WO1997004346A1 - Fenetre optique et son procede de fabrication - Google Patents

Fenetre optique et son procede de fabrication Download PDF

Info

Publication number
WO1997004346A1
WO1997004346A1 PCT/JP1996/001921 JP9601921W WO9704346A1 WO 1997004346 A1 WO1997004346 A1 WO 1997004346A1 JP 9601921 W JP9601921 W JP 9601921W WO 9704346 A1 WO9704346 A1 WO 9704346A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
joining
flange
window
frame
Prior art date
Application number
PCT/JP1996/001921
Other languages
English (en)
French (fr)
Inventor
Norio Okada
Shuji Asaka
Tsuneo Urisu
Yoshiyuki Yamamoto
Keiichiro Tanabe
Yoshiaki Kumazawa
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP96923053A priority Critical patent/EP0807839B1/en
Priority to DE69627638T priority patent/DE69627638T2/de
Publication of WO1997004346A1 publication Critical patent/WO1997004346A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/007Pressure-resistant sight glasses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12625Free carbon containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0448With subsequent handling [i.e., of product]

Definitions

  • the present invention relates to an optical window and a method for manufacturing the same, and in particular, has excellent transmission characteristics over a wide range from infrared to vacuum ultraviolet, can be attached to an ultra-high vacuum apparatus, and can withstand baking.
  • the present invention relates to an optical window and a manufacturing method thereof. Background fields
  • the optical window attached to a vacuum device used for performing optical measurements in the ultra-high vacuum from the vacuum ultraviolet to the infrared region or in a wider wavelength region may have special functions. Required. Among these functions, the use of window materials with good transmittance over a wide range of wavelengths, and the ability to withstand the baking at the highest possible temperature where the window material is attached The two points of connection are particularly required. Against this the application, its from a height in a wide range of permeability, C a F 2, L i F, B a F 2, N a C l or the like has been used as a window material heretofore. However, because the thermal expansion coefficient of the window material is different from that of the flange to be attached to the vacuum device, if the bake temperature is increased, the window material will be distorted and cracked.
  • this is a method of joining the flange and the window material through the joining frame and the joining material.
  • a joining frame to which a window material is to be attached is first bonded to a flange.
  • an Au film is formed on the window material. This is achieved by applying water gold to the edge of the window material (the surface in contact with the joint frame) so that it does not become uneven, and then performing heat treatment (500 to 600 ° C). Place the joining material on the mating surface of the joining frame and the window material and heat-treat it. And the window material can be bonded via the bonding material.
  • the optical window thus obtained is sealed with the above-mentioned bonding material and can withstand an ultra-high vacuum.
  • the bonding frame can absorb stress. is there.
  • the thickness of the window should be reduced, but to withstand a vacuum, it is necessary to have a certain thickness or more, so there was a limit in reducing the thickness of the window.
  • the thickness of the joint frame is increased, the strain is transmitted directly to the window material, and the effect of absorbing the strain of the joint material is reduced. Therefore, it is necessary to reduce the thickness of the joint frame.
  • the heat generated in the window material is transmitted to the vacuum flange through the joint frame and is cooled from there. Therefore, if the thickness of the joint frame is reduced, the cooling efficiency is significantly reduced.
  • the present invention has been made in view of the above-mentioned problems of the related art, and has excellent translucency over a wide wavelength range from vacuum ultraviolet to infrared region, and further transmits light having large energy. It is an object of the present invention to provide an optical window which can be attached to an ultra-high vacuum apparatus, has excellent durability, and a method for manufacturing the same. Disclosure of the invention
  • the present inventors have studied high-vacuum windows to achieve the above object, and have completed the present invention. That is, the present invention has the following configuration. (1) At least a diamond as a window material, a flange for a vacuum device, a joining frame for joining the diamond to the flange, and a joining material for joining the joining frame and the diamond.
  • the material is Ti, Si, Ni, Hf, Zr, V, Nb, Ta, Cr, W, Pt, Mo, Ta, Os, Re, Rh, Au, Ag, S consisting of a simple substance of an element selected from the group consisting of n and Pb, a mixture or alloy of two or more of these elements, an oxide, a nitride, a carbide or a halide of these elements, or a laminate of these elements
  • An optical window characterized in that:
  • the bonding material is a bonding material having a laminated structure in the order of Ti / Pt / A C / ⁇ gC1 or ⁇ i / o / Au / AgC1 from the diamond side.
  • the joining frame is a cylindrical frame having a joining flange for joining to a flange at an upper portion and a joining flange for joining to a window material at a lower portion as necessary.
  • the optical window according to any one of the above (1) to (5).
  • a step of forming a diamond on a substrate by a vapor phase growth method a step of removing the substrate from the diamond grown on the substrate obtained in this step to obtain a diamond free-standing film, Flattening the surface of the diamond window, attaching the joining frame to the flange, and joining the window material made of the diamond self-supporting film to the joining frame with the joining material interposed therebetween to join the diamond window material to the flange.
  • a method for producing an optical window comprising a step of attaching the optical window.
  • the step of arranging a metal on a part or the whole of a part of the diamond window material that comes into contact with the joining frame is a step of applying a metal paste in which the metal is dispersed in an organic solvent to a required area
  • step (12) or (15), wherein the step of attaching the joining frame to the flange is a step of lathing to a predetermined shape after welding the roughly joined joining frame to the flange.
  • a bonding material is interposed between the metal on the diamond window material and the bonding frame. Attaching the diamond window material to the flange, heating the diamond window material, the joining frame and the flange to a joining material melting temperature or higher, and injecting the joining material into the joining portion while melting the joining material;
  • FIG. 1 is a schematic view of a joint frame used for an optical window of the present invention
  • FIG. 2 is an explanatory view showing a state of metallizing on a diamond window material
  • FIG. 3 is a flat flange.
  • FIG. 4 is an explanatory view showing a state in which a welding frame is welded
  • FIG. 4 is a schematic view showing an example of the structure of the optical window of the present invention
  • FIG. 5 is a flat flange in Comparative Example 1.
  • FIG. 6 is a schematic view showing the structure of the optical window manufactured in Comparative Example 1
  • FIG. 7 is a schematic view showing an example of a method of attaching a joining frame to a flange.
  • the use of diamond as the material of the window dramatically improves its strength and thermal conductivity, and exhibits transmissivity over a very wide range from infrared to vacuum ultraviolet. Since the thickness of the film can be reduced, the transmittance is also improved.
  • Ti, Si, Ni, Hf, Zr, V, Nb, Ta, Cr, W, Pt, Mo, T are used as bonding materials for bonding the bonding frame and the window material diamond.
  • carbide or halide, or a laminate of these the diamond and the joint frame can be easily bonded, and the vacuum resistance and bake resistance are also improved.
  • the strength of the window material is much higher than that of conventional window materials, it is possible to increase the thickness of the joint frame that absorbs distortion, and the cooling efficiency of the high vacuum window itself is further improved.
  • the material of the flange in the optical window according to the present invention is not particularly limited, and it has SUS304, which is usually used for an ultra-high vacuum flange, or other clean surface, and has no problem such as degassing. Metals and alloys can be used.
  • SUS304 which is usually used for an ultra-high vacuum flange, or other clean surface, and has no problem such as degassing. Metals and alloys can be used.
  • a window material that is presumed to be used for an ultra-high vacuum device, a cryogenic device, or the like needs to be fixed to a flange in order to connect to these devices.
  • bonding directly to the flange tends to cause damage to the window material due to differences in the coefficient of thermal expansion or distortion of the flange itself due to bolt tightening when mounting the flange to an ultra-high vacuum device. Therefore, in the present invention, the window material is joined to the flange using the joining frame and the joining material.
  • the joint frame plays the role of a jig for joining the window material to the flange.
  • joining flanges (cut allowances) 2 and 3 are placed above and below the cylindrical part 1.
  • It is a hollow cylindrical frame having.
  • the upper flange 2 of this frame is fixed to the flange, and the lower flange 3 to the window material.
  • This joint frame has the role of relieving the difference in the thermal expansion coefficient acting between the flange and the window material, or the stress caused by the distortion of the flange caused by bolt tightening when attaching the flange to the vacuum equipment. Is too hard to fulfill its role. Also, if it is too soft, it cannot serve as a vacuum partition.
  • the window material ripens when transmitting light of large energy, but it is preferable that the joining frame is made of a material having a high thermal conductivity in order to efficiently remove the heat from the window material.
  • a material having a high thermal conductivity As the material, Ag, Au, Cu, A1, bronze, duralmin and the like can be used, but Ag, Au, and Cu are particularly preferable.
  • the upper flange 2 for attaching the flange is not necessarily required, and may be a frame having only the lower flange 3 as shown in FIG. 1 (b). In this case, weld to the flange at the W section of the frame shown in Fig. 1 (b).
  • the flange itself is made of the above-mentioned metal, the window material will not be distorted, but the flange itself will be easily deformed, making vacuum sealing difficult. For this reason, the flange itself should be made of a material with high rigidity, and by inserting a joining frame or joining material that serves as a buffer between it and the window material, various distortions will not be applied to the window material.
  • Optical windows using conventional joint frames have a structure in which the deformation of the joint frame absorbs the strain on the window due to ripening stress, etc., and almost no stress is applied to the window material. In order to prevent breakage, the thickness of the joint frame tube must be reduced.
  • the thickness of the tube of the joint frame can be made thicker than in the case of a window material made of a material conventionally used, and as a result, the thermal resistance of the joint frame portion is reduced. Reduced.
  • the thickness T in FIG. 1 is preferably 0.05 to 5 mm, more preferably 0.05 to 5 mm. In Fig. 1, the longer the length d, the greater the effect of relaxing the strain, but the shorter the length, the lower the thermal resistance.If it is too long for practical use, the window material will jump out of the flange thickness. It is difficult to use.
  • the bonding material having an appropriate range of 1 to 25 mm has a role of fixing the diamond window material to the bonding frame and performing vacuum sealing.
  • Au is coated on the required parts of the window material, and the joint between the joining frame and the window material is sealed with a bonding material such as AgC1.
  • a similar method can be applied to the bonding of a diamond window material, but Au has very poor wettability with a diamond and often cannot form a good film. Therefore, when an Au film is used, a good Au film can be formed by first coating a material that easily forms a diamond and a carbide on the diamond surface, and then coating Au on the material.
  • Examples of the material directly coated on the diamond include Ti, Hf, Zr, V, Nb, Ta, Cr, Mo, W, Ni, and Si. Intermediate layers such as Pt and Mo are coated between these films and Au film, and then Au is coated. It is more preferable because the stability of these metal laminated films is increased.
  • As the intermediate layer metals such as Pt, Mo, Ta, Os, Re, and Rh, alloys thereof, and oxides, carbides, nitrides, and halides thereof can be used. More preferably, Pt and Mo are good.
  • a known method such as a vacuum evaporation method or an ion plating method may be used as a method for laminating these metal films.
  • a metal solution in which a metal to be formed is dispersed in an organic solvent is prepared, and the metal solution is directly applied to diamond, dried, and fired to form a metal film. it can.
  • a metal film can be easily formed at a desired position as compared with film formation by the above-described vacuum deposition method, ion plating method, or the like.
  • the specific shape of the diamond used as the window material must be adjusted to the shape of the flange to be attached and the shape of the joint frame.However, a flat diamond with a diameter of 3 mm or more is required. High-pressure synthetic diamonds and diamonds produced naturally are expensive. On the other hand, a diamond manufactured by a gas phase synthesis method is advantageous because a large-area diamond can be produced at low cost.
  • the diamond used may be a single crystal diamond, but may be a polycrystal diamond.
  • a polycrystalline diamond is inexpensive and advantageous. It is also possible to use a combination of single crystal and polycrystalline diamond.
  • the shape of the diamond window material is usually a disk having a diameter of 3 mm or more, preferably a diameter of 5 mm or more, more preferably a diameter of 10 mm or more. be able to. However, if it is not a circle, the stress applied to the window will be non-uniform. No.
  • the thickness of the window material is too thin, it cannot withstand vacuum, and if it is too thick, it becomes expensive and the transmittance is undesirably reduced.
  • the lower limit of the thickness the larger the opening diameter of the window, the thicker it becomes necessary.
  • diamond film thickness is t (mm)
  • t ⁇ 8 7 1 X 1 0 -. 3 D more preferably t ⁇ 0 0 15 D should be set.
  • the upper limit of the thickness is 2 mm, more preferably 300 ⁇ m. Diamonds grown by the vapor phase synthesis method often show a diamond's own shape on the growth surface side, and the roughness is often severe.
  • the “self-form” refers to a crystal form completely surrounded by a crystal plane unique to diamond. If such irregularities are present, scattering may become a problem when used as a window, so if a diamond grown by vapor phase synthesis is used as a window material, the surface must be polished, etc. It is preferable that the surface is flattened using a method.
  • the A flange 16 of the size is prepared, and a joining frame 45 roughly processed into a predetermined shape as shown in FIG. 7 (a) is joined (FIG. 7 (b)).
  • argon welding, electron beam welding, brazing using silver brazing or the like can be used.
  • electron beam welding is preferable because it can be processed in a vacuum and does not use a flux unlike brazing, so that problems such as contamination and degassing hardly occur.
  • the joining frame is processed into a final shape by lathe processing.
  • the joint frame will be distorted at the time of joining, and it may not be possible to attach the window material. Therefore, only rough processing is performed in advance (Fig. 7 (a)), which is joined to the flange 46 (Fig. 7 (b)), and then the joint frame 4 7 is formed into the final shape. (Fig. 7 (c)) is preferred.
  • the window diamond is prepared as follows. First, when using natural or high-temperature / high-pressure synthetic diamond, the obtained single-crystal diamond is processed into a desired shape by laser processing or the like. In the case of using diamond by vapor phase synthesis, an appropriate substrate is prepared, and various known synthesis methods (for example, microwave plasma CVD, arc discharge plasmid CVD, thermal filament CVD, etc.) are used. Grow to the size and thickness. Known substrates such as Si, Mo, and SiC can be used as the substrate. After crystal growth, the substrate is removed to obtain a free-standing film. The substrate can be removed by acid treatment or the like.
  • the growth surface and the substrate surface are subjected to mechanical polishing and the like as necessary, and flattening and removal of fine particles on the substrate surface side are performed.
  • the diamond window material and the joining frame are bonded using a joining material.
  • metallization is performed on a region of the surface of the diamond window material that comes into contact with the joining frame. This may be performed by a known method such as vacuum evaporation or ion plating. Further, as described above, a method of applying a metal liquid in which a metal is dispersed in an organic solvent may be applied.
  • the method of applying the metal liquid is, for example, "Suju Gold" (gold content: 8 to 12%) manufactured by NE Chemcat.
  • This is applied to a desired region using a brush or the like so as to be as uniform as possible, heated at 5 to 600 ° C. in the air, dried and fired.
  • the wettability to the diamond surface is affected by the solvent of the metal liquid and the condition of the diamond surface. It is preferable to pay attention to the mixing of the solvent of the metal liquid.
  • the diamond window material metallized as described above is fitted into the joint frame and adhered.
  • the case where the bonding is performed using Ag C1 will be described below as an example. That is, Ag C1 dissolved between the diamond window material and the joint frame is injected. After injecting Ag C1 over the entire interface between the window material and the joint frame, cool slowly to room temperature. As a result, Ag C 1 is solidified, and strong adhesion and vacuum sealing can be performed.
  • brazing materials such as Au-Si, Au-Sn, etc. are sandwiched between the window material and the joint frame to melt these joint materials. After the temperature is raised to a temperature higher than the temperature, the adhesive may be gradually cooled to be bonded.
  • Diamond is highly transmissive over a very wide range of wavelengths and has the highest thermal conductivity of any material. It also has high strength, as can be seen from the highest hardness. In the past, only small products were obtained, both natural and synthetic, and despite their excellent properties, their application range, including optical applications, was very limited. However, recent advances in gas-phase synthesis technology have made it possible to manufacture relatively large-area flat plates at low cost.
  • the thickness of the window material itself can be reduced, so that the transmittance can be increased and the heat generated by absorption in the window material can be suppressed.
  • the product of the present invention can be used in applications where frequent replacement of window materials was required in the past.
  • the frequency of exchange by wavelength is drastically reduced.
  • the thermal conductivity is large, the heat generated in the window is quickly diffused and cooled from the flange, The temperature rise of itself is also minimized.
  • This example is an example using Ti / Mo / Au / AgC1 as the joining material.
  • a conflat flange 46 (made of SUS304) was prepared, and a roughly welded joint frame (made of Ag) 45 was electron-beam welded (acceleration voltage 70 kV, beam The junction was made with a current of 4 mA (overfocus) (Fig. 3). After joining, lathing was performed so that the thickness T of the tube part was 1 mm and the length d was 8 mm.
  • the above-mentioned metalized diamond window material was joined to the joining frame 21 joined to the flat flange 22 to produce an optical window.
  • the lower flange 3 of the joining frame 21 and the metallized portion 32 a of the metallized diamond are overlapped with AgCl (32 b in the figure) as shown in FIG.
  • the heat treatment was performed.
  • the optical window obtained in this manner was set in an ultra-high vacuum apparatus, and a temperature rise / fall test from room temperature to 350 was repeated 5 times. However, no damage was found in the window material, and the leak rate was low. 1 0— 9 T 0 rr ⁇ 1 / sec or less (measurement limit) was. In addition, the transmittance of the diamond plate from infrared to vacuum ultraviolet light did not change even after the bonding process to the flange. Further, attachment / detachment to / from the vacuum apparatus was repeated 30 times, but the performance did not change.
  • Ti / Pt / Au / Ag brazing material is used as a joining material.
  • a diamond plate (diameter: 10 mm, thickness: 0.2 mm) was prepared in the same manner as in Example 1, and a Ti layer (thickness: 0.2 mm) was formed on the substrate surface and side surfaces as shown in FIG. m), a Pt layer (thickness 0.1 / zm), and an Au layer (thickness 0.3 ⁇ m) in this order.
  • a flat flange with a joint frame (silver frame) of the same material, shape, and dimensions as those used in Example 1 was prepared, and a brazing material mainly composed of Ag was placed in the lower flange of the joint frame. Then, the metallized portion of the above-mentioned metallized diamond window material was overlapped thereon and bonded by heating at 700 to form an optical window.
  • the optical window manufactured in this manner was subjected to the same test as in Example 1, and as a result, the same performance was exhibited.
  • Ti / Mo / Au / Au-Si brazing material is used as a joining material.
  • a diamond plate (diameter 1 Omm, thickness 0.2 mm) was prepared in the same manner as in Example 1, and a Ti layer (0.2 mm thick) was formed on the substrate surface and side surfaces as shown in FIG. ), Mo layer (thickness: 0.1 ⁇ 111), and 811 layers (thickness: 0.3 ⁇ m).
  • a flat flange with a joining frame (silver frame) of the same material, shape, and dimensions as those used in Example 1 was prepared, and A ⁇ -Si brazing material was placed on the lower flange portion of the joining frame.
  • the metallized portion of the above-described diamond-finished diamond window material was superimposed thereon and joined by heating at 400 ° C. to produce an optical window.
  • the optical window manufactured in this manner was subjected to the same test as in Example 1, and as a result, the same performance was exhibited.
  • This example is an example using water gold ZAg C1 as a joining material.
  • a diamond plate (diameter: 10 mm, thickness: 0.2 mm) was prepared in the same manner as in Example 1, and water gold (manufactured by NE Chemcat Co., Ltd .; (Gold solution for glass) and dried and calcined at 50 ° C in air;
  • a flat flange with a joint frame (silver frame) of the same material, shape, and dimensions as those used in Example 1 was prepared.
  • the lower flange part of this joint frame and the metallized portion of the metalized diamond window material described above were prepared.
  • the optical window manufactured in this manner was subjected to the same test as in Example 1, and as a result, the same performance was exhibited.
  • TiZMoZAuNO AgC1 is used as a joining material, and joining is performed without using a joining frame.
  • a diamond plate (diameter: 1 Omm, thickness: 0.2 mm) was prepared in the same manner as in Example 1, and a Ti layer (0.2 mm thick) as shown in FIG. ), Mo layer (thickness 0.1 m), and 8 ⁇ 1 layer (thickness 0.3 ⁇ m).
  • a flat flange 22 (made of SUS304) having the shape shown in Fig. 5 was prepared, and gold was deposited to form an Au film 41.
  • the Au film 41 and the metallized portion of the metallized diamond plate were joined together using Ag C 121. The joining was performed by a heat treatment at 500 ° C.
  • the optical window obtained in this way was installed in an ultra-high vacuum device and subjected to a temperature rise / fall test from room temperature to 350 ° C. Is no longer possible. Also, when a similar optical window was made with a 0.1 mm thick diamond, cracks occurred in the diamond window due to distortion of the flange itself when mounted on an ultra-high vacuum device.
  • Ti / Mo / Au / AgC1 was used as the joining material and a silver joining frame was used as in the first embodiment, but the thickness of the cylindrical portion was small as the joining frame.
  • a joint frame was used.
  • a diamond plate (diameter: 1 O mm, thickness: 0.2 mm) was prepared in the same manner as in Example 1, and a Ti layer (thickness: 2 mm) was formed on the substrate surface and side surfaces as shown in FIG. ⁇ M), Mo layer (thickness 0.1 fim), and Au layer (thickness 3 m) in this order.
  • the optical window obtained in this manner was installed in an ultra-high vacuum apparatus, and the same test as in Example 1 was performed. As a result, the temperature was generally good, but the temperature was raised and lowered from room temperature to 350 ° C. A pinhole was generated in the joint frame (silver frame) after repeated use of the test 10 times, and it was impossible to maintain a high vacuum. (Comparative Example 2)
  • Example 2 the same material as used in Example 1, the shape, providing a bonding frame (silver frame) with Konfura' Tofuranji dimensions, C a F 2 window material of the metallization has been a lower flange portion of the joint frame
  • the substrate was heat-treated at 500 ° C. using AgC 1 and joined to form an optical window.
  • the same test as in Example 1 was performed on the optical window thus manufactured. It was damaged by repeated attachment and detachment to the vacuum equipment.
  • Example 2 the same joining frame (silver frame) as in Example 1 was used, and an epoxy-based adhesive was used as the joining material.
  • a diamond plate (diameter: 10 mm, thickness: 0.2 mm) was prepared in the same manner as in Example 1 (without a female rise treatment).
  • a flat flange with a joining frame (silver frame) of the same material, shape, and dimensions as those used in Example 1 was prepared, and the diamond plate was fitted into the lower flange of the joining frame. An epoxy-based adhesive was injected along and joined to form an optical window.
  • the optical window obtained in this way was installed in an ultra-high vacuum device, and a temperature rise / fall test from room temperature to 350 ° C was performed. 1 0— 7 Torr 'l Zs ec or more leak occurred
  • the optical window of the present invention has an excellent transmission characteristic over a wide range from the infrared to the vacuum ultraviolet region, has excellent baking resistance, and is capable of transmitting high-energy light. It is.
  • an optical window having the above-described excellent characteristics can be manufactured inexpensively and easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書
光学用窓及びその製造方法 技術分野
この発明は、 光学用窓及びその製造方法に関し、 特に赤外から真空紫 外域に至るまで広範囲にわたって優れた透過特性を有し、 かつ超高真空 装置に取り付けることが可能で、 ベーキングにも耐えうる光学用窓及び その製造方法に関する。 背景分野
超高真空下で、 真空紫外から赤外領域まで、 あるいは更に広い波長領 域における光学測定を行う場合などに使用される真空装置に取り付ける 光学用窓には、 特殊な機能を備えていることが要求される。 これらの機 能のうち、 広領域の波長においてその透過率が良好な窓材を使用してい ること、 及び該窓材を取り付けた部分ができる限り高い温度でのベ一ク に耐えうるような接続形態となっていることの 2点が特に要求される。 こう した用途に対して、 これまで窓材としてその透過率の広い範囲での 高さから、 C a F 2 、 L i F、 B a F 2 、 N a C l等が使用されてきた 。 しかし、 真空装置に取り付けるためのフランジと、 これら窓材材料の 熱膨張率が異なるため、 ベーク温度を高くすると窓材に歪みが生じ割れ てしまう。
そこで、 フランジと窓材の熱膨張率の違いを吸収するため、 次のよう な方法が採られている。 すなわち、 フランジと窓材を接合枠と接合材を 介して接合させる方法である。 この方法においては、 まずフランジに窓 材を取り付けるべき接合枠を接着する。 次に、 窓材に A u膜を形成させ る。 これは, 窓材の縁 (接合枠と接する面) に、 水金をむらにならない ように塗布した後、 加熱処理 ( 5 0 0〜6 0 0 °C ) して形成させる。 前 記接合枠及び窓材の合わせ面に接合材を乗せ、 加熱処理すると、 接合枠 と窓材が接合材を介して接着できる。 こうして得られた光学用窓は、 上 記接合材によりシールされて超高真空に耐えることができる。 また、 接 合材に光学窓材と熱膨張係数が比較的近い物質を、 接合枠に比較的変形 しゃすい金属を使用することによって接合枠で応力を吸収することがで きる、 などの利点がある。
このような接合枠、 接合材を使用することにより、 高真空に耐え、 高 温でベークも可能な光学窓を得ることができるが、 なお次のような問題 点がある。
すなわち、 光源の開発が進み、 窓を透過させる光の強度が大きくなつ てくるにつれて、 前記のような窓材ではその光の透過の際のエネルギー ロスによる発熱が無視できなくなる。 これを小さくするには窓の厚さを 薄くすればよいが、 真空に耐えるためにはある一定以上の厚さが必要と なるため、 窓の厚さを薄くするには限界があった。 さらに、 接合枠の厚 みを厚くすると歪みが直接窓材に伝えられ、 接合材の歪み吸収効果が小 さくなつてしまう。 そのために、 接合枠の厚さは薄くする必要がある。 ところが、 窓材で発生した熱は接合枠を通して真空フランジに伝えられ 、 そこから冷却されるため、 接合枠の厚さを薄くするとその冷却効率が 格段に落ちてしまう。
本発明は、 前記従来技術の問題点に鑑みてなされたものであり、 真空 紫外から赤外領域、 さらに広領域の波長範囲にわたり優れた透光性を持 ち、 かつ大きなエネルギーを持つ光を透過させることができ、 超高真空 装置に取り付けることが可能で、 かつ耐久性に優れた光学用窓及びその 製造方法を提供することを目的とする。 発明の開示
本発明者らは前記目的を達成すべく高真空用窓の検討を進め、 本発明 を完成するに至った。 すなわち、 本発明は次の構成を有するものである ( 1 ) 少なく とも窓材としてのダイヤモン ドと、 真空装置用フランジと 、 前記ダイヤモンドをフランジに接合するための接合枠と、 この接合枠 とダイヤモン ドとを接合させる接合材とからなり、 該接合材が、 T i、 S i、 N i、 H f 、 Z r、 V、 Nb、 Ta、 C r、 W、 P t、 Mo, T a、 O s、 R e、 Rh、 Au、 Ag、 S n及び P bからなる群から選ば れる元素の単体、 これらの元素の 2種以上の混合物若しくは合金、 これ らの元素の酸化物、 窒化物、 炭化物若しく はハロゲン化物、 又はこれら の積層からなることを特徴とする光学用窓。
(2) 前記接合材が、 AgC 1又は A gを主成分とする接合材であるこ とを特徴とする前記 ( 1 ) の光学用窓。
(3) 前記接合材が、 ダイヤモン ド側から A u /AgC 1の順に積層構 造を持つ接合材であることを特徴とする前記 ( 1 ) の光学用窓。
( 4 ) 前記接合材が、 ダイヤモン ド側から T i /P t /A υ/Α g C 1 又は Τ i / o/Au/AgC 1の順に積層構造を持つ接合材であるこ とを特徴とする前記 ( 1 ) の光学用窓。
(5) 前記接合枠の材質が、 Ag、 A u及び C uからなる群から選ばれ る 1種以上であることを特徴とする前記 ( 1 ) ないし (4) のいずれか の光学用窓。
( 6) 前記接合枠が、 必要に応じ、 上部にフランジと接合する接合用の 鍔を有し、 下部に窓材と接合する接合用の鍔を有する筒状の枠であるこ とを特徴とする前記 ( 1 ) ないし ( 5) のいずれかの光学用窓。
( 7 ) 前記接合枠の筒の部分の厚さが 0. 0 5〜 5 mmであることを特 徴とする前記 (6) の光学用窓。
( 8) 窓材のダイヤモンドが、 気相合成法により作製されたダイヤモン ドであることを特徴とする前記 ( 1 ) ないし ( 7 ) のいずれかの光学用
Ί ο
( 9 ) 窓材のダイヤモン ドが、 多結晶ダイヤモン ドであることを特徴と する前記 ( 8) の光学用窓。 ( 1 0) 窓材のダイヤモンドが、 柱状結晶を呈するダイヤモン ドである ことを特徴とする前記 (9) の光学用窓。
( 1 1 ) 窓材のダイヤモン ドが、 ( 1 0 0) 配向をもつダイヤモン ドで あることを特徴とする前記 ( 1 0) の光学用窓。
( 1 2) 気相成長法によりダイヤモン ドを基板上に形成させる工程と、 この工程で得られる基板上に成長したダイヤモン ドから基板を取り除き ダイヤモン ド自立膜を得る工程と、 該ダイヤモン ド自立膜の表面を平坦 化する工程と、 フランジに接合枠を取り付ける工程と、 前記ダイヤモン ド自立膜からなる窓材を間に接合材を介在させて前記接合枠に接合させ ることによってダイヤモンド窓材をフランジに取り付ける工程を含むこ とを特徴とする光学用窓の製造方法。
( 1 3) 前記基板上に成長したダイヤモン ドから基板を取り除きダイヤ モン ド自立膜を得る工程が、 酸による基板の溶解により行われることを 特徴とする前記 ( 1 2) の光学用窓の製造方法。
( 1 ) 前記ダイヤモン ド自立膜からなる窓材を間に接合材を介在させ て前記接合枠に接合させることによってダイヤモン ド窓材をフランジに 取り付ける工程が、 ダイヤモン ド上の接合枠と接触する部分の一部又は 全部に金属を配置する工程を含むことを特徴とする前記 ( 1 2) 又は (
1 3) の光学用窓の製造方法。
( 1 5) 前記ダイヤモン ド窓材上の接合枠と接触する部分の一部又は全 部に金属を配置する工程が、 該金属を有機溶媒に分散させた金属ペース トを必要領域に塗布する工程と、 加熱処理により乾燥、 焼成する工程を 含むことを特徴とする前記 ( 1 4) の光学用窓の製造方法。
( 1 6) 前記フランジに接合枠を取り付ける工程が、 フランジに粗加工 した接合枠を溶接した後に、 所定の形状に旋盤加工する工程であること を特徵とする前記 ( 1 2) ないし ( 1 5) のいずれかの光学用窓の製造 方法。
( 1 7) 前記ダイヤモン ド窓材上の金属と接合枠との間に接合材を介在 させて、 ダイヤモンド窓材をフランジに取り付ける工程が、 前記ダイヤ モンド窓材、 接合枠及びフランジを接合材溶融温度以上に加熱する工程 と、 接合材を溶融させながら接合部分に注入する工程と、 前記ダイヤモ ンド窓材、 接合枠及びフランジを徐冷する工程とを含むことを特徴とす る前記 ( 1 2) ないし ( 1 6) のいずれかの光学用窓の製造方法。 図面の簡単な説明
第 1図は、 本発明の光学用窓に用いられる接合枠の概略図であり、 第 2図は、 ダイヤモンド窓材へのメタライズの状況を示す説明図であり、 第 3図は、 コンフラ ッ トフランジへ接合枠を溶接した状態を示す説明図 であり、 第 4図は、 本発明の光学用窓の構造の 1例を示す概略図であり 、 第 5図は、 比較例 1におけるコンフラ ッ トフラ ンジの形状を示す概略 図であり、 第 6図は、 比較例 1で作製した光学用窓の構造を示す概略図 であり、 第 7図は、 フランジへ接合枠を取り付ける方法の 1例を示す説 明図である。 発明を実施するための最良の形態
本発明においては、 窓の材料としてダイヤモンドを用いることにより 、 その強度、 熱伝導率が飛躍的に改善され、 さらに赤外から真空紫外に わたって非常に広い範囲で透光性を示し、 かつ窓の厚さを薄くできるの で透過率も向上する。
また、 接合枠と窓材であるダイヤモンドとを接着させる接合材として 、 T i、 S i、 N i、 H f 、 Z r、 V、 Nb、 Ta、 C r、 W、 P t、 Mo、 T a、 O s、 R e、 Rh、 Au、 Ag、 Sn及び Pbからなる群 から選ばれる元素の単体、 これらの元素の 2種以上の混合物若しくは合 金、 これらの元素の酸化物、 窒化物、 炭化物若しくはハ□ゲン化物、 又 はこれらの積層を使うことにより、 平易にダイヤモンドと接合枠を接着 することができ、 耐真空性、 耐ベーク性も改良される。 さらに、 これまでの窓材と比べてその強度が非常に大きいために、 歪 みを吸収する接合枠の厚さを厚くすることが可能となり、 高真空窓自体 の冷却効率自体もさらに向上する。
本発明に係る光学用窓においてフランジの材質は、 特に限定されるも のではなく、 通常超高真空用フランジに用いられる S U S 3 0 4やその 他清浄な表面を持ち脱ガス等の問題がない金属、 合金等が使用できる。 一般に超高真空装置、 極低温装置等に用いることを前提とする窓材は 、 これらの装置に接続するため、 フランジに固定する必要がある。 とこ ろが、 フランジに直接接着固定することは、 熱膨張率の違い、 あるいは 超高真空装置へのフランジ取り付けの際のボルト締め付けによるフラン ジ自体の歪み等による窓材の破損を招きやすい。 そこで本発明において は接合枠及び接合材を使用して窓材をフランジに接合するようにしてい る。
接合枠は窓材をフランジに接合する治具の役割を果たすもので、 例え ば第 1図 (a ) に示すように筒状部 1の上下に接合用の鍔 (取り代) 2 、 3を有する中空円筒状の枠である。 この枠の上部鍔 2をフランジに、 下部鍔 3に窓材を固定する。 この接合枠は、 フランジと窓材の間に働く 熱膨張係数の違い、 あるいはフランジを真空装置に取り付ける際のボル ト締めつけにより生じるフランジの歪み等に伴う応力を緩和する役割を 持つので、 その硬度が硬すぎるとその役割を果たせない。 また、 軟らか すぎても真空隔壁としての役割を果たせない。 更に、 大きなエネルギー の光を透過させる場合に窓材は発熟するが、 その熱を効率よく窓材から 取り去るために接合枠は熱伝導率が大きい材料からなるのが好ましい。 材質としては A g、 A u、 C u、 A 1、 青銅、 ジユラルミ ンなどが使用 できるが、 特に A g、 A u、 C uが好ましい。 この接合枠において、 フ ランジ取り付け用の上部鍔 2は必ずしも必要ではなく、 第 1図 (b ) に 示すように下部鍔 3のみを備えた枠であってもよい。 この場合は、 第 1 図 (b ) に示される枠の W部でフランジに溶接する。 ^ 前記材質の金属でフランジそのものを作製すると、 窓材に歪みがかか らなくなるが、 フランジ自体が容易に変形してしまうために真空シール が困難となる。 そのため、 フランジ自体は剛性の高い材質のもので作製 し、 窓材との間に緩衝となる接合枠、 接合材を入れることによって窓材 に様々な歪みがかからないようにする。 従来の接合枠を使用した光学用 窓では、 この接合枠の変形により熟応力等により窓にかかる歪みを吸収 し、 窓材にはほとんど応力がかからないような構造になっているが、 窓 材の破損を防止するために、 接合枠の筒の厚さは薄くする必要がある。 ダイヤモン ドを窓材として利用することにより、 接合枠の筒の厚さを従 来使用されている材料からなる窓材の場合に比べて厚くすることができ 、 その結果接合枠部分の熱抵抗が低減される。 破損の防止及び熱抵抗の 低減などを勘案して第 1図における厚さ Tは、 0 . 0 5〜5 m m、 より 好ましくは 0 . 0 5〜5 m mがよい。 また第 1 図における長さ dは、 長 いほど前記歪みの緩和効果が大きくなるが、 短いほど熱抵抗は小さくな るし、 実用上長すぎると窓材がフランジの厚みより外に飛び出してしま うので使いにく くなる。 したがって、 1〜 2 5 m mの範囲が適当である 接合材は、 ダイヤモン ド窓材を、 前記接合枠に固定し、 真空シールを 行う役割を持つ。 従来の窓材では、 窓材の必要部分に A uをコー トし、 接合枠と窓材の間は A g C 1等の接合材で接着してシールしていた。 ダ ィャモン ド窓材を接合する場合にも同様の方法を適用できるが、 A uは 非常にダイヤモン ドとの濡れ性が悪く、 良好な膜を形成できないことが 多い。 そこで A u膜を用いる場合には、 ダイヤモン ド表面にダイヤモン ドと炭化物を形成しやすい物質をまずコー卜 し、 その上に A uをコー ト すると良好な A u膜を形成させることができる。 上記ダイヤモン ド上に 直接コー トする物質としては、 T i、 H f 、 Z r、 V、 N b、 T a、 C r、 M o、 W、 N i、 S iが挙げられる。 これらの膜と A u膜との間に 、 P t、 M oなどの中間層をコー トし、 それから A uをコー トするとこ れら金属積層皮膜の安定性が増すのでさらに好ましい。 前記中間層とし ては、 P t、 M o、 T a、 O s、 R e、 R h等の金属、 あるいはこれら の合金あるいはこれらの酸化物、 炭化物、 窒化物、 ハロゲン化物が使用 できるが、 より好ましくは P t、 M oがよい。 これらの金属皮膜を積層 する方法は、 真空蒸着法、 イオンプレーティ ング法など、 公知のものを 用いればよい。
さらに、 前記メタライズ方法の他、 膜を形成したい金属が有機溶媒中 に分散した金羼液を用意し、 その金属液をダイヤモンド上に直接塗布し 乾燥、 焼成させることによって金属膜を形成することかできる。 この場 合、 上記真空蒸着法、 イオンプレーティ ング法などによる成膜に比べて 金属膜を所望の位置に容易に形成することができる。
前記のように所定の位置にメタライズしたダイヤモン ド板と接合枠の 間に A g C 1や、 A gあるいは A uを主成分としたロウ材例えば A u— S i、 A u - S n等を介在させ、 これらの溶融する温度まで昇温した後 、 徐冷し、 ダイヤモンドとフランジ (接合枠) の接合を行う。
窓材として使用するダイヤモン ドは、 具体的な形状は取り付けるフラ ンジ及び接合枠の形伏に合わせる必要があるが、 直径 3 m m以上の平板 型のダイヤモン ドが要求されるため、 人工の高温、 高圧合成ダイヤモン ドゃ、 天然に産出するダイヤモン ドでは高価なものとなる。 これに対し て、 気相合成法により製造されるダイヤモン ドは大面積のものが安価に 作成できるので好都合である。
用いるダイヤモン ドは単結晶ダイヤでもよいが、 多結晶ダイヤモン ド でも使用できる。 コスト的には多結晶ダイヤモン ドが安価で有利である 力 \ 単結晶、 多結晶ダイヤモン ドを併用することも可能である。
ダイヤモンド窓材の形状は、 通常直径 3 m m以上、 好ましく は直径 5 m m以上、 より好ましくは直径 1 0 m m以上の円板であるが、 必ずしも 円である必要はなく四角状など様々な形を取ることができる。 ただし、 円でない場合には窓にかかる応力が不均一となるので、. 円板状が好まし い。
窓材の厚さは、 薄くなりすぎると真空に耐えられなくなるし、 厚すぎ ると高価になりまた透過率が低下するので好ましくない。 厚さの下限は 窓の開口径が大きいほど厚くする必要が出てく る。 円板状窓材の場合、 窓の開口径を D 〔m m〕 、 ダイヤの膜厚を t 〔m m〕 としたとき、 t ≥ 8 . 7 1 X 1 0 - 3 D、 より好ましくは t ≥ 0 . 0 1 5 Dとなるようにす るのがよい。 厚さの上限は 2 m m、 より好ましくは 3 0 0 〃mである。 気相合成法により成長させたダイヤモン ドは、 成長面側にダイヤモン ドの自形が現れ、 凹凸が激しい場合が多い。 ここで、 「自形」 とはダイ ャモンドに固有の結晶面で完全に囲まれた結晶形態をいう。 このような 凹凸があると、 窓として使用する場合その散乱が問題となることかある ので、 気相合成法により成長させたダイヤモン ドを窓材として使用する 場合には、 その表面を研磨などの方法を利用して平坦化しておく ことが 好ましい。
多結晶ダイヤモン ド板を利用する場合、 結晶粒界における散乱が問題 になることがある。 気相合成法による多結晶ダイヤモン ドは、 基板近傍 では結晶粒が小さく、 粒界が相対的に多くなる傾向がある。 基板面側も 5 m以上研磨などの方法で除去することにより、 結晶粒界面による散 乱は低減できる。
多結晶ダイヤモン ドとして、 気相合成法による成長方向に粒界の実質 的存在しない、 柱状結晶を有するダイヤモン ドを用いることにより、 多 結晶でありながら散乱を最小限に抑えることかでき、 安価に大面積の窓 を作製することができる。 すなわち、 ダイヤモン ドの合成条件を最適化 することにより、 ( 1 0 0 ) 方向に配向した多結晶ダイヤを得ることが でき、 このダイヤは成長方向に実質的に粒界が存在せず、 従って粒界に よる散乱が実質的に存在しない。
以下に本発明による光学用窓の製造方法について詳钿に説明する。 先ず、 真空装置に取り付けるため、 取り付ける真空装置に適合するサ ィズのフランジ 1 6を用意し、 第 7図 (a ) に示す所定の形状に粗加工 した接合枠 4 5を接合する (第 7図 (b ) ) 。 この接合はアルゴン溶接 、 電子ビーム溶接、 あるいは銀ロウなどを用いたロウ付け等が使用でき る。 中でも電子ビーム溶接が真空中で処理することができ、 ロウ付けの ようにフラックスを使用することもないので、 汚れ、 脱ガス等の問題が おきにくいので好ましい。
このようにして接合した後、 接合枠を旋盤加工で最終形状に加工する 。 この時、 接合する前に最終形状にしてしまうと、 接合時に接合枠の歪 みが起こり、 窓材の取り付けが不可能となることがある。 そこで、 あら かじめ大まかな加工のみをしておき (第 7図 ( a ) ) 、 これをフランジ 4 6に接合して (第 7図 (b ) :) 、 その後に最終形状に接合枠 4 7を加 ェする (第 7図 (c ) ) のが好ましい。
一方、 窓材のダイヤモンドは以下のように用意する。 まず、 天然、 あ るいは高温高圧合成のダイヤモンドを用いる場合には、 得られる単結晶 ダイヤモンドをレーザ一加工などで所望の形状に加工する。 気相合成法 によるダイヤモンドを用いる場合には、 適当な基板を用意し、 公知の様 々な合成方法 (例えばマイクロ波プラズマ C V D法、 アーク放電プラズ マジヱッ ト C V D法、 熱フイラメント C V D法等) で所望の大きさ、 厚 さに成長させる。 基板としては S i、 M o、 S i C等、 これも公知のも のを使用できる。 結晶成長後、 自立膜を得るために基板を除去する。 基 板除去は酸処理などで行うことができる。 成長表面及び基板面を必要に 応じて機械研磨等を施し、 平坦化及び基板面側微小粒子削除等を行う。 次いで、 ダイヤモンド窓材と接合枠を接合材を用いて接着する。 先ず 、 ダイヤモンド窓材の表面の接合枠と接触する領域についてメタライズ を行う。 これは例えば真空蒸着、 あるいはイオンプレーティ ング法など の公知の方法で行えばよい。 さらに、 先に述べたように有機溶媒中に金 属を分散させた金属液を塗布する方法で行ってもよい。 金属液を塗布す る方法は、 例えば N Eケムキヤッ ト製 「水金」 (金含有量 8〜1 2 % ) を使用し、 これをハケ等を用いて所望の領域にできるだけ均一になるよ うに塗布し、 大気中で 5〜6 0 0 °C加熱を行い、 乾燥、 焼成するもので ある。 ダイヤモン ド表面に対する濡れ性は、 金属液の溶媒や、 ダイヤモ ンド表面の状態によって影響を受ける。 金属液の溶媒の配合には注意を 払うことが好ましい。
前記のようにしてメタライズを行ったダイヤモンド窓材を、 接合枠に はめ込み接着する。 A g C 1を用いて接着を行う場合を例にとって説明 すると以下のとおりである。 すなわち、 ダイヤモンド窓材と接合枠の間 に溶解した A g C 1を注入する。 窓材と接合枠の境面全てにわたってに A g C 1を注入した後、 室温まで徐冷する。 それにより A g C 1 は凝固 し、 強固な接着、 真空シールを行うことができる。
その他、 窓材を接合枠にはめ込む際、 A g C 1の他、 A u— S i、 A u - S n等のロウ材を窓材と接合枠の間に挟み込み、 これらの接合材の 融解温度以上に昇温させた後徐冷して接着させることもできる。
ダイヤモンドは非常に広い範囲の波長で高い透光性を示し、 しかも物 質中最高の熱伝導率を有している。 また、 最高の硬度を持つことからも 分かるように高い強度を有している。 従来、 天然及び合成ともに小さい ものしか得られず、 その優れた特性にも関わらず光学用途をはじめ応用 範囲が非常に限られていた。 しかしながら、 近年の気相合成技術の進展 により、 比較的大面積の平板を安価に製造することが可能となってきた ο
以上のような特性を有するダイヤモンドを窓材に使用することにより , 窓材自体の厚さを小さくすることができるので、 透過率を高くするこ とかでき、 窓材における吸収による発熱も抑えられる。 しかも、 真空紫 外から可視、 赤外に至るまで広い範囲で透光性が高いので、 従来は窓材 の頻繁な交換が必要であった用途に対しても本発明品を使用することに よって波長による交換の頻度が激減する。 さらに、 熱伝導率が大きいの で窓で発生した熱は速やかに拡散し、 フランジから冷却されるので、 窓 自体の温度上昇も最低限に抑えられる。
以下実施例により本発明をさらに具体的に説明する。
(実施例 1 )
この例は接合材として T i /Mo/Au/AgC 1を用いた例である ο
多結晶 S i基板 (直径 1 0mm、 厚さ 2. 5 mm) の片面をダイヤモ ンド砥粒で傷つけ処理した後、 マイクロ波プラズマ CVD法によりダイ ャモンドを成長させた。 成長した表面を機械研磨により平坦化した後、 S iを酸処理によって除去し、 基板面側も成長面と同様に 1 0 //mの厚 みで機械研磨を施した。 X線回折法によれば ( 4 0 0 ) のピークのみが 観測され、 ( 1 0 0) 配向したダイヤモンド膜であることが確認できた 。 このようにして得られたダイヤモンド板 (直径 1 0 mm、 厚さ 0. 2 mm) の基材面及び側面に、 第 2図に示すように T i層 (厚み 0. 2 / m) 、 Mo層 (厚み 0. 1 /m) 、 A u層 (厚み 0. 3〃m) の順でメ 夕ライズを施した。
一方、 第 7図に示すように、 コンフラッ トフランジ 4 6 (SUS 3 0 4製) を用意し、 これに粗加工した接合枠 (Ag製) 4 5を電子ビーム 溶接 (加速電圧 70 k V、 ビーム電流 4 mA、 オーバーフォーカス) で 接合した (第 3図) 。 接合後、 筒の部分の厚さ Tが 1 mm、 長さ dが 8 mmとなるように旋盤加工を行つた。
このようにしてコンフラッ トフランジ 22に接合した接合枠 2 1に前 記のメタライズしたダイヤモンドの窓材を接合させ光学用窓を作製した 。 接合は第 4図に示すように接合枠 2 1の下部鍔 3と前記メタライズし たダイヤモンドのメタライズ部分 3 2 aとを AgC l (図の 32 b) を 介して重ね、 5 0 0 °Cに加熱処理することによって行った。
このようにして得られた光学用窓を、 超高真空装置に設置し、 室温か ら 3 5 0てまでの昇降温試験を 5回繰り返したが窓材の破損はみられず 、 リークレートは 1 0—9T 0 r r · 1 / s e c以下 (測定限界) であつ た。 また、 ダイヤモンド板の赤外から真空紫外光に対する透過性は前記 のフランジへの接合過程を経ても変化は認められなかった。 更に、 真空 装置への取り付け取り外しを 3 0回繰り返したが前記性能に変化はなか つた。
(実施例 2)
この例は接合材として T i /P t /A u/A gロウ材を用いた例であ る。 実施例 1 と同様にしてダイヤモンド板 (直径 1 0 mm、 厚さ 0. 2 mm) を用意し、 この基材面及び側面に、 第 2図に示すように T i層 ( 厚み 0. 2〃m) 、 P t層 (厚み 0. 1 /zm) 、 A u層 (厚み 0. 3〃 m) の順でメタライズを施した。
一方、 実施例 1で使用したのと同じ材質、 形状、 寸法の接合枠 (銀枠 ) 付きコンフラッ トフランジを用意し、 この接合枠の下部鍔の部分に A gを主成分とするロウ材を配置し、 その上に前記のメタライズ済みダイ ャモンド窓材のメタライズ部分を重ね、 7 0 0でで加熱処理して接合さ せ、 光学用窓を作製した。
このようにして作製した光学用窓について、 実施例 1の場合と同様の 試験を行った結果、 同様の性能を示した。
(実施例 3)
この例は接合材として T i /Mo/Au/Au -S iロウ材を用いた 例である。 実施例 1 と同様にしてダイヤモンド板 (直径 1 Omm、 厚さ 0. 2 mm) を用意し、 この基材面及び側面に、 第 2図に示すように T i層 (厚み 0. 2〃m) 、 Mo層 (厚み 0. 1 〃111) 、 八11層 (厚み0 . 3〃m) の順でメタライズを施した。
一方、 実施例 1で使用したのと同じ材質、 形状、 寸法の接合枠 (銀枠 ) 付きコンフラッ トフランジを用意し、 この接合枠の下部鍔の部分に A υ - S iロウ材を配置し、 その上に前記のメ夕ライズ済みダイヤモンド 窓材のメタライズ部分を重ね、 4 0 0 °Cで加熱処理して接合させ、 光学 用窓を作製した。 このようにして作製した光学用窓について、 実施例 1の場合と同様の 試験を行った結果、 同様の性能を示した。
(実施例 4 )
この例は接合材として水金 ZAg C 1を用いた例である。 実施例 1 と 同様にしてダイヤモンド板 (直径 1 0 mm、 厚さ 0. 2mm) を用意し 、 これに実施例 1でメタライズを施した領域と同一の領域に水金 (NE ケムキヤッ ト社製;硝子用金液) を塗布し、 大気中で 5 2 0 °Cで乾燥焼 成し; Γこ。
一方、 実施例 1で使用したのと同じ材質、 形状、 寸法の接合枠 (銀枠 ) 付きコンフラッ トフランジを用意し、 この接合枠の下部鍔の部分と前 記のメタライズ済みダイヤモンド窓材のメタライズ部分とを、 A g C 1 を用いて 5 0 0 °C加熱処理により接合させ、 光学用窓を作製した。
このようにして作製した光学用窓について、 実施例 1の場合と同様の 試験を行った結果、 同様の性能を示した。
(比較例 1 )
この例は接合材として T i ZMoZA uノ A g C 1を用い、 接合枠を 使用せずに接合した例である。 実施例 1 と同様にしてダイヤモンド板 ( 直径 1 O mm、 厚さ 0. 2mm) を用意し、 この基材面及び側面に、 第 2図に示すように T i層 (厚み 0. 2〃m) 、 Mo層 (厚み 0. 1 m ) 、 八 ^1層 (厚み 0. 3〃m) の順でメタライズを施した。
—方、 第 5図に示す形状のコンフラッ トフランジ 2 2 (SUS 3 0 4 製) を用意し金を蒸着させ Au膜 4 1を形成させた。 次いで第 6図に示 すように、 この Au膜 4 1の部分と前記メタライズ済みダイヤモンド板 のメタライズ部分とを A g C 1 2 1を用いて接合させた。 接合は 5 0 0 °C加熱処理で行った。
このようにして得られた光学用窓を、 超高真空装置に設置し、 室温か ら 3 5 0 °Cまでの昇降温試験を行ったところ、 窓材にクラックが入り真 空を維持することができなくなった。 また、 厚さ 0. 1 mmのダイヤモン ドで同様の光学用窓を作製したと ころ、 超高真空装置に取り付ける際にフランジ自体の歪みによりダイヤ モン ド窓にクラックが生じた。
(実施例 5 )
この例は実施例 1 と同様に接合材として T i /Mo/A u/A g C 1 を用い、 銀製の接合枠を用いた例であるが、 接合枠として筒状部分の厚 みの薄い接合枠を使用した。 先ず、 実施例 1 と同様にしてダイヤモン ド 板 (直径 1 O mm、 厚さ 0. 2 mm) を用意し、 この基材面及び側面に 、 第 2図に示すように T i層 (厚み 2〃m) 、 Mo層 (厚み 0. 1 fim) 、 A u層 (厚み 3 m) の順でメタライズを施した。
—方、 筒の部分の厚さ丁が 0. 0 8 mmで長さ dが 1 5 mmの接合枠 を使用した他は実施例 1で使用したのと同じ材質、 形状の接合枠 (銀枠 ) 付きコンフラッ トフランジを用意し、 この接合枠の下部鍔の部分と前 記のメタライズ済みダイヤモン ド窓材のメタライズ部分とを実施例 1 と 同様に接合させ、 光学用窓を作製した。
このようにして得られた光学用窓を、 超高真空装置に設置し、 実施例 1 と同様の試験を行ったところ、 おおむね良好であつたが、 室温から 3 5 0 °Cまでの昇降温試験において繰り返し 1 0回の使用で接合枠 (銀枠 ) にピンホールが発生し、 高真空を維持することができなくなった。 (比較例 2 )
窓材として直径 1 0 mm. 厚さ l mmの C a F 2 を用意し、 これに実 施例 1でダイヤモンド板にメタラィズを施したのと同じ領域に水金 (N Eケムキヤッ ト製) を塗布し、 大気中 5 2 0て乾燥、 焼成した。
一方、 実施例 1で使用したのと同一の材質、 形状、 寸法の接合枠 (銀 枠) 付きコンフラッ トフランジを用意し、 この接合枠の下部鍔の部分と 前記メタライズ済みの C a F2 窓材のメ夕ライズ部分とを、 A g C 1 を 用いて 5 0 0 °Cで加熱処理して接合させ、 光学用窓を作製した。 このよ うにして作製した光学用窓について、 実施例 1 と同様の試験を行ったが 、 真空装置への取り付け取り外しを繰り返したところ破損した。
(比較例 3)
この例は実施例 1 と同じ接合枠 (銀枠) を使用し、 接合材としてェポ キシ系接着材を使用した例である。 先ず、 実施例 1 と同様にしてダイヤ モンド板 (直径 1 0 mm、 厚さ 0. 2 mm) を用意した (メ夕ライズ処 理なし) 。
一方、 実施例 1で使用したのと同じ材質、 形状、 寸法の接合枠 (銀枠 ) 付きコンフラッ トフランジを用意し、 この接合枠の下部鍔の部分に前 記ダイヤモンド板をはめ込み、 ダイヤモンド板の縁に沿ってエポキシ系 接着材を注入して接合し、 光学用窓を作製した。
このようにして得られた光学用窓を、 超高真空装置に設置し、 室温か ら 3 5 0 °Cまでの昇降温試験を行ったところ、 2 0 0で以上にフランジ の温度を上げると 1 0— 7T o r r ' l Zs e c以上のリークが発生した
産業上の利用可能性
本発明の光学用窓は、 赤外から真空紫外領域にわたり、 広範囲で良好 な透過特性を有し、 耐ベーキング特性も優れ、 高エネルギーを持つ光を 透過させることができる超高真空用光学用窓である。
また、 本発明の製造方法によれば、 前記のような優れた特性を有する 光学用窓を安価にかつ平易に作製することができる。

Claims

請 求 の 範 囲
1. 少なく とも窓材としてのダイヤモンドと、 真空装置用フランジと、 前記ダイヤモンドをフランジに接合するための接合枠と、 この接合枠と ダイヤモンドとを接合させる接合材とからなり、 該接合材が、 T i、 S
1. N i、 H f 、 Z r、 V、 Nb、 Ta、 C r、 W、 P t、 Mo、 T a 、 〇 s、 R e、 Rh、 Au、 Ag、 S n及び P bからなる群から選ばれ る元素の単体、 これらの元素の 2種以上の混合物若しくは合金、 これら の元素の酸化物、 窒化物、 炭化物若しくはハロゲン化物、 又はこれらの 積層からなることを特徴とする光学用窓。
2. 前記接合材が、 AgC 1又は Agを主成分とする接合材であること を特徴とする請求の範囲第 1項に記載の光学用窓。
3. 前記接合材が、 ダイヤモン ド側から AuZAgC 1の順に積層構造 を持つ接合材であることを特徴とする請求の範囲第 1項に記載の光学用
4. 前記接合材が、 ダイヤモンド側から T i ZP t ZAuZA g C 1又 は T i /Mo/A υ/Α g C 1の順に積層構造を持つ接合材であること を特徴とする請求の範囲第 1項に記載の光学用窓。
5. 前記接合枠の材質が、 Ag、 Au及び C uからなる群から選ばれる 1種以上であることを特徴とする請求の範囲第 1〜 4項のいずれかに記 載の光学用窓。
6. 前記接合枠が、 必要に応じ、 上部にフランジと接合する接合用の鍔 を有し、 下部に窓材と接合する接合用の鍔を有する筒状の枠であること を特徵とする請求の範囲第 1ないし 5項のいずれかに記載の光学用窓。
7. 前記接合枠の筒の部分の厚さが 0. 0 5〜 5 mmであることを特徴 とする請求の範囲第 6項に記載の光学用窓。
8. 窓材のダイヤモンドが、 気相合成法により作製されたダイヤモンド であることを特徴とする請求の範囲第 1〜 7項のいずれかに記載の光学 用 'せ、
9 . 窓材のダイヤモンドが、 多結晶ダイヤモンドであることを特徴とす る請求の範囲第 8項に記載の光学用窓。
1 0 . 窓材のダイヤモンドが、 柱状結晶を呈するダイヤモンドであるこ とを特徴とする請求の範囲第 9項に記載の光学用窓。
1 1 . 窓材のダイヤモンドが、 ( 1 0 0 ) 配向をもつダイヤモンドであ ることを特徴とする請求の範囲第 1 0項に記載の光学用窓。
1 2 . 気相成長法によりダイヤモンドを基板上に形成させる工程と、 こ の工程で得られる基板上に成長したダイヤモン ドから基板を取り除きダ ィャモンド自立膜を得る工程と、 該ダイヤモンド自立膜の表面を平坦化 する工程と、 フランジに接合枠を取り付ける工程と、 前記ダイヤモンド 自立膜からなる窓材を間に接合材を介在させて前記接合枠に接合させる ことによってダイヤモンド窓材をフランジに取り付ける工程を含むこと を特徴とする光学用窓の製造方法。
1 3 . 前記基板上に成長したダイヤモンドから基板を取り除きダイヤモ ンド自立膜を得る工程が、 酸による基板の溶解により行われることを特 徵とする請求の範囲第 1 2項に記載の光学用窓の製造方法。
1 . 前記ダイヤモンド自立膜からなる窓材を間に接合材を介在させて 前記接合枠に接合させることによってダイヤモンド窓材をフランジに取 り付ける工程が、 ダイヤモンド上の接合枠と接触する部分の一部又は全 部に金属を配置する工程を含むことを特徴とする請求の範囲第 1 2項又 は第 1 3項に記載の光学用窓の製造方法。
1 5 . 前記ダイヤモンド窓材上の接合枠と接触する部分の一部又は全部 に金属を配置する工程が、 該金属を有機溶媒に分散させた金属ペースト を必要領域に塗布する工程と、 加熱処理により乾燥、 焼成する工程を含 むことを特徴とする請求の範囲第 1 4項に記載の光学用窓の製造方法。
1 6 . 前記フランジに接合枠を取り付ける工程が、 フランジに粗加工し た接合枠を溶接した後に、 所定の形状に旋盤加工する工程であることを 特徴とする請求の範囲第 1 2〜 1 5項のいずれかに記載の光学用窓の製 造方法。
1 7 . 前記ダイヤモンド窓材上の金属と接合枠との間に接合材を介在さ せて、 ダイヤモンド窓材をフランジに取り付ける工程が、 前記ダイヤモ ンド窓材、 接合枠及びフランジを接合材溶融温度以上に加熱する工程と 、 接合材を溶融させながら接合部分に注入する工程と、 前記ダイヤモン ド窓材、 接合枠及びフランジを徐冷する工程とを含むことを特徴とする 請求の範囲第 1 2〜 1 6項のいずれかに記載の光学用窓の製造方法。
PCT/JP1996/001921 1995-07-14 1996-07-11 Fenetre optique et son procede de fabrication WO1997004346A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96923053A EP0807839B1 (en) 1995-07-14 1996-07-11 Optical window and method of manufacturing the same
DE69627638T DE69627638T2 (de) 1995-07-14 1996-07-11 Optisches fenster und verfahren zu dessen herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17866095A JP3724848B2 (ja) 1995-07-14 1995-07-14 光学用窓
JP7/178660 1995-07-14

Publications (1)

Publication Number Publication Date
WO1997004346A1 true WO1997004346A1 (fr) 1997-02-06

Family

ID=16052350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001921 WO1997004346A1 (fr) 1995-07-14 1996-07-11 Fenetre optique et son procede de fabrication

Country Status (5)

Country Link
US (1) US6103401A (ja)
EP (1) EP0807839B1 (ja)
JP (1) JP3724848B2 (ja)
DE (1) DE69627638T2 (ja)
WO (1) WO1997004346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760631A (zh) * 2018-05-24 2018-11-06 中国人民解放军陆军沈阳军事代表局驻长春地区军事代表室 一种具有温度自适应功能的光学窗口
CN114231900A (zh) * 2021-12-20 2022-03-25 唐山斯腾光电科技有限公司 对光学镀膜基片进行金属化掩膜的方法
GB2623540A (en) * 2022-10-19 2024-04-24 Element Six Tech Ltd Window assembly and method of manufacture thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19934987B4 (de) * 1999-07-26 2004-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Röntgenanode und ihre Verwendung
WO2001061399A1 (en) * 2000-02-18 2001-08-23 Drukker International Bv Window
AU2001247378A1 (en) 2000-03-13 2001-09-24 Sun Microsystems, Inc. Method and apparatus for bonding substrates
DE10050811A1 (de) * 2000-10-13 2002-04-18 Philips Corp Intellectual Pty Elektronenstrahltransparentes Fenster
GB0031272D0 (en) * 2000-12-21 2001-01-31 De Beers Ind Diamond Diamond treatment
DE10120730B4 (de) * 2001-04-27 2006-08-24 Schott Ag Verfahren und Vorrichtung zur Messung der Phasengrenze
DE102005024512B3 (de) * 2005-05-26 2007-02-08 Jenoptik Laser, Optik, Systeme Gmbh Verfahren zur Herstellung von in ein Gehäuse hermetisch dicht einlötbaren Fensterelementen
DE102009022079A1 (de) * 2009-05-20 2010-11-25 Friedrich-Schiller-Universität Jena Gefasste optische Komponente, Verfahren zu deren Herstellung sowie deren Verwendung
GB201107736D0 (en) * 2011-05-10 2011-06-22 Element Six Holdings N V Composite diamond assemblies
JP5868670B2 (ja) * 2011-11-28 2016-02-24 ギガフォトン株式会社 ホルダ装置、チャンバ装置、および、極端紫外光生成装置
CN102540381A (zh) * 2012-02-24 2012-07-04 中国科学院上海光学精密机械研究所 超高真空窗口
CN103278904B (zh) * 2013-05-16 2016-01-20 中国科学院长春光学精密机械与物理研究所 一种真空高精度窗口的实现方法及其装置
EP2955323A1 (en) * 2014-06-11 2015-12-16 Services Petroliers Schlumberger Diamond window assembly for optical logging
JP6283303B2 (ja) * 2014-11-21 2018-02-21 嘉五郎 小倉 非剥離性金属被覆ダイヤモンド窓
CN111374689A (zh) * 2018-12-27 2020-07-07 通用电气公司 Ct扫描装置及其扫描架
CN110687652A (zh) * 2019-08-30 2020-01-14 华东光电集成器件研究所 一种新型玻璃光窗
CN112782821A (zh) * 2019-10-23 2021-05-11 湖州中芯半导体科技有限公司 一种cvd金刚石高真空光学窗装置
CN111441031A (zh) * 2019-12-23 2020-07-24 上海征世科技有限公司 可拆卸的、可用于真空密封用的单晶金刚石窗口
CN111863570B (zh) * 2020-06-05 2024-08-09 西华大学 一种带刀口密封单晶金刚石输能窗、密封件及其制备方法
CN112630920B (zh) * 2020-12-07 2023-03-28 河北汉光重工有限责任公司 一种宽温自适应光学窗口
CN116615958A (zh) * 2020-12-21 2023-08-18 浜松光子学株式会社 发光密封体和光源装置
JP2023054439A (ja) * 2021-10-04 2023-04-14 浜松ホトニクス株式会社 発光封体及び光源装置
WO2024068732A1 (en) * 2022-09-30 2024-04-04 Element Six Technologies Limited Ceramic window assembly
CN115537764B (zh) * 2022-10-14 2024-04-02 哈尔滨工业大学 金刚石与金属的连接方法、焊接接头及微波窗

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201601A (ja) * 1987-02-18 1988-08-19 Res Dev Corp Of Japan 光学用窓材及びその製造方法
JPH035701A (ja) * 1989-06-01 1991-01-11 Seiko Instr Inc 光学用窓材
JPH04127100A (ja) * 1990-09-18 1992-04-28 Sumitomo Electric Ind Ltd X線窓材とその製造方法
JPH065951A (ja) * 1992-03-02 1994-01-14 L'air Liquide パワーレーザー

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939763A (en) * 1988-10-03 1990-07-03 Crystallume Method for preparing diamond X-ray transmissive elements
JPH02199099A (ja) * 1988-10-21 1990-08-07 Crystallume 連続ダイヤモンド薄膜およびその製法
US5046854A (en) * 1990-02-01 1991-09-10 The Dow Chemical Company Photometric cell and probe having windows fusion sealed to a metallic body
JPH04363700A (ja) * 1990-08-01 1992-12-16 Canon Inc X線透過窓およびその取付け方法
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
JP3022014B2 (ja) * 1992-01-17 2000-03-15 三菱電機株式会社 光透過型真空分離窓及び軟x線透過窓
JP3580879B2 (ja) * 1995-01-19 2004-10-27 浜松ホトニクス株式会社 電子管デバイス
US5627872A (en) * 1995-02-03 1997-05-06 Northrop Grumman Corporation Stationary exit window for X-ray lithography beamline

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201601A (ja) * 1987-02-18 1988-08-19 Res Dev Corp Of Japan 光学用窓材及びその製造方法
JPH035701A (ja) * 1989-06-01 1991-01-11 Seiko Instr Inc 光学用窓材
JPH04127100A (ja) * 1990-09-18 1992-04-28 Sumitomo Electric Ind Ltd X線窓材とその製造方法
JPH065951A (ja) * 1992-03-02 1994-01-14 L'air Liquide パワーレーザー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760631A (zh) * 2018-05-24 2018-11-06 中国人民解放军陆军沈阳军事代表局驻长春地区军事代表室 一种具有温度自适应功能的光学窗口
CN108760631B (zh) * 2018-05-24 2024-01-30 中国人民解放军陆军沈阳军事代表局驻长春地区军事代表室 一种具有温度自适应功能的光学窗口
CN114231900A (zh) * 2021-12-20 2022-03-25 唐山斯腾光电科技有限公司 对光学镀膜基片进行金属化掩膜的方法
CN114231900B (zh) * 2021-12-20 2023-11-21 唐山斯腾光电科技有限公司 对光学镀膜基片进行金属化掩膜的方法
GB2623540A (en) * 2022-10-19 2024-04-24 Element Six Tech Ltd Window assembly and method of manufacture thereof

Also Published As

Publication number Publication date
DE69627638T2 (de) 2003-12-24
JPH0933704A (ja) 1997-02-07
US6103401A (en) 2000-08-15
EP0807839A1 (en) 1997-11-19
DE69627638D1 (de) 2003-05-28
JP3724848B2 (ja) 2005-12-07
EP0807839B1 (en) 2003-04-23
EP0807839A4 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
WO1997004346A1 (fr) Fenetre optique et son procede de fabrication
KR960010166B1 (ko) 확산접합된 스패터링타게트조립체 및 그 제조방법
US6956706B2 (en) Composite diamond window
US4247034A (en) Method of indirectly connecting two parts
US4434384A (en) Ultrasonic transducer and its method of manufacture
JPH10158829A (ja) スパッタリングターゲット組立体の製造方法
US4018374A (en) Method for forming a bond between sapphire and glass
JP2003050341A (ja) 光学部品複合体およびその製造方法
EP1001048B1 (en) Surface-acoustic-wave substrate having hard carbon film
JP5160032B2 (ja) ダイヤモンド複合基板及びその製造方法
JP2000239838A (ja) 固相拡散接合されたスパッタリングターゲット組立体およびその製造方法
WO2012152661A1 (en) Composite diamond assemblies
EP0761623A2 (en) Diamond assembly
US20070272661A1 (en) Diamond Bonding
JPH0959770A (ja) スパッタリング用ターゲットおよびその製造方法
US4706256A (en) Fritless endbell assembly
JP3469261B2 (ja) 拡散接合されたスパッタリングターゲット組立体及びその製造方法
US4895290A (en) Method for bonding materials
US4863090A (en) Room temperature attachment method employing a mercury-gold amalgam
EP1257862B1 (en) Window
JP2002290182A (ja) 表面弾性波素子用基板の製造方法
WO2004065046A2 (en) Brittle material sputtering target assembly and method of making same
JP2002164425A (ja) ウエハ支持部材
JPH07138093A (ja) ダイヤモンド膜状体,その製造方法およびダイヤモンド被覆体の製造方法
WO2015128229A1 (en) Mounted diamond components and methods of fabricating the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996923053

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08793982

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996923053

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996923053

Country of ref document: EP