WO1996030906A1 - Disque d'enregistrement d'information - Google Patents

Disque d'enregistrement d'information Download PDF

Info

Publication number
WO1996030906A1
WO1996030906A1 PCT/JP1996/000830 JP9600830W WO9630906A1 WO 1996030906 A1 WO1996030906 A1 WO 1996030906A1 JP 9600830 W JP9600830 W JP 9600830W WO 9630906 A1 WO9630906 A1 WO 9630906A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
recording
information
signal
density
Prior art date
Application number
PCT/JP1996/000830
Other languages
English (en)
French (fr)
Inventor
Juichi Shikunami
Akira Nishizawa
Makoto Itonaga
Original Assignee
Victor Company Of Japan, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company Of Japan, Ltd. filed Critical Victor Company Of Japan, Ltd.
Priority to US08/930,344 priority Critical patent/US6038208A/en
Priority to KR1019970707034A priority patent/KR100309587B1/ko
Priority to EP96907695A priority patent/EP0818784A4/en
Publication of WO1996030906A1 publication Critical patent/WO1996030906A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/0079Zoned data area, e.g. having different data structures or formats for the user data within data layer, Zone Constant Linear Velocity [ZCLV], Zone Constant Angular Velocity [ZCAV], carriers with RAM and ROM areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • G11B20/1254Formatting, e.g. arrangement of data block or words on the record carriers on discs for mixed data, i.e. continuous and discontinuous data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • CD compact disc
  • the sampling frequency is 88.2 kHz to 96 kHz and the quantization bit number is up to the ultrasonic band (the band of about 20 kHz to about 50 kHz) exceeding the 3 ⁇ 4 band of the music signal.
  • the music signal is cut off as 20 to 24 bits.
  • an expensive device for business use is required.
  • the sampled and quantized data is discarded from the audible part of the data which is not important to the sense of hearing, and the original data is irreversibly compressed using one type of compression algorithm.
  • g3 ⁇ 4 per unit time of music performance progress time are known.
  • a technique for recording and reproducing irreversible compressed data on an optical disk by using the former method of making the amount of information per unit time of video constant is known. Furthermore, using the latter method in which the information per unit time of the image changes according to the state of the image, the irreversible compression data in which the inertia * of the progress time of the image changes per unit time according to the state of the image using the latter method.
  • Techniques for recording and playing back evening light on an optical disk particularly techniques for playing back using a buffer memory, pick-up kick wait (playback standby operation), and a search function, are known.
  • HDD hard disk drive
  • the main technology of high-density optical discs for recording video information and music information at a density 3 to 8 times higher than the recording density of CDs for use is well known.
  • the first area on the inner circumference of the optical disk is the audio signal recording area of the CD
  • the second area on the outer circumference of the first area is the video signal recording area for recording analog FM modulated video signals at high density.
  • a disk in which the first area on the inner circumference side of a high-density recording disk has the recording density (low density) of the CD and the second area on the outer circumference side has a high recording density is disclosed in, for example, JP-A-6-168. It is described in the official gazette of 449 and is publicly known.
  • the system design is designed so that the high-density disk can be read using a short-wavelength laser (635 nm) as appropriate for the low-density disk reading laser wavelength (78 O nm).
  • the pit depth of the disk is determined in relation to 0.25 times the reading laser wavelength. That is, compared to the pit depth of the low-density disk, The depth of the cut is the power of the shallower ⁇ E.
  • the standard optical pickup specified in the standard is usually used, and the reproduction signal characteristics are usually specified with a range. It is specified with a range.
  • the target accuracy of a disk is generally low for a low-density disk, and the target accuracy of a high-density disk is strictly specified.
  • Digital data is regarded as the basic digital data.
  • the data volume per unit time is 2.5 to 3.3 times larger than 44.1 kHz sampling and 16-bit quantization.
  • FIG. 13 shows an example of the multilayer optical disc disclosed in these.
  • the optical disc 50 is provided on a first recording layer 52 on which information is iSlied by uneven information pits, and is provided on a disc substrate (a first substrate of a property) 51.
  • a first reflection layer 53 is provided on the first recording layer 52.
  • the second recording layer 56 is provided on the second recording layer 56 on which information is recorded by the information pits having irregularities. Is provided with a second reflective layer 57.
  • each of the first substrate 51 and the second substrate 55 is set so that the storage capacity per recording layer is four times as large as that of a 1.2 mm long CD. Is approximately 0.6 mm, and two disk substrates are attached to each other, so that the capacity is eight times that of a CD.
  • the reflectance of the first reflection layer 53 is set to a low reflectance (for example, 30%), and the reflectance of the second reflection layer 57 is set to a high reflectance (for example, 95%).
  • the laser beam for reproduction is irradiated from the first substrate 51 side as shown in FIG. 13 and is focused on the first recording layer 52 or the second recording layer 56 so that the information of each recording layer is obtained. Is read.
  • the reproducing apparatus for reproducing such a high-density optical disk can reproduce the information of the first recording layer 52 and the information of the second recording layer 56, which are said to be high density, but of course, the same as CD. It is intended to be able to play back even low-density optical discs. To be able to play back both high-density discs and low-density optical discs, high-density optical discs must be equipped with read-out optical heads.
  • High-density ⁇ the optical system for the disk and the optical system for the low-density optical disk are provided separately, or the optical power of a two-focus optical system using a hologram is adopted. Depending on the disc, the size and power of the laser light spot are optimized, and correction is made for the thickness of the disc substrate.
  • the low-density area A and the high-density area B coexisting in one information disc are conceptually defined as the standard A, which is based on the fact that the entire surface of the disk is the low-density area A.
  • the ability to satisfy the standards corresponding to each of the standards B, which is defined as the high-density area B, the thickness of the sensitizer on the unexposed master prepared before recording determines the pit depth. It is difficult to change the thickness of the photosensitizer stepwise by about 5% or more in one master. In the usual method, the thickness of the photosensitizer in one master is uniform.
  • the pit depth (or the groove depth) is adjusted to be closer.
  • the method of defining the pit depth with respect to the mechanical accuracy of the disk and the method of defining the optical and optical accuracy.
  • standard A which specifies that the entire surface of the disk has low density A
  • standard B which specifies that the entire surface of the disk has density B
  • ⁇ ⁇ the standard B is usually chronologically later. Determined.
  • Standard B usually uses a short wavelength laser, and the pit depth becomes smaller and shallower than Standard B, roughly corresponding to the reduction in wavelength.
  • Standard B which will be set later in the era, is intended for high-density recording in consideration of the use of lasers with relatively short wavelengths and lenses with relatively high apertures. As for accuracy, it is required to improve accuracy more than standard A. Considering these requirements and the advancement of press technology, the standard and optical precision of the standard B disk is determined to be higher than the standard ⁇ .
  • the information recording disk of the present invention comprises a first signal area in which the first data is recorded, and a signal recording area outside the above-mentioned first area in the radial direction. And a second signal recording area, which is recorded at a higher density than the first data and contains information of the same content as the second data or the first data.
  • the information recording disk of the present invention comprises a first data recording area, a first signal recording area to be recorded, and a signal area outside the first area in the radial direction.
  • a second signal recording area recorded at a higher density than the first data, and a signal recording area which is inward of the first area and which is an information signal related to the second data. It has a third area referred to as the same density as the recording density of the second data.
  • the information recording disk of the present invention is adjacent to the first signal wording area and the first signal damage area in the radial direction, and a signal is generated at a density of 2 to 10 times the word density of the first signal recording area.
  • the information disc of the present invention is an information disc formed by bonding a first substrate and a second substrate on a side where reproduction light is emitted via an adhesive layer, and is in the vicinity of the adhesive layer and the information disk.
  • Figure 1 is an external view of the information recording disk of the present invention
  • FIG. 2 is a diagram for explaining an information area recorded on the information recording disk of FIG. 1, and FIG. 3 is a spectrum of a music signal.
  • Figure 4 is a further external view of the information disc of the present invention.
  • FIG. 5 is a diagram for explaining an information area recorded on the information recording disk of FIG. 4
  • FIG. 6 is a further external view of the information recording disk of the present invention
  • FIG. 8 is a diagram for explaining an information area recorded on the information recording disk of FIG. 6,
  • FIG. 9 is a cross-sectional view of the information I disk of the present invention.
  • FIG. 10 is a further sectional view of the information recording disk of the present invention.
  • FIG. 11 is a further sectional view of the information recording disk of the present invention.
  • Figure 12 is an explanatory diagram of the unrecordable part
  • FIG. 13 is a sectional view of a conventional information recording disk.
  • an optical disc 1 which is an information disk according to the present invention has a signal recording surface 2 having a first area A and a second area B which are divided in a half direction. 3 is the center hall.
  • the information area recorded in the half-direction of the optical disc 1 is: a is the radius of the optical disc 1; b is from the center o of the center hole 3 to the circumference of the signal recording surface 2 (lead-out). , C is the radius from the center o of the center hole 3 to the innermost circumference (lead-in) of the signal recording surface 2, d is the radius of the center hole 3, and e is the signal recording area of the signal recording surface 2.
  • the first area A includes a lead-in area A I, a signal recording area A P, and a lead-out area A O.
  • the second area B includes a lead-in area B I, a signal recording area B P, and a lead-out area B O.
  • a first example of the information recording disk of the present invention is an audio disk having a diameter of 12 O mm.
  • the disk thickness (the distance from the disk surface (maintenance) to the disk signal surface) is 1.2 mm.
  • This lead-in area AI has no effect on the conventional CD player, and the second area B has a status so that it can be read by the new format playback device (player) without any influence on the existing CD player ( ⁇ of the information recording disk). It is easy to set a bit to indicate). For example, a definition may be assigned to the unused bits of the TOC (table of contents) recorded using the subcode of CD, and the status in which the second area B exists may be set.
  • the read-out track (lead-out area AO) is terminated by a specified length.
  • the recording density of the music information recorded in the signal recording area BP of the second area B is preferably 2 to 10 times the recording density of the signal area AP, but in the present embodiment, the signal recording area AP 4.5 times the recording density (0.8 GB recording capacity over the entire signal recording surface 2)
  • the music information program recorded in the signal recording area AP of the first area A targets the music signal up to the ⁇ H band (up to about 20 kHz), the CD sampling rate (sampling frequency 44.1 kHz), It is converted into data by using 16 bits of the number of bits.
  • the reproduction of the signal recording area BP in the second area B uses a new-format reproduction device (player), so a means for increasing the reproduction time is combined.
  • Music information to be recorded in the signal recording area BP of the second area B can be used music information data that has been compressed (entropy coding). In this case, the music information data amount changes on the basis of the music information progress time unit.
  • the amplitude in the ultrasonic region D is relatively smaller than that in the 3 ⁇ 4J3 ⁇ 4 band C, as shown in Fig. 3.
  • the compression ratio of reversible compression is about 60%, that is, the amount of music information data to be feited is 88.2 kHz sampling, and about 40% of music information data with 20-bit quantization. It has been found by a study by HA of Izumi.
  • the signal area A AP in the first area A stores music information data in CD format.
  • CD format a maximum of 74.7 minutes of music can be reproduced by using the entire program area (ie, signal area e) with a radius of 25 mm to 58 mm.
  • the playback time of the music information recorded in the signal recording area AP of the first area A is X 1 minute, and the playback time of the music information recorded in the signal word area BP of the second area B is ⁇ 2 minutes. If the area of the area (signal recording area e) between ⁇ 25mm and 58mm is 1 and E
  • a lead area AO of the first area and a lead-in area BI of the second area are required, each of which takes about 1 minute. pull
  • a second example of the information recording disk of the present invention is an audio disc having a diameter of 12 Omm.
  • the disc thickness is 1.2mm.
  • the density of the music information data described in the signal area BP of the second area B is 4.5 times that of the music information data recorded in the signal area AP of the first area A in this I ⁇ example.
  • the music sources referred to in the two signal words No. 1 area AP and BP are completely the same.
  • the signal information area recorded in the first area A The music information data recorded in the AP covers the audio signal up to the audible band (up to about 20 kHz), the CD sampling rate (sampling frequency ⁇ d3 ⁇ 444.1 kHz), and the quantum Data is converted into 16 bits.
  • the signal recording area AP of the first area A is described as music information data in CD format.
  • the radius is 25 mn, which is the program area (that is, signal lightning area e). If you use all ⁇ 58 mm, you can play up to 74.7 minutes of music.
  • music information data is transmitted at a density 4.5 times higher than the word density in the signal area AP. For this reason, if the music information data is described with a radius of 25 mm to 58 mm (signal recording area e) at a density 4.5 times higher than the recording density of the signal recording area AP, a maximum of 134 5 minutes of music can be played.
  • Signal recording area in the first area ⁇ The recording / reproducing time of the music information described in the AP is 2 minutes, and the signal recording in the second area B is recorded in the signal area. Is set to ⁇ 2 minutes, and 3 ⁇ 4 of the area (signal recording area e) with a radius of 25 mm to 58 mm is set to 1 and 2E,
  • the normalized area of the first region A is a first region A
  • the normalized area of the second region B is X2 / 134.5
  • the readout area AO of the first area and the lead-in area BI of the second area are required at the boundary between the first area A and the second area B. Each of them requires about 1 minute, so the actual playback time is subtracted from this. hand
  • the recording density of the video information referred to in the signal recording area BP of the second area B is preferably 2 to 10 times the recording density of the signal recording area AP. 4.5 times the density (0.8 GB recording capacity over the entire signal recording surface 2)
  • the video information program recorded in the signal recording area BP of the second area B targets a moving image of 720 ⁇ 480 pixels using the well-known MPEG2 standard.
  • the compression rate is changed according to the content of the moving image, and a variable rate method is used in which the li rate changes. Since many such examples have been described, detailed description is omitted. An example is described in which the recording density is 4.5 times that of the CD with a diameter of 120 mm using the MPEG2 standard.
  • the recording time of the video information (video program source) in the signal area AP of the first area A and the signal recording area BP2 of the second area B are set to be the same, and the power and the maximum The conditions for the playback time will be described.
  • the signal recording area AP of the first area A is recorded with a high image quality of the video CD format.
  • the program area ie signal If the entire radius of 25 mm to 58 mm is used, a maximum of about 74 minutes of video can be recorded and reproduced.
  • the MPEG2 standard video can be changed. About 135 minutes can be played back using the default method.
  • the time relationship of the above example is based on the examples of equations (3) and (4) of the second embodiment.
  • the recording and reproduction times of the first and second areas are respectively about 47 minutes.
  • an optical disk 10 which is another information recording disk of the present invention is, as shown in FIG.
  • the signal surface 20 having the second region B is provided.
  • a third area CC is provided on the inner peripheral side (center hole 3 side) of the first area A.
  • the read-in signal for the first data in the second area B is transmitted to the information signal having the same recording density as that of the first data. No. is issued.
  • This information signal is a lead-in signal centered on TOC (major order) information and a test signal for performing 3 ⁇ 4IE of the player.
  • the information area in the radial direction of the optical disk 10 is as follows: a is the radius of the optical disk 10, b is the circumference of the signal recording surface 20 from the center 0 of the center hole 3 (lead out) Is the radius from the center 0 of the center hole 3 to the circumference of the signal plane 20 (lead-in), d is the radius of the center hole 3, and e is the signal recording area of the signal recording plane 2. is there.
  • the first area A includes a lead-in area A I, a signal recording area A P, and a lead-out area A O.
  • the second area B includes a lead-in area BI1, a signal recording area BP, and a lead-out area B0.
  • the third area C C is a lead-in area BI 2 for receiving a lead-in signal having at least data of a read-in signal recorded in the lead-in area B I1. That is, since the content of the lead-in signal recorded in the lead-in area BI 1 of the second area B is the same as the content of the lead-in signal recorded in the third area CC, it is referred to as the third area CC. If the lead-in signal is considered as the main, there is no inconvenience even if the content of the lead-in signal recorded in the lead-in area BI 1 of the second area B is changed (decreased) in accordance with ⁇ (the lead-in area). BI 1 simplifies the lead-in signal).
  • the fourth H example of the information recording disk of the present invention is described as an audio disk having a diameter of 12 O mm. This will be specifically described using a disk.
  • the disk thickness (the distance from the disk surface (protective layer) to the disk signal surface) is 1.2 mm.
  • the first area A located on the inner circumference side to start playback is the CD format (JISS
  • FIG. 9 is a cross-sectional view showing a sixth embodiment of the information recording disk according to the present invention, and is a cross-sectional view taken along a cross-section passing through the center of the optical disc 200.
  • the reflectivity of the first reflective layer 230 is about 95%, and the reflectivity of the second reflective layer 270 is also about 95%.
  • FIG. 11 is a cross-sectional view showing an optical disc 500 as an eighth HIS example of the present invention.
  • the difference from the optical disc 200 shown in FIG. 9 is that the third recording layer 3 2
  • the point formed on the side of the second substrate 250a, and the reflectance or the reflectance of the first reflective layer 230 is a point that is considered to be a low power. .
  • each of the two hundred and fifty-five is about 0.6 mm, and they are adhered through an adhesive layer 240a.
  • the third layer 320 is formed on the side of the adhesive layer 240a of the second substrate 250a, and is provided on the outer peripheral side similarly to the first recording layer 220. Further, the third recording layer
  • the optical disc 500 has a high-density recording portion of a double-sided type. If the first reflective layer 230 is a semi-transmissive film, the high-density recording portion becomes a so-called dual-layer disc. Reproduction of the recording layer 230.260 is the power of Noh. On the other hand, when both the first reflective layer 230 and the third reflective layer 310 have a high reflectance, the laser light is not reproduced between the reproduction of the third layer 220 and the reproduction of the third recording layer 320. This is performed with the Ji direction reversed.
  • first recording layer 220 and the third recording layer 320 are provided on the outer peripheral side with respect to the radius r1, and the second recording layer 260 is provided on the inner peripheral side with respect to ⁇ 1r2.
  • the laser beam for reproducing the information of the second disc 260 of the optical disc 500 is provided by the objective lens 3. After passing through 50, it is removed from the substrate 210 side.
  • n is the refractive index of the first substrate 210 and the second substrate 250a
  • NA is the numerical aperture of the objective lens 350.
  • the optical disc of the present invention Since the CD player starts playback from the innermost circumference of the optical disc, if the optical disc of the present invention is played back on a low-density optical disc, the second layer on which low-density recording is performed is performed. Reproduction of 260 information is performed without any problem.
  • a table of contents information called a TO table is recorded on the innermost periphery of the optical disc.
  • the CD player first plays back the TOC information, checks the relationship between the program contents and the recording position, and then plays the necessary information.
  • high-density recording is performed at the innermost peripheral portion of the recording area of the second recording layer 260 on the outer peripheral side.
  • the indicated information is recorded. This information is referred to, for example, in the sub-code area of the CD signal.
  • the high-density recording area is provided not only at the outer peripheral portion but also at the innermost peripheral portion. That is, in FIG. 9, a high-density recording area is provided in a region on the outer periphery side of the first recording layer 220 and a region on the inner periphery side of the second recording layer 220, and the innermost periphery is provided. Information indicating that there is high-density recording information on the outer peripheral side in the high-density recording area of the portion is referred to as low-density.
  • the thickness of the first substrate 210 and the second substrate 250 (250a) is not limited to 0.6 mm, and the thickness is not necessarily equal. good. For example, if the development of the Wfe laser progresses and it becomes possible to perform recording and reproduction at a higher density, for example, if the thickness of the first substrate 210 is 0.4 mm, the thickness of the second substrate 250 ( It is also conceivable that the thickness of 250 a) is 0.6 mm.
  • the same information (program) is applied to the low-density recording layer and the high-density recording layer, there is an advantage that the type of optical disk is reduced on the ⁇ side of the optical disk. Penetration There is also an advantage that it is possible to spread the high-density optical disk with low (Sit).
  • the first area on the inner peripheral side of the disc can be reproduced by using the reproducing apparatus conventionally owned by the user, and the same disc is used when a new reproducing apparatus for L ⁇ high density ⁇ K is purchased. It is possible to provide an information recording disk capable of reproducing a higher quality second area, and the first area and the second area are single inventories in which the same information is recorded with different qualities. Therefore, it is not necessary to produce and stock two types of discs separately, so that efficiency can be improved and distribution inventory can be halved, which is extremely convenient for producers and sellers. It is also meaningful for users who purchase
  • the same music source is described as a standard density (standard quality) and a high density (high quality) for information recording
  • a conventional quality-compatible reproducing apparatus that is conventionally owned is used.
  • the high-quality playback device to reproduce the second area on the outer side of the disk.
  • the disc has the same music source power standard density (standard quality) and ultra-high density (ultra high quality) which is much higher than high density (high quality).
  • standard quality standard density
  • ultra-high density ultra high quality
  • the first region on the inner side of the disk can be reproduced as it is using the standard quality playback device that has been owned in the past, and the ultra-high quality playback device outputs the information signal in the third region.
  • the second area inside and outside the disk can be reliably reproduced.
  • a signal recording surface is divided in a radial direction into a first area and a second area, and the recording density of the second area is set to a second area.
  • a disc stipulated that the recording density is 2 to 10 times higher than the recording density of one area, the pit depth is the same for the first area and the second area, and the entire disc is the density of the second area.
  • the signal of the standard stipulated in that the disc overall force ⁇ the density of the first area
  • both the playback device (CD player) that has been conventionally owned and the new high-density S playback device (new high-density format player) have a lead-in area corresponding to each recording density. Playback can be performed first, and signal readout conditions can be optimized for each player.
  • the content of the information signal relating to the first data in the second area (that is, the read-in signal recorded in the lead-in area BI1) is directly recorded in the third area. Since the data is recorded, the content of the read-in signal recorded in the second area can be simplified. The first data in the second area can be reduced by the reduced capacity of the simplified area. The signal recording capacity can be increased.
  • the information disk when the information disk is recorded with the same music source power standard density (standard quality) and ultra-high density (high quality 0 @ high quality) which is much higher than high density (high quality)
  • standard quality standard density
  • ultra-high density high quality 0 @ high quality
  • the first area on the inner circumference side of the disk can be reproduced as it is using the standard quality playback device that we have previously owned, and the ultra-high quality playback device is derived from the information signal of the third region.
  • the second area inside and outside the disk can be reliably reproduced.
  • an optical disc it is easier to manufacture an optical disc than when a plurality of recording layers are formed on one substrate.

Description

明 細 書
情 報 記 録 円 盤 技術分野
本発明は、 映像情報や音楽情報を記録した情報記録円盤に関するものである。 背景技術
の技術及び発明が解決しょうとする課題を次の (1)単板構造の光デイス ク、 (2) 2枚のディスクを張り合わせた構造の光ディスクの順に説明する。
(1) 構造の光ディスク
音楽信号の^ ϋ帯域を対象にして、 44. 1 k Η ζサンプリング、 16ビット 量子化を行ない音楽信号を記録した光ディスクとして、 いわゆるコンパクトディ スク (CD)が良く知られている。
これに対し、 スタジオ等の業務用として、 音楽信号の ¾帯域を越える超音波 帯域 (約 20kHz〜約 50 kHzの帯域) 迄を対象とし、 サンプリング周波数 を 88. 2kHz〜 96kHz、 量子化ビット数を 20ビット〜 24ビットとし て、 音楽信号を首 5^することが行われている。 し力、し、 この記録再生に用いられ る装置としては業務用の高価な装置が必要である。
ところで、 音楽信号の 帯域を対象にして、 サンプリング、 量子化したデー タの聴感上重要でな ゝ部分を棄却し、 圧縮ァルゴリズムとしては 1種類のァルゴ リズムを用い元のデータを非可逆圧縮し、 記録媒体上は音楽の演奏進行時間の単 位時間当りの情 |g¾を一定として記録再生する技術は公知である。
また、 映像信号をサンプリングし振幅を量子化したデータに関し、 映像の空間 的相関の利用、 時間的相関の利用、 視竟 Li:の不要データ棄却等で、 元のデータを 非可逆圧縮する技術は公知である。
この様にデータを非可逆圧縮する方法としては、 映像の単位時間当りの情^ * を一定とする方法と、 映像の状況により映像の単位時間当りの惰^ S:が変化する 方法とがあり、 いずれの技術も公知である。
また、 映像の単位時間当りの情報量を一定とする前者の方法を用いて非可逆圧 縮データを光ディスクに記録して再生する技術は公知である。 さらこ、 映像の状 況により映像の単位時間当りの情 ¾S力変化する後者の方法を用いて映像の状況 により映像の進行時間の単位時間当りの惰¾*が変ィ匕する非可逆圧縮デー夕を光 ディスクに記録して再生する技術、 特に、 バッファメモリ、 ピックアツプのキッ ク待ち (再生待機動作) 、 サーチ機能を用いて再生する技術は公知である。
コンピュータで用いられるハードディスクドライブ (H D D) では、 多くのデ 一夕を効率良く格納するために、 いわゆるロスレス圧縮等の呼び方で可逆圧縮し てデータを ΪΒ^し、 読み出し時、 圧縮したデータを相補的に伸張してデータを再 生している場合があり、 この技術は公知である。
さらにまた、 用向けに、 映像情報や音楽情報を C Dの記録密度よりも 3〜 8倍の高密度で記録する高密度光ディスクは、 その主要な技術は公知である。 光ディスクの内周側である第 1領域は C Dの音声信号記録領域とし、 この第 1 領域の外周側である第 2領域はアナログ F M変調した映像信号を高密度記録する 映像信号記録領域とする技術は、 C D— V (C D— V I D E O) と呼ばれ公知で める。
さらに、 高密度記録円盤の内周側の第 1領域は C Dの記録密度 (低言 密度) とし、 その外周側の第 2領域を高記録密度とする円盤は、 例えば特開平 6— 1 6 8 4 4 9公報に述べられており、 公知である。
ところで、 低密度円盤の読み取りレーザ波長 ( 7 8 O n m) に対して、 高密度 円盤は順当には短波長レーザ (6 3 5 n m) にを用いて読み取る様にシステム設 計する。 この時、 円盤のピットの深さは読み取りレーザ波長の 0. 2 5倍と関連 づけて決められる。すなわち低密度円盤のピット深さに比べて、高密度円盤のピ ット深さは浅くするの力《¾Eである。
また、 規格としてピッ卜の深さが規定されない場合でも、 規格で定める標準光 ピックァップを用 L、た再生信号特性が範囲をもつて規定されるのが普通であり、 等価的にピット深さが範囲をもって規定される。 さらに、 円盤の 的精度は一 般に低密度円盤の 的精度はゆるく、 高密度円盤の a«的精度は厳しく規定さ れる。
音楽信号の光ディスクへの記録再生に関し、 音声信号の周波数帯域の向上 (即 ちサンプリング周波数の向上) と、 その振幅軸精度の向上 (即ち量子化ビット数 の向上) 力求められている。
音楽信号の ΐ ^帯域を越える超音波帯域 (約 20kHz〜約 50kHzの帯域) 迄を対象としサンプリング周波数を 88kHz〜 96kHz、 量子化ビット数を 20ビットと〜 24ビットとした音楽信号である高密度ディジタルデータは、 基 本のディジタルデータと位置付ける 44. 1 kHzサンプリング、 16ビット量 子化と比べ、 単位時間当りのデータ量が 2. 5〜3. 3倍多い。
この高密度ディジタルデータを CDの様に光ディスクに言 Ξϋ再生する際、 光デ イスク 1枚当りの演奏時間を C Dの演奏時間と同じにするためには、 光ディスク
1枚当りの言^容量を 2. 5〜3. 3倍にする必 がある。 この高密度ディジタ ルデータ力記録される高密^;ディスクを再生する再^置は前述したように、 その主要な技術内容は公知である。
しかしながら、 こうした高密 ^ディスクは、従来 された再^置 (例と して CDプレーヤ) を用いて することが出来ない。 このために、 音楽出版業 者は同一音楽プログラムソースを CD向けと高密度光ディスク向けの 2 を並 行して出版するいわゆるダブルインベントリを行う ' ^があつた。
また、 このダブルインベントリを具体的に解消してシングルィンベントリにす るための手段は開示されていなかった。 (2 ) 2枚のディスクを張り合わせた構造の光ディスク
周回状 (螺旋状ある 、は同 、円状) の情報トラックに形成された情報を光学的 に読み出すようにした光ディスクにおいて、 その記録容量を増加させるために、 凹凸形状の情報ピットと反射層とが形成された^:性基板を 2枚張り合わせるよ うにして、複数の記録層を持たせた多層光ディスク力 特開平 2 - 2 2 3 0 3 0 号公報、特公昭 6 1 - 2 7 8 1 5号公報などに開示されている。 これらに開示さ れている多層光ディスクの一例を図 1 3に示す。
図 1 3は、 従来の多層光ディスクの一例を示す断面図であり、光ディスクの中 心を通る切断面で切断した場合の図である。 同図の横方向は光ディスクの半径方 向を示し、 向は光ディスクの厚さ方向を示す。
図 1 3において、 光ディスク 5 0では、 凹凸 の情報ピットによって情報が iSliされている第 1記録層 5 2カ^ ディスク基板 (^:性の第 1基板) 5 1上に 設けられており、 第 1記録層 5 2上には第 1反射層 5 3が設けられている。 同様 に、 凹凸形状の情報ピットによって情報が記録されている第 2記録層 5 6力 \ デ イスク基板 G ¾性の第 2基板) 5 5上に設けられており、第 2記録層 5 6上に は第 2反射層 5 7が設けられている。
第 1基板 5 1と第 2基板 5 5とは夫々の記録層側力 <接着層 5 4を介して接着さ れている。
光ディスク 5 0は、 高密度に記録するために、 ディスク基板の厚さを薄くし、 ディスク基板の厚みに起因する種々の光学 iK を減少させている。
例えば、 1記録層当たりの記憶容量が、 ディスク基 ¾ ^さ 1. 2 mmの の C Dの 4倍になるようにするために、 第 1基板 5 1、 第 2基板 5 5の夫々の厚さ を略 0. 6 mmとし、 そのディスク基板を 2枚張り合わせて構成することにより、 C Dの 8倍の^容量を持たせることが出来る。
図 1 3に示すように、 第 1記録履 5 2は第 1基板 5 1上に形成さ 接着層 5 4の近傍に設けられており、 また第 2記録雇 5 6は第 2基板 5 5上に形成さ 前記接着層 5 4の近傍に設けられている。 即ち光ディスク 5 0の厚さ方向の中心 付近に 2つの記録層が設けられている。
第 1反射層 5 3の反射率は低反射率 (例えば 3 0 %) とされ、 第 2反射層 5 7 の反射率は高反射率 (例えば 9 5 %) とされる。 再生用のレーザ光は、 図 1 3の ように第 1基板 5 1側から照射され、 第 1記録雇 5 2あるいは第 2記録層 5 6に 集光されることにより、夫々の記録層の情報が読み出される。
このような高密度光ディスクを再生する再生装置は、 高密度に言 された第 1 記録層 5 2の情報と第 2記録層 5 6の情報とを再生出来るのは勿論であるが、 C D並の低言 密度の光ディスクをも再生出来るようにされているのが ~«的であ 高密^ディスクでも低密度光ディスクでも再生出来るようにするために、高 密度光ディスクの 置では、 読み出し用の光学へッドにおいて、 高密^:デ ィスク用の光学系と低密度光ディスク用の光学系とが別々に備えられているか、 或いは、 ホログラムを応用した 2焦点の光学系力 <採用されており、夫々の光ディ スクに応じて、 レーザ光スポッ卜の大きさ力、'最適ィ匕されると共に、 ディスク基板 厚の達いに対する補正が行われる。
しかしながら、高密 ^ディスクを従来の低密度光ディスクの再^置で再生 することは出来ないと言う問題があった。 これは、 低密度光ディスクの再生装置 では、 言 5^層上に集光されたレーザ光のスポット径が大きすぎること、 ディスク 基板の厚さカ 密度用と低密度用とで大きく異なることなどに起因する。
さて、 ¾想的には 1枚の情報言 円盤に同居する低密度領域 Aと高密度領域 B とは、 円盤全面が低密度領域 Aである事を基本に定められた規格 Aと、 円盤全面 が高密度領域 Bである事を に定められた規格 Bとを、 それぞれに対応して規 格を満たす事力 < まい、。 位相ピットを記録し;^複製する円盤製造法では、 記録前に準備される未露光 原盤の感光剤厚みがピット深さを決める。 1枚の原盤中に感光剤の厚みを 5 %程 度以上ステップ状に変化させる事は"^的に困難である。 通常の方法では 1枚の 原盤中の感光剤の厚みは、 均一である。 1枚の円盤に低密度領域 Aと高密度領域 Bとを同居させる際、 ピットの深さをどちら寄りに製造するかと言う課題力有る。 低密度領域 Aと高密度領域 Bのディジタル信号を 1枚の円盤に同居させる例は、 前記した特開平 6— 1 6 8 4 4 9号公報に述べられているカ^ 上記の課題及びこ の課題を解決するための手段等に関しては全く触れられていない。
1枚の円盤に低密度領域 Aと高密度領域 Bを同居させる際、 ピットの深さ (あ るいは溝の深さ) をどちら寄りに合わせるかと言う課題に対して、 本発明では信 号出力に関してピット深さを規定する方法と、 円盤の機械的精度に関して ^«的 及び光学的精度を規定する方法を組み合わせる。 円盤全面が低密度 Aである事を に定められた規格 Aと、 円盤全面か 密度 Bである事を ¾^に定められた規 格 Bとでは、 通常、 規格 Bは年代的に後年に定められる。 規格 Aに比べて、 規格 Bでは通常短波長レ一ザ一が用いられ、概略、短波長化相当だけ、 ピット深さは 規格 Bの方力く浅くなる。
年代的に後年に定められる規格 Bは、相対的に短波長であるレーザーや相対的 に高開口であるレンズの使用を考慮し高密度記録用とされており、 円盤の機械的 及び光学的精度に関しては規格 Aよりも精度の向上力、'要求される。 これらの要求 とプレス技術の進歩等を考慮して、規格 Bの円盤の ^«的及び光学的精度は規格 Αに比べて精度の良い値に決められる。
前記したような理由から、 同一内容のプログラム (情報) を記録した光デイス クが、 低密度光ディスク、 高密度光ディスクとして別々に Siitさ 販売される ことになり、 製造側、 利用者^に種々の不都合力く発生する。
本発明は上記の問題を考慮してなされたものであり、 低密度記録領域と、 言 Ξί¾ 容量が一段と多 ゝ高密度記録領域を有する情報記録円盤を提供することを目的と する。
発明の開示
上記目的を達成するために、 本発明の情報記録円盤は第 1のデータが記録され る第 1信号 領域と、 半径方向に前言 1領域よりも外側の信号記録領域であ つて、 第 2のデータ力く、 前記第 1のデータよりも高密度に記録され、且つ、 前記 第 2のデータか ii記第 1のデータと同—内容の情報を含む第 2信号記録領領域と を備える。
さらに本発明の情報記録円盤は第 1のデータ力、'記録される第 1信号記録領域と、 半径方向に前記第 1領域よりも外側の信号 域であって、 第 2のデータ力く、 前記第 1のデータよりも高密度に記録される第 2信号記録領領域と、前記半 向に前記第 1領域よりも内側の信号記録領域であって、前記第 2のデータに関す る情報信号か 記第 2のデータの記録密度と同一の 密度で言 される第 3領 域とを備える。
さらに本発明の情報記録円盤は第 1信号言 B ^域と、半径方向に前記第 1信号 害 領域に隣接し、 前記第 1信号記録領域の言 S 密度の 2倍〜 1 0倍で信号が記 録さ 信号記録用溝深さか 言 em 1信号記録領域の信号言 用溝深さと同一で ある第 2信号記録領域とを有する信号き 面を備え、前記第 2領域の言 密度で 前記信号を言 する際に定められた««的精 び^的精度か ii記信号記録面 全面に適用されている。
さらに本発明の情報言 円盤は第 1基板と再生光が される側の第 2の基板 が接着層を介して接着されて成る情報言 円盤であつて、前記接着層の近傍であ つて前記情報言 円盤の半径方向の外周部に形成さ 情報力 される第 1記 籠域と、前記情報言 円盤表面の近傍であつて前記 円继の半 向の 内周部に形成さ 前記第 1言 層より低密度に が される第 2言 領域 とを備える。
さらに本発明の情報記録円盤は第 1基板と再生光が照射される側の第 2の基板 が接着層を介して接着されて成る情報記録円盤であつて、 前記接着層の近傍であ つて前記情報言 円盤の半径方向の外周部に形成され、 情報が記録される第 1記 録領域と、前記接着層の近傍であって前記半 向の内周部に形成され、情報が 言 ¾ される第 2記録領域と、 前記情報記録円盤の表面の近傍であつて前言 周部 と内周部の間に形成さ 前記第 1及び第 2記録領域より低密度に情報が記録さ れる第 2記録領域とを備える。
図面の簡単な説明
図 1は本発明の情報記録円盤の外観図、
図 2は図 1の情報記録円盤に記録される情報領域を説明するための図、 図 3は音楽信号のスぺクトラム、
図 4は本発明の情報 円盤のさらなる外観図、
図 5は図 4の情報記録円盤に記録される情報領域を説明するための図、 図 6は本発明の情報記録円盤のさらなる外観図、
図 7は図 6の情報記録円盤の信号特性を示す図、
図 8は図 6の情報記録円盤に記録される情報領域を説明するための図、 図9は本発明の情報 I 円盤の断面図、
図 1 0は本発明の情報記録円盤のさらなる断面図、
図 1 1は本発明の情報記録円盤のさらなる断面図、
図 1 2は記録不可能な部分の説明図、
図 1 3は従来の情報記録円盤の断面図である。
発明を するための最良の形態
(Α) 本発明の籠言 媒体を図 1〜図 8に沿って、 その職構造について説明 する。 本発明の情報言5^円盤である光ディスク 1は、 図 1に示すように、半^向に 区分した第 1領域 Aび第 2領域 Bを有する信号記録面 2を備えている。 3はセン タホール。
光ディスク 1の半^向に記録される情報領域は、 図 2に示すように、 aは光 ディスク 1の半径、 bはセンタホール 3の中心 oから信号記録面 2の^周 (リ ードアウト) までの半径、 cはセンタホール 3の中心 oから信号記録面 2の最内 周 (リードイン) までの半径、 dはセンタホール 3の半径、 eは信号記録面 2の 信号記録領域である。 第 1領域 Aはリードイン領域 A I, 信号記録領域 A P, リ ードアウト領域 A Oから構成される。 第 2領域 Bはリードイン領域 B I , 信号記 録領域 B P, リードアウト領域 B Oから構成される。
[第 1 mi
本発明の情報記録円盤の第 1 例は、 直径 1 2 O mmのオーディオデイスク である。 ディスク厚(ディスク表面 (保 ) からディスク信号面までの距離) は 1 . 2 mm。
再生を始める内周側に位置する第 1領域 Aは C Dフォーマツト (J I S S 8 6 0 5規格に準拠) で書 する。 半径 2 3 mm〜 2 5 mmのリードイン領域 A Iも第 1領域 Aに含めて、 C Dフォーマットにより する。
このリードイン領域 A Iに従来の C Dプレーヤには全く影響を与えなく、 第 2領 域 B力く存在することを新フォーマツトの再生装置 (プレーヤ) では読み取れる様 にステータスを立てる (情報記録円盤の ^示すビッ トを立てる) 事は容易で ある。 例えば、 C Dのサブコードを用いて記録された T O C (目次表) の未使用 ビッ 卜に定義を割り当て、 第 2領域 Bが存在するステータスを立てるようにすれ ば良い。
第 1領域 Aは、信号 域 A Pに言 ¾|されている音楽情報終了に続き、 リー ドアウトトラック (リードアウト領域 A O) を規定長^して終了させる。 第 2領域 Bの信号記録領域 B Pに記録されている音楽情報の記録密度は、信号 言^ il域 A Pの記録密度の 2〜 10倍が好適であるが、 本実施例では信号記録領 域 A Pの記録密度 (信号記録面 2の全面で 0. 8 GBの記録容量) の 4. 5倍
(信号記録面 2の全面で 3. 7GBの記録容量) とする。 また、 2つの信号 i¾¾ 領領域 AP, BPに言 する音楽ソースは完全に同一とする。
第 1領域 Aの信号記録領領域 A Pに記録する音楽情報プログラムは、 音楽信号 を^ H帯域 (〜約 20 kHz)迄を対象とし、 CDのサンプリングレート (サン プリング周波数 44. 1 kHz) と、量子ィ匕ビット数 16ビッ トによりデータ化 されている。
—方、 第 2領域 Bの信号記録領領域 BPに記録する音楽情報プログラムは、 音 楽信号を ¾M帯域 £Lhの超音波帯域 (〜約 50 k H z ) 迄を対象とし、 サンプリ ング周波数を 88. 2kHz.量子化ビット数を 20ビットとして、 信号記録領 領域 A Pに音楽情報を記録する際に用いられるサンプリングレートと量子化ビッ ト数より相対的に高くする。
第 2領域 Bの信号記録領領域 BPの再生は新フォーマツトの再生装置 (プレー ャ) を用いるので、 再生時間を増やすための手段を組合わせる。 第 2領域 Bの信 号記録領領域 B Pに記録する音楽情報は可 i§¾E縮された音楽情報データを用いる (エントロピー符号化) 。 この場合、音楽情報の進行時間単位を基準として、 こ の音楽情報データ量は変化する。
この音楽情報データを するために、新フォーマツトの再生装置でバッファ メモリ及びピックアップのキック待ち、 サーチ機能を用い、 再生する技術を用い る (この技術の^的な説明は特開平 1一 223669号公報に述べられている) サンプリング及び量子ィ匕した音楽情報データの可逆圧縮に関しては、 例えば 1 979年 11月の AE S— PREPR I NT NO— 1549 は献) に述べら れており、 CD条件でサンプリング及び量子化した音楽情報データを 30 %〜 4 0 %可逆圧縮出来る例が示されている。 この可 i£EE縮には先行するデータとの差 分を用いる DP CMの技術等を用いている。
88. 2kHzサンプリング、 20ビット量子化の高品質の音楽情報データは 44. 1kHzサンプリング、 16ビット量子ィ匕の CDの音楽情報データの 2. 5倍のデータ量である。
この高品質の音楽情報データを可逆圧縮する際は、 図 3に示すように、 ¾J¾帯 域 Cにおける振幅よりも超音波領域 Dにおける振幅が相対的に小さくなっている
(図 3に示す 部分) こと力《原因で、 可逆圧縮の圧縮率は約 60%即ち feitす べき音楽情報データ量は 88. 2 kHzサンプリング、 20ビット量子化の音楽 情報デ一夕の約 40%となることが本出 HAによる研究で判明している。
本出願では図 3及び上記文献より推定される数値として、 88. 2 kHzサン プリング、 20ビット量子ィ匕の高品質の音楽情報データの可逆圧縮の圧縮率を約 60 %即ち^すベきデータ量はもとの約 40 %として説明を進める。
次に、本 ¾ϋ例において第 1領域 Aの信号 領域 A Pと、 第 2領域 Bの信号 言 領域 BPとに夫々 BIiする音楽情報 (音楽プログラムソース) の 再生時 間を同一とし、 かつ最長の言 時間とする条件を説明する。
本 HJfe例では、 第 1領域 Aの信号言 領域 A Pは CDフォーマツ卜の音楽情報 データが されている。 CDフォーマツトではプログラム領域 (即ち信号言 領域 e)である半径 25mm〜58mm全てを用いれば、最大で 74. 7分の音 楽が言 再生出来る。
また、第 2領域 Bの信号記録領域 BPでは、信号記纖域 A Pのき 密度の 4. 5倍の密度で音楽情報データが言 されている。 このため、半径25111111〜58 mm (信号記 ^域 e)全てを信号言^ 1域 A Pの記録密度の 4. 5倍の密度で 音楽 データを すれば、 2¾で示すように、 で 336分の音楽が^^ 再生出来る。
(74. 7分 *4. 5Z2. 5)ノ 0. 4 = 336分
第 1領域 Aの信号記録領域 A Pに記録されている音楽情報の言 再生時間を X 1分、第 2領域 Bの信号言 領域 B Pに記録されている音楽情報の言 再生時間 を Χ2分とおき、 ^¾25mm〜58mmの領域 (信号記録領域 e) の面積を 1 と E ィ匕しておくと、
第 1領域 Aの 化 ®¾は
X1/74. 7
第 2領域 Bの i¾化面積は
X2/336
となる。
そして、半径 25mm〜58 mmの領域の ®¾を全て用いるとし、 2つの領域 A, Bの JE¾化面積を合計して、 次式 (1) となる。
X 1/74. 7 + X2/336 = 1 (1)
また、 第 1領域 Aと第 2領域 B i fE^ る音楽情報の記録 時間を同一とす る条件は、 次式 (2) となる。
XI = X2 (2)
(1) 、 (2)式を¾5^程式として解くと
XI = 61 分
X2 = 61 分
を得る。
第 1領域 Aと第 2領域 Bの境界に第 1領域のリードァゥト領域 AO、 第 2領域 のリードイン領域 B Iが必要であり、 それぞれ約 1分程度の負担であるので実際 の ϊ½時間はこれを引いて
XI = 60 分 X2 = 60 分
となる。
J¾±により、 1枚の光ディスク 1の内周側第 1領域 Aの信号言 領域 A Pに C D品質の音楽情 を 60分、 外側の第 2領域 Bの信号記録領域 B Pに、 88. 2 kH zサンプリング、 20ビット量子ィ匕の高品質の音楽情報を 60分言 1½出 来る円盤を説明した。 このディスク 1は、 同一の音楽情報力標準品質である CD 品質、 CD品質より高品質で記録されているいわゆるシングルインベントリであ るので、音楽出)!^!者にとっても、 又ディスクを購入するユーザにとっても有意 ¾Sc 'あ 0
[第 2 例]
本発明の情報記録円盤の第 2 例は、 直径 12 Ommのオーディオディスク である。 ディスク厚は 1. 2mm。
第 2 ¾ϋ例では第 2領域 Βの信号記録領域 Β Ρに記録される音楽 データを 可逆圧縮技術を用いず固定^!レートとした例を述べる。 第 1領域 Αの信号言 領域 A Pに記録される音楽情報デー夕は前記の第 1 例と同様に C Dフォーマ ットにより記録する。
第 2領域 Bの信号 領域 B Pに言 2^される音楽情報データの 密度は、本 I ^例では第 1領域 Aの信号言 領域 A Pに記録される音楽情報デー夕の 4. 5 倍とする。 また、 2つの信号言 ¾1領領域 AP, BPに言 する音楽 ソースは 完全に同一とする。
第 1領域 Aの信号記 領域 A Pに記録する音楽情報データは、音楽信号を可 聴帯域 (〜約 20 kHz)迄を対象とし、 CDのサンプリングレート (サンプリ ング周 ¾d¾44. 1 kHz) と、 量子化ビット数 16ビットによりデータ化され ている。
—方、第 2領域 Bの信号言 領域 BPに記録する音楽情報データは、 音楽信 号を ^帯域 hの超音波帯域 (〜約 50 kHz)迄を対象とし、 サンプリング 周- を 88. 2kHz.量子ィ匕ビット数を 20ビットとして、 信号記纖領域 APに音楽情報を記録する際に用いられるサンプリングレートと量子化ビット数 より相対的に高くする。 この音楽情報データを C Dと同様に全てそのまま ΪΗ^す る方法は、 CDと同様に固定^!レートとなる。
次に、本 例において第 1領域 Aの信号記録領域 A Pと、 第 2領域 Bの信号 言 領域 B Pとに夫々記録する音楽情報の記録再生時間を同一とし、 かつ最長の 記録再生時間とする条件を説明する。
本 例では、 第 1領域 Aの信号記録領域 A Pは CDフォーマツ卜の音楽情報 データ力く言^されている。 CDフォーマツトではプログラム領域 (即ち信号雷 領域 e)である半径 25 mn!〜 58 mm全てを用いれば、最大で 74. 7分の音 楽がE^再生出来る。
また、 第 2領域 Bの信号言 S ^領域 BPでは、 信号言 領域 A Pの言 密度の 4. 5倍の密度で音楽情報データが されている。 このため、半径 25mm〜58 mm (信号記録領域 e)全てを信号記録領域 A Pの記録密度の 4. 5倍の密度で 音楽情報データを言 Βϋすれば、 次式で示すように、 最大で 134. 5分の音楽が 言 再生出来る。
74. 7分 *4. 5/2. 5 = 134. 5分
第 1領域 Αの信号記録領域 A Pに言 2^されている音楽情報の記録再生時間を X 1分、第 2領域 Bの信号記^ 1域 B Pに言 されている音楽情報の言^再生時間 を Χ2分とおき、半径 25mm〜58mmの領域 (信号記録領域 e) の ®¾を 1 と 2E¾ィ匕しておくと、
第 1領域 Aの正規化面積は
X1/74. 7
第 2領域 Bのの正規化面積は X2/134. 5
となる。
そして、 半径 25 mm〜 58 mmの領域の面積を全て用いるとし、 2つの領域 A, Bの ΪΕ¾化翻を合計して、 次式 (3) となる。
X1/74. 7 + X2/134. 5 = 1 (3) また、第 1領域 Αと第 2領域 Βに記録する音楽情報の記録再生時間を同一とす る条件は、 次式 (4となる。
XI = X2 (4)
(3)、 (4)式を¾¾方^として解くと
XI = 48 分
X2 = 48 分
を得る。
第 1領域 Aと第 2領域 Bの境界に第 1領域のリードァゥト領域 AO、第 2領域 のリードィン領域 B Iカ《必要であり、 それぞれ約 1分 の負担であるので実際 の再生時間はこれを引いて
XI = 47 分
X2 = 47 分
となる。
Ri:により、 1枚の光ディスク 1の内周側第 1領域 Aの信号言 領域 A Pに C D品質の音楽情報を 47分、 外側の第 2領域 Bの信号言 領域 B Pに、 88. 2 k H zサンプリング、 20ビット量子化の高品質の音楽情報を 47分言 再生出 来るディスクを説明した。 このディスク 1は、 同一の音楽情報が CD品質、 CD 品質より高品質で記録されているいわゆるシングルインベントリであるので、 音 楽出 者にとっても、又ディスクを購入するユーザにとつても有意義である。 このディスク 1は、第 1H½例の様に可逆圧縮されていないので、再生プレー ャで圧縮を元に戻す伸張演算を行う必要が無 、。
[第 3実施例]
本発明の情報記録円盤の第 3実施例は、 直径 12 Ommのビデオディスクであ る。 ディスク厚 (ディスク表面 (保護層) からディスク信号面までの距離) は 1. ½を始める内周側に位置する第 1領域 Aは、 前記の第 1 例と同様に C D フォーマット (J I S S 8605規格に準拠) で記録する。 CDフォーマツ トの中にビデオ CDと呼ばれるフォーマツト力く有り、 公知の MPEG1規格を利 用して 352 x 240画素の動画を記録再生している。 半径 23mm〜25mm のリードィン領域 A Iも第 1領域 Aに含めて、 ビデオ CDフォーマツトにより記 ¾a" ο
第 2領域 Bの信号記録領域 B Pに言 されている映像情報の記録密度は、 信号 記録領域 A Pの記録密度の 2〜 10倍が好適であるが, 本 H½例では信号記録領 域 A Pの記録密度 (信号記録面 2の全面で 0. 8 GBの記録容量) の 4. 5倍
(信号言 ¾i面 2の全面で 3. 7 GBの記録容量) とする。 また、 2つの信号言 領領域 A P , BPに言 する映像情報ソースは完全に同一とする。
第 2領域 Bの信号記録領領域 B Pに記録する映像情報プログラムは、 公知の M PEG 2規格を利用して 720X480画素の動画を対象とする。
この様な動画を記録するには、圧縮率を動画の内容より変化させ、 li^レート が変わる可^^レート方式を用いる。 この様な例は多く説明されているので詳 細な説明は省略する。 MP EG 2規格を用いて、 直径 120 mmで記録密度は C Dの 4. 5倍とする 例で述べる。
次に、 本 例において第 1領域 Aの信号言 領域 APと、 第 2領域 Bの信号 記録領域 BP 2とに夫々言 する映像情報 (映像プログラムソース) の記録 時間を同一とし、 力、つ最長の言 再生時間とする条件を説明する。 本 Hm例では、 第 1領域 Aの信号記録領域 A Pはビデオ CDフォーマツ卜の映 像力く記録されている。 ビデオ CDフォーマットではプログラム領域 (即ち信号記
Figure imgf000019_0001
である半径 25mm〜58mm全てを用いれば、 最大で約 74分の映 像が記録再生出来る。
また、 第 2領域 Bの信号記録領域 B Pでは、信号記録領域 A Pの記録密度の 4. 5倍密度で映像情報データが記録されている。 このため、 半 25111111〜58 mm (信号記録領域 e) 全てを信号記録領域 A Pの記録密度の 4. 5倍の密度で 映像情報データを記録すれば、 MPEG2規格の映像が可変 $ϋ§レ一ト方式を用 いて、 約 135分言 再生出来る。
以上の例の時間関係は、 第 2実施例の (3)、 (4) 式の例とにており、 第 3 H S例では第 1領域、 第 2領域それぞれの記録再生時間は、 各、 約 47分となる。
J¾±により、 1枚の光ディスク 1の内周側第 1領域 Aの信号言 領域 A Pに C D品質の映像情報を約 47分、外側の第 2領域 Bの信号記録領域 BPに、 88. 2 k H zサンプリング、 20ビット量子化の高品質の映像情報を約 47分記録再 生出来るディスクを説明した。 このディスク 1は、 同一の映像情報が MPEG 1 の品質、 MP EG 2の品質で記録されているいわゆるシングルインベントリであ るので、 出) 者にとっても、又ディスクを購入するユーザにとっても有意義で ある。
前述した光ディスク 1の構成とは異なり、本発明の別の情報記録円盤である光 ディスク 10は、 図 4に示すように、 セン夕一ホール 3から半 ^向に順に区分 した第 1領域 Aび第 2領域 Bを有する信号言 面 20を備えている。 そして、 第 1領域 Aに赌する内周側 (センターホール 3側) に第 3領域 CCが設けられて いる。
第 3領域 CCには^するように、 第 2領域 Bに^される第 1のデータに関 するリードィン信号を、 第 1のデータの言 密度と同一の記録密度である情報信 号がき される。 この情報信号は、 T O C (巨次) 情報やプレーヤの ¾IEを行う 等のテスト信号を中心とするリ一ドィン信号である。
光ディスク 1 0の半径方向に言 される情報領域は、 図 5に示すように、 aは 光ディスク 1 0の半径、 bはセンタホール 3の中心 0から信号記録面 2 0の^ 周 (リードアウト) までの^、 cはセンタホール 3の中心 0から信号言 Ηϋ面 2 0の最 周 (リードイン) までの半径、 dはセンタホール 3の半径、 eは信号記 録面 2の信号記録領域である。
第 1領域 Aはリードイン領域 A I , 信号記録領域 A P, リードアウト領域 A O から構成される。
第 2領域 Bはリードイン領域 B I 1 , 信号記録領域 B P, リードアウト領域 B 0から構成される。
第 3領域 C Cはリードィン領域 B I 1に記録されるリ一ドィン信号のデータを 少なくとも有するリードイン信号を^するリードイン領域 B I 2である。 即ち、第 2領域 Bのリードイン領域 B I 1に記録されるリードイン信号の内容 は、 第 3領域 C Cに記録されるリードイン信号の内容と fi^するので、 第 3領域 C Cに言 されるリ一ドィン信号を主と考えれば、 第 2領域 Bのリードィン領域 B I 1に記録されるリ一ドィン信号の内容を^に応じて変更 (減ら) しても不 都合はない (リ一ドィン領域 B I 1に言 されるリ一ドィン信号の簡略化) 。 この変更の例として、通常、 読み取りミスがないように何回も同一データを重 ね害きしている T O C情報を、 リードイン領域 B I 1に記録されるリードイン信 号だけには、 ただ 1回の T O C情報を書き込む。 この結果、 この重ね害きしない 分だけ、 リードイン領域 B I 1の記録容量を減少することができる。 この減少し た容量分だけ、信号 ¾^域 B Pの記録容量の増加に振り向けても良い。
[第 4¾½例]
次に、本発明の情報記録円盤の第 4 H½例を直径 1 2 O mmのオーディオデイ スクを用いて具体的に説明する。 ディスク厚 (ディスク表面 (保護層) からディ スク信号面までの距離) は 1. 2mm。
再生を始める内周側に位置する第 1領域 Aは CDフォーマツト (J I S S
8605規格に準拠) で記録する。 半径 23mm〜25 mmのリ一ドィン領域 A Iも第 1領域 Aに含めて、 CDフォーマッ トにより記録する。
このリードィン領域 A Iに従来の C Dプレーヤには全く影響を与えなく、 第 2領 域 B力く存在することを新フォーマツトの再生装置 (プレーヤ) では読み取れる様 にステータスを立てる事は容易である。 例えば、 CDのサブコードを用いて記録 された TO C (目次表) の未使用ビットに定義を割り当て、 第 2領域 Bが存在す るステータスを立てるようにすれば良い。
第 1領域 Aは、 信号記録領域 A Pに記録されている音楽情報終了に続き、 リー ドアウトトラック (リードアウト領域 AO) を規定長記録して終了させる。 第 1領域 Aの信号記録領領域 A Pに言 する音楽情報プログラムは、 C Dのサ ンプリングレート (サンプリング周波数 44. 1 kHz) と、 量子ィ匕ビット数 1 6ビットによりデータ化されている。
—方、第 2領域 Bの信号記録領領域 BPに言^する音楽情報プログラムは、 サ ンプリング周' ¾ [を 88. 2kHz、量子化ビット数を 20ビットとして、信号 言 ¾ 領領域 APに音楽情報を記録する際に用いられるサンプリングレートと量子 化ビット数より相対的に高くする。
第 2領域 Bの信号言 領域 B Pに記録されている音楽情報の言 密度は 2〜 1 0倍力く好適であるが、本 例では信号記録領域 A Ρの 密度 (信号記録面 2 の全面で 0. 8GBの記録容量) の 4. 5倍 (信号記録面 2の全面で 3. 7GB の言 容量) とする。 また、 2つの信号記録領領域 AP, BPに言¾¾する音楽ソ ースは完全に同一とする。
第 2領域 Bの信号 領領域 BPの再生は新フォーマツトの再^置 (プレー ャ) を用いる。 この音楽情報データを再生するために、 新フォーマツ卜の再^ 置でバッファメモリ及びビックアップのキック待ち、 サーチ機能を用い、 再生す る技術を用いる (この技術の基本的な説明は特開平 1一 2 2 3 6 6 9号公報に述 ベられている) 。
第 3領域 C及び第 2領域 Bは新フォーマツトの再生装置 (プレーヤ) を用いて 再生するので、 このプレーヤは C Dフォーマツ卜よりも更に内周側の例えば半径 2 2. 5 mn!〜 2 3 mmに設けた第 3領域 Cをリードィン領域と決めることがで 以上の様にディスクを構成すれば、 C Dプレーヤも高密度の新フォーマツトプ レーャもそれぞれの記録密度に対応したリードィン領域を最初に再生でき、 それ ぞれのプレーヤにとつて信号読み出し条件が最適となる。
次に、 前述した光ディスク 1、 1 0のいずれの構成とも異なる本発明の情報記 録円盤である光ディスク 1 0 0について説明する。
上述したように、 音楽情報言 円盤としての C Dは技術力良く知られており、 その C Dの読み取りはレーザ波長 7 8 0 n mを用いる様にシステム設計されてい るのに対して、 近年レーザ光波 6 3 5 n m前後のレーザ力《実用化され始め、 これ を用いて読み取る高密度円盤が開 ¾ϋ行されている。 ここでは高密度 C Dと呼ぶ ことにする。
—方、 C Dの記録密度領域と高密度 C Dの記録密度領域とを 1枚の円盤に同居 させると、 アプリケーションに広がりを持つことが考えられる。
C Dの読み取りレーザ波長 7 8 0 n mに対して、 公開された規格になってはい ない開発段階の高密度 C D盤は 6 3 5 n m前後の短波長レーザを用いて読み取る 様にシステム設計されている。 これらに関し、 円盤のピットの深さは読み取りレ 一ザ波長の 0. 2 5倍に関連して決められる。 以下、 本発明を多数のピット列が 信号トラックを形成して情報を H^するディスクを例にして説明する。 規格としてピット深さは規定されてはいない力 規格で定める標準光ピックァ ップを用いた 信号特性が範囲をもって規定されており、 この結果、 ピット深 さ力《範囲をもって決まる。 ピット深さと直接関係する記録原^ ^厚は、 CD規格 を満たすには等価的に約 100 nm〜約 125 nm、 高密度 CD規格では等価的 に約 85 nm〜約 105 nmである。 ここで「等価的に」 とは、 ピット深さに関 係する再生信号特性は記録原盤膜厚のみで決まらず、記録現像条件、 プレス用の スタンパ制作条件、 プレス条件等で変わってくるものであり、 これらの変動を含 めて記録原盤膜厚の数値でこれを表す事を指している。
標準値よりもピッ 卜が浅いと、 ビッ卜に照射した読み取りレーザの反射光を差 動検出して得たプッシュプルトラッキング出力は大きくなり、 信号変調度が小さ くなる。反対に、 標準値よりもピット力、'深いとプッシュプルトラッキング出力は 小さくなり、 信号変調度が大きくなる。 この様子を図 7で示す。 同図中、 Iは C D信号の変調度であり、 I Iは高密度 CD信号のプッシュプルトラッキング出力 である。
図 7に示すように、 1枚の円盤に CD領域 (低密度 ¾領域、 第 1領域) と高 密度 CD領域 (高密度言 領域、 第 2領域) とをそれぞれの規格を満たして、 後 述する図 6に示すように、 同居させる際、双方の規格を満たす記録原 厚範囲 は等価的に、 管理幅 DD (図 7に図示) で示す様に、 Ι ΟΟηπ!〜 105nmと なり、 管理幅 (デイス 製 i 穆にて を行つていく際の—等価的膜厚 ^ a 幅) としては狭い。
ピット深さに関係する再生信号特性は、 言 原 厚のみで決まらず、 記録現 像条件、 プレス用のスタンパ制作条件、 プレス条件等で変わってくるものであり、 これらを含めた カ^^となる。
円盤の 的精度特性に関し、 代表的な項目として、 円盤の反り (チルト) 特 性は、 CD規格では 0. 6度であるが、高密度 CD規格では、 例えば 0. 35度 である。 1枚の円盤に CD領域と高密度 CD領域とを同居させる際、 CD領域に も高密度 C Dの a«的精度特 格を適用する事は、 小さな負担で実現出来る。 この様に規 匕し、 これを満たすように円盤を生産することにより、 CD領域 の再生信号劣化は代表的な項目としてチルト分 0. 6度では無く、 0. 35度分 と見込んで良い。
上記チルト 0. 35度分という少な 、再生信号劣化の見込みより生まれる CD 領域再生の余裕分を、等価的な記録原盤膜厚範囲が 100nm〜105nmと生 産管理幅 DDが狭いのを、救済する方向に振り向けた事は本発明の主要な作用で ある。 本発明の円盤の CD領域の再生信号特性の中、 CD規格の変調度を若干、 例えば、 C D領域と高密度 C D領域を含む偉号言^ i全面を C D領域の言 密度で 己録する際の変調度の 0. 95倍に変更すれば、 高密度 CD規格と変更後の CD 領域規格との双方の規格を満たす等価的な記録原盤膜厚範囲は図 2の管理幅 Eで 示すように約 95〜: L 05nmとなり ^1管理幅が十分広がる。 なお、高密度 C D規格で ( 等価的膜厚は約 85nm~105n mであり、 図 7の曲線 Iより、 本 発明の円盤の C D領域の、 C D規格の変調度は前記信号記録全面を ς D領域の言己 録密度で I己録する際の変調度の約 0 7倍である力^ 信号 の寧点から 度 は大きい方が良く、 0. 8〜0. 95倚が好適である。
本発明の円盤の CD領域の信号変調度を CD規格の 0. 95倍としたときの再 生信号劣化はジッ夕で 0. 5 %以下の劣化であり、 他方円盤のチルトを C D規格 の 0. 6度では無く 0. 35度とした事による再生信号向上分はジッ夕で 1%以 上である。 チルト以外に、面振 u偏心等の向上についても同様に再生信号向上 分として寄与する。 また、難的精 格に付いて述べたが、 観折特性等の光 学的精度についても同様である。
より、 ジッタの劣化分と向上分とで示した合理性を持って、 円盤全面が高 密度 C D領域の密度である事を に定められた円盤の tg¾fi的及び光学的精 S¾ 格を、 本発明の C D領域及ひ ^密度 C D領域からなる円盤の全領域に適用し、 円 盤全面が C D領域の密度である事を に定められた規格の信号特 ¾S格に比べ、 本発明の円盤の C D領域の信号特^格変更することを特徴とする情報記録円盤 の実施例を述べた。
本発明は、 説明の解り易さを mmして位相ピットの例で説明したが、 位相ピッ トのみならず、 溝トラッキングの深さに関しても同様であり、 反射 の変ィ匕す る記録再生法、 反射光の偏光角力変化する光磁気法等の円盤にも適用出来るもの である。
[第 5錢例]
以下、 本発明の情報記録円盤の構成を図 6, 図 8を用いて説明する。
本発明の情報記録円盤の第 5実施例である光ディスク 1 0 0は、 図 6に示すよ うに、 センタ一ホール 3から半 S ^向に順に区分した第 1領域 A及び第 2領域 B を有する信号記録面 2を備えている。 そして、 第 1領域 Aに する内周側 (セ ンターホール 3側) に第 3領域 C Cが設けられている。 同図中、 0はディスク中 aは^。 例えば、光ディスク 1 0 0の直径は 1 2 O mm、 その半径 aは 6 O mm、 センターホール 3の直径は 1 5 mmである。
第 3領域 C Cは後述するように、 第 2領域 Bに記録される第 2のデータに関す るリードィン信号を、 第 2のデータの記録密度と同一の言 密度で記録されるリ ードイン領域である。 このリードイン信号は、 T O C情報やプレーヤの^ IEを行 う等のテスト信号を中心とする信号である。
光ディスク 1 0 0の半 ^向に記録される情報領域は、 図 8に示すように、 b は光ディスク 1 0 0のセンタホール 3の中心 0から信号^面 2の 周 (リー ドアウト) までの半径、 cは中心 0から信号記録面 2の最内周 (リードイン) ま での半径、 d dは中心 0から第 3領域 C Cの最外周までの半径、 6 6は中心0か ら第 3領域 C Cの最内周までの半径、 f はセンタホール 3の^、 gは信号 面 200の信号記録領域幅である。
例えば、 半径 aが 6 Ommであると、
半径 bは 58. 5mm、
半径 cは 25mm+ 0mm〜25mm— 0. 2mm、
半径(1 は23. 0mm+0mni〜23. Omm- 0. 2mm、
半径 e eは中心 oから最大 22. 5mm、
半径 f は 7. 5mm、
第 1領域 Aは第 1のリードィン領域であるリードィン領域 A I , 第 1のデータ 力《記録される信号記録領域 A P, リ一ドアゥ卜領域 AOから構成される。
第 2領域 Bはリードイン領域 B I 1, 第 2のデータが記録される信号記録領域 BP, 第 2のリードァゥト領域であるリードァゥト領域 BOから構成される。 第 3領域 C Cは第 2のリードィン領域であり、 第 2領域 Bのリードィン領域 B I 1に言 されるリ一ドィン信号のデータを少なくとも有するリ一ドィン信号を 記録するリ一ドィン領域 B I 2である。
即ち、 第 2領域 Bのリードイン領域 B I 1に記録されるリードイン信号の内容 は、 第 3領域 CCに記録されるリードイン信号の内容と重複するので、 第 3領域 C Cに記録されるリ一ドィン信号を主と考えれば、 第 2領域 Bのリードィン領域 B I 1に記録されるリードイン信号の内容を^に応じて変更 (減ら) しても不 都合はない (リ一ドィン領域 B I 1に記録されるリ一ドィン信号の簡 B ^匕) 。 この変更の例として、 通常、読み取りミスがないように半径方向の幅で 2 mm £1±も同一データを繰り返して記録している TO C情報を、 リードィン領域 B I 1に記録されるリ一ドィン信号は半径方向の幅で 0. 3mmだけ TO C情報を害 き込む。 この結果、 リードイン領域 B I 1の記録容量を することができる。 この した容量分だけ、信号 領域 B Pの記録容量の増加に振り向けても良 い。 次に、本発明の情報記録円盤を直径 120 mmのオーディォディスクを用いて 具体的に説明する。 ディスク厚 (ディスク表面 (保 ¾ ) からディスク信号 ¾ま での距離) は 1. 2mmであり、 第 1領域 Aと第 2領域 Bのピット深さは同一で あ 。
再生を始める内周側に位置する第 1領域 Aは CDフォーマツト (J I S S 8605規格に準拠) で記録する。 半径 23mm〜25mmのリードィン領域 A Iも第 1領域 Aに含めて、 CDフォーマットにより記録する。
このリードイン領域 A Iに従来の CDプレーヤには全く影響を与えなく、 第 2領 域 Βτί)《存在することを新フォーマツトの再生装置 (プレーヤ) では読み取れる様 にステータスを立てる事は容易である。 例えば、 CDのサブコードを用いて記録 された TOC (目次表) の未 ビッ卜に定義を割り当て、 第 2領域 Bが存在す るステータスを立てるようにすれば良 L、。
第 1領域 Aは、 信号言 領域 A Pに記録されている音楽情繊了に続き、 リー ドアウトトラック (リードアウト領域 AO) を規定長記録して終了させる。 第 1領域 Aの信号記 領域 A Pに言 する音楽情報プログラムは、 C Dのサ ンプリングレート (サンプリング周波数 44. 1 kHz) と、量子化ビット数 1 6ビットによりデータ化されている。
一方、第 2領域 Bの信号記録領領域 BPに記録する音楽情報プログラムは、 ― 例を上げるとサンプリング周 ' ¾ (を 88. 2 kHz、量子化ビット数を 20ビッ トとして、信号言 領領域 APに音楽情報を言 する際に用いられるサンプリン グレートと量子ィ匕ビット数より相対的に高くする。
第 2領域 Βの信号記録領域 Β Ρに言 されている音楽情報の記録密度は、 信号
Figure imgf000027_0001
Pの記獎荦度の 2〜 10偖が 濘_で ¾_るが、本 例では信号記纖 域 APの § 密度 (信号 § 面 2の全面で 0. 8 GBの記録容量) の 4. 5倍 (信号^面 2の全面で 3. 7 GBの記録容量) とする。 また、 2つの信号言 領領域 A P, B Pに記録する音楽ソースは完全に同一とする。
第 2領域 Bの信号記録領領域 B Pの再生は新フォーマツトの再生装置 (プレー ャ) を用いる。 この音楽情報データを再生するために、新フォーマツ卜の再生装 置でバッファメモリ及びピックアツプのキック待ち、 サーチ機能を用い、再生す る技術を用いる (この技術の基本的な説明は特開平 1一 2 2 3 6 6 9号公報に述 ベられている) 。
第 3領域 C C及び第 2領域 Bは新フォーマツ 卜の再生装置 (プレーヤ) を用い て再生するので、 このプレーヤは C Dフォーマツトよりも更に内周側の例えば半 径 2 2. 5 mm〜 2 3 mmに設けた第 3領域 C Cをリ一ドィン領域と決めること ができる。
の様にディスクを構成すれば、 C Dプレーヤも高密度の新フォーマツトプ レーャもそれぞれの記録密度に対応したリ一ドィン領域を最初に再生でき、 それ ぞれのプレーヤにとつて信号読み出し条件が最適となる。
±ίΕした光ディスク 1 0 0は、 第 1領域 Αに C Dの低記録密度で情報を記録す ると共に第 2領域 Bに高密度 C Dの高記録密度で情報を記録する構成のものであ るが、 本発明はこの構成に限定されることなく、 第 1領域 Aに高密度 C Dの高記 録密度で情報を すると共に第 2領域 Βに C Dの低記録密度で情報を fH^する 光ディスクであっても良いことは言うまでもない。
(B) 本発明の情報言¾|媒体を図 9〜図 1 2に沿って、 2枚のディスクを張り合 わせた構造について説明する。
[第 6 ¾ϋ例]
図 9は本発明に関わる情報記録円盤の第 6実施例を示す断面図であり、光ディ スク 2 0 0の中心を通る断面で截断した場合の断面図である。
図 9において、 を有する円盤状のディスク基板(第 1基板) 2 1 0には、 その外周側に凹凸皿の情報ピットが周回状に形成された第 1き 層 2 2 0力《形 成されており、 この第 1記録層 2 2 0上には、 第 1反射層 2 3 0か ¾ [層されてい る。
また、 前記第 1基板 2 1 0と同等の厚さを有し ^性を有する円盤状のデイス ク基板 (第 2基板) 2 5 0には、 その内周側に凹凸形状の情報ピッ卜が周回状に 形成された第 2記録層 2 6 0が形成されており、 この第 2記録層 2 6 0上には、 第 2反射層 2 7 0と保 ¾ 2 8 0と力《形成されている。
前記第 1基板 2 1 0、 第 2基板 2 5 0は共に約 0. 6 mm のディスク厚を有し、前 記第 1記録層 2 2 0は高密度記録の仕様に従って、 例えば C Dの 4倍の記録密度 で言 さ 前記第 2記録層 2 6 0は低密度記録の仕様に従って、 例えば C Dと 同様の記録密度で記録されている。
光ディスク 2 0 0は、前記したように加工された第 1基板 2 1 0と第 2基板 2 5 0とを、 接着層 2 4 0を介して接着することにより製造される。 この場合、前 記第 1記録層 2 2 0は光ディスク 2 0 0の厚さ方向の中心部付近、 即ち接着層 2 4 0の付近に配置され、前記第 2記録層 2 6 0は光ディスク 2 0 0の表面 3 4 0 付近に配置される。
前記第 1反射層 2 3 0の反射率は約 9 5 %であり、 前記第 2反射層 2 7 0の反 射率も約 9 5 %である。
前記光ディスク 2 0 0の再生は、 光ディスクの表面 3 3 0側からレーザ光 (再 ^t を照射することによって行われる。
光ディスク 2 0 0は、厚さ 0. 6 mmの 2枚のディスク基板を張り合わせた構 造を有する。 そして、信号の読み出し側とは反対側の表面 3 4 0の近傍に配置さ れた第 2 m 2 6 0では、 ディスク 2 0 0の内周側に C Dの如く低密度に情報 が記録されていて、 その上に第 2反射層 2 7 0がコーティングされている。前記 張り合わせた光ディスク 2 0 0の厚さは 1. 2 mmとなるため、 現在普及してい る C Dプレーヤーに最適なディスク厚となっている。 前記第 2記録展 2 6 0の情報を確実に読み取れるように、 第 1反射層 2 3 0の コーティングはマスキング等の手段を講じることによって、 内周側では形成され ないようにされている。 このため、 再生用レーザ光は第 2記録層 2 6 0まで殆ど 損失無く到達し、 その反射光も殆ど損失無く読取り用光学へッ ドに到達する。 前記第 1記録層 2 2 0は、 接着層 2 4 0の近傍に外周側にのみ形成されており、 高密度光ディスクの仕様で情報が言 されている。 この第 1記録層 2 2 0上には 第 1反射層 2 3 0がコーティングされていて再^力く反射されるので、 この部分 では光ディスクのディスク厚は実質的に 0. 6 mmとなり、 高密度光ディスク、 及び高密度光ディスクの再生装置に適した厚さとなっている。
[第 7難例]
図 1 0は、 本発明の第 7実施例である光ディスク 4 0 0を示す断面図であり、 図 9に示す光ディスク 2 0 0と異なる点は、 高密度に記録される第 1記録層 2 2 O aが、第 1基板 2 1 0 a 側に形成されるのではなく、 第 2基板 2 5 0 a 側に形 成される点である。
即ち第 2基板 2 5 0 a の一方の面には、 内周部 (内周側の領域) に低密度の記 録がされ、 他方の面には、 外周部 (外周側の領域) に高密度の記録がされている。 第 1基板 2 1 0 a は情報が記録されない 性の円盤である。 前記第 1基板 2 1 0 a 、第 2基板 2 5 0 a の厚さは共に約 0. 6 mmであり、接着層 2 4 0 a を介 して接着されている。
[第 8難例]
図 1 1は、 本発明の第 8 HIS例である光ディスク 5 0 0を示す断面図であり、 図 9に示す光ディスク 2 0 0と異なる点は、 高密度に言 される第 3記録層 3 2 0力、'、第 2基板 2 5 0 a 側に形成されている点と、前記第 1反射層 2 3 0の反射 率か 反射率ある 、は ί£Κ ί率とされている点である。
即ち光ディスク 5 0 0では、 第 2基板 2 5 0 a の一方の面には、 内周部に低密 度の記録がさ の面には、 外周部に高密度の記録がされている。 第 1基板 2 1 0は情報が記録されない 性円盤である。 前記第 1基板 2 1 0、 第 2基板
2 5 0の厚さは共に約 0. 6 mmであり、 接着層 2 4 0 a を介して接着されてい る。
前記第 3言 層 3 2 0は、 前記第 2基板 2 5 0 a の接着層 2 4 0 a 側に形成さ れ、 第 1記録層 2 2 0と同様に外周側に設けられている。 また、前記第 3記録層
3 2 0上には第 3反射層 3 1 0力《積層されている。
前記第 1反射層 2 3 0の反射率は約 3 0 %あるいは約 9 5 %であり、 前記第 2 反射層 2 7 0及び第 3反射層 3 1 0の反射率は約 9 5 %である。
光ディスク 5 0 0は、高密度記録の部分が両面タイプになっており、 第 1反射 層 2 3 0を半透過膜とすれば、 高密度記録の部分はいわゆるデュアルレ一ヤー盤 となり、 片側から両記録層 2 3 0. 2 6 0の再生をすること力河能である。 一方、 第 1反射層 2 3 0、 第 3反射層 3 1 0ともに高反射率とした場合には、第 ¾ 層 2 2 0の再生と第 3記録層 3 2 0の再生とでは、 レーザ光の照 Ji方向を逆にし て行われる。
なお、 本発明の情報記録円盤では、 前記内周部と前記外周部の位置関係につい ての留意点があり、以下この点について図 1 1及び図 1 2を基に説明する。
図 1 2は、言 不可能な部分の説明図であり、 高密度記録の部分か タイプ になっている場合のものである。
同図において、説明を簡単にするために、 前記第 2記録雇 2 6 0の位置は略光 ディスク 5 0 0の表面 3 4 0と同じ位置に示されており、前記接着層 2 4 0の厚 さを省略して示されている。
前記第 1 t m 2 2 0、 第 3記録層 3 2 0は半径 r 1より外周側に設けら 前記第 2言 層 2 6 0は^ l r 2より内周側に設けられるものとする。 また、光 ディスク 5 0 0の第 2言 雇 2 6 0の情報を再生するレーザ光は、対物レンズ 3 50を通って前 ^l基板 210側から される。
前記第 1反射層 230あるいは第 3反射層 310でレーザ光力く遮られないよう にするために、 半径 r 2より内周側の領域と半径 r 1より外周側の領域との間に、 記録できない部分が生じる。 (r l— r 2) は渡りの長さと呼ばれる場合もあり、 図では Lで示されている。
また前記第 1基板 210、 第 2基板 250の厚さを ddZ2とし、 前記渡りの 長さを Lとすると、 前記しとしては次式を満足する必要がある。
L > (dd/2) * t an (a r e s i n (NA/n) )
ここに、 nは第 1基板 210、 第 2基板 250a の屈折率であり、 NAは対物 レンズ 350の開口数である。
d = 1. 2mm 、 n = 1. 5 、 NA= 0. 6
とすると、 L>0. 26 mmとなり、記録不可能な領域は比較的小さい範囲であ ること力分かる。
以下、 本発明の第 例〜第 8H½例における光ディスクの再生について述 ベる。
CDプレーヤーでは光ディスクの最内周部から再生が開始されるために、本発 明の光ディスクを低密度光ディスクの ¾^置で再生した場合は、 低密度記録が 行われている前記第 2言 層 260の情報の再生は問題なく行われる。
また、 高密度光ディスクの再生装置でも、 まず光ディスクの最内周部から情報 力再生されるが、 この再生シーケンスに都合の良い工夫が、 本発明の光ディスク に盛り込まれている。 即ち、 高密度光ディスクの再生装置では、 外周側に高密度 ^の情報力く記録されているということ力く再生開始時にわかると、 様々なプログ ラムに応じて シーケンスを組み立てる上で都合がよい。 この点について、本 発明の光ディスクの第 9H½例、 第 10¾½例を基に説明する。
[第 9 例] 本発明の第 9 ¾¾例 (図示せず) について説明する。
C Dのような低密度光ディスクにおいては、 光ディスクの最内周部に T Oじと 呼ばれる目次情報が記録されている。 C Dプレーヤーではまず前記 T O C情報が 再生され、 プログラム内容と記録位置の関係が調べられ、 その後必要な情報が再 生される。 この点に鑑みて、 本発明の第 9 ¾½例では、 図 9において第 2記録層 2 6 0の記録領域の最内周部に、 外周側に高記録密度の記録が成されていること を示す情報が記録されている。 この情報は例えば、 C D信号のサブコード領域に 言 される。 高密度光ディスクの再生装置では、 内周側の低密度記録の領域を再 生できるので問題ない。
[第 1 0 例]
本発明の第 1 0 ¾½例 (図示せず) について説明する。
第 1 0 ¾½例の光ディスクでは、 高密度記録の領域は、 前記した外周部と共に 最内周部にも設けられる。 即ち図 9において前記第.1記録層 2 2 0より外周側の 領域と、前記第 2言 層 2 2 0より内周側の領域とに、 高密度記録の領域が設け られ、前記最内周部の高密度記録領域に、 外周側に高密度記録の情報があるとい うことを示す情報が低密度に言 される。
前記した最内周部の高密度記纖域は、 前言 周部の高密度記録領域 (第 1記 録雇 2 2 0あるいは第 3 ^層 3 2 0 ) と同一面上に設けられる。
なお、 前記第 1基板 2 1 0と、 第 2基板 2 5 0 (2 5 0 a ) の厚さは、 0. 6 mmに限定されるものではなく、 また、 その厚みが必ずしも等しくなくても良い。 例えば、 、 Wfeレーザの開発が進み、 より高密度の記録や再生か^ I能となれ ば、 例えば、前記第 1基板 2 1 0の厚さを 0. 4 mm、 第 2基板 2 5 0 (2 5 0 a ) の厚みを 0. 6 mmとすることも考えられる。 また、前記低密度記録層と高 密度記録雇とに、 同一内容の情報 (プログラム) を した場合には、光デイス クの « ^側には光ディスクの種類が減少すると言う利点があり、 また、普及率 の低い高密度光ディスクの普及を (Sit出来ると言う利点もある。
産 Lhの利用可
本発明によれば、 ユーザが従来より所有している再生装置を用いて円盤内周側 の第 1領域を再生出来、新し Lゝ高密^ K用再生装置を購入すると同じ円盤を用 、 て、 より高品質な第 2領域を再生出来る情報記録円盤を提供することができ、 ま た、 第 1領域及び第 2領域には同一の情報が相違する品質で記録されているシン グルインベントリであるので、 2種類のディスクを別個に生産、 在庫とすること がないから、 ^効率を向上でき、 しかも流通在庫を半減することができるので、 生産者、 販売者にとり極めて好都合であり、 さらに、 円盤を購入するユーザにと つても有意義である。
さらに本発明によれば、情報記録に同一の音楽ソースが標準密度 (標準品質) と高密度 (高品質) とで言 されている場合、 従来より所有しているの標準品質 対応の再生装置を用いて円盤内周側の第 1領域を再生でき、 また、 高品質対応の 再生装置を用いて円盤外側の第 2領域を再生できる。
さらに本発明によれば、 従来より所有している再生装置 (C Dプレーヤ) も、 新しい高密^ 用再生装置 (高密度の新フォーマツトプレーヤ) もそれぞれの記 録密度に対応したリードイン領域を最初に でき、 それぞれのプレーヤにとつ て信号読み出し条件を最適とすることができる。
さらに本発明によれば、第 2領域の第 1データに関する情報信号 (即ち、 リー ドイン領域 B I 1に言 されるリードイン信号) の内容をそのまま第 3領域に記 録するから、 第 2領域に記録されるリ一ドィン信号の内容を簡略化することがで き、 この簡^匕して iiした言 容量の分だけ、 第 2領域の第 1データ信号の記 録容量の増加を図ることができる。
さらに本発明によれば、 円盤に同一の音楽ソース力標準密度 (標準品質) と、 高密度 (高品質) より一段と高い密度である超高密度 (超高品質) とで され ている場合、 従来より所有しているの標準品質対応の再生装置を用いて円盤内周 側の第 1領域をそのまま再生でき、 また、 超高品質対応の再生装置は第 3領域の 情報信号に導出されて円盤内外側の第 2領域を確実に再生できる。
さらに本発明はよれば、 位相ピット又は溝力《形成される光ディスクにおいて、 信号記録面を半径方向に区分して第 1領域と第 2領域との領域に分け、 第 2領域 の記録密度を第 1領域の記録密度の 2〜 1 0倍高密度とし、 ピッ トの深さは第 1 領域と第 2領域とを同じとし、 円盤全面が第 2領域の密度である事を に定め られた円盤の 的及び光学的精 格を、本発明の第 1領域及び第 2領域から なる円盤の全領域に適用したから、 円盤全面力《第 1領域の密度である事を に 定められた規格の信号特性規格に比べ、本発明の円盤の第 1領域の信号特性規格 変更することにより、 総合的な再生特性を劣化させること無く、 情報記録円盤の 生産性を向上することが出来る。
さらに本発明によれば、 ユーザが より所有している再生装置を用いて円盤 内周側の第 1領域を再生でき、 新し ヽ高密]^用再生装置を購入すると同じ円盤 を用いて、 より高品質な第 2領域を再生できる情報言 ¾|円盤を提供することがで き、 円盤に同一の音楽ソース力標準密度 (標準品質) と高密度 (高品質) とで記 録されている場合、 従来より所有しているの標準品 ®¾ί応の再生装置を用いて円 盤内周側の第 1領域を再生でき、 また、高品質対応の再生装置を用いて円 側 の第 2領域を再生できる。
さらに本発明によれば、 従来より所有している再生装置 (C Dプレーヤ) も、 新しい高密 ¾S用再生装置 (高密度の新フォーマツトプレーヤ) もそれぞれの記 録密度に対応したリ一ドィン領域を最初に再生でき、 それぞれのプレーヤにとつ て信号読み出し条件を最適とすることができる。
さらに本発明によれば、 第 2領域の第 1データに関する情報信号 (即ち、 リー ドィン領域 B I 1に記録されるリ一ドィン信号) の内容をそのまま第 3領域に記 録するから、 第 2領域に記録されるリ一ドィン信号の内容を簡! ^ヒすることがで き、 この簡略ィ匕して減少した言 Ξϋ容量の分だけ、 第 2領域の第 1データ信号の記 録容量の増加を図ることができる。
さらに本発明によれば、 情報円盤に同一の音楽ソース力標準密度 (標準品質) と、 高密度 (高品質) より一段と高い密度である超高密度 0@高品質) とで記録 されている場合、 従来より所有しているの標準品質対応の再生装置を用いて円盤 内周側の第 1領域をそのまま再生でき、 また、 超高品質対応の再生装置は第 3領 域の情報信号に導出されて円盤内外側の第 2領域を確実に再生できる。
さらに本発明によれば、 同一の情報記録円盤力低密度光ディスクの再生装置で も、高密度光ディスクの再生装置でも再生出来る。
さらに本発明によれば、 1枚の基板に複数の記録層を形成する場合に比して、 光ディスクのき、 製造が容易である。
さらに本発明によれば、 高密度光ディスクの再生装置で再生する場合に、 低密 度光ディスクの再生装置と同様にまず最内周を再生すればよいので、 再生の制御 が容易になる。

Claims

請 求 の 範 囲
1. 第 1のデータが記録される第 1信号記録領域と、
半径方向に前記第 1領域よりも外側の信号言 領域であって、 第 2のデータカ、 前記第 1のデータよりも高密度に記録さ^ 且つ、 前記第 2のデータが前記第 1 のデータと同一内容の情報を含む第 2信号記録領領域とを備えた情報記録円盤。
2. 前記第 2のデー夕の記録密度は前記第 1のデータの記録密度の 2倍〜 1 0倍である請求項 1記載の情報記録円盤。
3. 前記第 2のデータのサンプリングレート、 量子化ビット数、 画素数は各 々、前言 SB1のデータのサンプリングレート、 量子化ビット数、 画素数よりも多
^、請求項 1記載の情報 ell円盤。
4. 前記第 1のデータは固定 レートで記録され、 前記第 2のデータは可 変 ϋ¾レートで記録される請求項 1記載の情報記録円盤。
5. 前記第 1のデータは 帯域の音楽信号で、前記第 2のデータは 帯 域外の超音波帯域迄の音楽信号である請求項 1記載の情報記録円盤。
6. 第 1のデータが言 される第 1信号言 領域と、
半径方向に前記第 1領域よりも外側の信号記録領域であって、 第 2のデータが、 前記第 1のデー夕よりも高密度に記録される第 2信号記録領領域と、
前記半径方向に前記第 1領域よりも内側の信号記録領域であって、前記第 2の デ一夕に関する情報信号か 言己第 2のデータの記録密度と同一の記録密度で記録 される第 3領域とを備える情報言 円盤。
7. 前記第 2のデータの記録密度は前記第 1のデータの言^密度の 2〜 1 0 倍である請求項 6記載の情情報言^円盤。
8. 第 1信号記録領域と、 半径方向に前記第 1信号言 領域に離し、前記 第 1信号言 領域の記録密度の 2倍〜 1 0倍で信号が言 さ 信号言 用溝深 さが前記第 1信号記録領域の信号言 Ξϋ用溝深さと同一である第 2信号記録領域と を有する信号記録面を備え、
前記第 2領域の記録密度で前記信号を記録する際に定められた機械的精度及び 光学的精度力前記信号言 2ϋ面全面に適用されている情報記録円盤。
9 · 前記第 1領域における信 "^変調度は前記信号記録面全面が前記第 1領域 の記録密度で ΪΕϋする際に定められた信"^変調度の 0. 8倍〜 0. 9 5倍である 請求項 8記載の情情報記録円盤。
1 0. 前記第 1領域は前記情報記録円盤の半径方向の内側、 前記第 2領域は 前記半径方向の外側に形成されている請求項 8記載の情報記録円盤。
1 1. 前記第 1領域の内側に、 前記第 2領域に関する情報が前記第 2領域の 記録密度と同一の記録密度で記録される情報記録領域を有する請求項 1 0記載の 情報記録円盤。
1 2. 前記第 1領域の内側に、前記第 1領域及び前記第 2領域に関する情報 力《前記第 1領域の記録密度と同一の記録密度で記録される情報記録領域を有する 請求項 1 0記載の情報記録円盤。
1 3. 前記第 1領域は前記情報記録円盤の半径方向の外側、 前記第 2領域は 前記半 向の内側に形成されている請求項 8記載の情報記録円盤。
1 . 前記第 2領域の内側に、前記第 1領域及び前記第 2領域に関する情報 が前記第 1領域の記録密度と同一の記録密度で記録される情報記録領域を有する 請求項 1 3記載の情報 円盤。
1 5. 第 1基板と再生光が照射される側の第 2の基板が接着層を介して接着 されて成る情報記録円盤であつて、
前記接着層の近傍であつて前記情報記録円盤の半径方向の外周部に形成さ 情報が記録される第 1記録領域と、
前記情報記録円盤表面の近傍であつて前記情報言己録円盤の半径方向の内周部に 形成され、 前記第 1記録層より低密度に情報が記録される第 2記録領域とを備え る情報記録円盤。
1 6. 前記第 1記録領域を前記第 2基板に設け、前記第 2記録領域を前記第 1の基板に設けた請求項 1 5記載の情報記録円盤。
1 7. 前記第 1記録領域を前記第 1基板の前記接着層側に設け、 前記第 2記 録領域を前記第 1の基板の前記接着層とは反対側に設けた請求項 1 5記載の情報 記録円盤。
1 8. 前記第 1記録領域には前記第 2言 領域より高密度に情報が記録がさ れていることを示す情報が、 前記情報記録円盤の半径方向の前記第 1記録領域よ りさらに内周部に記録されるている請求項 1 5記載の情報記録円盤。
1 9. 前記第 1基板の前記接着層の近傍であつて前記第 1記録領域と対向す る位置に形成され、 前記第 2記録領域より高密度の情報力記録される第 3記録領 域を備えた請求項 1 6記載の情報記録円盤。
2 0. 前記第 1記録領域と前記接着層の間に形成され、 前記再生光を反射す る第 1反射層と、
前記第 3記録領域と前記接着層の間に形成さ 前記第 1反射層の反射率と同 じか、 それ以上の反射率を有する請求項 1 9記載の情報記録円盤。
2 1. 第 1基板と再生光が照射される側の第 2の基板が接着層を介して接着 されて成る情報記録円盤であって、
前記接着層の近傍であつて前記情報記録円盤の半径方向の外周部に形成され、 情報が記録される第 1記録領域と、
前記接着層の近傍であつて前記半径方向の内周部に形成され、情報が記録され る第 2記録領域と、
前記情報記録円盤の表面の近傍であって前 周部と内周部の間に形成され、 前言 1及び第 2記録領域より低密度に情報が言 される第 2記録領域とを備え る情報記録円盤。
2 2. 前記第 1及び第 2記録領域を前記第 2基板に設け、 前記第 3記録領域 を前記第 1基板に設けた請求項 2 1記載の情報記録円盤。
2 3. 前記第 2記録領域に、前記第 1記録領域に前記第 3記録領域より高密 度に情報力記録されていることを示す情報が記録されている請求項 2 1記載の情 報記録円盤。
PCT/JP1996/000830 1995-03-30 1996-03-28 Disque d'enregistrement d'information WO1996030906A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/930,344 US6038208A (en) 1995-03-30 1996-03-28 Information recording disc recorded with signals at two different recording densities
KR1019970707034A KR100309587B1 (ko) 1995-03-30 1996-03-28 정보기록원반
EP96907695A EP0818784A4 (en) 1995-03-30 1996-03-28 INFORMATION RECORDING PLATE

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10054095 1995-03-30
JP7/100540 1995-03-30
JP7/100220 1995-03-31
JP10022095 1995-03-31
JP32834695 1995-11-22
JP7/328346 1995-11-22
JP7/333980 1995-11-29
JP33398095 1995-11-29

Publications (1)

Publication Number Publication Date
WO1996030906A1 true WO1996030906A1 (fr) 1996-10-03

Family

ID=27468809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000830 WO1996030906A1 (fr) 1995-03-30 1996-03-28 Disque d'enregistrement d'information

Country Status (6)

Country Link
US (1) US6038208A (ja)
EP (1) EP0818784A4 (ja)
KR (1) KR100309587B1 (ja)
CN (1) CN1185227A (ja)
TW (1) TW322575B (ja)
WO (1) WO1996030906A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758125A2 (en) * 1995-08-09 1997-02-12 Sony Corporation Recording medium, recording apparatus and reproducing apparatus
EP0758126A2 (en) * 1995-08-09 1997-02-12 Sony Corporation Recording medium and recording/reproducing apparatus therefor
EP0938090A1 (de) * 1998-02-19 1999-08-25 Micronas Intermetall GmbH Audioabspielgerät
US6876617B1 (en) * 1997-07-01 2005-04-05 Sanyo Electric Co., Ltd. Recording medium, recorder, and player
US7522504B2 (en) 2001-11-09 2009-04-21 Kabushiki Kaisha Toshiba Signal quality evaluation method, information recording/reproducing system, and recording compensation method
JP2012009133A (ja) * 2011-09-05 2012-01-12 Toshiba Corp 情報記憶媒体、情報再生方法、情報再生装置、情報記録方法及び情報記録装置
US8107794B2 (en) 1997-08-29 2012-01-31 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8441519B2 (en) 1996-12-04 2013-05-14 Panasonic Corporation Optical disk for high resolution and three-dimensional video recording, optical disk reproduction apparatus and optical disk recording apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310854B1 (en) 1997-11-28 2001-10-30 Yamaha Corporation Optical disk having areas of different recording densities or functions
JPH11167729A (ja) * 1997-12-03 1999-06-22 Yamaha Corp 光ディスクのシーク動作制御方法及び装置
JP3972456B2 (ja) * 1998-04-09 2007-09-05 ソニー株式会社 マルチレイヤーディスク再生装置、及びマルチレイヤーディスク再生方法
DE19907711C2 (de) * 1999-02-23 2002-05-23 Stefan Mais Datenträger mit verschieden formatierten Audio- und Videodaten sowie dazugehörige(s) Aufzeichnungsvorrichtung und -verfahren
US6807142B1 (en) * 1999-07-12 2004-10-19 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for initializing the same
DE59913598D1 (de) 1999-07-15 2006-08-03 Micronas Gmbh Wiedergabegerät
US7092340B2 (en) 2000-07-13 2006-08-15 Micronas Gmbh Playback apparatus
JP2002074848A (ja) * 2000-08-28 2002-03-15 Sony Corp データ記録媒体、データ記録方法および装置、並びにアクセス方法および装置
JP2002074849A (ja) * 2000-08-28 2002-03-15 Sony Corp データ記録媒体、データ記録方法および装置、並びにアクセス方法および装置
JP2002150568A (ja) * 2000-11-07 2002-05-24 Pioneer Electronic Corp 多層ディスク及び多層ディスク再生装置
US6894967B2 (en) * 2000-11-21 2005-05-17 Yamaha Corporation Optical disk recorder for writing data with variable density
KR100455381B1 (ko) * 2002-02-28 2004-11-06 삼성전자주식회사 Odd 제품의 성능을 향상시키기 위한 디스크 및 그 제조방법
MXPA05001297A (es) 2002-08-03 2005-04-28 Samsung Electronics Co Ltd Medio de almacenamiento de informacion y metodo de grabacion y/o reproduccion con respecto al medio.
KR20040013314A (ko) * 2002-08-05 2004-02-14 삼성전자주식회사 멀티 포맷 기록 및 재생 장치와 방법, 및 저장 매체
JP4075744B2 (ja) * 2003-02-12 2008-04-16 日産自動車株式会社 燃料タンクの取付構造
KR100750109B1 (ko) * 2003-02-15 2007-08-21 삼성전자주식회사 정보 저장매체
CN100347769C (zh) * 2003-03-17 2007-11-07 皇家飞利浦电子股份有限公司 多速度可记录信息载体
JP3871060B2 (ja) * 2003-03-25 2007-01-24 株式会社リコー 光記録媒体及び情報記録方法
JP2004327013A (ja) * 2003-04-11 2004-11-18 Nec Corp 光ディスク媒体および光ディスク装置
US6880843B1 (en) 2003-05-28 2005-04-19 Melville T. Greer, Jr. Vehicle step device
US7916582B2 (en) * 2004-05-11 2011-03-29 Samsung Electronics Co., Ltd. Optical recording medium, recording/reproducing apparatus and method, initialization method, and reinitialization method
US7663990B2 (en) * 2004-05-21 2010-02-16 Samsung Electronics Co., Ltd. Optical recording medium having access control area and method for recording or reproducing thereof
US7697404B2 (en) * 2005-10-12 2010-04-13 International Business Machines Corporation Medium, system, and method for a common optical data storage medium depression depth

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135613A (en) * 1976-05-10 1977-11-12 Sony Corp Information recording media
JPS5746364A (en) * 1980-09-04 1982-03-16 Matsushita Electric Ind Co Ltd Disk reproducer
JPS6442028A (en) * 1987-08-07 1989-02-14 Pioneer Electronic Corp Composite disk
JPH02101678A (ja) * 1988-10-06 1990-04-13 Matsushita Electric Ind Co Ltd 光ディスク
JPH02193317A (ja) * 1989-01-20 1990-07-31 Matsushita Electric Ind Co Ltd 光ディスク
JPH0317867A (ja) * 1989-06-14 1991-01-25 Hitachi Ltd 磁気記憶装置
JPH0379790B2 (ja) * 1984-12-15 1991-12-19 Pioneer Electronic Corp
JPH06168449A (ja) * 1992-11-30 1994-06-14 Hitachi Ltd 高密度光ディスク
JPH06274940A (ja) * 1993-03-23 1994-09-30 Matsushita Electric Ind Co Ltd 光ディスク及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298897A (en) * 1979-09-20 1981-11-03 International Business Machines Corporation Buffered recording
JPH0711849B2 (ja) * 1987-02-27 1995-02-08 株式会社東芝 フロツピ−デイスク装置のデ−タ記録制御装置
JP2516041B2 (ja) * 1988-03-02 1996-07-10 日本ビクター株式会社 回転記録媒体円盤に対するデジタル信号の記録再生方式
JPH0823941B2 (ja) * 1988-11-08 1996-03-06 パイオニア株式会社 光学式情報記録担体及びその製造方法
JPH0379790A (ja) * 1989-08-23 1991-04-04 Sumitomo Electric Ind Ltd 耐食高張力鋼線およびそれを用いた耐食コイルバネ
JPH03183091A (ja) * 1989-12-12 1991-08-09 Matsushita Electric Ind Co Ltd 画像ファイルシステムの記録再生方法
JPH03245360A (ja) * 1990-02-23 1991-10-31 Matsushita Electric Ind Co Ltd 情報記録再生装置
JP2940208B2 (ja) * 1991-04-12 1999-08-25 松下電器産業株式会社 記録再生方法、および記録再生装置、光ディスク
JPH056571A (ja) * 1991-06-28 1993-01-14 Pioneer Electron Corp 光学式情報記録媒体
JP3373221B2 (ja) * 1992-03-04 2003-02-04 パイオニアビデオ株式会社 ディジタルオーディオ信号の記録再生装置
JP3233232B2 (ja) * 1992-06-19 2001-11-26 ソニー株式会社 動画像復号化方法および装置
JP2532818B2 (ja) * 1993-02-01 1996-09-11 松下電器産業株式会社 対物レンズおよび光ヘッド装置
JPH07114733A (ja) * 1993-08-26 1995-05-02 Pioneer Electron Corp 光ディスク及びその記録方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135613A (en) * 1976-05-10 1977-11-12 Sony Corp Information recording media
JPS5746364A (en) * 1980-09-04 1982-03-16 Matsushita Electric Ind Co Ltd Disk reproducer
JPH0379790B2 (ja) * 1984-12-15 1991-12-19 Pioneer Electronic Corp
JPS6442028A (en) * 1987-08-07 1989-02-14 Pioneer Electronic Corp Composite disk
JPH02101678A (ja) * 1988-10-06 1990-04-13 Matsushita Electric Ind Co Ltd 光ディスク
JPH02193317A (ja) * 1989-01-20 1990-07-31 Matsushita Electric Ind Co Ltd 光ディスク
JPH0317867A (ja) * 1989-06-14 1991-01-25 Hitachi Ltd 磁気記憶装置
JPH06168449A (ja) * 1992-11-30 1994-06-14 Hitachi Ltd 高密度光ディスク
JPH06274940A (ja) * 1993-03-23 1994-09-30 Matsushita Electric Ind Co Ltd 光ディスク及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIKKEI ELECTRONICS, No. 630, 27 February 1995, (TOKYO), MASAHARU TAKANO, MAMORU HARADA, "Digital.Video. Disc Japan's Challenge to Multimedia Age", p. 87-100. *
See also references of EP0818784A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758125A2 (en) * 1995-08-09 1997-02-12 Sony Corporation Recording medium, recording apparatus and reproducing apparatus
EP0758126A2 (en) * 1995-08-09 1997-02-12 Sony Corporation Recording medium and recording/reproducing apparatus therefor
EP0758125A3 (en) * 1995-08-09 1998-02-04 Sony Corporation Recording medium, recording apparatus and reproducing apparatus
EP0758126A3 (en) * 1995-08-09 1998-02-04 Sony Corporation Recording medium and recording/reproducing apparatus therefor
US5812509A (en) * 1995-08-09 1998-09-22 Sony Corporation Recording medium, recording apparatus and reproducing apparatus
US5825735A (en) * 1995-08-09 1998-10-20 Sony Corporation Reproducing apparatus with dampling rate convertor for recording medium having different respective sampling rates
US8654861B2 (en) 1996-12-04 2014-02-18 Panasonic Corporation Optical disk for high resolution and three-dimensional video recording, optical disk reproduction apparatus and optical disk recording apparatus
US8467455B2 (en) 1996-12-04 2013-06-18 Panasonic Corporation Optical disk for high resolution and three-dimensional video recording, optical disk reproduction apparatus and optical disk recording apparatus
US8467456B2 (en) 1996-12-04 2013-06-18 Panasonic Corporation Optical disk for high resolution and three-dimensional video recording, optical disk reproduction apparatus and optical disk recording apparatus
US8442112B2 (en) 1996-12-04 2013-05-14 Panasonic Corporation Optical disk for high resolution and three-dimensional video recording, optical disk reproduction apparatus and optical disk recording apparatus
US8441519B2 (en) 1996-12-04 2013-05-14 Panasonic Corporation Optical disk for high resolution and three-dimensional video recording, optical disk reproduction apparatus and optical disk recording apparatus
US6876617B1 (en) * 1997-07-01 2005-04-05 Sanyo Electric Co., Ltd. Recording medium, recorder, and player
US8311387B2 (en) 1997-08-29 2012-11-13 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8160420B2 (en) 1997-08-29 2012-04-17 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8270802B2 (en) 1997-08-29 2012-09-18 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8155500B2 (en) 1997-08-29 2012-04-10 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8428425B2 (en) 1997-08-29 2013-04-23 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8107794B2 (en) 1997-08-29 2012-01-31 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US8824873B2 (en) 1997-08-29 2014-09-02 Panasonic Corporation Optical disk for high resolution and general video recording, optical disk reproduction apparatus, optical disk recording apparatus, and reproduction control information generation apparatus
US6151580A (en) * 1998-02-19 2000-11-21 Micronas Intermetall Gmbh Audio playback apparatus
EP0938090A1 (de) * 1998-02-19 1999-08-25 Micronas Intermetall GmbH Audioabspielgerät
US7522504B2 (en) 2001-11-09 2009-04-21 Kabushiki Kaisha Toshiba Signal quality evaluation method, information recording/reproducing system, and recording compensation method
JP2012009133A (ja) * 2011-09-05 2012-01-12 Toshiba Corp 情報記憶媒体、情報再生方法、情報再生装置、情報記録方法及び情報記録装置

Also Published As

Publication number Publication date
KR100309587B1 (ko) 2001-12-17
KR19980703635A (ko) 1998-12-05
EP0818784A4 (en) 1999-09-08
EP0818784A1 (en) 1998-01-14
CN1185227A (zh) 1998-06-17
TW322575B (ja) 1997-12-11
US6038208A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
WO1996030906A1 (fr) Disque d&#39;enregistrement d&#39;information
JP3210549B2 (ja) 光情報記録媒体
US5708651A (en) Optical disk having reduced track pitch and optical disk playback apparatus containing the same
JP2000030287A (ja) 記録媒体と光記録/再生方法及び装置
JPH03209642A (ja) 光情報媒体、その製造方法、及びそのカセットケース
WO2006062036A1 (ja) 光学的情報記録媒体、光学的情報記録/再生装置及び光学的情報記録媒体の製造方法
TW579515B (en) Optical disc and information reproducing apparatus for same
JP3179598B2 (ja) 光ディスク
JP2003016691A (ja) 多層構造の情報媒体およびこの媒体を用いる装置
US20060140108A1 (en) Double-sided, hybrid optical data carrier in disc format (sacd/dvd)
JP2704107B2 (ja) 光ディスクおよび光ディスク装置
JPH11120613A (ja) 光記録媒体
JP3248415B2 (ja) 多層ディスク
JP2006190415A (ja) 光記録媒体
JP3819459B2 (ja) 光ディスク
JP3010798U (ja) 光ディスクおよび光ディスク装置
JP3914213B2 (ja) 光ディスクおよび光ディスク装置
JPH08273199A (ja) 光ディスクおよび光ディスク装置
JP2835321B2 (ja) 光ディスクおよび光ディスク装置
JPH11149643A (ja) 光記録媒体
TWI329312B (ja)
JPH11110821A (ja) 光情報記録媒体
JP2006053994A (ja) 光ピックアップ
JP2001176124A (ja) 光ディスク
JPH1125490A (ja) 光ディスクおよび光ディスク装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194045.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970707034

Country of ref document: KR

Ref document number: 08930344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996907695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996907695

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707034

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970707034

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996907695

Country of ref document: EP