WO1995032992A1 - Synthetische peptidanaloge des lungenoberflächenproteins sp-c - Google Patents

Synthetische peptidanaloge des lungenoberflächenproteins sp-c Download PDF

Info

Publication number
WO1995032992A1
WO1995032992A1 PCT/EP1995/002028 EP9502028W WO9532992A1 WO 1995032992 A1 WO1995032992 A1 WO 1995032992A1 EP 9502028 W EP9502028 W EP 9502028W WO 9532992 A1 WO9532992 A1 WO 9532992A1
Authority
WO
WIPO (PCT)
Prior art keywords
leu
phe
pharmaceutical composition
ile
val val
Prior art date
Application number
PCT/EP1995/002028
Other languages
English (en)
French (fr)
Inventor
Klaus P. SCHÄFER
Klaus Melchers
Rüdiger Nave
Wolf-Rüdiger Ulrich
Ernst Sturm
Uwe Krüger
Dietrich Häfner
Original Assignee
Byk Gulden Lomberg Chemische Fabrik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6519392&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995032992(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP50030596A priority Critical patent/JP3359638B2/ja
Priority to RU96124768A priority patent/RU2145611C1/ru
Priority to RO96-02248A priority patent/RO118752B1/ro
Priority to BRPI9507811-8A priority patent/BR9507811B1/pt
Priority to UA96114479A priority patent/UA35636C2/uk
Priority to CA002191344A priority patent/CA2191344C/en
Priority to EP95920906A priority patent/EP0764172B1/de
Priority to HU9603249A priority patent/HU220191B/hu
Priority to SI9530712T priority patent/SI0764172T1/xx
Priority to EE9600175A priority patent/EE03775B1/xx
Priority to KR1019960706778A priority patent/KR100355626B1/ko
Application filed by Byk Gulden Lomberg Chemische Fabrik Gmbh filed Critical Byk Gulden Lomberg Chemische Fabrik Gmbh
Priority to AT95920906T priority patent/ATE275154T1/de
Priority to SK1524-96A priority patent/SK282441B6/sk
Priority to PL95317420A priority patent/PL181234B1/pl
Priority to NZ287447A priority patent/NZ287447A/en
Priority to DE59510941T priority patent/DE59510941D1/de
Priority to US08/750,194 priority patent/US5874406A/en
Priority to DK95920906T priority patent/DK0764172T3/da
Priority to AU26169/95A priority patent/AU690280B2/en
Publication of WO1995032992A1 publication Critical patent/WO1995032992A1/de
Priority to NO19965052A priority patent/NO317149B1/no
Priority to FI964766A priority patent/FI118126B/fi
Priority to BG101028A priority patent/BG63210B1/bg
Priority to HK97102503A priority patent/HK1000891A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/785Alveolar surfactant peptides; Pulmonary surfactant peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to lung surfactant-active polypeptides, processes for their preparation and therapeutic compositions containing them.
  • the lungs of all vertebrates contain a mixture of substances called "pulmonary surfactant". It shows surface-active properties and lowers the surface tension in the alveolar area of the lungs so that a collapse of the final airway areas during exhalation is avoided.
  • This mixture of substances regulates the surface tension in a dynamic manner, so that the collapse of the small alveoli to be expected in accordance with Laplacian law in favor of the larger one is avoided by appropriate adaptation of the surface tension. The result is a well-balanced, histologically and physiologically stable structure of the lungs.
  • Lung surfactant is secreted by type II alveolar pneumocytes in the form of lamellar bodies. These are compact units made of phospholipid bilayers (organic) with a high proportion of dipalmitoyiphosphatidyicholine (DPPC) and phosphatidylglycerol (PG). Lung surfactant contains proteins which are designated as SP-A, SP-B and SP-C as further essential components. SP-A is a high molecular weight glycoprotein that plays a crucial role in regulating secretion.
  • the proteins SP-C and, to a lesser extent, SP-B assume the role of "thermodynamic catalysts" in the formation of the monomolecular surface film (the surfactant in the narrower sense).
  • the presence of these proteins accelerates the spreading kinetics enormously. This is the only way to adapt the surfactant composition to the respective surface tension requirements without delay.
  • These properties are reflected in the extremely hydrophobic nature of the proteins, especially the SP-C.
  • composition of the phospholipids is strongly dependent on the animal species, health and nutritional status of the animal and can only be compensated for to a limited extent by adding defined components.
  • the content of surfactant proteins and the ratio SP-B / SP-C are subject to the same uncertainties.
  • any proteolytic breakdown products of the proteins or modified derivatives e.g. by oxidation on methionine
  • any proteolytic breakdown products of the proteins or modified derivatives are also contained in the therapeutically used mixture.
  • surfactant as z. B. in adult respiratory distress syndrome (shock lung, ARDS) or in other fields of application, such as. B. the use of surfactant as a "tug" for other substances in a pulmonary application, may be necessary, the question of substance replenishment is open.
  • the palmitic acid further increases the hydrophobic character of the total protein and at the same time closes the two SH groups of the cysteines and protects them against oxidation and disulfide bridge formation.
  • the central region (amino acids 13-34) forms a transmembrane helix. This region is flanked at the N-terminus by a polar sequence that contains positively charged amino acids (Lys, 10; Arg, 1 1).
  • WO 91/18015 describes the production of recombinant SP-C and mutants of SP-C. It is proposed there, inter alia, to replace the two cysteines in positions 4 and 5 by two serines. This has the advantage in production that the palmitoylation of the two cysteines, which is technically complex after the isolation of the very hydrophobic protein, is eliminated.
  • SP-C mutants which differ from human SP-C by replacing the two cysteines in positions 4 and 5 with phenylalanine or tryptophan and replacing the methionine in position 32 with isoleucine, leucine or serine, have no loss of function compared to the natural SP-C and are even superior to it in terms of stability. Genetic engineering is much easier and gives higher yields. The new polypeptides with pulmonary surfactant activity can be produced in very high purity.
  • the invention therefore relates to polypeptides with pulmonary surfactant activity with an amino acid sequence according to the general formula I,
  • A is H or Phe
  • compositions which by a content of one or more polypeptides according to the invention are characterized and, if desired, additionally contain one or more lung surfactant-active polypeptides from the group SP-A and SP-B, preferably SP-B.
  • polypeptides according to the invention can either be produced by the known methods of solid-phase peptide synthesis or with the aid of corresponding recombinant vectors in host cells.
  • the techniques for constructing vectors, transforming cells, causing expression of the protein in the transformed cells and isolating and purifying the expressed proteins are known per se to those skilled in the art (e.g. WO 86/03408, WO 87 / 06588 and WO 91/18015).
  • the expression of the hydrophobic SP-C protein in bacteria in a larger amount and without damage to the host cell is only possible in the form of suitable fusion proteins, e.g. together with the chloramphenicol acetyl transferase (CAT).
  • CAT chloramphenicol acetyl transferase
  • the vector pTrpAmpCATI 52 codes for the N-terminal region of CAT and offers for the "in frame" cloning of DNA fragments which code for SP-C, a (5 '-) EcoR1 - and a (3'- ) Pst1 interface: CAT and SP-C are connected to each other at the protein level via a hydroxylamine-sensitive fusion site (AsN I GIy) .Vectors such as pTrpAmpCAT152 :: SPC allow the controlled expression of the corresponding fusion proteins up to the production scale (fermentation)
  • the expression of the fusion proteins causes the formation of inclusion bodies in the host cell, where
  • expression can be in a variety of host systems, such as mammalian, yeast, and insect cells.
  • host systems such as mammalian, yeast, and insect cells.
  • the DNA constructs suitable for the different host cells are synthesized according to the known methods and incorporated into the genome of the host cells in the usual way with the corresponding control sequences.
  • Two DNA oligonucleotides can be synthesized using the conventional phosphoamidite method on a MilliGen / Biosearch Cyclone DNA synthesizer.
  • the first DNA oligonucleotide forms the sense DNA strand with a length of 1 18 nucleotides. This codes (in 5 '- »3' direction) for an Eco R1 -specific 5 'end for later subcloning, the Asn / Gly hydroxylamine cleavage site and the human SP-C starting with the Gly-25 and ending with Leu-58 of the SP-C precursor sequence, corresponding to Gly-1 or Leu-34 in formula I.
  • the known amino acid sequence of the human SP-C protein according to the rules of the genetic code in DNA translated.
  • the sequence is modified in such a way that the two cysteines in positions 28 and 29 of the SP-C precursor sequence are replaced by phenylalanines or by tryptophans and the methionine in position 56 of the precursor protein sequence by isoleucine, leucine or serine.
  • the codon usage frequencies of the host cells can also be taken into account in this way.
  • a modified SP-C sequence which contains phenylalanine at positions 4 and 5 and isoleucine at position 32 (numbering according to formula I) is designated SPC34 (FF / I) in accordance with the usual one-letter code for these two amino acids.
  • the sense DNA strand contains a TAA stop codon for terminating the ribosomal translation and a Pst 1 -specific 3 'end.
  • the second DNA oligonucleotide represents the complementary, non-coding (antisense) strand consisting of 1 10 nucleotides.
  • the synthetically produced SP-C DNA fragment is inserted into a suitable expression vector, e.g. B. pTrpAmpCATI 52.
  • This vector is composed of pKK233 (Pharmacia), which contains an ampicillin resistance gene and is a derivative of pBR322.
  • the trc promoter can be replaced by a trp promoter, as in pTrpAmpCATI 52.
  • Other inducible promoters can also be used.
  • the complementary DNA oligonucleotides are first hybridized with each other.
  • the resulting DNA double strand has protruding single strand ends (Eco R1 / Pst 1).
  • the incorporation into the vector DNA takes place in the usual way after Eco R1 / Pst 1 digestion of the vector DNA, purification of the desired vector DNA fragment by agarose gel electrophoresis and by hybridization of the SP-C DNA and the vector fragment about the cohesive ends. The two fragments are then covendedly linked to one another by known methods.
  • transformation is carried out, for example, into calcium chloride-competent E.coli MM294 cells according to customary protocols and, for the selection of plasmid-carrying cells, plated on LB agar plates with ampicillin. Plasmid DNA is isolated from the amp-resistant colonies obtained and these are analyzed with suitable restriction enzyme combinations. Clones with the expected DNA restriction fragment pattern are selected. By completely sequencing the plasmid sequence, the correct insertion of the SPC34 (FF / I) sequence confirmed.
  • the plasmid vectors obtained in this way allow the expression of the fusion protein CAT :: SPC under the control of the Trp promoter (or other promoters).
  • the recombinant fusion protein is obtained in the host cells after induction in the form of inclusion bodies.
  • the fusion protein CAT152 :: SPC34 (FF / I) has the following amino acid sequence, shown in the usual one-letter code:
  • the 34 amino acids of SP-C (FF / I) in positions 153 to 186 of the fusion protein are identified by underlining and indication of positions 1 to 34.
  • the later cleavage with hydroxylamine to separate CAT and SP-C takes place between Asn-152 and Gly-153 (corresponds to the 1st amino acid in the SP-C peptide).
  • the separation and purification of the SP-C peptide is carried out according to the methods customary in protein chemistry.
  • polypeptides according to the invention can be provided individually or in combination with one another in pharmaceutical compositions which are adapted to the requirements of respiratory treatment.
  • the compositions are suitable not only for the treatment of respiratory distress syndrome in premature babies and adults, but also for the treatment of pneumonia and bronchitis.
  • the polypeptides according to the invention are suitable as tugs for drugs which can be administered by inhalation.
  • the compositions contain phospholipids, preferably those phospholipids which are contained in natural pulmonary surfactant compositions, such as preferably dipalmitoylphosphatidylcholine (DPPC), palmitoyloleylphosphatidylglycerol (POPG) and / or phosphatidylglycerol (PG).
  • natural pulmonary surfactant compositions such as preferably dipalmitoylphosphatidylcholine (DPPC), palmitoyloleylphosphatidylglycerol (POPG) and / or phosphatidylglycerol (PG).
  • DPPC dipalmitoylphosphatidylcholine
  • POPG palmitoyloleylphosphatidylglycerol
  • PG phosphatidylglycerol
  • the compositions contain calcium or magnesium ions and sodium chloride.
  • compositions according to the invention contain 80 to 95% by weight of phospholipids, 0.5 to 3.0% by weight of polypeptides, 4 to 7% by weight of fatty acid, preferably palmitic acid, and 1 to 3% by weight of calcium chloride.
  • the E. coli 199 production strain used is derived from the E. coli K12 strain MM294, which can be obtained under No. 5208 from the German Collection of Microorganisms and Cell Cultures GmbH (DSM, Braunschweig).
  • the expression vector pTrpAmpCATI 52 :: SPC34 (FF / I) containing the gene of the fusion protein CAT152 :: SPC34 (FF / I) was derived from the DNA sequence pBR322, a ColE1 derivative [E. Weber (ed.) (1988), Biosafety, Federal Ministry of Research and Technology, Bonn].
  • the Trc promoter was cut out with Eco R1 / Hind 3 and replaced by a synthetic Trp promoter (pTrp233).
  • This consists of the promoter region (binding site for RNA polymerase), the operator region (binding site of the Trp repressor), a Shine / Dalgarno (S / D) sequence and restriction sites for cloning.
  • the gene coding for the 152 amino acids of the 5 'part of the bacterial chloramphenicol acetyl transferase (CAT152) was inserted behind the Trp promoter.
  • a synthetic gene fragment which codes for the 34 amino acids of the human-like SP-C (FF / I) was fused to the CAT152 DNA part-sequence.
  • Transcription terminator sequence T1T2. The construct obtained is designated pTrpAmp ⁇ CATI 52 :: SPC34 (FF / I).
  • the vector pTrpAmpCATI 52 has the following functional elements: CAT152 :: SPC34 (FF / I) gene, controlled via Trp promoter and T1T2 transcription terminator; ori region and neighboring regions over which the copy number of the plasmid is controlled;
  • Trp promoter-controlled CAT SPC (FF / I) gene.
  • the Trp repressor is supplied by the host cell itself.
  • the fermentative production of rCAT :: SPC is controlled by the concentration of tryptophan in the medium or by the addition of ⁇ -IAA S-indolylacrylic acid).
  • Culture medium (composition see below) is inoculated with a sample tube from the Working Cell Bank (glycerol culture) in a shake flask (pre-or starter culture 1 l) and incubated at 37 ° C. with shaking under strong ampicillin selection pressure. The growth is monitored via the optical density at 578 nm. If the E.coli 199 starter culture reaches an optical density of more than 3, the culture is inoculated into a 10 l fermenter and the growth of the bacteria continues under reduced ampicillin selection pressure. As soon as the optical density has reached a value between 5 and 6, the 10 l culture is transferred to a 100 l fermenter and further incubated under the same conditions.
  • Trp promoter-controlled CAT :: SPC (FF / l) transcription unit is induced by adding, for example, 40 mg / l 0-IAA. After induction, fermentation is continued for another 4-5 hours until the cells are harvested.
  • oxygen partial pressure (pO_), pH value and temperature of the fermenter broth are recorded and regulated on-line.
  • the pH value is kept constant with sodium hydroxide solution, the oxygen partial pressure (pO_) is regulated via oxygen input and stirrer speed.
  • the optical density at 578 nm and the concentration of the C source in the medium are determined off-line. Foam formation is detected with a foam sensor, via which anti-foam agent is added if necessary to combat foam.
  • the culture medium has the following composition:
  • the pH is adjusted to 6.8 with 2N NaOH.
  • Anti-foaming agent is added as needed with a disposable syringe through a septum.
  • the cells are separated from the culture broth by filtration and / or centrifugation.
  • the moist cell mass is collected in a stainless steel container and stirred with 10 l digestion buffer (pH 8.0) overnight in the cold room (16 hours, 4 ° C.).
  • the stirred cell suspension is digested in the high-pressure homogenizer ( ⁇ 700 bar) (room temperature) and collected again in a sterile stainless steel container.
  • the inclusion bodies are then immediately harvested by filtration and / or centrifugation (Sorvall centrifuge RC2-B, 27000 g) at 4 ° C, resuspended in buffer (approx. 1 I) and, for example, in portions of approx.
  • the SP-C pellet is taken up in 3.5 l of hydrochloric acid / methanol mixture (1.75 l of CHC + 1, 75 l of CH-OH + about 30 ml of 2N HCl).
  • This crude SP-C solution is further purified by preparative HPLC on C8 reverse phase material.
  • the chloroform / methanol extract is diluted with 90% methanol in a ratio of about 1: 2 before being applied to the preparative HPLC column. From this solution z.
  • B. Load a column (diameter 5 cm) with approx. 400 mg SP-C (FF / I) (e.g. with - 2 I diluted raw extract).
  • the SP-C (FF / I) is eluted under acidic conditions (pH 2-3) with a water / i-propanol gradient (see separation conditions). After about 30 minutes of chromatography, 4-6 200 ml fractions are collected in the area in which the SP-C elutes (UV detection at 220 nm). The fractions are checked with analytical HPLC and pooled accordingly. If the samples are to be stored, they are frozen in liquid nitrogen and stored in the freezer at -80 ° C. The SP-C (FF / I) is obtained in a purity of 98.5 - 99.5%.
  • the lipophilic peptide SP-C (FF / I) is mixed with the components of the phospholipid matrix in i-propanol solution and precipitated by spraying into a dilute saline solution (0.065% w / w NaCl) at room temperature in a homogeneous mixture with the components of the phospholipid matrix .
  • the SPF is separated from the pulmonary surfactant suspension using a cup centrifuge, resuspended in electrolytic solution (NaCl, CaCL) and the pH is adjusted to pH 6.5 with 0.1 N NaOH.
  • This aqueous suspension is filled into 20 ml vials and lyophilized.
  • the weight and volume data given in the following production example relate to the production of 10 g lung surfactant preparation:
  • the "spray solution” is introduced at room temperature at a spraying rate of 25 ml / min through a single-component nozzle into 9.6 l of dilute NaCl solution (0.065% w / w) with vigorous stirring.
  • An opalescent solution is formed, from which after storage for 2 hours at 4 ° -8 ° C. the pulmonary surfactant preparation precipitates by spraying in an electrolytic solution (3.0 g CaCl x 2 H 2 O and 61.3 g NaCl in 300 ml H_0) becomes.
  • the lung surfactant suspension (total volume 10.8-1 1, 0 1) is stored overnight at 4 ° C and then centrifuged with a Sorvall beaker centrifuge (RC2-B) at 16000 g in 30 minutes each.
  • the centrifugation cake is resuspended in each case in half a volume of 0.65% saline solution to remove any remaining i-propanol and centrifuged again. This procedure is repeated 3-4 times in total.
  • the cake from the last centrifugation is taken up in 400 ml of 0.65% NaCl solution, adjusted to pH 6.5 with 0.1 N NaOH and divided into 6.2 g portions in 20 ml vials.
  • the contents of the vials are lyophilized as follows: freeze for 6 hours at -45 ° C and normal pressure, freeze-dry for 54 hours at 0.16 mbar and -20 ° C, then for further intensive drying for 5 hours at -20 ° C and 0 , 02 mbar.
  • 65-66 vials are obtained, each containing 0.150 g of pulmonary surfactant (calc. Without NaCl).
  • the dry pulmonary surfactant samples are stored in the freezer at 4 ° C and must be resuspended with water or physiological saline solution before use (suspension concentration 25 mg / ml).
  • Pro vial includes:

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Es werden neue Polypeptide der Formel (I) worin A für H oder Phe, B für Phe oder Trp und C für Ile, Leu oder Ser stehen, mit Lungensurfactant-Aktivität beschrieben, die in hohen Ausbeuten in hoher Reinheit herstellbar sind und in ihrer Wirksamkeit natürlichen Lungensurfactants nicht nachstehen. Sie eignen sich zur Herstellung von pharmazeutischen Zusammensetzungen für die Behandlung des Atemnotsyndroms von Frühgeborenen und von Erwachsenen.

Description

Syntheti sche Peptldonal oge des Lungenoberfl ächenprotei ns SP-C
Technisches Gebiet
Die Erfindung bezieht sich auf lungensurfactant-aktive Polypeptide, Verfahren zu deren Herstellung und diese enthaltende therapeutische Zusammensetzungen.
Stand der Technik
Die Lunge aller Wirbeltiere enthält ein Substanzgemisch, das als "Lungensurfactant" bezeichnet wird. Es zeigt oberflächenaktive Eigenschaften und setzt die Oberflächenspannung im Alveolarbereich der Lungen so weit herab, daß ein Kollaps der finalen Atemwegsbereiche bei der Ausatmung vermieden wird. Dieses Substanzgemisch reguliert die Oberflächenspannung in einer dynamischen Art und Weise, so daß der nach dem Laplaceschen Gesetz zu erwartende Kollaps der kleinen Alveolen zugunsten der größeren durch entsprechende Anpassung der Oberflächen¬ spannung vermieden wird. Als Ergebnis entsteht so eine wohl ausbalancierte, histologisch und physiologisch stabile Struktur der Lunge.
Lungensurfactant wird von den alveolären Pneumozyten vom Typ II in Form lamellarer Körperchen (lamellar bodies) sezemiert. Dieses sind kompakte Einheiten aus Phospholipid-Doppelschichten (biiayern) mit einem hohen Anteil an Dipalmitoyiphosphatidyicho- lin (DPPC) und Phosphatidylglycerin (PG). Als weitere essentielle Komponenten sind im Lungensurfactant Proteine enthalten, die mit SP-A, SP-B und SP-C bezeichnet werden. SP-A ist ein hochmolekulares Glycoprotein, das bei der Regulation der Sekretion eine entscheidende Rolle spielt.
Die Proteine SP-C und, in geringerem Maße, SP-B übernehmen bei der Ausbildung des monomolekularen Oberflächenfilms (dem Surfactant im engeren Sinne) die Rolle "thermodynami- scher Katalysatoren". Durch die Anwesenheit dieser Proteine wird die Spreitungskinetik enorm beschleunigt. Erst dadurch ist die verzögerungsfreie Anpassung der Surfactant- Zusammensetzung an die jeweiligen Oberflächenspannungserfordernisse möglich. Diese Eigenschaften spiegeln sich in dem extrem hydrophoben Charakter der Proteine, insbesondere des SP-C, wieder. Durch Extraktion von Lungengewebe oder Spülung von Tierlungen konnten Surfactant-Präparationen gewonnen werden, die sowohl in physikochemischen Meßapparaturen, wie in Tiermodellen, als auch bei klinischer Anwendung die Fähigkeit zeigen, einen Surfactant-Mangel auszugleichen und damit z. B. zur Therapie des kindlichen Atemnotsyndroms (IRDS) geeignet sind. Diesen Tierpräparaten sind jedoch gravierende Schwächen zu eigen:
Die Zusammensetzung der Phospholipide ist stark von Tierart, Gesundheit und Ernährungszu¬ stand des Tieres abhängig und kann nur begrenzt durch Zumischung definierter Komponenten ausgeglichen werden. Der Gehalt an Surfactant-Proteinen sowie das Verhältnis SP-B/SP-C ist den gleichen Unsicherheiten unterworfen. Hinzu kommt, daß eventuelle proteolytische Abbauprodukte der Proteine oder modifizierte Abkömmlinge (z. B. durch Oxidation am Methionin) ebenfalls in der therapeutisch eingesetzten Mischung enthalten sind. Bei einer längerfristigen Anwendung oder der Applikation großer Mengen an Surfactant, wie sie z. B. beim adulten Atemnotsyndrom (Schocklunge, ARDS) oder bei anderen Anwendungsfeldern, wie z. B. der Benutzung von Surfactant als "Schlepper" für andere Substanzen bei einer pulmonalen Applikation, nötig werden könnte, ist die Frage des Substanznachschubes offen.
Es bietet sich daher an, diese Probleme durch Herstellung der Proteine auf gentechnischem Wege zu lösen. Da rekombinante Proteine, insbesondere unter Verwendung bakterieller Expressionssysteme, in praktisch unbegrenzten Mengen herstellbar sind, und die Anwendung moderner Analysemethoden und Qualitätskontrollen möglich ist, kann unter Verwendung synthetischer Phospholipide ein Surfactant mit genau definierter Zusammensetzung hergestellt werden. Dieser kann an die therapeutischen Erfordernisse optimal angepaßt werden.
Das humane Protein SP-C (siehe Formel I, mit A = H oder Phe, B = Cys und C = Met), das für die Spreitungskinetik besonders wichtig ist, besteht in seinem zentralen Teil ausschließlich aus aliphatischen, sehr hydrophoben Aminosäuren, wie Valin, Leucin und Isoleucin. Die Länge dieses zentralen Teils (Aminosäuren 12-34) erlaubt die Integration des Peptids in den monomolekularen Phospholipidfilm. In der Sequenz Pro-Cys-Cys-Pro (Position 3-6) sind die beiden Cys-Reste durch Palmitinsäure an den SH-Gruppen thioverestert. Die Palmitinsäure erhöht den hydrophoben Charakter des Gesamtproteins weiter und verschließt gleichzeitig die beiden SH-Gruppen der Cysteine und schützt sie vor Oxidation und Disulfidbrückenbildung. Die zentrale Region (Aminosäuren 13-34) bildet eine Transmembran-Helix aus. Diese Region wird am N-Terminus flankiert durch eine polare Sequenz, die positiv geladene Aminosäuren (Lys, 10; Arg, 1 1 ) enthält. In der WO 91 /18015 wird die Herstellung von rekombinantem SP-C und von Mutanten des SP-C beschrieben. Es wird dort u. a. vorgeschlagen, die beiden Cysteine in Position 4 und 5 durch zwei Serine zu ersetzen. Dies hat bei der Herstellung den Vorteil, daß die nach der Isolierung des sehr hydrophoben Proteins technisch aufwendige Palmitoylierung der beiden Cysteine entfällt.
Beschreibung der Erfindung
Es wurde nun überraschenderweise gefunden, daß SP-C-Mutanten, die sich von humanem SP-C durch Ersatz der beiden Cysteine in den Positionen 4 und 5 durch Phenylalanin oder Tryptophan und Ersatz des Methionin in Position 32 durch Isoleucin, Leucin oder Serin unterscheiden, keinerlei Funktionsverluste gegenüber dem natürlichen SP-C aufweisen und diesem bezüglich Stabilität sogar überlegen sind. Die gentechnoiogische Herstellung ist erheblich einfacher und ergibt höhere Ausbeuten. Die neuen Polypeptide mit Lungensurfactant-Aktivität lassen sich in sehr hoher Reinheit herstellen.
Gegenstand der Erfindung sind daher Polypeptide mit Lungensurfactant-Aktivität mit einer Aminosäuresequenz nach der allgemeinen Formel I,
0 1 2 3 4 5 6 7 8 9 10
(A) Gly Ile Pro B B Pro Val His Leu Lys
1 1 12 13 14 15 16 17 18 19 20
Arg Leu Leu Ile Val Val Val Val Val Val (I),
21 22 23 24 25 26 27 28 29 30
Leu Ile Val Val Val Ile Val Gly Ala Leu
31 32 33 34
Leu C Gly Leu
worin A für H oder Phe,
B für Phe oder Trp und
C für Ile, Leu oder Ser stehen.
Ein bevorzugter Gegenstand der Erfindung sind Polypeptide der allgemeinen Formel I, worin A für H oder Phe, B für Phe und C für Ile stehen, wobei die Bedeutungen A = H, B = Phe und C = Ile besonders bevorzugt sind.
Ein weiterer Gegenstand der Erfindung sind pharmazeutische Zusammensetzungen, die durch einen Gehalt an einem oder mehreren erfiπdungsgemäßen Polypeptiden gekennzeichnet sind und gewünschtenfalls zusätzlich ein oder mehrere lungensurfactant-aktive Polypeptide aus der Gruppe SP-A und SP-B, vorzugsweise SP-B, enthalten.
Die erfindungsgemäßen Polypeptide können entweder durch die bekannten Methoden der Festphasen-Peptidsynthese oder mit Hilfe entsprechender rekombinanter Vektoren in Wirtszellen hergestellt werden. Die Techniken, Vektoren zu konstruieren, Zellen zu transformieren, die Exprimierung des Proteins in den transformierten Zellen zu bewirken und die exprimierten Proteine zu isolieren und zu reinigen, sind dem Fachmann an sich bekannt (z. B. WO 86/03408, WO 87/06588 und WO 91 /18015).
Die Herstellung von Vektoren zur Exprimierung von SP-C in bakteriellen Systemen greift auf konventionelle Methoden der rekombinanten DNA-Technologie zurück.
Die Expression des hydrophoben SP-C-Proteins in Bakterien ist in größerer Menge und ohne Schaden für die Wirtszelle nur in Form geeigneter Fusionsproteine möglich wie z.B. zusammen mit der Chloramphenicolacetyltransferase (CAT). Z. B. kodiert der Vektor pTrpAmpCATI 52 für die N-terminale Region von CAT und bietet für die "in frame'-Klonierung von DNA-Fragmenten, die für SP-C kodieren, eine (5'-)EcoR1 - und eine (3'-)Pst1 -Schnittstelle. CAT und SP-C werden hierbei auf Proteinebene über eine hydroxylaminsensitive Fusionsstelle (AsN I GIy) miteinander verbunden. Solche Vektoren, wie pTrpAmpCAT152::SPC, erlauben die kontrollierte Expression der entsprechenden Fusioπsproteine bis hin in den Produktionsmaßstab (Fermentation). Die Expression der Fusionsproteine bewirkt die Bildung von Inclusion Bodies in der Wirtszelle. Dabei kann die Länge des CAT-Anteils im Fusionsprotein so verändert werden, daß hohe Ausbeuten an Inclusion Bodies bei hohem SP-C-Anteil erzielt werden.
Die Exprimierung kann außer in Bakterien in einer Vielzahl von Wirtssystemen erfolgen, wie beispielsweise in Säuger-, Hefe- und Insektenzellen. Die für die verschiedenen Wirtszellen geeigneten DNA-Konstrukte werden nach den bekannten Methoden synthetisiert und auf übliche Weise mit den entsprechenden Steuersequenzen in das Genom der Wirtszellen eingebaut.
Zwei DNA-Oligonucleotide können nach der konventionellen Phosphoamidit-Methode auf einem MilliGen/Biosearch Cyclone DNA-Synthesizer synthetisiert werden.
Das erste DNA-Oligonucleotid bildet den sense-DNA-Strang mit einer Länge von 1 18 Nucleoti- den. Dieser codiert (in 5'-»3'-Richtung) für ein Eco R1 -spezifisches 5'-Ende für spätere Subklonierung, die Asn/Gly Hydroxylamin-Spaltstelle und das humane SP-C beginnend mit dem Gly-25 und endend mit Leu-58 der SP-C-Vorläufersequenz, entsprechend Gly-1 bzw. Leu-34 in Formel I. Hierbei wurde die bekannte Aminosäure-Sequenz des humanen SP-C-Proteins nach den Regeln des genetischen Codes in DNA übersetzt. Die Sequenz wird jedoch in der Weise modifiziert, daß die beiden Cysteine in Position 28 und 29 der SP-C-Vorläufersequenz durch Phenylalanine oder durch Tryptophane und das Methionin in Position 56 der Vorläuferproteinse¬ quenz durch Isoleucin, Leucin oder Serin ersetzt werden. Zusätzlich können auf diese Weise noch die Codonbenutzungshäufigkeiten der Wirtszellen berücksichtigt werden. Eine geänderte SP-C-Sequenz, die an den Positionen 4 und 5 Phenylalanin und in Position 32 Isoleucin enthält (Numerierung nach Formel I), wird entsprechend dem üblichen Einbuchstabencode für diese beiden Aminosäuren mit SPC34(FF/I) bezeichnet. Weiterhin enthält der sense-DNA-Strang ein TAA-Stoppcodon zur Termination der ribosomalen Translation sowie ein Pst 1 -spezifisches 3'-Ende. Das zweite DNA-Oligonucleotid stellt den komplementären, nichtcodierenden (antisense) Strang bestehend aus 1 10 Nucleotiden dar.
Das synthetisch hergestellte SP-C-DNA-Fragment wird in einen geeigneten Expressionsvektor, wie z. B. pTrpAmpCATI 52, einkioniert. Dieser Vektor setzt sich zusammen aus pKK233 (Pharmacia), der ein Ampicillin-Resistenz-Gen enthält, und ein Derivat von pBR322 ist. Der trc-Promotor kann durch einen trp-Promotor, wie in pTrpAmpCATI 52, ersetzt werden. Andere induzierbare Promotoren sind ebenfalls einsetzbar.
Zur Subkionieruπg des SP-C-Fragments werden die komplementären DNA-Oligonucleotide zunächst miteinander hybridisiert. Der hieraus resultierende DNA-Doppelstrang weist überste¬ hende Eiπzelstrang-Enden (Eco R1 /Pst 1 ) auf.
Der Einbau in die Vektor-DNA erfolgt auf übliche Weise nach Eco R1 /Pst 1 -Verdauung der Vektor-DNA, Reinigung des gewünschten Vektor-DNA-Fragments durch Agarose-Gel- Elektrophorese und durch Hybridisierung der SP-C-DNA und des Vektorfragments über die köhäsiven Enden. Anschließend werden beide Fragmente nach bekannten Methoden durch Ligation miteinander kovaient verknüpft.
Zur DNA-Amplifikation und Plasmid-Isolierung wird nach gängigen Protokollen beispielsweise in Calciumchlorid-kompetente E.coli MM294-Zellen transformiert und zur Selektion von plasmidtra- genden Zellen auf LB-Agarplatten mit Ampicillin plattiert. Aus den erhaltenen Amp-resistenten Kolonien wird Plasmid-DNA isoliert und diese mit geeigneten Restriktionsenzym-Kombinationen analysiert. Klone mit dem erwarteten DNA-Restriktionsfragmentmuster werden ausgewählt. Durch vollständige Sequenzierung der Plasmidsequenz wird die korrekt erfolgte Insertion der SPC34(FF/I)-Sequenz bestätigt.
Die so erhaltenen Plasmidvektoren erlauben die Expression des Fusionsproteins CAT::SPC unter Kontrolle des Trp-Promotors (oder anderer Promotoren). Das rekombinante Fusionsprotein fällt in den Wirtszellen nach Induktion in Form von Inclusion Bodies an.
Das Fusionsprotein CAT152::SPC34(FF/I) weist folgende, im üblichen Einbuchstabencode dargestellte Aminosäuresequenz auf:
10 20 30 40 50
MEKKI TGYTT VDISQ WHRKE HFEAF QSVAQ CTYNQ TVQLD ITAFL KTVKK
60 70 80 90 100
NKHKF YPAFI HILAR LMNAH PEFRM AMKDG ELVIW DSVHP CYTVF HEQTE
1 10 120 130 140 150
TFSSL WSEYH DDFRQ FLHIY SQDVA CYGEN LAYFP KGFIE NMFFV SANPE
160 170 180 186
FNGIP FFPVH LKRLL IVVVV VVLIV VVIVG ALLIG L 1 10 20 30 34
Die 34 Aminosäuren von SP-C(FF/I) in den Positionen 153 bis 186 des Fusionsproteins sind durch Unterstreichen und Angabe der Positionen 1 bis 34 gekennzeichnet.
Die spätere Spaltung mit Hydroxylamin zur Trennung von CAT und SP-C erfolgt zwischen Asn-152 und Gly-153 (entspricht der 1 . Aminosäure im SP-C-Peptid). Die Abtrennung und Reinigung des SP-C-Peptids erfolgt nach den in der Proteinchemie üblichen Methoden.
Die erfindungsgemäßen Polypeptide können einzeln oder in Kombination miteinander in pharmazeutischen Zusammensetzungen zur Verfügung gestellt werden, die an die Erfordernisse der Atemwegsbehandlung angepaßt sind. Die Zusammensetzungen eignen sich nicht nur zur Behandlung des Atemnotsyndroms bei Frühgeborenen und Erwachsenen, sondern auch zur Behandlung von Pneumonien und Bronchitis. Außerdem eignen sich die erfindungsgemäßen Polypeptide als Schlepper für inhalativ verabreichbare Arzneistoffe.
Die Zusammensetzungen enthalten neben den Polypeptiden Phospholipide, vorzugsweise solche Phospholipide, die in natürlichen Lungensurfactant-Zusammensetzungen enthalten sind, wie vorzugsweise Dipalmitoylphosphatidylcholin (DPPC), Palmitoyloleylphosphatidylglycerol (POPG) und/oder Phosphatidylglycerol (PG). Zur Einstellung einer günstigen Viskosität enthalten die Zusammensetzungen Caicium- oder Magnesiumionen sowie Natriumchlorid. Der Fachmann orientiert sich bei der Bemessung der Art und Menge der einzelnen Bestandteile der Zusammen¬ setzungen zum einen an der bekannten Zusammensetzung natürlicher Lungensurfactants und zum anderen an den zahlreichen Vorschlägen nach dem Stand der Technik, wie z. B. EP-A 01 19056 und EP-A 0406732.
Bevorzugte erfindungsgemäße Zusammensetzungen enthalten 80 bis 95 Gew.-% Phospholipide, 0,5 bis 3,0 Gew.-% Polypeptide, 4 bis 7 Gew.-% Fettsäure, vorzugsweise Palmitinsäure, und 1 bis 3 Gew.-% Calciumchlorid.
Herstellunαsbeispiel
1. Produktionsstamm
Der verwendete Produktionsstamm E. coli 199 leitet sich von dem E. coli K12 Stamm MM294 ab, der unter der Nr. 5208 von der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM, Braunschweig) bezogen werden kann.
Der das Gen des Fusionsproteins CAT152::SPC34(FF/I) enthaltende Expressionsvektor pTrpAmpCATI 52::SPC34(FF/I) wurde aus der DNA-Sequenz pBR322, einem ColE1 -Derivat [E. Weber (ed.) (1988), Biologische Sicherheit, Bundesministerium für Forschung und Technologie, Bonn], abgeleitet. In dem von Pharmacia erhältlichen Plasmid pKK233-2 wurde der Trc-Promotor mit Eco R1 /Hind 3 herausgeschnitten und durch einen synthetischen Trp-Promotor ersetzt (pTrp233). Dieser besteht aus der Promotor-Region (Binduπgsstelle für RNA-Polymerase), der Operator-Region (Bindungsstelle des Trp-Repressors), einer Shine/Dalgarno-(S/D)-Sequenz sowie Restriktionsstellen zur Klonierung. Hinter den Trp-Promotor wurde das für die 152 Aminosäuren des 5'-Teils der bakteriellen Chloramphenicol-Acetyl-Transferase codierende Gen (CAT152) inseriert. An die CAT152-DNA-Teiisequenz wurde ein synthetisches Genfragment fusioniert, das für die 34 Aminosäuren des humanähnlichen SP-C(FF/I) kodiert. Die funktionelle CAT::SPC(FF/D- Transkriptionseinheit wird abgeschlossen durch die bakterielle rrnB
Transkripitons-Terminatorsequenz T1T2. Das erhaltene Konstrukt wird mit pTrpAmp¬ CATI 52::SPC34(FF/I) bezeichnet.
Der Vektor pTrpAmpCATI 52::SPC34(FF/I) weist folgende Funktionselemente auf: CAT152::SPC34(FF/I)-Gen, gesteuert über Trp-Promotor und T1T2-Transkrip- tionsterminator; ori-Region und benachbarte Regionen, über die die Kopien-Zahl des Plasmids gesteuert wird;
Amp®-Gen
Nach Einbringung des Plasmids in die Wirtszelle verfügt diese über eine hohe Kopienzahl des Trp-Promotor-kontrollierten CAT::SPC(FF/I)-Gens. Der Trp-Repressor wird von der Wirtszelle selbst geliefert.
Über die Konzentration von Tryptophan im Medium bzw. über die Zugabe von ß-IAA S-lndolylacrylsäure) wird die fermentative Gewinnung von rCAT::SPC kontrolliert.
2. Batch -Fermentation
Mit einem Probenröhrchen der Working Cell Bank (Glycerinkultur) wird Kulturmedium (Zusammensetzung siehe unten) in einem Schüttelkolben beimpft (Vor- oder Starterkultur 1 I) und bei 37 °C unter Schütteln unter starkem Ampicillin-Selektionsdruck inkubiert. Das Wachstum wird über die optische Dichte bei 578 nm verfolgt. Erreicht die E.coli 199-Starterkultur eine optische Dichte von mehr als 3, wird mit der Kultur ein 10 I-Fermenter beimpft und das Wachstum der Bakterien unter verringertem Ampicillin-Selektionsdruck fortgesetzt. Sobald die optische Dichte einen Wert zwischen 5 und 6 erreicht hat, wird die 10 I-Kultur in einen 100 I-Fermenter überführt und unter gleichen Bedingungen weiter inkubiert. Nach ausreichen¬ dem Wachstum wird durch Zugabe von beispielsweise 40 mg/l 0-IAA die Trp-Promotor-gesteuerte CAT::SPC(FF/l)-Transkriptionseinheit induziert. Nach Induktion wird bis zur Zellernte für weitere 4-5 Stunden fermentiert.
Während der Fermentation werden Sauerstoffpartialdruck (pO_), pH-Wert und Temperatur der Fermenterbrühe on-line erfaßt und reguliert. Der pH-Wert wird mit Natronlauge konstant gehalten, der Sauerstoffpartialdruck (pO_) über Sauerstoffeintrag und Rührerdrehzahl geregelt. Off-Iine werden die optische Dichte bei 578 nm und die Konzentration der C-Quelle im Medium bestimmt. Schaumbildung wird mit einem Schaum-Sensor erfaßt, über den gegebenenfalls zur Schaumbekämpfung Antischaummittel zudosiert wird.
Aliquots der Kulturbrühe werden zu verschiedenen Zeitpunkten entnommen. Nach Lyse der Bakterien werden zur Kontrolle der Expression die E.coli-Proteine auf einem Polyacrylamid-Gel aufgetrennt und angefärbt. Der prozentuale Anteil der (dominanten) Proteine am E.coli-Gesamtprotein wird densitometrisch bestimmt. Kurz nach Induktion des rekombinanten Gens tritt eine neue dominante Proteinbande auf (rCAT::SPC). Das Kulturmedium weist folgende Zusammensetzung auf:
Sojapepton 27,0 g/I, Hefeautolysat KAV 14,0 g/I, NaCI 5,0 g/I, K2HP04 x 3 H20 6,0 g/I, KH_P04 3,0 g/I, MgS04 x 7 H-,0 0,5 g/I, Glycerin (99,5%ig) 30,0 g/I, Antischaum J673 (Struktol Comp.) 0,2 ml/l, L-Tryptophan 80,0 mg/l und Ampicillin 20 mg/l für die 1 . Vorkultur und 5 mg/l für die 2. Vorkultur und den 100 I Fermenter.
Vor dem Autoklavieren und Sterilisieren des komplexen Nährmediums wird der pH-Wert mit 2N NaOH auf pH 6,8 eingestellt. Für die Vorkultur im 10 I Fermenter wird eine Rührgeschwin¬ digkeit von 750 upm und ein Lufteintrag von 10 l/min bei 37°C und für die Hauptkultur im 100 I Fermenter eine Rührgeschwindigkeit von 400 upm und ein Lufteintrag von 70 l/min bei 37°C angewendet. Aπtischaummittel wird nach Bedarf mit einer Einmalspritze über ein Septum zugegeben.
Etwa 4 Stunden nach Induktion werden die Zellen durch Filtration und/oder Zentrifugation von der Kulturbrühe abgetrennt. Die feuchte Zellmasse wird in einem Edelstahlbehälter gesammelt und mit 10 1 Aufschlußpuffer (pH 8,0) über Nacht im Kühlraum (16 Stunden, 4°C) gerührt. Die gerührte Zellsuspension wird im Hochdruckhomogenisator ( ≥700 bar) aufgeschlossen (Raumtemperatur) und erneut in einem sterilen Edelstahlbehälter gesammelt. Die Inclusion Bodies werden anschließend sofort durch Filtration und/oder Zentrifugation (Sorvallzentrifuge RC2-B, 27000 g) bei 4°C geerntet, in Puffer resuspendiert (ca. 1 I) und beispielsweise in Portionen von ca. 350 ml in 1 I-Rundkolben überführt und für etwa 96 Stunden lyophiiisert. Aus einer 100 I Fermentation gewinnt man etwa 200 g trockene Inclusion Bodies mit einem Gehalt an Fusionsprotein von über 20 Gew.%. Die lyophilisierten inclusion Bodies sind bei -20 °C über Monate lagerbar.
3. Spaltung des Fusionsproteins und Reinigung des lipophilen Peptids SP-C(FF/I)
100 g trockene Inclusion Bodies werden in 1 ,6 1 δmolarer Guanidin-Hydrochloridlösung (917, 1 g) unter leichtem Erwärmen gelöst. Ungelöste Reste werden über ein Faltenfilter abfiltriert. Zur Spaltung des Fusionsproteins an der Asn-Gly-Verbindungsstelle werden der Lösung 167 g Hydroxylammoniumchlond zugesetzt und der pH der Lösung mit 2N NaOH auf 9,6 eingestellt. Die Spaltlösung wird dann für 3-4 Tage bei Raumtemperatur unter Rühren stehen gelassen. Am Ende der Reaktionszeit wird SP-C(FF/I) durch Zugabe von 6,4 I Tris-Puffer (pH 8,0) ausgefällt und mit Hilfe einer Zentrifuge (Sorvallzentrifuge RC2-B, 20000 g) niederge¬ schlagen. Der Überstand wird dekantiert, das SPC-Pellet in 400-500 ml Tris-Puffer erneut aufgeschwemmt und unter gleichen Bedingungen erneut für 30 Minuten zentrifugiert.
Das SP-C-Pellet wird in 3,5 I salzsaurem Chloroform/Methanol-Gemisch (1 ,75 I CHC + 1 ,75 I CH-OH + etwa 30 ml 2N HCI) aufgenommen. Diese Roh-SP-C-Lösung wird durch präparative HPLC auf C8-Reverse Phase Material weiter gereinigt. Der Chloroform/Methanol-Extrakt wird vor dem Aufbringen auf die präparative HPLC Säule mit 90 %igem Methanol im Verhältnis etwa 1 :2 verdünnt. Aus dieser Lösung läßt sich z. B. eine Säule (Durchmesser 5 cm) mit ca. 400 mg SP-C (FF/I) beladen (z. B. mit - 2 I verdünntem Rohextrakt). Das SP-C (FF/I) wird unter sauren Bedingungen (pH 2-3) mit einem Wasser/i-Propanol-Gradienten eluiert (siehe Trennbedingungen). Nach etwa 30 Minuten Chromatographie werden im Bereich, in dem das SP-C eluiert (UV-Detektion bei 220 nm), 4-6 Fraktionen ä 200 ml gesammelt. Die Fraktionen werden mit der analytischen HPLC überprüft und entsprechend gepoolt. Sollen die Proben gelagert werden, werden sie in flüssigem Stickstoff eingefroren und im Tiefkühlschrank bei -80°C aufbewahrt. Das SP-C(FF/I) wird in einer Reinheit von 98,5 - 99,5 % erhalten.
Trennbediπgungen:
Säule Kromasii C8 100 A 16/.m 300 mm * 50mm I.D. Eluent A: HPLC-Wasser aus Millipore-Anlage
B: i-PrOH gradieπt linear
C: 60 mmol/l HCI (Verdünnung aus Salzsäure rauchend)
Gradient: Zeit %A %B %c Fluß [ml/min] 0 45 50 5 100 10 45 50 5 100 55 0 95 5 100 65 0 95 5 100 75 45 50 5 100 85 45 50 5 100 90 45 50 5 0,2 4. Einbau von SP-CIFF/I) in eine Phospholipid-Matrix
Das lipophile Peptid SP-C(FF/I) wird in i-Propanollösung mit den Komponenten der Phosphoiipid¬ matrix versetzt und durch Einsprühen in eine verdünnte Kochsalzlösung (0,065 % w/w NaCI) bei Raumtemperatur in homogener Mischung mit den Komponenten der Phosphoiipidmatrix ausgefällt. Aus der Lungsurfactantsuspension wird der LSF mit einer Becherzentrifuge abgetrennt, in Elektrolytiösung (NaCI, CaCL) resuspendiert und der pH-Wert mit 0,1 N NaOH auf pH 6,5 eingestellt. Diese wäßrige Suspension wird auf 20 ml Vials abgefüllt und lyophilisiert. Die im folgenden Herstellungsbeispiel gemachten Gewichts- und Volumenangaben beziehen sich auf die Herstellung von 10 g Lungensurfactant-Präparation:
7,00 g Dipalmitoylphosphatidylcholin (DPPC), 3,08 g Palmitoyloleylphosphatidyl-glycerol- Ammoniumsalz (POPG x NH . ) und 0,25 g Palmitinsäure werden bei 40°C in 200 ml 90 % i-Propanol gelöst und dann auf Raumtemperatur abgekühlt. Die erhaltene Phospholipidlösung wird mit 1 I einer aus der HPLC-Reinigung erhaltenen, 200 mg gereinigtes SP-C(FF/I) enthalten¬ den Lösung vereinigt. Die erhaltene "Sprühlösung" wird unter Rühren mit Bikarbonatlösuπg (ca. 5 ml 5 % NaHC03-Lösung) auf pH 4,5 eingestellt.
Die "Sprühlösung" wird bei Raumtemperatur mit einer Einsprühgeschwindigkeit von 25 ml/min über eine Einstoffdüse in 9,6 I verdünnte NaCI-Lösung (0,065 % w/w) unter intensivem Rühren eingebracht. Es bildet sich eine opaleszierende Lösung, aus der nach zweistündiger Lagerung bei 4°-8°C die Lungensurfactant-Präparation durch Einsprühen einer Elektrolytiösung (3,0 g CaCL x 2 H20 und 61 ,3 g NaCI in 300 ml H_0) ausgefällt wird. Die Lungsurfactant-Suspension (Gesamtvolumen 10,8-1 1 ,0 1) wird über Nacht bei 4°C gelagert und dann mit einer Sorvall-Becherzeπtrifuge (RC2-B) bei 16000 g in jeweils 30 Minuten abzentrifugiert. Der Zentrifugationskuchen wird jeweils zur Entfernung anhaftenden restlichen i-Propanols im halben Volumen 0,65 %iger Kochsalzlösung resuspendiert und erneut zentrifugiert. Diese Prozedur wird insgesamt 3-4 mal wiederholt. Der Kuchen der letzten Zentrifugation wird in 400 ml 0,65 %iger NaCI-Lösung aufgenommen, mit 0, 1 N NaOH auf pH 6,5 eingestellt und in Portionen zu 6,2 g auf 20 ml Vials aufgeteilt. Der Inhalt der Vials wird wie folgt lyophilisiert: Einfrieren über 6 Stunden bei -45 °C und Normaldruck, Gefriertrocknen für 54 Stunden bei 0,16 mbar und -20 °C, danach zur weiteren Intensivtrocknung noch 5 Stunden bei -20°C und 0,02 mbar.
Man erhält 65-66 Vials, die jeweils 0,150 g Lungensurfactant (ber. ohne NaCI) enthalten. Die trockenen Lungensurfactant-Proben werden im Gefrierschrank bei 4°C gelagert und müssen vor dem Einsatz mit Wasser oder physiologischer Kochsalzlösung resuspendiert werden (Suspensionskonzentration 25 mg/ml).
Pro Vial sind enthalten:
95,6 mg Dipalmitoylphospatidylchoiin
42,1 mg Palmitoyloleylphosphatidylglycerol (Ammoniumsalz)
2.7 mg SP-CIFF/I)
6.8 mg Palmitinsäure
2.9 mg Calciumchlorid (wasserfrei)

Claims

Patentansprύche
1. Polypeptide mit Lungensurfactant-Aktivität der allgemeinen Formel I,
0 1 2 3 4 5 6 7 8 9 1 0
(A) Gly Ile Pro B B Pro Val His Leu Lys
1 1 1 2 1 3 14 1 5 1 6 1 7 1 8 1 9 20 Arg Leu Leu Ile Val Val Val Val Val Val (I),
21 22 23 24 25 26 27 28 29 30
Leu Ile Val Val Val Ile Val Gly Ala Leu
31 32 33 34 Leu C Gly Leu worin A für H oder Phe,
B für Phe oder Trp und
C für Ile, Leu oder Ser stehen.
2. Polypeptide nach Anspruch 1 , dadurch gekennzeichnet, daß A für H oder Phe,
B für Phe und C für Ile stehen.
3. Polypeptid nach Anspruch 1 , dadurch gekennzeichnet, daß A für Phe,
B für Phe und C für Ile stehen.
4. Pharmazeutische Zusammensetzung zur Behandlung des respiratorischen Distress- Syndroms (RDS) bei Säugern, gekennzeichnet durch den Gehalt an einem lungensurfactant-aktiven Polypeptid nach einem der Ansprüche 1 bis 3.
5. Pharmazeutische Zusammensetzung nach Anspruch 4, dadurch gekennzeichnet, daß mindestens ein weiteres lungensurfactant-aktives Polypeptid aus der Gruppe SP-A und SP-B enthalten ist.
6. Pharmazeutische Zusammensetzung nach Anspruch 5, dadurch gekennzeichnet, daß SP-B enthalten ist.
7. Pharmazeutische Zusammensetzung nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, daß Phospholipide enthalten sind.
8. Pharmazeutische Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, daß Dipalmitoylphosphatidylcholin (DPPC), Palmitoyloleylphosphatidyl-glycerol (POPG) und/oder Phosphatidylglycerol (PG) enthalten sind.
9. Pharmazeutische Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, daß Palmitinsäure und Elektrolyte enthalten sind.
10. Pharmazeutische Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, daß als Elektrolyte Caicium- und/oder Natriumsalze enthalten sind.
PCT/EP1995/002028 1994-05-31 1995-05-27 Synthetische peptidanaloge des lungenoberflächenproteins sp-c WO1995032992A1 (de)

Priority Applications (23)

Application Number Priority Date Filing Date Title
AU26169/95A AU690280B2 (en) 1994-05-31 1995-05-27 Synthetic peptide analogs of lung surfactant protein SP-C
SK1524-96A SK282441B6 (sk) 1994-05-31 1995-05-27 Polypeptid s aktivitou pľúcneho surfaktantu a farmaceutický prostriedok s jeho obsahom
AT95920906T ATE275154T1 (de) 1994-05-31 1995-05-27 Synthetische peptidanaloge des lungenoberflächenproteins sp-c
BRPI9507811-8A BR9507811B1 (pt) 1994-05-31 1995-05-27 polipeptìdeos e composição farmacêutica.
RU96124768A RU2145611C1 (ru) 1994-05-31 1995-05-27 Полипептиды, обладающие активностью легочно-поверхностно активного вещества, и фармкомпозиция
CA002191344A CA2191344C (en) 1994-05-31 1995-05-27 Synthetic peptide analogs of lung surfactant protein sp-c
EP95920906A EP0764172B1 (de) 1994-05-31 1995-05-27 Synthetische peptidanaloge des lungenoberflächenproteins sp-c
PL95317420A PL181234B1 (pl) 1994-05-31 1995-05-27 Polipeptydy o aktywności surfaktanta płucnego i kompozycja farmaceutyczna zawierająca polipeptydy o aktywności surfaktanta płucnego
SI9530712T SI0764172T1 (en) 1994-05-31 1995-05-27 Synthetic peptide analogs of lung surfactant protein sp-c
EE9600175A EE03775B1 (et) 1994-05-31 1995-05-27 Kopsusurfaktandi valgu SP-C sünteetilised peptiidanaloogid
KR1019960706778A KR100355626B1 (ko) 1994-05-31 1995-05-27 폐의계면단백질sp-c의합성펩타이드유사체
JP50030596A JP3359638B2 (ja) 1994-05-31 1995-05-27 肺界面蛋白質sp−cの合成ペプチド類似体
RO96-02248A RO118752B1 (ro) 1994-05-31 1995-05-27 Polipeptide cu rol de agenţi tensioactivi pulmonari şi compoziţie farmaceutică care le conţine
UA96114479A UA35636C2 (uk) 1994-05-31 1995-05-27 Поліпептид, який має активність легеневої поверхнево-активної речовини, та фармацевтична композиція для лікування респіраторного дистрес-синдрому у ссавців
HU9603249A HU220191B (hu) 1994-05-31 1995-05-27 SP-C tüdőfelületaktív-fehérje szintetikus peptid analógjai
NZ287447A NZ287447A (en) 1994-05-31 1995-05-27 Synthetic peptide analogs of human lung surfactant protein sp-c
DE59510941T DE59510941D1 (de) 1994-05-31 1995-05-27 Synthetische peptidanaloge des lungenoberflächenproteins sp-c
US08/750,194 US5874406A (en) 1994-05-31 1995-05-27 Synthetic peptide analogs of lung surface protein SP-C
DK95920906T DK0764172T3 (da) 1994-05-31 1995-05-27 Syntetiske peptidanaloger af lungeoverfladeproteinet SP-C
NO19965052A NO317149B1 (no) 1994-05-31 1996-11-27 Syntetiske peptidanaloger av lungeoverflateproteinet SP-C, og farmasoytisk sammensetning inneholdende det samme
FI964766A FI118126B (fi) 1994-05-31 1996-11-29 Keuhkopintaproteiinin SP-C synteettiset peptidianalogit
BG101028A BG63210B1 (bg) 1994-05-31 1996-12-04 Синтетични пептидни аналози на белодробния повърхностноактивен протеин sр-с
HK97102503A HK1000891A1 (en) 1994-05-31 1997-12-18 Synthetic peptide analogs of lung surfactant protein sp-c

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4418936A DE4418936A1 (de) 1994-05-31 1994-05-31 Polypeptid
DEP4418936.2 1994-05-31

Publications (1)

Publication Number Publication Date
WO1995032992A1 true WO1995032992A1 (de) 1995-12-07

Family

ID=6519392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002028 WO1995032992A1 (de) 1994-05-31 1995-05-27 Synthetische peptidanaloge des lungenoberflächenproteins sp-c

Country Status (29)

Country Link
US (1) US5874406A (de)
EP (1) EP0764172B1 (de)
JP (1) JP3359638B2 (de)
KR (1) KR100355626B1 (de)
CN (1) CN1130374C (de)
AT (1) ATE275154T1 (de)
AU (1) AU690280B2 (de)
BG (1) BG63210B1 (de)
BR (1) BR9507811B1 (de)
CA (1) CA2191344C (de)
CY (1) CY2552B1 (de)
CZ (1) CZ286976B6 (de)
DE (2) DE4418936A1 (de)
DK (1) DK0764172T3 (de)
EE (1) EE03775B1 (de)
ES (1) ES2227548T3 (de)
FI (1) FI118126B (de)
HK (1) HK1000891A1 (de)
HU (1) HU220191B (de)
NO (1) NO317149B1 (de)
NZ (1) NZ287447A (de)
PL (1) PL181234B1 (de)
PT (1) PT764172E (de)
RO (1) RO118752B1 (de)
RU (1) RU2145611C1 (de)
SI (1) SI0764172T1 (de)
SK (1) SK282441B6 (de)
UA (1) UA35636C2 (de)
WO (1) WO1995032992A1 (de)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035882A1 (en) * 1996-03-27 1997-10-02 Ortho Pharmaceutical Corporation Lyophilized pulmonary surfactant peptide compositions
WO2000027448A1 (de) 1998-11-06 2000-05-18 Byk Gulden Lomberg Chemische Fabrik Gmbh Blindungsvorrichtung für klinische prüfungen
WO2000078810A1 (en) * 1999-06-17 2000-12-28 Byk Gulden Lomberg Chemische Fabrik Gmbh Surfactant protein c esters
WO2001039573A2 (de) * 1999-12-01 2001-06-07 Byk Gulden Lomberg Chemische Fabrik Gmbh Verwendung von lungensurfactant zur behandlung von legionärskrankheit
WO2001058423A1 (en) * 2000-02-11 2001-08-16 Altana Pharma Ag Novel use of pulmonary surfactant for the prophylaxis and treatment of chronic pulmonary diseases
DE10018022A1 (de) * 2000-04-12 2001-10-31 Byk Gulden Lomberg Chem Fab Neue Verwendung von Lungensurfactant zur Prophylaxe oder Frühbehandlung von akuten Lungenerkrankungen
US6982075B2 (en) 2001-10-11 2006-01-03 Altana Pharma Ag Use of pulmonary surfactant
US6998384B2 (en) 2001-12-12 2006-02-14 The Penn State Research Foundation Surfactant prevention of lung complications from cancer chemotherapy
US7053176B1 (en) 1999-09-16 2006-05-30 Altana Pharma Ag Combination of C1-INH and lung surfactant for the treatment of respiratory disorders
DE102005014650B3 (de) * 2005-03-31 2006-08-17 Altana Pharma Ag Anordnung aus Katheter und Anschlussstück sowie Ventil zum Durchführen eines Katheters
WO2006108557A1 (en) 2005-04-08 2006-10-19 Nycomed Gmbh Dry nebulizer
CZ301108B6 (cs) * 1999-02-12 2009-11-11 Chiesi Farmaceutici S. P. A. SP-C analogy
WO2011029525A1 (en) 2009-09-08 2011-03-17 Chiesi Farmaceutici S.P.A. A therapeutic combination comprising a pulmonary surfactant and antioxidant enzymes
US7951781B2 (en) 2006-11-02 2011-05-31 University Of Iowa Research Foundation Methods and compositions related to PLUNC surfactant polypeptides
WO2012025496A1 (en) * 2010-08-23 2012-03-01 Nycomed Gmbh Humidified particles comprising a therapeutically active substance
US8236750B2 (en) 2004-08-06 2012-08-07 Nycomed Gmbh Composition comprising a pulmonary surfactant and a TNF-derived peptide
US8337815B2 (en) 2004-12-23 2012-12-25 Discovery Laboratories, Inc. Pulmonary surfactant formulations
EP2719391A1 (de) 2007-06-08 2014-04-16 CHIESI FARMACEUTICI S.p.A. Verfahren zur Verabreichung eines Lungen-Surfactants
US9289388B2 (en) 2008-12-10 2016-03-22 Paka Pulmonary Pharmaceuticals, Inc. Methods and compositions for delivery of medicaments to the lungs
WO2016170087A1 (en) 2015-04-22 2016-10-27 Chiesi Farmaceutici S.P.A Method and system for effective breath-synchronized delivery of medicament to the lungs
WO2016174269A1 (en) 2015-04-30 2016-11-03 University Of Bremen A novel skin medical and cosmetic care product
WO2016173634A1 (en) 2015-04-28 2016-11-03 Chiesi Farmaceutici S.P.A Device for facilitating the administration of a medicament to the lung by a catheter
EP3106090A1 (de) 2015-06-15 2016-12-21 CHIESI FARMACEUTICI S.p.A. System zur effektiven und atemsynchronisierten abgabe eines medikaments in die lungen
WO2018019719A1 (en) 2016-07-28 2018-02-01 Chiesi Farmaceutici S.P.A Method and system for delivery of an aerosolized medicament
WO2018077623A1 (en) 2016-10-26 2018-05-03 Chiesi Farmaceutici S.P.A. Device for facilitating the administration of a medicament to the lung by a catheter
WO2018115013A1 (en) 2016-12-22 2018-06-28 Chiesi Farmaceutici S.P.A. A therapeutic combination comprising a pulmonary surfactant and a steroid for the treatment of evolving bpd
EP3459556A1 (de) * 2012-02-09 2019-03-27 Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center Synthetische peptidanaloge des lungenoberflächenproteins sp-c und deren verwendung
WO2019115771A1 (en) 2017-12-15 2019-06-20 Pari Pharma Gmbh Nebuliser system, holding system, combination comprising nebuliser system and holding system, and aerosol administration method
WO2019115802A1 (en) 2017-12-15 2019-06-20 Chiesi Farmaceutici S.P.A. Pharmaceutical formulation comprising pulmonary surfactant for administration by nebulization
WO2019206731A1 (en) 2018-04-23 2019-10-31 Chiesi Farmaceutici S.P.A. A therapeutic combination comprising a pulmonary surfactant and a steroid for the prophylaxis of bpd
EP3666316A1 (de) 2018-12-14 2020-06-17 PARI Pharma GmbH Aerosolabgabevorrichtung und verfahren zum betrieb der aerosolabgabevorrichtung
EP3666315A1 (de) 2018-12-14 2020-06-17 PARI Pharma GmbH Aerosolabgabevorrichtung und verfahren zum betrieb der aerosolabgabevorrichtung
EP3843105A1 (de) 2019-12-23 2021-06-30 PARI Pharma GmbH Steuerungsvorrichtung für aerosolzerstäubersystem
WO2021151853A1 (en) 2020-01-28 2021-08-05 Chiesi Farmaceutici S.P.A. Polypeptides having improved properties

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076535A1 (en) * 1999-06-11 2000-12-21 Byk Gulden Lomberg Chemische Fabrik Gmbh Pharmaceutical preparation containing modifications of surfactant protein b (sp-b) and surfactant protein c (sp-c)
US6660833B1 (en) 2000-02-29 2003-12-09 Harbor-Ucla Research And Education Institute Respiratory distress syndrome therapy with peptide analogs of human SP-B
US20040254112A1 (en) * 2000-04-12 2004-12-16 Dietrich Hafner Use of pulmonary surfactant for the early treatment of acute pulmonary diseases
JP2003530356A (ja) * 2000-04-12 2003-10-14 アルタナ ファルマ アクチエンゲゼルシャフト 急性肺疾患の予防又は早期治療のための肺表面活性物質の新規使用
US7464012B2 (en) * 2004-12-10 2008-12-09 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Simplified process simulator
US7582312B2 (en) 2004-11-15 2009-09-01 Discovery Laboratories, Inc. Methods to produce lung surfactant formulations via lyophilization and formulations and uses thereof
SI1841458T1 (sl) 2005-01-06 2012-04-30 Discovery Lab Inc Zdravljenje s predpisanim odmerjanjem surfaktanta za zdravljenje ali preprečevanje bronhopulmonalne displazije
KR20090060348A (ko) * 2006-09-19 2009-06-11 디스커버리 래보래토리스, 인크. 폐 계면활성제 제제 및 점액 클리어런스 촉진 방법
EP2009023A1 (de) * 2007-06-04 2008-12-31 Rentschler Beteiligungs GmbH Neuartige Peptide und ihre Verwendung bei der Behandlung von Ödemen
US20130303726A1 (en) * 2012-04-17 2013-11-14 Chiesi Farmaceutici S.P.A. Method for the preparation of surfactant peptides
WO2013188016A2 (en) 2012-05-04 2013-12-19 Discovery Laboratories, Inc. Surfactant therapy for exposure to ionizing radiation
KR102369135B1 (ko) 2014-03-05 2022-02-28 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 에어로졸을 가습하기 위한 가습기
CN107163148A (zh) * 2017-05-15 2017-09-15 重庆理工大学 肺表面活性蛋白b前肽的重组蛋白及其制备方法和应用
CN109001466A (zh) * 2018-07-19 2018-12-14 新疆维吾尔自治区人民医院 一种用于osa的肺表面活性蛋白试剂盒及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004326A1 (en) * 1987-11-04 1989-05-18 California Biotechnology Inc. Alveolar surfactant proteins
EP0368823A2 (de) * 1988-10-18 1990-05-16 Kabi Pharmacia AB Biologisch wirksames Lipoprotein und seine Verwendung
WO1991018015A1 (en) * 1990-05-17 1991-11-28 California Biotechnology Inc. Alveolar surfactant proteins
WO1993021225A1 (en) * 1992-04-17 1993-10-28 Tokyo Tanabe Company Limited Synthetic peptide, pulmonary surfactant containing the same, and remedy for respiratory distress syndrome

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164724A (ja) * 1983-03-10 1984-09-17 Tokyo Tanabe Co Ltd サ−フアクタント及びそれを含有する呼吸窮迫症候群治療剤
US5169761A (en) * 1984-12-11 1992-12-08 California Biotechnology Inc. Dna encoding and expression systems for alveolar surfactant proteins
US4659805A (en) * 1984-12-11 1987-04-21 California Biotechnology, Inc. Recombinant alveolar surfactant protein
US4933280A (en) * 1984-12-11 1990-06-12 California Biotechnology Inc. Recombinant DNA sequence encoding Alveolar Surfactant Protein
US5013720A (en) * 1986-05-06 1991-05-07 Abbott Laboratories SAP-6-Val proteins and methods
DE3921954A1 (de) * 1989-07-04 1991-01-17 Thomae Gmbh Dr K Niedrig-viskose, hochkonzentrierte surfactant-suspension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004326A1 (en) * 1987-11-04 1989-05-18 California Biotechnology Inc. Alveolar surfactant proteins
EP0368823A2 (de) * 1988-10-18 1990-05-16 Kabi Pharmacia AB Biologisch wirksames Lipoprotein und seine Verwendung
WO1991018015A1 (en) * 1990-05-17 1991-11-28 California Biotechnology Inc. Alveolar surfactant proteins
WO1993021225A1 (en) * 1992-04-17 1993-10-28 Tokyo Tanabe Company Limited Synthetic peptide, pulmonary surfactant containing the same, and remedy for respiratory distress syndrome

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9344, Derwent World Patents Index; Class B04, AN 93-351660 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952303A (en) * 1996-03-27 1999-09-14 Ortho Pharmaceutical Corporation Lyophilized pulmonary surfactant peptide compositions
WO1997035882A1 (en) * 1996-03-27 1997-10-02 Ortho Pharmaceutical Corporation Lyophilized pulmonary surfactant peptide compositions
WO2000027448A1 (de) 1998-11-06 2000-05-18 Byk Gulden Lomberg Chemische Fabrik Gmbh Blindungsvorrichtung für klinische prüfungen
CZ301108B6 (cs) * 1999-02-12 2009-11-11 Chiesi Farmaceutici S. P. A. SP-C analogy
US7022671B1 (en) 1999-06-17 2006-04-04 Altana Pharma Ag Surfactant protein C esters
WO2000078810A1 (en) * 1999-06-17 2000-12-28 Byk Gulden Lomberg Chemische Fabrik Gmbh Surfactant protein c esters
US7173009B2 (en) 1999-06-17 2007-02-06 Altana Pharma Ag Surfactant protein C esters
US7053176B1 (en) 1999-09-16 2006-05-30 Altana Pharma Ag Combination of C1-INH and lung surfactant for the treatment of respiratory disorders
WO2001039573A2 (de) * 1999-12-01 2001-06-07 Byk Gulden Lomberg Chemische Fabrik Gmbh Verwendung von lungensurfactant zur behandlung von legionärskrankheit
WO2001039573A3 (de) * 1999-12-01 2002-04-11 Byk Gulden Lomberg Chem Fab Verwendung von lungensurfactant zur behandlung von legionärskrankheit
WO2001058423A1 (en) * 2000-02-11 2001-08-16 Altana Pharma Ag Novel use of pulmonary surfactant for the prophylaxis and treatment of chronic pulmonary diseases
DE10018022A1 (de) * 2000-04-12 2001-10-31 Byk Gulden Lomberg Chem Fab Neue Verwendung von Lungensurfactant zur Prophylaxe oder Frühbehandlung von akuten Lungenerkrankungen
US6982075B2 (en) 2001-10-11 2006-01-03 Altana Pharma Ag Use of pulmonary surfactant
US6998384B2 (en) 2001-12-12 2006-02-14 The Penn State Research Foundation Surfactant prevention of lung complications from cancer chemotherapy
US7041638B2 (en) 2001-12-12 2006-05-09 The Penn State Research Foundation Surfactant prevention of vaginitis and lung complications from cancer chemotherapy
US8236750B2 (en) 2004-08-06 2012-08-07 Nycomed Gmbh Composition comprising a pulmonary surfactant and a TNF-derived peptide
US8337815B2 (en) 2004-12-23 2012-12-25 Discovery Laboratories, Inc. Pulmonary surfactant formulations
US7892209B2 (en) 2005-03-31 2011-02-22 Nycomed Gmbh Arrangement comprising a catheter and connector piece, and valve for passage of a catheter
DE102005014650B3 (de) * 2005-03-31 2006-08-17 Altana Pharma Ag Anordnung aus Katheter und Anschlussstück sowie Ventil zum Durchführen eines Katheters
WO2006108557A1 (en) 2005-04-08 2006-10-19 Nycomed Gmbh Dry nebulizer
US7951781B2 (en) 2006-11-02 2011-05-31 University Of Iowa Research Foundation Methods and compositions related to PLUNC surfactant polypeptides
EP2719391A1 (de) 2007-06-08 2014-04-16 CHIESI FARMACEUTICI S.p.A. Verfahren zur Verabreichung eines Lungen-Surfactants
US9289388B2 (en) 2008-12-10 2016-03-22 Paka Pulmonary Pharmaceuticals, Inc. Methods and compositions for delivery of medicaments to the lungs
WO2011029525A1 (en) 2009-09-08 2011-03-17 Chiesi Farmaceutici S.P.A. A therapeutic combination comprising a pulmonary surfactant and antioxidant enzymes
US9693955B2 (en) 2010-08-23 2017-07-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Humidified particles comprising a therapeutically active substance
WO2012025496A1 (en) * 2010-08-23 2012-03-01 Nycomed Gmbh Humidified particles comprising a therapeutically active substance
EP3459556A1 (de) * 2012-02-09 2019-03-27 Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center Synthetische peptidanaloge des lungenoberflächenproteins sp-c und deren verwendung
US10358465B2 (en) 2012-02-09 2019-07-23 Los Angeles Biomedical Research Institute at Harbor—UCLA Medical Center SP-B and SP-C peptides, synthetic lung surfactants, and use thereof
WO2016170087A1 (en) 2015-04-22 2016-10-27 Chiesi Farmaceutici S.P.A Method and system for effective breath-synchronized delivery of medicament to the lungs
WO2016173634A1 (en) 2015-04-28 2016-11-03 Chiesi Farmaceutici S.P.A Device for facilitating the administration of a medicament to the lung by a catheter
WO2016174269A1 (en) 2015-04-30 2016-11-03 University Of Bremen A novel skin medical and cosmetic care product
EP3106090A1 (de) 2015-06-15 2016-12-21 CHIESI FARMACEUTICI S.p.A. System zur effektiven und atemsynchronisierten abgabe eines medikaments in die lungen
WO2018019719A1 (en) 2016-07-28 2018-02-01 Chiesi Farmaceutici S.P.A Method and system for delivery of an aerosolized medicament
WO2018077623A1 (en) 2016-10-26 2018-05-03 Chiesi Farmaceutici S.P.A. Device for facilitating the administration of a medicament to the lung by a catheter
WO2018115013A1 (en) 2016-12-22 2018-06-28 Chiesi Farmaceutici S.P.A. A therapeutic combination comprising a pulmonary surfactant and a steroid for the treatment of evolving bpd
WO2019115771A1 (en) 2017-12-15 2019-06-20 Pari Pharma Gmbh Nebuliser system, holding system, combination comprising nebuliser system and holding system, and aerosol administration method
WO2019115802A1 (en) 2017-12-15 2019-06-20 Chiesi Farmaceutici S.P.A. Pharmaceutical formulation comprising pulmonary surfactant for administration by nebulization
WO2019206731A1 (en) 2018-04-23 2019-10-31 Chiesi Farmaceutici S.P.A. A therapeutic combination comprising a pulmonary surfactant and a steroid for the prophylaxis of bpd
EP3666316A1 (de) 2018-12-14 2020-06-17 PARI Pharma GmbH Aerosolabgabevorrichtung und verfahren zum betrieb der aerosolabgabevorrichtung
EP3666315A1 (de) 2018-12-14 2020-06-17 PARI Pharma GmbH Aerosolabgabevorrichtung und verfahren zum betrieb der aerosolabgabevorrichtung
WO2020120744A1 (en) 2018-12-14 2020-06-18 Pari Pharma Gmbh Aerosol delivery device and method of operating the aerosol delivery device
WO2020120770A1 (en) 2018-12-14 2020-06-18 Pari Pharma Gmbh Aerosol delivery device and method of operating the aerosol delivery device
EP3843105A1 (de) 2019-12-23 2021-06-30 PARI Pharma GmbH Steuerungsvorrichtung für aerosolzerstäubersystem
WO2021130213A1 (en) 2019-12-23 2021-07-01 Pari Pharma Gmbh Control device for aerosol nebulizer system
WO2021151853A1 (en) 2020-01-28 2021-08-05 Chiesi Farmaceutici S.P.A. Polypeptides having improved properties

Also Published As

Publication number Publication date
PT764172E (pt) 2005-01-31
SI0764172T1 (en) 2005-02-28
BG101028A (en) 1998-01-30
KR100355626B1 (ko) 2002-12-26
DE4418936A1 (de) 1996-02-08
EP0764172B1 (de) 2004-09-01
HU220191B (hu) 2001-11-28
RO118752B1 (ro) 2003-10-30
NO965052D0 (no) 1996-11-27
EP0764172A1 (de) 1997-03-26
HK1000891A1 (en) 2004-09-17
FI118126B (fi) 2007-07-13
NZ287447A (en) 1998-01-26
CA2191344C (en) 2003-04-08
CN1130374C (zh) 2003-12-10
CN1154117A (zh) 1997-07-09
FI964766A0 (fi) 1996-11-29
BR9507811A (pt) 1997-09-16
CY2552B1 (en) 2008-07-02
SK152496A3 (en) 1997-06-04
CZ350296A3 (en) 1997-05-14
BR9507811B1 (pt) 2009-05-05
JPH10504025A (ja) 1998-04-14
FI964766A (fi) 1996-11-29
ES2227548T3 (es) 2005-04-01
NO965052L (no) 1997-01-28
UA35636C2 (uk) 2001-04-16
SK282441B6 (sk) 2002-02-05
JP3359638B2 (ja) 2002-12-24
DE59510941D1 (de) 2004-10-07
HUT76952A (hu) 1998-01-28
PL317420A1 (en) 1997-04-14
RU2145611C1 (ru) 2000-02-20
AU2616995A (en) 1995-12-21
DK0764172T3 (da) 2005-01-10
ATE275154T1 (de) 2004-09-15
NO317149B1 (no) 2004-08-30
US5874406A (en) 1999-02-23
BG63210B1 (bg) 2001-06-29
CZ286976B6 (en) 2000-08-16
HU9603249D0 (en) 1997-01-28
EE9600175A (et) 1997-06-16
EE03775B1 (et) 2002-06-17
PL181234B1 (pl) 2001-06-29
KR970703367A (ko) 1997-07-03
AU690280B2 (en) 1998-04-23
MX9605986A (es) 1998-06-30
CA2191344A1 (en) 1995-12-07

Similar Documents

Publication Publication Date Title
EP0764172B1 (de) Synthetische peptidanaloge des lungenoberflächenproteins sp-c
DE3785864T2 (de) Verfahren zur Herstellung von menschlichem Epidermalwachstumsfaktor und dessen Analogen.
DE69018920T2 (de) Verwendung von dns-fragmenten, die ein signalpeptid kodieren zur sekretion von reifen proteinen in rekombinanten hefen, expressions-kassetten, transformierte hefen und verfahren zur herstellung dieser proteine.
DE69007975T2 (de) Fusionsprotein bestehend aus gm-csf und il-3.
DE69002395T2 (de) N-terminale Fragmente von menschliches Serumalbumin enthaltenden Fusionsproteinen.
DE3876401T2 (de) N-terminale fragmente von menschlichem serumalbumin.
DE69027961T2 (de) Protein, DNA und ihre Verwendung
DE69133354T2 (de) Interleukin 1-beta protease und ihre inhibitoren
DE3650101T2 (de) Analoga von Insulin und deren Herstellungsmethode.
DE68910354T2 (de) Menschliches mutantes Angiogenin (Angiogenese-Faktor mit überlegener Angiogenin-Aktivität), Gene dafür und Methode zur Expression.
DE69030539T2 (de) Wachstumsfaktor aus parenchymalen Lebenszellen, dafür kodierendes Gen, Verfahren zur Herstellung dieses Faktors und Transformanten
DE102005046113A1 (de) Verfahren zur Amidierung von Polypetiden mit C-terminalen basischen Aminosäuren unter Verwendung spezifischer Endoproteasen
DD210304A5 (de) Verfahren zur herstellung eines replikablen vektors
DE102004058306A1 (de) Verfahren zur Herstellung von Carboxy-terminal amidierten Peptiden
DE19947456A1 (de) C-Peptid zur verbesserten Herstellung von Insulin und Insulinanaloga
DE58907266T2 (de) Polypeptide mit einer die Koagulierung hemmenden Wirkung.
WO1996001274A1 (de) NEUE hIL-4-MUTANTENPROTEINE ALS ANTAGONISTEN ODER PARTIELLE AGONISTEN DES HUMANEN INTERLEUKIN 4
DE69130872T2 (de) Sekretionsvektor, diesen enthaltene transformierte Mikroorganismen und Herstellung von Produkten durch obigen Mikroorganismus
DE69033937T2 (de) Verfahren zur Herstellung von genetischen Vektoren zur Expression vom Nerven-Wachstumsfaktor in eukaryotischen Zellen
DE69022901T2 (de) Streptokinase-Proteine, entsprechende Gene, entsprechende Plasmide und Verfahren zu deren Herstellung.
EP0297362A2 (de) Human-Aprotinin, dessen Lys-Rest in Position 15 gegen einen anderen protogenen Aminosäurerest ausgetauscht ist
EP0549915B1 (de) Neue synthetische Isohirudine mit verbesserter Stabilität
DE3751081T2 (de) [Leu 13] Motilin, dessen kodierende DNS-Moleküle und Verfahren zu dessen Herstellung.
DE3716722A1 (de) Gentechnologisches verfahren zur herstellung von angiogeninen
DE69132050T2 (de) Zusammensetzungen von wachstumsfaktoren, herstellung und verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95194374.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ EE FI HU JP KR LT LV MX NO NZ PL RO RU SG SI SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2191344

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08750194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 152496

Country of ref document: SK

Ref document number: 96-02248

Country of ref document: RO

WWE Wipo information: entry into national phase

Ref document number: PV1996-3502

Country of ref document: CZ

Ref document number: PA/a/1996/005986

Country of ref document: MX

Ref document number: 964766

Country of ref document: FI

Ref document number: 1019960706778

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 287447

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1995920906

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995920906

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1996-3502

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV1996-3502

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1995920906

Country of ref document: EP