WO1997003919A1 - Verfahren zur reversiblen speicherung von wasserstoff - Google Patents
Verfahren zur reversiblen speicherung von wasserstoff Download PDFInfo
- Publication number
- WO1997003919A1 WO1997003919A1 PCT/EP1996/003076 EP9603076W WO9703919A1 WO 1997003919 A1 WO1997003919 A1 WO 1997003919A1 EP 9603076 W EP9603076 W EP 9603076W WO 9703919 A1 WO9703919 A1 WO 9703919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- compounds
- doped
- naalh
- reversible
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/24—Hydrides containing at least two metals; Addition complexes thereof
- C01B6/243—Hydrides containing at least two metals; Addition complexes thereof containing only hydrogen, aluminium and alkali metals, e.g. Li(AlH4)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a method for the reversible storage of hydrogen in the form of complex alkali metal aluminum hydrides (ADcalimetal alanates).
- M metal, metal alloy, intermetallic compound
- the reversible Fb storage in the form of metal hydrides has several advantages over conventional storage methods.
- Metal hydrides have considerable advantages over compressed Fb gas in terms of the volumetric storage density that can be achieved.
- metal hydrides have the safety advantage that their hydrogen dissociation pressure is lower than that of the same concentration of hydrogen under pressure.
- the Volumetric H2 densities that can be achieved with hydride containers come close to those of liquid hydrogen containers without having to make use of the costly, complex cryotechnology. The disadvantages of the latter can be seen, inter alia, from the fact that 2.5 to 5 times the primary energy expenditure is required to obtain an energy unit of liquid hydrogen.
- the main disadvantage of the current reversible metal hydrides as H 2 storage compared to liquid hydrogen is their relatively low storage density based on the weight of the storage material (expressed in% by weight H 2 in the metal hydride).
- Magnesium hydride (MgH 2 , 7.6% by weight H 2 ) and hydrides of magnesium alloys (Mg 2 NiH 4 , 3.7% by weight H 2 ) are technically competitive with liquid hydrogen in this regard, provided that enough heat is available above 300 ° C Desorption of the hydrogen from the hydride is available.
- NaAlH4 Sodium alanate, NaAlH4, is produced on an industrial scale.
- Na 3 AlH 6 can be prepared from NaAlH 4 and NaH in the presence of hydrogen (Eq. 2) (L. Zakharkin, V. Govicenko, Dokl. Akad. Nauk SSSR 1962, 145, 793, Engl. Vol. 145, 656) .
- NaH sodium hydride
- NaAlH 4 or Na 3 AlH 6 can be used as reversible H 2 stores.
- the NaH-Al mixtures (Eq. 6 and 7) obtained in active form after the thermolysis of NaAlH 4 or Na 3 AlH 6 can be converted into NaAlH ⁇ or Na 3 AlH 6 are rehydrated (Examples 1 and 4). Since the process of thermolysis of sodium alanates, with the release of hydrogen, and their renewed synthesis, with the absorption of hydrogen, is repeatable, this opens up the possibility of using the sodium alanate / NaH + Al systems as reversible H 2 storage systems.
- a further feature of the present invention is that the process of hydrogen release and recovery from alkali metal alanates can be accelerated or made more complete by adding catalysts.
- the reversible alkali metal alanates 1 are doped according to the invention with foreign metal compounds.
- alkali metal alanates are reacted in an organic solvent or solvent-free with foreign metal compounds or mechanically stirred.
- Suitable dopants are compounds of the transition metals of the third to fifth group of the periodic system (Sc, Y, Ti, Zr, Hf, V, Nb, Ta), as well as compounds of iron, nickel and rare earth metals (La, Ce, Pr , Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm. Yb, Lu).
- Preferred dopants are alcoholates, halides, hydrides and organometallic and intermetallic compounds of the metals mentioned. Your combination boxes can also be used.
- the dopants are used in amounts of 0.2 to 10 mol% based on alkali metal alanates 1, preferably in amounts of 1 to 5 mol% based on 1.
- transition metals are in a higher oxidation state, they are reduced to a low-valent oxidation state in the course of the dosing process by the alkali metal alanates present in excess.
- the reduction process can be recognized and quantified on the basis of the hydrogen evolution during the doping.
- the improvement in the ⁇ absorption capacity of the reversible alkali metal alanate H 2 storage systems by the foreign metal doping can be demonstrated both on the basis of the speed and on the extent of the H 2 absorption in a series of dehydrogenation / rehydration cycles (cycle tests).
- the reversible H 2 content of the ti-doped system is significantly higher than that of the undoped system; in addition, the Ti-doped Na 3 AlH 6 shows a higher cycle stability compared to the undoped material.
- the reversible NaAlH 4 / NaH + AI system experiences a dramatic increase in the H 2 absorption capacity through Ti doping, e.g. B. with 2 moi% TiCl 3 .
- the reversible H 2 content in the doped sample is 3.1-4.2% by weight, while the undoped sample only stores 0.5-0.8% by weight of hydrogen under the same hydrogenation conditions.
- KDI diagrams The experimentally determined KDI diagrams of the NaAlH 4 / NaH + AI system doped with 2 mol% Ti (Example 4) at 180 and 211 ° C are in Fig. 6 and those of the Ti-doped Na 3 AlH6 / 3NaH + AI and Na ⁇ iAlHg ⁇ NaH + LiH + Al systems (Examples 1 and 3) at 211 ° C in Fig. 7.
- the KDI diagrams of the hydride systems according to the invention could be determined both in the direction of the H 2 desorption and the H 2 absorption, which confirms their suitability for the purpose of reversible H 2 storage and that in the literature cited ( Text on p. 3) refutes the irreversibility of the thermal decomposition of NaAlH 4 or Na 3 AlH 6 .
- the KDI diagram of the NaAlH 4 / NaH + AI system shows two temperature-dependent pressure plateaus, which correspond to the two-stage dissociation of NaAlH 4 (Eq. 4 and 5).
- the KDI diagram of the Na 3 AlH ( 5 / 3NaH + AI system (Fig. 7) shows only one pressure plateau, in agreement with the one-stage reversible dissociation of Na 3 AlH 6 (Eq. 7). From the width of the pressure plateaus shows that the Ti-doped NaAlH 4 / -NaH + Al-Syslem (Fig.
- ti-doped NaqAlH 6 / 3NaH + AI system (Fig. 7) has a maximum Storage capacity of 2.7% by weight of H 2 , in cycle tests (Fig. 3, Example 1) up to 2.3% by weight of H 2 are reached.
- the reversible NaAlH 4 / NaH + AI system is characterized by a significantly higher reversible ⁇ storage capacity compared to the Na 3 AlH 6 / 3NaH + AI system.
- the disadvantage that the system, due to the high H 2 equilibrium pressure (Fig. 6), for the loading with hydrogen (at e.g. 170 ° C) relatively high hydrogen pressures (e.g. 130-150 bar) required (Example 4, Fig. 4).
- the Na 3 A] H6 / 3NaH + Al system on the other hand, it is characteristic that, because of the relatively low H 2 equilibrium pressure (Fig. 7; 32-34 bar at 211 ° C), the hydrogen loading under considerably lower hydrogen pressures (e.g. B. 40-60 bar at 200 ° C; Example 1, Fig. 3).
- the conditions for the hydrogen loading and unloading of the alkali metal alanate systems according to the invention (e.g. Eq. 9 and 10) at a specific temperature depend on the thermodynamically determined and experimentally determinable hydrogen equilibrium pressures (Figs. 6 and 7). If the external H 2 pressure exceeds the hydrogen equilibrium pressure, H 2 absorption occurs when the system is unloaded or partially loaded. In the opposite case, ie when the external H 2 pressure is less than the hydrogen equilibrium pressure, the H 2 desorption takes place when the system is loaded or partially loaded. So that the rate of H 2 absorption or desorption can take on a finite value, the temperature at which H 2 loading or unloading takes place must not fall below -100 ° C.
- External H 2 pressures of 0.1 to 100 bar above the hydrogen equilibrium pressure, but preferably from 2-3 to 50 bar above the hydrogen equilibrium pressure, are to be used for the hydrogen loading at a predetermined temperature.
- external H 2 pressures of 0.1 bar below the hydrogen equilibrium pressure to 0.1 bar, but preferably from 2-3 bar below the hydrogen equilibrium pressure to ⁇ 1 bar should be used.
- thermodynamic properties of the present hydride system is possible.
- Such targeted changes in the thermodynamic parameters by partial exchange of a metal component have so far been possible in particular in the reversible metal hydride system La ⁇ Hg / La ⁇ . They are of technical importance, inter alia, in that the combination of two or more such metal hydrides with different H 2 dissociation pressures forms the basis for the functioning of metal hydride heat pumps (Sandrock 92, pp. 234-237).
- the reversible alkali metal alanates according to the invention are suitable as hydrogen storage systems for mobile or stationary purposes.
- Your technical advantages compared to high-temperature hydrides, such as B. MgH 2 lie in the considerably reduced operating temperatures (eg 150 instead of> 300 ° C) and in comparison to low-temperature hydrides in the higher H 2 storage capacities and in the estimated lower material costs.
- the operating temperature of the phosphoric acid fuel cell 160 ° C, is in this temperature range (see J. Bentley et al. Proc. Intersoc. Energy Convers. Eng. Conf. 1994, 29th, 1103).
- Another advantage for driving fuel cells is the high purity of the hydrogen desorbed from the alanate, in particular the absence of carbon oxide.
- alkali metal alanates can be combined in various ways with magnesium hydride stores as H 2 stores. In addition, they can optionally serve as a ⁇ intermediate store for high-temperature heat storage based on MgH 2 / Mg (cf. A. Ritter, VGB Kraftwerkstechnik (Engl. Ed.) 1992, 72, 31 1).
- Na 3 AlH 6 was determined using the method of Zakharkin et al. ⁇ Doc. Akad. Nauk SSSR, Engl. ed. 1962, 145, 656) from NaAlH 4 and NaH in heptane.
- commercially available NaAlH 4 was purified by dissolving in THF and precipitating with ether (Clasen, Angew, Chem. 1961, 73, 322). After drying in vacuo, the crystalline NaAlH 4 obtained showed very broad hydride bands in the range around 720, 900 and 1670 cm “1 in the IR spectrum (KBr); bands of complexed THF or ether are not present in the spectrum.
- Na 3 AlH ⁇ 5 was identified by X-ray powder analysis and IR spectrum (KBr: very broad bands at 500-1000 and around 1300 cm “1 ; the band at - 1700 cm “ 1 , see above, is missing). Elemental analysis of Na 3 AlH 6 (calculated values): Na 67.27 (67.62), AI 26.15 (26.45), H 5.84 (5.93), C 0.88 (0.0)%. Thermovolumetric analysis of a - 1 g sample (4 ° C / min to 270 ° C; Chem. Ing. Tech. 1983, 55, 156) showed 96% of the amount of hydrogen calculated for the dissociation to 3NaH + AI (Eq. 7).
- Dehydration The sample is heated from 4 ° C / min from room temperature to 270 ° C and then the temperature is kept constant until the end of the H 2 evolution; The time course of the H 2 evolution together with the internal temperature of the sample can be recorded using an automatic gas burette (Chem. Ing. Tech. 1983). The hydrogenation will continue during 5 ! / 2 h at 200 ° C with a decreasing H 2 pressure in the autoclave from 60 to ⁇ 40 bar.
- Fig. 3 shows the dependence of the hydrogen storage capacity (measured on the basis of the amount of hydrogen released during the dehydrogenation) on the number of cycles of the pure and the Ti-doped Na ⁇ AlH ⁇ .
- the reversible H 2 content of the Ti-doped Na ⁇ lies under the specified conditions AJH ⁇ / 3NaH + AI system at 2.1-2.5% by weight (theoretical H 2 content 2.84% by weight / f) and is significantly higher than that of the undoped Na 3 AlH 6 .
- the Ti-doped Na ⁇ AlH 6 shows a considerably better cycle instability than the pure Na, AlH 6 .
- Example 2 pure Na ? AlH 6 doped with Ti (OBu) 4 as reversible H 2 storage; speed of H 2 desorption as a function of temperature; 100-cycle test)
- Example 1 9.58 g (94 mmol) Na ? AlH 6 (Example 1) were suspended in 30 ml of ether and the suspension with stirring (with a syringe through a septum) with 0.64 ml (3.9 mmoi. 2 mol%) of titanium-tcira-n-butylai (Ti (OBu) 4 ) offset.
- the H 2 - Development was 93 ml (2.1 H 2 / Ti). After evaporating the ether in vacuo, 10.13 g of the Ti-doped Na 3 AlH 6 remained .
- the variation in the H 2 pressure in the system in the range between 30 and 42 bar was recorded with the aid of a pressure-voltage converter together with the temperature of the autoclave on a 2-channel recorder.
- the reversible H 2 capacity of the sample of 1.64-1.83 or 1.79-2.06% by weight could be determined in the 100-cycle test for hydrogenation times of VA or 4 1/2 h.
- Example 3 Na 2 LiAJH 6 doped with ⁇ -TiCL as reversible H 2 storage
- Na 2 LiAlH 6 was prepared by reacting NaAlH 4 with NaH and LiH in a molar ratio of 1: 1: 1 in n-heptane. From 6.79 g (126 mmol) of NaAlH 4 , 3.04 g (127 mmol) of NaH and 0.97 g (122 mmol) of LiH in 90 ml of n-heptane, analogous to Example 1, 11.08 g of Na 2 LiAlH 6 were obtained as a light gray, fine powder. The IR spectrum of Na 2 LiAlH 6 coincided with that of Na, AlH ⁇ (example 1) (IR spectroscopic indications for NaH. LiH or NaAlH 4 were not available).
- Ti-doped Na 2 LiAlH 6 was subjected to a 28 cycle test under the same conditions as in Example 1. As shown in Fig. 9, the reversible H 2 content of this system is between 2.10 and 2.51% by weight. With a hydrogenation time of 16 h, the H 2 capacity of up to 2.7% by weight can be achieved.
- Example. 4 NaAlH 4 and ß-TiCl 3 doped NaAlH4 as reversible H 2 storage
- Thermovolume analyzes (cf. Example 1: 4 ° C / min) up to 200, 270 and 500 ⁇ C gave 104, 96 and 97% of those for the dissociation to 1/3 Na 3 AlH 6 + 2/3 AI (detected by IR and X-ray powder analysis), NaH + Al (X-ray powder analysis) or Na + Al calculated amount of hydrogen.
- the thermovolumetric curve of the Ti-doped NaAlH 4 to 200 ° C is shifted by 85 ° C to lower temperatures compared to that of the pure NaAlH 4 .
- Example 1 1.3 g of the purified NaAlH 4 (Example 1) were suspended in 20 ml of ether and 5 mol% (based on NaAlH 4 ) of the respective metal compound was added to the stirred suspension. After 20-60 min (completion of the H 2 evolution) the solvent was evaporated and the residues dried in vacuo. These were subjected to the thermolysis described in Example 1 up to 270 ° C. and the H 2 volumes developed in the process were determined (Table 1 column "i. Thermolysis"). The solids were then hydrogenated in an autoclave for 24 h at 120 ° C. and 150 (initial pressure) to a minimum of 130 bar H 2 pressure and then thermolyzed again to 270 ° C. The ratio of the H 2 volumes of the 2nd to the. the 1st thermolysis (in%) gives the degrees of rehydration given in Table i.
- Example 26 (5-doped Ti (OBu) 4 and NaAlH 4 LaNi 2 -Spcicher as reversible H)
- NaAlH 4 (1.87 g 34.6 mmol) was mg in solid form with 380 (17 % By weight) of LaNi 5 powder (Alfa, 99.5%) and then doped with 2 mol% of Ti (OBu) 4 in 20 ml of ether as described in Example 2. Hydrogen evolution: 34.6 ml (2.1 H 2 / Ti). After evaporating the ether and drying in vacuo, 2.48 g of the LaNi ⁇ and Ti (OBu) 4 were doped Obtain NaAlH 4 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50626797A JP4050315B2 (ja) | 1995-07-19 | 1996-07-12 | 可逆的な水素貯蔵のための方法 |
DE59603095T DE59603095D1 (de) | 1995-07-19 | 1996-07-12 | Verfahren zur reversiblen speicherung von wasserstoff |
US08/983,320 US6106801A (en) | 1995-07-19 | 1996-07-12 | Method for the reversible storage of hydrogen |
EP96925747A EP0840707B1 (de) | 1995-07-19 | 1996-07-12 | Verfahren zur reversiblen speicherung von wasserstoff |
CA002227388A CA2227388C (en) | 1995-07-19 | 1996-07-12 | Process for the reversible storage of hydrogen |
DK96925747T DK0840707T3 (da) | 1995-07-19 | 1996-07-12 | Fremgangsmåde til reversibel lagring af hydrogen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19526434.7 | 1995-07-19 | ||
DE19526434A DE19526434A1 (de) | 1995-07-19 | 1995-07-19 | Verfahren zur reversilben Speicherung von Wasserstoff |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997003919A1 true WO1997003919A1 (de) | 1997-02-06 |
Family
ID=7767286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/003076 WO1997003919A1 (de) | 1995-07-19 | 1996-07-12 | Verfahren zur reversiblen speicherung von wasserstoff |
Country Status (9)
Country | Link |
---|---|
US (1) | US6106801A (de) |
EP (1) | EP0840707B1 (de) |
JP (1) | JP4050315B2 (de) |
AT (1) | ATE184577T1 (de) |
CA (1) | CA2227388C (de) |
DE (2) | DE19526434A1 (de) |
DK (1) | DK0840707T3 (de) |
ES (1) | ES2138364T3 (de) |
WO (1) | WO1997003919A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10012794A1 (de) * | 2000-03-16 | 2001-09-20 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen Speicherung von Wasserstoff auf der Basis von Alkalimetallen und Aluminium |
US6471935B2 (en) | 1998-08-06 | 2002-10-29 | University Of Hawaii | Hydrogen storage materials and method of making by dry homogenation |
US6726892B1 (en) * | 2001-02-14 | 2004-04-27 | Quantum Fuel Systems Technologies Worldwide, Inc. | Advanced aluminum alloys for hydrogen storage |
WO2006079312A1 (de) * | 2005-01-26 | 2006-08-03 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen speicherung von wasserstoff |
WO2012014225A2 (en) | 2010-07-26 | 2012-02-02 | Council Of Scientific & Industrial Research | An improved process for the storage delivery of hydrogen using catalyst |
US8147796B2 (en) | 2006-03-13 | 2012-04-03 | University Of Utah Research Foundation | Hydrogen storage in a combined MxAlH6/M′y(NH2)z system and methods of making and using the same |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2218271A1 (en) | 1997-10-10 | 1999-04-10 | Mcgill University | Method of fabrication of complex alkali mental hydrides |
CA2220503A1 (en) * | 1997-11-07 | 1999-05-07 | Leszek Zaluski | Hydrogen storage composition |
DE19758384C2 (de) * | 1997-12-23 | 2002-08-01 | Geesthacht Gkss Forschung | Verfahren zur Herstellung nanokristalliner Metallhydride |
KR20010079623A (ko) * | 1998-08-06 | 2001-08-22 | 나까무라 글렌 케이. | 수소 저장 물질 및 건조 균질화에 의해 이를 제조하는방법 |
ES2178264T3 (es) | 1998-10-07 | 2002-12-16 | Univ Mcgill | Composicion reversible para almacenamiento de hidrogeno. |
AU9425498A (en) * | 1998-10-07 | 2000-04-26 | Mcgill University | Lithium-based hydrogen storage compositions |
JP2001253702A (ja) * | 2000-03-08 | 2001-09-18 | Toyota Central Res & Dev Lab Inc | 水素発生方法及び水素発生材料 |
US6596055B2 (en) * | 2000-11-22 | 2003-07-22 | Air Products And Chemicals, Inc. | Hydrogen storage using carbon-metal hybrid compositions |
TW541751B (en) * | 2001-01-15 | 2003-07-11 | Sony Corp | Power generator |
US6773692B2 (en) * | 2001-08-02 | 2004-08-10 | Iowa State University Research Foundation, Inc. | Method of production of pure hydrogen near room temperature from aluminum-based hydride materials |
US6680043B2 (en) * | 2001-11-29 | 2004-01-20 | General Motors Corporation | Process for enhancing the kinetics of hydrogenation/dehydrogenation of MAIH4 and MBH4 metal hydrides for reversible hydrogen storage |
DE10163697A1 (de) * | 2001-12-21 | 2003-07-03 | Studiengesellschaft Kohle Mbh | Reversible Speicherung von Wasserstoff mit Hilfe von dotierten Alkalimetallaluminiumhydriden |
US20030165423A1 (en) * | 2002-01-29 | 2003-09-04 | Gross Karl J. | Direct synthesis of hydride compounds using a titanium aluminate dopant |
US6793909B2 (en) * | 2002-01-29 | 2004-09-21 | Sandia National Laboratories | Direct synthesis of catalyzed hydride compounds |
US7169489B2 (en) | 2002-03-15 | 2007-01-30 | Fuelsell Technologies, Inc. | Hydrogen storage, distribution, and recovery system |
US7011768B2 (en) * | 2002-07-10 | 2006-03-14 | Fuelsell Technologies, Inc. | Methods for hydrogen storage using doped alanate compositions |
JP4066159B2 (ja) * | 2002-08-26 | 2008-03-26 | ソニー株式会社 | 水素ガス製造装置及びエネルギー変換システム |
AU2003269355A1 (en) * | 2002-10-21 | 2004-05-04 | Koninklijke Philips Electronics N.V. | Hydrogen storage material with high storage capacity |
AU2003286873A1 (en) * | 2002-11-01 | 2004-06-07 | Westinghouse Savannah River Company, Llc | Complex hydrides for hydrogen storage |
DE10332438A1 (de) * | 2003-07-16 | 2005-04-14 | Studiengesellschaft Kohle Mbh | In porösen Matrizen eingekapselte Materialien für die reversible Wasserstoffspeicherung |
JP4711644B2 (ja) * | 2004-06-24 | 2011-06-29 | 太平洋セメント株式会社 | 金属アミド化合物およびその製造方法 |
JP4615240B2 (ja) * | 2004-03-31 | 2011-01-19 | 太平洋セメント株式会社 | 気体精製装置 |
WO2005014165A1 (ja) * | 2003-08-11 | 2005-02-17 | National University Corporation Hiroshima University | 水素貯蔵材料およびその製造方法ならびにその製造装置 |
JP4545469B2 (ja) * | 2004-03-29 | 2010-09-15 | 太平洋セメント株式会社 | 水素貯蔵材料への触媒担持方法および水素貯蔵材料 |
JP4793900B2 (ja) * | 2004-06-24 | 2011-10-12 | 太平洋セメント株式会社 | 水素貯蔵材料およびその製造方法 |
US7537748B2 (en) * | 2003-08-11 | 2009-05-26 | National University Corporation, Hiroshima University | Hydrogen storage matter and manufacturing method and apparatus for the same |
DE10339198B4 (de) * | 2003-08-22 | 2009-04-23 | Gkss-Forschungszentrum Geesthacht Gmbh | Metallhaltiger, wasserstoffspeichernder Werkstoff und Verfahren zu seiner Herstellung |
US7029649B2 (en) * | 2003-08-26 | 2006-04-18 | General Motors Corporation | Combinations of hydrogen storage materials including amide/imide |
US7115247B2 (en) * | 2003-09-30 | 2006-10-03 | General Electric Company | Hydrogen storage compositions and methods of manufacture thereof |
US20070014683A1 (en) * | 2003-09-30 | 2007-01-18 | General Electric Company | Hydrogen storage composition, and associated article and method |
DE102004002120A1 (de) * | 2004-01-14 | 2005-08-18 | Gkss-Forschungszentrum Geesthacht Gmbh | Metallhaltiger, wasserstoffspeichernder Werkstoff und Verfahren zu seiner Herstellung |
US8124559B2 (en) * | 2004-08-27 | 2012-02-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Destabilized and catalyzed borohydride for reversible hydrogen storage |
US20110180753A1 (en) * | 2008-02-22 | 2011-07-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Destabilized and catalyzed borohydride for reversible hydrogen storage |
US8105974B2 (en) * | 2004-08-27 | 2012-01-31 | Toyota Motor Engineering & Manufacturing North America, Inc. | Destabilized and catalyzed borohydride for reversible hydrogen storage |
US20060067878A1 (en) * | 2004-09-27 | 2006-03-30 | Xia Tang | Metal alanates doped with oxygen |
DE102004064260B3 (de) | 2004-12-14 | 2021-09-16 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Wasserstoff speicherndes Kompositmaterial sowie eine Vorrichtung zur reversiblen Speicherung von Wasser- stoff |
DE102004061286B4 (de) * | 2004-12-14 | 2021-09-16 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Wasserstoff speicherndes Kompositmaterial sowie eine Vorrichtung zur reversiblen Speicherung von Wasserstoff |
CA2529427C (en) * | 2004-12-17 | 2011-03-15 | University Of New Brunswick | Synthesis, recharging and processing of hydrogen storage materials using supercritical fluids |
DE102005019108B4 (de) * | 2005-04-25 | 2008-11-06 | Gkss-Forschungszentrum Geesthacht Gmbh | Verwendung von Diamantpulver zur Herstellung von Metallhydriden |
US7837976B2 (en) | 2005-07-29 | 2010-11-23 | Brookhaven Science Associates, Llc | Activated aluminum hydride hydrogen storage compositions and uses thereof |
DE102005037772B3 (de) * | 2005-08-10 | 2006-11-23 | Forschungszentrum Karlsruhe Gmbh | Verfahren zur Herstellung eines Wasserstoff-Speichermaterials |
US20070092395A1 (en) * | 2005-10-03 | 2007-04-26 | General Electric Company | Hydrogen storage material and method for making |
US20080226532A1 (en) * | 2006-10-27 | 2008-09-18 | Zhigang Zak-Fang | Light metal based material system for hydrogen storage |
US8673436B2 (en) * | 2006-12-22 | 2014-03-18 | Southwest Research Institute | Nanoengineered material for hydrogen storage |
WO2008138954A1 (en) * | 2007-05-15 | 2008-11-20 | Shell Internationale Research Maatschappij B.V. | Process for preparing ti-doped hydrides |
US9034531B2 (en) * | 2008-01-29 | 2015-05-19 | Ardica Technologies, Inc. | Controller for fuel cell operation |
JP5174188B2 (ja) | 2008-02-12 | 2013-04-03 | イリカ テクノロジーズ リミテッド | ドープされた水素貯蔵材料 |
US7754641B2 (en) * | 2008-02-14 | 2010-07-13 | General Electric Company | Hydrogen storage material and related processes |
US8663429B2 (en) * | 2008-03-06 | 2014-03-04 | Kristina E. Lipinska-Kalita | Hollow glass microsphere candidates for reversible hydrogen storage, particularly for vehicular applications |
DE102008047222A1 (de) * | 2008-09-12 | 2010-04-15 | Studiengesellschaft Kohle Mbh | Wasserstoffspeicher |
US20100233076A1 (en) * | 2008-09-18 | 2010-09-16 | Ford Global Technologies, Llc | Hydrogen Storage Materials |
US20100184595A1 (en) * | 2009-01-20 | 2010-07-22 | Gm Global Technology Operations, Inc. | Transition metal complex anion-based hydrogen storage material system |
US8741004B2 (en) * | 2009-07-23 | 2014-06-03 | Intelligent Energy Limited | Cartridge for controlled production of hydrogen |
US8808410B2 (en) * | 2009-07-23 | 2014-08-19 | Intelligent Energy Limited | Hydrogen generator and product conditioning method |
US20110020215A1 (en) * | 2009-07-23 | 2011-01-27 | Ryu Wonhyoung | Chemical hydride formulation and system design for controlled generation of hydrogen |
US20110053016A1 (en) * | 2009-08-25 | 2011-03-03 | Daniel Braithwaite | Method for Manufacturing and Distributing Hydrogen Storage Compositions |
WO2011129567A2 (ko) * | 2010-04-15 | 2011-10-20 | Cho Keon-Hwan | 기체보관용기, 수소충전방법 및 수소충전장치 |
US8418841B2 (en) | 2010-05-14 | 2013-04-16 | Ford Global Technologies, Llc | Method of enhancing thermal conductivity in hydrogen storage systems |
US8940458B2 (en) | 2010-10-20 | 2015-01-27 | Intelligent Energy Limited | Fuel supply for a fuel cell |
WO2012058687A2 (en) | 2010-10-29 | 2012-05-03 | Ardica Technologies | Pump assembly for a fuel cell system |
US8790839B2 (en) | 2011-08-02 | 2014-07-29 | Ardica Technologies, Inc. | High temperature fuel cell system |
US9169976B2 (en) | 2011-11-21 | 2015-10-27 | Ardica Technologies, Inc. | Method of manufacture of a metal hydride fuel supply |
BR112014013799A8 (pt) * | 2011-12-09 | 2017-06-13 | Intelligent Energy Ltd | sistemas e métodos para gerenciar uma célula de combustível |
US9548507B2 (en) | 2013-08-28 | 2017-01-17 | Elwha Llc | Systems and methods for hydrogen fuel storage and hydrogen powered vehicles |
CN103771337B (zh) * | 2013-12-23 | 2016-03-30 | 浙江大学 | 一种掺杂过渡金属氟化物的氢化铝储氢材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313598A (en) * | 1965-06-07 | 1967-04-11 | Ethyl Corp | Method of controlled hydrogen generation |
DE1909732A1 (de) * | 1968-06-21 | 1970-02-19 | Grosse Aristid Victor | Verfahren und Vorrichtung zur Herstellung und Lagerung von Wasserstoff |
US3931395A (en) * | 1973-02-23 | 1976-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Process for generating hydrogen gas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4563343A (en) * | 1982-12-15 | 1986-01-07 | Ethyl Corporation | Catalyzed alkali metal aluminum hydride production |
US4512966A (en) * | 1983-12-02 | 1985-04-23 | Ethyl Corporation | Hydride production at moderate pressure |
-
1995
- 1995-07-19 DE DE19526434A patent/DE19526434A1/de not_active Withdrawn
-
1996
- 1996-07-12 CA CA002227388A patent/CA2227388C/en not_active Expired - Fee Related
- 1996-07-12 DE DE59603095T patent/DE59603095D1/de not_active Expired - Fee Related
- 1996-07-12 DK DK96925747T patent/DK0840707T3/da active
- 1996-07-12 EP EP96925747A patent/EP0840707B1/de not_active Expired - Lifetime
- 1996-07-12 WO PCT/EP1996/003076 patent/WO1997003919A1/de active IP Right Grant
- 1996-07-12 US US08/983,320 patent/US6106801A/en not_active Expired - Fee Related
- 1996-07-12 AT AT96925747T patent/ATE184577T1/de not_active IP Right Cessation
- 1996-07-12 JP JP50626797A patent/JP4050315B2/ja not_active Expired - Fee Related
- 1996-07-12 ES ES96925747T patent/ES2138364T3/es not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313598A (en) * | 1965-06-07 | 1967-04-11 | Ethyl Corp | Method of controlled hydrogen generation |
DE1909732A1 (de) * | 1968-06-21 | 1970-02-19 | Grosse Aristid Victor | Verfahren und Vorrichtung zur Herstellung und Lagerung von Wasserstoff |
US3931395A (en) * | 1973-02-23 | 1976-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Process for generating hydrogen gas |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6471935B2 (en) | 1998-08-06 | 2002-10-29 | University Of Hawaii | Hydrogen storage materials and method of making by dry homogenation |
DE10012794A1 (de) * | 2000-03-16 | 2001-09-20 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen Speicherung von Wasserstoff auf der Basis von Alkalimetallen und Aluminium |
WO2001068515A1 (de) * | 2000-03-16 | 2001-09-20 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium |
US6814782B2 (en) * | 2000-03-16 | 2004-11-09 | Studiengesellschaft Kohle Mbh | Method for reversibly storing hydrogen on the basis of alkali metals and aluminum |
US6726892B1 (en) * | 2001-02-14 | 2004-04-27 | Quantum Fuel Systems Technologies Worldwide, Inc. | Advanced aluminum alloys for hydrogen storage |
WO2006079312A1 (de) * | 2005-01-26 | 2006-08-03 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen speicherung von wasserstoff |
US8147796B2 (en) | 2006-03-13 | 2012-04-03 | University Of Utah Research Foundation | Hydrogen storage in a combined MxAlH6/M′y(NH2)z system and methods of making and using the same |
WO2012014225A2 (en) | 2010-07-26 | 2012-02-02 | Council Of Scientific & Industrial Research | An improved process for the storage delivery of hydrogen using catalyst |
EP2620410A1 (de) | 2010-07-26 | 2013-07-31 | Council of Scientific & Industrial Research | Verbessertes Verfahren zur Speicherabgabe von Wasserstoff mit einem Katalysator |
US9005571B2 (en) | 2010-07-26 | 2015-04-14 | Council Of Scientific & Industrial Research | Process for the storage delivery of hydrogen using catalyst |
Also Published As
Publication number | Publication date |
---|---|
ATE184577T1 (de) | 1999-10-15 |
DE19526434A1 (de) | 1997-01-23 |
CA2227388A1 (en) | 1997-02-06 |
JPH11510133A (ja) | 1999-09-07 |
EP0840707A1 (de) | 1998-05-13 |
DE59603095D1 (de) | 1999-10-21 |
DK0840707T3 (da) | 2000-03-27 |
US6106801A (en) | 2000-08-22 |
CA2227388C (en) | 2009-03-17 |
ES2138364T3 (es) | 2000-01-01 |
JP4050315B2 (ja) | 2008-02-20 |
EP0840707B1 (de) | 1999-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0840707B1 (de) | Verfahren zur reversiblen speicherung von wasserstoff | |
EP1824780B8 (de) | Wasserstoff speicherndes kompositmaterial sowie seine verwendung in einer vorrichtung zur reversiblen speicherung von wasserstoff | |
DE112005000442B4 (de) | Verfahren zur Freisetzung von Wasserstoff aus wenigstens einem Wasserstoff-Speichermaterial | |
DE112005000461B4 (de) | Wasserstoff-Speichermaterialien und -verfahren enthaltend Hydride und Hydroxide | |
DE112005000668T5 (de) | Reversibles Wasserstoffspeichersystem und Verfahren zur Verwendung desselben | |
DE69522471T2 (de) | Mechanische legierung auf magnesiumbasis für thermischen wasserstoffspeicher | |
WO2001068515A1 (de) | Verfahren zur reversiblen speicherung von wasserstoff auf der basis von alkalimetallen und aluminium | |
DE112005000460T5 (de) | Wasserstoff-Speichersystemmaterialien und Verfahren enthaltend Hydride und Hydroxide | |
DE102008021420A1 (de) | Verfahren zum Erzeugen von Wasserstoff mit stickstoffhaltigen Wasserstoffspeichermaterialien | |
DE112005002738T5 (de) | Mit einem Gerüst versehene borazan-lithiumhydrid Wasserstoffspeichermateralien | |
DE10332438A1 (de) | In porösen Matrizen eingekapselte Materialien für die reversible Wasserstoffspeicherung | |
EP1456117A1 (de) | Reversible speicherung von wasserstoff mit hilfe von dotierten alkalimetallaluminiumhydriden | |
Yoshida et al. | Hydrogen absorbing-desorbing properties and crystal structure of the Zr Ti Ni Mn V AB2 Laves phase alloys | |
EP0996183B1 (de) | Ternäre Wasserstoffspeichernde Legierung und Verfahren zu deren Herstellung | |
DE3780852T2 (de) | Intermetallische verbindungen, deren hydriden und verfahren zu deren herstellung. | |
WO2006079312A1 (de) | Verfahren zur reversiblen speicherung von wasserstoff | |
DE102005037772B3 (de) | Verfahren zur Herstellung eines Wasserstoff-Speichermaterials | |
US5215710A (en) | Intermetallic compounds | |
DE102004064260B3 (de) | Wasserstoff speicherndes Kompositmaterial sowie eine Vorrichtung zur reversiblen Speicherung von Wasser- stoff | |
DE69312809T2 (de) | Wasserstoffaufnehmender Werkstoff für negative Elektroden von Nickel-Hydrid Batterien und Verfahren zur Herstellung | |
US5314676A (en) | Intermetallic compounds hydrides | |
CN112755989A (zh) | 储氢材料催化剂、含该催化剂的储氢材料及制备方法 | |
Bruzzone et al. | Hydrogen Absorption by TiCr2− x Fe x Alloys | |
Lee et al. | A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996925747 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08983320 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2227388 Country of ref document: CA Ref country code: CA Ref document number: 2227388 Kind code of ref document: A Format of ref document f/p: F Ref country code: JP Ref document number: 1997 506267 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1996925747 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996925747 Country of ref document: EP |