automatically delivered on activation as well as a recorded instruction
US20090043264A1 (en) 2005-04-24 2009-02-12 Novo Nordisk A/S Injection Device
US7611505B2 (en) * 2005-05-10 2009-11-03 Baxa Corporation Sterile docking apparatus and method
JP5062768B2 (ja) * 2006-03-10 2012-10-31 ノボ・ノルデイスク・エー/エス 注射装置および該装置のカートリッジを交換する方法
US8361036B2 (en) * 2006-03-10 2013-01-29 Novo Nordisk A/S Injection device having a gearing arrangement
WO2007107561A2 (en) 2006-03-20 2007-09-27 Novo Nordisk A/S Determination of position of injection needle
US9144648B2 (en) 2006-05-03 2015-09-29 Antares Pharma, Inc. Injector with adjustable dosing
US8251947B2 (en) 2006-05-03 2012-08-28 Antares Pharma, Inc. Two-stage reconstituting injector
USD571912S1 (en) 2006-05-10 2008-06-24 Baxa Corporation Medical connector docking device
US8226618B2 (en) 2006-05-16 2012-07-24 Novo Nordisk A/S Gearing mechanism for an injection device
AU2007253481B2 (en) 2006-05-18 2013-01-17 Novo Nordisk A/S An injection device with mode locking means
US7673819B2 (en) * 2006-06-26 2010-03-09 Battelle Memorial Institute Handheld sprayer with removable cartridge and method of using same
US20090277970A1 (en) * 2006-06-26 2009-11-12 Battelle Memorial Institute Cartridge having self-actuating seal for a wetted lead screw
EP2051753B1 (en) * 2006-08-18 2016-05-25 SHL Medical AB Device for delivering medicament encompassing a pressure release mechanism
AU2007301890B2 (en) * 2006-09-29 2012-08-16 Novo Nordisk A/S An injection device with electronic detecting means
FR2908753B1 (fr) * 2006-11-16 2011-11-11 Becton Dickinson France Dispositif pour delivrer automatiquement des doses successives de produit
CA2681023C (en) 2007-03-23 2015-11-03 Novo Nordisk A/S An injection device comprising a locking nut
US20080249477A1 (en) * 2007-04-05 2008-10-09 West Pharmaceutical Services, Inc. Pen injector having a needle shield
DE102007018696A1 (de) 2007-04-18 2008-10-23 Sanofi-Aventis Deutschland Gmbh Injektionsvorrichtung zur Abgabe eines Medikaments
US7817498B1 (en) * 2007-05-11 2010-10-19 Michael R. Schramm Medical apparatus having elapsed time indicated and method of use
WO2009024562A1 (en) 2007-08-17 2009-02-26 Novo Nordisk A/S Medical device with value sensor
US7883033B2 (en) * 2007-12-10 2011-02-08 Battelle Memorial Institute Lead screw locking device
CN101909673B (zh) * 2007-12-31 2012-12-26 诺沃-诺迪斯克有限公司 电子监控的注射设备
US20090182582A1 (en) * 2008-01-15 2009-07-16 Hawkeye Production Llc System and portable apparatus for securely dispensing and maintaining accurate inventory of controlled substances in a hospital setting
US8814834B2 (en) 2008-03-10 2014-08-26 Antares Pharma, Inc. Injector safety device
EP2274029B1 (en) 2008-05-02 2011-11-02 Sanofi-Aventis Deutschland GmbH Medication delivery device
US8021344B2 (en) 2008-07-28 2011-09-20 Intelliject, Inc. Medicament delivery device configured to produce an audible output
EP3581224A1 (en) 2008-08-05 2019-12-18 Antares Pharma, Inc. Multiple dosage injector
CN102186517B (zh) 2008-09-18 2013-07-24 贝克顿·迪金森公司 具有带棘齿的柱塞的医用注射器
ES2393173T5 (es) 2008-10-13 2020-06-26 Sanofi Aventis Deutschland Dispositivo para administración de fármacos y método de fabricación de un dispositivo para administración de fármacos
EP2355879B1 (en) * 2008-11-17 2016-03-23 Becton Dickinson and Company Additive force device for drug delivery pen for intradermal medication injection
EP2196233A1 (en) 2008-12-12 2010-06-16 Sanofi-Aventis Deutschland GmbH Resettable drive mechanism for a medication delivery device and medication delivery device
US9375529B2 (en) 2009-09-02 2016-06-28 Becton, Dickinson And Company Extended use medical device
EP3384942B1 (en) 2009-01-12 2025-09-17 Becton, Dickinson and Company Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment
US9724475B2 (en) * 2009-02-27 2017-08-08 Lifescan, Inc. Drug delivery management systems and methods
EP2408493B1 (en) 2009-03-20 2024-07-24 Antares Pharma, Inc. Hazardous agent injection system
BRPI1012554A2 (pt) 2009-03-31 2016-10-18 Sanofi Aventis Deutschland tampa de caneta
CN102448521B (zh) 2009-03-31 2014-07-23 赛诺菲-安万特德国有限公司 药物递送装置
DK2413995T3 (da) 2009-03-31 2022-12-12 Sanofi Aventis Deutschland Dosisknap til en lægemiddeladministrationsanordning og fremgangsmåde til fremstilling af en dosisknap
CN102422336B (zh) 2009-03-31 2016-01-20 赛诺菲-安万特德国有限公司 使用粘结剂制造药物递送装置主体的方法和药物递送装置主体
CA2768000A1 (en) 2009-04-30 2010-11-04 Sanofi-Aventis Deutschland Gmbh Axially adjustable connection of piston rod to piston for drive mechanism of a drug delivery device
US8728043B2 (en) * 2009-06-01 2014-05-20 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US8257319B2 (en) 2009-06-01 2012-09-04 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US8672896B2 (en) 2009-06-01 2014-03-18 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US9345840B2 (en) 2009-06-01 2016-05-24 Sanofi-Aventis Deutschland Gmbh Drug delivery dose setting mechanism with variable maximum dose
US9457150B2 (en) * 2009-06-01 2016-10-04 Sanofi-Aventis Deutschland Gmbh Biasing mechanism for a drug delivery device
US8585656B2 (en) 2009-06-01 2013-11-19 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US9238106B2 (en) * 2009-06-01 2016-01-19 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US20110015576A1 (en) * 2009-06-01 2011-01-20 Sanofi-Aventis Deutschland Gmbh Medicament identification system for multi-dose injection devices
US9199040B2 (en) * 2009-06-01 2015-12-01 Sanofi-Aventis Deutschland Gmbh Drug delivery device last dose lock-out mechanism
US9623187B2 (en) 2009-06-01 2017-04-18 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US10034982B2 (en) 2009-06-01 2018-07-31 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
US9108007B2 (en) * 2009-06-01 2015-08-18 Sanofi-Aventis Deutschland Gmbh Spindle and bearing combination and drug delivery device
US9463283B2 (en) * 2009-06-01 2016-10-11 Sanofi-Aventis Deutschland Gmbh Dosing mechanism for a drug deliver device
US9125994B2 (en) * 2009-06-01 2015-09-08 Sanofi—Aventis Deutschland GmbH Drug delivery device with dose dial sleeve rotational stop
US9950116B2 (en) 2009-06-01 2018-04-24 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US8974423B2 (en) * 2009-06-01 2015-03-10 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
TWI530306B (zh) 2009-06-02 2016-04-21 賽諾菲阿凡提斯德意志有限公司 藥物傳送裝置總成及藥物傳送裝置
US8939928B2 (en) 2009-07-23 2015-01-27 Becton, Dickinson And Company Medical device having capacitive coupling communication and energy harvesting
US10092691B2 (en) 2009-09-02 2018-10-09 Becton, Dickinson And Company Flexible and conformal patch pump
JP5805092B2 (ja) 2009-09-30 2015-11-04 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 注射デバイス
JP5777629B2 (ja) 2009-11-03 2015-09-09 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 薬物送達デバイス用のアセンブリ及び薬物送達デバイス
DK2536452T3 (da) 2010-02-18 2019-01-02 Sanofi Aventis Deutschland Autoinjektor
DE202011110811U1 (de) 2010-08-06 2016-07-15 Sanofi-Aventis Deutschland Gmbh Patronenhalter zum Zusammenbauen einer Patroneneinheit für eine Medikamenten-Verabreichungsvorrichtung
US8814831B2 (en) 2010-11-30 2014-08-26 Becton, Dickinson And Company Ballistic microneedle infusion device
US8795230B2 (en) 2010-11-30 2014-08-05 Becton, Dickinson And Company Adjustable height needle infusion device
US9950109B2 (en) 2010-11-30 2018-04-24 Becton, Dickinson And Company Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion
US9173999B2 (en) 2011-01-26 2015-11-03 Kaleo, Inc. Devices and methods for delivering medicaments from a multi-chamber container
US11577029B2 (en) 2012-03-15 2023-02-14 Becton, Dickinson And Company Multiple use disposable injection pen
SG193448A1 (en) 2011-03-16 2013-10-30 Becton Dickinson Co Multiple use disposable injection pen
US12350474B2 (en) 2011-03-16 2025-07-08 Becton, Dickinson And Company Multiple use disposable injection pen
AR086257A1 (es) 2011-05-06 2013-11-27 Sanofi Aventis Deutschland Dispositivo de administracion de farmacos y soporte de cartucho para un dispositivo de administracion de farmacos
US8496619B2 (en) 2011-07-15 2013-07-30 Antares Pharma, Inc. Injection device with cammed ram assembly
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
EP2797650A2 (en) 2011-12-29 2014-11-05 Novo Nordisk A/S Torsion-spring based wind-up autoinjector pen with dial-up/dial-down dosing mechanism
US9751056B2 (en) 2012-01-23 2017-09-05 Merit Medical Systems, Inc. Mixing syringe
US8834449B2 (en) 2012-01-23 2014-09-16 Ikomed Technologies, Inc. Mixing syringe
KR20150003179A (ko) 2012-03-06 2015-01-08 안타레스 팔마, 인코퍼레이티드 분리력 특징을 가진 사전충전형 주사기
HUE037439T2 (hu) 2012-04-05 2018-09-28 Sanofi Aventis Deutschland Toll típusú befecskendezõ eszköz ablakkal
US9950125B2 (en) 2012-04-06 2018-04-24 Antares Pharma, Inc. Needle assisted jet injection administration of testosterone compositions
WO2013156516A1 (en) 2012-04-19 2013-10-24 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
WO2013169804A1 (en) 2012-05-07 2013-11-14 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
EP2854909B1 (en) 2012-05-30 2020-07-15 Sanofi-Aventis Deutschland GmbH Bearing for a piston rod body for a drug delivery device, a piston rod arrangement and a piston rod body
DK2879739T3 (en) * 2012-08-03 2017-08-21 Sanofi Aventis Deutschland PENTYPE PHARMACEUTICAL INJECTION DEVICE AND ELECTRONIC SUPPLEMENTARY MONITORING MODULE FOR MONITORING AND REGISTRATION OF DOSAGE SETTING AND ADMINISTRATION
EP4501376A3 (en) 2012-08-08 2025-04-16 Sanofi-Aventis Deutschland GmbH Drug delivery device with tamper-evident closure
ES2941078T3 (es) 2012-08-31 2023-05-16 Sanofi Aventis Deutschland Dispositivo de administración de fármacos
KR102166894B1 (ko) 2012-08-31 2020-10-16 사노피-아벤티스 도이칠란트 게엠베하 약물 전달 장치
JP2015531258A (ja) 2012-09-11 2015-11-02 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 薬物送達デバイス用の駆動機構および薬物送達デバイス
EP2903666B1 (en) * 2012-10-03 2018-12-05 SHL Medical AG Medicament delivery device
EP2903670B1 (en) 2012-10-05 2017-04-19 Carebay Europe Ltd. Medicament delivery device
RU2598809C1 (ru) * 2012-10-05 2016-09-27 Кэрбей Юроп Лтд Устройство для доставки лекарственных средств
WO2014106096A1 (en) 2012-12-27 2014-07-03 Kaleo, Inc. Devices, systems and methods for locating and interacting with medicament delivery systems
US9744302B2 (en) 2013-02-11 2017-08-29 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
US20140253519A1 (en) * 2013-03-08 2014-09-11 Michael David Expandable diameter stylus
EP3572108A1 (en) 2013-03-11 2019-11-27 Antares Pharma, Inc. Dosage injector with pinion system
TWI653069B (zh) 2013-03-11 2019-03-11 德商賽諾菲阿凡提斯德意志有限公司 活塞桿以及包含活塞桿的藥物輸送裝置
WO2014165136A1 (en) 2013-03-12 2014-10-09 Antares Pharma, Inc. Constant volume prefilled syringes and kits thereof
EP3881880B1 (en) 2013-03-13 2025-04-02 Sanofi-Aventis Deutschland GmbH Assembly for a drug delivery device comprising a feedback feature
EP2968786B1 (en) 2013-03-13 2020-09-23 Sanofi-Aventis Deutschland GmbH Assembly for a drug delivery device comprising a feedback feature
DK2983761T3 (en) 2013-04-10 2018-02-19 Sanofi Sa DRIVE DEVICE FOR PHARMACEUTICAL DISPENSER
JP6602290B2 (ja) 2013-05-16 2019-11-06 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 薬物送達デバイス用の機構
CN105283209B (zh) 2013-05-27 2019-01-25 赛诺菲-安万特德国有限公司 用于药物输送装置的驱动组件和药物输送装置
EP3038679B1 (en) 2013-08-29 2021-05-05 Sanofi-Aventis Deutschland GmbH Cap assembly for a drug delivery device and drug delivery device
CA2921926A1 (en) 2013-08-29 2015-03-05 Sanofi-Aventis Deutschland Gmbh Housing and cap for an injection device made of an outer metal part and an inner plastic part
WO2015028439A1 (en) 2013-08-29 2015-03-05 Sanofi-Aventis Deutschland Gmbh Cap for a drug delivery device
DK3041538T3 (da) 2013-09-03 2020-08-24 Sanofi Sa Drivmekanisme og injektionsanornding dermed
KR102375565B1 (ko) 2013-09-23 2022-03-17 사노피-아벤티스 도이칠란트 게엠베하 약물 전달 장치용 어셈블리 및 약물 전달 장치
EP3082910B1 (en) 2013-12-20 2020-03-04 Sanofi-Aventis Deutschland GmbH Assembly for a drug delivery device and drug delivery device
US10004845B2 (en) 2014-04-18 2018-06-26 Becton, Dickinson And Company Split piston metering pump
WO2015185687A1 (en) 2014-06-06 2015-12-10 Novo Nordisk A/S Logging device for drug delivery device
US10183119B2 (en) 2014-06-06 2019-01-22 Novo Nordisk A/S Logging device operated by drug delivery device
USD770038S1 (en) 2014-06-26 2016-10-25 Eli Lilly And Company Medication injection device
US9416775B2 (en) 2014-07-02 2016-08-16 Becton, Dickinson And Company Internal cam metering pump
US10704944B2 (en) 2014-09-14 2020-07-07 Becton, Dickinson And Company System and method for capturing dose information
US10971260B2 (en) 2014-09-14 2021-04-06 Becton, Dickinson And Company System and method for capturing dose information
US10556067B2 (en) * 2014-10-12 2020-02-11 Min Wei Automatic injection device for multiple dosing
US9532743B2 (en) * 2014-11-06 2017-01-03 Southern Taiwan University Of Science And Technology Apparatus for detecting tissue hardness of living body
US9629550B2 (en) * 2014-11-11 2017-04-25 Southern Taiwan University Of Science And Technology Spring type firing mechanism applied to endoscope accessory
US9686976B2 (en) * 2015-03-02 2017-06-27 Bayer Cropscience Lp Variable metered airless applicator with cartridge
RU2714666C2 (ru) 2015-03-23 2020-02-18 Санофи-Авентис Дойчланд Гмбх Корпус для инъекционного устройства и взаимное соединение деталей корпуса
FI3356386T3 (fi) 2015-09-30 2024-05-16 Rhythm Pharmaceuticals Inc Melanokortiini-4-reseptoripolkuun liittyvien häiriöiden hoitamismenetelmä
CN108778379B (zh) 2016-03-25 2021-04-27 伊莱利利公司 药物递送装置中所设定和递送的剂量的确定
WO2017184401A1 (en) 2016-04-19 2017-10-26 Eli Lilly And Company Determination of a dose in a medication delivery device using two moving arrays with teeth and a sensor
CA3033232C (en) 2016-08-12 2022-09-06 Eli Lilly And Company Dose sensing mechanism in a medication delivery device
AU2017375602B2 (en) 2016-12-15 2020-01-30 Eli Lilly And Company Medication delivery device with sensing system
FI3589340T3 (fi) 2017-02-28 2025-12-04 Lilly Co Eli Annoksen havaitseminen ja lääkkeen tunnistaminen lääkkeenantolaitetta varten
EP3399214B1 (de) * 2017-05-05 2020-07-15 Eppendorf AG Elektronischer dosierantrieb
DK3703797T3 (da) * 2017-11-02 2021-10-25 Sanofi Sa Knap og knapenhed til en anordning til indgivelse af lægemidler
PL3755403T3 (pl) 2018-02-22 2024-12-16 Eli Lilly And Company Urządzenie do podawania leków z elementem czujnikowym

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327910A2 (en) * 1988-02-10 1989-08-16 D.C.P. Af 1988 A/S A dosage unit for dosing a number of measured quantities of a liquid, such as an insulin preparation, from a cartridge
EP0368191A1 (de) * 1988-11-07 1990-05-16 KIRCHNER & WILHELM GMBH & CO. Injektionsgerät
WO1993010838A1 (en) * 1991-11-29 1993-06-10 Novo Nordisk A/S An automatic pen-shaped syringe

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1997129A (en) * 1933-10-27 1935-04-09 Alfred C Taylor Lubricating device
US2221739A (en) * 1939-10-16 1940-11-12 Reiter David Hypodermic syringe
DE730971C (de) * 1940-06-02 1943-01-29 Hauptner Fa H Injektionsspritze, insbesondere fuer tieraerztlichen Gebrauch
US2605763A (en) * 1948-01-31 1952-08-05 Becton Dickinson Co Injection device
US2718299A (en) * 1950-06-01 1955-09-20 Verne L Atwater Medicinal dispenser
CH293302A (de) * 1951-08-21 1953-09-15 Eisenhut Arnold Injektionspritze.
US2632445A (en) * 1951-10-20 1953-03-24 Sr John L Kas Dosing hypodermic syringe
US2695023A (en) * 1952-01-04 1954-11-23 Pfizer & Co C Hypodermic syringe
FR1149735A (fr) * 1956-05-09 1957-12-31 Seringue à grande contenance
FR1170312A (fr) * 1957-03-25 1959-01-13 Commande de seringue
DE1070784B (de) * 1957-05-10 1959-12-10 Bad Neuenahr Dr. iwed. Dr. phil. Erich Both Injektionsspritze
US3110310A (en) * 1961-07-20 1963-11-12 Ideal Instr & Mfg Co Inc Metering hypodermic syringe
US3141583A (en) * 1962-03-23 1964-07-21 William L Brickson Injection gun
US3293749A (en) * 1964-02-03 1966-12-27 Connecticut Scient Ct Inc Amalgam gun
US3348545A (en) * 1964-10-22 1967-10-24 Sarnoff Latched cartridge
FR1445659A (fr) * 1965-06-02 1966-07-15 Serinague à forme revolver à dose réglable
GB1225495A (enExample) * 1967-06-15 1971-03-17
US3517668A (en) * 1967-10-16 1970-06-30 Bio Neering Inc Multiple dosage veterinary injection gun
US3481510A (en) * 1968-05-22 1969-12-02 Robert Edward Allen Jr Twin unit gun-type dispenser for extrudable material in disposable cartridges
CA873458A (en) * 1968-09-03 1971-06-15 F. Ritsky Anthony Self-aspirating syringe
AR205787A1 (es) * 1972-08-10 1976-06-07 Merck & Co Inc Una pistola dispensadora de pasta en dosis multiples para uso juntamente con cartuchos descartables
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4573970A (en) * 1974-11-19 1986-03-04 Wolfgang Wagner Suction injector
GB1517289A (en) * 1975-05-30 1978-07-12 Wolfgang Wagner Liquid medicine dispensers for oral and injection therapy
US4114619A (en) * 1975-11-21 1978-09-19 Wolfgang Wagner Automatic injecting apparatus
US4393870A (en) * 1974-11-19 1983-07-19 Wolfgang Wagner Suction injector
US4284077A (en) * 1974-11-19 1981-08-18 Wolfgang Wagner Suction injector having an adjustable dosing device
US4600403A (en) * 1974-11-19 1986-07-15 Wolfgang Wagner Suction injector II
US3977574A (en) * 1975-05-29 1976-08-31 Bradley Scott Thomas Dispensing pipette actuator system
US4139008A (en) * 1975-11-21 1979-02-13 Wolfgang Wagner Controlled-dose injection apparatus
US4022207A (en) * 1976-03-25 1977-05-10 Indicon Inc. Actuator for a syringe
US4099548A (en) * 1976-08-25 1978-07-11 Oxford Laboratories Inc. Hand-held pipette for repetitively dispensing precise volumes of liquid
CA1103314A (en) * 1978-02-21 1981-06-16 Ryuzo Kawamori Artificial beta cell for controlling a quantity of insulin infusion
DE2807367A1 (de) 1978-02-21 1979-08-30 Nikkiso Co Ltd Kuenstliche betazelle
US4457712A (en) * 1979-11-13 1984-07-03 Dragan William B Dental syringe
EP0037696B1 (en) * 1980-04-08 1984-05-23 Greater Glasgow Health Board Dispensing device
US4333458A (en) * 1981-02-09 1982-06-08 Sterling Drug Inc. Self-aspirating syringe with positively engaged locking collet
GB2109690B (en) * 1981-02-12 1985-02-20 Robert Charles Turner Dose metering plunger devices for use with syringes
US4395921A (en) * 1981-06-26 1983-08-02 Scientific Manufacturing Industries, Inc. Adjustable volume liquid dispenser
JPS5874891A (ja) * 1981-10-28 1983-05-06 Matsushita Electric Ind Co Ltd ベ−ン形圧縮機
DE3270634D1 (en) * 1981-11-12 1986-05-22 John Joseph Jacklich A dental syringe
US4529401A (en) * 1982-01-11 1985-07-16 Cardiac Pacemakers, Inc. Ambulatory infusion pump having programmable parameters
US4415101A (en) * 1982-01-22 1983-11-15 Shapiro Justin J Incremental liquid dispensing device
DE3204178C2 (de) * 1982-02-06 1986-03-20 Eppendorf Gerätebau Netheler + Hinz GmbH, 2000 Hamburg Pipettiervorrichtung
US4425121A (en) * 1982-02-22 1984-01-10 American Cyanamid Company Adjustable feeding device for the administration of dosages of gels and pastes to farm animals
DE3208436C2 (de) * 1982-02-22 1985-09-26 Glasgerätebau Hirschmann, 7101 Eberstadt Flaschendispenser
US4435173A (en) * 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4475905A (en) * 1982-09-30 1984-10-09 Himmelstrup Anders B Injection device
US4710178A (en) * 1982-11-03 1987-12-01 Micro-Mega S.A. Precision injection system and method for intraligmental anesthesia
EP0109913A3 (fr) * 1982-11-03 1984-09-12 Micro-Mega Seringue dentaire pour injections intra-ligamentaires
US4538616A (en) * 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
DE3468173D1 (en) * 1983-09-07 1988-02-04 Disetronic Ag Portable infusion apparatus
US4664128A (en) * 1983-12-16 1987-05-12 Peter F. Lee, Inc Single-hand controlled aspiration device
DD230730A3 (de) * 1984-01-02 1985-12-11 Zentralinstitut Fuer Diabetes Einrichtung zur prospektiven automatischen bestimmung individualspezifischer glukoseregulationsparameter
US4592745A (en) * 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
AU5560486A (en) * 1984-09-07 1987-10-08 Wolfgang Wagner Measuring metabolism during liquid injection
US4613328A (en) * 1984-10-22 1986-09-23 Cecil Boyd Bio-medical injector apparatus
US5279294A (en) * 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
AU6541986A (en) * 1985-11-08 1987-06-02 Disetronic A.G. Injection instrument
US4659327A (en) * 1985-11-26 1987-04-21 Dentsply Research & Development Corp. Multiple dosage syringe
FR2596278B2 (fr) * 1986-03-27 1989-07-13 Micro Mega Sa Seringue dentaire pour injections intra-ligamentaires
US5180371A (en) * 1986-05-30 1993-01-19 Spintech, Inc. Hypodermic anesthetic injection apparatus and method
DE3638984C3 (de) * 1986-11-14 1993-11-18 Haselmeier Wilhelm Fa Injektionsgerät
US4710172A (en) * 1986-11-24 1987-12-01 John Jacklich High pressure syringe with pressure indicator
NL8701091A (nl) * 1987-05-08 1988-12-01 Spruyt Hillen Bv Injectiepen.
DE3715258C2 (de) * 1987-05-08 1996-10-31 Haselmeier Wilhelm Fa Injektionsgerät
GB8713810D0 (en) * 1987-06-12 1987-07-15 Hypoguard Uk Ltd Measured dose dispensing device
WO1989006145A1 (fr) * 1988-01-07 1989-07-13 Bernard Hazon Dispositif pousse-seringue ambulatoire pour injections parenterales a debit asservi au contenu de la seringue
CH675078A5 (enExample) * 1988-01-22 1990-08-31 Nosta Ag
GB8809115D0 (en) * 1988-04-18 1988-05-18 Turner R C Syringes
US4959056A (en) * 1988-06-14 1990-09-25 Wayne State University Digital dispenser
US4998570A (en) * 1988-06-27 1991-03-12 Pavel Jordan & Associates Filling device with sound indicator for filling injection syringe
US5024656A (en) * 1988-08-30 1991-06-18 Injet Medical Products, Inc. Gas-pressure-regulated needleless injection system
US4995402A (en) * 1988-10-12 1991-02-26 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
US5244465A (en) * 1988-10-19 1993-09-14 Byk Gulden Lomberg Chemische Fabrik Gmbh Reusable injection device for distributing a preselected dose
GB2229497B (en) * 1989-03-10 1992-06-03 Graseby Medical Ltd Infusion pump
US5226895A (en) * 1989-06-05 1993-07-13 Eli Lilly And Company Multiple dose injection pen
US5102393A (en) * 1989-07-17 1992-04-07 Survival Technology, Inc. Autoinjector converted from intramuscular to subcutaneous mode of injection
US5085642A (en) * 1989-07-17 1992-02-04 Survival Technology, Inc. Conveniently carried frequent use autoinjector
FR2651314A1 (fr) * 1989-08-25 1991-03-01 Taddei Andre Dispositif portatif pour effectuer des dosages multiples d'un produit liquide ou pateux.
US5050612A (en) * 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
GB9001635D0 (en) * 1990-01-24 1990-03-21 Ganderton David Aerosol carriers
US5226896A (en) * 1990-04-04 1993-07-13 Eli Lilly And Company Dose indicating injection pen
US5249584A (en) * 1990-05-18 1993-10-05 Karkar Maurice N Syringe for hematocrit and oxygen saturation blood analyzer
US5069668A (en) * 1990-07-12 1991-12-03 Boydman Scott A Patient controlled analgesia system
US5230884A (en) * 1990-09-11 1993-07-27 University Of Wales College Of Cardiff Aerosol formulations including proteins and peptides solubilized in reverse micelles and process for making the aerosol formulations
US5256157A (en) * 1991-01-31 1993-10-26 Baxter International Inc. Automated infusion pump with replaceable memory cartridges
US5425716A (en) * 1991-08-09 1995-06-20 Atom Kabushiki Kaisha Infusion apparatus
US5279586A (en) * 1992-02-04 1994-01-18 Becton, Dickinson And Company Reusable medication delivery pen
FR2690622B1 (fr) * 1992-04-29 1995-01-20 Chronotec Système de pompe à perfusion ambulatoire programmable.
US5383865A (en) * 1993-03-15 1995-01-24 Eli Lilly And Company Medication dispensing device
US5540664A (en) * 1993-05-27 1996-07-30 Washington Biotech Corporation Reloadable automatic or manual emergency injection system
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327910A2 (en) * 1988-02-10 1989-08-16 D.C.P. Af 1988 A/S A dosage unit for dosing a number of measured quantities of a liquid, such as an insulin preparation, from a cartridge
EP0368191A1 (de) * 1988-11-07 1990-05-16 KIRCHNER & WILHELM GMBH & CO. Injektionsgerät
WO1993010838A1 (en) * 1991-11-29 1993-06-10 Novo Nordisk A/S An automatic pen-shaped syringe

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937476A3 (en) * 1998-02-23 1999-11-17 Becton, Dickinson and Company Low-cost medication delivery pen
DE19819409A1 (de) * 1998-04-30 1999-11-11 Schering Ag Injektionsvorrichtung
JP2001017545A (ja) * 1999-07-06 2001-01-23 Jcr Pharmaceuticals Co Ltd 薬剤溶解機構内蔵注射器
EP2319565A3 (en) * 2001-02-14 2013-07-17 Novo Nordisk A/S Electronically controlled device
EP2258424A3 (en) * 2001-05-16 2011-10-19 Eli Lilly and Company Medication injector apparatus with drive assembly that facilitates reset
WO2010037241A1 (de) * 2008-09-30 2010-04-08 Tecpharma Licensing Ag Injektionsvorrichtung mit exakt feststellbarer kolbenstange
WO2011154486A1 (en) * 2010-06-11 2011-12-15 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device and drug delivery device
US8882723B2 (en) 2010-06-11 2014-11-11 Sanofi-Aventis Deutchland Gmbh Drive mechanism for a drug delivery device and drug delivery device
EP2729202B1 (en) 2011-07-07 2018-05-16 Novo Nordisk A/S Drug delivery injection pen with add-on dose capturing and display module
CN105744976A (zh) * 2013-11-22 2016-07-06 赛诺菲-安万特德国有限公司 用于药物输送装置的组件
WO2015074982A1 (en) * 2013-11-22 2015-05-28 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
CN105744976B (zh) * 2013-11-22 2019-11-29 赛诺菲-安万特德国有限公司 用于药物输送装置的组件
US10537684B2 (en) 2013-11-22 2020-01-21 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US11065389B2 (en) 2013-11-22 2021-07-20 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device
US11554215B2 (en) 2017-06-08 2023-01-17 Novartis Ag Injection device and injection solution transferring system
US11596747B2 (en) 2017-09-22 2023-03-07 Novo Nordisk A/S Accessory device for drug delivery device
US10682469B2 (en) 2017-12-04 2020-06-16 Novo Nordisk A/S Drug delivery system with magnetic ring and sensors arranged in a ring pattern
US11684722B2 (en) 2017-12-04 2023-06-27 Novo Nordisk A/S Drug delivery system with multipolar magnet and sensor system
US12478741B2 (en) 2017-12-04 2025-11-25 Novo Nordisk A/S Drug delivery system with multipolar magnet and sensor system
US12239826B2 (en) 2018-12-04 2025-03-04 Novo Nordisk A/S Drug delivery assembly with moving sensor system

Also Published As

Publication number Publication date
DK0850079T3 (da) 2000-11-20
US5820602A (en) 1998-10-13
EP0850079B1 (en) 2000-05-24
JPH11512303A (ja) 1999-10-26
JP3835817B2 (ja) 2006-10-18
DE69608567T2 (de) 2001-02-01
CA2231481A1 (en) 1997-03-13
ATE193215T1 (de) 2000-06-15
AU1860697A (en) 1997-07-28
EP0850079A1 (en) 1998-07-01
ES2149499T3 (es) 2000-11-01
CA2231481C (en) 2008-01-22
DE69608567D1 (de) 2000-06-29

Similar Documents

Publication Publication Date Title
US5820602A (en) Pen-type injector drive mechanism
JP5080976B2 (ja) 薬剤デリバリ装置の組み立て方法
US5725508A (en) Quick connect medication delivery pen
EP0897729B1 (en) Medication delivery pen having a controlling means of the torque applied to the dosing elements
JP4037458B2 (ja) 注射器
AU2009201855B2 (en) Medication injector apparatus with drive assembly that facilitates reset
US5593390A (en) Medication delivery device with a microprocessor and characteristic monitor
US5688251A (en) Cartridge loading and priming mechanism for a pen injector
US5582598A (en) Medication delivery pen with variable increment dose scale
CN101068586B (zh) 注射装置
US5599314A (en) Syringe with incrementally actuated plunger
US6641566B2 (en) Reusable medication delivery device
WO1991014467A1 (en) Dispensing device
AU2005235460A1 (en) Injection device comprising a dosing unit with multiple anti-twist protection
JPH0763507B2 (ja) 注射針構造
US12011574B2 (en) Medication delivery device with gear set dosage system
WO2009039851A1 (en) Dose delivery device with gearing mechanism
WO2018011417A1 (en) Medical injector having safety feature preventing accidental expelling
CN118555978A (zh) 药物递送装置
AU2013206130B2 (en) Medication injector apparatus with drive assembly that facilitates reset
AU2012200045B2 (en) Medication injector apparatus with drive assembly that facilitates reset
HK1092084A1 (zh) 适用於给药装置的驱动机构中的改进以及相关改进
HK1092084B (en) Improvements in and relating to drive mechanisms suitable for use in drug delivery devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: PAT.BUL.12/97 UNDER INID (81) "DESIGNATED STATES", ADD "AU,BR,CN,KR,MX,UA, EURASIAN PATENT(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM)";DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

ENP Entry into the national phase

Ref document number: 2231481

Country of ref document: CA

Ref country code: JP

Ref document number: 1997 511389

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: CA

Ref document number: 2231481

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996932959

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996932959

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996932959

Country of ref document: EP