WO1997001065A1 - Dispositif de chauffage a micro-ondes - Google Patents

Dispositif de chauffage a micro-ondes Download PDF

Info

Publication number
WO1997001065A1
WO1997001065A1 PCT/JP1996/001736 JP9601736W WO9701065A1 WO 1997001065 A1 WO1997001065 A1 WO 1997001065A1 JP 9601736 W JP9601736 W JP 9601736W WO 9701065 A1 WO9701065 A1 WO 9701065A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heated
steam
temperature
heating chamber
Prior art date
Application number
PCT/JP1996/001736
Other languages
English (en)
French (fr)
Inventor
Shigeki Ueda
Kazumi Hirai
Fumiko Mori
Ikuhiro Inada
Satomi Uchiyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15588795A external-priority patent/JP3579965B2/ja
Priority claimed from JP7155888A external-priority patent/JPH094848A/ja
Priority claimed from JP15588995A external-priority patent/JP3477919B2/ja
Priority claimed from JP15588695A external-priority patent/JPH094854A/ja
Priority claimed from JP15589095A external-priority patent/JP3633037B2/ja
Priority to BR9608678A priority Critical patent/BR9608678A/pt
Priority to EP96918885A priority patent/EP0838637B1/en
Priority to AU61382/96A priority patent/AU6138296A/en
Priority to DE69627662T priority patent/DE69627662T2/de
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US08/983,641 priority patent/US6133558A/en
Priority to PL96324196A priority patent/PL324196A1/xx
Publication of WO1997001065A1 publication Critical patent/WO1997001065A1/ja
Priority to NO975979A priority patent/NO975979L/no

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6426Aspects relating to the exterior of the microwave heating apparatus, e.g. metal casing, power cord
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6458Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • H05B6/6479Aspects related to microwave heating combined with other heating techniques combined with convection heating using steam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids

Definitions

  • the present invention relates to a microwave heating apparatus for heating and cooking various objects to be heated in an appropriate environment.
  • the conventional food thawing type cooking furnace includes a stirrer 3 on a ceiling 2 in a freely sealable furnace 1, and a magnetron irradiation unit 4 is disposed near the stirrer.
  • the furnace 1 has a detachable food storage shelf 5 under which a removable water or oil etc. dish 6 into which the food A can be immersed is arranged, and further below it a gas And a heater 7 for electric heating or the like.
  • the combination of the magnetron irradiator 4 and the liquid dish 6 and the heater 7 enables heating by magnetron irradiation from above and steam heating by boiling water from below.
  • various heating and cooking can be performed for various types of frozen foods. For example, put oil in the liquid dish to directly thaw frozen cooked food such as fries and balms, or remove the liquid dish and leave the frozen pack in the magnetron and irradiate it with hot air using a heater (ceiling stirrer). Or hot air is stirred).
  • a heater ceiling stirrer
  • hot air is stirred
  • the steam is heated by steam during heating. Since the environment inside the thermal chamber is about 100 ° C in temperature and about 100% in humidity, the following adverse effects occur. For example, when thawing frozen bread that has been baked or frozen tempura that has been cooked with oil, the steam adheres to the surface of the food, making it less sticky and less delicious. In addition, uneven temperature at the center and the surface of the food tends to occur, and thawing frozen bread that originally has a low water content may damage the dough, impair fragrance and elasticity, and cause poor texture.
  • Fig. 24 is a diagram showing the time transition of the temperature in the heating chamber and the food temperature based on such a conventional combination of microwave heating and steam heating.
  • the food temperature starting from the freezing temperature (120) requires a large amount of energy in the maximum ice crystal formation zone (11-15), so it passes through it after some time. While the food is frozen, the microphone mouth wave is not absorbed very efficiently, instead the microwave penetrates deep into the food and heat is transferred quickly. For this reason, the temperature in the food is relatively uniform.
  • steam it is possible to pass the maximum ice crystal formation zone quickly, but the temperature of the heating chamber becomes about 100 degrees by the steam and the humidity becomes about 100%.
  • the microphone mouth waves are selectively absorbed, causing uneven heating inside the food.
  • steam heating steam adheres to the surface of the food and is heated by microwaves on the very surface of the food, so that the surface temperature is more likely to rise. In other words, when the temperature in the center of the food reaches the optimum temperature for eating, the surface is far above the optimum temperature.
  • the optimal temperature of foods naturally differs for each food.
  • the temperature of over 80 ° C tempura is in the range of 60 to 70 ° C. If it is too hot, the fried seeds will dehydrate and the moisture will be lost to the clothes, which will make it worse.
  • the optimum temperature for bread is room temperature or slightly higher than body temperature. Exceeding the temperature will damage the dough, impair fragrance and elasticity, and make it uncomfortable. Generally, the optimum temperature is at least 90 ° C or less.
  • the proper humidity of foods varies from food to food. For example, bread, tempura, food It will not be delicious if the surface is sticky.
  • the point is placed only on how quickly the maximum ice crystal formation zone is passed, and it is not possible to heat and cook food in an optimal environment.
  • the temperature in the heating chamber was kept at about 100 ° C. and about 100% humidity during steam heating, so that it was not possible to heat and cook in an environment optimal for food.
  • the present invention solves such a conventional problem.
  • the purpose is to introduce means for appropriately controlling the environment in which the objects to be heated are placed, for example, temperature, humidity, and the flow of wind, so that various objects to be heated can be satisfactorily cooked.
  • the disclosed invention introduces a means for adjusting the environment in which an object to be heated such as food is placed, so that the appropriate temperature and water content of the food after heating and cooking, and the environment in the heating chamber are substantially reduced. Adjust to match. As a result, the surface temperature and the internal temperature of the food become almost the same, and the heat or moisture is not excessively deprived or excessively supplied from the food to be heated during heating. Cooking can be realized.
  • the microphone mouth wave output during heating is changed according to the object to be heated, and the way of heating the object to be heated is controlled.
  • the food to be heated can be assimilated into the environment of the heating chamber to be adjusted, and the heating can be completed at a suitable temperature and the loss of moisture can be reduced.
  • the result is fed back to the control unit while directly observing the environment of the heating chamber.
  • the environment of the heating chamber can be reliably controlled.
  • FIG. 1 is a diagram illustrating a method for controlling an environment in a heating chamber of a microphone mouthpiece heating apparatus according to a first embodiment.
  • FIG. 2 is an external view of the microwave heating device of the present invention.
  • FIG. 3 is a front sectional view of the microphone mouthpiece heating device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration for controlling an environment in a heating chamber of the microphone mouthpiece heating apparatus according to the first embodiment.
  • FIG. 5 is a front sectional view of the microphone mouthpiece heating chamber of the second embodiment.
  • FIG. 6 is a diagram illustrating a method of controlling the environment in the heating chamber of the microphone mouthpiece heating apparatus according to the third embodiment.
  • FIG. 7 is a diagram illustrating a method of controlling the environment in the heating chamber of the microphone mouthpiece heating apparatus according to the fourth embodiment.
  • FIG. 8 is a front sectional view of the microphone mouthpiece heating chamber of the third or fourth embodiment.
  • FIG. 9 is a front sectional view of another microphone mouthpiece heating chamber according to the third or fourth embodiment.
  • FIG. 10 is a block diagram showing a configuration for controlling the environment in the heating chamber of the microphone mouthpiece heating apparatus according to the third or fourth embodiment.
  • FIG. 11 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating apparatus according to the fifth embodiment.
  • FIG. 12 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating device according to the sixth embodiment.
  • FIG. 13 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating apparatus according to the seventh embodiment.
  • FIG. 14 is a front sectional view of the microwave heating chamber according to the eighth embodiment.
  • FIG. 15 is a front sectional view of the microwave heating chamber of the ninth embodiment.
  • FIG. 16 is a front sectional view of the microwave heating chamber of the tenth embodiment.
  • FIG. 17 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating apparatus according to the tenth embodiment.
  • FIG. 18 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating apparatus according to the first embodiment.
  • FIG. 19 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating apparatus according to the 12th embodiment.
  • FIG. 20 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating device according to the thirteenth embodiment.
  • FIG. 21 is a diagram illustrating a method of controlling the environment in the heating chamber of the microwave heating apparatus according to the fourteenth embodiment.
  • FIG. 22 is a front sectional view of the microwave heating apparatus in the fifteenth embodiment.
  • FIG. 23 is a front sectional view of a heating chamber of a conventional food thawing type cooking furnace.
  • FIG. 24 is a diagram showing a method for controlling the environment in a heating chamber of a conventional food-thawing-type cooking furnace.
  • FIG. 2 is an external view of a heating device according to the food heating method of the present invention.
  • a door 9 is pivotally supported on the front surface of the main body 8 so as to be openable and closable, and closes an opening of a heating chamber in which food is stored.
  • the operation panel 10 is provided with a heating command key 11 as an input means, and codes entered in one or several digits indicate the type and quantity of food, storage temperature (freezing or chilled storage), heating completion temperature, etc. It is associated with factors that affect the heating method, and this is instructed to the control unit described later.
  • a water tank 12 is detachably provided on the right side of the main body.
  • FIG. 3 is a front cross-sectional view of the heating chamber.
  • a magnetron 14 which is a microphone mouth wave generating means for irradiating a microphone mouth wave and a steam generator 15 which is a steam generating means are shown.
  • the magnetron and the generator are controlled by a control unit 21 serving as control means. The operation of the control unit will be described later.
  • the steam generator 15 is composed of a boiler 16, an atomizer 17 having an ultrasonic vibrator, and a temperature control heater 18, and atomizes water supplied from the water supply tank 12 to the boiler 16. 17 disperses fine water droplets and disperses them, and the temperature control heater 18 heats the fine atomized water droplets to raise the temperature to a desired temperature.
  • the steam generator 15 can produce air having a desired temperature and a desired temperature.
  • the food 19 is placed on a placing plate 20 having various small holes or slits.
  • FIG. 4 is a block diagram showing the configuration of the control system.
  • a control unit 21 serving as a means for controlling the environment decodes a heating command code input from a heating command key 11 and stores it in a memory serving as a storage means. 2 Read the heating condition specified from 2.
  • control data of the steam generator 15, that is, data indicating operation control of the atomizer 17 and input control of the temperature control heater 18 and data indicating power supply conditions to the magnetron 14 are stored. Have been.
  • These data may be control values in the form of time-series data of each block, or may be a certain mathematical expression.
  • control unit 21 By calculating the time series data, the power supply to the atomizer 17, the temperature control heater 18, and the magnetron 14 is controlled based on the time series data, and the heating chamber is adjusted according to the progress of heating. 13 Control the temperature and humidity of the steam introduced into 3 and the temperature of the food as predetermined.
  • Fig. 1 (a) is a diagram showing the temperature in the heating chamber and the food temperature during heating in the present invention, (b) the transition of humidity in the heating chamber, and (c) the state of the microwave output. Represents.
  • a feature of the present invention is that even when the steam generating means is operated, the environment in the heating chamber is not constant at a temperature of about 100 degrees and a humidity of about 100% even during steam heating. That is, since the control unit 21 controls the microwave output and the steam generator, it is possible to always cook food in an optimal environment.
  • the temperature of the food starting from the freezing temperature (–20 ° C) passes through the maximum ice crystal formation zone (–1 to 15) after some time (point A). From the start of heating to this point A, the food absorbs only a small amount of microwaves and has good heat conduction inside the food, so the microwave output was full in the first half as shown in (c). Irradiates the frozen food at, and is reduced appropriately in the second half of the time when the food begins to partially melt.
  • the temperature in the heating chamber is maintained at room temperature or slightly higher, and the humidity is adjusted to normal humidity or slightly higher as shown in (b). In other words, thawing is mainly performed by microwave heating that penetrates deeply especially when the food is frozen, and the steam is suppressed.
  • the food rapidly absorbs microwaves, with a mixture of melted and unthawed parts.
  • the melted part shows several to several tens of times the dielectric loss of the frozen part, so the microphone mouth wave output is reduced to a fraction of the total output as shown in (c). Reduce.
  • the temperature and humidity in the heating chamber are increased at or around the time point A as shown in (a) and (b).
  • the temperature in the heating chamber is controlled so as to substantially coincide with the temperature of the food that increases as the heating proceeds.
  • air has a small heat capacity, food is quickly heated by microwaves, so it is efficient to control the environment slightly higher as shown.
  • the control unit determines the type of food and the code
  • the control data of the steam generator and the magnet port corresponding to the amount, storage temperature (frozen or chilled storage, etc.), heating completion temperature, etc. can be searched and read out from the memory. Execute. After the thawing, the appropriate steam is supplied from the steam generating means in consideration of the humidity that should be included in the freshly baked bread. That is, unlike the conventional microphone mouth-wave heating device, food is not heated in an environment of about 100 ° C. and about 100% humidity during steam heating.
  • the humidity in the heating chamber is controlled to an appropriate level in consideration of the amount of moisture contained in the freshly baked bread, so that the surface of the bread does not contain excessive ice due to steam.
  • the temperature of the batter can be set to almost the same temperature, so that the fried seeds do not lose moisture to the batter, Can be cooked juicy.
  • the surface of the food is slightly moist immediately after heating due to the effect of steam, but finishes quickly within several minutes before being brought to the table after heating.
  • the experiment was repeated, but several minutes after heating, it was more crisp than the one heated by the microphone mouth wave alone. This means that as soon as the food is removed from the heating chamber, the food is lost to heat and moisture as it is moved into a dry, low-temperature room, and the small amount of water lost is given to the surface of the food in advance. It is presumed that it will be more fresh after a few minutes.
  • microwave-only heating the clothes became watery as time passed after heating. This is because the temperature of the fried species is higher than that of the batter, and the moisture of the fried species transfers to the batter, so the batter is watery. It seems that deep-fried seeds are dehydrated.
  • FIG. 5 is a front sectional view of a heating chamber according to the second embodiment.
  • the configuration is shown in which heating is performed in accordance with the heating method input from the input means and in accordance with the predetermined heating conditions in the storage means.
  • Providing a detection means that feeds back the power to the creatures enables more accurate control of the food environment in a heated state. That is, the heating chamber 13 is provided with a temperature sensor 23 and a humidity sensor 24 as environment detecting means. Then, the temperature and humidity in the heating chamber 13 are detected and input to the control unit 21.
  • the control unit can accurately grasp the environment in the heating chamber based on the data, and can determine whether the control is being performed according to a predetermined state or whether the control is out of this state. If the environment in the heating chamber is different from the setting, the power supply to the steam generator 15 is changed to return to the predetermined environment.
  • the amount of generated humidity can be roughly grasped by the power input to the steam generator. By detecting the temperature of the heating room, the environment of the heating room can be roughly monitored.
  • FIG. 8 shows an example of a configuration equipped with a blower.
  • a blower fan 25 as a blower cools components such as the magnetron 14
  • a predetermined amount of air guided to the air guide 26 is introduced into the heating chamber 13.
  • excess steam is discharged to the outside of the main body through an exhaust port 28 provided in a part of the body through an exhaust guide 27.
  • the blower fan 25 adjusts the environment in the heating room more quickly and more widely by mixing the outside air with the air having the desired temperature and the desired humidity generated by the steam generator 15. be able to. Also, the flow of air in the heating chamber makes it easier to control the degree of drying of the food surface.
  • the food 19 to be heated is placed on a placing plate 20 having many small holes or slits.
  • FIG. 9 is a front sectional view of a heating chamber showing another embodiment.
  • Fig. 8 shows the heating chamber 13
  • a circulation fan 29 is provided in place of the blower fan which is the blower of the embodiment.
  • the circulation fan 29 cannot change the temperature and humidity of the air discharged from the steam generator 15 whose temperature and humidity have been adjusted more widely and promptly as in the blower fan of the embodiment of FIG.
  • stirring the air in the heating chamber without changing the temperature and humidity in the heating chamber 13 that has been adjusted once unevenness in temperature and humidity can be improved.
  • the drying condition of the food surface can be easily controlled.
  • FIG. 10 is a block diagram showing the configuration of the control system.
  • the control unit 21 decodes the heating command code input from the heating command key 11 and changes the heating condition specified from the memory 22 as storage means. read out.
  • the heating conditions include control data of the steam generator 15, that is, data indicating operation control of the atomizer 17 and input control of the temperature control heater 18, data indicating power supply conditions to the magnetron 14, and blowing means.
  • the control data of the blower fan 25 is stored. These data may be control values of each block in time series, or may be a certain mathematical expression.
  • the control unit 21 sends the atomizer 17, the temperature control heater 18, and the magnetron 14 according to the stored time-series data or time-series data obtained by calculating a certain mathematical formula.
  • the power supply and blower fan 25 By controlling the power supply and blower fan 25, the temperature and humidity of steam introduced into the heating chamber, the flow of wind, and the temperature of food are controlled as predetermined in accordance with the progress of heating.
  • FIG. 6 shows an embodiment having such a configuration.
  • A shows the temperature in the heating room and the food temperature during heating
  • (b) shows the change in humidity in the heating room
  • (c) shows the state of microwave output
  • (d) shows the operation of the blower fan. Each state is shown.
  • the food temperature starting from the freezing temperature (120 ° C) passes through the maximum crystallization zone (11-15) after some time (point A). From the start of heating to this point A, the food absorbs only a small amount of microwaves and has good heat conduction inside the food, so the microwave power is frozen at full power in the first half as shown in (c). Irradiated foods are reduced as appropriate in the second half of the time when the foods begin to partially melt.
  • the temperature in the heating chamber is maintained at room temperature or slightly higher, and the humidity is adjusted to normal humidity or slightly higher as shown in (b). In other words, thawing is mainly performed by microwave heating that penetrates deeply especially when food is frozen, and steam is suppressed. Control.
  • the food rapidly absorbs the microphone mouth wave, with a mixture of the melted and unthawed parts.
  • the melted part moisture-
  • the microwave output is several minutes of the total output as shown in (c). It is reduced to one.
  • the temperature and humidity in the heating chamber are increased from this point A as shown in (a) and (b).
  • the temperature in the heating chamber is controlled to be almost the same as or slightly higher than the food temperature that rises as heating proceeds.
  • the control unit records the control data of the steam generator, magnetron, and blower fan corresponding to the type and quantity of food, storage temperature (frozen or chilled storage, etc.), heating completion temperature, etc. according to the code input from the heating command key. Since it is possible to search and read from the file, the control may be executed every moment based on this.
  • the very small amount of water lost at the time of the “Aoi effect J” after the time point B can be given to the surface of the food in advance, and after a few minutes, it can be made closer to the fresh one.
  • completion notification such as a buzzer is performed at time C.
  • a delay of the completion notification may be provided by providing a timer in the control unit to count a predetermined time from the time point B, or by providing a means for detecting the temperature of the heating chamber to determine when the temperature of the heating chamber has dropped to a predetermined value. May be detected.
  • the delay in the notification of the completion slightly decreases the temperature and humidity in the heating chamber, so that it is safer to take out the food.
  • FIG. 7 shows an example of adjusting the environment inside the heating chamber so that the temperature does not exceed the temperature at the time of completion of heating the food.
  • (a) is a diagram showing the temperature in the heating chamber and the food temperature during heating in the present invention
  • (b) shows the transition of humidity in the heating chamber
  • (c) shows the state of microwave output
  • (d) Indicates the operating state of the blower fan.
  • (a) from the start of heating to this point A, it is exactly the same as the first control method described above. After the time point A, the microwave power is reduced to a fraction of the total power as shown in (c).
  • the blower fan shown in (d) is operated intermittently after time point B, so that the air blows on the food intermittently like the air blows on the food, making the above-mentioned "Aoigi effect! More remarkable. It is possible. In other words, if the air is blown in a continuous manner, the surface temperature of the food tends to be uneven, but the intermittent air flow makes the temperature distribution constant due to the heat conduction in the food, so cooking with less temperature unevenness is possible. Becomes
  • the temperature and humidity in the heating chamber are increased rapidly from time A as shown in (a) and (b).
  • the temperature is approximately the same as the optimal temperature at the time of completion of heating of the temperature wave food in the heating room, and in practice it is adjusted slightly higher.
  • the temperature and humidity from the environment surrounding the food are adjusted to the first value. Heating proceeds efficiently because it is received larger than in the control method. Because the power never rises above the optimum temperature for the food, low- and medium-temperature zones, such as bread and tempura, and delicate heating that must not be humid, can also be achieved by the first control described above. Like the law, it can be played well.
  • Detecting means for measuring the environment of the apparatus and feeding back the power supply to the steam generator may be provided.
  • detection means include a temperature sensor and a humidity sensor.
  • time point C only the environmental adjustment can be continued until the door of the heating chamber is opened and the food is taken out, and the heat can be kept without impairing the quality of the heated food.
  • the control unit Based on the code input from the heating command key, the control unit searches the memory for control data of the steam generator and magnetron corresponding to the type and quantity of food, starting temperature (frozen or chilled storage, etc.), heating completion temperature, etc. The control can be executed every moment based on this.
  • FIG. 11 is a diagram showing a method of heating food in which the temperature rises relatively uniformly at the center and the end.
  • (A) is a diagram showing the temperature in the heating chamber and the food temperature during heating in the present invention,
  • (b) shows the transition of humidity in the heating chamber, and
  • (c) shows the state of the microphone mouth wave output. I have.
  • the temperature and the humidity in the heating chamber before the completion of the heating are controlled to the temperatures and the humidity for properly cooking the food.
  • the temperature of the food starting from the freezing temperature (120 ° C) rises slowly up to the maximum freezing zone (15-11 ° C) because it absorbs only a small amount of microphone mouth waves. .
  • the maximum ice crystal formation zone it passes through the energy after some time because it is consumed for melting ice (point A). Then, after time point A, the food rapidly absorbs the microphone mouth wave and the food temperature begins to rise sharply.
  • the microwave output in Fig. (C) is adjusted according to the food so that the cooking does not end before the environmental adjustment is completed.
  • the environment in the heating chamber is adjusted according to the heating completion state, so the food is warmed moderately from the surface by the latent heat of steam and simultaneously heated by microwaves, so that the center and end of the food are balanced at the end of cooking.
  • the temperature is rising quickly and well. Also, since the water on the surface of the food is kept at an appropriate level, good cooking can be performed without drying, sticking, or sticking the pasta or cooked rice.
  • FIG. 12 is a diagram showing a method of heating food in which the temperature rises at the center before the end.
  • (A) is a diagram showing the temperature in the heating chamber and the food temperature during heating in the present invention, (b) shows the transition of humidity in the heating chamber, and (c) shows the state of microwave output. I have.
  • the temperature and humidity in the heating chamber before the heating is completed are controlled to the temperature and humidity required to properly cook the food. If the food is started from the freezing temperature (120), if the microphone mouth wave is irradiated from the beginning, the radio wave penetrates into the center of the food and warms first from the center (a), and as shown in (b), the heating chamber The temperature and humidity of the food are immediately adjusted to the heating completed state.
  • the shrimp and shrimp are heated to almost the same temperature, so the shrimp inside the batter is heated first and dehydrated and hardened, and the shrimp moisture does not migrate to the batter and sticks well. Can be cooked with great heat. According to the experiment, heating cooking Immediately after completion, the garment was moist than when heated with the microphone mouth wave alone, but the excess water gradually evaporated, and by the time it was served at the table, it was like a celestial garment, and the finish was crisp.
  • FIG. 13 is a diagram showing a method of heating food in which the temperature of the food rises at the end before the center.
  • (A) is a diagram showing the temperature in the heating chamber and the food temperature during heating in the present invention,
  • (b) shows the transition of the humidity in the heating chamber, and
  • (c) shows the state of the microwave output.
  • the temperature of the food starting from the freezing temperature (at 120) passes through the maximum ice crystal formation zone (at 11 to 15) after some time (time A).
  • the food absorbs only a small amount of microwaves and the penetration of microwaves inside the food is good, so that the microwave output is completely reduced in the first half as shown in (c). Irradiate the frozen food at the output. At this time, it is important to prevent the surface of the food from melting and absorbing moisture as much as possible in order to improve the penetration of microwaves into the food. Therefore, until the food starts to partially melt (time A), the temperature in the heating chamber is not adjusted as shown in Fig. (B). In other words, thawing mainly plays the role of microphone mouth-wave heating, which penetrates deeply especially when food is frozen, and suppresses steam.
  • the food rapidly absorbs microwaves, with a mixture of the melted and unthawed parts.
  • the thawed portion moisture
  • the thawed portion exhibits a dielectric loss several to several tens times that of a frozen portion, so that the temperature difference between the thawed portion and the unthawed portion increases. Therefore, as shown in (c), the microwave output is reduced stepwise to a fraction of the total output, and heating is continued while conducting heat from a high temperature part to a low temperature part.
  • the temperature and humidity in the heating chamber are adjusted from this point A to the food heating completion state, and the inside of the food rises by heating so that the surface of the food is wrapped by steam.
  • a heating means 30 is provided in a steam discharge passage separately from the steam generator 15. Then, the control unit can be configured to supply power to the heating unit prior to the generation of steam to increase the temperature in the heating chamber. With this configuration, it is possible to more completely prevent the condensation of steam on the cooled heating chamber wall surface.
  • control unit controls the power supply to the steam generator 15 and the heating unit 30 by the independent heating unit, so that the temperature and the humidity can be adjusted so that the wall surface of the heating chamber does not dew. As such an environment, the effect was high when the relative humidity in the heating chamber was adjusted to be 90% or less.
  • FIG. 15 shows an example of a microphone mouth-wave heating device equipped with an electric heater in a heating chamber.
  • a configuration in which the heating means 30 of the environment adjustment means is replaced with such an electric heater 31 to combine functions is also conceivable. .
  • the steam generator is not limited to the one described in the present embodiment either, and the sheathed heater may be thrown into a normal boiler, or may be fixed to the outside of the boiler by brazing or the like. However, in this case, in order to arbitrarily control the temperature of the generated steam, it is preferable that a part of the heat is protruded from the water level in the boiler and the temperature is raised independently of the generated steam.
  • FIG. 16 is a sectional view of a microphone mouthpiece heating apparatus according to another embodiment of the present invention.
  • the heating chamber 13 is provided with a magnetron 14 which is a microphone mouth wave generating means, and is configured to irradiate the heating chamber 32 with microwaves.
  • a steam generating chamber 32 made of a non-magnetic material is provided on the side of the heating chamber 13.
  • One end of the steam generation chamber 3 2 is connected to the heating chamber 13 by an outflow pipe 33, and the other end is It is connected to water tank 12 by irrigation pipe 3 4.
  • a heat generating metal body 35 made of a magnetic metal is accommodated in the steam generation chamber 32.
  • the metal body 35 should preferably fill the steam generating chamber 32, and the heat-generating metal body 35 may be made of a material that generates heat by a magnetic field, and the shape is not particularly limited. In order to increase the contact area, a foamed or fibrous metal body composed of open cells was used. If the material forming the steam generating chamber 32 is not made of a non-magnetic material, but is made of a magnetic material, there is no need to provide the heat-generating metal body 17. However, in this case, since the amount of water stored in the steam generating chamber 32 becomes large, there is a possibility that it takes time to generate steam.Therefore, a hollow body or the like is inserted to substantially reduce the amount of water stored, or reduce the temperature of the stored water. It is necessary to take measures such as raising the height in advance.
  • An exciting coil 36 is wound around the outer periphery of the steam generating chamber 32, and the exciting coil 36 is connected to an inverter power supply 37 for supplying an alternating current.
  • An alternating magnetic field is generated in the exciting coil 36 by the current from the inverter power supply 37.
  • the alternating magnetic field generates an eddy current in the heat-generating metal body 35, and the heat-generating metal body 35 generates heat due to the eddy current.
  • the water in the steam generation chamber 32 is heated by the heat of the heat-generating metal body 35 to generate steam, and the steam enters the heating chamber 13 through the outflow pipe 33.
  • Reference numeral 38 denotes a high-voltage power supply that supplies high-voltage power to the magnetron 14.
  • the on / off operation of the inverter power supply 37 and the high-voltage power supply 38 or power control of each power supply is performed by the control unit 21.
  • a saucer 22 having an opening through which steam passes is provided in the heating chamber 13, and a food 19 is placed on the upper surface.
  • the exciting coil 36 itself does not generate heat, and the eddy current causes the heat-generating metal body 35 to directly generate heat. Therefore, this heat is directly transmitted to water, and steam is efficiently generated.
  • the steam generation chamber 32 is formed of, for example, a columnar insulator.
  • it is formed of a material such as heat-resistant glass and magnetism.
  • the thickness of the wall of the steam generation chamber 32 is set to a thickness that does not cause insulation rupture due to the voltage applied to the excitation coil.
  • the heat-generating metal body 35 is made of a waterproof, anticorrosive metal, for example, nickel, an alloy of nickel and chromium, or stainless steel.
  • FIG. 17 is a diagram showing the amount of steam in the heating chamber.
  • Figure 17 shows the change in the amount of steam in the heating chamber as the heating time elapses.
  • the operation of the steam generator which is the steam generating means, starts when heating starts, and the steam generator operates when heating ends. This shows a stopped state.
  • the output of the inverter power supply 37 was set to 400 W and the heating metal body 35 was heated, the generation of steam started when the rise time was about 10 seconds, and almost several seconds after the heating was completed. Has stopped.
  • the operation of the steam generator it was possible to follow the operation of generating and stopping the steam in a much earlier time than before. Also, the input power required for steam generation was very small.
  • FIG. 18 is a diagram showing the relationship between the food temperature and the amount of steam during cooking in the heating chamber of the microwave heating apparatus according to the eleventh embodiment.
  • the operation of the microphone mouth wave generating means and the operation of the steam generating means are started simultaneously with the start of heating.
  • the two processes are simultaneously performed. Because the steam generator rises quickly, even if the microphone mouth wave operation starts and the steam generator starts at the same time, the microphone mouth wave alone heats only for a few seconds at the time of startup.
  • heating is performed using both microwaves and steam, and heating is performed while suppressing the evaporation of water in the food. As a result, moist and good finished cooking can be achieved.
  • FIG. 19 is a diagram showing the relationship between the food temperature and the amount of steam during cooking in the microwave heating apparatus according to the 12th embodiment.
  • Fig. 19 while the food is frozen, that is, when the food temperature is minus, the microwave is penetrated and penetrates into the food. As the food thaws, the freezing melts and the food temperature rises
  • the steam generator starts to operate from the time when the value turns to approximately plus, and cooking is performed using microwaves and steam. Evaporation of moisture from foods tends to occur after the food temperature reaches a positive temperature.However, the steam in the heating chamber ⁇ wraps the surroundings of the foods, preventing evaporation of moisture from the foods and preventing drying. Since the cooking is progressed while heating, it is possible to realize good cooking with a good finished state. Since the steam generator is operated only for the required time, no extra power is required and energy is saved.
  • FIG. 20 is a diagram of another embodiment showing the relationship between the food temperature and the amount of steam during cooking in the heating chamber of the microwave heating apparatus according to the thirteenth embodiment.
  • the operation start of the microphone mouth wave generating means and the operation start of the steam generating means are performed simultaneously with the start of heating.
  • the operation of the steam generator was stopped earlier by the time when the steam in the heating chamber decreased.
  • the operation of microwave is stopped, and the cooking is finished.
  • the steam in the heating chamber is reduced at the end of heating, and a cooking method that is easy to handle without contacting high-temperature steam when taking out food can be realized.
  • FIG. 21 is a diagram showing the relationship between the food temperature and the amount of steam during cooking in the microwave heating apparatus according to the fourteenth embodiment.
  • Fig. 21 while the food is frozen, that is, while the food temperature is minus, heating is performed with the high-power microphone mouth wave and the output of the low-power steam generator.
  • the microwave output is reduced to medium output and the output of the steam generator is increased to medium output from the point in time when the food temperature has been turned to approximately plus due to the thawing of the food and the freezing being thawed.
  • the output of the microphone mouth wave is reduced to a low output
  • the output of the steam generator is increased to a high output.
  • the output of the microwave and the output of the steam generator are changed according to the progress of the heating. For example, when food is frozen, microwaves can be quickly thawed due to its ability to penetrate deep into ice. Next, the temperature is gradually raised while preventing the food temperature from becoming uneven due to the medium-power microwaves and steam. At this time, the steam of the medium output is effective in keeping the temperature of the food uniform and preventing the moisture of the food from evaporating. In the final stage, where the temperature of the food rises considerably as the heating progresses, the temperature is more likely to be uneven, so the heating is performed by using microwaves with lower power and heat transfer that occurs inside the food, that is, carryover heating. Advance.
  • FIG. 22 is a sectional view of the microwave heating apparatus in the fifteenth embodiment.
  • the heating chamber 13 is provided with a magnetron 14 which is a microwave generating means, and the heating chamber 13 is irradiated with microwaves.
  • a steam generating chamber 32 made of a non-magnetic material is provided on a side surface of the heating chamber 13.
  • the lower end of the steam generation chamber 32 is connected to the heating chamber 13 by an outflow pipe 33, and the upper end is connected to the water tank 12 by an inflow pipe 34.
  • a faucet 39 for adjusting the flow rate of water is provided between the inflow pipe 34 and the water tank 12.
  • a heat generating metal body 35 made of a magnetic metal is accommodated in the steam generating chamber 32.
  • the heat-generating metal body 35 uses a foamed or fibrous metal body composed of open cells in order to increase the contact area with water.
  • An exciting coil 36 is wound around the outer periphery of the steam generating chamber 32, and the exciting coil 36 is connected to an inverter power supply 37 for supplying an alternating current.
  • An AC magnetic field is generated in the exciting coil 36 by the current from the inverter power supply 37.
  • the alternating magnetic field generates an eddy current in the heat-generating metal body 35, and the heat-generating metal body 35 generates heat due to the eddy current.
  • Water from the water tank 12 is injected from the inflow pipe 34 from above the heating metal body 35.
  • the faucet 39 controls the flow rate of water, and drops only the amount of water necessary for water evaporation.
  • the water dropped into the steam generating chamber 32 is heated by the heat of the heat generating metal body 35 to generate steam, and the steam enters the heating chamber 13 through the outflow pipe 33.
  • a fan 40 blows the steam generated in the steam generation chamber 32 into the heating chamber 13.
  • Reference numeral 38 denotes a high-voltage power supply that supplies high-voltage power to the magnetron 14.
  • the power control of the source is performed by the control unit 21.
  • a saucer 20 having an opening through which steam passes is provided, and a food 19 is placed on the upper surface.
  • the exciting coil 36 itself does not generate heat, and the eddy current causes the heat-generating metal body 35 to directly generate heat, so this heat is directly transmitted to water, and steam is efficiently generated.
  • the heating method based on the configuration of the heating cooker, only the water required for evaporation needs to be heated, so that the amount of water to be heated is very small, and steam is generated almost instantaneously with little power. Since heating can be started and stopped immediately, the optimal heating control can be realized according to the progress of cooking of food. I can do it.
  • the present invention can appropriately control the environment such as the temperature and humidity in the heating chamber in accordance with the food, so that various foods can be satisfactorily cooked. That is, according to the microphone mouthpiece heating device of the present invention, the internal temperature and the surface temperature of the food can be made substantially the same, and the food can be heated and cooked in an optimal state.
  • a heat source As a heat source, a high-frequency alternating electric field or the like can be used in addition to the microphone mouth wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Ovens (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

明 細 書
発明の名称
マイク口波加熱装置
技術分野
本発明は多様な被加熱物を適切な環境の下で、加熱調理するマイクロ波加熱装 置に関するものである。
背景技術
従来のマイクロ波加熱装置の先行技術としては、特公昭 5 5 - 5 1 5 4 1号公 報に記載の食品解凍式調理炉が知られていた。以下、その構成について図 2 3を 参照しながら説明する。
図 2 3に示すように、従来の食品解凍式調理炉は密閉自在な炉 1内の天井 2に 攪拌器 3を備え、その近くにマグネトロン照射部 4が配設される。炉 1内には着 脱自在な食品載置棚 5を有し、その下方に食品 Aを浸漬することもできる取外し 可能な水、油等の液入皿 6が配され、 さらにその下方にガス、電熱等の加熱器 7 が設けられる。これらマグネトロン照射部 4および液入皿 6と加熱器 7の組み合 わせにより、上方からはマグネトロン照射による加熱、下方からは沸騰水による スチーム加熱を併用できるものである。
かかるマグネトロン照射とスチーム加熱を併用する構成により、冷凍食品の加 熱に際して、解凍の際に食品の細胞膜の破壊を生じる最大氷結晶生成帯での停滞 をなく し、 ここをすみやかに通過させることで旨味成分の流出が少なく、解凍む らもない均一な解凍加熱が実現できる。 また、水蒸気が発生するので冷凍パン、 冷凍ケーキ類の解凍、酴酵焼き上げの全工程のパン、ケーキ加工器としても利用 されている。
また、水蒸気によるスチーム加熱のみならず、多様な冷凍食品の種類に対応し てさまざまな加熱調理が可能となる。例えば、液入皿に油を入れてフライやてん ぶら類の冷凍調理食品を直接オイル解凍したり、液入皿を外して冷凍パックのま まマグネトロン照射と加熱器による熱風加熱 (天井の攪拌器で熱風を攪拌する) とを併用したりする構成が開示されている。
しかし、従来のマイクロ波加熱装置では、 スチーム加熱時の水蒸気により、加 熱室内の環境が温度約 1 0 0度、湿度約 1 0 0 %の環境となるため、以下の弊害 が生じる。 例えば、焼成済みの冷凍パンや油調理済み冷凍てんぷらの解凍では蒸 気が食品の表面に付着するためべたついておいしさに欠ける。 また、食品の中央 と表面での温度ムラができやすく、もともと含水量の少ない冷凍パンの解凍など ではパン生地を傷め、 香りや弾力を損ねたり、 歯触りが悪くなつたり、 という問 題を生じる。
以下、 この問題について詳しく説明する。 図 2 4はこのような従来のマイクロ 波加熱とスチーム加熱との併用に基づく加熱室内の温度と食品温度の時間推移 を示す線図である。 冷凍温度 (一 2 0 ) からスタートした食品の温度は最大氷 結晶生成帯 (一 1〜一 5 ) で大きなエネルギーを要するため、 若干の時間を経 てここを通過する。食品が凍っている間はマイク口波はあまり効率良くは吸収さ れず、 その代わり食品内部へのマイクロ波の浸透は深く、 また熱の伝導も速やか に行われる。 このため、 食品内の温度は比較的均一である。 ここで、 スチームを 併用することにより、この最大氷結晶生成帯を早く通過させることができるが、 加熱室内 温度はスチームにより約 1 0 0度となり、湿度も約 1 0 0 %となる。 次に、 この最大氷結晶生成帯を通過すると、食品内部に溶けた部位とまだ凍つ たままの部位が混在し、溶けた部位は凍った部位の数倍〜数十倍もの誘電損失を 示してマイク口波を選択的に吸収するため、食品内部に加熱ムラを生じる。特に、 スチーム加熱時には、蒸気が食品の表面に付着し、食品のごく表層でマイクロ波 により加熱されるため、 表面温度がいっそう上昇しやすくなる。 すなわち、 食品 中央の温度が食べごろの適温に達した時には、表面は適温をはるかに超えてしま 0。
ここで、 食品の適温は当然に食品ごとに異なる。 例えば、 蒸し料理の場合は、 8 0 °Cを超える力 てんぷらは 6 0〜 7 0てが適温であり、熱く しすぎると揚げ 種が脱水し、水分を衣に奪われるためまずくなる。パンの適温は常温もしくは体 温より若干高い程度の温度であり、 温度を上げ過ぎればパン生地を傷め、香りや 弾力を損ねたり、 歯触りを悪くする。 一般に、 適温は、 少なく も 9 0度以下の温 度となる。
また、 食品の適正な湿度も食品ごとに異なる。 例えば、 パンもてんぷらも食品 の表面がベたついてはおいしくなくなる。
このように従来のマイク口波加熱装置では、最大氷結晶生成帯を如何にすみや かに通過させるかにのみに要点が置かれており、食品を最適な環境の下で、加熱 調理することは考慮されていなかった。すなわち、加熱室内の温度は、 スチーム 加熱時において、温度約 1 0 0度、湿度約 1 0 0 %に保持されるため、食品にと つて最適な環境で、 加熱調理することができなかった。
発明の開示
本発明はこのような従来の課題を解消するものである。被加熱物が置かれる環 境、 例えば、 温度、湿度および風の流れ等を適切に制御する手段を導入し、多様 な被加熱物を良好に加熱調理することを目的とする。
すなわち、開示された発明では、食品などの被加熱物が置かれる環境を調整す る手段を導入し、食品の加熱調理後の適正な温度、水分量などと、加熱室内の環 境とを略一致させるよう調整する。 このことにより、食品の表面温度と内部温度 とがほぼ同一となり、加熱進行中に被加熱物である食品から熱や水分が過剰に奪 われたり、過剰に供給されることがなくなり、最適な状態の加熱調理が実現でき る。
また、 より理想的な加熱を実現させるため、本発明では被加熱物に応じて加熱 中のマイク口波出力を変化させ、被加熱物の温まり方をも制御する。 このことで、 調整させる加熱室の環境に被加熱物たる食品を同化させ、適温で加熱を終え水分 の損失も少ない加熱が実現できる。
さらに、本発明では加熱室の環境を直接観測しながら、 この結果を制御部にフ イードバックする。 これにより、加熱室の環境を確実に制御することができる。 図面の簡単な説明
図 1は、第 1の実施例におけるマイク口波加熱装置の加熱室内の環境の制御法 を示す図である。
図 2は、 本発明のマイクロ波加熱装置の外観図である。
図 3は、 本発明の第 1の実施例のマイク口波加熱装置の正面断面図である。 図 4は、第 1の実施例におけるマイク口波加熱装置の加熱室内の環境を制御す る構成を示すプロック図である。 図 5は、 第 2の実施例のマイク口波加熱室の正面断面図である。
図 6は、第 3の実施例におけるマイク口波加熱装置の加熱室内の環境の制御法 を示す図である。
図 7は、第 4の実施例におけるマイク口波加熱装置の加熱室内の環境の制御法 を示す図である。
図 8は、 第 3または第 4の実施例のマイク口波加熱室の正面断面図である。 図 9は、第 3または第 4の実施例の他のマイク口波加熱室の正面断面図である。 図 1 0は、第 3または第 4の実施例におけるマイク口波加熱装置の加熱室内の 環境を制御する構成を示すプロック図である。
図 1 1は、第 5の実施例におけるマイクロ波加熱装置の加熱室内の環境の制御 法を示す図である。
図 1 2は、第 6の実施例におけるマイクロ波加熱装置の加熱室内の環境の制御 法を示す図である。
図 1 3は、第 7の実施例におけるマイクロ波加熱装置の加熱室内の環境の制御 法を示す図である。
図 1 4は、 第 8の実施例のマイクロ波加熱室の正面断面図である。
図 1 5は、 第 9の実施例のマイクロ波加熱室の正面断面図である。
図 1 6は、 第 1 0の実施例のマイクロ波加熱室の正面断面図である。
図 1 7は、第 1 0の実施例におけるマイクロ波加熱装置の加熱室内の環境の制 御法を示す図である。
図 1 8は、第 1 1の実施例におけるマイクロ波加熱装置の加熱室内の環境の制 御法を示す図である。
図 1 9は、第 1 2の実施例におけるマイクロ波加熱装置の加熱室内の環境の制 御法を示す図である。
図 2 0は、第 1 3の実施例におけるマイクロ波加熱装置の加熱室内の環境の制 御法を示す図である。
図 2 1は、第 1 4の実施例におけるマイクロ波加熱装置の加熱室内の環境の制 御法を示す図である。
図 2 2は、第 1 5の実施例におけるマイクロ波加熱装置の正面断面図である。 図 2 3は、 従来の食品解凍式調理炉の加熱室の正面断面図である。
図 2 4は、従来の食品解凍式調理炉の加熱室内の環境の制御法を示す図である。 発明を実施するための最良の形態
(実施例 1 )
以下、 本発明の第 1の実施例を図面を参照しながら説明する。
図 2は、本発明の食品加熱方法に係わる加熱装置の外観図である。本体 8の前 面には扉体 9が開閉自在に軸支され、食品が収容される加熱室の開口を閉塞して いる。操作盤 1 0には入力手段である加熱指令キー 1 1が配され、一桁あるいは 数桁で入力されるコードが食品の種類や分量、保存温度(冷凍かチルド保存か)、 加熱完了温度など、加熱法に影響を与える因子と対応づけされており、 これを後 述する制御部に指令する。本体の右側面には給水タンク 1 2が着脱自在に配設さ れる。
図 3は、加熱室の正面断面図であり、加熱室 1 3にはマイク口波を照射するマ イク口波発生手段であるマグネトロン 1 4と、蒸気発生手段となる蒸気発生器 1 5とが結合されている。 マグネトロンと、上記発生器は、制御手段となる制御部 2 1により制御される。制御部の動作については後述する。蒸気発生器 1 5はボ イラ 1 6と超音波振動子を有する霧化器 1 7、調温ヒータ 1 8から構成され、給 水タンク 1 2よりボイラ 1 6に給水される水を霧化器 1 7が細かな水滴にして 放散させ、調温ヒータ 1 8がこの霧化された微小な水滴を加熱して所望の温度に 上昇せしめる。霧化器 1 7の作動制御と調温ヒータ 1 8の入力制御によって蒸気 発生器 1 5は所望の温度、所望の温度を備えた空気を作り出すことができる。食 品 1 9は多様の小孔もしくはスリッ トを有する載置皿 2 0上に載置される。
図 4は、制御システム構成を示すプロック図であり、環境を制御する手段とな る制御部 2 1は、加熱指令キー 1 1から入力された加熱指令コードを解読し、記 憶手段であるメモリ 2 2から指定された加熱条件を読み出す。加熱条件としては 蒸気発生器 1 5の制御データ、すなわち霧化器 1 7の作動制御と調温ヒータ 1 8 の入力制御を示すデータと、マグネトロン 1 4への給電条件を示すデータとが記 憶されている。これらのデータは各々のプロックの時系列データ的な制御値であ つてもよいし、 ある数式であっても構わない。数式の場合には、制御部 2 1はこ れを演算して時系列データを得て、 この時系列データに則り、霧化器 1 7と調温 ヒータ 1 8、マグネトロン 1 4への給電を制御して、加熱の進行に応じて加熱室 1 3内に導入される蒸気の温度と湿度、食品の温度をあらかじめ定められたよう に制御する。
図 1の( a )は本発明における加熱中の加熱室内の温度と食品温度を示す線図 であり、 (b ) は加熱室内の湿度の推移を、 (c ) ではマイクロ波出力の状態を それぞれ表している。本発明の特徴は、蒸気発生手段を動作させた場合において も、加熱室内の環境が、 スチーム加熱時においても温度約 1 0 0度、湿度約 1 0 0 %で一定にはならないことである。すなわち、制御部 2 1が、マイクロ波出力 および蒸気発生器を制御するので、常に、最適な環境で、食品を調理することが 可能となる。
具体的な加熱方法について、 以下に説明する。 (a ) において冷凍温度 (— 2 0 °C )からスタートした食品の温度は最大氷結晶生成帯(― 1〜一 5て)を若干 の時間を経て通過する (時点 A )。加熱の開始からこの時点 Aまでは、 食品はマ イク口波をわずかしか吸収せず、 また食品内部での熱伝導も良好なので、 ( c ) に示すようにマイクロ波出力は前半には全出力で凍結した食品に照射され、食品 が部分的に溶け始める後半には適宜低減される。この解凍の期間は加熱室内の温 度は室温かもしくは若干高めに維持され、湿度も (b ) に示すように常湿もしく は若干高めに調整される。すなわち、解凍は食品の凍結時には特に深くまで浸透 するマイクロ波加熱によりおもに行い、 蒸気は抑制しておく。
次に、時点 Aを過ぎると、溶けた部位と未解凍の部位を混在したまま、食品は 急激にマイクロ波を吸収するようになる。既述したように溶けた部位(水分) は 凍った部位の数倍〜数十倍もの誘電損失を示すため、 (c ) に示すようにマイク 口波出力を全出力の数分の一にまで低減する。 また、加熱室内の温度および湿度 は (a ) および(b ) に示すようにこの時点 Aもしくはその近辺より上昇させて いく。 ここで、加熱室内の温度は加熱の進行につれて上昇する食品の温度と略一 致するよう制御する。 ただし、空気は熱容量が小さいので、食品がマイクロ波に よりすみやかに加熱されるため、環境は図示したようにわずかに高めに制御する と効率が良い。加熱指令キーから入力されるコードにより制御部は食品の種類や 分量、 保存温度(冷凍かチルド保存かなど)、加熱完了温度などに対応する蒸気 発生器とマグネト口ンの制御データをメモリを検索して読み出すことができる ので、 これに基づいて刻々と制御を実行する。 また、湿度は解凍後、焼きたての パンが含んでいるべき湿度を考慮して、適正な蒸気を蒸気発生手段から供給する。 すなわち、従来のマイク口波加熱装置のように、スチーム加熱時に温度約 1 0 0 度、 湿度約 1 0 0 %の環境で、 食品の加熱を行うものではない。
かかる制御により、食品と食品の周囲の環境とはその差が微小となり、温度や 湿度(水分)の交換が極めて起こりにく くなる。 すなわち、 食品中央の平均的な 温度が適温に達した時、環境がほぼ同じ温度になっているので、食品表層での熱 交換も水分の移行も起こりにくいのである。 そのため、適温が常温もしくは体温 より若干高い程度のパンも、 内外の温度差が少ないため、パン生地が傷まず、冷 凍直前の焼き立ての香りや弾力を維持し、歯触り良く、出来たてを再生できる。 結果として、図 1に示すように食品の表面温度と、内部温度とがほぼ等しい状態 で加熱調理がすすむこととなる。
また、加熱室内の湿度も焼きたてのパンが含んでいる水分量を考慮して、適切 な湿度に制御されているため、パンの表面がスチームにより過剰に氷分を含むこ ともない。
さらに、 てんぷらの場合には、 内部の揚げ種が 6 0 〜 7 0 °Cに達した時、衣も ほぼ同様の温度にすることができるので、揚げ種は水分を衣に奪われることなく、 ジユーシーなまま調理できる。
なお、本実施例において、パンもてんぷらも食品の表面は加熱直後はわずかに 蒸気の影響でしっとりしているが、加熱後に食卓に運ぶまでの数分の間にカラッ と仕上がる。実験を繰り返し行ったが、加熱後、数分経過するとマイク口波のみ で加熱したものよりもカラッと仕上がった。 これは、加熱室から取り出した途端 に、食品は乾燥した低い温度の室内に移動させられることで熱および水分を失う ことになり、この損失するわずかな水分をあらかじめ食品の表面に与えておくこ とで、数分後により出来たてに近づくのだと推定される。 一方、 マイクロ波のみ の加熱では加熱後に時間が経過するほどに衣は水っぽくなつていつた。これは揚 げ種の方が衣よりも温度が高く、揚げ種の水分が衣に移行するため衣は水っぽく なり、 揚げ種は脱水が進むナこめと思われる。
(実施例 2 )
図 5は、第 2の実施例を示す加熱室の正面断面図である。第 1の実施例では、 入力手段より入力された加熱方法に従い、記憶手段の中にあらかじめ定められた 加熱条件に則り、加熱を進める構成を示したが、加熱室の環境を計測し、蒸気発 生器への給電をフィードバックする検知手段を設けた方がより正確に、加熱状態 での食品の環境を精度よく制御できる。すなわち、加熱室 1 3には環境検知手段 である温度センサ 2 3と、湿度センサ 2 4が取りつけられている。そして加熱室 1 3内の温度と湿度を検出して、制御部 2 1へ入力する。制御部はかかるデータ に基づいて加熱室内の環境を正確に把握することができ、あらかじめ定めた状態 通りに制御できているのか、 これからずれているのかが判る。加熱室内の環境が 設定よりもずれていれば、蒸気発生器 1 5への通電を変化させて所定の環境に戻 るよう制御する。
なお、本実施例のように温度と湿度の両者を直接検出すれば確実であるが、湿 度の発生量は蒸気発生器への通電入力でおおよそ把握することができるので、少 なくとも加熱室の温度を検出することで、加熱室の環境をおおよそ監視すること ができる。
(実施例 3 )
次に、送風手段を備えている実施例を説明する。図 8に送風手段を備えた構成 例を示す。送風手段である送風ファン 2 5がマグネトロン 1 4などの部品を冷却 した後、エアーガイ ド 2 6に導かれた所定の風量を加熱室 1 3内に導入する。そ してこの換気風は加熱室内の蒸気のムラを攪拌した後、排気ガイド 2 7を経て過 剰な蒸気を器体の一部に設けた排気口 2 8から本体外へ排出する。
このように送風ファン 2 5は蒸気発生器 1 5で発生された所望の温度、所望の 湿度を備えた空気に外気を混ぜ合わせることにより、さらにすみやかにさらに広 範囲に加熱室内の環境を調整することができる。 また、加熱室内の風の流れが食 品の表面の乾燥具合を制御しやすくする。被加熱物である食品 1 9は多数の小孔 もしくはスリッ トを有する載置皿 2 0上に載置される。
図 9は他の実施例を示す加熱室の正面断面図である。加熱室 1 3には図 8の実 施例の送風手段である送風ファンに代わって、循環フアン 2 9が配置されている。 循環ファン 2 9は図 8の実施例の送風ファンのように調温 ·調湿された蒸気発生 器 1 5から排出される空気の温度や湿度をより幅広くすみやかに変化させるこ とはできないが、逆にいつたん調整された加熱室 1 3内の温度と湿度とを変化さ せることなく、加熱室内の空気をかき混ぜることによって温度ムラや湿度ムラを 改善することができる。 また、その風速や風量を制御することで食品の表面の乾 燥具合を制御しやすくする。
図 1 0は制御システム構成を示すブロック図であり、制御部 2 1は加熱指令キ 一 1 1から入力された加熱指令コードを解読し、記憶手段であるメモリ 2 2から 指定された加熱条件を読み出す。加熱条件としては蒸気発生器 1 5の制御データ すなわち霧化器 1 7の作動制御と温調ヒータ 1 8の入力制御を示すデータとマ グネトロン 1 4への給電条件を示すデータおよび送風手段である送風ファン 2 5の制御データが記憶されている。これらのデータは時系列的な各々のプロック の制御値であってもよいし、ある数式であっても構わない。制御部 2 1はこの蓄 えられた時系列データに則るか、もしくはある数式を演算して得た時系列データ に則り、霧化器 1 7と温調ヒータ 1 8、 マグネトロン 1 4への給電、送風ファン 2 5を制御して、加熱の進行に応じて加熱室内に導入される蒸気の温度と湿度、 風の流れおよび食品の温度をあらかじめ定められたように制御する。
図 6はそのような構成における実施例である。 (a ) は加熱中の加熱室内の温 度と食品温度を示し、 (b ) は加熱室内の湿度の推移を、 (c ) はマイクロ波出 力の状態を、 (d ) は送風ファンの作動状態をそれぞれ表している。
( a ) において冷凍温度(一 2 0 °C )からスタートした食品の温度は最大氷結 晶生成帯(一 1〜一 5て) を若干の時間を経て通過する (時点 A ) 。 加熱の開始 からこの時点 Aまでは、食品はマイクロ波をわずかしか吸収せず、また食品内部 での熱伝導も良好なので、 (c ) に示すようにマイクロ波出力は前半には全出力 で凍結した食品に照射され、食品が部分的に溶け始める後半には適宜、低減され る。 この解凍の期間は、加熱室内の温度は室温かもしくは若干高めに維持され、 湿度も (b ) に示すように常湿もしくは若干高めに調整される。すなわち解凍は 食品の凍結時には特に深くまで浸透するマイクロ波加熱に主に担わせ蒸気は抑 制する。
次に、時点 Aを過ぎると、溶けた部位と未解凍の部位を混在したまま、食品は 急激にマイク口波を吸収するようになる。従来例において説明したように溶けた 部位(水分-) は凍った部位の数倍〜数十倍もの誘電損失を示すため、 (c ) に示 すようにマイクロ波出力は全出力の数分の一にまで低減される。 また、加熱室内 の温度および湿度は (a )および(b ) に示すようにこの時点 Aより上昇させて いく。ただし加熱室内の温度は加熱の進行につれて上昇する食品の温度と略一致 もしくはわずかに高めに制御される。加熱指令キーから入力されるコードにより 制御部は食品の種類や分量、 保存温度(冷凍かチルド保存かなど)、加熱完了温 度などに対応する蒸気発生器とマグネトロンと送風ファンの制御データをメモ リから検索して読み出すことができるので、これに基づいて刻々と制御を実行す ればよい。
かかる制御により、食品と食品の周囲の環境とはその差が希薄となり、温度や 湿度(水分) の交換が極めて起こりにく くなる。 すなわち、食品中央の平均的な 温度が適温に達した時点 Bでは、環境がほぼ同じ温度になっているので、食品表 層での熱交換も水分の移行も起こりにくいのである。 そのため、適温が常温もし くは体温より若干高い程度のパンも、内外の温度差が少ないため、パン生地が傷 まず、冷凍直前の焼き立ての香りや弾力を維持し、歯触り良く、 出来たてを再生 できる。てんぷらは揚げ種が 6 0 〜 7 0てに達した時、衣もほぼ同様の温度であ り、ために揚げ種は水分を衣に奪われることなくジユ ーシ一なまま再生できる。 またパンやてんぷらの表面は、時点 Bではわずかに蒸気の影響でしっとりして いる。 ここで図(d ) に示すように時点 B後も送風ファンを作動させ続けると、 食品の表面に付着した余分な水分をすみやかに放散させることができる。このた め、てんぷらの衣やパンの皮のようにサクサクとした触感が必要な食品では、時 点 B後に数分間のファンの回転が有用である。
実験を繰り返し行ったが、マイクロ波のみの加熱では加熱後に時間が経過する ほどに衣は水っぽくなつていつたのに対し、調温,調湿して加熱した食品を時点 Bからファンの空回しを数分間行うと、カラッとしたサクサク感を残すことがで きた。 これを「あおぎ効果」 という。 すなわち、 マイクロ波のみでは揚げ種の方 が衣よりも温度が高く、時点 Bからは揚げ種の水分が衣に移行するため衣は水つ ぼくなり、 一方で揚げ種は脱水が進んでまずくなると思われる。
本発明ではこの時点 B後の『あおぎ効果 Jの際に失われるごくわずかな水分を あらかじめ食品の表面に与えておくことができ、数分後により出来たてに近づけ ることもできる。
そして、ブザーなどの完了報知は時点 Cで行われる。かかる完了報知の遅延は 制御部にタイマーを設けて時点 Bからの所定時間を計数してもよいし、加熱室内 温度を検出する手段を設けて加熱室の温度がある所定値に下がったのを検出し てもよい。 このように完了報知を時点 Cまで遅らせることで、ユーザーは食品の 出来映えに気を使うことなく、この完了報知を信じて安心して食品を取り出せば よい。 また、 かかる完了報知の遅延により、加熱室内の温度や湿度がわずかなが ら低下するので、 食品を取り出す際により安全である。
(実施例 4 )
送風手段を備えた構成における制御法の他の実施例を示す。 図 7に、食品の加 熱完了時の温度を超えないように加熱室内の環境を調整する例を示す。
( a )は本発明における加熱中の加熱室内の温度と食品温度を示す線図であり、 ( b ) は加熱室内の湿度の推移を、 (c ) はマイクロ波出力の状態を、 (d ) は 送風ファンの作動状態をそれぞれ表している。 (a ) において加熱の開始からこ の時点 Aまでは、前記の第 1の制御法とまったく同様である。時点 Aを過ぎた時、 ( c )に示すようにマイクロ波出力は全出力の数分の一に低減する構成も同じで ある。 また (d ) に示す送風ファンは時点 B後に断続運転され、 うちわで食品を あおぐように風が食品に間歇的に当たるよう構成しており、 既述の 『あおぎ効 果■!をより顕著にさせることが可能である。すなわち、連繞で送風した場合には、 食品の表面温度にむらができやすいが、間歇的に送風することで食品内の熱伝導 により温度分布が一定になるので、 温度むらの少ない調理が可能となる。
加熱室内の温度および湿度は (a ) および(b ) に示すように時点 Aより急激 に上昇させる。ただし加熱室内の温度波食品の加熱完了時の適温と略一致させら れ、実際にはごくわずかに高めに調整される。 かかる制御により、食品は解凍が 完了する時点 Aを経過した後、食品の周囲の環境から温度や湿度を前記の第 1の 制御法よりはより大きく受け取るため、効率良く加熱が進む。 し力、し、環境はそ の食品の適温を超えてしまうことは決してないので、パンやてんぷらのような低 温帯や中温帯、湿気てはならないデリケートな加熱も、既に述べた第 1の制御法 と同様、 上手に再生することができる。
なお、本実施例ではセンサなどの検知手段を設けず、入力手段より入力された 加熱方法に従い、記憶手段の中にあらかじめ定められた加熱条件に則り、加熱を 進める構成を示したが、加熱室の環境を計測し、蒸気発生器への給電をフィード バックする検知手段を設けても良い。かかる検知手段としては温度センサや湿度 センサがある。
また、加熱完了後(時点 C )加熱室の扉を開けて食品を取り出すまでは環境調 整のみ続行して温まつた食品の出来映えを損なうことなく、保温をすることもで きる。
加熱指令キーから入力されるコードにより制御部は食品の種類や分量、開始温 度(冷凍かチルド保存かなど)、加熱完了温度などに対応する蒸気発生器とマグ ネトロンの制御データをメモリを検索して読み出すことができるので、これに基 づいて刻々と制御を実行すればよい。
(実施例 5 )
第 5の実施例を以下に説明する。 図 1 1は、中心部と端部とが比較的均一に温 度上昇する食品の加熱方法を示す線図である。 (a ) は本発明における加熱中の 加熱室内の温度と食品温度を示す線図であり、 (b )は加熱室内の湿度の推移を、 ( c )ではマイク口波出力の状態をそれぞれ表している。 ここで、加熱完了前の 加熱室内の温度、湿度は、食品が適切に調理されるための温度、湿度に制御され る。
( a ) において冷凍温度(一 2 0 °C )からスタートした食品の温度は最大氷結 晶生成帯(一 5〜一 1 °C )まではマイク口波をわずかしか吸収しないので緩やか に温度上昇する。最大氷結晶生成帯ではェネルギ一を氷の融解に消費されるため 若干の時間を経て通過する (時点 A )。 次いで時点 Aを過ぎると、 食品は急激に マイク口波を吸収するようになり食品温度は急上昇し始める。
( a )、 ( b ) において加熱室の温度 ·湿度が加熱完了状態に達するのに若干 の時間を要するので環境調整が完了するまでに加熱調理が終了しないよう図 ( C )におけるマイクロ波出力は食品に応じて調整する。なお食品の中心部と端 部の温度上昇が比較的均一な食品では、時点 A以後さらに低出力に絞る必要はな い。このように加熱室内は加熱完了状態に応じて環境調整されているので食品は スチームの潜熱により表面から程良く温められ同時にマイクロ波により加熱さ れるので加熱調理終了時には食品の中心と端部がバランス良くスピーディーに 温度上昇している。また食品の表面の水分が適度に保たれるのでパスタや米飯が 乾燥したりパサついたり逆にベタついたりすることなく良好な加熱調理ができ る。
(実施例 6 )
第 6の実施例を以下に説明する。図 1 2は、中央部が端部よりも先に温度上昇 する食品の加熱方法を示す線図である。 (a ) は本発明における加熱中の加熱室 内の温度と食品温度を示す線図であり、 (b )は加熱室内の湿度の推移を、 (c ) ではマイクロ波出力の状態をそれぞれ表している。 ここで、加熱完了前の加熱室 内の温度、 湿度は、 食品が適切に調理されるための温度、 湿度に制御される。 冷凍温度(一 2 0 )からスタートした食品はもし最初からマイク口波を照射 すると食品の中央に電波が浸透して中央から先に温まるので (a )、 ( b ) に示 すように加熱室内の温度と湿度を即座に加熱完了状態に調整し、まず環境と食品 の温度差により食品表面にスチームを凝縮させ環境の温度により水分の膜を形 成させる。 このように食品表面を解けかけたところ (時点 A ) で (c ) に示すよ うにマイク口波加熱を開始すると、食品の内部に浸透していたマイク口波の一部 が食品の表面層でも吸収されるようになり食品は内外からバランス良く加熱さ れる。そのためシユウマイでは口に入れた時は適温だったのに嚙んだとき中の方 が熱すぎるというようなことがなく全体に均一に温めることができる。さらに表 面が乾くことなくしっとりとおいしく しあがり、マイクロ波のみで加熱した場合 に比べ加熱前と加熱後の重量減少が少ないことが実験により確認されている。ま たえびの天ぷらでは衣とえびがほぼ同じ温度にしあがるので衣より中のえびが 先に加熱されて脱水して硬くなり、衣にえびの水分が移行してベタついてしまう というようなことがなく良好な加熱調理ができる。なお実験によれば、加熱調理 完了直後はマイク口波のみで加熱したのもよりも衣がしっとりしているのだが、 漸次余分な水分は蒸発し食卓に供する頃には天ぶらの衣らしくカラッと仕上が つた。
(実施例 7 )
第 7の実施例を以下に説明する。図 1 3は端部が中央部よりも先に温度上昇す る食品の加熱方法を示す線図である。 (a ) は本発明における加熱中の加熱室内 の温度と食品温度を示す線図であり、 (b ) は加熱室内の湿度の推移を、 (c ) ではマイクロ波出力の状態をそれぞれ表している。 (a ) において冷凍温度(一 2 0て)からスタートした食品の温度は最大氷結晶生成帯(一 1〜一 5て)を若 干の時間を経て通過する (時点 A ) 。
加熱の開始からこの時点 Aまでは、食品はマイク口波をわずかしか吸収せず、 また食品内部へのマイクロ波の浸透も良好なので、 ( c ) に示すようにマイクロ 波出力は前半には全出力で凍結した食品に照射させる。この際マイクロ波の食品 内部への浸透をよくするためにできるだけ食品の表面が解けたり水分を吸着し ないようにすることが大切である。 したがって食品が部分的に溶け始めるまで (時点 A ) までは図 (b ) に示すように加熱室内の温度の調整は控える。 すなわ ち、解凍は食品の凍結時には特に深くまで浸透するマイク口波加熱に主に担わせ、 蒸気は抑制する。
次いで時点 Aを過ぎると、溶けた部位と未解凍の部位を混在したまま、食品は 急激にマイクロ波を吸収するようになる。既述したように解けた部位(水分) は 凍った部位の数倍〜数十倍もの誘電損失を示すため解けた部位と未解凍の部位 とで温度差が大きくなる。 そこで(c ) に示すようにマイクロ波出力は全出力の 数分の一にまで段階的に低減され、温度の高い部位から低い部位へ熱伝導させな がら加熱を続行する。 加熱室内の温度および湿度は (a ) および(b ) に示すよ うにこの時点 Aより食品の加熱完了状態に調整して蒸気により食品の表面を包 み込むように加熱して内部の温度が上昇するのを助ける。 さらに (a )で表面温 度が加熱完了温度に達しても (時点 B ) 内部の温度が低い場合には (c ) のよう に時点 Bでマイクロ波照射を終了し、 (a ) 、 (b ) のように調温 ·調湿を続行 して内部の温度が上昇するのを待つ。このようにしてハンバーグや力レーでは端 部が過加熱になり硬くなつたり煮詰まつたりするのを防ぎながら内部まで適温 に温めることができる。
(実施例 8 )
加熱室内の結露を完全に防止するために、独立した加熱手段を備えた第 8の実 施例を以下に説明する。
図 1 4かかる加熱手段として蒸気発生器 1 5とは別に蒸気の排出通路に加熱 手段 3 0を設けている。 そして、制御部は蒸気の発生に先立ってこの加熱手段へ 給電を行い、加熱室内の温度を上昇させるよう構成できる。かかる構成により、 冷えた加熱室壁面に蒸気が結露することをより完全に防止できる。
またかかる独立した加熱手段により、制御部は蒸気発生器 1 5と加熱手段 3 0 とへの給電を制御することで、加熱室内壁面が結露しない温度と湿度とするよう 調整することができる。かかる環境として、加熱室内の相対湿度が 9 0 %以下に なるよう調整する場合において効果が高かった。
(実施例 9 )
加熱室内の結露を完全に防止するために、独立した加熱手段を備えた第 9の実 施例を以下に説明する。図 1 5は加熱室内に電熱ヒータを備えたマイク口波加熱 装置の例を示し、環境調整手段のうちの加熱手段 3 0をかかる電熱ヒータ 3 1に 置換し、 機能を複合させる構成も考えられる。
蒸気発生器も本実施例に掲げたものに限定されるものではなく、通常のボイラ にシーズヒータを投げ込んでも構わないし、ボイラの外側にロウづけ等で固着し てもよい。 ただし、 この場合、発生する蒸気の温度を任意に制御するため、 ヒー 夕の一部はボイラ内の水位より突出させ、発生した蒸気に独立したかたちで温度 を上昇させられる構成が好ましい。
(実施例 1 0 )
以下、本発明の他の実施例を図面を参照しながら説明する。図 1 6は本発明の 他の実施例にかかるマイク口波加熱装置の断面図である。加熱室 1 3にはマイク 口波発生手段であるマグネトロン 1 4を設け、加熱室 3 2内にマイクロ波を照射 する構成とする。加熱室 1 3の側面には非磁性体で構成した蒸気発生室 3 2を設 ける。蒸気発生室 3 2の一端は流出管 3 3により加熱室 1 3と連結し、他端は流 入管 3 4によって水タンク 1 2と連結している。蒸気発生室 3 2の内部には磁性 体の金属で構成した発熱金属体 3 5を収納する。この時金属体 3 5は蒸気発生室 3 2をほど満たす程度がよい、発熱金属体 3 5は磁界によって発熱するする材料 であればよく、特に形状は問わないが、本実施例では水との接触面積を多く取る ために連続気泡からなる発泡状、 あるいは繊維状に形成した金属体を使用した。 蒸気発生室 3 2を構成する材料を非磁性体とせず、磁性体の材料で構成すれば 発熱金属体 1 7を設ける必要はない。 しかし、 この場合蒸気発生室 3 2内の貯水 量が多くなるため、蒸気発生までの時間がかかる恐れがあるため、 中空体等を挿 入し実質的に貯水量を減らしたり、貯水の温度を予め高く しておく等の工夫が必 要である。
蒸気発生室 3 2の外周には励磁コイル 3 6を巻き、励磁コイル 3 6は交番電流 を供給するィンバータ電源 3 7に接続する。インバータ電源 3 7からの電流によ り、励磁コイル 3 6には交番磁界を生じる。 この交番磁界により発熱金属体 3 5 には渦電流を生じ、渦電流により発熱金属体 3 5が発熱する。蒸気発生室 3 2内 の水は、発熱金属体 3 5の熱により加熱され蒸気を発生し、 この蒸気は流出管 3 3を通って加熱室 1 3内に入る。 3 8はマグネ トロン 1 4に高圧電力を供給する 高圧電源である。 ィンバータ電源 3 7および高圧電源 3 8の入切りの動作、 ある いはそれぞれの電源の電力制御は、制御部 2 1によって行う。加熱室 1 3内には 蒸気を通過させる開口部を有する受け皿 2 2を設け、上面に食品 1 9を載置する。 励磁コイル 3 6はそれ自体は発熱せず、渦電流が発熱金属体 3 5を直接発熱さ せるのでこの熱は直接水に伝達し、 効率よく蒸気を発生することになる。
なお、 蒸気発生室 3 2は、 例えば、 円柱状の絶縁体で形成されている。 例えば、 耐熱ガラス、 磁気等の材料で形成される。 また、 蒸気発生室 3 2の壁の厚さは、 励磁コイルに加わる電圧により絶縁破壌しない厚さに設定されている。 また、発 熱金属体 3 5は、 防水性、 退腐食性の金属、 例えば、 ニッケル、 ニッケルとクロ ムの合金、 または、 ステンレス等により形成される。
図 1 7は、加熱室内の蒸気量を示す線図である。 図 1 7において加熱時間の経 過とともに加熱室内の蒸気量の変化を示しており、加熱の開始とともに蒸気発生 手段である蒸気発生器の動作を開始し、加熱の終了とともに蒸気発生器の動作を 停止した状態を示している。実験ではィンバーター電源 3 7の出力を 4 0 0 Wと して発熱金属体 3 5を加熱したとき立ち上がり時間が約 1 0秒で蒸気の発生を 開始し、加熱の終了後ほぼ数秒で蒸気の発生が停止した。 このように蒸気発生器 の動作にともなって、従来と比べて非常に早い時間で蒸気の発生と停止の動作を 追随させることが出来た。また蒸気発生に必要な入力電源も非常に少なくて済ま せることが出来た。このことはィンバーター電源 3 7からの電力による励磁コィ ル 3 6の交番磁界が発熱金属体 3 5を瞬時に加熱し、蒸気発生室 3 2内の水を加 熱し蒸気を効率よく発生したことにある。発熱金属体 3 5が水との接触面積が広 い連続気泡からなる発泡状の金属であったり、維持状の金属である場合に顕著で ある。また蒸気発生室 3 2内の体積中に発熱金属体 3 5が存在することにより、 水が占める体積の割合が少なくなり、少ない体積の水だけの加熱で済み、 この効 果によって短時間で素早く蒸気を発生することが出来ることにつながっている。 この蒸気発生時間は短時間であるほど好ましいが、実用的には 1分以内、好ま しくは 1 0秒前後がよい。
(実施例 1 1 )
図 1 8は、第 1 1の実施例に係わるマイクロ波加熱装置の加熱室内の調理中の 食品温度と蒸気量の関係を示す線図である。図 1 8においてはマイク口波発生手 段の動作開始と、蒸気発生手段の動作の開始を、加熱の開始と合わせて同時に行 つている。 また加熱の終了時も両者の終了を同時に行っている。蒸気発生器の立 ち上がりが素早いために、マイク口波動作の開始と蒸気発生器の開始を同時に行 つても、立ち上がり時の数秒間だけがマイク口波の単独加熱となるだけで、殆ど の加熱調理時間中はマイクロ波と蒸気の両方で加熱調理が行われ、食品の水分の 蒸発を押さえながら加熱が行われるので、しっとりとして仕上がり状態の良い、 良好な加熱調理が実現できる。
(実施例 1 2 )
図 1 9は、第 1 2の実施例に係わるマイクロ波加熱装置における調理中の食品 温度と蒸気量の関係を示す線図である。図 1 9において食品が凍っている間、す なわち食品温度がマイナス温度の間は、マイク口波が食品の中まで浸透しゃすい ので、マイクロ波だけで加熱を行う。食品の解凍が進み冷凍が溶けて食品温度が 略プラスに転じた時点から、蒸気発生器の動作を開始し、マイクロ波と蒸気によ り加熱調理を行う。食品からの水分の蒸発は食品温度がプラス温度になつてから 起こりやすくなるが、加熱室^の蒸気によって食品の周囲を蒸気が包み込むこと により、食品からの水分の蒸発を防ぎ、乾燥を防止しながら加熱調理が進められ るので、 これもしつとりとして仕上がり状態の良い、良好な加熱調理を実現でき ることになる。蒸気発生器を必要な時間だけ動作させるので、余分な電力が不要 で、 省エネルギーとなる。
(実施例 1 3 )
図 2 0は、第 1 3の実施例に係わるマイクロ波加熱装置の加熱室内の調理中の 食品温度と蒸気量の関係を示す他の実施例の線図である。図 2 0においてはマイ ク口波発生手段の動作開始と、蒸気発生手段の動作の開始を、加熱の開始と合わ せて同時に行っている。そして加熱の終了時は蒸気発生器の動作の停止を加熱室 内の蒸気が減少する時間分だけ早めに停止している。その後にマイクロ波の動作 を停止し、加熱調理の終了を行う。 このことにより加熱の終了時には加熱室内の 蒸気が減少した状態になり、食品を取り出すときに高温の蒸気に触れることもな く扱いやすい調理方法を実現できる。
(実施例 1 4 )
図 2 1は、第 1 4の実施例に係わるマイクロ波加熱装置における調理中の食品 温度と蒸気量の関係を示す線図である。図 2 1において食品が凍っている間、す なわち食品温度がマイナス温度の間は、高出力のマイク口波と低出力の蒸気発生 器の出力で加熱を行う。次に食品の解凍が進み冷凍が溶けて食品温度が略プラス に転じた時点から、マイクロ波出力を中出力に落とすとともに、蒸気発生器の出 力は中出力に上げる。 そして食品の温度が中温度程度まで上昇した時点から、マ イク口波の出力は低出力に落とし、蒸気発生器の出力は高出力まで上げる。 この ように加熱の進行に従ってマイクロ波の出力と、蒸気発生器の出力を変化させる。 例えば食品が凍っているときは、マイクロ波が氷の中に深く浸透しやすい特性に より、素早く解凍を行う。次に中出力のマイクロ波と蒸気によって食品の温度が 不均一になることを防止しながら、徐々に温度を上げて行く。 この時中出力の蒸 気は食品の温度を均一に保つことと、食品の水分の蒸発を防ぐことに効果がある。 そして加熱が進み食品の温度がかなり上昇する最終段階は、より温度むらも起こ りやすいので、 さらに低出力のマイクロ波でゆつくりと、食品内部で起こる熱移 動すなわち繰り越し加熱を利用しながら加熱を進める。食品の温度が高いほど食 品の水分は蒸発しやすくなるが、庫内は多量の蒸気が充満しているので、蒸発は 充分に防止できるとともに、蒸気の熱によっても加熱されるので、食品の表面に おける熱放散を防止し、 しかも食品の全体を包み込むように加熱するので、食品 全体を均一に、しかも乾燥を防ぎしつとりと良い出来上がり状態で加熱調理する ことが出来る。
(実施例 1 5 )
図 2 2は、第 1 5の実施例におけるマイクロ波加熱装置の断面図である。加熱 室 1 3にはマイクロ波発生手段であるマグネトロン 1 4を設け、加熱室 1 3内に マイクロ波を照射する構成とする。加熱室 1 3の側面には非磁性体で構成した蒸 気発生室 3 2を設ける。蒸気発生室 3 2の下端は流出管 3 3により加熱室 1 3と 連結し、上端は流入管 3 4によって水タンク 1 2と連結している。流入管 3 4と 水タンク 1 2との間には水の流量を調節する水栓 3 9を設ける。蒸気発生室 3 2 の内部には磁性体の金属で構成した発熱金属体 3 5を収納する。発熱金属体 3 5 は水との接触面積を多く取るために連続気泡よりなる発泡状、あるいは繊維状に 形成した金属体を使用している。蒸気発生室 3 2の外周には励磁コイル 3 6を巻 き、励磁コイル 3 6は交流電流を供給するインバー夕電源 3 7に接続する。ィン バータ電源 3 7からの電流により、励磁コイル 3 6には交流磁界を生じる。 この 交流磁界により発熱金属体 3 5には渦電流を生じ、渦電流により発熱金属体 3 5 が発熱する。発熱金属体 3 5の上部からは流入管 3 4から水タンク 1 2からの水 を注入する。 このとき水栓 3 9の働きで水の流量を制御し、水の蒸発に必要な水 量だけを滴下する。蒸気発生室 3 2内に滴下した水は、発熱金属体 3 5の熱によ り加熱され蒸気を発生し、この蒸気は流出管 3 3を通って加熱室 1 3内に入る。
4 0はファンであり蒸気発生室 3 2内で発生した蒸気を加熱室 1 3内に導入す るように送風する。 3 8はマグネトロン 1 4に高圧電力を供給する高圧電源であ る。
ィンバータ電源 3 7および高圧電源 3 8の入切りの動作、あるいはそれぞれの電 源の電力制御は、制御部 2 1によって行う。加熱室 1 3内には蒸気を通過させる 開口部を有する受け皿 2 0を設け、上面に食品 1 9を載置する。励磁コイル 3 6 はそれ自体は発熱せず、渦電流が発熱金属体 3 5を直接発熱させるのでこの熱は 直接水に伝達し、 効率よく蒸気を発生することになる。
このような加熱調理器の構成による加熱方法によると、蒸発に必要な水の加熱 だけでよいので、加熱する水の量は極僅かで済み、少ない電力でしかもほぼ瞬間 的に蒸気の発生を行うことが出来るので、加熱の開始、加熱の終了を瞬時に行う ことが出来、食品の加熱調理の進行に応じて、最適の加熱制御が実現出来るので それぞれの食品に応じて最適の加熱調理を行うことが出来る。
産業上の利用の可能性
本発明は以上に述べたように、加熱室内の温度、湿度等の環境を食品にあわせ て適切に制御することができるので、多様な食品を良好に加熱調理できる。すな わち、本発明のマイク口波加熱装置によれば、食品の内部温度と表面温度を略同 一にすることができ、 最適な状態で食品の加熱調理が行える。
本発明が適用可能な食品としては、既に記載したパンや冷凍てんぷらの他に、 複数の食材がーつのパッケージの中に混在し、従来マイク口波加熱だけでは解凍 や再加熱が難しかった弁当、最大氷結晶生成帯を通過させ、冷蔵庫温度で停止さ せる冷蔵庫解凍などに適用できる。
また、被加熱物としては食品だけでなく、広くさまざまな誘電損失を有する物 質を加熱対象とすることができる。 例えば、合成樹脂の溶解、 接着剤の軟化、木 材の乾燥など、デリケートな加熱を必要とするさまざまな工業分野に応用可能で ある。
また、熱源としてもマイク口波以外に高周波の交番電界なども利用可能である。

Claims

請 求 の 範 囲
1 . 被加熱物を収容する加熱室と、前記被加熱物にマイク口波を照射するマイク 口波発生手段と、前記加熱室に蒸気を供給する蒸気発生手段と、前記マイク口 波発生手段および前記蒸気発生手段を前記被加熱物の内部温度と表面温度が 略一致するように制御する制御手段とを備えたマイク口波加熱装置。
2 . 被加熱物を収容する加熱室と、前記被加熱物にマイクロ波を照射するマイク 口波発生手段と、前記加熱室に蒸気を供給する蒸気発生手段と、前記加熱室内 の環境を検出する検出手段と、前記検出手段の出力に応じて前記マイクロ波発 生手段および前記蒸気発生手段を前記被加熱物の内部温度と表面温度が略一 致するように制御する制御手段とを備えたマイク口波加熱装置。
3 .前記検出手段が温度を検出することを特徴とする請求項 2記載のマイクロ波 加熱装置。
4 .前記検出手段が温度および湿度を検出することを特徴とする請求項 2記載の マイクロ波加熱装置。
5 . 前記制御手段が、冷凍状態の前記被加熱物を加熱する場合に、前記被加熱物 が解凍された後の前記蒸気発生手段の出力を前記被加熱物が冷凍状態にある ときの前記蒸気発生手段の出力よりも大きくすることを特徴とする請求項 1 から 4のいずれかに記載のマイク口波加熱装置。
6 . 前記制御手段が、冷凍状態の前記被加熱物を加熱する場合に、前記被加熱物 が解凍された後の前記マイク口波発生手段の出力を前記被加熱物が冷凍状態 にあるときの前記マイクロ波発生手段の出力よりも小さく し、かつ、前記被加 熱物が解凍された後の前記蒸気発生手段の出力を前記被加熱物が冷凍状態に あるときの前記蒸気発生手段の出力よりも大きくすることを特徴とする請求 項 1から 4のいずれかに記載のマイク口波加熱装置。
7 . 前記制御手段が、冷凍状態の前記被加熱物を加熱する場合に、加熱開始直後 の前記マイク口波発生手段の出力をその後の前記マイク口波発生手段の出力 よりも小さくすることを特徴とする請求項 1から 4のいずれかに記載のマイ クロ波加熱装置。
8 . 前記制御手段が、冷凍状態の前記被加熱物を加熱する場合に、 マイクロ波発 生手段の出力を段階的に小さくし、かつ、被加熱物が解凍された後の蒸気発生 手段の出力を被加熱物が冷凍状態にあるときの蒸気発生手段の出力よりも大 きくすることを特徴とする請求項 1から 4のいずれかに記載のマイク口波加 熱装置。
9 . 前記制御手段が、被加熱物の終了直前に前記蒸気発生手段の出力を減少させ ることを特徴とする請求項 1から 4のいずれかに記載のマイク口波加熱装置。
1 0 . 前記制御手段が、加熱室内の湿度を 9 0 %以下にするように調整する請求 項 1から 4のいずれかに記載のマイク口波加熱装置。
1 1 . 被加熱物を収容する加熱室と、前記被加熱物にマイクロ波を照射するマイ ク口波発生手段と、前記加熱室に蒸気を供給する蒸気発生手段と、前記被加熱 物に風を供給する送風手段と、前記マイク口波発生手段、前記蒸気発生手段お よび前記送風手段を前記被加熱物の内部温度と表面温度が略一致するように 制御する制御手段とを備えたマイク口波加熱装置。
1 2 . 前記送風手段が、加熱室内に外気を導入する請求項 1 1記載のマイクロ波 加熱装置。
1 3 . 前記送風手段が、加熱室内の空気を循環させる請求項 1 1記載のマイクロ 波加熱装置。
1 4 . 前記制御手段が、マイクロ波発生手段の出力を止めた後も前記送風手段を 所定の時間動作させることを特徴とする請求項 1 1記載のマイク口波加熱装
1 5 . 前記制御手段が、マイクロ波発生手段の出力を止めた後も前記送風手段を 所定の時間、間歇的に動作させることを特徴とする請求項 1 1記載のマイク口 波加熱装置。
1 6 . 被加熱物を収容する加熱室と、前記被加熱物にマイクロ波を照射するマイ ク口波発生手段と、前記加熱室に蒸気を供給する蒸気発生手段と、前記加熱室 の結露を防止するための加熱手段と、前記マイクロ波発生手段および前記蒸気 発生手段を前記被加熱物の内部温度と表面温度が略一致するように制御する 制御手段とを備えたマイク口波加熱装置。
7 . 前記加熱手段が、蒸気発生器と前記加熱室内の間に設けられていることを 特徴とする請求項 1 6記載のマイクロ波加熱装置。
8 . 前記加熱手段が、前記加熱室内に設けられたことを特徴とする請求項 1 6 記載のマイクロ波加熱装置。
要 約
本発明は、被加熱物が置かれる環境を制御する手段の導入により、多様な被加 熱物を良好な品質を維持しつつ加熱するマイク口波加熱装置を提供すること を目的とする。かかる目的を達成するために、被加熱物を収容する加熱室と、 前記被加熱物にマイク口波を照射するマイク口波発生手段と、前記加熱室に蒸 気を供給する蒸気発生手段と、前記マイク口波発生手段および前記蒸気発生手 段を前記被加熱物の内部温度と表面温度が略一致するように制御する制御手 段とを備えた構成を有する。
PCT/JP1996/001736 1995-06-22 1996-06-24 Dispositif de chauffage a micro-ondes WO1997001065A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL96324196A PL324196A1 (en) 1995-06-22 1996-06-24 Microwave oven
US08/983,641 US6133558A (en) 1996-06-24 1996-06-24 Microwave steam heater with microwave and steam generators controlled to equalize workpiece inner and surface temperatures
BR9608678A BR9608678A (pt) 1995-06-22 1996-06-24 Aparelho para aquecimento pro microondas
DE69627662T DE69627662T2 (de) 1995-06-22 1996-06-24 Mikrowellenheizungsanlage
AU61382/96A AU6138296A (en) 1995-06-22 1996-06-24 Microwave heater
EP96918885A EP0838637B1 (en) 1995-06-22 1996-06-24 Microwave heater
NO975979A NO975979L (no) 1995-06-22 1997-12-19 Mikrobölge oppvarmingsapparat

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP15588795A JP3579965B2 (ja) 1995-06-22 1995-06-22 高周波加熱装置
JP7/155887 1995-06-22
JP7/155888 1995-06-22
JP15589095A JP3633037B2 (ja) 1995-06-22 1995-06-22 高周波加熱装置
JP7/155886 1995-06-22
JP15588695A JPH094854A (ja) 1995-06-22 1995-06-22 高周波加熱装置
JP7/155889 1995-06-22
JP7/155890 1995-06-22
JP15588995A JP3477919B2 (ja) 1995-06-22 1995-06-22 蒸気とマイクロ波による食品加熱調理方法
JP7155888A JPH094848A (ja) 1995-06-22 1995-06-22 複合型調理器

Publications (1)

Publication Number Publication Date
WO1997001065A1 true WO1997001065A1 (fr) 1997-01-09

Family

ID=27528093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001736 WO1997001065A1 (fr) 1995-06-22 1996-06-24 Dispositif de chauffage a micro-ondes

Country Status (12)

Country Link
EP (1) EP0838637B1 (ja)
KR (1) KR19990028288A (ja)
CN (1) CN1109850C (ja)
AU (1) AU6138296A (ja)
BR (1) BR9608678A (ja)
DE (1) DE69627662T2 (ja)
HU (1) HUP9900644A2 (ja)
IN (1) IN190221B (ja)
NO (1) NO975979L (ja)
PL (1) PL324196A1 (ja)
TW (1) TW308777B (ja)
WO (1) WO1997001065A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29708333U1 (de) * 1997-05-09 1997-12-18 Atag Kitchen Group B.V., Lichtenvoorde Haushaltsküchengerät zur Zubereitung von Speisen
CN100414173C (zh) * 2003-05-20 2008-08-27 松下电器产业株式会社 具有蒸汽产生功能的高频加热装置
US12098838B1 (en) * 2023-09-08 2024-09-24 Haier Us Appliance Solutions, Inc. Lighting assembly for over the range microwave oven

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404837B (zh) * 2002-03-12 2011-06-01 松下电器产业株式会社 带有蒸汽发生功能的高频加热装置
JP3821054B2 (ja) * 2002-06-05 2006-09-13 松下電器産業株式会社 高周波加熱装置
JP3775352B2 (ja) * 2002-06-14 2006-05-17 松下電器産業株式会社 高周波加熱装置
JP2004069175A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 高周波加熱装置
CN1324263C (zh) * 2002-11-26 2007-07-04 乐金电子(天津)电器有限公司 具有加湿功能的微波炉
EP1458220B1 (en) 2003-03-12 2006-06-07 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus having a steam generating function
AU2004241919B2 (en) 2003-05-20 2008-10-16 Biotage Ab Microwave heating device
KR101132331B1 (ko) * 2004-07-14 2012-04-05 삼성전자주식회사 가열조리장치 및 그 제어방법
FR2884688B1 (fr) * 2005-04-22 2007-06-29 Premark Feg Llc Four professionnel grande cuisine a energie hyperfrequences confinee dans la cavite de cuisson
JP4589819B2 (ja) * 2005-06-20 2010-12-01 株式会社東芝 加熱調理装置
DE102005059505A1 (de) * 2005-12-06 2007-06-14 E.G.O. Elektro-Gerätebau GmbH Haushaltsgerät und Verfahren zum Betrieb eines Haushaltsgeräts
WO2009027304A1 (en) * 2007-08-24 2009-03-05 Arcelik Anonim Sirketi An oven
EP2103878B1 (en) * 2008-03-20 2015-04-15 Candy S.p.A. Cooking oven with humidification device
EP2136604B1 (de) 2008-06-20 2011-04-20 Topinox Sarl Verfahren zur Einstellung der Mikrowellenleistung in einem Mikrowellen-Gargerät in Abhängigkeit der gemessenen Kerntemperatur und Gargerät hierzu
JP4435246B2 (ja) * 2008-06-26 2010-03-17 シャープ株式会社 蒸気発生装置及び加熱調理器
EP2144481B1 (de) 2008-07-07 2011-01-19 Topinox Sarl Verfahren zur Einstellung einer Feuchtigkeitszufuhr sowie einer Mikrowellenabstrahlung und Gargerät hierzu
JP5811689B2 (ja) * 2011-08-24 2015-11-11 株式会社サタケ 包装米飯の製造方法
JP6340581B2 (ja) * 2014-02-24 2018-06-13 パナソニックIpマネジメント株式会社 食材容器入り食材と食材容器入り食材用加熱装置
CN105276813B (zh) * 2015-11-21 2018-11-09 滁州博明信息科技有限公司 一种电力加热设备
CN105351984A (zh) * 2015-12-15 2016-02-24 镇江市京口润明微波器械厂 一种可除湿微波炉
DE102015225855A1 (de) * 2015-12-18 2017-06-22 BSH Hausgeräte GmbH Gargerät
DE102015225848A1 (de) * 2015-12-18 2017-06-22 BSH Hausgeräte GmbH Gargerät
CN106305968A (zh) * 2016-08-25 2017-01-11 郑州峰泰纳米材料有限公司 冷冻食品的微波解冻方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241463A (ja) * 1993-02-22 1994-08-30 Matsushita Electric Ind Co Ltd 調理器具
JPH06272866A (ja) * 1993-03-16 1994-09-27 Fuji Mc:Kk 複合型加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640029A (en) * 1979-09-07 1981-04-16 Matsushita Electric Ind Co Ltd Method and apparatus for controlling food heating
US5436433A (en) * 1993-03-19 1995-07-25 Goldstar Co., Ltd. Automatic thawing device of microwave oven and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241463A (ja) * 1993-02-22 1994-08-30 Matsushita Electric Ind Co Ltd 調理器具
JPH06272866A (ja) * 1993-03-16 1994-09-27 Fuji Mc:Kk 複合型加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0838637A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29708333U1 (de) * 1997-05-09 1997-12-18 Atag Kitchen Group B.V., Lichtenvoorde Haushaltsküchengerät zur Zubereitung von Speisen
CN100414173C (zh) * 2003-05-20 2008-08-27 松下电器产业株式会社 具有蒸汽产生功能的高频加热装置
US12098838B1 (en) * 2023-09-08 2024-09-24 Haier Us Appliance Solutions, Inc. Lighting assembly for over the range microwave oven

Also Published As

Publication number Publication date
MX9710355A (es) 1998-07-31
EP0838637A1 (en) 1998-04-29
DE69627662T2 (de) 2004-02-05
EP0838637A4 (en) 1998-09-23
KR19990028288A (ko) 1999-04-15
HUP9900644A2 (hu) 1999-07-28
PL324196A1 (en) 1998-05-11
CN1109850C (zh) 2003-05-28
EP0838637B1 (en) 2003-04-23
DE69627662D1 (de) 2003-05-28
AU6138296A (en) 1997-01-22
IN190221B (ja) 2003-07-05
NO975979D0 (no) 1997-12-19
NO975979L (no) 1998-02-13
CN1188534A (zh) 1998-07-22
BR9608678A (pt) 1999-07-06
TW308777B (ja) 1997-06-21

Similar Documents

Publication Publication Date Title
WO1997001065A1 (fr) Dispositif de chauffage a micro-ondes
US6133558A (en) Microwave steam heater with microwave and steam generators controlled to equalize workpiece inner and surface temperatures
AU2014204815B2 (en) Steam cooking method and steam cooking oven
JP3751057B2 (ja) マイクロ波加熱装置
JPH094849A (ja) 加熱調理装置
WO2005106333A1 (ja) マイクロ波加熱方法及びその装置
WO2005103570A1 (ja) 加熱調理器
JP2002090052A (ja) 低温調理方法とその装置
JP3633037B2 (ja) 高周波加熱装置
JP3477919B2 (ja) 蒸気とマイクロ波による食品加熱調理方法
JP2004286439A (ja) 高周波加熱装置
JP3579965B2 (ja) 高周波加熱装置
JP3797368B2 (ja) 高周波加熱装置
JP2004340472A (ja) 加熱調理装置
JPS63196251A (ja) 冷凍食品の解凍及び解凍加熱調理方法並びにその装置
JP3841090B2 (ja) マイクロ波加熱装置
MXPA97010355A (en) Appliance for heating with microon
JP7355357B1 (ja) 冷凍パンの解凍装置、冷凍パンの解凍方法
WO2023190552A1 (ja) 冷凍パンの解凍装置、冷凍パンの解凍方法
JP4036232B2 (ja) マイクロ波加熱装置
JP3797369B2 (ja) マイクロ波加熱装置
JP2009085517A (ja) 加熱調理器
JPH094854A (ja) 高周波加熱装置
JP2005058150A (ja) 食品解凍装置
JP2005190909A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194931.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU KR MX NO NZ PL RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996918885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 310566

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/010355

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019970709602

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08983641

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996918885

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019970709602

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970709602

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996918885

Country of ref document: EP