WO1996005925A1 - Composition de liaison pour la production de moules et procede de production de moules - Google Patents

Composition de liaison pour la production de moules et procede de production de moules Download PDF

Info

Publication number
WO1996005925A1
WO1996005925A1 PCT/JP1995/001633 JP9501633W WO9605925A1 WO 1996005925 A1 WO1996005925 A1 WO 1996005925A1 JP 9501633 W JP9501633 W JP 9501633W WO 9605925 A1 WO9605925 A1 WO 9605925A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
weight
composition
mold
production
Prior art date
Application number
PCT/JP1995/001633
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Kiuchi
Masayuki Kato
Masuo Sawa
Shigeo Nakai
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06218101A external-priority patent/JP3114515B2/ja
Priority claimed from JP06218102A external-priority patent/JP3114516B2/ja
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to US08/793,150 priority Critical patent/US5932628A/en
Priority to DE69535397T priority patent/DE69535397T2/de
Priority to EP95928611A priority patent/EP0778095B1/en
Publication of WO1996005925A1 publication Critical patent/WO1996005925A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/224Furan polymers

Definitions

  • the present invention provides a binder composition for mold production, which is used to be added to a refractory granular material when producing molds, and a binder composition and a curing agent composition for mold production.
  • the present invention relates to a composition (binder for mold production -hardener). Further, the present invention relates to a sand for mold production, comprising a refractory granular material and the binder composition for mold production described above, or the binder composition for mold production and the curing agent composition.
  • the present invention also relates to a method for producing a mold using the sand composition for producing a mold. Background art
  • acid curable resins such as phenolic resin, franc resin, and furfuryl alcohol have been used as a binder for natural sands for producing molds.
  • the binder for the material sand has also become a rapidly curable self-hardening organic binder.
  • a method of increasing sand temperature, a method of removing water under reduced pressure, and a method of using a large amount of a curing agent have been taken to accelerate the curing of the binder.
  • an object of the present invention is to provide a bridging agent composition for mold production in which curing is further promoted without deteriorating the working environment.
  • Another object of the present invention is to provide a composition (a binder-curing agent for mold production) comprising the above binder composition for mold production and a curing agent composition.
  • an object of the present invention is a sand composition for mold production comprising the refractory granular material and the binder composition for mold production as described above or the binder composition for mold production and the curing agent composition. In providing things.
  • Still another object of the present invention is to provide a method for producing a mold using the above sand composition for producing a mold.
  • the present inventors have intensively studied to achieve the above object, and found that a polycondensation component containing furfuryl alcohol as a main component was polymerized.
  • a polycondensation component containing furfuryl alcohol as a main component was polymerized.
  • the present inventors have prepared a binder composition for mold production containing a binder obtained by polycondensing a polycondensation component containing furfuryl alcohol, urea and aldehydes as main components. , The degree of polycondensation of the binder is adjusted to a specific range, the amount of water in the binder composition for mold production is adjusted to a specific value or less, and By adjusting the nitrogen atom content derived from urea in the binder composition to a specific range, the binder composition for mold production can be cured without deteriorating the working environment. Was found to be able to further promote
  • the present invention has been made based on the above-mentioned findings, and has a binder obtained by polycondensation of a polycondensation component containing furfuryl alcohol as a main component, and one kind of a binder represented by the following general formula (1).
  • a binder composition for production of a mold containing two or more types of curing accelerators wherein the binder contained in the binder composition for production of a mold comprises: The difference between the weight percent (A) of furfuryl alcohol charged based on weight and the weight percent of unreacted furfuryl alcohol after polycondensation (B) based on the weight of the binder [A-B, force 5.0. 0.06, and the curing accelerator is 0.5 to 63.0% by weight of a binder composition for mold production (hereinafter, may be referred to as “a binder composition for mold production”). , Which has achieved the above purpose
  • the present invention also relates to a bridging agent composition for mold production, which comprises a bridging agent obtained by polycondensation of a polycondensation component mainly containing furfuryl alcohol, urea and aldehydes.
  • a bridging agent composition for mold production which comprises a bridging agent obtained by polycondensation of a polycondensation component mainly containing furfuryl alcohol, urea and aldehydes.
  • the furfuryl alcohol weight% (A) based on the weight of the binder and the weight based on the weight of the narrowing binder
  • the difference [A-B] from the unreacted furfuryl alcohol weight% (B) after the condensation is 5.0 to 60.0, and the amount of water in the binder composition for producing type III is 6%.
  • binder composition 0% by weight or less and a nitrogen atom content in the binder composition for mold production of 0.5 to 4.0% by weight (hereinafter referred to as “binder composition”).
  • binder composition a nitrogen atom content in the binder composition for mold production of 0.5 to 4.0% by weight
  • the binder composition for the first type III production is obtained by polycondensation of a polycondensation component containing furfuryl alcohol as a main component. It contains a binder and one or more hardening accelerators represented by the above general formula (1). Hereinafter, each of these components will be described.
  • the binder is a polycondensate obtained by polycondensing a polycondensation component containing furfuryl alcohol as a main component.
  • the polycondensation component preferably contains furfuryl alcohol and urea. Further, the polycondensation component preferably contains furfuryl alcohol and aldehydes. Particularly preferably, the polycondensation component contains furfuryl alcohol, urea and aldehydes.
  • aldehydes for example, conventionally known aldehyde compounds such as formaldehyde, dali oxal, and furfural can be used.
  • formaldehyde in terms of economy, odor and the like.
  • the above polycondensation components are polycondensed using furfur alcohol, and Z or urea, and Z or aldehydes.
  • condensates of furfuryl alcohol, polycondensates of furfuryl alcohol and alkylol urea, condensates of urea and aldehydes, and condensates of these A mixture (binder) of a polycondensate obtained by further polycondensation of the product, an unreacted product of each component, and water is obtained.
  • the binder is preferably contained in the binder composition for producing a first mold in an amount of 37.0 to 99.5% by weight.
  • the mixing ratio of the polycondensation component and the polycondensation conditions are appropriately adjusted so that the difference [AB] is within the above range.
  • the mixing ratio of these binders is 50.0 to 98. 0% by weight, 1.0 to 9.0% by weight, and 0.5 to 9.0% by weight, it is preferable to react for a predetermined time under basic conditions, and then to carry out polycondensation under acidic conditions. .
  • an important point in the present invention is that the degree of polycondensation of furfuryl alcohol in the binder is adjusted to a specific range.
  • the weight percent of furfur alcohol prepared based on the weight of the binder and The difference from the weight percent of unreacted furfuryl alcohol after polycondensation based on the weight of the binder is used as a measure of the degree of polycondensation of furfuryl alcohol.
  • the difference between the weight percent of charged furfuryl alcohol (A) and the weight percent of unreacted furfuryl alcohol after polycondensation (B) [A-B] is 5.0 to 60. Adjust the degree of polycondensation of fulleryl alcohol so that it becomes zero. If the difference [A-B] is less than 5.0, the degree of polycondensation of the full-furyl alcohol is too low, and the curing rate of the bridging agent composition for the first type III production is not sufficiently high. Therefore, the initial strength of the obtained type III does not improve.
  • the difference [A-B] is more than 60.0, the degree of polycondensation of furfuryl alcohol is too high, and the viscosity of the binder composition for production of the first mold increases.
  • the kneadability of the sand composition (kneading sand) for mold production decreases, and as a result, the strength of the mold decreases.
  • the difference [A ⁇ B] is preferably 10.0 to 50.0, and more preferably 15.0 to 40.0.
  • the weight percent of the charged furfuryl alcohol and the weight percent of the unreacted furfur alcohol must be measured. Done by the method.
  • the weight percent of unreacted furfuryl alcohol after polycondensation based on the weight of the binder in the binder contained in the binder composition for the production of the first type III is gas It can be set by chromatograph.
  • the gasket mouth graph conditions are as follows. Used equipment : GC-14A manufactured by Shimadzu Corporation, column used: PEG-20M chromosorb WAW DMCS 10% 60/80 MESHO. 5m x 3mm ⁇ , detector: FID, carrier gas: He o
  • the method for measuring the weight percent of furfural alcohol charged based on the weight of the bridging agent in the binder contained in the bridging agent composition for the manufacture of the first type III above is as follows. It is. The reaction of potassium bromide, potassium bromate, and hydrochloric acid results in an excess of furfural alcohol in the above binder contained in the binder composition for the production of the type 1 type. Amount of bromine, and the bromine is added to the double bond of furfuryl alcohol.After that, excess iodide is added to the excess bromine remaining in the system, and iodine and potassium bromide are added.
  • the binder composition for the production of the first type III of the present invention comprises furfuryl alcohol adjusted to a polycondensation degree in a specific range as described above. It contains a binder obtained by polycondensation of a polycondensation component as a main component, and one or more curing accelerators represented by the general formula (1).
  • the curing accelerator include 2,5—bishydroxymethylfuran, 2,5—bis'methoxymethylfuran, 2,5—bisethoxymethylfuran, 2— Hydroquinemethyl-5-methoxymethylfuran, 2—Hydroquinemethyl-5-ethoxyquinylfuran, 2—Methoxymethyl-5-ethoxyquinylfuran, and these may be used alone or in combination. Can be used.
  • 2,5-bishydroxymethylfuran is preferable to use as the curing accelerator.
  • 2,5-bishydroxymethylfuran has a higher reactivity and furfuryl than 2,5-bismethoxymethylfuran and 2,5-bisethoxyquinylfuran. This is because the curing reaction of the binder obtained by polycondensing a polycondensation component containing alcohol as a main component is further promoted.
  • the reason for the high reactivity of 2,5-bishydroxymethylfuran is that the hydroxyl group in the molecule contributes to the curing reaction.
  • the curing accelerator is contained in the binder composition for the first type III production in an amount of 0.5 to 63.0% by weight. If the addition amount of the curing accelerator is less than 0.5% by weight, the curing reaction of the binder composition for producing the first mold is not sufficiently promoted, and the initial strength of the mold is satisfactory. Does not improve. On the other hand, if the amount of the curing accelerator exceeds 63.0% by weight, the amount of the binder obtained by polycondensation of a polycondensation component containing furfuryl alcohol as a main component is relatively small. As a result, the hardening accelerator hardly dissolves in the binder, and as a result, a precipitate is formed in the binder composition for producing the first type III.
  • the amount of the curing accelerator added is preferably 1.8 to 50.0% by weight, more preferably 2.5 to 50.0% by weight, and more preferably 5.0 to 5.0% by weight. More preferably, it is from 4 to 40.0% by weight, most preferably from 7.0 to 40.0% by weight.
  • the water content in the bridging agent composition for the manufacture of the first type III is preferably 6.0% by weight or less. More preferably, the water content is less than 4.0% by weight, more preferably less than 2.0% by weight. Most preferred. Since the binder composition for the first type III production is hardened by the dehydration-condensation reaction, if the water content exceeds 6.0% by weight, the progress of the dehydration-condensation reaction is hindered, and the first prayer is inhibited. This is not preferred because the curing rate of the binder composition for mold production is reduced, and the initial strength of the mold tends to decrease.
  • the above water content is as small as possible.However, if the water content is too small, the degree of narrowing of the binder composition for the production of the first type III is extremely high. May rise, making it difficult to handle. Therefore, in such a case, it is preferable that a small amount of water (ie, 6.0% by weight or less) is contained in the binder composition for producing the first mold.
  • water may be added to the obtained binder composition for the production of the first mold,
  • condensation water produced during the production of the binder composition for the production of Type 1 above is used. If the amount of water is large, it is removed by means such as dehydration under reduced pressure.If the amount of water is small, water is used. May be added later.
  • the water content (weight) of the binder composition for producing the first type III was measured by a Karl Fischer method.
  • the above-mentioned compound in the binder composition for the production of the type 1 type III is used.
  • the nitrogen atom content derived from the nitrogen atom compound is 0.5 to Preferably, it is 4.0% by weight. If the nitrogen atom content is less than 0.5% by weight, the amount of urea used in the polycondensation of the polycondensation component is too small, and the strength of the obtained type I tends to not be sufficiently improved, When the nitrogen atom content exceeds 4.0% by weight, nitrogen atoms are turned into gas during pouring, which is likely to cause pinholes or other animal defects in the resulting article, which is preferable. Absent.
  • the nitrogen atom content is more preferably 0.5 to 3.0% by weight, and most preferably 0.5 to 2.0% by weight.
  • the nitrogen atoms in the binder composition for the production of the first type III are derived from urea, but when the binder is obtained, other nitrogen-containing compounds other than urea are used in combination. Even in such a case, it is preferable to adjust the nitrogen atom content in the binder composition for producing the first type III to 0.5 to 4.0% by weight.
  • the nitrogen atom content (% by weight) was measured by the Geldar method.
  • a binder obtained by polycondensing a polycondensation component containing furfuryl alcohol as a main component is used. It is preferable to use a binder obtained by polycondensing a polycondensation component containing alcohol, urea and aldehydes. In addition to these polycondensation components, at least one or a combination of at least one of various conventionally known modifiers is used in combination to prepare the above binder. Is also good.
  • Examples of such conventionally known various modifiers include phenolic resins, melamine resins, coumarone-indene resins, petroleum resins, polyesters, alkyd resins, polyvinyl alcohols, epoxy resins, and the like.
  • Ethylene 'vinyl acetate, polyvinyl acetate, polybutadiene, polyether, polyethylene, polyvinyl chloride, polyacrylic acid ester, polyvinyl butyral, phenoxy resin, cellulose acetate Lignin, lignin sulfone, polymers and oligomers such as xylene resin, toluene resin, polyamide, styrene resin, polyvinylformal, acrylic resin, urethane resin and nylon; lignin, ligninsulfone Acid, rosin, ester gum, vegetable oil, bitumen, heavy oil, cashew nut shell liquid and Natural products such as vanillin; saccharides such as starch, corn starch, glucose and
  • a silane coupling agent may be added as an optional component in addition to the binder and the curing accelerator.
  • the silane coupling agent include er (2-amino) aminopropyl dimethyldimethyxyl silane, ermino propyl trimethyxyl silane, and eraminopro Piltriethoxysilane, 7-glycidoxyprovir trimethoxysilane and the like can be added in an amount of preferably from 0.03 to 1.0% by weight based on the total amount of the composition.
  • the binder composition for the production of type II contains a binder obtained by polycondensation of a polycondensation component mainly composed of furfuryl alcohol, urea and aldehydes.
  • the furfuryl alcohol weight% (A) based on the weight of the binder and the weight based on the weight of the binder are included.
  • Difference from unreacted furfuryl alcohol weight% (B) after condensation [A-B] 5.0 ⁇ 6.0 the amount of water in the binder composition for mold production is 6.0% by weight or less, and the nitrogen atom content in the binder composition for mold production is 0.0. 5 to 4.0 weight.
  • the same aldehydes as those used in the binder composition for the production of the first type III can be used.
  • the important point of the binder composition for the production of the type II is that the degree of polycondensation of furfuryl alcohol in the binder is similar to that of the composition for the production of type I. It has been adjusted to a specific range. Also, it is difficult to directly measure the degree of polycondensation of furfuryl alcohol in the above-mentioned type II binder production binder composition. Similarly to the composition, the difference between the weight percent of the furfuryl alcohol charged based on the weight of the binder and the weight percent of unreacted furfuryl alcohol after polycondensation based on the weight of the binder is determined. It is a measure of the degree of polycondensation of furfuryl alcohol.
  • the weight% (A) of the charged furfuria child coal and that after polycondensation were obtained.
  • the degree of polycondensation of furfuryl alcohol is adjusted so that the [AB] force is 5.0 to 60.0, which is the difference from the weight percent (B) of unreacted furfuryl alcohol.
  • the reason for specifying the above difference [A-B] within the above range is the same as in the case of the binder composition for the production of the first type III above. It is.
  • the preferred range of the difference [AB] is also the same as in the case of the binder composition for production of the first type III.
  • the method for measuring the weight percent of the furfur alcohol prepared based on the weight of the binder and the weight percent of the unreacted furfur alcohol based on the weight of the binder was determined by the method described in Example 1 above. This is the same as in the case of the binder composition.
  • the amount of water in the binder composition for production of the type II type is not more than 6.0% by weight.
  • the water content is preferably 4.0% by weight or less, and most preferably 2.0% by weight or less.
  • the reason for setting the water content to 6.0% by weight or less is the same as that of the above-mentioned composition for narrowing agent for production of the first type o.
  • the method for adjusting and measuring the amount of moisture in the binder composition for the production of the second mold is the same as that for the binder composition for the first mold.
  • the nitrogen atom content (mainly derived from urea, but also including other nitrogen-containing atom compounds) in the binder composition for the production of the type II type is 0.5 to 4.0. It must be in weight percent. The reason for this is the same as in the case of the binder composition for production of the first type III.
  • the nitrogen atom content is preferably from 0.5 to 3.0% by weight, and most preferably from 0.5 to 2.0% by weight.
  • the above nitrogen atom content (% by weight) As in the case of the binder composition for making, the measurement is carried out by the gel dart method.
  • the binder composition for the production of the type II in addition to the polycondensation component, at least one kind or two or more kinds of conventionally known various modifiers are mixed and used to prepare the above binder. Is also good.
  • conventionally known various modifiers the same ones as in the case of the binder composition for the production of the first type III can be used.
  • the amount of addition is also the same as in the case of the binder composition for the production of the first type III.
  • the binder in the above-mentioned type II binder production binder composition is contained in an amount of 40 to 100% by weight based on the total amount of the composition.
  • a silane coupling agent may be added.
  • the silane coupling agent include 7- (2-amino) aminopropylvirmethyidimethoxane, 7-aminopropyltrimethoxysilane, and 7-amino.
  • Probitotriethoxysilane, argyridoxixiprovir trimethoxlan, etc. can be added in an amount of preferably from 0.03 to 1.0% by weight based on the total amount of the composition. .
  • the composition of the present invention (the bridging agent for mold production-hardening agent) will be described.
  • the composition (Binder-curing agent-curing agent) contains the above-mentioned binder composition for mold production and a curing agent (or a curing agent composition).
  • any conventionally known curing agent used when manufacturing a mold can be used.
  • Particularly preferred as the above-mentioned curing agent is a curing agent composition described in JP-A-5-237587, in which a phosphoric acid compound and a sulfonate compound are blended in a specific ratio. It is.
  • the curing agent composition will be further described.
  • the phosphorus atom weight (phosphorus atom content) derived from a phosphoric acid compound and the sulfur atom weight derived from a sulfonic acid compound are described.
  • sulfur atom content is preferably blended in such a weight ratio that satisfies 0.01 ⁇ [sulfur atom content Z (phosphorus atom content + sulfur atom content)] ⁇ 0.7.
  • the weight of the sulfur atom in the curing agent composition is equal to the weight of the phosphorus atom.
  • the weight of the sulfur atom is less than the above range, the weight of the phosphorus atom becomes relatively large (that is, the amount of the phosphoric acid compound becomes too large), and the regenerated sand obtained by repeatedly using the refractory granular material is used. Phosphorus atoms tend to accumulate in large quantities, and structural defects such as pinholes tend to occur. Further, the moisture absorbed by the phosphorus accumulated in the reclaimed sand is so severe that the curing of the binder composition for the production of type III tends to be inhibited.
  • the weight of the sulfur atom exceeds the above range (ie, if the amount of the sulfonic acid compound exceeds a predetermined range), harmful decomposition products are easily released at the time of pouring, The working environment tends to deteriorate. It is most preferable that the weight ratio of the above-mentioned phosphorus atom weight to the above-mentioned sulfur atom weight is such that 0.03 ⁇ [sulfur atom content (phosphorus atom content + sulfur atom content)] ⁇ 0.6. .
  • the sulfur atom content in the curing agent composition was measured by a combustion neutralization titration method, and the phosphorus atom content in the curing agent composition was measured by ICP (inductively coupled plasma emission spectrometer).
  • Examples of the phosphoric acid compound in the curing agent composition include phosphoric acid, condensed phosphoric acid, phosphate esters such as methyl phosphoric acid and ethyl phosphoric acid, and phosphate salts such as potassium phosphate and hydrogen hydrogen phosphate. Used.
  • examples of the above-mentioned sulfonic acid compound in the above-mentioned curing agent composition include aliphatic sulfonic acids such as methanesulfonic acid and ethanesulfonic acid; benzenesulfonic acid, and toluenesulfonic acid. And aromatic sulfonic acids such as xylensulfonic acid and phenolsulfonic acid; and inorganic acids such as sulfuric acid.
  • composition in addition to the binder composition for mold production and the curing agent (or the curing agent composition), optional components may be used.
  • a silane coupling agent may be added.
  • the silane coupling agent include 7- (2-amino) aminopropylmethyldimethoxysilane, aminaminopropyl trimethoxysilane, and arnaminopro.
  • Piltrietkinsilane, argrisdoxyprovir trimethoxysilane, and the like can be added to the total amount of the composition, preferably in the range of 0.03 to 1.0% by weight.
  • the sand composition for mold production contains the refractory granular material and the binder composition for mold production described above, or the fire-resistant granular material and the binder composition for mold production described above. And the above-mentioned curing agent (or the above-mentioned curing agent composition).
  • the sand composition for mold production is, for example, kneading the binder composition for mold production with the refractory granular material, or the binder composition for mold production and the curing agent (or And the above-mentioned hardener composition) can be kneaded with the above-mentioned refractory granular material.
  • the refractory granular material include those conventionally known as natural sands, for example, quartz sand, chromite sand, zircon sand, olivine sand, and aluminum sand containing quartz as a main component. New sand such as mullite sand and synthetic mullite sand and recycled sand can be used.
  • the reclaimed sand for example, the one obtained by a normal mechanical abrasion type or a roasting type can be used, but the one regenerated by the abrasion type has a higher yield. Economically good, general and favorable.
  • the mixing ratio of the refractory granular material, the binder composition for ⁇ -form production, and the curing agent (or the curing agent composition) in the sand composition for cycling production is not particular limitation.
  • the refractory granular material is
  • the binder composition for mold production is preferably contained in an amount of 0.1 to 5.0% by weight, and preferably contained in an amount of 0.1 to 5.0% by weight.
  • the curing agent or the curing agent composition
  • a silane coupling agent may be added to the above-mentioned sand composition for mold production for the purpose of further improving the strength of the mold obtained.
  • silane coupling agents examples include, for example, 7 — (2-amino) aminopropylmethyldimethoxysilane, 7 — Aminobuchi Built-in Trimethoxysilane, 7—Aminopropinoletrietoxysilane, 7—Glycidoxypropyltrimethoxysilane and the like.
  • the silane coupling agent may be added in an amount of preferably 0.0003 to 0.05% by weight, based on the total amount of the sand composition for mold production.
  • the silane coupling agent may be previously contained in the binder composition for mold production.
  • a mold can be generally produced by a self-hardening mold production method using the sand composition for producing a mold. That is, the method of the present invention comprises a step of filling the above-mentioned sand composition for mold production into a predetermined mold, and a binder composition for mold production contained in the sand composition for mold production. Is cured by the action of the above-mentioned curing agent composition, whereby a ⁇ shape can be obtained.
  • the sand composition for mold production described above containing the binder composition for mold production the curing rate of mold is relatively high, and the sand composition for mold production is applied to the mold. ⁇ After about 30 minutes to 1 hour, the mold can be released sufficiently.
  • a polycondensation component consisting of furfuryl alcohol, urea and formaldehyde was allowed to react for a predetermined time under basic conditions, followed by further reaction under acidic conditions, and if necessary, dehydration to carry out polycondensation.
  • the curing accelerators shown in Tables 1 and 2 [manufactured by Aldrich Chemical Chemical Co., Ltd .: 2,5-Furandimethanol (bishydroquinone)] (Methylfuran) [1883-75-6] (CAS registration number)] was added and kneaded, and the curing accelerator was contained in the proportions (% by weight) shown in Tables 1 and 2, and The difference [A-B] between the weight percent (A) of the full furyl alcohol and the weight percent (B) of the unreacted full fur alcohol is the value shown in Table 1 and Table 2.
  • the water content in the binder composition for mold production was 2.0% by weight, and the nitrogen atom content was
  • the furfuryl alcohol weight% (A) based on the weight of the binder and the weight of the binder Difference between unreacted furfuryl alcohol weight% (B), that is, the value of [A-B] is in the range of 5.0 to 60.0.
  • the strength of the mold after 1 hour has increased and the strength of the mold after 24 hours has also increased.
  • the value of the difference [A-B] is gradually increased from 5.0, it is understood that the strength of each of the squares gradually increases.
  • the above difference [A-B] reaches a maximum value in the vicinity of 15.0 to 40.0, and when the above difference [A-B] is further increased, the strength of each square type is increased. It can be seen that the strength gradually decreases, and when it exceeds 60.0, the strength of the mold becomes lower.
  • the difference [A-B] is less than 5.0, the D-type strength tends to be low.
  • Example 1 A test mold was produced in the same manner as in Example 1 except that this binder composition for mold production was used. Then, the compressive strength of this type III was measured in the same manner as in Example 1. The result is displayed
  • the polycondensation component consisting of furfuryl alcohol, urea and formaldehyde is polycondensed, and the difference between the charged furfuryl alcohol weight% (A) and the unreacted furfuryl alcohol weight% (B), that is, [A-B Was obtained, containing a binder having a pH of 30.0.
  • the water content and the nitrogen atom content in the binder composition for mold production are as shown in Table 4.
  • a curing agent composition a mixture of an equal amount of a 70% aqueous solution of toluenesulfonic acid and 85% phosphoric acid, that is, [sulfur atom content (phosphorus atom content + sulfur atom content) )] was 0.326.
  • a curing agent composition containing the components shown in Table 5 was prepared.
  • the components other than those shown in Table 5 are water.
  • the polycondensation component consisting of furfuryl alcohol, urea and formaldehyde is polycondensed, and the charged furfuryl alcohol weight% (A) and the unreacted furfuryl alcohol weight%
  • a narrowing agent having a difference from (B), that is, [AB] of 25.0 was obtained.
  • a curing accelerator consisting of 2,5-bishydroquinemethylfuran is added to the binder and kneaded to obtain a type II having a water content of 2.0% by weight and a nitrogen atom content of 2.0% by weight.
  • a binder composition for production was prepared.
  • the binder composition for mold production contained 15.0% by weight of the above-mentioned curing accelerator.
  • To 100 parts by weight of silica sand, 0.33 parts by weight of the hardener composition shown in Table 5 was added and kneaded, and then 0.65 parts by weight of the above-described bridging agent composition for mold production was added and kneaded.
  • a sand composition for mold production was obtained.
  • a mold is prepared, and a mold having a mold / melt weight ratio of 2.5 is produced.
  • Recycled sand was obtained using an M-type rotary reclaimer manufactured by Nippon Seiko Co., Ltd.
  • the compressive strength of the mold was measured at 0.5, 1 and 24 hours.
  • the hygroscopicity of the reclaimed sand was determined by measuring the hygroscopicity of the reclaimed sand after leaving the 20th reclaimed sand at 25 to 90% RH for 24 hours.
  • measurements were made of the S 0 2 emissions in the harsh conditions of the following at the time of 2 0 th ⁇ .
  • the filling of the molten metal into a mold having a size of 62 mm x 77 mm x 53 mm h for producing a material having a mold / melt weight ratio of 2.5 is required.
  • cover the above box with a wooden box of 900 mm x 900 mm x 900 mm mm h.
  • S 0 2 was measured. Table 6 shows the above results.
  • a binder composition for mold production was similar to the binder composition for mold production used in Example 34, except for using%. 100 parts by weight of silica sand was added and kneaded with 0.33 parts by weight of the curing agent composition shown in Table 5, and then 0.65 parts by weight of the binder composition for mold production was kneaded. As a result, a sand composition for mold production was obtained. Otherwise in the same manner as in Example 4 6-5 3, moisture absorption of play sand was measured compressive strength of S 0 2 generation amount and ⁇ during ⁇ . Table 7 shows the results.
  • a binder composition for mold production containing a binder obtained by polycondensation of a polycondensation component consisting of furfuryl alcohol, urea and formaldehyde was obtained.
  • the binder composition for mold production had a water content of 0.8% by weight and a nitrogen atom content of 0.8% by weight.
  • [A-B] is as shown in Table 8.
  • Example 34 A test mold was produced in the same manner as in Example 34, except that this binder composition for mold production was used. Then, the compressive strength of this mold after 1 hour and 24 hours had elapsed was measured. Table 8 shows the results. [Table 8]
  • the curing speed of the binder is improved, and a mold having a high initial strength can be obtained. Therefore, when a self-hardening mold manufacturing method is adopted and a mold is manufactured using the binder composition for mold manufacture of the present invention, the mold can be removed from the mold at an early stage, and the mold can be removed. This has the effect of effectively utilizing
  • a polycondensate of a polycondensation component containing furfuryl alcohol, urea and aldehydes as main components may be used. If the water content in the composition is adjusted to a specific value or less, or if the nitrogen atom content in the binder composition for mold production is adjusted to a specific range, the binder for mold production becomes It is possible to further accelerate the curing of the composition, and to further improve the effects of the invention described above. Can be.
  • binder composition for mold production of the present invention and a curing agent composition having a sulfur atom content and a phosphorus atom content adjusted to specific ranges (binder for mold production-curing if being used agent) compositions, also manufactures ⁇ by using large amounts of reclaimed sand, S 0 2 generation of toxic gases is small, such as, and the initial strength high strength in a matter of course ultimately This has the effect of being able to obtain the ⁇ type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Description

明 細 書 铸型製造用粘結剤組成物及び铸型の製造方法 技術分野
本発明は、 铸型を製造する際、 耐火性粒状材料に添加す るために使用する铸型製造用粘結剤組成物、 及び铸型製造 用拈結剤組成物と硬化剤組成物とを含有する (铸型製造用 粘結剤 -硬化剤) 組成物に関するものである。 また、 本発 明は、 耐火性粒状材料と、 上記铸型製造用粘結剤組成物又 は上記铸型製造用粘結剤組成物及び上記硬化剤組成物とを 含有する铸型製造用砂組成物に関するものであり、 更に本 発明は、 該铸型製造用砂組成物を使用して铸型を製造する 方法に関するものである。 背景技術
従来から、 铸型を製造するための铸物砂の粘結剤と して フ エ ノ ール樹脂、 フ ラ ン樹脂及びフルフ リ ルアルコ ール等 の酸硬化性樹脂が用いられている。 そして、 これらの粘結 剤に硬化剤を添加して硬化させ、 铸型を製造する方法が一 般的に行なわれている。 铸物砂用の有機自硬性樹脂として は古く から、 良好な性質を有するフ ラ ン樹脂が用いられて いる (特公昭 3 9 — 1 5 4 3号公報等) 。 そして、 このよ うなフ ラ ン樹脂に対して種々改良が加えられ、 その用途に 応じ、 グリ オキザール又はテ ト ラオキサ ン等を添加して低 臭性にした粘結剤や、 フ ユノ ール樹脂又は尿素樹脂等で変 性して価格低下を図った粘結剤などが開発されてきた。
しかし、 最近、 铸物製造の機械設備や工程等の改良によ る作業能率向上が要求されるようになり、 それに伴って铸 物砂用粘結剤も迅速硬化型の自硬性有機粘結剤が強く要望 されるよう になつてきた。 この要求を満たすべく 、 粘結剤 の硬化を促進させるために砂温を高める方法、 減圧で水を 除去する方法、 及び硬化剤を多量に用いる方法等がとられ てきた。
しかし、 かかる目的のために、 砂温を高めるこ とは、 余 分なエネルギーを必要と し、 経済的に不利である。 また、 減圧で水を除去するこ とも、 ある程度の硬化促進は図れる けれども、 根本的な解決にはならない。 更に、 硬化剤を多 量に用いれば、 硬化速度が向上し硬化促進を図れるけれど も、 分解ガスによる作業環境の悪化ゃ铸型強度の低下等を 招く という欠点があつた。
このため、 比較的多量に使用 しても作業環境が悪化しに く い硬化剤組成物と して、 燐酸系化合物とスルホン酸系化 合物とを特定の割合で配合したものが提案されている (特 開平 5 - 2 3 7 5 8 7号公報) 。 即ち、 低毒性である燐酸 系化合物と硬化促進が図れるスルホ ン酸系化合物とを特定 の割合で配合し、 硬化促進を図ると共に作業環境の悪化の 防止を図ろう という ものである。 このような硬化剤組成物 は非常に有用なものであるが、 言う までもな く、 あま りに 多量に使用すると、 作業環境が悪化する という欠点があつ た。 また、 上記公報には、 フ ラ ン樹脂を硬化促進剤と共に 使用する こ と、 及び該フ ラ ン樹脂の重縮合度を調整するこ とについては何ら記載されていない。 発明の開示
従って、 本発明の目的は、 作業環境が悪化するこ と無く 硬化がよ り促進された铸型製造用拈結剤組成物を提供する とにある
また、 本発明の目的は、 上記铸型製造用粘結剤組成物と 硬化剤組成物とを含有する (铸型製造用粘結剤一硬化剤) 組成物を提供するこ とにある。
更に、 本発明の目的は、 耐火性粒状材料と上記铸型製造 用粘結剤組成物又は上記铸型製造用粘結剤組成物及び上記 硬化剤組成物とを含有する铸型製造用砂組成物を提供する こ とにある。
更にまた、 本発明の目的は、 上記铸型製造用砂組成物を 用いて铸型を製造する方法を提供するこ とにある。
本発明者らは、 上記目的を達成すべく 鋭意検討したとこ ろ、 フルフ リ ルアルコールを主成分とする重縮合成分を重 縮合して得られる粘結剤を含有する铸型製造用粘結剤組成 物中における、 該粘結剤の重縮合度を特定の範囲に調整す るこ とによって、 作業環境の悪化を伴う こ となく 、 該铸型 製造用坫結剤組成物の硬化をより促進させ得るこ とを知見 した。
また、 本発明者らは、 フルフ リ ルアルコール、 尿素及び アルデ ヒ ド類を主成分とする重縮合成分を重縮合して得ら れる粘結剤を含有する铸型製造用粘結剤組成物中における、 該粘結剤の重縮合度を特定の範囲に調整する と共に、 該铸 型製造用粘結剤組成物中の水分量を特定の値以下に調整し、 且つ該铸型製造用粘結剤組成物中の尿素に由来する窒素原 子含量を特定の範囲に調整するこ とによ り、 作業環境の悪 化を伴う こ とな く、 铸型製造用粘結剤組成物の硬化をより 促進させ得るこ とを知見した。
本発明は、 上記知見に基づきなされたものであり、 フル フ リ ルアルコールを主成分とする重縮合成分を重縮合して 得られる粘結剤と、 下記一般式 ( 1 ) で示される 1 種又は 2種以上の硬化促進剤とを含有する铸型製造用粘結剤組成 物であって、 該铸型製造用拈結剤組成物に含有される該粘 結剤における、 該粘結剤の重量に基づく 仕込フルフ リ ルァ ルコール重量% ( A ) と、 該粘結剤の重量に基づく 重縮合 後の未反応フルフ リ ルアルコール重量% ( B ) との差 [ A 一 B , 力 5 . 0 〜 6 0 . 0 であ り、 上記硬化促進剤が 0. 5〜 6 3. 0重量%含有される铸型製造用粘結剤組成 物 (以下、 「第 1铸型製造用粘結剤組成物」 という こ とが ある) を提供するこ とにより、 上記目的を達成したもので
Figure imgf000007_0001
(式中、 X , 及び X2 は、 同一の又は異なる H、 C H3 又 は C 2H 5を表わす。 )
また、 本発明は、 フルフ リ ルアルコール、 尿素及びアル デヒ ド類を主成分とする重縮合成分を重縮合して得られる 拈結剤を含有する铸型製造用拈結剤組成物であって、 該粘 結剤組成物に含有される該粘結剤における、 該粘結剤の重 量に基づ く 仕込フルフ リ ルアルコール重量% ( A ) と、 該拈結剤の重量に基づく重縮合後の未反応フルフ リ ルアル コール重量% ( B) との差 [A - B] が 5. 0〜 6 0. 0 であり、 該铸型製造用粘結剤組成物中の水分量が 6. 0重 量%以下であり、 且つ該铸型製造用拈結剤組成物中の窒素 原子含量が 0. 5〜 4. 0重量%である铸型製造用粘結剤 組成物 (以下、 「第 2铸型製造用粘結剤組成物」 という こ とがある) を提供するこ とによ り、 上記目的を達成したも のである 発明の詳細な説明
まず、 上記第 1 铸型製造用粘結剤組成物について説明す 上記第 1 铸型製造用粘結剤組成物は、 フルフ リ ルアル コールを主成分とする重縮合成分を重縮合して得られる粘 結剤と上記一般式 ( 1 ) で示される 1 種又は 2種以上の硬 化促進剤とを含有する ものである。 以下、 これらの成分に ついてそれぞれ説明する。
まず、 上記粘結剤について説明する と、 該粘結剤は、 フ ルフ リ ルアルコールを主成分とする重縮合成分を重縮合し て得られる重縮合物である。 上記重縮合成分は、 フルフ リ ルアルコールと尿素とを含有するこ とが好ま しい。 また、 上記重縮合成分は、 フルフ リ ルアルコールとアルデヒ ド類 とを含有するこ と も好ま しい。 特に好ま し く は、 上記重縮 合成分は、 フルフ リ ルアルコールと尿素とアルデヒ ド類と を含有する。
上記アルデヒ ド類と しては、 例えば、 ホルムアルデヒ ド、 ダリ オキザール及びフルフラール等の従来公知のアルデヒ ド化合物を使用する こ とができる。 特に、 本発明において は、 経済性及び臭気等の点からホルムアルデヒ ドを使用す る こ とが好ま しい。
上記重縮合成分と して、 フルフ リ 儿アルコール、 及び Z 又は尿素、 及び Z又はアルデヒ ド類を用いてこれらを重縮 合させる と、 各成分の配合割合にもよるが、 フルフ リ ルァ ルコールの縮合物、 フルフ リ ルアルコールとアルキロール 尿素との重縮合物、 尿素とアルデヒ ド類との縮合物、 これ らの縮合物が更に重縮合した重縮合物、 各成分の未反応物、 及び水等からなる混合物 (粘結剤) が得られる。
上記粘結剤は、 上記第 1 铸型製造用坫結剤組成物中に、 3 7 . 0〜 9 9 . 5重量%含有されるこ とが好ま しい。
上記重縮合成分の配合割合及び重縮合条件は、 上記差 [ A - B ] が上記範囲内となるように適宜調整する。 例え ば、 フルフ リ ルアルコール、 尿素及びアルデヒ ド類からな る重縮合成分を用いて上記粘結剤を調製する場合には、 こ れらの配合割合をそれぞれ、 5 0 . 0〜 9 8 . 0重量%、 1 . 0 〜 9 . 0重量%、 及び 0 . 5〜 9 . 0重量 と し、 塩基性条件下、 所定時間反応させ、 その後酸性条件下で重 縮合を行う こ とが好ま しい。
本発明において重要な点は、 上記粘結剤における、 フル フ リ ルアルコールの重縮合度が特定の範囲に調整されてい る こ とである。 しかしながら、 フルフ リ ノレアルコールの重 縮合度を直接測定するこ とは困難であるので、 本発明にお いては、 上記粘結剤の重量に基づ く 仕込フ ルフ リ ルアル コールの重量%と、 上記粘結剤の重量に基づく 重縮合後の 未反応フルフ リ ルアルコールの重量%との差をフルフ リ ル アルコールの重縮合度の目安と している。 即ち、 本発明に おいては、 仕込フルフ リ ルアルコールの重量% ( A) と重 縮合後の未反応フルフ リ ルアルコールの重量% ( B ) との 差である [ A— B ] が 5. 0〜 6 0. 0 となるように、 フ ルフ リ ルアルコールの重縮合度を調整する。 上記差 [A - B ] が 5 . 0未満である と、 フルフ リ ルアルコ ールの重縮 合度が低すぎて、 上記第 1 铸型製造用拈結剤組成物の硬化 速度が十分に速く ならず、 得られる铸型の初期強度が向上 しない。 一方、 上記差 [A— B ] が 6 0 . 0 を超える と、 フルフ リ ルアルコールの重縮合度が高すぎて、 上記第 1 铸 型製造用粘結剤組成物の粘度が上昇し、 後述する铸型製造 用砂組成物 (混練砂) の混練性が低下し、 結果と して铸 型の強度が低下する。 上記差 [ A— B ] は、 1 0 . 0〜 5 0. 0であるこ とが好ま し く、 1 5. 0〜4 0 . 0であ る こ とが更に好ま しい。
フルフ リ ルアルコ一ルの重縮合度の目安を得るためには、 仕込フルフ リ ルアルコールの重量%及び未反応フルフ リ 儿 アルコールの重量%を測定しなければならないが、 これは、 例えば、 以下の方法によって行われる。
まず、 上記第 1 铸型製造用粘結剤組成物に含有される上 記粘結剤中における、 該粘結剤の重量に基づく 重縮合後の 未反応フルフ リ ルアルコールの重量%は、 ガス ク ロマ ト グ ラ フ ィ 一によつて则定するこ とができる。 この際のガスク 口マ ト グラ フ ィ 一の条件は、 次の通りである。 使用機器 : 株式会社島津製作所製 G C - 1 4 A、 使用カ ラム : PEG- 20M chromosorb WAW DMCS 10 % 60/80 MESHO. 5m x 3mm φ、 検出器 : F I D、 キャ リ アーガス : H e、 という ものであ る o
また、 上記第 1 铸型製造用拈結剤組成物に含有される上 記粘結剤中における、 該拈結剤の重量に基づく 仕込フルフ リ ルアルコールの重量%の測定方法は、 次の通りである。 臭化カ リ ウム、 臭素酸カ リ ウム、 及び塩酸の反応によ り該 第 1 铸型製造用粘結剤組成物に含有される上記粘結剤中の フルフ リ ルアルコールに対して、 過剰量の臭素を生成させ、 その臭素をフルフ リ ルアルコールの二重結合に付加させ、 その後、 系中に残存する余剰臭素に過剰のヨウ化カ リ ウム を加え、 ヨウ素と臭化カ リ ウムとを生成させ、 生成したョ ゥ素をチォ硫酸ナ ト リ ウムで滴定するこ とにより、 該第 1 铸型製造用拈結剤組成物に含有される上記結合剤中の仕込 フルフ リ ルアルコールの重量%を測定する。 なお、 この仕 込フルフ リ ルアルコールの測定法において、 検出される分 子中に二重結合を有する芳香族、 脂肪族化合物については、 別途、 他の測定法にて測定し、 上記第 1 铸型製造用粘結剤 組成物に含有される上記粘結剤中の仕込フルフ リ ルアルコ ールの重量%を算出する。
本発明の第 1 铸型製造用粘結剤組成物は、 このよう に特 定の範囲の重縮合度に調整されたフルフ リ ルアルコールを 主成分とする重縮合成分を重縮合して得られる粘結剤と、 上記一般式 ( 1 ) で示される 1 種又は 2種以上の硬化促進 剤とを含有する ものである。 上記硬化促進剤と しては、 例 えば、 2 , 5 — ビス ヒ ドロキシ メ チルフ ラ ン、 2 , 5 — ビ' ス メ トキシメ チルフ ラ ン、 2 , 5 — ビスエ トキシ メ チルフ ラ ン、 2 — ヒ ドロキンメ チルー 5 — メ トキシ メ チルフ ラ ン、 2 — ヒ ドロキンメ チルー 5 —エ トキンメ チルフ ラ ン、 2 — メ トキシ メ チルー 5 —エ トキン メ チルフ ラ ンが挙げられ、 これらを単独で又は混合して使用するこ とができる。 特に、 上記硬化促進剤と して 2 , 5 一 ビス ヒ ドロキ シ メ チル フ ラ ンを使用するこ とが好ま しい。 この理由は、 2 , 5 — ビ ス ヒ ドロキシ メ チルフ ラ ンは、 2 , 5 — ビスメ トキシメ チ ルフ ラ ン及び 2 , 5 — ビスエ トキンメ チルフ ラ ンに比べて、 反応性が高く 、 フルフ リ ルアルコールを主成分とする重縮 合成分を重縮合して得られる粘結剤の硬化反応を一層促進 させるからである。 2 , 5 — ビスヒ ドロキシメ チルフラ ン の反応性が高い理由は、 分子中の水酸基が硬化反応に寄与 するからである。 これに対して、 2 , 5 — ビスメ 卜キシメ チルフ ラ ン等の場合は、 一旦メ トキシメチルエーテルが加 水分解して水酸基が生成した後、 硬化反応に寄与するため、 硬化反応の促進作用が若干劣るのである。 なお、 フルフ リ ルアルコールとホルムアルデヒ ドとを反応させてフラ ン樹 脂を得る際に、 初期縮合物と して 2 , 5 — ビスヒ ドロキシ メチルフラ ンが生成するこ とは知られているが ( 「高分子 薬剤入門」 、 三洋化成工業株式会社発行を参照のこ と) 、 この 2 , 5 — ビス ヒ ドロキシメ チルフ ラ ンが、 フルフ リ ル アルコールを主成分とする重縮合成分を重縮合して得られ る粘結剤に対して、 硬化促進の作用を果たすこ とは知られ ていなかった。
上記硬化促進剤は、 上記第 1 铸型製造用粘結剤組成物中 に 0 . 5 〜 6 3 . 0重量%添加含有されている。 上記硬化 促進剤の添加量が 0 . 5重量%未満である と、 上記第 1 铸 型製造用粘結剤組成物の硬化反応が十分に促進されず、 铸 型の初期強度が満足のゆく程度に向上しない。 一方、 上記 硬化促進剤の添加量が 6 3 . 0重量%を超えると、 フルフ リ ルアルコールを主成分とする重縮合成分を重縮合して得 られる粘結剤の量が相対的に少な く なり、 該粘結剤中に上 記硬化促進剤が溶解しにく く なる結果、 上記第 1 铸型製造 用粘結剤組成物中に沈澱が生ずる。 上記硬化促進剤の添加 量は 1 . 8 〜 5 0 . 0 重量%である こ とが好ま し く 、 2 . 5 〜 5 0 . 0 重量%である こ とが更に好ま し く 、 5 . 0 〜 4 0 . 0 重量%であ る こ とが一層好ま し く 、 7 . 0 〜 4 0 . 0重量%であるこ とが最も好ま しい。
上記第 1 铸型製造用拈結剤組成物中の水分量は、 6 . 0 重量%以下であるこ とが好ま しい。 上記水分量は 4 . 0重 量%以下であるこ とがより好ま し く 、 2 . 0重量%以下で あるこ とが最も好ま しい。 上記第 1 铸型製造用粘結剤組成 物は脱水縮合反応によって硬化してゆく ため、 上記水分量 が 6 . 0重量%を超えると、 脱水縮合反応の進行が阻害さ れ、 上記第 1 祷型製造用粘結剤組成物の硬化速度が遅く な り、 铸型の初期強度が低下する傾向が生じるので好ま しく ない。 従って、 硬化速度の点から言う と、 上記水分量は少 なければ少ないほど好ま しいのであるが、 水分量が少なす ぎる と上記第 1 铸型製造用粘結剤組成物の拈度が極端に上 昇する場合があり、 取り扱いに く く なる場合がある。 従つ て、 このような場合には、 若干量の水分 (即ち 6 . 0重量 %以下) を上記第 1 铸型製造用粘結剤組成物中に含有させ ておく こ とが好ま しい。 上記第 1 铸型製造用粘結剤組成物 中の水分量を調整するには、 例えば、 得られた上記第 1 铸 型製造用粘結剤組成物に水を後添加してもよいし、 また上 記第 1 铸型製造用粘結剤組成物を製造する際に生じる縮合 水を利用 し、 水分量が多い場合は減圧脱水等の手段でこれ を除去し、 水分量が少ない場合は水を後添加してもよい。 なお、 上記第 1 铸型製造用粘結剤組成物の水分量 (重量 ) は、 カールフ ィ ッ シ ャ ー法により測定した。
また、 上記重縮合成分と してフルフ リ ルアルコールに加 えて含窒素原子化合物 (一般的には尿素) を使用する場合 には、 上記第 1 铸型製造用粘結剤組成物中における上記含 窒素原子化合物に由来する窒素原子含量は、 0 . 5 〜 4 . 0重量%であるこ とが好ま しい。 上記窒素原子含量が 0 . 5重量%未満である と、 上記重縮合成分を重縮合する 際の尿素の使用量が少なすぎて、 得られる铸型の強度が十 分に向上しない傾向があり、 上記窒素原子含量が 4 . 0重 量%を超えると、 注湯時において窒素原子がガスとなって 発生し、 得られる铸物にピンホール等の铸物欠陥が発生し やすく なるので好ま し く ない。 上記窒素原子含量は 0 . 5 〜 3 . 0 重量%である こ とカ よ り 好ま し く 、 0 . 5 〜 2 . 0重量%であるこ とが最も好ま しい。
上記第 1 铸型製造用拈結剤組成物中における窒素原子の 多 く は尿素に由来する ものであるが、 上記粘結剤を得る際 に、 尿素以外の他の含窒素原子化合物を併用 した場合で あっても、 上記第 1 铸型製造用粘結剤組成物中における窒 素原子含量を 0 . 5〜 4 . 0重量%に調整するこ とが好ま しい。 なお、 上記窒素原子含量 (重量%) は、 ゲルダール 法によ り測定した。
上記第 1 铸型製造用粘結剤組成物では、 前記したよ う に フルフ リ ルアルコールを主成分とする重縮合成分を重縮合 して得られる粘結剤が使用され、 特に、 フ ルフ リ ルアル コール、 尿素及びアルデヒ ド類を含む重縮合成分を重縮合 して得られる粘結剤が使用される こ とが好ま しい。 これら の重縮合成分に加えて従来公知の種々 の変性剤の少な く と も 1 種又は 2種以上を混合併用 して上記粘結剤を調製して もよい。 かかる従来公知の種々 の変性剤と しては、 フ エ ノ ール樹脂、 メ ラ ミ ン樹脂、 クマロ ン ' ィ ンデン樹脂、 石 油樹脂、 ボリエステル、 アルキッ ド樹脂、 ポリ ビニルアル コール、 エポキシ樹脂、 エチレ ン ' ビニルアセテー ト、 ポ リ ビニルアセテー ト、 ボリ ブタ ジエン、 ポリ エーテル、 ポ リ エチ レ ンィ ミ ン、 ポリ塩化ビニル、 ボリ アク リ ル酸エス テル、 ポリ ビニルプチラール、 フエ ノキシ樹脂、 酢酸セル ロース、 キシレ ン樹脂、 トルエン樹脂、 ポリ ア ミ ド、 スチ レ ン樹脂、 ポリ ビニルホルマール、 ア ク リ ル樹脂、 ウ レ タ ン樹脂及びナイロ ン等のポリマー及びオ リ ゴマー ; リ グ ニン、 リ グニンスルホン酸、 ロジン、 エステルガ厶、 植物 油、 ビチューメ ン、 重油、 カ シュ一ナ ツ ト殻液及びバニ リ ン等の天然物 ; デンプン、 コーンスターチ、 グルコース 及びデキス ト リ ン等の糖類及びその誘導体 ; レゾルシン、 レゾルシン残澄、 ク レブール残渣、 2 , 2 , 4 一 ト リ メ チ ルー 4 ( ヒ ドロキシフ エニル) クマロ ンとイ ソプロぺニル フ エ ノ ールの反応副生物、 テ レ フ タル酸とエチ レ ング リ コールの反応副生物及びボリ エチレ ングリ コール等の多価 ァ ノレ コ 一 ノレ ; ァ セ ト ン 、 シ ク ロへキサノ ン及びァ セ ト フ エ ノ ン等のケ ト ン類 ; こ のケ ト ン類とアルデヒ ド類との 縮合物 ; ジシア ンジア ミ ド、 アク リ ルア ミ ド及びチォ尿素 等のア ミ ノ及びイ ミ ノ化合物 ; こ のア ミ ノ又はイ ミ ノ化合 物とアルデヒ ド類との縮合物 ; イ ソシァ ヌル酸エステル及 び不飽和脂肪酸エステル等のエステル化合物等を用いる こ とができる。 これらの変性剤を上記した重縮合成分と共に 併用する場合には、 その添加量は、 上記第 1 铸型製造用粘 結剤組成物の全重量に対して 2 0重量%以下であるこ とが 好ま しい。
また、 上記第 1 铸型製造用粘結剤組成物においては、 上 記粘結剤及び硬化促進剤に加えて、 任意成分と してシラ ン カ ツプリ ング剤を添加してもよい。 該シラ ンカ ツプリ ング 剤と しては、 例えばァ ー ( 2 —ァ ミ ノ) ァ ミ ノ プロ ピルメ チルジメ トキシシラ ン、 ァ ーァ ミ ノ プロ ビル ト リ メ トキシ シラ ン、 ァ ーァ ミ ノ プロ ピル ト リエ トキシシラ ン、 7 ーグ リ シ ドキシプロ ビル ト リ メ トキシシラ ン等を、 好ま し く は 組成物全量中に 0 . 0 3〜 1 . 0重量%添加するこ とがで きる。
次に、 上記第 2铸型製造用粘結剤組成物について説明す る
上述の通り、 上記第 2铸型製造用粘結剤組成物は、 フル フ リ ルアルコール、 尿素及びアルデヒ ド類を主成分とする 重縮合成分を重縮合して得られる粘結剤を含有し、 該铸型 製造用粘結剤組成物に含有される該拈結剤における、 該粘 結剤の重量に基づく 仕込フルフ リ ルアルコール重量% ( A ) と、 該粘結剤の重量に基づく 重縮合後の未反応フルフ リ ル ア ル コ ー ル重量% ( B ) との差 [ A — B ] 力く 5 . 0 〜 6 0 . 0であり、 該铸型製造用粘結剤組成物中の水分量が 6 . 0重量%以下であり、 且つ該铸型製造用拈結剤組成物 中の窒素原子含量が 0 . 5〜 4 . 0重量 である。
上記重縮合成分におけるアルデヒ ド類と しては、 上記第 1 铸型製造用粘結剤組成物に用いられる ものと同様のもの を用いる こ とができる。
上記第 2铸型製造用粘結剤組成物において重要な点は、 上記第 1 铸型製造用粘結剤組成物と同様に、 上記粘結剤に おける、 フルフ リ ルアルコールの重縮合度が特定の範囲に 調整されているこ とである。 そ して、 上記第 2铸型製造用 粘結剤組成物においても、 フルフ リ ルアルコールの重縮合 度を直接測定するこ とは困難であるので、 上記第 1 铸型製 造用粘結剤組成物と同様に、 上記粘結剤の重量に基づく 仕 込フルフ リ ルアルコールの重量%と、 上記粘結剤の重量に 基づく 重縮合後の未反応フルフ リ ルアルコールの重量%と の差をフルフ リ ルアルコールの重縮合度の目安と している。 即ち、 上記第 2铸型製造用粘結剤組成物においては、 上記 第 1 铸型製造用粘結剤組成物と同様に、 仕込フルフ リ ルァ 儿コールの重量% ( A ) と重縮合後の未反応フルフ リ ルァ 儿 コールの重量% ( B ) との差である [ A— B ] 力 5 . 0 〜 6 0 . 0 となるように、 フルフ リ ルアルコールの重縮合 度を調整する。 上記差 [ A - B ] を上記の範囲内に特定し た理由は、 上記第 1 铸型製造用粘結剤組成物の場合と同様 である。 また、 上記差 [ A— B ] の好ま しい範囲も上記第 1 铸型製造用粘結剤組成物の場合と同様である。
なお、 上記粘結剤の重量に基づく 仕込フルフ リ ルアル コールの重量%及び上記粘結剤の重量に基づく未反応フル フ リ ルアルコールの重量%の測定方法は、 上記第 1 铸型製 造用粘結剤組成物の場合と同様である。
上記第 2铸型製造用粘結剤組成物中の水分量は、 6 . 0 重量%以下であるこ とが必要である。 上記水分量は 4 . 0 重量%以下であるこ とが好ま しく 、 2 . 0重量%以下であ るのが最も好ま しい。 上記水分量を 6 . 0 %重量%以下と する理由は、 上記第 1 铸型製造用拈結剤組成物と同じであ る o
なお、 上記第 2铸型製造用粘結剤組成物中の水分量の調 整及び则定方法は、 上記第 1 铸型製造用粘結剤組成物と同 じである。
また、 上記第 2铸型製造用粘結剤組成物中における窒素 原子含量 (主と して尿素に由来するが、 これ以外の含窒素 原子化合物も含まれる) は、 0 . 5〜 4 . 0重量%である こ とが必要である。 この理由は、 上記第 1 铸型製造用粘結 剤組成物の場合と同様である。 上記窒素原子含量は 0 . 5 〜 3 . 0重量%であるこ とが好ま しく 、 0 . 5〜 2 . 0重 量%であるこ とが最も好ま しい。
なお、 上記窒素原子含量 (重量%) は、 上記第 1 铸型製 造用粘結剤組成物の場合と同様に、 ゲルダール法により測 疋 しアこ
上記第 2铸型製造用粘結剤組成物では、 上記重縮合成分 に加えて従来公知の種々 の変性剤の少なく とも 1 種又は 2 種以上を混合併用 して上記拈結剤を調製してもよい。 かか る従来公知の種々 の変性剤と しては、 上記第 1 铸型製造用 粘結剤組成物の場合と同様のものを用いるこ とができる。 また、 その添加量も上記第 1 铸型製造用粘結剤組成物の場 合と同様である。
上記第 2铸型製造用粘結剤組成物における上記粘結剤は、 組成物全量中に、 4 0〜 1 0 0重量%含有されるこ とが好 ま しい。
また、 上記第 2铸型製造用粘結剤組成物においては、 上 記粘結剤及び上記第 1 铸型製造用粘結剤組成物において用 いられる変性剤に加えて、 任意成分と してシラ ンカ ッ プ リ ング剤を添加してもよい。 該シラ ンカ ップリ ン グ剤と し ては、 例えば 7 — ( 2 —ァ ミ ノ ) ァ ミ ノ プロ ビルメ チルジ メ トキシンラ ン、 7 —ァ ミ ノ プロ ピル 卜 リ メ トキシシラ ン、 7 —ァ ミ ノ プロ ビル ト リ エ トキシシラ ン、 ァ ー グ リ シ ドキ シプロ ビル ト リ メ トキシンラ ン等を、 好ま し く は組成物全 量中に 0 . 0 3〜 1 . 0重量%添加するこ とができる。
次に、 本発明の (铸型製造用拈結剤 -硬化剤) 組成物に ついて説明する。 該 (铸型製造用粘結剤-硬化剤) 組成物は、 上記铸型製 造用粘結剤組成物と硬化剤 (又は硬化剤組成物) とを含有 する。
上記硬化剤としては、 铸型を製造する際に用いられる従 来公知の任意の硬化剤を使用することができる。 上記硬化 剤として特に好ま しいものは、 特開平 5 — 2 3 7 5 8 7号 公報に記載されている、 燐酸系化合物とスルホ ン酸系化合 物とを特定の割合で配合した硬化剤組成物である。
上記硬化剤組成物について更に説明すると、 該硬化剤組 成物においては、 燐酸系化合物に由来する燐原子重量 (燐 原子含量) とスルホン酸系化合物に由来する硫黄原子重量
(硫黄原子含量) とが、 0 . 0 1 ≤ [硫黄原子含量 Z (燐 原子含量 +硫黄原子含量) ] ≤ 0 . 7を満足するような重 量比で配合されることが好ま しい。 換言すれば、 上記硬化 剤組成物における上記硫黄原子重量は、 上記燐原子重量の
[ 1 / 9 9 ] 〜 [ 7 Z 3 ] となるように調整されるこ とが 好ま しい。 上記硫黄原子重量か上記範囲より も少なく なる と、 相対的に上記燐原子重量が多く なりすぎ (即ち上記燐 酸系化合物の量が多く なりすぎ) 、 耐火性粒状材料を繰り 返し使用した再生砂中に燐原子が多量に蓄積しやすく なり、 ピンホール等の铸造欠陥が生じやすく なる傾向が生じる。 また、 再生砂に蓄積した燐による吸湿が激しく、 上記铸型 製造用粘結剤組成物の硬化が阻害される傾向が生じる。 一 方、 上記硫黄原子重量が上記範囲より も多く なると (即ち 上記スルホン酸系化合物の量が所定の範囲を超えて多 く な る と) 、 注湯時に有害な分解生成物を放出 しやすく なり、 作業環境が悪化する傾向が生じる。 上記燐原子重量と上記 硫黄原子重量との重量比は 0 . 0 3 ≤ [硫黄原子含量ノ (燐原子含量 +硫黄原子含量) ] ≤ 0 . 6 となるようにす るこ とが最も好ま しい。 なお、 上記硬化剤組成物中の硫黄 原子含量は燃焼中和滴定法により測定し、 上記硬化剤組成 物中の燐原子含量は I C P (誘導結合プラズマ発光分析装 置) にて測定した。
上記硬化剤組成物における上記燐酸系化合物と しては、 例えば、 燐酸、 縮合燐酸、 メ チル燐酸やェチル燐酸等の燐 酸エステル、 燐酸カ リ ウムや燐酸水素カ リ ウム等の燐酸塩 等が用いられる。
一方、 上記硬化剤組成物における上記スルホン酸系化合 物と しては、 例えば、 メ タ ンスルホ ン酸及びエタ ンスル ホ ン酸等の脂肪族スルホ ン酸 ; ベンゼンスルホ ン酸、 ト ル エンスルホ ン酸、 キシ レ ンスルホ ン酸及びフ エ ノ ールスル ホ ン酸等の芳香族スルホ ン酸 ; 硫酸等の無機酸等が用いら れる。
上記 (铸型製造用粘結剤 -硬化剤) 組成物における、 上 記铸型製造用粘結剤組成物と上記硬化剤 (又は上記硬化剤 組成物) との配合割合 (重量基準) には特に制限はないが、 一般的な範囲と して、 上記铸型製造用粘結剤組成物/上記 硬化剤 (又は上記硬化剤組成物) = 1 . 0〜 2 0 . 0 であ るこ とが好ま しく、 1 . 0〜 5 . 0であるこ とが更に好ま しい。
また、 上記 (铸型製造用粘結剤-硬化剤) 組成物におい ては、 上記铸型製造用粘結剤組成物及び上記硬化剤 (又は 上記硬化剤組成物) の他に、 任意成分と して、 シラ ンカ ツ プリ ング剤を添加してもよい。 該シラ ンカ ツプリ ング剤と しては、 例えば 7 — ( 2 —ァ ミ ノ) ァ ミ ノ プロ ピルメチル ジ メ トキシシラ ン、 ァ 一ァ ミ ノ プロ ビル ト リ メ トキシシラ ン、 ァ ーァ ミ ノ プロ ピル ト リ エ トキンシラ ン、 ァ ー グ リ シ ドキシプロ ビル ト リ メ トキシシラ ン等を、 組成物全量中に、 好ま し く は 0 . 0 3〜 1 . 0重量%添加するこ とができる。
次に、 本発明の铸型製造用砂組成物について説明する。 該铸型製造用砂組成物は、 耐火性粒状材料と上記铸型製 造用粘結剤組成物とを含有する ものであるか、 又は耐火性 粒状材料と上記铸型製造用粘結剤組成物と上記硬化剤 (又 は上記硬化剤組成物) とを含有する ものである。
上記铸型製造用砂組成物は、 例えば、 上記铸型製造用粘 結剤組成物を上記耐火性粒状材料に混練するか、 又は上記 铸型製造用拈結剤組成物と上記硬化剤 (又は上記硬化剤組 成物) とを上記耐火性粒状材料に混練して得るこ とができ る 上記耐火性粒状材料と しては、 铸物砂と して従来公知の もの、 例えば、 石英質を主成分とする珪砂、 ク ロマイ ト砂、 ジルコ ン砂、 オ リ ビン砂、 アル ミ ナ砂、 厶ライ ト砂及び合 成ムライ ト砂等の新砂並びに再生砂等を用いるこ とができ る O
上記再生砂と しては、 例えば、 通常の機械的磨耗式、 或 いは焙焼式で得られるものを使用するこ とができるが、 磨 耗式で再生されたものの方が収率も高く 、 経済的に優れ、 一般的であり好ま しい。
上記鐃型製造用砂組成物における、 上記耐火性粒状材料 と上記铸型製造用粘結剤組成物と上記硬化剤 (又は上記 硬化剤組成物) との配合割合に特に制限はないが、 一般 的な範囲と して、 組成物全量中に、 上記耐火性粒状材料は
9 0 . 0〜 9 9 . 9 9重量%含有されるこ とが好ま し く 、 上記铸型製造用粘結剤組成物は 0 . 1 〜 5 . 0重量%含有 される こ とが好ま しく 、 上記硬化剤 (又は上記硬化剤組成 物) は 0 . 0 0 5〜 5 . 0重量%含有される こ とが好ま し い o
また、 上記铸型製造用砂組成物には、 上記必須成分の他 に、 得られる铸型の強度をよ り向上させる目的で、 シラ ン カ ップリ ング剤を添加してもよい。
上記シラ ンカ ップリ ング剤と しては、 例えば 7 — ( 2 - ァ ミ ノ ) ァ ミ ノ プロ ピルメ チルジ メ トキシシラ ン、 7 — ア ミ ノ ブ口 ビル ト リ メ ト キ シ ン ラ ン、 7 — ア ミ ノ ブロ ピ ノレ ト リ エ トキンシラ ン、 7 — グリ シ ドキシプロ ピル ト リ メ トキシ シラ ン等が挙げられる。 上記シラ ンカ ッ プリ ン グ剤は、 上記铸型製造用砂組成物の全量中に、 好ま し く は 0 . 0 0 0 0 3〜 0 . 0 5重量%添加するこ とができる。 なお、 上記シラ ンカ ップリ ング剤は、 予め上記铸型製造用 粘結剤組成物中に含有させておいてもよい。
次に、 本発明の上記铸型製造用砂組成物を用いて铸型を 製造する方法について説明する。
本発明によれば、 上記铸型製造用砂組成物を用いて、 一 般的に自硬性铸型製造法で铸型を製造するこ とができる。 即ち、 本発明の方法は、 上記铸型製造用砂組成物を所定の 型に充填する工程、 及び該铸型製造用砂組成物中に含有さ れている铸型製造用粘結剤組成物を、 上記硬化剤組成物の 作用によって硬化させる工程を具備し、 これによ り铸型を 得るこ とができる。 上記铸型製造用粘結剤組成物を含有す る上記铸型製造用砂組成物によれば、 铸型の硬化速度が比 較的速 く 、 上記铸型製造用砂組成物を型に充塡した後、 3 0分〜 1 時間程度経過後に充分脱型可能である。 しかも、 この铸型に注湯するこ とによって、 高品質の铸物を良好な 環境のも とで製造するこ とができる。 なお、 上記铸型製造 用砂組成物の混練、 铸型の製造、 及び硬化等に際しては、 特に加熱や冷却の必要はな く 、 雰囲気温度で行って差し支 えない。 また、 上記铸型の製造方法において特に詳述しな かった点については、 従来公知の铸型の製造方法に関する 技術が適宜適用される。
実 施 例
以下実施例をもって本発明を詳細に説明するが、 本発明 はこれらの実施例のみに限定される ものではない。 なお、 以下の実施例及び比較例中の%は重量%を示す。
[実施例 1 〜 1 9及び比較例 1 〜 8 ]
フルフ リ ルアルコール、 尿素及びホルムアルデヒ ドから 成る重縮合成分を、 塩基性条件下所定時間反応させ、 その 後酸性条件下更に反応させ、 必要に応じて脱水を行い、 重 縮合を行った。 こ の重縮合を終えたあと、 表 1 及び表 2 に 示す硬化促進剤 〔アル ド リ ッ チフ ァ イ ンケ ミ カ ル社製 : 2, 5-F urand i me t han o l ( ビス ヒ ドロキ ン メ チル フ ラ ン) [ 1883-75- 6 ] (CAS登録番号) 〕 を添加混練して、 硬化促進 剤を表 1 及び表 2 に示した割合 (重量%) で含有する と共 に、 仕込フルフ リ ルアルコール重量% ( A ) と未反応フル フ リ ルアルコ ール重量% ( B ) の差 [ A - B ] が表 1 及び 表 2 に示した値である铸型製造用粘結剤組成物を調製した。 なお、 これらの铸型製造用粘結剤組成物中における水分量 はいずれも 2 . 0重量%であり、 窒素原子含量はいずれも
2 . 0重量%であった。 そして、 耐火性粒状材料として掛津浮選 5号珪砂 1 0 0 重量部に対して、 前記した铸型製造用粘結剤組成物 1 重量 部と、 硬化剤と して トルエンスルホン酸 7 0 %水溶液を 0 . 4重量部添加混練し、 铸型製造用砂組成物を得た。 そ の後直ちに、 この铸型製造用砂組成物を、 5 O mm0 x 5 O mmhのテス ト ピース枠に充塡し、 2 5 °Cで自硬性铸型造型 法によってテス ト铸型を得た。 そしてこの際、 1 時間及び 2 4 時間経過したときのテス ト铸型の圧縮強度を JIS Z 2604-1976 に記載された方法で測定した。 その結果を表 1 及び表 2に示した。
【表 1】 硬 化 促 進 剤 圧縮強度 (kg/cnf)
[Α - Β]
潘 額 1 Hr経過後 24Hr経過後 丄 ト ' ト πΨνϊί+ίレ 7ソ 5.0 5 7 33 1 o μ Κ、 土 : =丁/ルフノ^ノソ / 5, 2 6 6 33 6
7 '
0 に ノ 4 /·^"ノ7τフノ 厶. 7 8 7 3 3 τ· ?
4 ノ ルノフノ U 7
にし レ卜、ロ干ノ 4-ルマノ τフノ */
0. U 丄 1 厶 9 · 0
6 4 ,ΐ
卜 千ノスナルノフノ 0. U Q 7
o 0. 0 つ つ
7 匕ス匕卜 n ンメ ルフフノ U 1 7 丄 1 , 0 施 8 匕スヒ卜 nt t.ン'/メ」:ナ/レっ Λ
フフノ υ 1 7 丄 1 1丄, 0 . u o
ヒスヒ卜 ン /ナ/レノ 7ノ U 1 7
10 1 /1
ノ / ノ ノ 0 上
11 ビスヒド αキシ; ίチルフラン 1 5.0 0 3 o 1 fi q
例 12 ビスヒド πキシメチル 7ラン 25.0 26 ·.6 20.3 53.2
13 ビスヒ^キシメチルフラン 25.0 35.5 20.0 50.7
14 ビスヒド πキ'ンメチルフラン 25.0 42.5 1 4. 1 45.6
15 ビスヒド πキシメチルフラン 35.0 32.3 1 7. 1 48.4 【表 2】
Figure imgf000029_0001
表 1 及び表 2 の結果よ り明らかな通り、 硬化促進剤を含 有する铸型製造用拈結剤組成物を使用 した場合には、 1 時 間経過後の铸型の強度が高く なり、 また、 2 4 時間経過後 の铸型の強度も高く なるこ とが分かる。 そして、 硬化促進 剤の含有量を 0 . 5重量%から徐々 に増加させてゆく と、 各々 の铸型の強度も高く なるこ とが分かる。 この際、 硬化 促進剤を 2 5重量%含有した時点で最大値となり、 更に硬 化促進剤を増加させてゆく と、 各々 の铸型の強度は徐々 に 低下し、 6 3重量%を超える と铸型製造用粘結剤組成物が 不均一になってしまう こ とが分かる。 また、 硬化促進剤の 量を 0 . 5重量%未満にすると各々 の铸型の強度はあま り 向上しないこ とが分かる。 一方、 铸型製造用粘結剤組成物 に含有される上記粘結剤における、 該粘結剤の重量に基づ く 仕込フルフ リ ルアルコール重量% ( A ) と、 該粘結剤の 重量に基づく未反応フルフ リ ルアルコール重量% ( B ) と の差、 即ち [A — B ] の値が、 5 . 0〜 6 0 . 0 の範囲で
1 時間経過後の铸型の強度が高く なり、 また 2 4 時間経過 後 の铸型の強度も高く なるこ とが分かる。 そして、 上記 差 [ A — B ] の値を 5 . 0から徐々 に増加させてゆく と、 各々 の铸型の強度も徐々 に 高く なるこ とが分かる。 この 際、 上記差 [ A— B ] が 1 5 . 0から 4 0 . 0付近で最大 値とな り、 更に上記差 [ A — B ] を増加させてゆ く と、 各々の铸型の強度は徐々 に低下し、 6 0 . 0 を超えると铸 型の強度は低く なるこ とが分かる。 一方、 上記差 [ A — B ] が 5 . 0未満の場合も铸型強度は低い傾向になるこ とか分 かる。
[実施例 2 0 〜 3 3 ]
フルフ リ ルアルコール、 尿素及びホルムアルデヒ ドから なる重縮合成分を重縮合して、 仕込フルフ リ ルアルコール 重量% ( A ) と未反応フルフ リ ルアルコール重量% ( B ) の差、 即ち [ A— B ] が 2 5 . 0 である粘結剤を得た。 更 に、 該粘結剤に、 2 , 5 — ビスヒ ドロキシメチルフラ ンよ りなる硬化促進剤を添加混練して、 表 3 に示す水分量及び 窒素原子含量を有する铸型製造用粘結剤組成物を得た。 な お、 表 3 に示す铸型製造用粘結剤組成物中における硬化促 進剤の含有量はすべて 1 5重量%であった。
この铸型製造用粘結剤組成物を使用する他は、 実施例 1 と同様に してテス 卜铸型を製造した。 そ して、 この铸型の 圧縮強度を実施例 1 と同様にして測定した。 その結果を表
3 不 し 7こ o
【表 3】
Figure imgf000032_0001
表 3 の結果より明らかな通り、 水分量を 6 . 0重量%か ら徐々 に低下させてゆく と、 各々 の铸型の強度も徐々 に高 く なる こ とが分かる。 また、 窒素原子含量を 4 . 0 重量 から徐々 に低下させてゆく と、 各々 の铸型の強度も徐々 に 高く なるこ とが分かる。 この際、 窒素原子含量が I . 0〜 3 . 0重量%付近で铸型強度が最大値となり、 更に窒素原 子含量を低下させてゆく と、 各々の铸型の強度は徐々に低 下し、 0 . 5重量 未満にすると、 各々の铸型の強度も低 く なるこ とが分かる。 一方、 窒素原子含量が 4 . 0重量% を超えた場合も各々の铸型の強度が低く なるこ とが分かる。
[実施例 3 4〜 4 5及び比較例 9〜 1 4 ]
フルフ リ ルアルコール、 尿素及びホルムアルデヒ ドから 成る重縮合成分を重縮合して、 仕込フルフ リルアルコール 重量% ( A ) と未反応フルフ リ ルアルコール重量% ( B ) との差、 即ち [ A— B ] が 3 0 . 0である粘結剤を含有す る铸型製造用粘結剤組成物を得た。 この铸型製造用粘結剤 組成物中の水分量及び窒素原子含量は、 表 4 に示す通り
( 1 8種類) である。
—方、 硬化剤組成物として、 ト ルエンスルホ ン酸 7 0 % 水溶液と 8 5 %燐酸とを等量混合したもの、 即ち硬化剤 組成物中の [硫黄原子含量 (燐原子含量 +硫黄原子含 量) ] が 0 . 3 2 6のものを調製した。
そして、 耐火性粒状材料として掛津浮選 5号珪砂 1 0 0 重量部に対して、 前記した铸型製造用粘結剤組成物 1 重量 部と前記した硬化剤組成物 0 . 4 5重量部を添加混練して 铸型製造用砂組成物を得た。 これ以外は実施例 1 と同様に して、 テス ト铸型を製造した。 そして、 この铸型の圧縮強 度を実施例 1 と同様にして測定した。 その結果を表 4 に示 した
【表 4】 铸型製造用粘結剤組成物中( ) 圧縮強度 (kg/cnf) 水 分 量 窒素原子含量 1 Hr経過後 24Hr経過後
34 6. 0 2. 5 6. 3 4 3. 6
35 4. 2 2. 5 7. 5 4 5. 3
36 3. 1 2. 5 9. 0 4 7. 0
37 2. 3 2. 5 1 0. 6 4 8. 7
38 1 5 2. 5 1 2. 5 4 9. 5
39 0 ν· R 9 5 1 3. 2 5 0. 8 施
40 3 5 4. 0 7. 6 4 5. 5
41 3 5 3. 2 7. 8 4 6. 8
42 3. 5 2. 6 8. 0 4 7. 4 例 43 3 5 2. l 8. 1 4 6. 5
44 3. 5 1. 2 8. 0 4 6. 4
45 3. 5 0. 5 6. 8 4 2. 9
9 6. 4 2. 5 4. 2 3 7. 7 比 10 9. 0 2. 5 2. 1 3 2. 4
11 3. 5 5. 2 3. 8 3 5. 6 較
12 3. 5 4. 4 4. 7 3 8. 1 例 13 3. 5 0. 3 4. 2 3 7. 5
14 3. 5 0. 2 3. 3 3 4. 0 表 4 の結果より明らかなとおり、 铸型製造用粘結剤組成 物中の水分量を 6 . 0重量%から徐々 に滅少させてゆく と、 各々 の铸型の強度も徐々 に高く なるこ とが分かる。 また、 窒素原子含量を 4 . 0重量%から徐々 に低下させてゆく と、 各々の铸型の強度も徐々 に高く なるこ とが分かる。 この際、 窒素原子含量が 1 . 0〜 2 . 0重量%付近で铸型強度か最 大値となり、 更に窒素原子含量を低下させてゆく と、 各々 の铸型の強度は徐々 に低下し、 0 . 5重量%未満にする と、 各々 の铸型の強度が低く なるこ とが分かる。 一方、 窒素原 子含量が 4 . 0重量 を超えた場合も、 各々 の铸型の強度 が低く なるこ とが分かる。
[実施例 4 6〜 5 3 ]
硬化剤組成物と して、 表 5 に示す成分を含有する ものを 調製した。 なお、 表 5 に示す以外の成分は水である。
—方、 フルフ リ ルアルコール、 尿素及びホルムアルデヒ ドから成る重縮合成分を重縮合して、 仕込フルフ リ ルアル コール重量% ( A ) と未反応フルフ リ ルアルコール重量%
( B ) との差、 即ち [ A - B ] が 2 5 . 0である拈結剤を 得た。 該粘結剤に 2 , 5 — ビス ヒ ドロキンメチルフラ ンよ りなる硬化促進剤を添加混練し、 水分量が 2 . 0重量%、 窒素原子含有量が 2 . 0重量%である铸型製造用粘結剤組 成物を調製した。 なお、 該铸型製造用粘結剤組成物は、 上 記硬化促進剤を 1 5 . 0重量%含有していた。 珪砂 1 0 0重量部に対して、 表 5 に示す硬化剤組成物 0 . 3 3重量部を添加混練し、 次いで上記铸型製造用拈結 剤組成物 0 . 6 5重量部を添加混練し、 铸型製造用砂組成 物を得た。 この铸型製造用砂組成物を用いて铸型を作製し、 铸型/熔湯の重量比が 2 . 5の铸物を铸造した後、 この铸 型をばらして回収した砂をク ラ ッ シャ ーにかけ、 日本铸造 株式会社製 M型ロータ リー リ ク レーマーを用いて再生砂を 得た。
5】
Figure imgf000037_0001
注) ( I ) Z C( I ) + (D) 硬化剤組成物中の 〔硫黄原子含量 Z (硫黄原子含量 十燐原子含量) 〕 この再生砂 9 5重量部と新砂 5重量部を混合した後、 こ れに上記と同様の割合で上記硬化剤組成物及び上記铸型製 造用粘結剤組成物を添加混練して、 铸型の製造、 铸造、 砂 回収、 砂再生のサイ クルを 2 0回繰り返し、 この 2 0回目 の再生砂を使用して、 上記と同様の割合で上記硬化剤組成 物及び上記粘結剤組成物を添加混練して铸型を成型した。 そ して、 型枠に充塡した後、 0 . 5 時間、 1 時間、 及び 2 4時間経過した時の铸型の圧縮強度を測定した。 また、 再生砂の吸湿性は 2 0回目の再生砂を 2 5てで 9 0 % R H の環境に 2 4時間放置後、 再生砂の吸湿性を測定した。 更 に、 2 0回目の铸造時に S 0 2 発生量の測定を次の苛酷な 条件下で行った。 即ち、 铸型/熔湯の重量比が 2 . 5の铸 物を製造するための大きさが 6 2 0 mm x 7 7 0 mm x 5 3 0 mm hの铸型への熔湯の充填が終了した後、 直ちに大きさが 9 0 0 mm x 9 0 0 mm x 9 0 0 mm hの木箱で上記铸型を覆い、 铸込みが終了 した 5分後に上記木箱上部よ り検知管にて S 0 2 の測定を行った。 以上の結果を表 6 に示す。
【表 6】
Figure imgf000039_0001
表 5及び表 6の結果から明らかなように、 硬化剤組成物 中の [硫黄原子含量ノ (燐原子含量 +硫黄原子含量) ] の 値が 0 . 0 1 未満になると、 再生砂の吸湿量が高く、 圧縮 強度が低く なるこ とが分かる。 また、 [硫黄原子含量ノ
(燐原子含量 +硫黄原子含量) ] の値が 0 · 7を超えると、 作業環境が極めて悪化するこ とが分かる。 従って、 総合的 な観点からは、 実施例 4 6〜 5 1 の硬化剤組成物を使用レ た場合には、 再生砂の吸湿の影響が少なく、 圧縮強度も高 く、 また作業環境も良好であるこ とが分かる。
[実施例 5 4 ~ 6 1 ]
水分鼉を 0 . 3重量%とし、 窒素原子含量を 2 · 5重量 %とした他は、 実施例 3 4で使用した铸型製造用拈結剤組 成物と同様の铸型製造用粘結剤組成物を調製した。 珪砂 1 0 0重 i部に対して、 表 5 に示す硬化剤組成物 0 . 3 3重量部を添加混練し、 次いで上記铸型製造用粘結 剤組成物 0 . 6 5重量部を添加混練し、 铸型製造用砂組成 物を得た。 これ以外は実施例 4 6〜 5 3 と同様にして、 再 生砂の吸湿量、 铸造時の S 0 2 発生量及び铸型の圧縮強度 を測定した。 その結果を表 7 に示す。
【表 7】 再生砂の S 〇 2 圧 縮 強 度 (kg/cnf) 圧縮強度の 吸 湿 量 発 生 量 試験温度
(%対砂) ( P p m) 0. 5Hr 後 l. OHr 後 24Hr 後 CO
54 0. 2 3 7 4. 5 2. 8 8. 3 3 7. 7 5
55 0. 2 7 2 2. 0 4. 5 8. 6 3 6. 9 3 5
56 0. 2 5 4 9. 0 3. 0 7. 8 3 8. 4 5
57 0. 2 9 1 6. 5 4. 8 9. 3 3 4. 8 3 5 施
58 0. 2 8 2 9. 0 5. 0 9. 2 3 7. 1 5
59 0. 2 9 4. 0 4. 9 8. 6 3 5. 7 3 5 例 60 0. 4 8 1. 2 0 0. 6 1 0. 7 3 5
61 0. 2 0 1 0 5. 0 1. 9 7. 4 3 4. 5 5 表 5及び表 7の結果から明らかなように、 硬化剤組成物 中の [硫黄原子含量/ (燐原子含量 +硫黄原子含量) ] の 値が 0 . 0 1 未満になると、 再生砂の吸湿量が高く、 圧縮 強度が低く なる こ とが分かる。 また、 [硫黄原子含量 Z (燐原子含量 +硫黄原子含量) ] の値が 0 . 7を超えると、 作業環境が極めて悪化するこ とが分かる。 一方、 実施例
5 4〜 5 9の硬化剤組成物を使用した場合には、 再生砂の 吸湿の影響が少なく、 圧縮強度も高く、 また作業環境も良 好であるこ とが分かる。
[実施例 6 2〜 7 1 及び比較例 1 5〜 1 7 ]
フルフ リ ルアルコール、 尿素及びホルムアルデヒ ドから 成る重縮合成分を重縮合して得られた粘結剤を含有する铸 型製造用粘結剤組成物を得た。 該铸型製造用粘結剤組成物 における水分量は 0 . 8重量 であり、 窒素原子含量は
1 . 8 重量%であり、 仕込フルフ リ ルアルコール重量%
( A ) と未反応フルフ リ ルアルコール重量% ( B ) との差
[ A - B ] が表 8 に示した通りである。
この铸型製造用粘結剤組成物を用いる他は、 実施例 3 4 と同様にしてテス 卜铸型を製造した。 そして、 この铸型の 1 時間経過後及び 2 4時間経過後の圧縮強度を測定した。 その結果を表 8 に示す。 【表 8]
Figure imgf000042_0001
表 8の結果から明らかなように、 誇型製造用粘結剤組成 物に含有される上記粘結剤における、 該拈結剤の重量に基 づく仕込フルフ リ ルアルコール重量% ( A) と、 該粘結剤 の重量に基づく未反応フ リ フ リ ルアルコ ール重量% ( B ) の差、 即ち [A— B ] の値が 5. 0 6 0. 0の範囲で 1 時間経過後の铸型の強度が高くなり、 また 2 4時間経過後 の铸型の強度も高 く なる こ とが分かる。 そ して、 上記差
[ A - B ] の値を 5 . 0 から徐々 に増加させてゆ く と、 各々铸型の強度も徐々 に高く なるこ とが分かる。 この際、 上記差 [ A— B ] が 1 5 . 0から 4 0 . 0付近で最大値と なり、 更に [ A— B ] を増加させてゆく と、 各々 の铸型の 強度は徐々 に低下し、 6 0 . 0 を超える と铸型の強度は低 く なるこ とが分かる。 また、 上記差 [ A— B ] が 5 . 0未 満の場合も铸型強度は低く なるこ とが分かる。 産業上の利用可能性
本発明の铸型製造用粘結剤組成物を使用 して铸型を製造 する と、 粘結剤の硬化速度が向上し、 初期強度の高い铸型 を得るこ とができる。 従って、 自硬性铸型製造法を採用 し、 本発明の铸型製造用粘結剤組成物を使用 して铸型を製造す る と、 早期に型枠から铸型を脱型でき、 型枠の有効利用が 図れる という効果を奏する。
また、 本発明の铸型製造用粘結剤組成物において、 フル フ リ ルアルコール、 尿素及びアルデヒ ド類を主成分とする 重縮合成分の重縮合物を用いたり、 铸型製造用坫結剤組成 物中の水分量を特定の値以下に調整したり、 或いは铸型製 造用粘結剤組成物中の窒素原子含量を特定の範囲に調整し たりする と、 铸型製造用粘結剤組成物の硬化をよ り促進さ せる こ とができ、 上記した発明の効果をより向上させる こ とができる。
また、 本発明の铸型製造用拈結剤組成物と、 硫黄原子含 量と燐原子含量が特定の範囲に調整された硬化剤組成物と を含有する (铸型製造用粘結剤 -硬化剤) 組成物を用いれ ば、 再生砂を多量に使用して铸型を製造しても、 S 0 2 等 の有毒ガスの発生が少なく、 且つ初期強度は勿論のこと最 終的にも高強度の铸型を得ることができるという効果を奏 する。
本発明の精神及び範囲から逸脱しない限り、 本発明の多 く の変形又は態様変更が可能であることは、 当業者にとつ て明白であろう。 従って、 上記の実施例は、 本発明の単な る例示に過ぎず、 かかるすべての変形又は態様変更は、 添 付の請求の範囲に記載された発明に含まれるべきものであ
Ό

Claims

請求の範囲
1 . フルフ リ ルアルコールを主成分とする重縮合成分を 重縮合して得られる粘結剤と、 下記一般式 ( 1 ) で示され る 1種又は 2種以上の硬化促進剤とを含有する铸型製造用 粘結剤組成物であって、 該铸型製造用粘結剤組成物に含有 される該粘結剤における、 該粘結剤の重量に基づく 仕込フ ルフ リルアルコール重量% ( A ) と、 該粘結剤の重量に基 づく重縮合後の未反応フルフ リ ルアルコール重量% ( B ) との差 [A— B ] が 5 . 0〜 6 0. 0であり、 上記硬化促 進剤が 0. 5〜 6 3. 0重量%含有される铸型製造用粘結 剤組成物。
Figure imgf000045_0001
(式中、 X , 及び X2 は、 同一の又は異なる H、 C Η 3 又 は C 2Η 5 を表わす。 )
2. 上記粘結剤が、 フルフ リ ルアルコ ール、 尿素及びァ ルデヒ ド類を主成分とする重縮合物である、 請求の範囲第 1 項記載の铸型製造用粘結剤組成物。
3 . 上記铸型製造用粘結剤組成物中の水分量が 6 . 0重 量%以下である、 請求の範囲第 1項記載の铸型製造用拈結 剤組成物。
4. 上記铸型製造用粘結剤組成物中の窒素原子含量が 0. 5〜 4 . 0重量%である、 請求の範囲第 1 項記載の铸 型製造用粘結剤組成物。
5 . フルフ リ ルアルコール、 尿素及びアルデヒ ド類を主 成分とする重縮合成分を重縮合して得られる粘結剤を含有 する铸型製造用粘結剤組成物であって、 該铸型製造用粘結 剤組成物に含有される該粘結剤における、 該粘結剤の重量 に基づく仕込フルフ リ ルアルコール重量% ( A) と、 該粘 結剤の重量に基づく重縮合後の未反応フルフ リ ルアルコー ル重量% ( B ) との差 [A - B ] が 5. 0 〜 6 0. 0であ り、 該铸型製造用粘結剤組成物中の水分量が 6. 0重量% 以下であり、 且つ該铸型製造用粘結剤組成物中の窒素原子 含量が 0 . 5〜 4 . 0重量%である铸型製造用粘結剤組成 物。
6. [硫黄原子含量/ (燐原子含量 +硫黄原子含量) ] で示される燐原子と硫黄原子との重量割合が 0 . 0 1 〜 0. 7である硬化剤組成物と、 請求の範囲第 1 項乃至第 5 項のいずれか一項に記載の铸型製造用粘結剤組成物とを含 有する (铸型製造用粘結剤 -硬化剤) 組成物。
7 . 耐火性粒状材料と請求の範囲第 1項乃至第 5項のい ずれか一項に記載の铸型製造用粘結剤組成物とを含有する 铸型製造用砂組成物。
8 . 耐火性粒状材料と請求の範囲第 6項記載の (铸型製 造用粘結剤 -硬化剤) 組成物とを含有する铸型製造用砂組 成物。
9 . 請求の範囲第 7項又は第 8項記載の铸型製造用砂組 成物を所定の型に充塡する工程、 及び該铸型製造用砂組成 物中に含有されている铸型製造用粘結剤組成物を硬化させ る工程を具備する铸型の製造方法。
PCT/JP1995/001633 1994-08-19 1995-08-17 Composition de liaison pour la production de moules et procede de production de moules WO1996005925A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/793,150 US5932628A (en) 1994-08-19 1995-08-17 Binder composition for production of molds and method of producing mold
DE69535397T DE69535397T2 (de) 1994-08-19 1995-08-17 Binderzusammensetzung und herstellungsverfahren für formen
EP95928611A EP0778095B1 (en) 1994-08-19 1995-08-17 Binder composition for mold production and process for producing mold

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP06218101A JP3114515B2 (ja) 1994-08-19 1994-08-19 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP6/218102 1994-08-19
JP06218102A JP3114516B2 (ja) 1994-08-19 1994-08-19 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP6/218101 1994-08-19

Publications (1)

Publication Number Publication Date
WO1996005925A1 true WO1996005925A1 (fr) 1996-02-29

Family

ID=26522396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001633 WO1996005925A1 (fr) 1994-08-19 1995-08-17 Composition de liaison pour la production de moules et procede de production de moules

Country Status (5)

Country Link
US (1) US5932628A (ja)
EP (1) EP0778095B1 (ja)
CN (1) CN1062202C (ja)
DE (1) DE69535397T2 (ja)
WO (1) WO1996005925A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137508B2 (en) 2015-01-22 2018-11-27 Heule Werkzeug Ag Miniaturized deburring and/or chamfering tool with internal cooling

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727540B4 (de) * 1996-09-17 2010-01-14 Hexion Specialty Chemicals Gmbh Verfahren zur Herstellung von gehärteten Formstoffen
US7125914B2 (en) * 2003-09-18 2006-10-24 Ashland Licensing And Intellectual Property Llc Heat-cured furan binder system
DE102005009636B4 (de) * 2005-03-03 2016-08-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum generativen Herstellen einer Sandform
ATE516905T1 (de) * 2006-03-25 2011-08-15 Bayerische Motoren Werke Ag Verfahren zum herstellen einer sandform
JP5537067B2 (ja) * 2008-04-30 2014-07-02 花王株式会社 鋳型の製造方法
MY163382A (en) 2009-12-25 2017-09-15 Kao Corp Binder composition for self-curing mold formation
JP5986457B2 (ja) * 2011-08-31 2016-09-06 花王株式会社 自硬性鋳型造型用粘結剤組成物
CN102310157A (zh) * 2011-10-13 2012-01-11 李华山 一种泥芯型砂的配比
DE202012013467U1 (de) * 2012-02-09 2017-01-30 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Cold-Box-Bindemittelsysteme und Mischungen zur Verwendung als Additive für solche Bindemittelsysteme
JP5860530B2 (ja) 2012-03-26 2016-02-16 積水化学工業株式会社 熱硬化性フラン樹脂組成物及びこれを用いたフラン樹脂積層体
CN102861866B (zh) * 2012-09-27 2015-02-25 珠海市斗门福联造型材料实业有限公司 一种铸造用呋喃树脂自硬砂用固化剂及其制备方法
CN103495693A (zh) * 2013-10-16 2014-01-08 合肥市田源精铸有限公司 一种耐高温易溃散型砂及其制备方法
CN104497299B (zh) * 2014-11-20 2016-08-24 济南圣泉集团股份有限公司 低游离糠醇粘结剂的制备方法
CN104804162A (zh) * 2015-05-12 2015-07-29 芜湖市容川机电科技有限公司 一种铸造用热芯盒树脂及其制备方法
CN105436396A (zh) * 2015-11-23 2016-03-30 合肥李诺新材料贸易有限公司 一种泵阀铸件用高透气的改性碱性酚醛树脂自硬砂及其制备方法
CN105414452A (zh) * 2015-11-23 2016-03-23 合肥李诺新材料贸易有限公司 一种泵阀铸件用含介孔沸石的改性碱性酚醛树脂自硬砂及其制备方法
CN105436393A (zh) * 2015-11-23 2016-03-30 合肥李诺新材料贸易有限公司 一种高精度泵阀铸件用改性碱性酚醛树脂自硬砂及其制备方法
CN105562588A (zh) * 2016-01-19 2016-05-11 安徽涌畅铸件有限公司 一种消失模粘结剂及其制备方法
CN107127292B (zh) * 2017-06-28 2019-12-27 济南圣泉集团股份有限公司 一种3d打印用粘结剂及其制备方法和应用
CN108263024A (zh) * 2017-12-18 2018-07-10 星光印刷(苏州)有限公司 一种瓦楞纸盒生产方法
JPWO2020035922A1 (ja) * 2018-08-16 2021-02-15 花王株式会社 鋳型造型用粘結剤組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223858A (ja) * 1984-03-31 1985-11-08 リユートガースヴエルケ・アクチエンゲゼルシヤフト フルフリルアルコールをベースとする結合剤、その製造法、および鋳型および芯型の製造法
JPH05237587A (ja) * 1991-12-13 1993-09-17 Kao Corp 鋳型成型用砂組成物及び鋳型の製造方法
JPH06297072A (ja) * 1993-02-22 1994-10-25 Kao Corp 鋳型製造用粘結剤組成物、鋳型製造用砂組成物及び鋳型の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387628A (en) * 1971-05-05 1975-03-19 White Sea & Baltic Co Foundry casting forms
JPS5237587A (en) * 1975-09-19 1977-03-23 Matsushita Electric Ind Co Ltd Catalyst
US4017461A (en) * 1976-01-02 1977-04-12 The Quaker Oats Company Method for manufacturing liquid resinous furan-formaldehyde condensation products
US4636537A (en) * 1984-01-30 1987-01-13 Ashland Oil, Inc. Composition, method for preparing and use thereof
JPS59113952A (ja) * 1982-12-21 1984-06-30 Dainippon Ink & Chem Inc 鋳物用樹脂の硬化方法
EP0540837B1 (de) * 1991-11-07 1995-11-08 Bakelite AG Ligninmodifizierte Bindemittel
US5616631A (en) * 1994-08-17 1997-04-01 Kao Corporation Binder composition for mold making, binder/curing agent composition for mold making, sand composition for mold making, and process of making mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223858A (ja) * 1984-03-31 1985-11-08 リユートガースヴエルケ・アクチエンゲゼルシヤフト フルフリルアルコールをベースとする結合剤、その製造法、および鋳型および芯型の製造法
JPH05237587A (ja) * 1991-12-13 1993-09-17 Kao Corp 鋳型成型用砂組成物及び鋳型の製造方法
JPH06297072A (ja) * 1993-02-22 1994-10-25 Kao Corp 鋳型製造用粘結剤組成物、鋳型製造用砂組成物及び鋳型の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0778095A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137508B2 (en) 2015-01-22 2018-11-27 Heule Werkzeug Ag Miniaturized deburring and/or chamfering tool with internal cooling

Also Published As

Publication number Publication date
CN1155856A (zh) 1997-07-30
CN1062202C (zh) 2001-02-21
EP0778095A1 (en) 1997-06-11
DE69535397T2 (de) 2007-10-31
EP0778095B1 (en) 2007-02-21
EP0778095A4 (en) 1998-03-11
US5932628A (en) 1999-08-03
DE69535397D1 (de) 2007-04-05

Similar Documents

Publication Publication Date Title
WO1996005925A1 (fr) Composition de liaison pour la production de moules et procede de production de moules
JP4663764B2 (ja) 鋳型造型用粘結剤組成物および該鋳型造型用粘結剤組成物を用いた鋳型の製造方法
CN100473476C (zh) 铸型制造用呋喃树脂组合物、铸型制造用粘结剂以及铸型的制造方法
WO2013161426A1 (ja) 鋳型造型用硬化剤組成物、その使用、及びその製造方法、並びに鋳型の製造方法
JP6010426B2 (ja) 鋳型造型用粘結剤組成物
JP3114516B2 (ja) 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP5089935B2 (ja) 鋳型製造用フラン樹脂組成物
JP2826588B2 (ja) 鋳型成型用粘結剤−硬化剤組成物
KR101175837B1 (ko) 푸란수지 조성물,푸란수지?경화제 조성물,및 이의 주물용사 조성물
JP6097135B2 (ja) 鋳型造型用粘結剤組成物
JP2000246391A (ja) 鋳型用酸硬化性粘結剤の製法
JP6736313B2 (ja) 鋳型造型用キットおよび鋳型造型用砂組成物の製造方法
JP5119276B2 (ja) 自硬性鋳型造型用砂組成物の製造方法、及び鋳型の製造方法
JP5250300B2 (ja) 鋳型の製造方法
JP3114515B2 (ja) 鋳型製造用粘結剤組成物及び鋳型の製造方法
JP6770528B2 (ja) 鋳型造型用キット
JP6761943B2 (ja) 鋳型造型用粘結剤組成物
JP6971412B2 (ja) 鋳型造型用粘結剤組成物
JP5250301B2 (ja) 鋳型の製造方法
JP2747054B2 (ja) 鋳型製造用被覆砂
JPH06297072A (ja) 鋳型製造用粘結剤組成物、鋳型製造用砂組成物及び鋳型の製造方法
JPS6228042A (ja) 鋳型用粘結剤樹脂組成物
JPS6228043A (ja) 鋳物用粘結剤樹脂組成物
JP2747053B2 (ja) 鋳型製造用被覆砂
WO2022254503A1 (ja) 鋳型造型用粘結剤樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95194663.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995928611

Country of ref document: EP

Ref document number: 08793150

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995928611

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995928611

Country of ref document: EP