WO1997006394A1 - Four et procede de fusion du metal - Google Patents

Four et procede de fusion du metal Download PDF

Info

Publication number
WO1997006394A1
WO1997006394A1 PCT/JP1996/002228 JP9602228W WO9706394A1 WO 1997006394 A1 WO1997006394 A1 WO 1997006394A1 JP 9602228 W JP9602228 W JP 9602228W WO 9706394 A1 WO9706394 A1 WO 9706394A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting
metal
section
preheating
burner
Prior art date
Application number
PCT/JP1996/002228
Other languages
English (en)
French (fr)
Inventor
Toshio Suwa
Nobuaki Kobayashi
Hiroshi Igarashi
Kimio Iino
Yoshiteru Kikuchi
Yasuyuki Yamamoto
Original Assignee
Nippon Sanso Corporation
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corporation, Nkk Corporation filed Critical Nippon Sanso Corporation
Priority to DE1996622143 priority Critical patent/DE69622143T2/de
Priority to BR9606574A priority patent/BR9606574A/pt
Priority to US08/817,045 priority patent/US5888458A/en
Priority to KR1019970702304A priority patent/KR100456347B1/ko
Priority to EP19960926583 priority patent/EP0784193B1/en
Publication of WO1997006394A1 publication Critical patent/WO1997006394A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • C21C5/565Preheating of scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/567Manufacture of steel by other methods operating in a continuous way
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0045Bath smelting or converting in muffles, crucibles, or closed vessels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0056Scrap treating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • F27B1/025Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey with fore-hearth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/06Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces with movable working chambers or hearths, e.g. tiltable, oscillating or describing a composed movement
    • F27B3/065Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces with movable working chambers or hearths, e.g. tiltable, oscillating or describing a composed movement tiltable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C2007/0093Duplex process; Two stage processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S266/00Metallurgical apparatus
    • Y10S266/90Metal melting furnaces, e.g. cupola type

Definitions

  • the present invention relates to a metal melting furnace and a metal melting method for melting scrap, base metal, and the like of iron, copper, aluminum, and the like only with an oxygen burner using oxygen or oxygen-enriched air as a supporting gas.
  • a metal melting furnace in which fossil fuel is burned by an oxygen burner that uses oxygen or oxygen-enriched air as a supporting gas, and the heat of the combustion dissolves scrap, such as iron, copper, and aluminum, and metal.
  • oxygen burner that uses oxygen or oxygen-enriched air as a supporting gas
  • scrap such as iron, copper, and aluminum
  • Examples of such a melting furnace using an oxygen burner include, for example, Japanese Patent Publication No. 56-51018, Japanese Patent Application Laid-Open No. 11-15919, Japanese Patent Application Laid-Open No. — JP-A No. 9-31012, JP-A-5-271804, JP-A No. 5-271718, etc.
  • These melting furnaces are generally provided with a melting section for melting the metal raw material with an oxygen burner and a preheating section for preheating the metal raw material, as described in Japanese Patent Publication No. 56-5101810 and
  • the metal melting furnace described in Japanese Patent Application Laid-Open No. 11-15919 is provided with a preheating section for preheating a metal material for the next charge via an openable and closable iron grid above the melting section.
  • a metal melting furnace with an iron grate above the melting part needs to be cooled with water, etc., because the iron grate is exposed to high heat, which not only has a large water-cooling heat loss but is also in a severe environment. As a result, there were drawbacks such as water leakage and abnormal opening and closing of the iron grate.
  • the melting furnace described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 5-27187 is a so-called reflection furnace type, and a metal raw material passes through an inclined passage provided in a furnace side wall and is discharged from a melting section. It is injected into the melting part by gravity while being preheated by the exhaust gas.
  • the high-temperature exhaust gas tends to flow in the upper space of the inclined passage, which is the preheating section, and it is difficult to sufficiently preheat the metal material falling on the lower side of the inclined passage. Natural fall It was also difficult to control the falling speed because the metal raw material was introduced below.
  • the rate of charging the metal material from the preheating unit to the melting unit greatly affects the thermal efficiency. That is, the charging speed of the metal raw material is preferably substantially equal to the melting speed in the melting part. If the raw material charging speed is too fast, the molten metal and the undissolved metal are mixed in the lower part of the melting part. In some cases, a phenomenon in which the molten metal resolidifies due to heat loss from the furnace bottom may occur. Conversely, if the input speed is low, the time required for inputting the metal raw material will be longer, and energy will be consumed more than necessary.
  • such metal melting furnaces are generally formed using a large amount of refractory, but since the basic unit of refractory due to damage affects the melting cost, electric furnaces are used to Except for the lower part, water cooling is performed by a water cooling jacket. This is because heat loss is small even if a water-cooled jacket is used because the furnace wall is formed almost vertically and the furnace ceiling is located higher than the furnace bottom as the structure of the electric furnace. It is possible from that. Further, in a melting furnace for melting metal using an oxygen burner, for example, a metal melting furnace described in the above-mentioned Japanese Patent Publication No. 56-501810 also partially cools water, The only part that is present is the vertical furnace wall.
  • the target part was limited in order to water-cool the metal melting furnace.
  • a metal melting furnace using an oxygen burner where the distance from the molten metal bath surface to the ceiling is short, heat radiation from the molten metal and heat from the burner are large. Due to the large heat loss, refractories had to be used. If a refractory is used, a large thermal shock will be applied during the melting of the metal raw material. The frequency of damage to the refractories has increased, and as a result, the refractory basic unit has increased, which has had a significant effect on melting costs. Also, the production and repair of the oxygen burner insertion port was extremely troublesome.
  • the installation position of the oxygen burner and the direction in which the flame is blown have a large effect on the thermal efficiency. That is, in the melting of the metal raw material by the oxygen burner, not only the direct and rapid melting by the flame is performed, but also the preheating of the metal raw material by the combustion gas is performed. Therefore, in order to increase the thermal efficiency, it is necessary to perform sufficient preheating with the combustion gas and to quickly melt the preheated metal raw material with a high-temperature flame. It is important to balance the feed rate of the metal raw material into the melting zone from the beginning.
  • the melting performance can be improved by directing the combustion flame of the oxygen burner to the bottom of the furnace to some extent, but in an actual melting furnace, the direction of the combustion flame is directed to the bottom of the furnace. It is practically impossible to mount the burner on the furnace wall at a steep angle close to the vertical. The installation of the oxygen burner is difficult due to problems with the burner insertion port and interference between the oxygen burner accessory and the furnace outer wall. The angle was about 10 to 20 degrees to the horizontal on the furnace side wall. For this reason, a dead zone was easily generated in the peripheral portion, and it was difficult to heat uniformly.
  • the material to be heated when the metal raw material is melted by the combustion flame of an oxygen burner provided above the bath surface, when the metal raw material in the melting part is initially in a solid state, the material to be heated may be at a relatively low temperature.
  • the liquid state after the middle stage of dissolution or in the coexistence state of solid and liquid not only the temperature of the object to be heated becomes high, but also a limited heat transfer area such as the upper surface of the bath can be expected. Becomes extremely disadvantageous. Therefore, improving the heat transfer characteristics after the middle stage of melting is an important issue in improving the efficiency of melting the metal raw material only with the oxygen burner.
  • a first object of the present invention is to provide a metal melting apparatus capable of controlling the rate of charging a metal raw material from a preheating section to a melting section within an optimum range, and dissolving the metal raw material efficiently using only an oxygen burner. To provide a furnace.
  • a second object of the present invention is to efficiently preheat a metal raw material, so that the metal raw material can be efficiently melted only with an oxygen burner and the molten metal can be easily melted. To provide a furnace.
  • a third object of the present invention is to not only dissolve a metal material efficiently with only an oxygen burner, but also have a high heat load, and provide an oxygen burner with an inlet or the like.
  • a fourth object of the present invention is to control the charging rate of the metal raw material from the preheating section to the melting section within an optimum range, and to use the combustion flame of the oxygen burner in a well-balanced manner for melting and preheating the metal raw material. It is an object of the present invention to provide a metal melting furnace and a metal melting method capable of efficiently melting a metal raw material by using the method.
  • a fifth object of the present invention is to efficiently transfer the heat of the combustion flame of the oxygen burner to the molten metal even after the middle stage of melting, in which the melting of the metal raw material has progressed to some extent, and to transfer the metal raw material only by the flame of the oxygen burner.
  • An object of the present invention is to provide a metal melting method capable of melting efficiently. Disclosure of the invention
  • the metal melting furnace according to the present invention is a melting furnace for melting a metal raw material by a flame of an oxygen burner, wherein a preheating section for preheating the metal raw material is provided above a melting section provided with an oxygen burner. Between the preheating section and the preheating section, there is provided a throttle section with an inner diameter smaller than the inner diameter of the preheating section.
  • the constricted section between the melting section and the preheating section it is possible to control the feeding speed of the raw material that is preheated in the preheating section and naturally falls into the melting section, and the scrap metal of various metals is grounded. Gold and the like can be efficiently dissolved only with an oxygen burner, and various scraps can be reused at low cost.
  • the relationship between the cross-sectional area of the preheating portion and the cross-sectional area of the constricted portion is set so that the cross-sectional area of the preheated portion is 1.4 to 5 times, preferably 1.5 to 4 times the cross-sectional area of the constricted portion.
  • the metal raw material can be introduced into the melting section at an optimal drop speed (input speed).
  • the preheating state of the metal raw material in the preheating section also changes depending on the relationship between the volume of the preheating section and the volume of the melting section, and the substantial volume of the preheating section is 0.4 to 3 of the substantial volume of the melting section.
  • the tapping is performed only by separating the melting section and the preheating section and inclining only the melting section.
  • This makes it possible to easily perform tapping operation in a limited space without tilting the entire furnace. Therefore, by providing the squeezing section and the preheating section above the melting section, the tapping can be easily performed with the minimum tilting operation without tapping from the furnace bottom even when the furnace height is high.
  • the separation part between the melting part and the preheating part is made of a carbon-based refractory, or a water-cooled jacket is provided in the separation part, so that the separation part can be prevented from being damaged.
  • the upper part of the furnace wall of the melting section is formed by a water-cooled jacket, and the angle of the inner wall surface of the water-cooled jacket from the upper part of the furnace wall toward the narrowed part is in a range of 20 to 60 degrees with respect to a horizontal plane.
  • the flame ejection direction of the oxygen burner was closer to the burner mounting portion side from the melting portion center of gravity by 0.2 times the distance between the center of gravity position and the inner wall of the oxygen burner mounting portion side on the melting portion bottom surface.
  • the metal material is melted by setting the diameter of the circle toward the center of the point to be 0.6 times the distance between the inner wall of the melting part on the burner mounting part side and the inner wall of the melting part facing the burner mounting part. And preheating can be optimally controlled, and various metal raw materials can be efficiently dissolved.
  • multiple oxygen burners —It is possible to shorten the melting time, etc., by appropriately combining the flame ejection directions.
  • the mounting height of the oxygen burner should be set to a position where the volume of the melting part below the flame discharge port of the oxygen burner is 0.35 to 0.9 times the volume of the entire melting part.
  • the discharge direction of the combustion flame can be changed according to the melting step of the metal raw material.
  • Appropriate heating can be performed, and the preheating state in the preheating section can be appropriately changed, so that the falling speed of the metal raw material from the preheating section to the melting section can be controlled.
  • a first metal melting method for melting the metal raw material of the present invention with the flame of an oxygen burner is as follows: a preheating section for preheating the metal raw material is provided above a melting section provided with an oxygen burner; Using a metal melting furnace provided with a narrowed portion having an inner diameter smaller than the inner diameter of the melting portion and the preheating portion, and using an eccentric burner as the oxygen burner; Rotate around the one axis of the wrench according to.
  • the raw material that is preheated in the preheating section and falls into the melting section is charged.
  • the speed can be controlled, and the metal raw material can be introduced into the melting section at the optimum drop speed (input speed).
  • the combustion flame can be discharged toward the bottom of the furnace, and the combustion flame and the combustion gas of the oxygen burner can be efficiently used for melting and preheating the metal raw material. Because it can be used, thermal efficiency can be improved.
  • the direction of the combustion flame is changed by rotating the eccentric burner.
  • the discharge direction of the combustion flame can be changed according to the melting stage of the metal raw material, the metal in the melting section can be uniformly heated, and the melting and preheating of the metal raw material can be optimally controlled.
  • the second metal melting method of the present invention includes: providing a preheating section for preheating a metal raw material above a melting section provided with an oxygen burner; and providing a melting section and a preheating section between the melting section and the preheating section.
  • a metal melting furnace provided with a narrowed portion having an inner diameter smaller than the inner diameter of the above, a carbon material is charged into the molten slag existing on the bath surface during the melting operation of the metal raw material, and the molten slag is formed.
  • the combustion flame introduced into the molten slag from the oxygen burner collides with the molten metal bath surface and directly raises the temperature of the molten metal, and then heats the molten slag while stirring it while physically rising inside the molten slag. I do.
  • the apparent volume of the molten slag increases, and the heat energy of the combustion flame can be effectively transferred to the slag.
  • the temperature of the molten metal can be efficiently raised through the slag. As a result, the melting time can be shortened, the thermal efficiency can be improved, etc., and productivity can be improved and operating costs can be significantly reduced.
  • the basicity of the molten slag, a (C a O) no (S i 0 2 ), is defined as “0.0 0.01 T—0. 6 ⁇ r ⁇ 0.0.0 25 T-1 1 '' to control the reaction gas generation form and the physical properties of the molten slag in forming the molten slag. A stable forming state can be obtained.
  • the melting part of the metal melting furnace of the present invention is a part having the highest temperature in the whole furnace, and because it cannot avoid contact with a high-temperature combustion gas, the durability, oxidation resistance and It is necessary to have excellent erosion resistance.
  • constricted section must have excellent durability, mechanical strength, and wear resistance at high temperatures due to contact with high-temperature combustion gas and impact due to dropping of metal raw materials.
  • the furnace material is used.
  • the preheating section may have lower heat resistance than the melting section and the drawing section, A furnace material made of a mina-based material is used.
  • the oxygen burner used in the present invention uses oxygen or oxygen-enriched air as a combustion-supporting gas and burns fossil fuels such as heavy oil, kerosene, pulverized coal, propane gas, and natural gas to form a high-temperature flame. Is what you do.
  • the oxygen burner for example, the oxygen burner disclosed in Japanese Patent Publication No. 3-31122 and Japanese Patent Publication No. 7-43096 can be used.
  • the invention is not limited to these, and various structures can be used according to the type of fuel and the like.
  • the oxygen burner has advantages such as a smaller heat loss of exhaust gas and a higher heat transfer into the furnace than a burner using air as a supporting gas.
  • the direction in which the combustion flame is discharged from the combustion nozzle at the tip of the burner body has an inclination angle with respect to the burner axis.
  • the eccentric burner for example, as in the burner disclosed in Japanese Utility Model Application Laid-Open No. 59-130255, the flow path of a nozzle attached to the tip of a straight tubular burner body Can be used at a predetermined angle with respect to the axis of the burner, but the present invention is not limited to this, and various structures can be used according to the type of fuel and the like. It is.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a metal melting furnace to which the present invention is applied.
  • FIG. 2 is a diagram showing a typical melting pattern when iron scrap is melted only with an oxygen burner.
  • FIG. 3 is a longitudinal sectional view showing a second embodiment of the metal melting furnace to which the present invention is applied.
  • FIG. 4 is a longitudinal sectional view showing a third embodiment of the metal melting furnace to which the present invention is applied.
  • FIG. 5 is a longitudinal sectional view showing a state of the metal melting furnace shown in FIG. 4 at the time of tapping.
  • FIG. 6 is a longitudinal sectional view of a main part showing another embodiment of the separation part of the metal melting furnace shown in FIG.
  • FIG. 7 is a longitudinal sectional view showing a fourth embodiment of the metal melting furnace to which the present invention is applied.
  • FIG. 8 is a longitudinal sectional view showing a fifth embodiment of the metal melting furnace to which the present invention is applied.
  • FIG. 9 is a diagram for explaining the flame ejection direction and the mounting height of the oxygen burner in the metal melting furnace shown in FIG.
  • FIG. 10 is a longitudinal sectional view showing a sixth embodiment of the metal melting furnace to which the present invention is applied.
  • FIG. 11 is a longitudinal sectional view showing an embodiment of a metal melting furnace for explaining a second metal melting method of the present invention.
  • FIG. 12 is a diagram showing the measurement results of Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a metal melting furnace to which the present invention is applied.
  • This melting furnace is for melting and regenerating scraps of iron, copper, aluminum, etc., metal, etc. using only the combustion heat of oxygen burner 21 using oxygen or oxygen-enriched air as a supporting gas.
  • the melting furnace is provided with a melting part 22 at a lower part, a preheating part 23 at an upper part, and a throttle part 24 provided between the melting part 22 and the preheating part 23. is there.
  • the melting part 22 has an internal shape substantially similar to that of a normal metal melting furnace, for example, an electric furnace, and is made of a magnesium-carbon furnace material containing 5 to 20% by weight of carbon. ing. Further, on one side of the melting section 22, a tap hole 26 for the melt 25 subjected to the melting treatment is provided.
  • the preheating portion 23 is formed in a substantially cylindrical shape, and is made of an alumina-silica-based furnace material.
  • a lid 28 having an exhaust port 27 is detachably attached to the upper opening of the preheating section 23.
  • the squeezing section 24 is provided to control the falling speed of the metal raw material 29 falling from the preheating section 23 to the melting section 22, and is defined by the inner diameters of the melting section 22 and the preheating section 23. Are also formed with a small inner diameter.
  • the constricted portion 24 is made of a magnesia-chromia type furnace material containing 10 to 30% by weight of chromia.
  • the narrowed part 24 and the large-diameter melting part 22 or preheating part 23 are connected by oblique sides 30, 31 as shown in the figure. It is preferable to form a cone.
  • the work of lining the refractory becomes troublesome. If the hypotenuses 30 and 31 are close to vertical, the height of the furnace will be high, and if they are close to horizontal, dead space may be created and thermal efficiency etc. may decrease. It is preferable that the ceiling (the oblique side 30) of 22 is set to about 20 to 60 degrees, and the bottom (the oblique side 31) of the preheating section 23 is set to about 20 to 70 degrees.
  • the oxygen burner 21 is installed by inserting one or a plurality thereof into an insertion hole 32 provided in a peripheral wall of the dissolving part 22 according to a required dissolving capacity. It can be set at an appropriate position on the vertical part of the furnace wall or the ceiling part according to the size of the melting part 22 and the like. In addition, the oxygen burner 21 has a flame ejection direction directed toward the bottom of the melting part 22 so that the metal raw material 29 dropped into the melting part 22 can be melted from the bottom side of the melting part 22. It is provided as follows.
  • a fuel such as heavy oil / pulverized coal and a supporting gas are respectively introduced from routes not shown.
  • Step 1 is the stage in which the scrap filled in the furnace is preheated with the combustion gas from the burner.
  • the oxidation rate is the highest because the exhaust gas temperature is low and the surface area of the metal is large.
  • Step 2 is the stage where most of the scrap is melted and a small amount of unmelted part remains at the bottom of the furnace. The amount of heat of the combustion gas is consumed for melting the unmelted part, and the temperature of the molten metal is approximately the melting point. It is near.
  • Step 3 is a step in which the molten metal is heated to 100 ° C. above the melting point after the scrap is completely melted.
  • the size of the constriction section 24 is appropriately determined according to the processing capacity of the furnace, the capacity of the oxygen burner, the type of metal raw material, the size of the melting section 22 and the preheating section 23, and the like.
  • the cross-sectional area of the preheating section 23 is set to be 1.4 to 5 times, preferably 1.5 to 4 times the cross-sectional area of the narrowing section 24. It is desirable to do. For example, if the cross-sectional area of the preheating section 23 is smaller than 1.4 times the cross-sectional area of the drawing section 24, the falling speed of the metal raw material becomes too fast, and the effect of providing the drawing section 24 becomes difficult to obtain. If the cross-sectional area of the preheating section 23 exceeds 5 times the cross-sectional area of the drawing section 24, the metal raw material is less likely to fall and tends to be too drawn.
  • the substantial volume of the preheating section 23 is changed to the melting section 2 2 It is desirable that the volume is set to be in the range of 0.4 to 3 times, preferably 0.5 to 2 times the substantial volume of the above. For example, if the volume of the preheating section 23 is too small compared to the volume of the melting section 22, most of the metal raw material will be directly melted without preheating, and conversely, the preheating section 23 If the volume is too large, most of the input thermal energy will be consumed for preheating, so even in the case of L or misalignment, thermal efficiency tends to decrease.
  • the substantial volume means that when scrap or the like is thrown in from the upper opening of the preheating section 23 before starting the melting treatment, the scrap exists in the melting section 22 and the preheating section 23. It is equivalent to the volume and is different from the volume calculated from the dimensions.
  • FIG. 3 is a longitudinal sectional view showing a second embodiment of the metal melting furnace to which the present invention is applied.
  • the same components as those in the metal melting furnace of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal melting furnace of the second embodiment ⁇ ! Is the same as the metal melting furnace of the first embodiment, A secondary combustion oxygen nozzle 33 is provided above the melting part 22, and a molten metal stirring nozzle 34 is provided at the bottom of the melting part 22.
  • the secondary combustion oxygen nozzle 33 can be provided at a vertical portion of the furnace wall or at an appropriate position on the ceiling according to the size of the melting portion 22 and the like.
  • the oxygen nozzle 33 for secondary combustion blows oxygen into the melting section 22 to burn combustible components generated from metal raw materials, sub-raw materials, and the like during melting, thereby improving thermal efficiency.
  • the amount of oxygen blown from the oxygen nozzle 33 for secondary combustion can be controlled by detecting exhaust gas components and the like online.
  • the molten metal stirring nozzle 34 is provided on the furnace wall at the bottom of the melting part 22 via a plug 35 and a receiving sleeve 36.
  • the molten metal stirring nozzle 34 uniformly heats the molten metal by blowing gas into the molten metal and stirring the molten metal.
  • a single tube plug is used, but a thin tube composite plug or a porous refractory plug can also be used.
  • FIGS. 4 to 6 are longitudinal sectional views showing a third embodiment of the metal melting furnace to which the present invention is applied. Note that the same components as those in the metal melting furnace of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal melting furnace according to the third embodiment is the same as the metal melting furnace according to the first embodiment, except that a separating section 37 for separating the melting section 22 and the preheating section 23 is provided at an intermediate portion of the drawing section 24. Has been established.
  • the tapping operation can be performed by separating the melting section 22 from the preheating section 23 and inclining only the melting section 22. Therefore, even when the furnace height is increased by providing the preheating section 23 above the melting section 22 via the narrowing section 24, it is not necessary to incline the entire furnace, so that tapping from the furnace bottom can be performed.
  • the tapping operation can be performed with a small space without performing.
  • the separation portion 37 is separated from the melting portion 22 when the two are separated.
  • the amount of heat dissipated can be reduced.
  • the device for inclining the melting part 22 is generally preferable to support the heavy melting part 22 near the position of the center of gravity. In this case, the melting part 22 is simply used. Cannot be tilted. Therefore, when performing the above tapping operation, first, the preheating section 23 and the narrowing section 24 are separated from the melting section 22 by raising the portion above the separation section 37, and then the tilting device is operated. So that the melting part 22 is inclined.
  • the lower part of the melting part 22 and the narrowing part 24 below the separation part 37 may be lowered and then inclined. Also, if the center of rotation of the melting section 22 is set at an appropriate position, tapping can be performed simply by inclining the melting section 22, and the melting section 22 and the preheating section 23 can be moved in the horizontal direction. May be moved.
  • the separation unit 37 By providing the separation unit 37 in this manner, a force capable of easily performing a tapping operation in a limited space
  • the vicinity of the throttle unit 24 provided with the separation unit 37 is the molten metal generated during melting. Since the slag is provided in a place where the slag easily adheres, when the melting part 22 and the preheating part 23 are separated, the refractory on the inner surface of the furnace may be damaged together with the separation of the slag. There is.
  • the separation part 37 is made of a carbon-based refractory (for example, MgO—), which is a refractory to which splash slag does not easily adhere and is hardly damaged.
  • C Formed by 38.
  • a water-cooled jacket 39 is provided at the separation section 37.
  • FIG. 7 is a longitudinal sectional view showing a fourth embodiment of the metal melting furnace to which the present invention is applied.
  • the same components as those in the metal melting furnace of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal melting furnace according to the fourth embodiment is the same as the metal melting furnace according to the first embodiment, except that the upper part of the furnace wall of the melting part 22 is formed with a water-cooled jacket 40, and the narrowing part 2 is formed from the upper part of the furnace wall.
  • the angle of the inner wall surface (oblique side 30) of the water-cooled jacket toward 4 is set within the range of 20 to 60 degrees with respect to the horizontal plane, and an oxygen burner 21 is provided through the water-cooled jacket 40. ing.
  • a water-cooled tube should be provided instead of a water-cooled jacket. Both are possible.
  • the narrowed portion 24 on the upper part of the furnace wall of the melting part 22 and the furnace wall of the preheating part 23 are formed by a water-cooled jacket 40, and the lower part of the melting part 22 with which the molten metal comes into contact.
  • the furnace wall is made of refractory.
  • the ceiling (oblique side 30) of the melting part 22 in the water-cooled jacket 40 has an ascending angle in the range of 20 to 60 degrees from the peripheral wall of the melting part 22 to the inner periphery of the constriction part 24. It is formed in a conical shape that converges, and the bottom (oblique side 31) of the preheating portion 23 is formed in a conical shape that converges downward toward the inner periphery of the constriction portion 24.
  • the rising angle of the lower surface of the ceiling has a great effect on the melting performance, heat efficiency, and heat loss in the melting portion 22.
  • the rising angle is in the range of 20 degrees to 60 degrees, Water cooling heat loss and thermal efficiency are balanced, and efficient melting operation can be performed.
  • the rising angle when the rising angle is smaller than 20 degrees, the heat of the flame of the oxygen burner 21 or the heat transfer from the molten metal surface to the water cooling jacket 40 becomes large, and the water cooling heat loss becomes large. If it is greater than 0 degrees, the water cooling heat loss will be small, but the heat transfer from the oxygen burner 21 to the metal will be small, and as a result, the thermal efficiency will be reduced.
  • the rising angle of the ceiling in the range of 20 to 60 degrees, it becomes possible to perform water cooling while minimizing a decrease in melting capacity and thermal efficiency, and significantly reduce the cost of refractories.
  • the overall metal melting cost can be reduced even if the thermal efficiency is reduced. Repair and replacement of damaged refractories required a considerable number of days, but the water-cooled jacket 40 requires little repair, thus improving furnace utilization.
  • FIG. 8 and 9 are diagrams showing a fifth embodiment of the metal melting furnace to which the present invention is applied.
  • FIG. 8 is a longitudinal sectional view of the metal melting furnace.
  • FIG. 9 is a diagram for explaining the flame ejection direction and the mounting height of the oxygen burner. Note that the same components as those in the metal melting furnace of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal melting furnace of the fifth embodiment relates to an embodiment in which the oxygen burner 121 in the metal melting furnace of the first embodiment is mounted at an optimum position. That is, In the embodiment, the flame ejection direction of the oxygen burner 21 is set to 0.degree. On the bottom surface of the melting section from the center of gravity of the melting section to the side of the burner mounting section, and the distance between the center of gravity and the inner wall of the oxygen burner mounting section. Aiming at a point centered on a point that is twice as close to the center, the circle has a diameter 0.6 times the distance between the inner wall of the melting part on the side of the burner mounting part and the inner wall of the melting part opposite to it. is there. Also, adjust the mounting height of the oxygen burner 21 to a position where the volume of the melting part below the flame discharge port of the oxygen burner 21 is 0.35 to 0.9 times the entire volume of the melting part 22. Is set to
  • the conditions of the collision of the flame formed by the combustion of the oxygen burner 21 with the object to be heated greatly affect the efficiency of heating and melting. It is important to burn and increase the kinetic energy of the flame. For example, the combustion rate before the flame hits the object to be heated decreases when the position of the discharge port of the burner is lowered too much.However, when the position of the discharge port is raised too much to increase the combustion rate, the flame at the time of hitting the object to be heated is increased. The kinetic energy (collision speed) of the robot decreases. In order to increase the kinetic energy, the burner installation angle (flame ejection angle) is important in addition to the amount of combustion gas itself and the relative position of the flame and the object to be heated.
  • the greater the angle of inclination the more easily the kinetic energy of the flame is transmitted to the object to be heated, which can be expected to be effective in promoting melting by stirring, etc., but the preheating section 23 is provided above the melting section 22.
  • the burner may be damaged by contact with the molten metal, and the oxygen burner 21 must be installed to avoid interference with the furnace body. The area where the oxygen burner 21 can be installed is naturally limited 0
  • the flame ejection direction and mounting position of the oxygen burner 21 are set according to the shape and size of the melting part 22, but as shown in FIG. ,
  • the distance between the center of gravity of the melting part 0 and the inner wall of the oxygen burner mounting part A side is R o
  • the distance between the inner wall of the burner mounting part A side and the opposite inner wall is D 0
  • the oxygen burner 21 The direction of flame ejection is centered on a point that is 0.2 mm of the distance R from the melting point center of gravity 0 to the oxygen burner mounting section A side, and is 0.6 times the diameter of the distance Do. Set to point into circle C with D. This allows It is possible to optimize the conditions of the collision of the combustion flame with the metal.
  • the mounting height of the oxygen burner 21 is such that the volume of the dissolving portion below the discharge port of the oxygen burner 21 is 0.35 to 0.9 times the total volume of the dissolving portion 22, preferably By setting the ratio to 0.45 to 0.80, the metal raw material can be more efficiently dissolved.
  • the center position of the circle C which is the flame ejection direction of the oxygen burner 21 is defined as the center of the melting part ( (Same as the center of gravity)) and 0.2 R o closer to the burner mounting part side, and the diameter of circle C is 0.6 Do.
  • the height H of the discharge port (tip end of the nozzle) of the oxygen burner 21 is 0.35 H o with respect to the height H 0 of the melting part. 00.9 H o, preferably 0.45 H o 00.8 OH 0.
  • the shape differs slightly depending on the shape of the bottom surface and the ceiling surface of the melting part 22.
  • FIG. 10 is a longitudinal sectional view showing a sixth embodiment of the metal melting furnace to which the present invention is applied. Note that the same components as those in the metal melting furnace of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the metal melting furnace of the sixth embodiment is the same as the metal melting furnace of the first embodiment except that an eccentric burner 41 is used as an oxygen burner, and the eccentric burner 41 is rotated about a burner axis by a rotating mechanism 42. It is provided rotatably.
  • the eccentric burner 41 and the rotating mechanism 42 can use, for example, the burner and the rotating mechanism disclosed in Japanese Utility Model Laid-Open No. 59-130225.
  • the mounting angle of the oxygen burner is restricted, and even when the mounting angle is small, the discharge direction of the combustion flame is directed at a large angle with respect to the bottom of the melting part 22. Therefore, heating can be performed uniformly without generating a dead zone around the melting part 22.
  • the collision conditions of the flame formed by the burner combustion with the object to be heated greatly affect the efficiency of heating and melting, and the flame collides with the object to be heated. It is important to have sufficient combustion before and to increase the kinetic energy of the flame.
  • the burning rate before the flame collides with the object to be heated is If it is too high, it will decrease, but if the distance is increased to increase the combustion rate, the collision speed will decrease and the kinetic energy will decrease.
  • increasing the collision angle and approaching the vertical direction is advantageous for increasing the efficiency of heat transfer to the object to be heated. is there.
  • the eccentric burner 41 to direct the discharge direction of the combustion flame in the vertical direction, at the initial stage of melting, the base portion of the metal raw material 29 directly connected in a tower shape from the melting section 22 to the preheating section 23
  • sufficient preheating can be performed, and in the latter stage of melting, the kinetic energy of the combustion flame at the time of collision becomes easier to be transmitted to the molten metal, The effect of accelerating dissolution is improved by the stirring action of the molten metal.
  • the eccentric burner 41 is rotated around the burner axis in accordance with the melting stage, and the discharge direction of the combustion flame is changed, so that the effect of uniform heating is obtained. This makes it possible to control the falling speed of the metal raw material 29 from the preheating section 23.
  • FIG. 11 is a longitudinal sectional view showing an embodiment of a metal melting furnace for explaining a second metal melting method of the present invention. Note that the same components as those in the metal melting furnace of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a carbon material is charged into a molten slag existing on a bath surface during a melting operation of a metal raw material using a metal melting furnace shown in FIG. 11, and the molten slag is forged. Heating efficiency is improved by forming the slag in the forming state (forming slag) 43.
  • the basicity of the molten slag is represented by 0.01 T—0.6 ⁇ r ⁇ 0.025 T ⁇ 1 with respect to the molten metal processing temperature T [° C]. By controlling within this range, a stable forming state can be obtained.
  • the forming of molten slag is being studied as a method of promoting heat transfer utilizing the state of forming slag, such as secondary heat transfer technology in the smelting reduction method of iron ore.
  • the heat promotion method is a method in which carbon monoxide gas generated by a primary reaction between iron ore and carbonaceous material is reacted with oxygen gas added in or above the slag to cause secondary combustion to carbon dioxide.
  • oxygen gas added in or above the slag
  • the carbon dioxide gas which has become hot due to the production reaction, exchanges heat with the slag while rising in the forming slag to raise the temperature of the slag.
  • the heat transfer efficiency in the forming state is further improved, and the high-temperature flame of the oxygen burner 21 enters the forming slag 43, reaches the vicinity of the bath, and exits the slag.
  • the heat transfer is performed over the entire residence time until the slag, and the amount of heat transferred to the slag can be further increased as compared with the method using the secondary combustion.
  • the flame of the oxygen burner collides with the molten metal bath surface, directly raises the temperature of the metal, and then in the liquid slag existing on the bath surface
  • the slag is heated and heat exchanged with the slag to raise the temperature of the slag and circulate it, thereby indirectly raising the temperature of the metal through the slag.
  • This indirect heating is greatly affected by the condition in which the combustion gas passes through the slag layer, and the higher the slag height, the more advantageous.However, it is disadvantageous in terms of operation due to thermal problems and refractory erosion. Increased amount of slag should be avoided. Therefore, by introducing a carbon material into the molten slag and continuously reacting the carbon material with a reducing component such as iron oxide in the slag, and forming the slag by the generated gas, the apparent slag of the slag is obtained. Since the volume is small, the heat exchange efficiency between the combustion gas and the forming slag 43 can be increased, and the indirect temperature rise of the metal via the forming slag 43 can be performed efficiently. .
  • the combustion flame from the oxygen burner 21 passes through the forming slag 43 and collides with the bath to directly raise the temperature of the bath.
  • the apparent volume of the slag has been increased by forming, so the residence time of the combustion gas passing through the slag is prolonged, and the amount of heat transfer to the slag can be increased.
  • Stirring and circulating flow of slag can also be performed effectively. Therefore, heat transfer to the bath from the slag can also be performed efficiently, it is possible to significantly improve shortening thermal efficiency of dissolution time c
  • the yield of iron is improved.
  • the carbon material powdery or granular coke or the like can be used, and the amount added depends on the amount of slag generated, the layer thickness, etc., but is generally 1 to 10 kg per ton of metal raw material. If the addition amount is small, a sufficient forming state cannot be obtained, and if the addition amount is too large, the cost of the carbonaceous material increases.
  • the generation form of the reaction gas ⁇ the physical properties of the slag, that is, the gas generation rate, bubble susceptibility, slag viscosity and surface tension.
  • the gas generation rate the gas generation rate
  • bubble susceptibility the physical properties of the slag
  • slag viscosity the physical properties of the slag
  • the bath temperature at the time of heating the molten metal 25 through the forming slag 43 varies depending on, for example, the carbon concentration in the case of ⁇ . 0 0 (Temperature range from 130 ° C to 160 ° C or higher, at which hot water can be discharged from TC.
  • the melting part is magnesia-carbon (10%)
  • the constriction was made of magnesia-chromia (20%)
  • the preheating part was made of alumina-silica (12%).
  • the size of the melting part was constant at a total height of 80 cm and an inner diameter of 9 Ocm. When 1 ton of iron is melted in this melting part, the bath surface height becomes about 22 cm.
  • the volume of the preheating part and the melting part occupied by the scrap when the scrap is charged that is, the ratio of the substantial volume of the preheating part to the substantial volume of the melting part is substantially constant. In this case, it is about 1: 1. Therefore, when iron scrap is put into the furnace from the upper opening of the preheating section, about 500 kg of scrub exists in each of the preheating section and the melting section.
  • Pulverized coal was supplied as a fuel to each oxygen burner at a rate of 35 kg / h, and high-temperature oxygen of about 60 CTC was supplied as a supporting gas at an oxygen ratio of 1.0. Pulverized coal was transported by air. The flame temperature of this oxygen burner was about 2800 ° C at the highest temperature, and the flame length was 70 cm.
  • the cross-sectional area of the preheating section was set to a constant value of 1.5 times the cross-sectional area of the drawing section, and the ratio of the substantial volume of the preheating section to the substantial volume of the melting section, that is, the amount of iron scrap in each case
  • the results are shown in Table 2.
  • the calculation of the constricted section is considered as a part of the preheating section.
  • Example 7 Using a metal melting furnace with the structure shown in Fig. 7, 1 ton of iron scrap was melted, and the thermal efficiency was measured using a water-cooled jacket. In addition, it was substantially the same as Example 2 except that the mounting angle of the oxygen burner was set to 40 degrees.
  • the rising angle (inclination angle) of the ceiling of the melting part was varied, and the water cooling heat loss coefficient, melting time and thermal efficiency at that time were measured.
  • the same measurement was performed when the entire melting part was formed of a refractory.
  • the results are shown in Table 3. Note that the water cooling heat loss coefficient is a relative value with 100 when the ascending angle is 30 degrees. Table 3
  • Table 4 shows the thermal efficiencies when the direction of flame emission from each oxygen burner is directed to a, b, c, d, e, f, g, h, i in Fig. 9.
  • a to e are working examples of the present invention, and f to i are comparative examples. However, in the table, the "-1" part was not measured.
  • Example 5 Six oxygen burners similar to those in Example 5 were installed in a melting part with a ceiling surface with a total height of 120 cm, an inner diameter of 160 cm, and an inclination angle of 30 degrees, and melted 5 tons of iron scrap (heavy waste). Thermal efficiency was measured as in 5. Table 5 shows the results. The flow rate of heavy oil was 400 liters / hour for a total of six oxygen burners. Table 5 Flame direction a c e f g h ⁇
  • Example 5 the oxygen burner was changed to one using pulverized coal as fuel, and the supply of pulverized coal was 90 kg / h for a 1-ton furnace and 40 Okg / h for a 5-ton furnace. Other than that, the heat efficiency was measured when iron scrap (heavy scrap) was dissolved. Table 6 shows the results. Table 6
  • Example 5 the thermal efficiency was measured when iron scrap (heavy scrap) was melted while changing the mounting height of the oxygen burner.
  • Table 7 shows the results.
  • the ratio in the table indicates the volume ratio of the dissolving portion below the oxygen burner discharge port, where the total dissolving portion volume is 1.
  • the flame ejection direction of the three or six oxygen burners was changed for each oxygen burner.
  • the same criteria (a to i) were set, but multiple oxygen
  • the direction of flame emission in each burner can be set arbitrarily.
  • each of the burners may emit a flame in a different direction as shown in a, b, and c in FIG. 9, and the combination is performed in an appropriate combination. It is possible. In this case, the stirring action after melting is smaller than when all oxygen burners have the same flame ejection direction.
  • melt metal turbulence may increase, and if the raw material is poorly soluble or if the melt has a large unevenness, the melting time may be shortened.
  • the oxygen burner was attached to the melting part at an angle of 15 degrees to the horizon due to interference between the part attached to the panner and the furnace body.
  • the thermal efficiency was measured for each. Also, in a burner whose flame discharge direction is 40 ° eccentric, every 3 minutes from the start of heating to the time when the entire amount of the metal material falls into the melting part, a right turn around the axis of the wrench 20 °, The thermal efficiency was similarly measured for the case of repeatedly turning in the order of 0 ° and left turning 20 °. Table 8 shows the results. The rest was substantially the same as in Example 5.
  • the carbonaceous material used was coke powder or granules with a carbon content of 90% or more, and the coke powder used had a particle size of under 3 mm, and was continuously continuous at 100 g, 200 g, and 300 g per minute, respectively. Was added.
  • the coke granules used had a particle size of 10 to 30 mm, and lkg was injected every 5 minutes.
  • Table 10 shows the results, including the case where no carbon material was added.
  • the molten metal at the time of tapping was a component of low carbon molten steel with a carbon content of 0.03 to 0.07%. Table 10
  • Example 11 Using the same melting furnace as in Example 1, the melting operation was performed while changing the basicity of the slag.
  • the metal raw material used was 1 ton of steel scrap and pig iron ingot. In this case, the higher the carbon concentration in the molten metal, the lower the melting temperature and the lower the temperature.
  • the basicity of the slag was adjusted using a flux containing a mixture of calcined lime and silica sand.
  • the carbonaceous material was continuously added at a rate of 200 g / min using the same coke powder as in Example 11. Then, the state of forming at each basicity was observed, and the total dissolution time and thermal efficiency were measured. The quality of the forming was determined as stable when the forming state was maintained for 50% or more during the pick-up after the raw material dropped. Table 11 shows the results.

Description

明 細 書 金属溶解炉及びその溶解方法 技術分野
本発明は、 鉄, 銅, アルミニウム等のスクラップや地金等を、 酸素あるいは酸 素富化空気を支燃性ガスとした酸素バーナーのみで溶解する金属溶解炉及び金属 溶解方法に関する。 背景技術
酸素あるいは酸素富化空気を支燃性ガスとする酸素バーナーで化石燃料を燃焼 させ、 その燃焼熱で鉄, 銅, アルミニウム等のスクラップや地金を溶解させる金 属溶解炉が知られている。 このような酸素バーナーを利用した溶解炉としては、 例えば、 日本国特表昭 5 6 - 5 0 1 8 1 0号公報, 同特開平 1一 2 1 5 9 1 9号 公報, 同特開平 2— 9 3 0 1 2号公報, 同特開平 5— 2 7 1 8 0 4号公報, 同特 開平 5— 2 7 1 8 0 7号公報等に記載されている。
これらの溶解炉は、 一般に、 酸素バーナーで金属原料を溶解する溶解部と金属 原料を予熱する予熱部とを備えているが、 前記特表昭 5 6 - 5 0 1 8 1 0号公報 や前記特開平 1一 2 1 5 9 1 9号公報に記載された金属溶解炉は、 溶解部の上方 に開閉可能な鉄格子を介して次チャージ分の金属原料を予熱する予熱部を設けて いる。 しかし、 このように溶解部の上方に鉄格子を設けた金属溶解炉は、 鉄格子 が高熱に晒されるために水等で冷却する必要があり、 水冷熱損失が大きいだけで なく、 厳しい環境下にあるために水漏れや鉄格子の開閉に異常を生じることがあ るなどの欠点を有していた。
また、 前記特開平 5— 2 7 1 8 0 7号公報に記載された溶解炉は、 いわゆる反 射炉型であり、 金属原料は、 炉側壁に設けられた傾斜通路を通って溶解部からの 排ガスで予熱されながら重力で溶解部内に投入される。 しかし、 この場合は、 高 温の排ガスが予熱部である傾斜通路の上部側空間を流れる傾向にあり、 傾斜通路 の下部側を落下する金属原料を十分に予熱することが困難であり、 また、 自然落 下で金属原料を投入するために落下速度の制御も困難であつた。
—般に、 金属原料の予熱部を一体に有する溶解炉においては、 予熱部から溶解 部への金属原料の投入速度が熱効率に大きく影響を与える。 すなわち、 金属原料 の投入速度は、 溶解部での溶解速度と略同等であることが好ましく、 原料の投入 速度が速すぎると溶解部の下部に溶解金属と未溶解の金属とが混在し、 さらには 炉底からの熱損失で溶解金属が再固化する現象が生じることもある。 逆に投入速 度が小さいと金属原料の投入に要する時間が長くなるために必要以上にエネルギ —を消費することになる。
また、 金属溶解炉は、 金属原料を溶解した後、 溶解部内の溶融金属を取鍋等に 出湯する必要があるが、 比較的小型の溶解炉の場合は、 炉全体を傾斜させて溶解 部の一側に設けた出湯口から出湯するようにしている。 しかし、 大型の溶解炉の 場合には、 炉全体を傾斜させるためのスペースの問題や、 駆動装置が大掛かりに なるなどの問題があるため、 溶解部の底部に出湯口を設けておき、 炉底から出湯 するようにしていた。 このため、 溶解部の構造が複雑になって製作コストが上昇 するだけでなく、 耐火物の保守等に要するコストも多大なものになっていた。 さらに、 このような金属溶解炉は、 一般に多量の耐火物を使用して形成されて いるが、 損傷による耐火物の原単位が溶解コストに影響するため、 電気炉では、 溶融金属が接触する炉下部を除いて水冷ジャケッ トによる水冷化を行つている。 これは、 電気炉の構造として、 炉壁が略垂直に形成されていること、 炉の天井部 が炉底部から高い位置にあることなどの理由により、 水冷ジャケットを使用して も熱損失が少ないことから可能となっている。 また、 酸素バーナーを用いて金属 を溶解する溶解炉、 例えば、 前記特表昭 5 6 - 5 0 1 8 1 0号公報に記載された 金属溶解炉でも一部を水冷化しているが、 水冷化している部分は、 垂直な炉壁部 分のみである。
このように、 金属溶解炉を水冷化するには、 対象部位が限られていた。 特に、 酸素バーナーを用いた金属溶解炉で、 溶融金属の浴面から天井部までの距離が近 い金属溶解炉では、 溶融金属からの熱放射やバーナーからの熱放射が大きく、 水 冷化すると熱損失が大きいため、 耐火物を利用せざるを得なかった。 し力、し、 耐 火物を使用した場合は、 金属原料の溶融段階で大きな熱衝撃を受けるために耐火 物の損傷頻度が高くなり、 その結果、 耐火物原単位が大きくなつて溶解コストに 大きく影響を与えていた。 また、 酸素バーナーの挿入口部分等の製作や修理は、 極めて面倒であった。
また、 酸素バーナーを使用した金属溶解炉は、 酸素バーナーの取付け位置や火 炎の噴出方向も、 熱効率に大きな影響を与える。 すなわち、 酸素バーナーによる 金属原料の溶解においては、 火炎による直接かつ迅速な溶解が行われるだけでな く、 燃焼ガスによる金属原料の予熱も行われる。 したがって、 熱効率を高めるた めには、 燃焼ガスによる予熱を十分に行うことと、 予熱した金属原料を高温の火 炎で迅速に溶解することとが必要であり、 溶解速度と予熱速度及び予熱部から溶 解部への金属原料の投入速度をうまくバランスさせることが重要である。
例えば、 酸素バーナーの燃焼火炎の方向をある程度炉底部方向に向けることに より、 溶解性能を向上させることができるが、 実際の溶解炉においては、 燃焼火 炎の方向を炉底部に向けるために酸素バーナーを鉛直線に近い急角度で炉壁に設 けることは実質的に不可能であり、 バーナー挿入口の製作の問題や酸素バーナー の付属部分と炉外壁との干渉等により、 酸素バーナーの取付け角度は、 炉側壁に おいては水平線に対して 1 0〜2 0度程度となっていた。 このため、 周辺部にデ ッ ドゾーンを生じ易く、 均一に加熱することが困難であった。
さらに、 浴面より上方に設けた酸素バーナーの燃焼火炎で金属原料を溶解する 場合、 溶解部の金属原料が、 初期の固体状態では、 被加熱物が比較的低温なこと もあり、 伝熱上は有利であるが、 溶解中期以降の液体状態あるいは固体 ·液体の 共存状態では、 被加熱物が高温になることだけでなく、 浴の上面という限られた 伝熱面積しか期待できないため、 伝熱が極めて不利になる。 したがって、 この溶 解中期以降の伝熱特性を改善することが、 酸素バーナーのみで金属原料を溶解す る際の効率を向上させる際の重要な課題となる。
このため、 前記特開平 5— 2 7 1 8 0 4号公報では、 バーナー燃焼により形成 される高温の火炎から被加熱物に効率的に伝熱させる方法として、 酸素バーナー の燃焼火炎を高速で被加熱物に衝突させることが提案されている。 ところ力 火 炎の被加熱物への衝突条件を最適化しても、 溶解中期以降は、 浴面が比較的平滑 になることから、 伝熱面積の増加には限界があり、 被加熱物に衝突して反射した ガスの温度が高いため、 熱ロスを生じることになる。
そこで、 本発明の第 1の目的は、 予熱部から溶解部への金属原料の投入速度を 最適な範囲に制御することができ、 酸素バーナーのみで金属原料を効率よく溶解 することができる金属溶解炉を提供することにある。
本発明の第 2の目的は、 金属原料の予熱を効率よく行うことにより、 酸素バー ナーのみで金属原料を効率よく溶解することができるとともに、 溶融金属の出湯 も容易に行うことができる金属溶解炉を提供することにある。
本発明の第 3の目的は、 酸素バーナーのみで金属原料を効率よく溶解すること ができるとともに、 熱負荷が高く、 かつ、 酸素バーナーの揷入口等が設けられて 、る部分を水冷化して耐火物の原単位を低減できる金属溶解炉を提供することに める
本発明の第 4の目的は、 予熱部から溶解部への金属原料の投入速度を最適な範 囲に制御するとともに、 酸素バーナーの燃焼火炎を金属原料の溶解と予熱とにバ ランスよく使用して金属原料を効率よく溶解することができる金属溶解炉及び金 属溶解方法を提供することにある。
本発明の第 5の目的は、 金属原料の溶解がある程度進んだ溶解中期以降におい ても酸素バーナーの燃焼火炎の熱を効率よく溶融金属に伝えることができ、 酸素 バーナーの火炎のみで金属原料を効率よく溶解することができる金属溶解方法を 提供することにある。 発明の開示
本発明の金属溶解炉は、 金属原料を酸素バーナーの火炎で溶解する溶解炉であ つて、 酸素バーナーを備えた溶解部の上方に、 金属原料を予熱する予熱部を設け るとともに、 溶解部と予熱部との間に、 溶解部及び予熱部の内径よりも小さな内 径の絞り部を設けている。
このように、 溶解部と予熱部との間に絞り部を設けることにより、 予熱部で予 熱されて溶解部に自然落下する原料の投入速度を制御することができ、 各種金属 のスクラップゃ地金等を酸素バーナーのみで効率よく溶解処理することができ、 各種スクラップを低コストで再利用することができる。 特に、 予熱部の断面積と絞り部の断面積との関係を、 予熱部の断面積が絞り部 の断面積の 1 . 4〜5倍、 好ましくは 1 . 5〜4倍の範囲になるように設定する ことにより、 最適な落下速度 (投入速度) で金属原料を溶解部へ導入することが できる。 また、 予熱部の容積と溶解部の容積との関係によっても予熱部における 金属原料の予熱状況が変化し、 予熱部の実質的な容積を、 溶解部の実質的な容積 の 0. 4〜3倍、 好ましくは 0. 5〜2倍の範囲になるように設定することによ り、 小規模な溶解炉でも 5 0 %以上の高い熱効率を達成でき、 優れた溶解性能を 得ることが可能になる。
さらに、 絞り部又はその近傍で前記溶解部と前記予熱部とを分離可能に形成す ることにより、 出湯時に、 溶解部と予熱部とを分離して溶解部のみを傾斜させる だけで出湯することができ、 炉全体を傾斜させることなく、 限られたスペース内 で容易に出湯操作を行うことができる。 したがって、 溶解部の上方に絞り部及び 予熱部を設けることにより、 炉高が高くなつても炉底から出湯することなく、 最 小限の傾動操作で容易に出湯することができる。 特に、 前記溶解部と前記予熱部 との分離部を、 炭素系耐火物で形成するか、 あるいは該分離部に、 水冷ジャケッ トを設けることにより、 該分離部の損傷を防止できる。
また、 前記溶解部の炉壁の上部を水冷ジャケッ 卜で形成し、 該炉壁の上部から 前記絞り部に向かう水冷ジャケッ 卜の内壁面の角度を水平面に対して 2 0〜6 0 度の範囲に設定するとともに、 前記酸素バーナーを前記水冷ジャケッ トを貫通し て設けることにより、 水冷化による熱損失を最小に抑えることができ、 効率よく 金属を溶解できるとともに、 この部分の耐火物の損傷問題から解放されて耐火物 原単位を大幅に低減することができるため、 全体として溶解コス卜の低減が図れ る。
さらに、 前記酸素バーナーの火炎噴出方向を、 溶解部底面上において、 溶解部 重心位置からバーナー取付部側に、 該重心位置と酸素バーナー取付部側内壁との 距離の 0. 2倍の距離近付いた点を中心とする円内に向け、 該円の直径を、 バー ナー取付部側溶解部内壁とこれに対向する溶解部内壁間の距離の 0. 6倍に設定 することにより、 金属原料の溶解と予熱とを最適に制御でき、 各種金属原料を効 率的に溶解することができる。 複数本の酸素バーナーを用いる場合は、 各酸素バ —ナ一の火炎噴出方向を適当に組合わせることにより、 溶解時間の短縮等を図る ことも可能である。
また、 前記酸素バーナーの取付け高さを、 該酸素バーナーの火炎吐出口より下 方の溶解部の容積が、 溶解部全体の容積の 0. 3 5〜0. 9倍になる位置に設定 することにより、 熱効率のさらなる向上が図れ、 殊に融点の高い鉄等の金属原料 の溶解に高い効果を得ることができる。
さらに、 前記酸素バーナーとして偏心バーナーを用い、 該偏心バーナーをバ一 ナー軸線を中心として回動可能に設けることにより、 燃焼火炎の吐出方向を金属 原料の溶解段階に応じて変更でき、 金属原料を適切に加熱することができ、 かつ、 予熱部における予熱状態も適宜に変更でき、 予熱部から溶解部への金属原料の落 下速度を制御することも可能となる。
また、 前記溶解部の上部に二次燃焼用酸素ノズルを設けることにより、 未燃焼 成分を燃焼して熱効率を高めることができる。 さらに、 前記溶解部の底部に溶湯 攪拌用ノズルを設けることにより、 溶湯の攪拌を促進して、 溶湯を均一に加熱で きる。
次に、 本発明の金属原料を酸素バーナーの火炎で溶解する第 1の金属溶解方法 は、 酸素バーナーを備えた溶解部の上方に、 金属原料を予熱する予熱部を設ける とともに、 溶解部と予熱部との間に、 溶解部及び予熱部の内径よりも小さな内径 の絞り部を設けた金属溶解炉を用い、 かつ前記酸素バーナーとして偏心バーナー を用い、 該偏心バーナーを、 前記金属原料の溶解段階に応じてパーナ一軸線を中 心として回動させる。
このように、 溶解部と予熱部との間に、 適当な内径を有する絞り部を設けた金 属溶解炉を用 L、ることにより、 予熱部で予熱されて溶解部に落下する原料の投入 速度を制御することができ、 最適な落下速度 (投入速度) で金属原料を溶解部へ 導入することができる。
そして、 前記酸素パーナ一として偏心バーナーを用いることにより、 燃焼火炎 を炉底部方向に向けて吐出させることができ、 酸素ノ ナ一の燃焼火炎及び燃焼 ガスを金属原料の溶解と予熱とに効率よく使用することができるので、 熱効率の 向上が図れる。 また、 偏心バーナーを回動させて燃焼火炎の吐出方向を変更する ことにより、 燃焼火炎の吐出方向を金属原料の溶解段階に応じて変更でき、 溶解 部内の金属を均一に加熱することができるとともに、 金属原料の溶解と予熱とを 最適に制御できる。
また、 本発明の第 2の金属溶解方法は、 酸素バーナーを備えた溶解部の上方に、 金属原料を予熱する予熱部を設けるとともに、 溶解部と予熱部との間に、 溶解部 及び予熱部の内径よりも小さな内径の絞り部を設けた金属溶解炉を用い、 前記金 属原料の溶解操作中に浴面に存在する溶融スラグに炭材を投入し、 該溶融スラグ をフォーミングさせる。
酸素バーナーから溶融スラグ中に導入された燃焼火炎は、 溶融金属浴面に衝突 して溶融金属を直接昇温した後、 溶融スラグ内を物理的に上昇する過程で溶融ス ラグを攪拌しながら加熱する。 このとき、 溶融スラグに炭材を投入して、 溶融ス ラグをフォーミング状態にすることにより、 溶融スラグの見掛上の体積が増し、 燃焼火炎の熱エネルギーを有効にスラグに伝熱することができ、 該スラグを介し て溶湯を効率よく昇温させることができる。 これにより、 溶解時間の短縮、 熱効 率の向上等が図れ、 生産性の向上や操業コストの大幅な低減が図れる。
また、 前記溶融スラグの塩基度ァ、 但し、 ァ = ( C a O ) ノ (S i 02 ) を、 溶湯処理温度 T [°C] に対して、 「0. 0 0 1 T— 0. 6≤ r≤ 0. 0 0 2 5 T 一 1」 で示される範囲内に制御することにより、 溶融スラグをフォーミ ングさせ るにあたり、 反応ガスの発生形態と溶融スラグの物性とを制御して、 安定したフ ォーミ ング状態を得ることができる。
本発明の金属溶解炉の溶解部は、 炉全体で最も高温となる部位であること及び 高温の燃焼ガスとの接触が避けられないこと等の理由により、 高温での耐用性、 耐酸化性及び耐浸蝕性に優れている必要があり、 マグネシアを含む成分系の材質 の炉材を用いる。 具体的には、 マグネシア、 マグネシア一炭素系、 マグネシア— ク口ミァ系等である。
また、 絞り部は、 高温の燃焼ガスとの接触及び金属原料の落下による衝撃等の 理由により、 高温での耐用性、 機械的強度、 耐摩耗性に優れている必要があり、 マグネシア一クロミァ系の材質の炉材を用いる。
さらに、 予熱部は、 溶解部や絞り部に比べ、 耐熱性が低くてもよいから、 アル ミナ系の材質の炉材を用いる。
尚、 本発明に用いられる酸素バーナーは、 酸素あるいは酸素富化空気を支燃性 ガスとし、 重油、 灯油、 微粉炭、 プロパンガス、 天然ガス等の化石燃料を燃焼さ せて高温の火炎を形成するものである。 そして、 酸素バーナーとしては、 例えば、 日本国特公平 3— 3 1 2 2号公報ゃ同特公平 7— 4 3 0 9 6号公報に開示されて いる酸素バーナーを使用することができるが、 本発明はこれらに限定されるもの ではなく、 燃料の種類等に応じて、 各種構造のものが使用可能である。 酸素バー ナ一は、 空気を支燃性ガスとするバーナーに比べて、 排ガス熱損失が小さく、 炉 内への着熱量が高い等の利点を有する。
また、 酸素バーナーとして本発明に用いられる偏心バーナーは、 バーナー本体 先端部の燃焼ノズルからの燃焼火炎の吐出方向がバーナー軸線に対して傾斜角度 を有するものである。 そして、 偏心バーナーとしては、 例えば、 日本国実開昭 5 9 - 1 0 3 0 2 5号公報に開示されたバーナーのように、 直管状のバーナー本体 の先端部に装着されるノズルの流路を、 バーナーの軸線に対して所定角度傾斜さ せたものを用いることができるが、 本発明はこれに限定されるものではなく、 燃 料の種類等に応じて、 各種構造のものが使用可能である。
さらに、 偏心バーナーの回動機構は、 例えば、 前記実開昭 5 9 - 1 0 3 0 2 5 号公報に開示されている構造のものを用いることができるが、 本発明はこれに限 定されるものではなく、 各種構造のものが使用可能である。 図面の簡単な説明
図 1は本発明を適用した金属溶解炉の第 1実施形態例を示す縦断面図である。 図 2は酸素バーナーのみで鉄スクラップを溶解したときの典型的な溶解パタ一 ンを示す図である。
図 3は本発明を適用した金属溶解炉の第 2実施形態例を示す縦断面図である。 図 4は本発明を適用した金属溶解炉の第 3実施形態例を示す縦断面図である。 図 5は図 4に示す金属溶解炉の出湯時の状態を示す縦断面図である。
図 6は図 4に示す金属溶解炉の分離部の他の形態例を示す要部の縦断面図であ る。 図 7は本発明を適用した金属溶解炉の第 4実施形態例を示す縦断面図である。 図 8は本発明を適用した金属溶解炉の第 5実施形態例を示す縦断面図である。 図 9は図 8に示す金属溶解炉における酸素バーナーの火炎噴出方向及び取付け 高さを説明するための図である。
図 1 0は本発明を適用した金属溶解炉の第 6実施形態例を示す縦断面図である。 図 1 1は本発明の第 2の金属溶解方法を説明するための金属溶解炉の実施形態 例を示す縦断面図である。
図 1 2は実施例 1の測定結果を示す図である。 発明を実施するための最良の形態
以下、 本発明を、 図面を参照してさらに詳細に説明する。
図 1は、 本発明を適用した金属溶解炉の第 1実施形態例を示す縦断面図である。 この溶解炉は、 酸素又は酸素富化空気を支燃性ガスとした酸素バーナー 2 1の 燃焼熱のみで、 鉄, 銅, アルミニウム等のスクラップや地金等を溶解再生するた めのものである。 そして、 該溶解炉は、 下部に溶解部 2 2を、 上部に予熱部 2 3 を一体的に設けるとともに、 溶解部 2 2と予熱部 2 3との間に絞り部 2 4を設け たものである。
前記溶解部 2 2は、 通常の金属溶解炉、 例えば電気炉等と略同様の内部形状を 有しており、 力一ボン 5 ~ 2 0重量%を含むマグネシァ—カーボン系の炉材で作 られている。 また、 溶解部 2 2の一側には、 溶解処理された溶湯 2 5の出湯口 2 6が設けられている。
前記予熱部 2 3は、 略円筒状に形成されており、 アルミナ一シリカ系の炉材で 作られている。 また、 予熱部 2 3の上部開口には、 排気口 2 7を有する蓋体 2 8 が着脱可能に装着されている。
前記絞り部 2 4は、 予熱部 2 3から溶解部 2 2に落下する金属原料 2 9の落下 速度を制御するために設けられるもので、 溶解部 2 2及び予熱部 2 3の各内径よ りも小さな内径で形成されている。 該絞り部 2 4は、 クロミア 1 0〜3 0重量% を含むマグネシア一クロミア系の炉材で作られている。 この絞り部 2 4と大径の 溶解部 2 2あるいは予熱部 2 3との間は、 図に示すように斜辺 3 0, 3 1で接続 してコ一ン状に形成することが好ましい。 この部分を曲面で接続することも可能 であるが、 耐火物を内張りして形成する炉の場合は、 耐火物の内張り作業が面倒 になる。 この斜辺 3 0, 3 1が垂直に近くなると炉の高さが高くなり、 水平に近 くなるとデッ ドスペースを生じて熱効率等が低下することがあるため、 通常は、 水平線に対して溶解部 2 2の天井部 (斜辺 3 0 ) は 2 0〜6 0度程度、 予熱部 2 3の底部 (斜辺 3 1 ) は 2 0〜7 0度程度に設定することが好ましい。
前記酸素バーナー 2 1は、 必要な溶解能力に応じて 1本乃至複数本が溶解部 2 2の周壁に設けられた挿入孔 3 2に挿入されて設置されるもので、 その取付け位 置は、 溶解部 2 2の大きさなどに応じて炉壁の垂直部あるいは前記天井部の適当 な位置に設定することができる。 また、 酸素バーナー 2 1は、 溶解部 2 2内に落 下した金属原料 2 9を溶解部 2 2の底部側から溶解させることができるように、 火炎噴出方向が溶解部 2 2の底部に向くように設けられている。 前記酸素パーナ
- 2 1には、 図示しない経路から重油ゃ微粉炭等の燃料と支燃性ガスとがそれぞ れ導入される。
酸素 ーナーのみで鉄スクラ プを溶解したときの典型的な溶解 、'ターンを図 2に示す。 図 2において、 ステップ 1は、 炉内に充塡したスクラップをバーナー からの燃焼ガスで予熱している段階であって、 排ガス温度は低く、 金属の表面積 が大きいため酸化速度は最も大きい。 ステップ 2は、 スクラップのほとんどが溶 解し、 炉下部に未溶解部が少量残っている段階であって、 燃焼ガスの熱量は、 未 溶解部分の溶解に消費されており、 溶湯温度は略融点付近である。 また、 炉の上 部には、 スクラップが存在しないため排ガス温度は上昇し、 金属の表面積が小さ くなり酸化速度は低下する。 ステップ 3は、 スクラップが完全に溶解した後、 溶 湯を融点より 1 0 0 °C昇温する段階である。
このような溶解 、。ターンによって金属原料 2 9が溶解される金属溶解炉におい て、 溶解部 2 2の上方に適当な大きさの絞り部 2 4を設けることにより、 鉄格子 等を設けることなく予熱部 2 3から溶解部 2 2に落下する金属原料 2 9の落下速 度を絞り部 2 4を介して最適な状態に制御することができ、 また、 溶解部 2 2の 直上に予熱部 2 3を設けることができるので、 ステップ 1における金属原料 2 9 の予熱を効率よく行うことができる。 すなわち、 溶解部 2 2の上方に絞り部 2 4を介して予熱部 2 3を連設すること により、 予熱部 2 3から溶解部 2 2に落下する原料量を最適な速度に制御するこ とができるので、 従来の鉄格子のような原料投入量を制御する機器を設ける必要 がなく、 簡単な構造の溶解炉で鉄, 銅, アルミニウム等のスクラップや地金等を 効率よく溶解処理することができ、 炉の構造の簡略化により製造コストゃ保守コ ス卜の低減が図れるとともに、 熱効率の向上や溶解時間の短縮も図れる。
前記構造の金属溶解炉において、 絞り部 2 4の大きさは、 炉の処理能力や酸素 バーナーの能力、 金属原料の種類、 溶解部 2 2及び予熱部 2 3の大きさなどによ つて適当に設定することが可能であるが、 通常は、 予熱部 2 3の断面積を絞り部 2 4の断面積の 1 . 4〜5倍、 好ましくは 1. 5〜4倍の範囲になるように設定 することが望ましい。 例えば、 予熱部 2 3の断面積を絞り部 2 4の断面積の 1. 4倍未満にすると金属原料の落下速度が速くなり過ぎて絞り部 2 4を設けた効果 が得られにくくなり、 逆に予熱部 2 3の断面積が絞り部 2 4の断面積の 5倍を超 える場合には、 金属原料が落下しにくくなつて絞り過ぎの傾向となる。
また、 予熱部 2 3の実質的な容積と溶解部 2 2の実質的な容積との関係も、 溶 解能力に影響を与えるため、 予熱部 2 3の実質的な容積を、 溶解部 2 2の実質的 な容積の 0. 4〜3倍、 好ましくは 0. 5〜2倍の範囲になるように設定するこ とが望ましい。 例えば、 予熱部 2 3の容積が溶解部 2 2の容積に比べて小さすぎ る場合は、 金属原料の大部分を予熱を経ずに直接溶解させることになり、 逆に予 熱部 2 3の容積が大きすぎる場合は、 投入した熱エネルギーの大部分が予熱に消 費されることになるため、 L、ずれの場合も熱効率が低下する傾向となる。
なお、 上記実質的な容積とは、 溶解処理を開始する前にスクラップ等を予熱部 2 3の上部開口から投入したときに、 該スクラップが溶解部 2 2内及び予熱部 2 3内に存在する体積に相当するものであり、 寸法から算出した容積とは異なって いる。
図 3は、 本発明を適用した金属溶解炉の第 2実施形態例を示す縱断面図である。 尚、 第 1実施形態例の金属溶解炉における構成要素と同一の構成要素には同一符 号を付してその詳細な説明は省略する。
第 2実施形態^!の金属溶解炉は、 第 1実施形態例の金属溶解炉において、 前記 溶解部 2 2の上部に二次燃焼用酸素ノズル 3 3を設けるとともに、 前記溶解部 2 2の底部に溶湯攪拌用ノズル 3 4を設けている。
即ち、 二次燃焼用酸素ノズル 3 3は、 溶解部 2 2の大きさなどに応じて炉壁の 垂直部あるいは前記天井部の適当な位置に設けることができる。 この二次燃焼用 酸素ノズル 3 3は、 溶解部 2 2内に酸素を吹き込んで、 溶解時に金属原料や副原 料等から発生した可燃成分を燃焼させて熱効率を向上させるものである。 二次燃 焼用酸素ノズル 3 3から吹き込む酸素量は、 排ガス成分等をオンラインで検知す ることにより、 制御することができる。
また、 溶湯攪拌用ノズル 3 4は、 プラグ 3 5及び受けスリーブ 3 6を介して溶 解部 2 2の底部の炉壁に設けられる。 この溶湯攪拌用ノズル 3 4は、 溶湯内にガ スを吹き込んで、 溶湯を攪拌することにより、 溶湯を均一に加熱するものである。 本実施形態例では、 単管型プラグを用いているが、 細管複合型プラグやポーラス 耐火物型ブラグを用いることもできる。
図 4乃至図 6は、 本発明を適用した金属溶解炉の第 3実施形態例を示す縦断面 図である。 尚、 第 1実施形態例の金属溶解炉における構成要素と同一の構成要素 には同一符号を付してその詳細な説明は省略する。
第 3実施形態例の金属溶解炉は、 第 1実施形態例の金属溶解炉において、 絞り 部 2 4の中間部に、 溶解部 2 2と予熱部 2 3とを分離するための分離部 3 7を設 けている。
本実施形態例は、 該分離部 3 7を設けることにより溶解部 2 2と予熱部 2 3と を分離可能としているので、 溶解部 2 2内の溶融金属を出湯する際には、 図 5に 示すように、 溶解部 2 2を予熱部 2 3から分離して溶解部 2 2のみを傾斜させる ことにより出湯操作を行うことができる。 したがって、 溶解部 2 2の上方に絞り 部 2 4を介して予熱部 2 3を設けることによつて炉高が高くなつた場合でも、 炉 全体を傾斜させる必要がないため、 炉底部から出湯を行うことなく、 僅かなスぺ ースで出湯操作を行うことができる。
また、 前記分離部 3 7を、 比較的内径が小さい絞り部 2 4又はその近傍、 特に、 内径が最小の絞り部 2 4部分に設けることにより、 両者を分離した際の溶解部 2 2からの放散熱量を少なくすることができる。 ここで、 溶解部 2 2を傾斜させるための装置は、 通常、 重量物である溶解部 2 2を、 その重心位置の近傍で支持することが好ましいため、 この場合は、 単に溶 解部 2 2を傾斜させることはできない。 したがって、 上記出湯操作を行う際には、 まず、 予熱部 2 3及び絞り部 2 4の分離部 3 7より上方部分を上昇させることに より溶解部 2 2と分離した後、 傾斜装置を作動させて溶解部 2 2を傾斜させるよ うにする。 尚、 溶解部 2 2及び絞り部 2 4の分離部 3 7より下方部分を下降させ てから傾斜させるようにしてもよい。 また、 溶解部 2 2の回動中心を適当な位置 に設定すれば、 溶解部 2 2を傾けるだけで出湯を行うことが可能であり、 さらに、 溶解部 2 2や予熱部 2 3を水平方向に移動させるようにしてもよい。
このように分離部 3 7を設けることにより、 限られたスペース内で出湯操作を 容易に行うことができる力 分離部 3 7を設けた絞り部 2 4の近傍は、 溶解中に 発生する溶融金属のスブラシュゃスラグが付着し易い場所に設けられているため、 溶解部 2 2と予熱部 2 3とを分離する際に、 付着物が引き離されるのと一緒に炉 内面の耐火物も損傷することがある。
したがって、 分離部 3 7は、 溶融金属のスプラシュゃスラグが付着し難く、 ま た、 損傷を生じ難い構造を採用することが好ましい。 このため、 図 4及び図 5に 示す金属溶解炉では、 分離部 3 7の部分を、 スプラシュゃスラグが付着し難く、 かつ、 損傷し難い耐火物である炭素系耐火物 (例えば M g O— C ) 3 8で形成し ている。 また、 図 6に示す金属溶解炉では、 分離部 3 7の部分に水冷ジャケッ ト 3 9を設けている。 このように炭素系耐火物 3 8や水冷ジャケッ ト 3 9を用いる ことにより、 分離部 3 7における耐火物の損傷を防止することができる。
図 7は、 本発明を適用した金属溶解炉の第 4実施形態例を示す縦断面図である。 尚、 第 1実施形態例の金属溶解炉における構成要素と同一の構成要素には同一符 号を付してその詳細な説明は省略する。
第 4実施形態例の金属溶解炉は、 第 1実施形態例の金属溶解炉において、 溶解 部 2 2の炉壁の上部を水冷ジャケッ ト 4 0で形成し、 該炉壁の上部から絞り部 2 4に向かう水冷ジャケッ 卜の内壁面 (斜辺 3 0 ) の角度を水平面に対して 2 0〜 6 0度の範囲に設定するとともに、 酸素バーナー 2 1を前記水冷ジャケッ ト 4 0 を貫通して設けている。 なお、 水冷ジャケッ 卜の代りに水冷チューブを設けるこ とも可能である。
即ち、 溶解部 2 2の炉壁の上部の絞り部 2 4及び予熱部 2 3の炉壁は、 水冷ジ ャケッ 卜 4 0により形成されており、 溶融金属が接触する溶解部 2 2の下部の炉 壁は、 耐火物により形成されている。 この水冷ジャケッ ト 4 0における溶解部 2 2の天井部 (斜辺 3 0 ) は、 溶解部 2 2の周壁から絞り部 2 4の内周に向かって 2 0〜6 0度の範囲の上昇角で収斂するコーン状に形成されており、 予熱部 2 3 の底部 (斜辺 3 1 ) は、 絞り部 2 4の内周に向かって下向きに収斂するコーン状 に形成されている。
前記天井部の下面の上昇角は、 前記溶解部 2 2における溶融性能や熱効率, 熱 損失に大きな影響を与えるものであって、 上昇角が 2 0度から 6 0度の範囲のと きに、 水冷熱損失と熱効率とがバランスし、 効率のよい溶解操作を行うことがで きる。
即ち、 上昇角が 2 0度よりも小さい場合には、 酸素バーナー 2 1の火炎や金属 溶融面から水冷ジャケット 4 0への熱移動が大きくなつて水冷熱損失が大きくな り、 上昇角を 6 0度より大きくすると、 水冷熱損失は小さくなるものの酸素バー ナー 2 1からの金属への熱移動が少なくなり、 結果的に熱効率が低下する。
したがって、 前記天井部の上昇角を 2 0〜6 0度の範囲に設定することにより、 溶解能力や熱効率の低下を最小に抑えて水冷化することが可能となり、 耐火物に かかるコストを大幅に削減することができるので、 熱効率の低下を差し引いても、 全体としての金属溶解コストを低減することができる。 また、 損傷した耐火物の 修理や交換には相当の日数を必要としていたが、 水冷ジャケッ ト 4 0は、 修理の 必要がほとんどないため、 炉の稼働率も向上する。
図 8及び図 9は、 本発明を適用した金属溶解炉の第 5実施形態例を示す図であ る。 図 8はその金属溶解炉の縦断面図である。 図 9は酸素バーナーの火炎噴出方 向及び取付け高さを説明するための図である。 尚、 第 1実施形態例の金属溶解炉 における構成要素と同一の構成要素には同一符号を付してその詳細な説明は省略 する。
第 5実施形態例の金属溶解炉は、 第 1実施形態例の金属溶解炉における酸素バ ーナ一 2 1を最適な位置に取付けた実施形態例に関するものである。 即ち、 本実 施形態例では、 前記酸素バーナー 2 1の火炎噴出方向を、 溶解部底面上において、 溶解部重心位置からバーナー取付部側に、 該重心位置と酸素バーナー取付部側内 壁との距離の 0. 2倍の距離近付いた点を中心とする円内に向け、 該円を、 バー ナー取付部側溶解部内壁とこれに対向する溶解部内壁間の距離の 0. 6倍の直径 としたことにある。 また、 酸素バーナー 2 1の取付け高さを、 該酸素バーナー 2 1の火炎吐出口より下方の溶解部の容積が、 溶解部 2 2全体の容積の 0. 3 5 ~ 0. 9倍になる位置に設定している。
前記酸素バーナー 2 1の燃焼により形成される火炎の被加熱物 (金属原料や溶 湯) への衝突条件は、 加熱溶解の効率に大きく影響するため、 被加熱物に衝突す る前に十分な燃焼を行わせることと、 火炎の運動エネルギーを高めることとが重 要になる。 例えば、 火炎が被加熱物に当たるまでの燃焼率は、 バーナーの吐出口 の位置を下げ過ぎると低下するが、 燃焼率を高めるために吐出口の位置を上げ過 ぎると、 被加熱物に当たる際の火炎の運動エネルギー (衝突速度) が低下してし まう。 また、 運動エネルギーを高めるためには、 燃焼ガス自体の量や、 火炎と被 加熱物との相対位置の他に、 バーナーの設置角度 (火炎の噴出角度) も重要であ り、 傾斜角度が小さ過ぎると運動エネルギーを十分に高めることができない。一 方、 傾斜角度を大きくする程、 火炎の運動エネルギーが被加熱物に伝わり易くな り、 攪拌作用等で溶解促進に効果が期待できるが、 溶解部 2 2の上方に予熱部 2 3を設けた炉形状の場合は、 溶湯との接触によるバーナー溶損の懸念や、 炉体と の干渉を避けて酸素バーナー 2 1を設置する必要があることから、 溶解部 2 2の 溶湯の上方空間で酸素バーナー 2 1を設置することができる部位は自ずと限界が める 0
したがって、 酸素バーナー 2 1の火炎噴出方向と取付け位置は、 溶解部 2 2の 形状や大きさなどに応じて設定されるものであるが、 図 9に示すように、 溶解部 2 2の底面上において、 溶解部重心 0と酸素バーナー取付部 A側の内壁との距離 を R o、 バーナー取付部 A側の内壁とこれに対向する内壁との距離を D 0とした 場合、 酸素バーナー 2 1の火炎噴出方向は、 溶解部重心 0から酸素バーナー取付 部 A側に、 前記距離 R oの 0. 2倍の距離 Rだけ近付いた点を中心とし、 前記距 離 D oの 0. 6倍の直径 Dを有する円 Cの中に向くように設定する。 これにより、 金属への燃焼火炎の衝突条件を最適化できる。
また、 酸素バーナー 2 1の取付け高さは、 該酸素バーナー 2 1の吐出口より下 方の溶解部の容積が、 溶解部 2 2全体の容積の 0. 3 5〜 0. 9倍、 好ましくは 0. 4 5〜0. 8 0倍になるように設定することにより、 さらに効率よく金属原 料を溶解することができる。
ここで、 溶解部 2 2の底部が略円形で、 その直径が D o、 半径が R oとした場 合、 酸素バーナー 2 1の火炎噴出方向となる円 Cの中心位置は、 溶解部中心 (重 心と同一) からバーナー取付部側に 0. 2 R o近付いた点であり、 円 Cの直径は 0. 6 D oである。
また、 例えば、 溶解部 2 2が略円筒形の場合、 酸素バーナー 2 1の吐出口 (ノ ズル先端部) の高さ Hは、 溶解部の高さ H 0に対して 0. 3 5 H o〜0. 9 H o、 好ましくは 0. 4 5 H o〜0. 8 O H 0となる。 但し、 実際には、 溶解部 2 2の 底面や天井面の形状により多少異なつてくる。
図 1 0は、 本発明を適用した金属溶解炉の第 6実施形態例を示す縦断面図であ る。 尚、 第 1実施形態例の金属溶解炉における構成要素と同一の構成要素には同 —符号を付してその詳細な説明は省略する。
第 6実施形態例の金属溶解炉は、 第 1実施形態例の金属溶解炉において、 酸素 バーナーとして偏心バーナー 4 1を用い、 該偏心バーナー 4 1を回動機構 4 2に よってバーナー軸線を中心として回動可能に設けている。 尚、 偏心バーナー 4 1 及び回動機構 4 2は、 前述の如く、 例えば、 実開昭 5 9— 1 0 3 0 2 5号公報に 開示されたバーナー及び回動機構を使用することができる。
このように、 偏心バーナー 4 1を用いることにより、 酸素バーナーの取付け角 度に制約があり、 取付け角度が小さい場合でも、 燃焼火炎の吐出方向を溶解部 2 2の底部に対して大きな角度で向けることができるから、 溶解部 2 2の周辺部に デッドゾーンを生じることなく均一に加熱することができる。
—方、 迅速に金属原料を溶解することに対しては、 バーナー燃焼により形成さ れる火炎の被加熱物への衝突条件が加熱溶解の効率等に大きく影響し、 火炎が被 加熱物に衝突する前に十分な燃焼を行わせることと、 火炎の運動エネルギーを高 めることとが重要である。 火炎が被加熱物に衝突するまでの燃焼率は、 距離が近 すぎると低下するが、 燃焼率を高めるために距離を離すと衝突速度が小さくなつ て運動エネルギーが低下する。 また、 運動エネルギーを高めるためには、 燃焼ガ ス自体の量を増加させることの他、 衝突角度を大きく して垂直方向に近付けるこ とが、 被加熱物への伝熱効率を高めるには有利である。
したがって、 前記偏心バーナー 4 1を用いて燃焼火炎の吐出方向を鉛直方向に 向けることにより、 溶解初期においては、 溶解部 2 2から予熱部 2 3まで塔状に 直結した金属原料 2 9の基盤部分の軟化溶融を遅らせることができ、 金属原料 2 9の落下をある程度遅らせることにより十分な予熱を行うことができるとともに、 溶解後期には、 衝突時の燃焼火炎の運動エネルギーが溶湯に伝わり易くなり、 溶 湯の攪拌作用等で溶解促進効果が向上する。
また、 本発明の第 1の金属溶解方法の如く、 溶解段階に応じてバーナー軸線を 中心として偏心バーナー 4 1を回動させ、 燃焼火炎の吐出方向を変更することに より、 均一加熱の効果を向上させたり、 予熱部 2 3からの金属原料 2 9の落下速 度を制御したりすることが可能となる。
図 1 1は、 本発明の第 2の金属溶解方法を説明するための金属溶解炉の実施形 態例を示す縦断面図である。 尚、 第 1実施形態例の金属溶解炉における構成要素 と同一の構成要素には同一符号を付してその詳細な説明は省略する。
本発明の第 2の金属溶解方法は、 図 1 1に示す金属溶解炉を用いて、 金属原料 の溶解操作中に浴面に存在する溶融スラグに炭材を投入し、 該溶融スラグをフォ 一ミ ングさせてフォーミング状態のスラグ (フォーミ ングスラグ) 4 3にするこ とによって加熱効率を向上させる。 また、 前記溶融スラグの塩基度ァを、 溶湯処 理温度 T [°C] に対して、 0. 0 0 1 T— 0. 6≤r≤0. 0 0 2 5 T— 1で示 される範囲内に制御することにより、 安定したフォーミング状態を得ることがで さ 。
即ち、 図 1 1に示す金属溶解炉において、 酸素バーナー 2 1の燃焼火炎により 金属原料を溶解するにあたり、 溶解中期以降に溶解部 2 2の浴面上に存在する溶 融スラグに炭材を投入し、 フォーミングスラグ 4 3とする。
この溶融スラグのフォーミングは、 フォーミングスラグ状態を利用した伝熱促 進法として、 鉄鉱石の溶融還元法での二次着熱技術等で検討されている。 この伝 熱促進法は、 鉄鉱石と炭材との一次反応で生成する一酸化炭素ガスを、 スラグ中 あるいはスラグ上方で添加した酸素ガスと反応させ、 二酸化炭素まで二次燃焼さ せる方法であって、 スラグ中で二次燃焼した場合は、 生成反応で高温になった二 酸化炭素ガスが、 フォーミングスラグ中を上昇中にスラグと熱交換を行ってスラ グを昇温させるものである。
本発明は、 このフォーミング状態での伝熱効率をさらに効果的にしたものであ つて、 酸素バーナー 2 1の高温の火炎は、 フォーミングスラグ 4 3中に侵入して 浴近傍まで到達し、 スラグから抜け出るまでの全滞留時間にわたって伝熱を行う ことになり、 スラグへの伝熱量を上記二次燃焼による方法よりさらに大きくする ことができる。
通常、 酸素バーナーの燃焼火炎で金属原料を溶解する場合、 酸素バーナーの火 炎は、 溶融金属の浴面に衝突して直接金属を昇温した後、 浴面上に存在する液体 状態のスラグ中を上昇しながらスラグと熱交換を行つてスラグを昇温するととも に循環流動させ、 スラグを介して間接的に金属を昇温する。
この間接的な昇温には、 スラグ層を燃焼ガスが通過する状態が大きく影響し、 スラグ高さが高いほど有利となるが、 熱的な問題や耐火物溶損の面で操業上不利 となるスラグの増量は避けるべきである。 そこで、 溶融スラグに炭材を投入して スラグ中の鉄酸化物等の還元成分と炭材とを連続的に反応させ、 発生ガスにより スラグをフォーミング状態にすることにより、 スラグの見掛上の体積が增すため、 燃焼ガスとフォーミングスラグ 4 3との熱交換効率を上昇させることができ、 フ ォ一ミングスラグ 4 3を介しての間接的な金属の昇温を効率よく行うことができ る。
即ち、 酸素バーナー 2 1からの燃焼火炎は、 フォーミ ングスラグ 4 3中を通つ て浴と衝突することにより浴を直接的に昇温した後、 フォーミングスラグ 4 3中 を物理的に上昇しながらスラグを昇温するが、 フォーミングによりスラグの見掛 上の体積が增加しているため、 スラグ中を通過する燃焼ガスの滞留時間が長くな り、 スラグへの伝熱量を増加できるとともに、 燃焼ガスによるスラグの攪拌、 循 環流動も効果的に行うことができる。 したがって、 スラグから浴への伝熱も効率 よく行うことができ、 溶解時間の短縮や熱効率の大幅な向上を図ることができる c さらに、 炭材により酸化鉄が還元されるため、 鉄の歩留も向上する。
前記炭材は、 粉状, 粒状のコークス等を使用することができ、 その添加量は、 スラグの発生量, 層厚等により異なるが、 一般的には、 金属原料トン当たり 1〜 1 0 k gの範囲が適当であり、 添加量が少ないと十分なフォーミング状態が得ら れず、 逆に添加量が多すぎると、 炭材のコストが上昇することになる。
ここで、 安定したフォーミング状態を得るためには、 反応ガスの発生形態ゃス ラグの物性、 すなわち、 ガス発生速度や気泡怪、 スラグの粘性や表面張力を適正 に制御することが重要である。 例えば、 溶融スラグ中の還元可能な酸化物を還元 して一酸化炭素の気泡を発生させるに際し、 微細な気泡を得るためには微細な炭 材を使用することが効果的であり、 気泡を連続的に得るためには、 炭材を連続的 に適量ずつ添加することが有効である。
さらに、 金属原料を溶解する際には、 固体状態から固体液体の共存状態を経て 液体状態になるまでの加熱を効率よく行うことが必要である。 そして、 前記フォ 一ミングスラグ 4 3を介して溶湯 2 5を加熱する際の浴温度は、 例えば铁の場合、 炭素濃度等により変動するが、 鉄原料の一部が溶解し始めて平滑になる約 1 0 0 (TCから出湯可能な 1 3 0 0〜1 6 0 0 °C以上までの温度範囲となる。 この温度 範囲内でスラグのフォーミング状態を安定して保持させるために種々検討した結 果、 スラグの塩基度を、 その温度に応じて制御することが有効であることが判明 した。 すなわち、 溶融スラグの塩基度ァ == ( C a 0 ) / ( S i 02 ) を、 溶湯処 理温度 T [°C] に対して、 0. 0 0 1 T— 0. 6≤ァ^ 0. 0 0 2 5 T—1で示 される範囲内に制御することにより、 安定したフォーミング状態を得ることがで き、 酸素バーナー 2 1の燃焼火炎が有する熱エネルギーを効率よく溶湯に伝達す ることができる。
尚、 本発明は、 上述の各実施形態例に限定されるものではなく、 例えば、 各実 施形態例を組み合わせても良いことは勿論である。
以下に、 本発明の実施例を説明する。
実施例 1
図 1に示す構造の金属溶解炉を使用して、 鉄スクラップ 1 トンを溶解し、 絞り 部の効果を確認する実験を行った。 溶解部はマグネシア一カーボン (1 0 %)、 絞り部はマグネシア一クロミア (20%) 、 予熱部はアルミナ一シリカ (12%) でそれぞれ形成した。 溶解部の大きさは、 全高 80 cm、 内径 9 O cmの一定と した。 この溶解部で鉄 1トンを溶解すると、 浴面高さは約 22 cmとなる。 また、 溶解部の大きさが一定であることから、 スクラップ投入時にスクラップが占める 予熱部及び溶解部の容積、 即ち予熱部の実質的な容積と溶解部の実質的な容積と の比は略一定となり、 この場合は、 約 1 : 1となる。 したがって、 鉄スクラップ を予熱部の上部開口から炉内に投入したとき、 予熱部と溶解部の内部には、 それ ぞれ約 500kgのスクラッブが存在することになる。
酸素バーナーは、 溶解部の傾斜した天井部に、 水平面に対して約 60度傾斜さ せた状態で炉底中心方向に向けて 3本設置した。 各酸素バーナーには、 燃料とし て微粉炭を 35 k g/h供給し、 支燃性ガスとして約 60 CTCの高温酸素を酸素 比 1. 0で供給した。 微粉炭は空気で搬送した。 この酸素バーナーの火炎温度は 最高温部で約 2800°Cで、 火炎長さは 70 cmであった。
そして、 絞り部の怪 (断面積) に対する予熱部の怪 (断面積) の比率を種々変 化させて鉄スクラップ (ヘビー屑) 1 トンの溶解処理を行い、 出湯温度を 163 0°Cの一定として、 スクラップの落下速度、 溶解に要する時間及び熱効率をそれ ぞれ測定した。 なお、 絞り部内周面の高さ方向の寸法は約 20 cmとした。 また、 溶解部の天井面には約 30度の傾斜を付けて絞り部に接続し、 予熱部の底面は、 スクラップが滞留しない程度の傾斜を付けて絞り部に接続した。 結果を表 1及び 図 12に示す。 尚、 表 1の実験番号 8は、 絞り部を設けていない金属溶解炉を使 用した場合の比蛟例である。
実験番号 1 2 3 4 5 6 7 8
断面積比率 [倍] 6 5 4 2 1. 5 1. 4 1. 2 1. 0 落下制御係数 70 93 95 97 100 105 140 200 溶融時間 [分] 60 51 48 47 45 51 62 99 熱効率 [%] 40 47 50 51 53 47 37 23 表中、 熱効率は次式により求めた。
7? = H Y/Q
但し、 η :熱効率
Η :溶解後の金属 1 トン当たりの熱容量
Υ:溶解歩留
Q :金属原料 1 トンを溶解するのに要したパーナ一での燃焼熱量 また、 落下制御係数は次式により求めた。
リ = 1 0 0 T/ t
但し、 :落下制御係数
' t :金属溶解炉に投入した金属原料の全てが溶解部に落下するまで の燃焼開始からの時間
T :予熱部の断面積が絞り部の断面積の 1 . 5倍のときの t 表 1及び図 1 2から明らかなように、 予熱部の実質的な容積と溶解部の実質的 な容積との比を約 1 : 1と一定にした場合において、 予熱部の断面積と絞り部の 断面積との比率によって溶解性能が変化することがわかる。 これから、 スクラッ プの落下制御係数、 即ちスクラップの落下速度が溶解性能に大きく影響を与えて いることがわかり、 予熱部の断面積を絞り部の断面積の 6倍にするとスクラップ の落下速度が遅くなつて絞り過ぎの傾向となり、 逆に 1 . 2倍にするとスクラッ プの落下速度が速すぎて溶解が追い付かず絞りが足りない傾向となる。 これらの 結果から、 予熱部の断面積が絞り部の断面積に対して 1. 4倍から 5倍の範囲の とき、 特に 1. 5〜4倍の範囲のときに溶解時間の短縮と熱効率の向上が図れる こと、 即ち溶解能力が向上することがわかる。
実施例 2
次に、 予熱部の断面積を絞り部の断面積の 1 . 5倍の一定とし、 溶解部の実質 的な容積に対する予熱部の実質的な容積の比率、 即ちそれぞれにおける鉄スクラ ップ量の割合を変化させて同様の実験を行った。 その結果を表 2に示す。 なお、 絞り部は、 予熱部の一部とみなして計算している。 表 2
Figure imgf000024_0001
実施例 3
図 3に示す構造の金属溶解炉を使用して、 鉄スクラップ 1 トンを溶解し、 二次 燃焼用酸素ノズルから二次燃焼用酸素を吹き込んで、 その効果を確認する実験を 行った。 尚、 予熱部の断面積を絞り部の断面積の 1 . 4倍とした以外は、 実施例 1と同様にした。
二次燃焼用酸素ノズルから酸素 5 N m3 Z hを吹き込んだところ、 熱効率は 4 7 %から 5 2 %に向上した。 また、 排ガス熱損失は 5 3 %から 3 3 %に低減し、 炉内着熱量は 4 7 %から 6 7 %に向上した。
実施例 4
図 7に示す構造の金属溶解炉を使用して、 鉄スクラップ 1 トンを溶解し、 水冷 ジヤッケトを用いた場合の熱効率を測定した。 尚、 酸素バーナーの取付け角度を 4 0度とした以外は、 実施例 2と略同様にした。
そして、 溶解部の天井面の上昇角 (傾斜角) を種々変化させて、 その時の水冷 熱損失係数, 溶解時間及び熱効率をそれぞれ測定した。 また、 溶解部全体を耐火 物で形成した場合も同様に測定した。 その結果を表 3に示す。 なお、 水冷熱損失 係数は、 上昇角が 3 0度のときを 1 0 0とした相対値である。 表 3
Figure imgf000025_0001
表 3に示す結果から、 溶解部全体を耐火物で形成し、 上昇角が 2 5度, 3 0度 の場合、 すなわち、 この部位の水冷熱損失が無い場合には、 投入熱量が有効に溶 融金属に伝達された割合、 即ち熱効率は 5 0〜5 1 %であった。 これに対し、 水 冷ジャケッ トにより水冷化した場合、 上昇角によって水冷熱損失や溶解時間、 熱 効率に差を生じた。 例えば、 上昇角が小さいと溶融金属からの熱を多く受けるた めに水冷熱損失が大きくなる妥当な傾向が見られた。 しかし、 この水冷熱損失の 大小と溶解能力には相関はなく、 上昇角が 1 5度と 2 0度との間、 6 0度と 7 0 度との間で、 溶解能力に大きな差が見られた。
このことから、 上昇角が 1 5度と 2 0度との間で水冷熱損失の影響が大きくな ると判断され、 6 0度と 7 0度との間では溶解部内の燃焼廃ガスの挙動による影 響が大きくなると判断される。 したがって、 水冷ジャケッ 卜を使用して溶解部の 水冷化を図る場合には、 天井部の上昇角を 2 0〜6 0度の範囲にすることが適当 と判断される。 また、 このときの熱効率は、 耐火物のときと比べて 4 ~ 8 %低い 値ではある力 4 3〜4 6 %と比蛟的良好な性能が得られる。 すなわち、 熱効率 は低下するものの、 耐火物の損傷を考盧すると、 全体としての金属溶解コス トは 低減できる。
実施例 5
図 8に示す構造の金属溶解炉を使用して、 重油を燃料とし、 純酸素を支燃性ガ スとする酸素バーナーを 3本設置し、 該酸素バーナーの設置位置及び火炎の噴出 方向を変更して、 鉄スクラップ (ヘビー屑) 1 トン、 銅 (地金) 1 トン、 アルミ ニゥムスクラップ (サッシ屑) 4 0 0 k gをそれぞれ溶解したときの熱効率を測 定した。 溶解部は、 全高 70 cm、 内径 90 cmで、 天井面の上昇角度は 30度 である。 また、 重油の流量は、 酸素バーナー 3本合計して毎時 90リツ トルとし た。 その他は実施例 2と略同様にした。
それぞれの酸素バーナーにおける火炎の噴出方向を、 図 9の a, b, c, d, e, f , g, h, iに向けたときの各熱効率を表 4に示す。 a〜eは本発明の実 施例、 f ~ iは比蛟例である。 但し、 表中 「一」 表示部分は測定しなかった。
表 4
Figure imgf000026_0001
実施例 6
全高 120 cm、 内径 160 c mで、 傾斜角度 30度の天井面を有する溶解部 に、 実施例 5と同様の酸素バーナーを 6本設置し、 鉄スクラップ (ヘビー屑) 5 トンを溶解して実施例 5と同様に熱効率を測定した。 その結果を表 5に示す。 な お、 重油の流量は、 酸素バーナー 6本合計して毎時 400リツ トルとした。 表 5 火炎の方向 a c e f g h ϊ
熱効率 54 55 51 41 39 41 42 実施例 7
実施例 5及び実施例 6において、 酸素バーナーを、 微粉炭を燃料とするものに 変更し、 1 トンの炉では微粉炭供給量を毎時 9 0 k g、 5 トンの炉では毎時 4 0 O k gとした以外は同様にして鉄スクラップ (ヘビー屑) を溶解したときの熱効 率を測定した。 その結果を表 6に示す。 表 6
Figure imgf000027_0001
実施例 8
実施例 5及び実施例 6において、 酸素バーナーの取付け高さを変えて鉄スクラ ップ (ヘビー屑) を溶解したときの熱効率を測定した。 その結果を表 7に示す。 表中の比率は、 溶解部全体の容積を 1としたときの酸素バーナー吐出口より下方 の溶解部の容積割合を示している。
表 7
Figure imgf000028_0001
なお、 上記実施例 5~8では、 酸素バーナーの火炎の噴出方向の違いによる差 を明らかにするため、 3本あるいは 6本の酸素バーナーの火炎の噴出方向を、 そ れぞれの酸素バーナーにおいて同じ基準 (a〜i) で設定したが、 複数本の酸素 バーナーを用いる場合は、 各バーナーにおける火炎の噴出方向を任意に設定する ことが可能である。 例えば、 3本の酸素バーナーを用いる場合、 各パーナ一を、 それぞれ図 9における a, b, cのように別々の方向に火炎を噴出させるように してもよく、 適当な組合わせで実施することが可能である。 この場合、 全ての酸 素バーナーの火炎噴出方向を同一方向としたときに比べて、 溶解後の攪拌作用
(溶湯の乱れ) が大きくなることもあり、 原料が難溶性であったり、 溶湯の不均 —性が大きかったりする場合には、 溶解時間の短縮を図れることもある。
実施例 9
図 1 0に示す構造の金属溶解炉を使用して、 鉄スクラップ (ヘビー屑) 1 トン、 銅スクラップ (純銅の電線屑) 1 トン、 アルミニウムスクラップ (サッシ屑) 4 0 0 k gをそれぞれ溶解したときの熱効率を測定した。
酸素バーナーは、 パーナ一付属部分と炉体との干渉による制約のため、 水平線 に対して 1 5度の角度で溶解部に取付けた。 そして、 燃焼火炎の吐出方向がバー ナ一舢線方向 (0度) である一般のバーナーと、 吐出方向がバーナー軸線方向に 対して 2 5度偏心したバーナー、 及び 4 0度偏心したバーナーとについてそれぞ れ熱効率を測定した。 また、 火炎吐出方向が 4 0度偏心したバーナーにおいて、 昇温開始から金属原料が全量溶解部内に落下するまでの時期に、 3分毎にパーナ 一を軸線を中心として右旋回 2 0度、 0度、 左旋回 2 0度の順に繰り返し回動さ せた場合についても同様に熱効率を測定した。 その結果を表 8に示す。 なお、 そ の他は実施例 5と略同様にした。
表 8
Figure imgf000029_0001
実施例 1 0
酸素バーナーとして微粉炭を燃料とするバーナーを用い、 その取付け角度を 2 0度とし、 バーナーからの燃焼火炎の吐出方向を 0度、 20度、 40度とした場 合の熱効率を、 実施例 9と同様にそれぞれ測定した。 その結果を表 9に示す。 表 9
Figure imgf000030_0001
実施例 11
図 11に示す構造の金属溶解炉を使用して、 重油を燃料とし、 純酸素を支燃性 ガスとする酸素バーナーを水平面に対して 40度の傾斜角度で 3本設置し、 鉄ス クラップ (ヘビー屑) 1 トンを溶解したときの熱効率を測定した。 溶解部は、 全 高 70 cm、 内径 90 cmで、 天井面の上昇角度は 30度である。 また、 重油の 流量は、 酸素バーナー 3本合計して毎時 90リットルとした。 酸素は毎時 180 Nm3 を供給した。 その他は実施例 2と略同様にした。
予熱部内の原料が溶解部内に落下してスラグが形成されてから炭材を添加し、 1630°Cで出湯するまでに要した時間 (原料が溶解部内に落下してからの時間 及び全溶解時間) 、 鉄歩留、 熱効率をそれぞれ測定した。 使用した炭材は、 炭素 含有量 90%以上のコ一クス粉あるいは粒であり、 コークス粉は、 粒度が 3mm アンダーのものを用い、 毎分 100 g、 200 g、 300 gでそれぞれ連続的に 添加した。 コ一クス粒は、 10〜 30mmの粒度のものを用い、 5分毎に l k g を投入した。 その結果を、 炭材を添加しなかった場合を含めて表 10に示す。 な お、 出湯時の溶湯は、 炭素含有量 0. 03〜0. 07%の低炭素溶鋼の成分であ つた。 表 1 0
Figure imgf000031_0001
実施例 1 2
実施例 1 1と同じ溶解炉を使用し、 スラグの塩基度を変えて溶解操作を行った。 金属原料には、 鋼屑と銑鉄地金を配合して 1 トンとしたものを用いた。 この場合、 溶湯中の炭素濃度が多いほど比較的低温から溶解し、 出湯も低温で可能となる。 スラグの塩基度調整は、 焼成した石灰と硅砂とを配合したフラックスを用いて行 つた。 炭材は、 実施例 1 1と同じコークス粉を用いて毎分 2 0 0 gの割合で連続 添加した。 そして、 各塩基度におけるフォーミングの状況を観察するとともに、 総溶解時間及び熱効率を測定した。 なお、 フォーミ ングの良否の判定は、 原料落 下後の処迎中に 5 0 %以上の時間フォーミ ング状態を保つていたときを安定とし た。 結果を表 1 1に示す。
銑鉄比 mm 出麵 mum 塩基度 フォーミング状 Jl 駕 熱効率
% 。c 。C % - 分 %
0 1300 1632 0. 03 1. 10 安定 5 1 5 1
0 1320 1630 0. 04 1. 45 安定 5 1 5 1
0 1330 1530 0. 04 2. 05 安定 5 3 4 9
0 1325 1535 0. 06 2. 20 安定 5 2 5 0
3 0 1250 1530 0. 75 1. 00 安定 4 9 5 3
3 0 1250 1535 0. 90 1. 30 安定 4 9 5 3
3 0 1240 1531 0. 80 1. 67 安定 5 1 5 1
3 0 1248 1529 0. 77 1. 99 安定 5 1 5 1
6 0 1205 1500 1. 80 0. 98 安定 4 7 5 5
6 0 1200 1502 1. 70 1. 29 安定 4 7 5 5
6 0 1205 1500 1. 80 1. 60 安定 4 8 5 4
6 0 1220 Π 9 Ϊ 1. 82 1. 80 安定 4 8 5 4
1 0 0 1135 1405 2. 95 0. 90 安定 4 6 5 6
1 0 0 1125 1398 3. 30 1. 1 1 安定 4 8 5 4
1 0 0 1100 1402 3. 26 1. 29 安定 4 8 5 4
1 0 0 1110 1410 3. 25 1. 52 安定 4 9 5 3
0 1330 1632 0. 04 fl. 65 不 安 定 6 4 4 0
0 1320 1630 0. 03 3. 05 不 安 定 6 7 3 8
3 0 1250 1530 0. 82 0. 71 不 安 定 6 3 4 1
3 0 1255 1535 0. 79 2. 75 不 安 定 6 5 3 9
6 0 1205 1505 1. 78 0. 65 不 安 定 6 1 4 2
6 0 1210 1500 1. 80 2. 50 不 安 定 6 4 4 0
1 0 0 1120 1400 3. 25 0. 59 不 安 定 5 9 4 3
1 0 0 1115 1404 3. 20 2. 30 不 安 定 6 1 4 2

Claims

請 求 の 範 囲
1 . 金属原料を酸素バーナーの火炎で溶解する溶解炉であって、 酸素パーナ 一を備えた溶解部の上方に、 金属原料を予熱する予熱部を設けるとともに、 溶解 部と予熱部との間に、 溶解部及び予熱部の内径よりも小さな内径の絞り部を設け た金属溶解炉。
2. 前記予熱部の断面積は、 前記絞り部の断面積の 1 . 4〜5倍の範囲であ る請求項 1記載の金属溶解炉。
3. 前記予熱部の実質的な容積は、 前記溶解部の実質的な容積の 0. 4 ~ 3 倍の範囲である請求項 1記載の金属溶解炉。
4. 前記絞り部又はその近傍で前記溶解部と前記予熱部とを分離可能とした 請求項 1記載の金属溶解炉。
5. 前記溶解部と前記予熱部との分離部は、 炭素系耐火物で形成した請求項 4記載の金属溶解炉。
6. 前記溶解部と予熱部との分離部には、 水冷ジャケッ 卜が設けられている 請求項 4記載の金属溶解炉。
7. 前記溶解部の炉壁の上部を水冷ジャケッ 卜で形成し、 該炉壁の上部から 前記絞り部に向かう水冷ジャケッ 卜の内壁面の角度を水平面に対して 2 0〜6 0 度の範囲に設定するとともに、 前記酸素バーナーが前記水冷ジャケッ トを貫通し て設けられている請求項 1記載の金属溶解炉。
8. 前記酸素バーナーの火炎噴出方向は、 溶解部底面上において、 溶解部重 心位置からバーナー取付部側に、 該重心位置と酸素バーナー取付部側内壁との距 離の 0. 2倍の距離近付いた点を中心とする円内に向けられ、 該円は、 バーナー 取付部側溶解部内壁とこれに対向する溶解部内壁間の距離の 0. 6倍の直径であ る請求項 1記載の金属溶解炉。
9. 前記酸素バーナーの取付け高さは、 該酸素バーナーの火炎吐出口より下 方の溶解部の容積が、 溶解部全体の容積の 0. 3 5〜0. 9倍になる位置である 請求項 1記載の金属溶解炉。
1 0. 1¾記酸素バーナーとして偏心バーナーを用い、 該偏心バーナーをパーナ —軸線を中心として回動可能に設けた請求項 1記載の金属溶解炉。
1 1 . 前記溶解部の上部に二次燃焼用酸素ノズルを設けた請求項 1記載の金属 溶解炉。
1 2. 前記溶解部の底部に溶湯攪拌用ノズルを設けた請求項 1記載の金属溶解 炉。
1 3. 金属原料を酸素バーナーの火炎で溶解する金属溶解方法であって、 酸素 バーナーを備えた溶解部の上方に、 金属原料を予熱する予熱部を設けるとともに、 溶解部と予熱部との間に、 溶解部及び予熱部の内径よりも小さな内径の絞り部を 設けた金属溶解炉を用い、 かつ前記酸素バーナーとして偏心バーナーを用い、 該 偏心バーナーを、 前記金属原料の溶解段階に応じてバーナー軸線を中心として回 動させる金属溶解方法。
1 4. 金属原料を酸素バーナーの火炎で溶解する金属溶解方法であって、 酸素 バーナーを備えた溶解部の上方に、 金属原料を予熱する予熱部を設けるとともに、 溶解部と予熱部との間に、 溶解部及び予熱部の内径よりも小さな内径の絞り部を 設けた金属溶解炉を用い、 前記金属原料の溶解操作中に浴面に存在する溶融スラ グに炭材を投入し、 該溶融スラグをフォーミングさせる金属溶解方法。
1 5. 前記溶融スラグの塩基度ァを、 溶湯処理温度 T [°C] に対して、 0. 0 0 1 T— 0. 6≤ r≤ 0. 0 0 2 5 T— 1で示される範囲内に制御する請求項 1 4記載の金属溶解方法。
PCT/JP1996/002228 1995-08-08 1996-08-07 Four et procede de fusion du metal WO1997006394A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE1996622143 DE69622143T2 (de) 1995-08-08 1996-08-07 Schmelzofen und -verfahren
BR9606574A BR9606574A (pt) 1995-08-08 1996-08-07 Forno de fusão de metais e processo de fusão de uma matéria-prima metálica
US08/817,045 US5888458A (en) 1995-08-08 1996-08-07 Melting furnace of metals and melting method thereof
KR1019970702304A KR100456347B1 (ko) 1995-08-08 1996-08-07 금속용해로및그용해방법
EP19960926583 EP0784193B1 (en) 1995-08-08 1996-08-07 Metal fusion furnace and metal fusing method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP7/202508 1995-08-08
JP20252195 1995-08-08
JP7/202526 1995-08-08
JP7/202521 1995-08-08
JP20252695 1995-08-08
JP20250895 1995-08-08
JP7/203619 1995-08-09
JP7/203617 1995-08-09
JP20361795 1995-08-09
JP20362495 1995-08-09
JP7/203624 1995-08-09
JP20361995 1995-08-09

Publications (1)

Publication Number Publication Date
WO1997006394A1 true WO1997006394A1 (fr) 1997-02-20

Family

ID=27553782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002228 WO1997006394A1 (fr) 1995-08-08 1996-08-07 Four et procede de fusion du metal

Country Status (7)

Country Link
US (1) US5888458A (ja)
EP (1) EP0784193B1 (ja)
KR (1) KR100456347B1 (ja)
CN (1) CN1166198A (ja)
BR (1) BR9606574A (ja)
DE (1) DE69622143T2 (ja)
WO (1) WO1997006394A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094597A (zh) * 2017-09-28 2020-05-01 大阳日酸株式会社 熔解精炼炉的操作方法及熔解精炼炉

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336521B2 (ja) * 1997-02-06 2002-10-21 日本酸素株式会社 金属の溶解方法及び装置
WO2001006021A1 (en) * 1999-07-20 2001-01-25 Fuchs Services Limited Melting plant with burner heated furnace vessel and charge preheater
DE10108579A1 (de) * 2001-02-22 2002-09-12 Rhi Ag Wien Feuerfester keramischer Körper und zugehöriges metallurgisches Schmelzgefäß
AT411266B (de) * 2002-06-28 2003-11-25 Winkler Manfred Schachtofen zum einschmelzen von schrott
DE102004049234B4 (de) 2004-10-09 2011-06-09 Xstrata Technology Pty Ltd. Verfahren zur Gewinnung von reinem Kupfer
DE102006012005A1 (de) 2006-03-16 2007-09-20 Sms Demag Ag Schmelz-Aggregat, insbesondere Injektor, Blaslanze oder Brenner
EP2487265A4 (en) * 2009-10-08 2016-01-13 Kobe Steel Ltd DEVICE FOR PREPARING MELTED METAL
US8632621B2 (en) * 2010-07-12 2014-01-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for melting a solid charge
US20120107759A1 (en) * 2010-10-27 2012-05-03 Christopher Moran Flameless impingement preheating furnace
DE102012100015B3 (de) * 2012-01-02 2013-07-04 Pinda Technology Co., Ltd. Metallschmelzvorrichtung und Verfahren zum Schmelzen von Metall
KR101338118B1 (ko) * 2013-09-03 2013-12-06 에스제이산업주식회사 알루미늄 연속 용해로
CN104593607B (zh) * 2015-01-16 2017-07-11 安徽省金兰金盈铝业有限公司 再生铝低温节能三连熔炼炉
AT517370B1 (de) * 2015-06-29 2021-01-15 Urbangold Gmbh Vorrichtung und Anordnung zur metallurgischen Behandlung von Elektro- und/oder Elektronikschrott bzw. -komponenten sowie deren Verwendungen und Verfahren zur metallurgischen Behandlung von Elektro- und/oder Elektronikschrott bzw. -komponenten
CN108680003B (zh) * 2018-05-31 2024-01-19 新吉电(吉林)工程技术有限公司 一种铬铁合金球团焙烧用矩形竖炉及其焙烧方法
KR101970757B1 (ko) * 2018-07-06 2019-04-22 알루스 주식회사 용해로 데이터 수집을 통해 조업 시스템의 안정화를 제공하는 용해 공정
CN109945652A (zh) * 2019-04-08 2019-06-28 株洲聚润合微波工业炉有限公司 一种用于微波冶金时的持续升温方法及微波冶金炉
CN112833668B (zh) * 2020-12-31 2023-02-28 重庆长江造型材料(集团)股份有限公司 一种焙烧炉的分布式热裂解系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323733A (ja) * 1993-05-10 1994-11-25 Daido Steel Co Ltd ツインタイプの電気炉におけるスクラップ予熱方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2161180A (en) * 1936-04-27 1939-06-06 Marx Peter Apparatus for melting metals
US2283163A (en) * 1941-02-07 1942-05-19 Brassert & Co Shaft furnace and method of operating same
SE373655B (sv) * 1973-06-18 1975-02-10 Asea Ab Ugn for smeltning av tackjern och skrot
MX154705A (es) * 1979-12-21 1987-12-02 Korf Ikosa Ind Aco Horno mejorado para fundir y afinar chatarras,hierro esponja,hierro crudo y hierro liquido para la produccion de acero
US4291634A (en) * 1980-05-29 1981-09-29 Union Carbide Corporation Solid refuse disposal apparatus
US4492481A (en) * 1982-10-28 1985-01-08 Westinghouse Electric Corp. Thrust bearing starter apparatus
JPS59150005A (ja) * 1983-02-16 1984-08-28 Daido Steel Co Ltd リアクタ−製鉄装置
US4556418A (en) * 1984-10-03 1985-12-03 Thermal Systems Engineering, Inc. Process for melting a ferrous burden
DE3713369A1 (de) * 1987-04-21 1988-11-10 Kortec Ag Chargiergutvorwaermer zum vorwaermen von chargiergut eines metallurgischen schmelzaggregates
JPH01215919A (ja) * 1988-02-23 1989-08-29 Daido Steel Co Ltd リアクター製鉄における溶解開始方法
JPH0293012A (ja) * 1988-06-03 1990-04-03 Nippon Steel Corp 転炉内屑鉄加熱方法
JPH033122A (ja) * 1989-05-31 1991-01-09 Toshiba Corp 焦点検出装置
JPH05271807A (ja) * 1992-03-27 1993-10-19 Nippon Sanso Kk 酸素バーナーを用いる金属粒塊の熔融炉
JPH05271804A (ja) * 1992-03-27 1993-10-19 Nippon Sanso Kk 金属の熔融方法
DE4211564C2 (de) * 1992-04-07 1994-07-07 Westofen Gmbh Nichteisenmetall-Schmelzofen
JP2732781B2 (ja) * 1993-07-27 1998-03-30 株式会社京三製作所 防護衝立装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323733A (ja) * 1993-05-10 1994-11-25 Daido Steel Co Ltd ツインタイプの電気炉におけるスクラップ予熱方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0784193A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094597A (zh) * 2017-09-28 2020-05-01 大阳日酸株式会社 熔解精炼炉的操作方法及熔解精炼炉
EP3690066A4 (en) * 2017-09-28 2021-03-31 Taiyo Nippon Sanso Corporation METHOD OF SETTING UP A MELT REFINING FURNACE AND MELTING REFINING FURNACE

Also Published As

Publication number Publication date
KR100456347B1 (ko) 2005-05-03
US5888458A (en) 1999-03-30
EP0784193A1 (en) 1997-07-16
DE69622143T2 (de) 2003-03-06
EP0784193B1 (en) 2002-07-03
EP0784193A4 (en) 1997-11-12
KR970706478A (ko) 1997-11-03
BR9606574A (pt) 1998-12-15
CN1166198A (zh) 1997-11-26
DE69622143D1 (de) 2002-08-08

Similar Documents

Publication Publication Date Title
WO1997006394A1 (fr) Four et procede de fusion du metal
JP2875120B2 (ja) 製鋼用電気アーク炉
EP0446860B1 (en) A process for producing metals and metal alloys in a smelt reduction vessel
US4605437A (en) Reactor iron making
KR0131266B1 (ko) 컨버터를 이용한 철의 제조방법
RU2105069C1 (ru) Способ восстановительной плавки металлургического сырья
JPS63125611A (ja) ア−ク炉エネルギ−供給の増加方法
JP4745731B2 (ja) キュポラによる溶銑の溶製方法
JPS62227023A (ja) 鋼製造装置
EP1114191A1 (en) A direct smelting process
JPS62227024A (ja) 屑鉄および/または海綿鉄を連続的に溶融する方法および装置
US4702462A (en) Water-cooled lance for blowing oxidizing gas onto a metal melt
EP2002024B1 (en) Method and equipment for treating process gas
JP4041548B2 (ja) 金属溶解炉及び金属溶解方法
JP3023617B2 (ja) 炭化鉄から鋼を製造する方法および装置
JP4077533B2 (ja) 金属溶解方法
JP4077534B2 (ja) 金属の溶解方法
JPH08506858A (ja) 鉄を製造する方法と装置
JPS61221322A (ja) 金属原料溶解精錬方法
JPH09502514A (ja) スクラップ溶解アーク炉
JPH09256018A (ja) 竪型鉄スクラップ溶解炉の原料装入方法
JP2013533950A (ja) 炉内に形成された付着物を除去するための方法及びシステム
JP2549622B2 (ja) 屑鉄溶解用バ−ナ−ランス
JP2002356725A (ja) Zn・Pb製錬用フラッシュ還元炉とその操業方法
JPH09176753A (ja) 金属の溶解炉及び溶解方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191153.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08817045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970702304

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996926583

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996926583

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970702304

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996926583

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970702304

Country of ref document: KR