WO1995023291A1 - Dispositif d'alimentation en huile sous pression - Google Patents

Dispositif d'alimentation en huile sous pression Download PDF

Info

Publication number
WO1995023291A1
WO1995023291A1 PCT/JP1995/000287 JP9500287W WO9523291A1 WO 1995023291 A1 WO1995023291 A1 WO 1995023291A1 JP 9500287 W JP9500287 W JP 9500287W WO 9523291 A1 WO9523291 A1 WO 9523291A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
spool
load pressure
load
Prior art date
Application number
PCT/JP1995/000287
Other languages
English (en)
French (fr)
Inventor
Toshiro Takano
Mitsumasa Akashi
Yoshio HOSHINO
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1995023291A1 publication Critical patent/WO1995023291A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve

Definitions

  • the present invention relates to a pressure oil supply device that supplies discharge pressure oil of a variable displacement hydraulic pump to a factory.
  • a pressure oil supply device of this kind for example, a pressure oil supply device disclosed in Japanese Patent Application No. 4-161920 is known.
  • this includes a variable displacement hydraulic pump 1 (hereinafter referred to as a variable hydraulic pump 1), a pressure compensating valve 4 comprising a tick valve section 2 and a pressure reducing valve section 3, and a directional control valve 5 as shown in FIG.
  • the check valve section 2 has a spool 9 that communicates and shuts off between the ports 7 and 8 by a pressure difference between the inlet port 7 and the outlet port 8.
  • the pressure reducing valve section 3 is pushed by the pressure of the first pressure chamber 10 in a direction to connect the first port 13 and the second port 14, and the pressure of the second pressure chamber 11.
  • 12 has a spool 15 which is pushed in a direction to shut off the first port 13 and the second port 14.
  • Direction control valve 5 Soot that can be slid by the pilot pressure. And the first and second load pressure detecting ports between the pump port 16 and the first and second load pressure detecting ports 17 and 18 by the spool 23. Between ports 17 and 18 and ports 1 and 2 for the first and second actuaries, and between ports 19 and 20 for the first and second Communication and cutoff between ports 19 and 20 and first and second tank ports 21 and 22.
  • the pump discharge passage 24 of the variable hydraulic pump 1 communicates with the inlet port 7 and the first port 13.
  • a pump adjusting directional control valve 26 for controlling the displacement by tilting the swash plate 25 of the variable hydraulic pump 1 is connected to a second port 14 via a load pressure detecting path 27.
  • the outlet port 8 of the check valve section 2 communicates with the pump port 16.
  • the first pressure chamber 10 of the pressure reducing valve section 3 communicates with the first and second load pressure detection ports 17, 18, and the second pressure chamber 11 communicates with the second port via the throttle 28. It communicates with 14.
  • the free chamber 30 is inserted into the blind hole 29 of the spool 15 to form a pressure chamber 31.
  • the pressure chamber 31 is connected to the pressure chamber 31 through the damper throttle 32. It is in communication with the slit-shaped opening 33.
  • the pump discharge pressure is increased by a predetermined differential pressure, for example, 20 kg / cm 2 , from the pressure of the load pressure detection path 27 by the directional control valve 26 for pump adjustment.
  • a predetermined differential pressure for example, 20 kg / cm 2
  • the pressure in the load pressure detection path 27 is zero, so the pump discharge pressure is 20 kg / cm 2 .
  • the spool 9 of the check valve section 2 is pushed rightward by the pressure of the inlet port 7 to open the space between the inlet port 7 and the outlet port 8, and the outlet port 9 is opened.
  • the pressure of the gate 8 reaches 20 kg / cm2, it is pushed to the left to close between the ports 7 and 8.
  • the spool 23 of the directional control valve 5 is moved from the state shown in FIG. 1 in the direction of the arrow, and the pump port 16 is moved to the second load pressure detection port 18 and the first load pressure detection port 17 is moved to the first position.
  • the pressure reducing valve section 3 pushes the spool 15 to the right until the pressure in the first pressure chamber 10 and the pressure in the second pressure chamber 11 become equal, and the pump discharge path 24 and the second pressure chamber 1 1
  • the spool 15 is pushed to the left by the weak spring 1 2 to close the pump discharge path 24 and the second pressure chamber 11.
  • the pressure in the load pressure detection path 27 becomes equal to the pressure in the first pressure chamber 10, that is, the load pressure, and the pump discharge pressure is changed by the pump control directional control valve 26.
  • the actuator 6 is slowly operated when the spool 23 of the directional control valve 5 is moved from the neutral position to the pressure oil supply position. It is suitable for performing an inching operation (fine operation) of the actuator 6 because it can be operated.
  • the spool 15 constituting the pressure reducing valve portion 3 of the pressure compensating valve 4 moves slowly to the right, and as a result, the variable hydraulic pump The discharge rate of 1 gradually increases;: From,, the operability is slightly improved at the beginning of the inching operation, but it can be changed with the spool 23 of the directional control valve 5 moved a small distance.
  • the discharge amount of the hydraulic pump 1 becomes a value commensurate with the load pressure over time, and the flow rate required by the meter opening area of the directional control valve 5 is supplied to the actuator over time. After a short period of time elapses after the inching operation, the movement of the actuate will become faster, and the inching operability will be poor.
  • the first port 13 and the second port 14 communicate with each other after a certain period of time. Since the same pressure as the load pressure applied to the first pressure chamber 10 is output to the load pressure detection path 27, the discharge amount of the variable hydraulic pump 1 becomes a flow rate commensurate with the load pressure. A slight amount of time elapses when the actuating unit 6 is inching-operated by supplying a flow proportional to the area of the mesh opening by the spool 23 of the directional control valve 5 to the unit 6. Doing so will increase the speed of the work, so it will be difficult to perform the necessary work in the inching operation.
  • the present invention has been made in order to improve such a problem, and has as its object to provide a pressure oil supply device in which operability is improved throughout the entire operation of an inching operation. That is what you do. Disclosure of the invention
  • a variable displacement hydraulic pump in which a discharge amount is controlled by a load pressure of a load pressure detection path, and a check valve unit.
  • a pressure compensating valve comprising a pressure-reducing valve and a direction control valve for supplying pump discharge pressure oil to the actuator.
  • the tucking valve comprises a pump discharge passage for the variable displacement hydraulic pump.
  • a spool that communicates with and shuts off the pump from the directional control valve;
  • the pump pressure is pushed toward the first position that connects the pump discharge path and the load pressure detection path by the load pressure of the actuator, and the load is pressed by the weak spring and the load pressure of the load pressure detection path.
  • a pressurized oil supply device which has a bleed-off circuit that allows a part of the oil to flow into the tank.
  • the discharge volume of the variable displacement hydraulic pump is smaller than the value corresponding to the load pressure, and the supply flow rate to the actuator is the required flow rate due to the opening area of the directional control valve.
  • the pressure in the load pressure detection path becomes equal to the load pressure, and the discharge amount of the variable displacement hydraulic pump becomes a value that matches the load pressure.
  • the supply flow rate to the factory is the required flow rate due to the area of the directional control valve opening.
  • the starting speed of the actuator becomes slower, so that a smooth inching operation can be performed.
  • the supply flow to the actuator can be operated at a predetermined speed because the flow rate supplied to the actuator becomes the required flow rate based on the opening area of the directional control valve.
  • the pressure reducing valve section receives the load pressure and moves the spool to the first position.
  • a first pressure chamber that pushes toward the pump, a pressure chamber that communicates with the pump discharge path through a damper throttle, and pushes the spool toward the second position, and a throttle that connects to the load pressure detection path.
  • a second pressure chamber which communicates and presses the spool toward the second position.
  • the pressure chamber and the load pressure detection path are shut off.
  • the pressure chamber communicates with the tank and the load pressure detection path, and when the spool is at the first position, the pressure chamber is connected to the load pressure. It is desirable to adopt a configuration that communicates with the detection path.
  • a variable displacement hydraulic pump whose discharge amount is controlled by the load pressure in the load pressure detection path
  • a directional control valve that is switched from the neutral position to the pressurized oil supply position by an operation finger and supplies pump discharge pressure oil to the actuator all the time, and the meteine opening area is proportional to the operation finger.
  • a pressure compensating valve which is pushed in the opening direction by the pump discharge pressure and is pushed in the closing direction by the load pressure of the actuator to make the primary pressure correspond to the load pressure;
  • a blade-off circuit connected to the load pressure detection path
  • a pressure oil feed-off device comprising:
  • the main opening area of the directional control valve and the load pressure bleed-off valve are switched according to the size of the operation finger, and when the magnitude of the operation command to be performed for inching is set to an intermediate size, the Since the opening area is small and the load pressure blade-off valve is at the blade-off position, the discharge amount of the variable displacement hydraulic pump during the inching operation is less than the required flow rate, and the operation is interrupted. It works as a unit and improves the inching operability.
  • the operation finger is a pilot pressure output from the hydraulic pilot valve as a pressure proportional to the operation amount of the operation lever
  • the directional control valve is switched from the neutral position to the pressurized oil supply position by the pilot port pressure and supplies the pump discharge pressure oil to the actuator all the time, and its meter-in opening area is equal to the pilot pressure. Preferably it is proportional to pressure.
  • the directional control valve has a spool fitted in the valve body and slidably moved between a neutral position and a pressure oil supply device by a spring and a pilot pressure in a pressure receiving chamber.
  • a plurality of the directional control valves are overlapped and connected to each other,
  • Oil holes connected between the valve bodies adjacent to the valve bodies and check valves communicating the oil holes with the pressure receiving chamber are provided, and the oil holes are provided by the load pressure blow-off valve. It is preferable to connect to the pressure receiving part.
  • the pressure compensating valve comprises a check valve section and a pressure reducing valve section;
  • the check valve unit has a spool that communicates and shuts off a pump discharge path of a variable displacement hydraulic pump and a pump port of a directional control valve.
  • the pump pressure is pressed toward the first position that connects the pump discharge path and the load pressure detection path by the load pressure of the actuator, and the pump discharge path and the load pressure detection are performed by the weak spring and the load pressure of the load pressure detection path.
  • a spool that is pressed toward a second position that blocks the passage from the road and pushes the spool of the check valve portion in a closing direction, and the spool moves from the second position to the first position. It is preferable to move slowly toward it.
  • FIG. 1 is a cross-sectional view of a conventional pressure oil supply device.
  • FIG. 2 is a sectional view of a first embodiment of the pressure oil supply device according to the present invention.
  • FIG. 3 is a cross-sectional view for detailed description of the pressure reducing valve section of the first embodiment.
  • FIG. 4 is a cross-sectional view for explaining the operation of the pressure reducing valve section of the first embodiment.
  • FIG. 5 is a cross-sectional view for explaining the operation of the pressure reducing valve section of the first embodiment. It is.
  • FIG. 6 is a sectional view of a second embodiment of the pressure oil supply device according to the present invention.
  • FIG. 7 is a chart showing the relationship between the operation amount of the operation lever of the second embodiment and the pilot pressure.
  • FIG. 8 is a sectional view showing another example of the pressure compensating valve of the second embodiment.
  • FIG. 9 is a schematic diagram showing still another example of the pressure compensating valve of the second embodiment.
  • FIG. 10 is a plan view of an example in which a plurality of directional control valves are superimposed as an application example of the second embodiment.
  • FIG. 11 is a sectional view taken along the line XI—XI of FIG.
  • FIG. 12 is a cross-sectional view taken along the line X-X in FIG.
  • FIG. 13 is a cross-sectional view showing a structure of a directional control valve for supplying pressure oil to a factory which does not need to be inked in the application example.
  • FIG. 14 is a schematic diagram showing another configuration for operating the directional control valve.
  • FIG. 15 is a schematic diagram showing still another configuration for operating the directional control valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. A first embodiment of the present invention will be described with reference to FIGS. Note that The same members as those in the related art are denoted by the same reference numerals, and detailed description is omitted.
  • third 'fourth ports 40, 41 are formed between the first port 13 and the second port 14, and the third port 40 is formed.
  • a small-diameter portion 43 is formed in the spool 15 to communicate with the tank 42 and to communicate and block the third port 41 and the second port 14.
  • the free piston 30 has a small diameter portion 44 and an oil hole 45 communicating the small diameter portion 44 with the pressure chamber 31.
  • the spool 15 has a port 46 for connecting and blocking the small diameter portion 44 to the third port 40, and has a blind hole 29 of the spool 15 and a free piston.
  • a port 48 connecting the small diameter portion 43 to the space portion 47 between the small diameter portion 44 of 30 is formed.
  • the second port 14 and the second pressure chamber 11 are always in communication with each other by a gap (throttle) between the spool insertion hole 49 and the spool 15.
  • the pump discharge passage 24 includes a first port 13, a small-diameter portion 33, a damper throttle 32, a pressure chamber 31, an oil hole 45, a space 47, and a port 47.
  • Port 48 communicates with the fourth port 41, the fourth port 41 is cut off from the second port 14, the port 46 communicates with the first port 13 and has a space. 4 It is cut off from 7.
  • the pump discharge passage 24 communicates with the pressure chamber 31 through the damper throttle 32, and the pressure chamber 31 is isolated from the second port 14.
  • the pump discharge passage 24 has the first port 13, the small-diameter portion 33, and the damper damper.
  • the second port 14 is communicated, and at the same time, the space portion 47 communicates with the third port 40 from the port 46.
  • the discharge amount of the variable hydraulic pump 1 is smaller than the value corresponding to the load pressure, that is, the flow amount is smaller than the flow amount required by the opening area of the directional control valve 5 for the methine opening. Become. As a result, the actuator 6 starts moving slowly.
  • the oil hole 45, the space 47, the port 46, and the third port 40 are tanks 4 when the spool 15 of the pressure reducing valve 3 moves halfway. 2 constitutes a bridge-off circuit.
  • the spool 15 is pushed further to the right, and as shown in FIG. Take a balanced position in the vicinity.
  • the port 46 is cut off from the third port 40 and the above-mentioned bleed-off circuit is cut off, so that the pressure oil in the pump discharge passage 24 only flows through the second port 14.
  • the pressure in the load pressure detection path 27 becomes equal to the load pressure
  • the discharge amount of the variable hydraulic pump 1 becomes a value corresponding to the load pressure.
  • the required flow rate is determined by the area of the main opening.
  • the actuator 6 starts to operate at a predetermined speed after a certain time has elapsed after the start of the movement.
  • the spool 23 of the directional control valve 5 is moved to the neutral position and the pressurized oil supply position for a short time (the time required for the spool 15 to move from the neutral position to the position that balances near the right end). (Shorter time) by alternately switching, the metering opening area of the directional control valve 5 is reduced, and the discharge amount of the variable hydraulic pump 1 is always smaller than the required flow amount. As a result, the actuator 6 can always be moved slowly, so that the inching operability is improved throughout the entire operation.
  • the spool 23 of the directional control valve 5 when the spool 23 of the directional control valve 5 is moved from the neutral position to the pressure oil supply position to supply the pump discharge pressure oil to the actuator 6. Since the spool 15 of the pressure reducing valve section 3 slowly moves toward the first position due to the load pressure of the actuator 6, the pressure of the load pressure detecting path 27 decreases. The discharge amount of the variable displacement hydraulic pump 1 gradually increases, and the actuator 6 does not suddenly operate.
  • the spool 15 of the pressure reducing valve section 5 when the spool 15 of the pressure reducing valve section 5 is at the intermediate position between the second position and the first position, a part of the pump discharge pressure oil flows out to the tank, and the pressure of the load pressure detection path 27 becomes the load pressure. And the discharge rate of the variable displacement hydraulic pump 1 becomes smaller than the value corresponding to the load pressure, and the supply flow rate to the actuator 6 is reduced by the directional control valve 5.
  • the pressure in the load pressure detection path 27 becomes equal to the load pressure and the variable displacement hydraulic pump
  • the discharge rate of the pump 1 is a value commensurate with the load pressure, and the flow rate supplied to the factory 6 is the required flow rate due to the area of the directional control valve 5 opening the mesh.
  • the direction control valve 5 when the direction control valve 5 is operated by a small amount to perform the inching operation on the actuator 6, the speed at which the actuator 6 starts moving becomes slower, so that a smooth inching operation can be performed. If it is moved to the position, the supply flow rate to the actuator 6 becomes the required flow rate due to the opening area of the directional control valve 5, and the actuator 6 can be operated at a predetermined speed.
  • the pressure compensating valve 4 and the directional control valve 5 are provided in one valve block, but may be provided in separate valve blocks.
  • a second embodiment of the present invention will be described with reference to FIGS.
  • the spool 23 of the directional control valve 5 is held at the neutral position by the left and right springs 50 and 51, and the right side by the pilot pressure oil of the left first pressure receiving chamber 52.
  • the amount of movement of the spool 23 to the first and second pressure oil supply positions is determined by the amount of pilot pressure oil in the first and second pressure receiving chambers 52 and 53. It is proportional to pressure.
  • Hydraulic pilot valve 54 It has first and second pressure-reducing valve parts 56 and 57 for supplying pressure oil discharged from the hydraulic pump 55 to the first and second pressure-receiving chambers 52 and 53, respectively.
  • the outlet port of the valve section 56 is connected to the first pressure receiving chamber 52 by the first pilot circuit 58, and the outlet port of the second pressure reducing valve section 57 is connected to the second pilot circuit 59.
  • the first and second pressure reducing valve sections 56 and 57 are held at a position for shutting off the inlet port and the outlet port when the operating lever 60 is in the neutral position ⁇ . Is operated from the neutral position A in one direction (the direction of arrow a), the inlet port and the outlet port of the first pressure reducing valve section 56 communicate with each other, and the pilot port is connected to the first outlet circuit 58. Pressure oil is output. The pressure of the pilot pressure oil is proportional to the operation amount of the operation lever 60.
  • pilot pressure oil having a pressure proportional to the operation amount is output to the first pilot circuit 59 as described above.
  • the relationship between the operation amount of the operation lever 60 of the hydraulic pilot valve 54 and the output pilot pressure is, for example, as shown in FIG.
  • pilot pressure is P1 at the first intermediate manipulated variable L1
  • pilot pressure is P2 at the second intermediate manipulated variable L2
  • pilot pressure is P2 at the third intermediate manipulated variable L3.
  • Pilot pressure is P3 and pilot pressure is P4 at the maximum manipulated variable L4 (Pi ⁇ P2 ⁇ P3 ⁇ P4) o
  • a dead zone may be provided so as not to output the pilot pressure.
  • the spool 23 of the directional control valve 5 takes the pressurized oil supply position when the pilot pressure becomes P1, and the mating opening area at that time is the smallest. Thereafter, when the pilot pressure sequentially increases to P 2 P 3, the meter-in area increases, and at the maximum pilot pressure P 4, the area of the mesh opening becomes maximum.
  • the load pressure detection path 27 is connected to a bleed-off circuit 61, and the bleed-off circuit 61 is provided with a load pressure bleed-off valve 62. is there.
  • the load pressure blade-off valve 62 is switched between a first shut-off position E, an intermediate blade-off position F and a second shut-off position G, and is held at the first shut-off position E by a spring 63.
  • the pilot pressure supplied to the pilot pressure receiving portion 64 becomes P2
  • the intermediate blade-off position F is opposed to the spring 63 and the pilot pressure becomes P3. 2 Moved to blocking position G.
  • the pilot pressure receiving section 64 is connected to a high-pressure detection circuit 65, and the high-pressure detection circuit 65 is connected to first and second pilot valves 66, 67 via first and second check valves 66, 67.
  • the cut circuits 58 and 59 are connected to a tank 69 via a throttle 68.
  • the load pressure blade-off valve 62 is actuated by the spring 63 to act as a spring. 1Take cutoff position E. Accordingly, the blow-off circuit 61 is shut off, and the discharge amount of the variable hydraulic pump 1 becomes the set minimum discharge amount.
  • the pilot pressure P 1 is supplied from the high pressure detection circuit 65 to the pilot pressure receiving section 64, but the load pressure blade-off valve 62 is operated by the spring 63. And remains at the first shut-off position E. Therefore, since the blow-off circuit 61 remains shut off, the load pressure in the load pressure detection circuit 27 is supplied to the pump control directional control valve 26, and the discharge amount of the variable hydraulic pump 1 is reduced. Increases as you climb.
  • the pilot pressure of the first pilot circuit 58 becomes P2, and the spool 23 of the directional control valve 5 moves further to the right to increase the area of the mating opening.
  • the pilot pressure of the cut pressure receiving part 6 4 becomes P 2
  • the load pressure feed-off valve 62 takes the intermediate feed-off position F
  • the feed-off circuit 61 turns the throttle 7 off.
  • a part of the load pressure of the load pressure detection circuit 27 flows out (bleed off) to the tank, and the load pressure supplied to the pump adjustment directional control valve 26 becomes the actual load.
  • the pressure becomes lower than the pressure, and the discharge amount of the variable hydraulic pump 1 becomes smaller than the discharge amount corresponding to the actual load pressure.
  • the discharge amount of the variable hydraulic pump 1 is smaller than the required flow rate of the directional control valve 5 according to the mating opening area.
  • This operation is continuously performed by operating the operation lever 60 up to the operation amount L3 until the pilot pressure becomes P3.
  • the pilot pressure of the first pilot circuit 58 becomes P3, the spool 23 of the directional control valve 5 moves further rightward, and the area of the meteine opening further increases.
  • the pilot pressure P 3 of the pilot pressure receiving portion 64 becomes the pilot pressure P 3
  • the load pressure blade-off valve 62 becomes the second shutoff position G, and the blade-off circuit 61 comes out of the tank. Will be shut off.
  • the load pressure of the load pressure detection circuit 27 becomes the actual load pressure
  • the discharge amount of the variable hydraulic pump 1 becomes a discharge amount commensurate with the actual load pressure.
  • the supply flow rate to the directional control valve 5 is the required flow rate according to the area of the main opening.
  • This operation is continuously performed by operating the operation lever 60 up to the maximum operation amount L4 until the pilot pressure becomes P4.
  • the bleed-off valve 62 is set to the first / second shut-off position and the intermediate bleed-off position. Since the switching is performed, when the mating opening area of the directional control valve 5 is an intermediate size, a part of the load pressure of the load pressure detection circuit 27 is bleed off, and the discharge amount of the variable hydraulic pump 1 is reduced.
  • the supply flow rate to the actuator 6 becomes smaller than the flow rate required by the meter-in opening area of the directional control valve 5, and the operation of the actuator 6 is Since there is no relation to the amount of movement of the spool 15 constituting the pressure reducing valve section 3 of the force compensating valve 4, the inching operability is excellent.
  • a part of the load pressure is bled off by the moving amount of the spool 15 constituting the pressure reducing valve section 3 of the pressure compensating valve 4, and the hydraulic pilot valve is used. Even if the operation amount of the operation lever 54 is set between L2 and L3, the spool 15 moves with the passage of time and does not blow off part of the load pressure. Therefore, if the operating lever 60 is alternately operated between the neutral position A and the operating amounts L2 and L3 in a short time, the actuator 6 operates slowly, and the Operability improves o
  • the methine opening area of the directional control valve 5 and the load pressure blow-off valve 62 are switched according to the magnitude of the operation command.
  • the size of the operation finger to be set for the inching operation is set to the middle size, the opening area of the mating valve becomes small, and the load pressure bleed-off valve 62 is in the pre-off position. Therefore, during the inching operation, the discharge amount of the variable displacement hydraulic pump 1 exceeds the required flow rate. After a while, the actuator 6 operates slowly and the inching operability is improved.
  • the spool 15 constituting the pressure reducing valve portion 3 of the pressure compensating valve 4 does not move slowly, for example, a pressure chamber 31 is formed as shown in FIG. It is possible to use a general pressure that is pushed in the opening direction by the primary pressure and is pushed in the closing direction by the load pressure as shown in Fig. 9 so that the primary pressure matches the load pressure.
  • a compensation valve may be used.
  • valve bodies 71 of the directional control valves 5 are overlapped and connected so that each first tank port 21 and each second tank port 22 are adjacent to the valve body.
  • the first tank port 21 and the second tank port 22 are communicated by the oil hole 73 of the block 72 connected to one valve body 71.
  • both ends of the spool 23 are protruded into the case 74 attached to both end surfaces of each valve body 71 so that the first and second pressure receiving chambers 52 are provided between the both end surfaces and the case 74. , 53, respectively.
  • first and second oil holes 80 and 81 are formed near both ends in the longitudinal direction of the spool in each valve body 71, and the first oil holes 80 are respectively connected to the first pressure receiving holes 80.
  • a first check valve 82 which communicates with the chamber 52, is provided in each case 74, and a second check, which communicates the second oil hole 81, with the second pressure receiving chamber 53, respectively.
  • Valve 8 3 It is provided in the other case 74 respectively.
  • Each of the first oil holes 80 communicates with the adjacent valve body 71, and communicates with the oil hole 84 of the block 72, and each of the second oil holes 81 communicates with the adjacent valve body 71. and each communicating between communication with the oil hole 8 4 blocks 7 2, which first respective Ri by the oil hole 8 0 and the second oil hole 81 to c is found to be communicated, block The oil hole 84 of 7 4 communicates with the tank 86 through the throttle 85.
  • first and second check valves 82 and 83 correspond to the first and second check valves 66 and 67 in FIG. 6, and the restrictor 85 and the tank 86 correspond to the first and second check valves 66 and 67 in FIG.
  • the diaphragm 68 and the tank 69 in FIG. 6 correspond to the oil hole 84 and the high-pressure detection circuit 65 in FIG.
  • the oil hole 84 of the block 72 is connected to the pilot pressure receiving portion 64 of the load pressure blow-off valve 62.
  • the pilot pressure in the first pressure receiving chamber 52 flows into the first oil hole 80 through the first check valve 82, and further flows through the first oil hole 80. It flows into the oil hole 84 of the lock 72 and is supplied to the pilot pressure receiving portion 64 of the load pressure blade-off valve 62.
  • one load pressure blow-off valve 62 may be provided for a plurality of directional control valves 5, and the first and second check valves 82, 83 are provided. This eliminates the need for a flexible body, and reduces costs, and eliminates the need to install the first and second check valves, making the entire system compact.
  • the pressure oil introduction hole 75 of the body 74 or the valve body 71 The plug 77 can be press-fitted into the oil hole 76 that connects the first and second oil holes 80 and 81 to the first and second check valves 82 and 83, respectively.
  • the hydraulic Roh spool 2 3 of the directional control valve 5 in the second embodiment 0 Lee Lock While switched pie Lock bets pressure from bets valve 5 4, the electric lever as shown in FIG. 1 4
  • the electromagnetic proportional switching valve 91 is switched by the current output from the device 90, and the pilot pressure is applied to the first and second pressure receiving chambers 52, 53 at both ends of the spool 23 of the directional control valve 5. May be supplied.
  • the position of the spool 23 of the directional control valve 5 is switched by an electromagnetic proportional solenoid 92, and the load pressure blade-off valve 62 is moved to the electromagnetic proportional solenoid.
  • the current is supplied from the electric lever device 90 by using the electromagnetic proportional solenoid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

明細書 圧油供給装置 技術分野
この発明は、 可変容量型油圧ポンプの吐出圧油をァクチユエ一 夕に供給する圧油供給装置に関するものである。
背景技術
こ の種従来の圧油供給装置 と して は、 例え ば特願平 4 一 1 6 1 9 2 0号公報に示す圧油供給装置が知られている。
これは、 図 1 に示すよう に、 可変容量型油圧ポンプ 1 (以下 変 油圧ポンプ 1 という) と、 チ ッ ク弁部 2 と減圧弁部 3 よ り成る 圧力補償弁 4 と、 方向制御弁 5 とを備えていて、 ァクチユエ一夕 6 に圧油を供給する ものである。 前記チ ッ ク弁部 2 は、 入口 ポー ト 7 と出口ポー ト 8 の圧力差によ り両ポー ト 7 , 8 間を連通 • 遮断するスプール 9を有している。 減圧弁部 3 は、 第 1 圧力室 1 0 の圧力で第 1 ポー ト 1 3 と第 2 ポ一 卜 1 4 とを連通する方向 に押され、 第 2 圧力室 1 1 .の圧力と弱いばね 1 2 によ って第 1 ポー ト 1 3 と第 2 ポー ト 1 4 とを遮断する方向に押されるスプ一 ル 1 5 を有している。 方向制御弁 5 は、 ノ、。イ ロ ッ ト圧によ り摺動 せしめられるスス。ール 2 3 を有していて、 該スプール 2 3 によ り ポンプポー ト 1 6 と第 1 · 第 2負荷圧検出ポー ト 1 7 , 1 8 との 間、 第 1 . 第 2 負荷圧検出ポー ト 1 7 , 1 8 と第 1 · 第 2 ァ ク チユエ一夕ポー ト 1 9 , 2 0 との間、 第 1 · 第 2 ァクチユエ一夕 ポー ト 1 9 , 2 0 と第 1 · 第 2 タ ン ク ポー ト 2 1 , 2 2 との間を 連通 · 遮断する。
可変油圧ポ ンプ 1 のポ ンプ吐出路 2 4 は、 入口ポー ト 7 と第 1 ポー ト 1 3 に連通 している。 可変油圧ポ ンプ 1 の斜板 2 5 を傾転 して容量を制御するポンプ調整用方向制御弁 2 6 は、 負荷圧検出 路 2 7を経て第 2 ポ一 ト 1 4 に連通 している。 チ ェ ッ ク弁部 2 の 出口ポー ト 8がポ ンプポー ト 1 6 に連通 している。 減圧弁部 3 の 第 1圧力室 1 0が第 1 · 第 2負荷圧検出ポー ト 1 7 , 1 8 に連通 し、 第 2圧力室 1 1 が絞 り 2 8を介 して第 2 ポー ト 1 4 に連通 し ている。 減圧弁部 3では、 スプール 1 5 の盲穴 2 9 にフ リ ー ビス ト ン 3 0を嵌挿して圧力室 3 1 を形成 し、 こ の圧力室 3 1 をダン パ用絞り 3 2を介してス リ ッ ト状の開口 3 3 に連通してある。
かかる圧油供給装置では、 方向制御弁 5のスプール 2 3が図示の .中立位置にある 時には、 減圧弁部 3 のスプール 1 5 が弱いばね 1 2で左方に押されてチ ヱ ッ ク弁部 2 のスプール 9を閉 じ方向に 押 している。
一方、 ポ ンプ吐出圧はポ ンプ調整用方向制御弁 2 6 によ って負荷 圧検出路 2 7の圧力と所定の差圧、 例えば 2 0 k g / c m2 だけ高 い圧力とな り、 スプール 2 3が中立位置にある場合には負荷圧検 出路 2 7の圧力はゼロであるから、 ポンプ吐出圧は 2 0 k g / c m 2 となる。
そ して、 チェ ッ ク弁部 2 のスプール 9は、 入口ポー ト 7の圧力に よ って右方に押されて入口ポ一 ト 7 と 出口ポー ト 8 との間を開放 し、 出口ポー 卜 8の圧力が 2 0 k g / c m2 となる と左方に押され て両ポー ト 7 , 8間を閉 じる。 方向制御弁 5 のスプール 2 3 を図 1 の状態から矢印方向に移動し て、 ポンプポー ト 1 6を.第 2負荷圧検出ポー ト 1 8 , 第 1 負荷圧 検出ポー ト 1 7 によ り第 1 ァクチユエ一夕 1 9 に連通し、 かつ第 2 ァクチユエ一夕ポー ト 2 0 を第 2 タ ンクポー ト 2 2 に連通する 第 1圧油供給位置にする と、 可変油圧ポンプ 1 の吐出圧油がァク チユエ一夕 6 に供給されて該ァクチユエ一夕 6 内の圧力が外部負 荷に見合う圧力まで上昇する。
このァクチユエ一夕 6 内の圧力つま り負荷圧は第 1圧力室 1 0 に 流入してスプール 1 5 を右方に押 して小径部 3 3 で第 1 ポー ト 1 3 と第 2 ポー ト 1 4 を連通し、 一方これによ り ポンプ吐出圧が 第 1 ポー ト 1 3 , 小径部 3 3 , 第 2 ポー ト 1 4 , 絞り 2 8 によ り 第 2圧力室 1 1 に流入してスプール 1 5 を第 1 ポー ト 1 3 と第 2 ポー ト 1 4 を遮断する方向に押 し、 これと同時に負荷圧検出路 2 7に負荷圧が導入されて可変油圧ポンプ 1 の吐出量が増大する。 すなわち、 減圧弁部 3 は、 第 1圧力室 1 0 内の圧力と第 2圧力室 1 1 の圧力が等しく なるまでスプール 1 5 を右方に押してポンプ 吐出路 2 4 と第 2圧力室 1 1 を連通させ、 第 1 · 第 2圧力室 1 0 , 1 1 内の圧力が等しく なれば弱いばね 1 2 によってスプール 1 5 を左方に押してポンプ吐出路 2 4 と第 2圧力室 1 1 を閉 じる と共 にチェ ッ ク弁部 2 に当接させる。 結果と して、 負荷圧検出路 2 7 内の圧力は、 第 1 圧力室 1 0 内の圧力即ち負荷圧と等 し く な り 、 ポンプ吐出圧は、 ポンプ調整用方向制御弁 2 6 によって、 ある差 圧 (こ こでは 2 0 k g / c m 2 ) 分だけ、 負荷圧検出路 2 7内の圧 力よ り高い圧力に制御される。 このポンプ吐出圧は、 チェ ッ ク弁 部 2 を介して、 ポンプポー ト 1 6 に導かれているので、 方向制御 弁 5 の 入 口 圧 と 出 口 圧 ' ( = 負 荷 圧 ) の 間 に は 、 差 圧 ( = 2 0 k g / c m 2 ; が保たれる こ とになる。 よ って、 方向制御 弁 5 のスプール 2 3 の移動に伴な う入口側と 出口側の間の開口面 積の変化によ ってのみ、 ァクチユエ一夕 6 へ供給される流量が制 御される。
以上の動作において、 第 1 圧力室 1 0 内の負荷圧でスプール 1 5 が右方に移動する際に圧力室 3 1 内の圧油がダンバ用絞 り 3 2 を 経て第 1 ポー ト 1 3 側に排出されるので、 その圧油の流れの速度 に応じてスプール 1 5 は右方にゆつ く り と移動する。
このために、 方向制御弁 5 のスプール 2 3 を右方に移動 して第 1 圧油供給位置に した時に、 第 1 ポー ト 1 3 と第 2 ポー ト 1 4 は 徐々 に連通 し、 負荷圧検出路 2 7 の圧力は徐々 に上昇するか ら可 変油圧ポ ンプ 1 の吐出量がゆつ く り と増加 し、 ァ ク チユエ一夕 6 はゆっ く り と作動する。
も し、 減圧弁部 3 のスプール 1 5 に圧力室 3 1 と ダンバ用絞 り 3 2 を設けないと、 スプール 1 5 が急激に右方に移動 して負荷圧 検出路 2 7 の圧力が急激に上昇 し、 可変油圧ポ ンプ 1 の吐出量が 急激に増加するので、 ァクチユエ一タ 6 が急激に作動して しま う。
こ のよ う に前述の圧油供給装置であれば、 方向制御弁 5 のス プール 2 3 を中立位置から圧油供給位置に移動 した時にァ ク チュ ェ一タ 6 をゆ つ く り と作動さ せる こ とができ る ので、 ァ ク チ ュ エータ 6 をイ ンチング操作 (微操作) する場合に適している。
即ち、 方向制御弁 5 のスプール 2 3 を中立位置から圧油供給位 置に向けて微小距離移動 してメ ー タ イ ン開 口面積を小とする 時、 つま り ァク チユエ一夕 6 に微量の圧油を供給 してァク チユエ一夕 6 をイ ン 'チ ング操作する 時、 例えば油圧 シ ョ ベルの旋回用油圧 モータ に圧油を供給 して上部車体を所定位置に位置決め して停止 する場合や、 スキ取り 時のブーム上げの位置決めをする場合には 方向制御弁 5 のメ ー タ ィ ン開口面積増加量の変化に対 してァ ク チユエ一夕 6 への供給流量の変化が少ない方が、 こ れ らの作業を 容易に行なう ために望ま しい。
しか し、 前述の圧油供給装置の構造である と、 確かに圧力補償 弁 4 の減圧弁部 3 を構成するスプール 1 5 は右方にゆつ く り と移 動 し、 そのため可変油圧ポ ンプ 1 の吐出量がゆ つ く り と増加す ;:, から、 イ ンチ ング操作を した当初はその操作性が若干向上するが 方向制御弁 5 のスプール 2 3 を微小距離移動 した状態において可 変油圧ポ ンプ 1 の吐出量が時間の経過と と もに負荷圧に見合う 値 とな り 、 ァクチユエ一夕 には方向制御弁 5 のメ ータ ィ ン開口面積 によ り要求される流量が供給されるので、 イ ンチ ング操作 した時 に若干の時間が経過 した後はァク チユエ一夕 の動きが速 く な つ て しま うから、 イ ンチング操作性が悪いものとなる。
つま り 、 前述の減圧弁部 3 のスプール 1 5 の右方への移動を ゆっ く り と して も、 ある時間が経過する と第 1 ポー ト 1 3 と第 2 ポー ト 1 4 が連通 して第 1 圧力室 1 0 にかかる負荷圧と同 じ圧力 が負荷圧検出路 2 7 に出力されるために、 可変油圧ポ ンプ 1 の吐 出量がその負荷圧に見合う 流量となるから、 ァク チユエ一タ 6 に 方向制御弁 5 のスプール 2 3 によ る メ 一タイ ン開口面積に比例 し た流量が供給されてァク チユエ一夕 6 をイ ンチ ング操作 した時に 若干の時間が経過する とァク チユエ一夕の速度が速 く な つて しま う ので、 イ ンチ ング操作で必要な作業を行なう こ とが難し く なる。 なお、 スプール 2 3 を中立位置か ら圧油供給位置に向けて大き な距離移動 してメ ー タ イ ン開 口面積を大 と した時、 つま り ァ ク チユエ一夕 6 に多量の圧油を供給する時には、 圧油供給量が大き いのでその多少の変動は何ら問題にな らない。
こ の発明は、 かかる不具合を改善する ためにな さ れた もので イ ンチ ング操作時その操作全体に亘つて操作性が向上する よ う に した圧油供給装置を提供する こ とを目的とする ものである。 発明の開示
上記の目的を達成するために、 本発明の一つの態様によれば、 負荷圧検出路の負荷圧によ って吐出量が制御される可変容量型 油圧ポ ンプと、 チ ェ ッ ク 弁部 と減圧弁部よ り 成る圧力補償弁と ァクチユエ一夕にポンプ吐出圧油を供給する方向制御弁とを備え、 前記チュ ッ ク弁部は、 前記可変容量型油圧ポ ンプのポ ンプ吐出 路と前記方向制御弁のポ ンプポー 卜 と の間を連通 · 遮断する ス プールを有し、
前記減圧弁部は、
ァクチユエ一夕の負荷圧によ り前記ポ ンプ吐出路と前記負荷圧 検出路とを連通する第 1 の位置に向けて押され、 弱いばねと前記 負荷圧検出路の負荷圧によ っ て前記ポ ンプ吐出路と前記負荷圧検 出路との間を遮断し且つ前記チェ ッ ク弁部のスプールを閉 じ方向 に押す第 2 の位置に向けて押される スプールを備え、 該スプール は第 2 の位置から第 1 の位置に向けてゆつ く り と移動する よ う に なっている と共に、
第 2 の位置と第 1 の位置の中間位置でポ ンプ吐出路か らの圧油 の一部をタ ンク に流出する ブ リ ー ドオフ回路を する、 圧油供給 装置が提供される。
上記構成によれば、 方向制御弁のスプールを中立位置か ら圧油 供給位置に移動させてァ ク チユエ一夕 にポ ンプ吐出圧油を供給す る と、 ァクチユエ一夕の負荷圧によ って減圧弁部のスプールが第 1 位置に向けてゆっ く り と移動するか ら、 負荷圧検出路の圧力が ゆつ く り と上昇して可変容量型油圧ポ ンプの吐出量がゆつ く り と 増加 し、 ァクチユエ一夕が急激に作動する こ とがない。
また、 減圧弁部のスプールが第 2 位置と第 1 位置の中間位置と なる とポ ンプ吐出圧油の一部がタ ンク に流出 して負荷圧検出路の 圧力は負荷圧よ り も低く な り 、 可変容量型油圧ポ ンプの吐出量は 負荷圧に見合う値よ り も少な く な つ てァク チユエ一夕への供給流 量は方向制御弁のメ ータ ィ ン開口面積よる要求流量よ り も少な く な り 、 スプールが第 1 位置に移動する と負荷圧検出路の圧力が負 荷圧と等し く なつて可変容量型油圧ポ ンプの吐出量は負荷圧に見 合う値となってァクチユエ一夕への供給流量は方向制御弁のメ 一 タイ ン開口面積による要求流量となる。
したがって、 方向制御弁を微小量操作 してァク チユエ一タをィ ンチ ング操作する時に、 ァ ク チユエ一夕の動き始め速度はゆつ く り となるからスムーズなイ ンチ ング操作ができ る し、 第 1 位置に 移動すればァ クチユエ一夕への供給流量が方向制御弁の開口面積 による要求流量となって所定の速度でァ ク チユエ一夕を作動でき る。
上記構成において、
前記減圧弁部は、 負荷圧が流入 して前記スプールを第 1 位置に 向けて押す第 1 圧力室と、 前記ポ ンプ吐出路にダンバ用絞 り を介 して連通 して前記スプールを第 2 位置に向けて押す圧力室と、 前 記負荷圧検出路に絞り を介 して連通 して前記スプールを第 2 位置 に向けて押す第 2圧力室とを有 し、 前記スプールが第 2 位置の時 には前記圧力室 と前記負荷圧検出路と の間が遮断さ れ、 前記ス プールが第 2 位置と第 1 位置の中間位置の時には前記圧力室をタ ンク と前記負荷圧検出路に連通 し、 前記スプールが第 1 位置の時 には前記圧力室を前記負荷圧検出路に連通する構成とするのが望 ま しい。
ま た、 上記の 目的を達成するために、 本発明の他の態様によれ ば、
負荷圧検出路の負荷圧によ っ て吐出量が制御される可変容量型 油圧ポ ンプと、
操作指合によ り 中立位置から圧油供給位置に切換え られてァク チユエ一夕にポ ンプ吐出圧油を供給 し、 そのメ 一タ イ ン開口面積 が操作指合に比例する方向制御弁と、
ポ ンプ吐出圧で開き方向に押されてァク チユエ一夕の負荷圧で閉 じ方向に押されて一次側圧力を負荷圧に見合う圧力 とする圧力補 償弁と、 '
前記負荷圧検出路に接続されたブリ ー ドオフ回路と、
該ブ リ ー ドオフ回路に設け られてていて、 前記操作指令の大き さ が中間の大き さの時にはブ リ ー ドオフ位置とな り 、 操作指令の大 き さが前記中間以外の時には遮断位置となる負荷圧ブ リ ー ドオフ 弁とから構成された圧油供給装置が提供される。
上記構成によれば、 操作指合の大きさによって方向制御弁のメ ータイ ン開口面積と 負荷圧ブリ ー ドオフ弁が切換えられ、 イ ンチング操作すべき操作 指令の大きさを中間の大きさ とする と、 メ 一タイ ン開口面積が小 さ く なり、 且つ負荷圧ブリ ー ドオフ弁がブリ ー ドオフ位置となる から、 イ ンチング操作時には可変容量型油圧ポンプの吐出量が必 要流量よ り少なく なつてァクチユエ一夕がゆつ く り と動作し、 ィ ンチング操作性が向上する。
上記構成において、
前記操作指合が、 操作レバーの操作量に比例 した圧力と して油 圧パイロ ッ ト弁から出力されるパイロ ッ ト圧であり、
前記方向制御弁は、 前記パイ 口 ッ ト圧によ り 中立位置から圧油 供給位置に切換えられてァクチユエ一夕にポンプ吐出圧油を供給 し、 そのメータイ ン開口面積がパイ ロ ッ ト圧の圧力に比例する こ とが好ま しい。
また、 上記構成において、
前記方向制御弁が、 弁本体に嵌挿されていて、 スプリ ングと受 圧室内のパイ ロ ッ ト圧によ り 中立位置と圧油供給装置との間で摺 動させられるスプールを有していて、
複数の前記方向制御弁の弁本体を重ね合せ連結し、
前記各弁本体に隣接する弁本体間で連結した油孔と、 その各油 孔を受圧室に連通するチェ ッ ク弁をそれぞれ設け、 前記油孔を前 記負荷圧ブリ ー ドオフ弁のパイ ロ ッ ト圧受圧部に接続するよ う に することが好ま しい。
さ らに、 上記構成において、
前記圧力補償弁をチェ ッ ク弁部と減圧弁部より構成し、 前記チェ ッ ク弁部は可変容量型油圧ポンプのポンプ吐出路と方 向制御弁のポンプポー トを連通 · 遮断するスプールを有し、 前記減圧弁部は、
ァクチユエ一夕の負荷圧によ りポンプ吐出路と負荷圧検出路を 連通する第 1 の位置に向けて押され、 弱いばねと負荷圧検出路の 負荷圧によって前記ポンプ吐出路と前記負荷圧検出路との間を遮 断し、 かつ前記チユ ッ ク弁部のスプールを閉 じ方向に押す第 2 の 位置に向けて押されるスプールを備え、 該スプールは第 2 の位置 から第 1 の位置に向けてゆつ く り と移動するよう にする こ とが好 ま しい。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定する こ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。
図中、
図 1 は、 従来の圧油供給装置の断面図である。
図 2 は、 本発明による圧油供給装置の第 1 実施例の断面図であ る。
図 3 は、 上記第 1 実施例の減圧弁部の詳細説明のための断面図 である。
図 4 は、 上記第 1実施例の減圧弁部の動作説明のための断面図 である。
図 5 は、 上記第 1実施例の減圧弁部の動作説明のための断面図 である。
図 6 は、 本発明による圧油供給装置の第 2実施例の断面図であ る。
図 7 は、 上記第 2実施例の操作レバ一の操作量とパイ ロ ッ ト圧 との関係を示す図表である。
図 8は、 上記第 2実施例の圧力補償弁の他の例を示す断面図で ある。
図 9 は、 上記第 2実施例の圧力補償弁の更に他の例を示す模式 図である。
図 1 0 は、 上記第 2実施例の応用例と して複数の方向制御弁を 重ね合わせた例の平面図である。
図 1 1 は、 図 1 0の X I — X I線に沿う断面図である。
図 1 2は、 図 1 0の X Π — X Π線に沿う断面図である。
図 1 3 は、 上記応用例においてイ ンチングする必要の無いァク チユエ一夕に圧油を供給する方向制御弁の構造を示す断面図であ る。
図 1 4 は、 方向制御弁を動作させる他の構成を示す概略図であ る。
図 1 5 は、 方向制御弁を動作させる更に他の構成を示す概略図 である。 発明を実施するための好適な態様
以下に、 本発明の好適実施例による圧油供給装置を添付図面を 参照しながら説明する。
本発明の第 1 実施例を図 2乃至図 5 を参照して説明する。 なお 従来と同一の部材は同一符号をを付して詳細な説明は省略する。 本実施例の減圧弁部 3 には第 1 ポー ト 1 3 と第 2 ポー ト 1 4 と の間に第 3 ' 第 4 ポー ト 4 0 , 4 1 を形成 し、 第 3 ポー ト 4 0 を タ ン ク 4 2 に連通 し、 ス プール 1 5 には第 3 ポー ト 4 1 と第 2 ポー ト 1 4 を連通 · 遮断する小径部 4 3 を形成してある。
前記フ リ 一 ピス ト ン 3 0 には、 図 3 に示すよ う に、 小径部 4 4 と . こ の小径部 4 4 を圧力室 3 1 に連通する油孔 4 5 が形成されてい る。 スプール 1 5 には、 小径部 4 4 を第 3 ポー ト 4 0 に連通 · 遮 断する ポー ト 4 6カ 形成 してあ る と共に、 スプール 1 5 の盲穴 2 9 と フ リ ー ピス ト ン 3 0 の小径部 4 4 との間の空間部 4 7 を前 記小径部 4 3 に連通するポー ト 4 8 が形成 してある。 また、 第 2 ポー ト 1 4 と第 2圧力室 1 1 は、 スプール挿入孔 4 9 とスプール 1 5 との隙間 (絞り) によ り常時連通している。
次に、 本実施例の作動を説明する。
方向制御弁 5 のスプール 2 3 が図 2 に示すよ う に中立位置にあ る時
ポ ンプ吐出路 2 4 は、 図 3 に示すよ う に、 第 1 ポー ト 1 3 , 小 径部 3 3 , ダンバ絞り 3 2 , 圧力室 3 1 , 油孔 4 5 , 空間部 4 7 , ポー ト 4 8 よ り第 4 ポー ト 4 1 に連通 し、 その第 4 ポー ト 4 1 は 第 2 ポー ト 1 4 から遮断され、 ポー ト 4 6 は第 1 ポー ト 1 3 に連 通しかつ空間部 4 7から遮断されている。
つま り、 ポ ンプ吐出路 2 4 はダンバ絞り 3 2 で圧力室 3 1 に連通 し、 その圧力室 3 1 は第 2 ポ一 ト 1 4 から遮断されている。
方向制御弁 5 のスプール 2 3 を図 2 の位置よ り右方に微小移動 操作した時 減圧弁 3 のスプール 1 5 は、 第 1 圧力室 1 0 に作用する負荷圧 によ って右方に押されて、 図 4 に示すよ う に途中でバラ ンスする 位置を取る。
これによ り 、 第 4 ポ一 卜 4 1 が第 2 ポー ト 1 4 に連通するか ら ポ ンプ吐出路 2 4 は第 1 ポー ト 1 3 , 小径部 3 3 , ダ ンバ絞 り
3 2 , 圧力室 3 1 , 油孔 4 5 , 空間部 4 7 , ポー ト 4 8 , 小径部
4 3 , 第 2 ポー ト 1 4 に連通 し、 これと同時に空間部 4 7 がポ一 ト 4 6 よ り第 3 ポー ト 4 0 に連通する。
こ のために、 ポ ンプ吐出圧の一部がタ ン ク 4 2 に流出する ので. 負荷圧検出路 2 7 に作用する負荷圧は第 1 圧力室 1 0 に作用する 負荷圧よ り も低圧とな り 、 可変油圧ポ ンプ 1 の吐出量は負荷圧に 見合う 値よ り も少な く なる、 つま り方向制御弁 5 のメ 一タ イ ン開 口面積が要求する流量よ り も少ない流量となる。 これによ り 、 ァ クチユエータ 6 はゆつ く り と動き始める。
つま り 、 油孔 4 5 , 空間部 4 7 , ポー ト 4 6 , 第 3 ポー ト 4 0 は. 減圧弁部 3 のスプール 1 5 が途中まで移動 した時にポ ンプ吐出路 2 4 をタ ンク 4 2 に連通するブリ一ドオフ回路を構成している。 前述のよ う に、 第 2 圧力室 1 1 の圧力は第 1 圧力室 1 0 の負荷 圧よ り も低いので、 スプール 1 5 は更に右方に押されて、 図 5 に 示すよ う に右端近傍でバラ ンス した位置を取る。
これによ り 、 ポー ト 4 6 が第 3 ポー ト 4 0 と遮断されて前述の ブ リ ー ドオフ回路が遮断されるため、 ポ ンプ吐出路 2 4 の圧油が 第 2 ポー ト 1 4 のみに供給される よ う になる。 従っ て、 従来と 同 様に負荷圧検出路 2 7 の圧力が負荷圧と等 し く な つ て、 可変油圧 ポ ンプ 1 の吐出量が負荷圧に見合う 値、 つま り 方向制御弁 5 の メ 一タイ ン開口面積が要求する流量となる。 これによ り 、 動き始 めた後にある時間が経過する と所定の速度でァク チユエ一タ 6 が 作動するよ う になる。
このよ う であるから、 方向制御弁 5 のスプール 2 3 を中立位置と 圧油供給位置に短時間 (前述のスプール 1 5 が中立位置か ら右端 近傍でバラ ンスする位置に移動する までの時間よ り短かい時間) で交互に切換え操作する こ とで、 方向制御弁 5 のメ ータ イ ン開口 面積を小さ く し、 しかも可変油圧ポ ンプ 1 の吐出量を常に必要流 量よ り少な く する こ とができ、 これによ り ァク チユエ一夕 6 を常 にゆっ く り と移動させる こ とができ るので、 イ ンチ ング操作性が その操作全体に亘つて向上する。
以上のよ う に、 第 1 実施例によれば、 方向制御弁 5 のスプール 2 3 を中立位置から圧油供給位置に移動させてァク チユエ一夕 6 にポ ンプ吐出圧油を供給する と、 ァ ク チ ユ エ一 夕 6 の負荷圧に よ って減圧弁部 3 のスプール 1 5 が第 1 位置に向けてゆつ く り と 移動するから、 負荷圧検出路 2 7 の圧力がゆつ く り と上昇 して可 変容量型油圧ポ ンプ 1 の吐出量がゆ っ く り と増加 し、 ァ ク チ ュ ェ一タ 6 が急激に作動する こ とがない。
また、 減圧弁部 5 のスプール 1 5 が第 2 位置と第 1 位置の中間 位置となる とポ ンプ吐出圧油の一部がタ ンク に流出 して負荷圧検 出路 2 7 の圧力は負荷圧よ り も低く な り 、 可変容量型油圧ポ ンプ 1 の吐出量は負荷圧に見合う 値よ り も少な く な ってァ ク チユエ一 夕 6 への供給流量は方向制御弁 5 のメ 一タイ ン開口面積よ る要求 流量よ り も少な く な り、 スプール 1 5 が第 1 位置に移動する と負 荷圧検出路 2 7 の圧力が負荷圧と等 し く な つて可変容量型油圧ポ ンプ 1 の吐出量は負荷圧に見合う値となってァクチユエ一夕 6 へ の供給流量は方向制御弁 5 のメ 一タイ ン開口面積による要求流量 となる。
したがって、 方向制御弁 5 を微小量操作してァクチユエ一夕 6 をイ ンチング操作する時に、 ァクチユエ一夕 6 の動き始め速度は ゆつ く り となるからスムーズなイ ンチング操作ができる し、 第 1 位置に移動すればァクチユエ一夕 6への供給流量が方向制御弁 5 の開口面積による要求流量となって所定の速度でァクチユエ一夕 6を作動できる。
以上の実施例では圧力補償弁 4 と方向制御弁 5を 1つの弁ブロ ッ クに設けているが、 それぞれ別々の弁プロ ッ クに設けても良い。 次に、 本発明の第 2実施例を図 6乃至図 9を参照して説明する。 図 6 に示すように、 方向制御弁 5 のスプール 2 3 は左右のスプ リ ング 5 0 , 5 1 で中立位置に保持され、 左側の第 1 受圧室 5 2 のパイ ロ ッ ト圧油で右方に押されて第 1 圧油供給位置に移動 し - 右側の第 2受圧室 5 3 のパイ ロ ッ ト圧油で左方に押されて第 2圧 油供給位置に移動する'よう になつている。 そ して、 スプール 2 3 の第 1 · 第 2圧油供給位置への移動量 (メ ータイ ン開口面積) は 第 1 · 第 2受圧室 5 2 , 5 3 内のパイ ロ ッ ト圧油の圧力に比例す る。
油圧パイ ロ ッ ト弁 5 4 は、 ノ、。イ ロ ッ ト用油圧ポンプ 5 5 の吐出 圧油を前記第 1 · 第 2受圧室 5 2 , 5 3 に供給する第 1 · 第 2減 圧弁部 5 6 , 5 7を有し、 第 1 減圧弁部 5 6 の出口ポー トが第 1 パイ ロ ッ ト回路 5 8で第 1 受圧室 5 2 に接続され、 第 2減圧弁部 5 7の出口ポー トが第 2パイ ロ ッ ト回路 5 9で第 2受圧室 5 3 に 接続されている。
前記第 1 · 第 2減圧弁部 5 6 , 5 7 は、 操作レバ一 6 0 が中立 位置 Αにある時入口ポー 卜 と出口ポ一 卜を遮断する位置に保持さ れ、 操作レバ一 6 0を中立位置 Aから一方向 (矢印 a方向) に操 作すると、 第 1減圧弁部 5 6 の入口ポー ト と出口ポー トが連通し て第 1 イ ロ ッ ト回路 5 8 にパイ ロ ッ ト圧油を出力される。 ィ ロ ッ ト圧油の圧力は、 操作レバ一 6 0の操作量に比例する。
操作レバー 6 0を他方向 (矢印 b方向) に操作した時には、 前 述と同様に第 1パイ ロ ッ 卜回路 5 9 に操作量に比例 した圧力のパ ィロ ッ ト圧油を出力する。
前記油圧パイロ ッ ト弁 5 4 の操作レバー 6 0 の操作量と出力さ れるパイロ ッ ト圧の関係は、 例えば図 7に示すようになる。
つま り、 第 1 中間の操作量 L 1 でパイロ ッ ト圧が P 1 、 第 2 中間 の操作量 L 2 でパイ口 ッ ト圧が P 2 、 第 3 中間の操作量 L 3 でパイ 口ッ ト圧が P 3、 最大の操作量 L 4でパイロッ ト圧が P 4となる ( P i < P 2 < P 3 < P 4 ) o
なお、 操作レバ一 6 0を中立位置 Aから微小量操作した時には、 パイロ ッ ト圧を出力しないように不感帯を設けることもある。
一方、 方向制御弁 5のスプール 2 3 は、 イロ ッ ト圧が P 1 とな ると圧油供給位置を取り、 その時のメ ータイ ン開口面積は最小で ある。 以下、 順次パイロ ッ ト圧が P 2 P 3 と上昇すると、 メータ イ ン^ロ面積は増加し、 最高パイロ ッ ト圧 P 4でメ一タイ ン開口面 積が最大となる。
前記負荷圧検出路 2 7 はブリ ー ドオフ回路 6 1 に接続され、 こ のブリ ー ドオフ回路 6 1 には負荷圧ブリ ー ドオフ弁 6 2が設けて ある。 その負荷圧ブリ ー ドオフ弁 6 2 は、 第 1 遮断位置 E と中間 ブリ ー ドオフ位置 F と第 2遮断位置 Gに切換えられる もので、 ス プリ ング 6 3で第 1遮断位置 E に保持され、 パイ ロ ッ ト圧受圧部 6 4 に供給されるパイロ ッ ト圧が P 2 となるとスプリ ング 6 3 に抗 して中間ブリ ー ドオフ位置 Fとなり、 パイ ロ ッ ト圧が P 3 となとる 第 2遮断位置 Gに移動させられる。
前記パイ ロ ッ ト圧受圧部 6 4 は高圧検出回路 6 5 に接続され その高圧検出回路 6 5 は第 1 · 第 2 チヱ ッ ク弁 6 6 , 6 7を介し て第 1 · 第 2パイ ロ ッ ト回路 5 8 , 5 9 に接続され、 かつ絞り 6 8を経てタンク 6 9に接続されている。
次に、 本実施例の作動を説明する。
油圧パイ ロ ッ ト弁 5 4の操作レバ一 6 0が中立位置 Aにある時 油圧パイ ロ ッ ト弁 5 4 の出力するパイ ロ ッ ト圧はゼロであるから. 方向制御弁 5のスプール 2 3 は左右のスプリ ング 5 0 , 5 1 で中 立位置となる。
また、 高圧検出回路 6 5 の圧力はゼロでパイ ロ ッ ト圧受圧部 6 4 のパイ ロ ッ ト圧がゼロであるから、 負荷圧ブリ ー ドオフ弁 6 2 は スプリ ング 6 3の作用で第 1遮断位置 Eを取る。 従って、 ブリ ー ドオフ回路 6 1 は遮断され、 可変油圧ポンプ 1 の吐出量は設定さ れた最低吐出量となる。
油圧パイ ロ ッ ト弁 5 4 の操作レバ一 6 0を操作量 L 1 だけ一方向 (矢印 a方向) に操作した時
油圧パイ ロ ッ ト弁 5 4 は第 1 ノ、0イ ロ ッ ト回路 5 8 にパイ ロ ッ ト 圧 P 1を出力するので、 方向制御弁 5のスプール 2 3 は右方に移動 して第 1圧油供給位置とな り、 そのメ ータイ ン開口面積は最小と なる。
一方、 パイ ロ ッ ト圧 P 1 は高圧検出回路 6 5 よ りパイ ロ ッ ト圧受 圧部 6 4 に供給されるが、 負荷圧ブ リ ー ドオフ弁 6 2 はスプ リ ン グ 6 3 の作用で第 1 遮断位置 E に保持されたま まである。 従って . ブリ ー ドオフ回路 6 1 は遮断されたま まであるので、 負荷圧検出 回路 2 7 内の負荷圧がポ ンプ調整用方向制御弁 2 6 に供給されて 可変油圧ポンプ 1 の吐出量が負荷圧上昇に応じて増加する。
こ の動作は操作 レバ一 6 0 をス ト ロー ク L 2 まで操作 してパイ ロ ッ ト圧が P 2 となるまで続く 。
油圧パイ ロ ッ ト弁 5 4 の操作レバ一 6 0 をス ト ローク L 2 だけ一 方向に操作した時
第 1 パイ ロ ッ ト回路 5 8 のパイ ロ ッ ト圧が P 2 とな り、 方向制御 弁 5 のスプール 2 3 が更に右方に移動 してメ ータイ ン開口面積が 増加する と共に、 パイ ロ ッ ト圧受圧部 6 4 のパイ ロ ッ ト圧が P 2 と な って負荷圧ブ リ ー ドオフ弁 6 2 が中間ブ リ ー ドオフ位置 F を取 り、 ブリ ー ドオフ回路 6 1 が絞り 7 0 を経てタ ンク に連通する。 これによ り、 負荷圧検出回路 2 7 の負荷圧の一部がタ ンク に流 出 (ブ リ ー ドオフ) してポ ンプ調整用方向制御弁 2 6 に供給され る負荷圧が実際の負荷圧よ り も低圧とな り 、 可変油圧ポ ンプ 1 の 吐出量は実際の負荷圧に見合う 吐出量よ り も少な く なる。
つま り、 方向制御弁 5 がメ ータイ ン開口面積に応 じた要求流量 よ り も可変油圧ポンプ 1 の吐出量が少な く なる。
これによ り 、 ァクチユエ一タ 6 に供給される流量が少な く なる ので、 ァクチユエ一タ 6 は微速で作動 し、 イ ンチ ング操作性が向 上する。 この時、 圧力補償弁 4 の減圧弁部 3 を構成する スプール 1 5 はゆっ く り と移動するか ら負荷圧もゆ っ く り と上昇 し、 こ の 動作と.前述の負荷圧のプ リ 一 ドオフ とが相俟ってィ ンチ ング操作 性が著 し く 向上する。
この動作は、 操作レバー 6 0 を操作量 L 3 まで操作する こ とによ りパイ ロ ッ ト圧が P 3 となるまで連続して行なわれる。
油圧パイ ロ ッ 卜弁 5 4 の操作レバ一 6 0 を操作量 L 3 だけ一方向 に操作した時
第 1 パイ ロ ッ ト回路 5 8 のパイ ロ ッ ト圧が P 3 とな り、 方向制御 弁 5 のスプール 2 3 が更に右方に移動 してメ 一タ イ ン開口面積が 更に増加すると共に、 パイ 口 ッ ト圧受圧部 6 4 のパイ 口 ッ ト圧力 P 3 となって負荷圧ブリ ー ドオフ弁 6 2 が第 2 遮断位置 G とな り 、 ブ リ ー ドオフ回路 6 1 がタ ンクから遮断される。
これによ り、 負荷圧検出回路 2 7 の負荷圧が実際の負荷圧とな るから、 可変油圧ポ ンプ 1 ·の吐出量は実際の負荷圧に見合う 吐出 量とな り、 ァクチユエ一夕 6 への供給流量が方向制御弁 5 のメ 一 タイ ン開口面積に応じた要求流量となる。
この動作は、 操作レバー 6 0 を最大操作量 L 4 まで操作する こ と によ りパイ ロ ッ ト圧が P 4 となるまで連続して行なわれる。
以上のよ う に、 油圧パイ ロ ッ ト弁 5 4 の操作 レバー 6 0 の操作 量に応 じてブ リ ー ドオ フ弁 6 2 を第 1 · 第 2 遮断位置, 中間ブ リ ー ドオフ位置に切換えるので、 方向制御弁 5 のメ ータイ ン開口 面積が中間の大き さの時には負荷圧検出回路 2 7 の負荷圧の一部 がブリ ー ドオフ して可変油圧ポ ンプ 1 の吐出量が減少されてァ ク チユエ一タ 6 への供給流量が方向制御弁 5 のメ ータ イ ン開口面積 による要求流量よ り少な く なる し、 ァ ク チユエ一タ 6 の動作は圧 力補償弁 4 の減圧弁部 3 を構成するスプール 1 5 の移動量に関係 な く なるから、 イ ンチ ング操作性が優れたものとなる。
つま り 、 第 1 実施例では圧力補償弁 4 の減圧弁部 3 を構成する スプール 1 5 の移動量によ っ て負荷圧の一部をブ リ ー ドオフ して おり、 油圧パイ ロ ッ ト弁 5 4 の操作レバ一 6 0 の操作量を L 2 と L 3 の間と して も時間の経過と と もにスプール 1 5 が移動 して負荷圧 の一部をブ リ ー ドオフ しな く なるので、 操作レバー 6 0 を中立位 置 A と操作量 L 2 と L 3 の間で短時間で交互に操作する場合にはァ ク チユエ一夕 6 はゆつ く り と動作 し、 イ ンチ ング操作性が向上す る o
しかしながら、 操作レバー 6 0 を操作量 L 2 と L 3 の間に長時間 保持した時には、 前述のよ う にスプール 1 5 が移動 してブ リ ー ド オフ しな く な り、 可変油圧ポ ンプ 1 の吐出量が実際の負荷圧に見 合う 吐出量となってァク チユエ一夕 6 が速 く 動作 し、 イ ンチ ング 操作性が低下して しま う。
これに対 して第 2 実施例によれば、 油圧パイ ロ ッ ト弁 5 4 の操 作レバー 6 0 を操作量 L 2 と L 3 の間に操作した時にはスプール 1 5 の移動量に関係な く 負荷圧の一部をブ リ ー ドオフでき るので、 ィ ンチング操作性が向上する。
以上のよ う に、 第 2 実施例によれば、 操作指令の大き さ によ つ て方向制御弁 5 のメ 一 タ イ ン開 口面積と負荷圧ブ リ ー ドオ フ弁 6 2 が切換え られ、 イ ンチ ング操作すべき操作指合の大き さ を中 間の大き さ とする と、 メ ータイ ン開口面積が小さ く な り 、 且つ負 荷圧ブリ ー ドオフ弁 6 2 がプ リ 一 ドオフ位置となるから、 ィ ンチ ング操作時には可変容量型油圧ポ ンプ 1 の吐出量が必要流量よ り 少な く なつてァクチユエ一夕 6 がゆつ く り と動作し、 イ ンチング 操作性が向上する。
なお、 第 2実施例の場合には、 圧力補償弁 4 の減圧弁部 3 を構 成するスプール 1 5がゆつ く り と移動しない構造、 例えば図 8 に 示すよう に圧力室 3 1 を形成しない構造と しても良 '、し、 図 9 に 示すよう に一次側圧力で開き方向に押され、 負荷圧で閉じ方向に 押されて一次側圧力が負荷圧に見合う よう になる一般の圧力補償 弁と しても良い。
次に、 第 2実施例の応用例と して、 複数の方向制御弁 5 を備え ていて複数のァクチユエ一タ 6 に圧油を供給する場合に、 負荷圧 ブリ ー ドオフ弁 6 2 のノ、0イ ロ ッ ト圧受圧部 6 4 にパイ ロ ッ ト圧を 供給する例を図 1 0乃至図 1 2を参照して説明する。
図 1 1 に示すように、 各方向制御弁 5 の弁本体 7 1 を重ね合せ 連結して各第 1 タ ンクポー ト 2 1 , 各第 2 タ ンクポー ト 2 2 をそ れぞれ隣接する弁本体 7 1 間で連通し、 1 つの弁本体 7 1 に連結 したブロ ッ ク 7 2の油孔 7 3で第 1 タ ンクポー ト 2 1 と第 2 タ ン クポー ト 2 2を連通してある。 さ らに、 各弁本体 7 1 の両端面に 取付けたケース 7 4 内にスプール 2 3 の両端部を突出 して該両端 面とケース 7 4 との間に第 1 , 第 2受圧室 5 2 , 5 3 をそれぞれ 構成してある。
図 1 2 に示すように、 各弁本体 7 1 におけるスプール長手方向 両端寄りに第 1 · 第 2油孔 8 0 , 8 1 をそれぞれ形成し、 この各 第 1 油孔 8 0 を各第 1 受圧室 5 2 にそれぞれ連通する第 1 チエ ツ ク弁 8 2を各一方のケース 7 4 にそれぞれ設け、 各第 2油孔 8 1 を各第 2受圧室 5 3 にそれぞれ連通する第 2 チェ ッ ク弁 8 3 を各 他方のケース 7 4 にそれぞれ設けている。
前記各第 1 油孔 8 0 は隣接する弁本体 7 1 間でそれぞれ連通 し て前記ブロ ッ ク 7 2 の油孔 8 4 に連通 し、 各第 2 油孔 8 1 は隣接 する弁本体 7 1 間でそれぞれ連通 してブロ ッ ク 7 2 の油孔 8 4 に 連通し、 これによ り各第 1 油孔 8 0 と各第 2 油孔 8 1 は連通する c さ らに、 ブロ ッ ク 7 4 の油孔 8 4 は絞 り 8 5 を経てタ ンク 8 6 に 連通している。
つま り 、 第 1 · 第 2 チ ェ ッ ク弁 8 2 , 8 3 が図 6 における第 1 · 第 2 チェ ッ ク弁 6 6 , 6 7 に相当 し、 絞 り 8 5 , タ ンク 8 6 が図 6 における絞り 6 8 , タ ンク 6 9 に相当 し、 油孔 8 4 が図 6 における高圧検出回路 6 5 に相当する。
そ して、 ブロ ッ ク 7 2 の油孔 8 4 が負荷圧ブ リ ー ドオフ弁 6 2 のパイ ロ ッ ト圧受圧部 6 4 に接続されている。
次に、 本応用例の作動を説明する。
1 つの油圧パイ ロ ッ ト弁 5 4 の操作レバー 6 0 を操作 して第 1 ノ、0イ ロ ッ ト回路 5 8 にパイ ロ ッ ト圧を出力する と、 そのパイ ロ ッ ト圧は第 1 受圧室 5 2 に供給されてスプール 2 3 を右方に押 して 第 1 圧油供給位置にする。
これと同時に第 1 受圧室 5 2 内のパイ ロ ッ ト圧が第 1 チ ヱ ッ ク 弁 8 2 よ り 第 1 油孔 8 0 に流入 し、 さ ら に第 1 油孔 8 0 よ り ブ ロ ッ ク 7 2 の油孔 8 4 に流入 し、 負荷圧ブ リ ー ドオフ弁 6 2 のパ イ ロ ッ ト圧受圧部. 6 4 に供給される。
前述の状態から油圧パイ ロ ッ ト弁 5 4 の操作 レバー 6 0 を中立 状態に戻 して第 1 パイ ロ ッ ト回路 5 8 をタ ンク に連通する と、 第 1 受圧室 5 2 内の圧力が低下 してスプール 2 3 はスプ リ ング 5 1 で中立位置に復帰し、 これと同時にブロ ッ ク 7 2 の油孔 8 4 内の 圧油は絞り 8 5 よ りタ ンク 8 6 に流出 してその油孔 8 4 内の圧力 が低下し、 そのため負荷圧ブリ ー ドオフ弁 6 2 のパイ ロ ッ ト圧受 圧部 6 4 内の圧力も低下する。
なお、 第 2パイ ロ ッ ト回路 5 9 にパイ ロ ッ ト圧を出力 した場合 も前述と同様の動作が行われる。
このよう に構成すれば、 複数の方向制御弁 5 に対して 1 つの負 荷圧ブリ ー ドオフ弁 6 2 を設ければ良いし、 第 1 · 第 2 チヱ ッ ク 弁 8 2 , 8 3を設置するボディ が不要となるからコス トを低減で きる し、 第 1 · 第 2チ ッ ク弁設置場所が不要となるため全体を コンパク 卜にできる。
また、 イ ンチングする必要がないァクチユエ一夕 6 に圧油を供 給する方向制御弁 5 の場合には、 図 1 3 に示すよう にボディ 7 4 の圧油導入孔 7 5又は弁本体 7 1 の第 1 · 第 2油孔 8 0 , 8 1 と 第 1 · 第 2 チヱ ッ ク弁 8 2 , 8 3 を連通する油孔 7 6 にプラ グ 7 7を圧入して閉塞すれば良い。
なお、 上記第 2実施例では方向制御弁 5 のスプール 2 3 を油圧 ノ、0イ ロ ッ ト弁 5 4からのパイ ロ ッ ト圧で切換えているが、 図 1 4 に示すよう に電気レバー装置 9 0 よ り 出力される電流によって電 磁比例切換弁 9 1 を切換えて方向制御弁 5 のスプール 2 3 の両端 側の第 1 · 第 2受圧室 5 2 , 5 3 にパイ ロ ッ ト圧を供給するよ う にしても良い。 また、 図 1 5 に示すよう に方向制御弁 5 のスプ一 ル 2 3 の位置を電磁比例ソ レノ ィ ド 9 2で切換えるよう にし、 負 荷圧ブリ ー ドオフ弁 6 2 を電磁比例ソ レノ ィ ド 9 3で切り換える よう に し、 電気レバ一装置 9 0 よ り 電流を電磁比例ソ レノ ィ ド

Claims

9 2 に供給する と共に、 負荷圧ブ リ ー ドオフ弁 6 2 の電磁比例 ソ レ ノ イ ド 9 3 に供給する よ う に して も良い。 なお、 9 4 はダイ ォ一 ドである。 つま り 、 方向制御弁 5 は操作指合の大き さに比例 したメ ータイ ン 開口面積となる ものと し、 負荷圧ブ リ ー ドオフ弁 6 2 は操作指令 の大き さで切換わる ものとすれば良い。 なお、 本発明は例示的な実施例について説明 したが、 開示 した 実施例に関 して、 本発明 の要 旨及び範囲を逸脱す る こ と な く 、 種々 の変更、 省略、 追加が可能である こ とは、 当業者において 自 明である。 従って、 本発明は、 上記の実施例に限定される もので はな く 、 請求の範囲に記載された要素によ っ て規定される範囲及 びその均等範囲を包含する ものと して理解されなければな らない。 請求の範囲
1 . 負荷圧検出路の負荷圧によ っ て吐出量が制御される可変容量 型油圧ポ ンプと、 チ ッ ク弁部と減圧弁部よ り 成る圧力補償弁と ァクチユエ一夕にポ ンプ吐出圧油を供給する方向制御弁とを備え、 前記チ ッ ク弁部は、 前記可変容量型油圧ポ ンプのポ ンプ吐出 路と前記方向制御弁のポ ンプポー ト と の間を連通 ' 遮断する ス プールを有し、
前記減圧弁部は、
ァク チユエ一夕の負荷圧によ り前記ポ ンプ吐出路と前記負荷圧 検出路とを連通する第 1 の位置に向けて押され、 弱いばねと前記 負荷圧検出路の負荷圧によ って前記ポ ンプ吐出路と前記負荷圧検 出路との間を遮断し且つ前記チ ェ ッ ク弁部のスプールを閉 じ方向 に押す第 2 の位置に向けて押されるスプールを備え、 該スプール は第 2 の位置から第 1 の位置に向けてゆつ く り と移動する よ う に なつている と共に、
第 2 の位置と第 1 の位置の中間位置でポ ンプ吐出路か らの圧油 の一部をタ ンク に流出するブ リ ー ドオフ回路を有する、 圧油供給
2 . 前記減圧弁部は、 負荷圧が流入 して前記スプールを第 1 位置 に向けて押す第 1 圧力室と、 前記ポ ンプ吐出路にダンバ用絞 り を 介 して連通 して前記スプールを第 2 位置に向けて押す圧力室 と 前記負荷圧検出路に絞り を介 して連通 して前記スプールを第 2 位 置に向けて押す第 2 圧力室とを有 し、 前記スプールが第 2 位置の 時には前記圧力室と前記負荷圧検出路との間が遮断され、 前記ス プールが第 2位置と第 1 位置の中間位置の時には前記圧力室をタ ンク と前'記負荷圧検出路に連通 し、 前記スプールが第 1 位置の時 には前記圧力室を前記負荷圧検出路に連通する構成と した こ とを 特徴とする、 請求項 1 に記載の圧油供給装置。
3 . 負荷圧検出路の負荷圧によ っ て吐出量が制御される可変容量 型油圧ポンプと、
操作指合によ り 中立位置から圧油供給位置に切換え られてァ ク チユエ一夕にポ ンプ吐出圧油を供給 し、 そのメ ータイ ン開口面積 が操作指合に比例する方向制御弁と、
ポ ンプ吐出圧で開き方向に押されてァクチユエ一夕の負荷圧で閉 じ方向に押されて一次側圧力を負荷圧に見合う 圧力 とする圧力補 償弁と、
前記負荷圧検出路に接続されたブリ ー ドオフ回路と、
該ブ リ ー ドオフ回路に設け られてていて、 前記操作指合の大き さ が中間の大き さの時にはブ リ ー ドオフ位置とな り 、 操作指合の大 き さが前記中間以外の時には遮断位置となる負荷圧ブ リ ー ドオフ 弁とから構成された圧油供給装置。
4 . 前記操作指令が、 操作 レバーの操作量に比例 した圧力 と して 油圧パイ ロ ッ ト弁から出力されるパイ ロ ッ ト圧であ り、
前記方向制御弁は、 前記パイ 口 ッ ト圧によ り 中立位置か ら圧油 供給位置に切換え られてァク チユエ一夕にポ ンプ吐出圧油を供給 し、 そのメ ータイ ン開口面積がパイ ロ ッ ト圧の圧力に比例する こ とを特徴とする、 請求項 3 に記載の圧油供給装置。
5 . 前記方向制御弁が、 弁本体に嵌挿されていて、 スプ リ ングと 受圧室内のパイ ロ ッ ト圧によ り 中立位置と圧油供給装置との間で 摺動させられるスプールを有していて、 複数の前記方向制御弁の弁本体を重ね合せ連結し、
前記各弁本体に隣接する弁本体間で連結した油孔と、 その各油 孔を受圧室に連通するチェ ッ ク弁をそれぞれ設け、 前記油孔を前 記負荷圧ブリー ドオフ弁のパイ ロ ッ ト圧受圧部に接続したこ とを 特徴とする、 請求項 4 に記載の圧油供給装置。
6 . 前記圧力補償弁をチェ ッ ク弁部と減圧弁部よ り構成し、
前記チ ッ ク弁部は可変容量型油圧ポンプのポンプ吐出路と方 向制御弁のポンプポ一 トを連通 · 遮断するスプールを有し、
前記減圧弁部は、
ァクチユエ一夕の負荷圧によ りポンプ吐出路と負荷圧検出路を 連通する第 1 の位置に向けて押され、 弱いばねと負荷圧検出路の 負荷圧によって前記ポンプ吐出路と前記負荷圧検出路との間を遮 断し、 かつ前記チェ ッ ク弁部のスプールを閉 じ方向に押す第 2 の 位置に向けて押されるスプールを備え、 該スプールは第 2 の位置 から第 1 の位置に向けてゆつ く り と移動する こ とを特徴とする . 請求項 3乃至 5のいずれかに記載の圧油供給装置。
7 . 前記操作レバーが電気レバ一装置であり、 該電気レバ一装置 よ り 出力される電流によって電磁比例切換弁を切換えて前記方向 制御弁の第 1 · 第 2受圧室にパイ ロ ッ ト圧を供給するよう に した ことを特徴とする、 請求項 4 に記載の圧油供給装置。
8 . 前記操作指令が電気レバー装置から出力される電気信号であ り、 前記方向制御弁のスプールの位置を電磁比例ソ レノ ィ ドで切 換えるように し、 前記負荷圧プリ 一 ドオフ弁を他の電磁ソ レノ ィ ドで切り換えるようにし、 前記電気レバー装置よ り電流を前記電 磁比例ソレノィ ドに供給する と共に、 前記負荷圧プリ 一 ドオフ弁 の電磁比例 ソ レ ノ イ ドに供給する よ う に した こ と を特徴 とする 請求項 3 に記載の圧油供給装置。
PCT/JP1995/000287 1994-02-24 1995-02-24 Dispositif d'alimentation en huile sous pression WO1995023291A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2661894 1994-02-24
JP6/26618 1994-02-24
JP7/25040 1995-02-14
JP02504095A JP3511414B2 (ja) 1994-02-24 1995-02-14 圧油供給装置

Publications (1)

Publication Number Publication Date
WO1995023291A1 true WO1995023291A1 (fr) 1995-08-31

Family

ID=26362634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000287 WO1995023291A1 (fr) 1994-02-24 1995-02-24 Dispositif d'alimentation en huile sous pression

Country Status (2)

Country Link
JP (1) JP3511414B2 (ja)
WO (1) WO1995023291A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009095067A1 (de) * 2008-01-31 2009-08-06 Hydac Filtertechnik Gmbh Hydraulische ventilvorrichtung
CN108506265A (zh) * 2018-06-12 2018-09-07 裕泰液压技术(上海)有限公司 一种液压式自动调平衡阀组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425500B2 (ja) * 2014-11-07 2018-11-21 Kyb株式会社 ロードセンシングバルブ装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332305A (ja) * 1992-05-29 1993-12-14 Komatsu Ltd 圧油供給装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332305A (ja) * 1992-05-29 1993-12-14 Komatsu Ltd 圧油供給装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009095067A1 (de) * 2008-01-31 2009-08-06 Hydac Filtertechnik Gmbh Hydraulische ventilvorrichtung
CN108506265A (zh) * 2018-06-12 2018-09-07 裕泰液压技术(上海)有限公司 一种液压式自动调平衡阀组

Also Published As

Publication number Publication date
JP3511414B2 (ja) 2004-03-29
JPH07286602A (ja) 1995-10-31

Similar Documents

Publication Publication Date Title
JP5174804B2 (ja) ハイドロリック式の制御装置
WO1995025228A1 (fr) Soupape d&#39;equilibrage de pression et dispositif d&#39;alimentation en huile sous pression faisant appel a cette soupape
KR940703974A (ko) 포펫 및 스풀형 밸브를 구비한 유압 제어 시스템(hydraulic control system having poppet and spool type valves)
JP2557000B2 (ja) 操作弁装置
JP2000516885A (ja) 電気油圧式の制御装置
WO1996004481A1 (fr) Distributeur
JP2008534887A (ja) 方向制御弁および方向制御弁を備えた制御装置
WO1995023291A1 (fr) Dispositif d&#39;alimentation en huile sous pression
WO1990011453A1 (en) Hydraulic valve capable of pressure compensation
WO1996000351A1 (fr) Distributeur muni d&#39;une soupape de compensation de pression
KR101596379B1 (ko) 유량 증폭기의 자동왕복 유량조절 제어 기구
JP3534324B2 (ja) 圧力補償弁
JP4371540B2 (ja) スプール弁構造
JP3344745B2 (ja) 油圧制御回路
JP3119317B2 (ja) 圧油供給装置
JP7386764B2 (ja) 制御バルブ
JP3752153B2 (ja) 圧力補償油圧回路
JPH028502A (ja) 圧液方向制御弁装置
JP2627379B2 (ja) ポペット形両方向動作流路開閉弁とそれを用いた油圧回路
KR100528227B1 (ko) 방향제어밸브의조작장치
JPH10184556A (ja) 油圧ポンプ容量制御装置
JP2577676Y2 (ja) 圧油供給装置
JP4009402B2 (ja) 油圧制御装置
WO1990002283A1 (en) Poppet valve device
JP4391930B2 (ja) ロードセンシング回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase