WO1995009435A1 - Verfahren zum herstellen mikrokristalliner schichten und deren verwendung - Google Patents

Verfahren zum herstellen mikrokristalliner schichten und deren verwendung Download PDF

Info

Publication number
WO1995009435A1
WO1995009435A1 PCT/DE1994/001158 DE9401158W WO9509435A1 WO 1995009435 A1 WO1995009435 A1 WO 1995009435A1 DE 9401158 W DE9401158 W DE 9401158W WO 9509435 A1 WO9509435 A1 WO 9509435A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
cvd
microcrystalline
reactor
layers
Prior art date
Application number
PCT/DE1994/001158
Other languages
English (en)
French (fr)
Inventor
Reinhard Schwarz
Svetoslav Koynov
Thomas Fischer
Original Assignee
Reinhard Schwarz
Svetoslav Koynov
Thomas Fischer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4333416A external-priority patent/DE4333416C2/de
Application filed by Reinhard Schwarz, Svetoslav Koynov, Thomas Fischer filed Critical Reinhard Schwarz
Priority to EP94928282A priority Critical patent/EP0721656A1/de
Priority to JP7510063A priority patent/JPH09508236A/ja
Priority to US08/624,403 priority patent/US5851904A/en
Publication of WO1995009435A1 publication Critical patent/WO1995009435A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of group IV of the periodic system
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0037Devices characterised by their operation having a MIS barrier layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0054Processes for devices with an active region comprising only group IV elements
    • H01L33/0058Processes for devices with an active region comprising only group IV elements comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a process for the production of microcrystalline layers from elements of the IV main group of the periodic table, such as silicon, germane or tin, and a process for the production of luminescent silicon structures, solar cells and transistors.
  • the invention further relates to the layers or products produced using these methods.
  • Microcrystalline layers in particular made of silicon, are becoming increasingly important because of their optical and electronic properties and because of the possibility of depositing the layers at low temperatures (200 to 300 ° C.). Preferred areas of application of such layers are solar cells, thin-film transistors as well as LEDs.
  • the most common method for the deposition of microcrystalline silicon ( ⁇ c-Si) is the CVD method.
  • the layers are produced using SiH 4 in hydrogen as the process gas. SiH 4 is in a highly diluted form
  • Hydrogen (less than 5 vol.%) Applied (T. Hamasaki, H. Kurata, M. Hirose, U. Osaka, Appl. Phys. Lett. 37 (1980) 1084).
  • the low-temperature formation of the crystalline phase can be understood as a balance between the silicon deposition and the removal of the areas with disordered Si-Si bonds by the atomic hydrogen. This process is referred to as hydrogen etching (C.C. Tsai, G.B. Anderson, R. Thompson, B. Wacker, J. Non-Cryst. Sol. 114 (1989) 151).
  • a problem with this conventional PE-CVD is that the growth of the ordered microcrystalline Si layer requires mild plasma conditions, whereas the production of the necessary atomic hydrogen for the hydrogen etching requires a high pressure and a high power of the hydrogen plasma .
  • Another problem is that the deposition rate is very low at 5 to 10 ⁇ / min.
  • microcrystalline produced in this way Layers are particularly characterized in that the microcrystalline layer has a crystallite content of 20 to 95%, so-called element dots, ie spatially limited crystallites, being formed.
  • the hydrogen treatment is carried out in such a way that after the amorphous layer has been deposited with process gases known per se and under customary conditions, the process gas stream and the hydrogen flow and the connection of the CVD reactor to the pump are at least temporarily interrupted.
  • the hydrogen treatment is carried out with the amount of hydrogen still in the reactor.
  • the procedure is preferably such that the hydrogen flow is switched off with a time delay, so that there is an increased proportion of hydrogen in the reactor. Because the hydrogen is present in the closed system, the conversion of the amorphous layer to the microcrystalline layer is favored.
  • the decomposition of SiH 4 in strong hydrogen dilution in plasma is a reversible process, which can be expressed by the following relationship:
  • the silicon atoms are etched away from the amorphous solid silicon phase by the hydrogen atoms, and SiH n radicals are formed. Since the attack of the hydrogen atoms takes place at preferred locations on the amorphous silicon layer, corresponding microcrystalline layers also form at preferred locations.
  • the process gas stream and the hydrogen stream and the connection to the vacuum pump are not interrupted at the same time, but rather that the hydrogen stream can flow into the reactor for a short time, at most until an increase in pressure in the reactor until about 1 atmosphere takes place.
  • the process offers the further advantage that the crystallite content can be controlled individually by the duration of the hydrogen treatment.
  • the crystallite content that can be achieved with the process according to the invention is a maximum of 95%.
  • the crystallite size can also be set by selecting the process parameters.
  • the process described above is called the CC-CVD process.
  • the cyclic CC-CVD process accordingly consists of a repeatable cycle, each cycle consisting of two steps, namely a) the deposition of a thin amorphous silicon layer and b) hydrogen treatment in a closed CVD process, such as described above.
  • the method presented can in principle be carried out using all common CVD methods. These include ECR-CVD, VHF-CVD and hot wire CVD processes. It is also possible to use different CVD processes for the individual steps of each cycle.
  • the method according to the invention is carried out with silicon as element and SiH 4 and hydrogen as process gases.
  • the method described above is particularly suitable for producing luminescent element structures, in particular for producing luminescent Si structures.
  • Luminescence is the emission of light in the visible range, in the UV and IR spectral range, among others. of solids after energy supply.
  • the luminescence is due to a transition from an electron from an energetically higher state to an unoccupied energetically lower state. Since unoccupied electron states are often treated as positively charged "holes", the luminescence can also be described as a recombination of a pair of electron holes in which the energy released is at least partially released in the form of a light quantum (photons).
  • the luminescence processes can be based on the type of energy supply in photoluminescence (optical excitation) and classify electroluminescence (application of a voltage by an electric field).
  • the phenomenon of luminescence is of particular interest in the semiconducting materials, since it enables various applications in microelectronics.
  • Typical materials with such a direct band transition are, for example, GaAs compound semiconductors.
  • silicon is a semiconductor material with an indirect band transition. It was therefore to be expected that silicon would not be available for electroluminescence applications.
  • various methods and processes have become known which make it possible to produce an electroluminescent Si structure.
  • Either the microcrystalline layers produced as described above are subjected to a wet-chemical etching process known per se, or the element dots are passivated under closed-char er conditions.
  • the variant of the method according to the invention for processing the microcrystalline layers described under closed-chamber conditions has proven to be favorable. It is advantageous here that several of these layers can be produced one above the other (multi-layers), so that electroluminescence can be achieved with a very high efficiency.
  • a further improvement can be achieved by using insulator layers, e.g. from a-SiC: H or a-SiN: H, as an initiating contact. The charge carriers get into the active layer (AL) through tunnels and reach them with very high energy. This results in a further increase in efficiency.
  • a further improvement in the yield is achieved by repeating the active layers (AL) and insulating layers (IL).
  • the method of microcrystalline layers described at the outset is also particularly suitable for producing solar cells and for producing high-performance thin-film transistors. Further features, details and advantages of the invention result from the following description of a method example of the invention and from the drawings. Show it:
  • FIG. 1 schematically shows the CVD reactor both in the first and in the second process step and the associated process parameters
  • FIG. 2 shows schematically the formation of the microcrystalline layer for two selected areas during the process
  • FIG. 3 shows a Raman Spectrum for two different samples
  • FIG. 4 the conductivity of the layer produced according to the invention
  • FIG. 5 the deposition rate
  • FIG. 1 schematically shows the state of the reaction chamber of a CVD reactor for the two process steps in the upper part of the double graphic.
  • the example concerns the deposition of silicon using SiH 4 as process gas and hydrogen.
  • the reactor 1 is provided with an inlet 2 for the process gas, here SiH 4 , and a separate inlet 3 for the hydrogen.
  • the reactor 1 is connected via the outlet 5 to a pump (not shown).
  • the first step ie the deposition of an amorphous SiH layer, is carried out under conditions known per se with the known process gases SiH 4 and hydrogen.
  • Output 5 to the pump is open, so that the deposition on the substrate 6 is carried out in gas flow (in s).
  • the pressure in mbar can be seen on the ordinate.
  • the conditions for depositing the a-Si: H layer were as follows:
  • the deposition rate was 2.5 ⁇ / s under these conditions.
  • a time period of 35 s was selected for the time period (T d ).
  • T d is approximately 5 s. This makes it possible to produce 12.4 ⁇ thick a-Si: H layers in every cycle.
  • the second step of the cycle for producing the microcrystalline layers is essential to the invention.
  • the output 5 of the pump and the feeds 2 and 3 for the process gas stream and the hydrogen are closed for a certain period of time T H.
  • the procedure was such that the interruption of the hydrogen flow (switching point B) was carried out after the interruption of the process gas flow and the closing of the outlet to the pump (switching point A). It is thereby achieved that the pressure in the reactor rises as a result of the inflowing hydrogen, so that the hydrogen treatment is carried out with an increased proportion of hydrogen, which enables acceleration of the second process step.
  • the curve C within the time interval T H gives the pressure curve again, as it is in CC hydrogen treatment.
  • D represents the course as it occurs when the plasma is switched off or when the process is open, ie in the process known from the prior art.
  • E shows the course for the CC process according to the invention
  • F shows the course for the "open process" known from the prior art.
  • the SiH 4 concentration at the beginning of the second step, ie during the hydrogen treatment is zero (curve F).
  • the hydrogen treatment accordingly takes place in a pure hydrogen atmosphere.
  • the hydrogen treatment in the CC-CVD process takes place in the presence of SiH 4 molecules. This fact obviously has a positive effect on the deposition rate.
  • T H means the duration of the hydrogen treatment
  • ⁇ d the layer thickness per cycle
  • R the deposition rate
  • d the total film thickness
  • ⁇ d the dark
  • ⁇ ph the photoconductivity
  • E act the activation energy.
  • FIG. 2 shows schematically the formation of the microcrystalline layer, starting from the amorphous layer (a) to the microcrystalline layer (b).
  • An amorphous SiH layer is formed by the first process step of the cycle.
  • This amorphous SiH layer contains partially ordered districts (see arrow).
  • the microcrystalline layer forms - starting from the partially ordered areas shown in (a) - this process can be explained in such a way that it takes place in two stages.
  • a first stage is called “nucleation” and a second stage is called “recrystallization”.
  • G and S symbolize the silicon atoms in the gas phase (G) and the SiH species (S).
  • FIG. 3 shows in comparison the Raman spectra of two samples which were produced by the method according to the invention.
  • the Raman spectrum shows a curve A of sample C 409 that lasts 15 seconds and a curve B (sample C 407) that has been treated with H 2 for 90 seconds and a curve c of sample 0408. It can be seen from this that the method according to the invention is very flexible with regard to the formation of crystallinity. The Raman intensity is canceled on the ordinate.
  • FIG. 4 shows the increase in conductivity (in s / cm) with the progress of the hydrogen treatment in s. This is particularly advantageous for microcrystalline TFTs.
  • FIG. 5 shows how the deposition rate (rpm) of the method according to the invention (symbolized by filled triangles) differs from the open process (filled quadrilaterals). For completeness, the hydrogen dilution is included in this graphic. The activation energy is plotted on the abscissa.
  • microcrystalline layers produced by the process according to the invention are clearly superior to the prior art. These layers open up possible applications for luminescence applications as well as for transistors or solar cells.
  • Fig. 6 (a) shows the structure of a pn diode.
  • a substrate preferably glass or other at least partially transparent substrates, is provided with a contact electrode layer.
  • Such a substrate is made using the method described above
  • the CC-CVD process provided with a microcrystalline layer.
  • the procedure according to the invention is such that at least one cycle, but preferably 2 to 2000 cycles, are carried out so that a sufficiently thick layer is achieved.
  • the microcrystalline layer is produced by means of the CC-CVD process, it is no longer necessary, as previously known from the prior art, to form the microcrystalline layer for luminescence applications from Si wafers in such a way that the Surface of a wa- is treated.
  • the microcrystalline layer thus produced is preferably passivated in a further process step using the CC-CVD process. The passivation can also take place in a "normal", ie open CVD process.
  • a cycle therefore consists of three steps, namely formation of the amorphous SiH layer, generation of the microcrystalline layer and passivation.
  • the procedure here is that the microcrystalline layers are treated with either an oxidizing or a nitriding gas. As a result, so-called active layers (AL) are formed.
  • an active layer produced in this way is again provided with a contact electrode layer on the surface.
  • the contact electrode layer is N-conductive with a metal contact.
  • the contact electrode layer applied to the substrate in the example according to FIG. 6 (a) consists of ITO (indium tin oxide). Electroluminescence was observed when DC voltage was applied to such a pn diode.
  • FIG. 6 (b) An improvement in the efficiency of the electroluminescence can be achieved (FIG. 6 (b)) by applying insulation layers.
  • Fig. 6 (b) shows an example of the setup of such an electroluminescent application.
  • an indium-tin oxide contact electrode is applied as shown in FIG. 6 (a).
  • the active layer AL is surrounded by two insulation layers IL.
  • the thickness of such a layer is in the range from 20 to 500 ⁇ .
  • Such an insulator layer can consist, for example, of amorphous SiC: H or amorphous SiN: H. If an alternating voltage is applied, the charge carriers enter the active layer through tunnels and reach them with high energy.
  • Important parameters for this ac operation are a voltage (determined by the thickness and composition of the insulator layer) and b frequency (determined by the transport properties and the density of states of the active material).
  • the electroluminescence with such a structure shows a significantly better efficiency than the pn-Diode according to FIG. 6 (a).

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen von mikrokristallinen Schichten aus Elementen der IV.HGr, insbesondere Si, Ge, Sn oder deren Legierungen wie SiC bzw. SiGe mittels zyklischer CVD oder verwandter Methoden, wobei ein Zyklus aus zwei Schritten besteht, einem ersten Schritt zur Herstellung einer amorphen Schicht des Elementes in der Weise, daß ein geeignetes Prozeßgas wie z.B. die Element-Wasserstoff-Verbindungen und Wasserstoff unter üblichen CVD-Bedingungen über getrennte Zuführungen in den Reaktor über das Substrat geführt wird, und daß in einem zweiten Schritt eine Wasserstoffbehandlung erfolgt, wobei zumindest zeitweise während des zweiten Schrittes die Zuführung des Prozeßgasstromes, die Wasserstoffzufuhr sowie die Verbindung des CVD-Reaktors zur Pumpe geschlossen sind, so daß die Wasserstoffbehandlung in einem geschlossenen CVD-Prozeß (CC-CVD-Prozeß) mit der im Reaktor befindlichen Menge an Wasserstoff bzw. Elementwasserstoffverbindungen erfolgt.

Description

Verfahren zum Herstellen mikrokristalliner Schichten und deren Verwendung
Die Erfindung betrifft ein Verfahren zur Herstellung von mikrokristallinen Schichten aus Elementen der IV. Hauptgruppe des Periodensystems, wie Silizium, Germa¬ nium oder Zinn, sowie ein Verfahren zur Herstellung von lumineszenten Siliziumstru euren, Solarzellen und Transistoren.
Die Erfindung betrifft weiterhin die mit diesen Ver¬ fahren hergestellten Schichten bzw. Produkte.
Mikrokristalline Schichten, insbesondere aus Silizi¬ um, gewinnen wegen ?rer optischen und elektronischen Eigenschaften sowie aufgrund der Möglichkeit der Ab- scheidung der Schichten bei niederen Temperaturen (200 bis 300°C) zunehmend an Bedeutung. Bevorzugte Anwendungsgebiete derartiger Schichten sind Solarzel¬ len, Dünnschichttransistoren genauso wie LEDs. Die gebräuchlichste Methode zur Abscheidung von mi¬ krokristallinem Silizium (μc-Si) ist die CVD-Methode. Die Herstellung der Schichten wird dabei unter Ver¬ wendung von SiH4 in Wasserstoff als Prozeßgas vorge- nommen. SiH4 wird dabei in stark verdünnter Form in
Wasserstoff (weniger als 5 Vol.%) angewandt (T. Hama- saki, H. Kurata, M. Hirose, U. Osaka, Appl. Phys. Lett. 37 (1980) 1084) . Die Niedertemperaturbildung der kristallinen Phase kann dabei als Gleichgewicht verstanden werden zwischen der Silizium-Abscheidung und dem Abtragen der Bereiche mit ungeordneten Si-Si- Bindungen durch den atomaren Wasserstoff. Dieser Pro¬ zeß wird als Wasserstoff-Ätzen bezeichnet (C.C. Tsai, G.B. Anderson, R. Thompson, B. Wacker, J. Non-Cryst. Sol. 114 (1989) 151) . Ein Problem dieser konventio¬ nellen PE-CVD ist, daß das Wachstum der geordneten mikrokristallinen Si-Schicht milde Plasmabedingungen erfordert, wohingegen die Produktion des nötigen ato¬ maren Wasserstoffes für das Wasserstoff-Ätzen einen hohen Druck und eine hohe Leistung des Wasserstoff- plasmas erfordert. Ein anderes Problem ist, daß die Abscheiderate mit 5 bis 10 Ä/min sehr gering ist.
Zur Lösung dieses Problems wurden in der Zwischenzeit mehrere zyklische Methoden zur Herstellung von μc- Si:H und verwandten Schichten wie μc-Si:Ge:H vorge¬ schlagen, die alle eine Trennung in zwei Verfahrens¬ schritte vorsehen. Danach wird in einem ersten Schritt z.B. eine amorphe SiH-Schicht abgeschieden unter den für die Si-Abscheidung günstigen Bedingun¬ gen und dann in einem zweiten Schritt das Wasser¬ stoff-Ätzen unter den für die Wasserstoff-Ätzung er¬ forderlichen Bedingungen vorgenommen (A. Asano, T. Ichimura, H. Sakai, J. Appl. Phys. 65 (1989) 2439. A. Asano, Appl. Phys. Lett. 56 (1990) 533). Die Wasser- Stoffbehandlung wird dabei in der Weise durchgeführt, daß ein konstanter Wasserstofffluß in den CVD-Reaktor über das Substrat geleitet wird.
Es hat sich jedoch gezeigt, daß auch diese zyklische Methode in bezug auf die Abscheiderate noch keine befriedigenden Ergebnisse liefert. Weiter ist nach¬ teilig, daß der Schritt des Wasserstoff-Ätzens nur schwer kontrollierbar ist.
Ausgehend von diesem Stand der Technik ist es die Aufgabe der vorliegenden Erfindung, ein neues zykli¬ sches Verfahren zum Abscheiden von mikrokristallinen Schichten aus Elementen der IV. Hauptgruppe vorzu- schlagen, mit dem es möglich ist, den Schritt des
Wasserstoff-Ätzens besser zu kontrollieren und deut¬ lich höhere Abscheideraten, als sie bisher möglich sind, zu erreichen. Es ist weiterhin eine Aufgabe der vorliegenden Erfindung, mit derartigen Schichten in- teressante Anwendungen zu erschließen.
Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruches 1 gelöst, hinsichtlich der Anwendungs¬ möglichkeiten durch die kennzeichnenden Merkmale der Ansprüche 8 bis 10. In den Unteransprüchen sind vor¬ teilhafte Weiterbildungen angegeoen.
Überraschenderweise hat sich gezeigt, daß, wenn das an und für sich bekannte Verfahren zur Herstellung der mikrokristallinen Schichten im zweiten Verfah¬ rensschritt, nämlich bei der Wasserstoffbehandlung, so abgewandelt wird, daß die Wasserstoffbehandlung in einem geschlossenen System durchgeführt wird, deutlich höhere Abscheideraten erzielt werden. Die auf diese Weise hergestellten mikrokristallinen Schichten zeichnen sich besonders dadurch aus, daß die mikrokristalline Schicht einen Kristallitanteil von 20 bis 95 % aufweist, wobei sich sogenannte Ele- ment-Dots, d.h. räumlich begrenzte Kristallite, bil- den.
Erfindungsgemäß wird bei der Wasserstoffbehandlung so vorgegangen, daß nach der Abscheidung der amorphen Schicht mit an sich bekannten Prozeßgasen und unter üblichen Bedingungen der Prozeßgasstrom und der Was¬ serstofffluß sowie die Verbindung des CVD-Reaktors zur Pumpe zumindest zeitweise unterbrochen werden. Die Wasserstoffbehandlung erfolgt mit der noch im Reaktor befindlichen Menge an Wasserstoff. Bevorzug- terweise wird jedoch so vorgegangen, daß der Wasser¬ stofffluß zeitlich verzögert abgeschaltet wird, so daß ein erhöhter Wasserstoffanteil im Reaktor vorhan¬ den ist. Dadurch, daß der Wasserstoff im geschlosse¬ nen System vorhanden ist, wird die Umwandlung der amorphen Schicht zur mikrokristallinen Schicht begün¬ stigt. Die Zersetzung von SiH4 in starker Wasser¬ stoffVerdünnung im Plasma ist ein reversibler Prozeß, der durch die folgende Beziehung ausgedrückt werden kann:
SiHn(plasma) < > Si(solid) + n * H(plasma)
Demnach werden durch die Wasserstoffatome die Silizi¬ umatome aus der amorphen festen Siliziumphase wegge- ätzt, und es bilden sich SiHn-Radikale aus. Da der Angriff der Wasserstoffatome an bevorzugten Stellen auf der amorphen Siliziumschicht stattfindet, bilden sich auch entsprechende mikrokristalline Schichten an bevorzugten Stellen aus. Dadurch, daß in einem ge- schlossenen System gearbeitet wird, ist sicherge¬ stellt, daß die sich im Reaktor bildenden SiHn-Gas- spezies nicht durch den fortdauernden Wasserstoffluß aus dem System entfernt werden, sondern daß ein quasi stationärer Zustand erreicht wird, so daß eine erhöh¬ te Abscheiderate erzielt werden kann. Bevorzugterwei¬ se wird deshalb vorgeschlagen, daß der Wasserstoff- anteil erhöht wird, so daß eine Beschleunigung des Ätzens stattfindet und eine nochmals deutlich erhöhte Abscheiderate erzielt wird. Dies wird dadurch er¬ reicht, daß im zweiten Schritt nicht gleichzeitig der Prozeßgasstrom und der Wasserstoffstrom sowie die Verbindung zur Vakuumpumpe unterbrochen werden, son¬ dern daß der Wasserstoffstrom noch kurzzeitig länger in den Reaktor einfließen kann, maximal so lange, bis eine Druckerhöhung im Reaktor bis etwa 1 Atmosphäre stattfindet. Das Verfahren bietet den weiteren Vor¬ teil, daß durch die Dauer der Wasserstoffbehandlung der Kristallitanteil individuell gesteuert werden kann. Der Kristallitanteil, der mit dem erfindungs¬ gemäßen Verfahren erreicht werden kann, liegt maximal bei 95 %. Durch die Wahl der Prozeßparameter läßt sich zudem die Kristallitgröße einstellen.
Der vorstehend beschriebene Prozeß wird als CC-CVD- Prozeß bezeichnet. Der zyklische CC-CVD-Prozeß be¬ steht demnach aus einem wiederholbaren Zyklus, wobei jeder Zyklus aus zwei Schritten besteht, nämlich a) der Abscheidung einer dünnen amorphen Silizium- schicht und b) einer Wasserstoffbehandlung in einem geschlosse¬ nen CVD-Prozeß, wie vorstehend beschrieben.
Vorteilhaft bei dem erfindungsgemäßen Verfahren ist, daß mehrere Zyklen in einem Prozeß hintereinander durchgeführt werden können. Je nach der gewünschten Schichtdicke können somit 2 bis 2000 Zyklen durchge¬ führt werden, so daß eine entsprechende Schicht rea¬ lisiert werden kann.
Das vorgestellte Verfahren ist grundsätzlich mit al¬ len gängigen CVD-Verfahren ausführbar. Hierzu zählen ECR-CVD-, VHF-CVD- und Heißdraht-CVD-Prozesse. Es ist auch möglich, bei den einzelnen Schritten jedes Zy- klus unterschiedliche CVD-Verfahren einzusetzen.
Bevorzugt ist es, wenn das erfindungsgemäße Verfahren mit Silizium als Element und SiH4 und Wasserstoff als Prozeßgase durchgeführt wird.
Das vorstehend beschriebene Verfahren eignet sich besonders zum Herstellen von lumineszenten Element¬ strukturen, insbesondere zum Herstellen von lumines¬ zenten Si-Strukturen.
Unter Lumineszenz versteht man die Emission von Licht im sichtbaren Bereich, im UV- und IR-Spektralbereich, u.a. von Festkörpern nach Energiezufuhr. Die Lumines¬ zenz ist auf einen Übergang von einem Elektron aus einem energetisch höheren Zustand in einen unbesetz¬ ten energetisch tieferen Zustand zurückzuführen. Da unbesetzte Elektronenzustände oft als positiv gelade¬ ne "Löcher" behandelt werden, läßt sich die Lumines¬ zenz auch als Rekombination eines Elektronenlochpaa- res beschreiben, bei dem die freiwerdende Energie zumindest teilweise in Form eines Lichtquants (Pho¬ tons) abgegeben wird.
Die Lumineszenzprozesse lassen sich nach der Art der Energiezufuhr in Photolumineszenz (optische Anregung) und Elektrolumineszenz (Anlegen einer Spannung durch ein elektrisches Feld) einteilen.
Dem Phänomen der Lumineszenz kommt bei den halblei- tenden Materialien besonderes Interesse zu, da da¬ durch verschiedene Anwendungen in der Mikroelektronik ermöglicht werden. Lange Zeit ist man davon ausgegan¬ gen, daß sich nur Strukturen aus solchen Halbleiter¬ materialien für eine Lichtemission eignen, die einen direkten Bandübergang aufweisen. Typische Materialien mit einem derartigen direkten Bandübergang sind bei¬ spielsweise GaAs-Verbindungshalbleiter. Im Gegensatz dazu ist Silizium ein Halbleitermaterial mit einem indirekten Bandübergang. Es war deshalb zu erwarten, daß Silizium nicht für Elektrolumineszenz-Anwendungen zur Verfügung steht. In jüngster Zeit sind jedoch verschiedene Methoden und Verfahren bekanntgeworden, die es ermöglichen, eine elektrolumineszente Si- Struktur herzustellen.
Alle diese Arbeiten gehen dabei von Si-Wafern aus, die in einem Flußsäurebad anodisiert werden, um so mikroporöse Si-Strukturen zu realisieren.
In der DE-OS 41 26 955 wird ein derartiges Verfahren beschrieben. Die elektrolumineszente Si-Struktur wird dabei in der Art erzeugt, daß während des Anodisie- rens des Si-Wafers im Säurebad der Si-Wafer auf der anodischen Seite zumindest teilweise über eine be- stimmte Zeitspanne belichtet wird. Dadurch sollen Si- Strukturen erhalten werden, die ns~b. weiteren Verfah¬ rensschritten nach Anlegung eines elektrischen Feldes Elektrolumineszenz zeigen. In der US 5,206,523 wird ebenfalls eine mikroporöse Si-Struktur offenbart, die ebenfalls durch eine Säu¬ rebehandlung hergestellt wird. Dabei sollen durch ein Anodisieren in einem Flußsäureelektrolyten sogenann- ten Quantendrähte entstehen, die eine Änderung des energetischen Bandabstandes der mikroporösen Si- Struktur gegenüber einem kristallinen Silizium zur Folge haben.
Alle Verfahren des Standes der Technik gehen demnach davon aus, daß nur dann eine Elektrolumineszenz er¬ reicht wird, wenn Si-Wafer in einem wäßrigen Flußsäu¬ rebad zur Erzeugung von mikroporösen Si-Schichten anodisiert werden.
Diese Verfahrensweise ist jedoch nicht nur umständ¬ lich zu handhaben, sondern sie weist auch noch Nach¬ teile in bezug auf die Strukturierung der Oberfläche und der Schichtdicke auf. Bei den Verfahren des Stan- des der Technik ist es nämlich nicht möglich, belie¬ big dicke Si-Schichten mit dem Säurebad zu behandeln. Der Säureprozeß erfordert genau festgelegte Parameter sowohl in bezug auf die Steuerung des Bades als auch auf den Si-Wafer. Dadurch ist es auch nicht möglich, die Lumineszenzwirkung durch besonders dicke Schich¬ ten zu steigern. Die Effizienz der mit den Verfahren des Standes der Technik hergestellten Schichten in bezug auf die Elektrolumineszenzwirkung läßt deshalb sehr zu wünschen übrig.
Erfindungsgemäß wird nun vorgeschlagen, von den vor¬ stehend beschriebenen mikrokristallinen Schichten auszugehen. Grundsätzlich bieten sich zwei Methoden an, die auf diese Weise hergestellten mikrokristallinen Schichten zu bearbeiten, um Lumineszenzanwendungen zu ermögli¬ chen.
Entweder werden die wie vorstehend beschrieben herge¬ stellten mikrokristallinen Schichten einem an sich bekannten naßchemischen Ätzverfahren unterzogen, oder es erfolgt unter Closed-Char er-Bedingungen eine Pas- sivierung der Element-Dots.
Besonders die vorstehend beschriebene Variante des erfindungsgemäßen Verfahrens zur Bearbeitung der mi¬ krokristallinen Schichten unter Closed-Chamber-Bedin- gungen hat sich als günstig erwiesen. Vorteilhaft ist hierbei, daß mehrere dieser Schichten übereinander erzeugt werden können (Multischichten) , so daß sich eine Elektrolumineszenz mit einer sehr hohen Effi¬ zienz erzielen läßt. Eine weitere Verbesserung läßt sich durch die Verwendung von Isolatorschichten, z.B. aus a-SiC:H oder a-SiN:H, als initiierenden Kontakt erreichen. Die Ladungsträger gelangen dabei durch Tunneln in die aktive Schicht (AL) und erreichen sie mit sehr hoher Energie. Dadurch wird eine erneute Steigerung der Effizienz erreicht. Eine weitere Ver¬ besserung der Ausbeute wird durch die Wiederholung der aktiven Schichten (AL) und isolierenden Schichten (IL) erreicht.
Neben der Herstellung von lumineszenten Elementstruk¬ turen eignet sich das eingangs beschriebene Verfahren von mikrokristallinen Schichten insbesondere noch zum Herstellen von Solarzellen und zum Herstellen von Hochleistungs-Dünnschichttransistoren. Weitere Merkmale, Einzelheiten und Vorzüge der Erfin¬ dung ergeben sich aus der folgenden Beschreibung ei¬ nes Verfahrensbeispieles der Erfindung sowie anhand der Zeichnungen. Es zeigen:
Fig. 1 schematisch den CVD-Reaktor sowohl beim ersten als auch beim zweiten Verfahrens¬ schritt sowie die zugehörigen Prozeßparame¬ ter, Fig. 2 schematisch für zwei ausgewählte Bereiche während des Verfahrens die Bildung der mi¬ krokristallinen Schicht, Fig. 3 ein Raman-Spektrum für zwei verschiedene Proben, Fig. 4 die Leitfähigkeit der erfindungsgemäß her¬ gestellten Schicht, Fig. 5 die Abscheiderate,
Fig. 6 verschiedene Ausführungsformen von lumines¬ zenten Si-Strukturen.
Fig. 1 zeigt im oberen Teil der Doppelgrafik schema¬ tisch den Zustand der Reaktionskammer eines CVD-Reak- tors für die beiden Verfahrensschritte. Das Beispiel betrifft die Abscheidung von Silizium mittels SiH4 als Prozeßgas und Wasserstoff.
Der Reaktor 1 ist mit einem Zugang 2 für das Proze߬ gas, hier SiH4, und einem separaten Zugang 3 für den Wasserstoff versehen. Der Reaktor 1 ist dabei über den Ausgang 5 mit einer Pumpe (nicht abgebildet) ver¬ bunden. Der erste Schritt, d.h. die Abscheidung einer amorphen SiH-Schicht, wird unter an und für sich üb¬ lichen Bedingungen mit den bekannten Prozeßgasen SiH4 und Wasserstoff durchgeführt. Der Ausgang 5 zur Pumpe ist offen, so daß die Abscheidung auf dem Substrat 6 im Gasfluß (in s) vorgenommen wird. Auf der Ordinate ist der Druck in mbar ersichtlich. Die Bedingungen zur Abscheidung der a-Si:H-Schicht waren wie folgt:
Gesamtgasfluß 22 sccm (5 sccm SiH4 +
17 sccm H2) ,
Gr-.adruck 0,15 mbar,
Leistung 0,2 W/cm2, - Substrattemperatur 270° C.
Die Abscheiderate betrug unter diesen Bedingungen 2,5 Ä/s. Zur besseren Übersicht des Verfahrensablaufes wurde für die Zeitspanne (Td) eine Zeitspanne von 35 s gewählt. Es ist aber ausreichend, wenn Td unge¬ fähr 5 s beträgt. Damit ist es möglich, 12,4 Ä dicke a-Si:H-Schichten in jedem Zyklus zu erzeugen.
Erfindungswesentlich ist der zweite Schritt des Zy- klus zur Erzeugung der mikrokristallinen Schichten. Dazu werden der Ausgang 5 αr Pumpe sowie die Zufüh¬ rungen 2 und 3 für den Prozeßgasstrom und den Wasser¬ stoff für eine bestimmte Zeitspanne TH geschlossen. Im Beispielsfall ist so vorgegangen worden, daß die Unterbrechung des Wasserstoffflusses (Schaltpunkt B) zeitlich nach der Unterbrechung des Prozeßgasstromes und der Schließung des Ausganges zur Pumpe (Schalt¬ punkt A) vorgenommen wurde. Dadurch wird erreicht, daß durch den nachströmenden Wasserstoff der Druck im Reaktor ansteigt, so daß die Wasserstoffbehandlung mit einem erhöhten Wasserstoffanteil durchgeführt wird, wodurch eine Beschleunigung des zweiten Verfah¬ rensschrittes ermöglicht wird. Die Kurve C innerhalb des Zeitintervalles TH gibt dabei den Druckverlauf wieder, wie er bei der CC-Wasserstoffbehandlung vor¬ liegt. D gibt dabei den Verlauf wieder, wie er bei abgeschaltetem Plasma oder beim offenen, d.h. bei dem aus dem Stand der Technik bekannten Prozeß erfolgt. Wie sich dieser Unterschied auswirkt, ist aus dem unteren Teil der Doppelgrafik ersichtlich. E zeigt dabei den Verlauf für den erfindungsgemäßen CC-Pro- zeß, und F den Verlauf bei dem aus dem Stand der Technik bekannten "offenen Verfahren". Dadurch wird deutlich (schraffierter Bereich) , daß während des CC- Prozesses im Gegensatz zum offenen Prozeß noch SiH4- Moleküle im Gasraum vorhanden sind. Bei einem konven¬ tionellen zyklischen Prozeß liegt die SiH4-Konzentra- tion bei Beginn des zweiten Schrittes, d.h. bei der Wasserstoffbehandlung, bei Null (Kurve F) . In diesem Fall findet demnach die Wasserstoffbehandlung in ei¬ ner reinen Wasserstoffatmosphäre statt. Im Gegensatz dazu erfolgt die Wasserstoffbehandlung im CC-CVD-Pro¬ zeß in Anwesenheit von SiH4-Molekülen. Dieser Umstand wirkt sich offensichtlich positiv auf die Abscheide¬ rate aus.
Zur Verdeutlichung des Prozesses wurden verschiedene Proben während des ersten und zweiten Zyklus (a bis e und i) untersucht. Diese Ergebnisse wurden Proben, die in einem offenen Prozeß hergestellt wurden (f bis h) , gegenübergestellt (Tabelle 1) . Darin bedeuten TH die Zeitdauer der Wasserstoffbehandlung, Δd die Schichtdicke pro Zyklus, R die Abscheiderate, d die gesamte Filmdicke, σd die Dunkel- und σph die Photo¬ leitfähigkeit sowie Eact die Aktivierungsenergie. Da¬ mit wird deutlich, daß mit dem erfindungsgemäßen Ver¬ fahren Abscheideraten erzielt werden, die um den Fak¬ tor 5 höher sind, als sie mit den bisher üblichen Methoden realisierbar sind. Es werden zudem Leitfä¬ higkeiten erreicht, die um mehrere 10er Potenzen bes¬ ser als der Stand der Technik sind.
Fig. 2 zeigt schematisch die Bildung der mikrokri¬ stallinen Schicht, ausgehend von der amorphen Schicht (a) zur mikrokristallinen Schicht (b) . Durch den er¬ sten Verfahrensschritt des Zyklus wird eine amorphe SiH-Schicht gebildet. Diese amorphe SiH-Schicht ent- hält teilweise geordnete Bezirke (siehe Pfeil) .
Bei der folgenden Wasserstoffbehandlung im geschlos¬ senen System (b) bildet sich - ausgehend von den in (a) aufgezeigten teilweise geordneten Bereichen - die mikrokristalline Schicht aus, wobei dieser Vorgang so erklärt werden kann, daß er in zwei Stufen abläuft. Eine erste Stufe wird hierbei als "nucleation" und eine zweite Stufe als "recrystallization" bezeichnet. G und S symbolisieren dabei die Siliziumatome in der Gasphase (G) und die SiH-Spezies (S) .
Fig. 3 zeigt im Vergleich die Raman-Spektren von zwei Proben, die nach dem erfindungsgemäßen Verfahren her¬ gestellt wurden. Das Raman-Spektrum zeigt eine Kurve A der Probe C 409, die 15 sec, und eine Kurve B (Pro¬ be C 407) , die 90 sec mit H2 behandelt wurde sowie eine Kurve c der Probe 0408. Daraus ist ersichtlich, daß das erfindungsgemäße Verfahren in bezug auf die Bildung der Kristallität sehr flexibel ist. Auf der Ordinate ist dabei die Ramanintensität aufgehoben.
Fig. 4 zeigt die Erhöhung der Leitfähigkeit (in s/cm) mit dem Fortschreiten der Wasserstoffbehandlung in s. Dies ist besonders vorteilhaft für mikrokristalline TFTs. Fig. 5 macht deutlich, wie sich die Abscheiderate (Ä/min) des erfindungsgemäßen Verfahrens (symboli¬ siert durch gefüllte Dreiecke) gegenüber dem offenen Prozeß (gefüllte Vierecke) unterscheidet. Zur Voll- ständigkeit ist in dieser Grafik die Wasserstoffver¬ dünnung mit aufgenommen. Auf der Abzisse ist die Ak¬ tivierungsenergie aufgetragen.
Diese Ergebnisse zeigen, daß die mit dem erfindungs- gemäßen Verfahren hergestellten mikrokristallinen Schichten gegenüber dem Stand der Technik deutlich überlegen sind. Mit diesen Schichten erschließen sich Anwendungsmöglichkeiten sowohl für Lumineszenzanwen- dungen als auch für Transistoren oder Solarzellen.
Fig. 6 zeigt die Anwendung der vorstehend beschriebe¬ nen mikrokristallinen Schichten für Lumineszenzanwen- dungen.
Fig. 6(a) zeigt den Aufbau einer pn-Diode. Zur Her¬ stellung dieser pn-Diode wird so vorgegangen, daß ein Substrat, bevorzugt Glas oder andere zumindest teil¬ weise lichtdurchlässige Substrate mit einer Kontakt¬ elektrodenschicht versehen werden. Ein derartiges Substrat wird mittels des vorstehend beschriebenen
CC-CVD-Prozesses mit einer mikrokristallinen Schicht versehen. Erfindungsgemäß wird dabei so vorgegangen, daß mindestens ein Zyklus, jedoch bevorzugt 2 bis 2000 Zyklen, durchgeführt werden, so daß eine genü- gend dicke Schicht realisiert wird. Dadurch, daß die mikrokristalline Schicht mittels des CC-CVD-Prozesses hergestellt wird, ist es nicht mehr nötig, wie bisher aus dem Stand der Technik bekannt, für Lumineszenzan¬ wendungen aus Si-Wafern die mikrokristalline Schicht in der Weise zu bilden, daß die Oberfläche eines Wa- fers behandelt wird. Erfindungsgemäß wird die so her¬ gestellte mikrokristalline Schicht in einem weiteren Verfahrensschritt bevorzugt mit dem CC-CVD-Prozeß passiviert. Die Passivierung kann auch in einem "nor- malen", d.h. offenen CVD-Prozeß erfolgen. Ein Zyklus besteht demnach aus drei Schritten, nämlich Bildung der amorphen SiH-Schicht, Erzeugung der mikrokristal¬ linen Schicht und Passivierung. Dabei wird so vorge¬ gangen, daß entweder mit einem oxidierenden oder ei- nem nitrierenden Gas die mikrokristallinen Schichten behandelt werden. Dadurch bilden sich sogenannte ak¬ tive Schichten (AL) .
In Abwandlung von der vorstehend beschriebenen Metho- de ist es auch möglich, die mikrokristallinen Schich¬ ten nicht mittels nitrierenden oder oxidierenden Ga¬ sen zu behandeln, sondern nach an und für sich be¬ kannten Ätzverfahren in aktive Schichten umzuwandeln.
Eine so hergestellte aktive Schicht wird, um Lumines¬ zenzanwendungen zu realisieren, an der Oberfläche wieder mit einer Kontaktelektrodenschicht versehen. Im Beispielsfall (Fig. 6(a)) ist die Kontaktelektro¬ denschicht N-leitend mit einem Metallkontakt. Die auf dem Substrat aufgebrachte Kontaktelektrodenschicht besteht im Beispielsfall nach Fig. 6(a) aus ITO (In¬ dium-Zinnoxid) . Bei Anlegung von Gleichspannung an eine derartige pn-Diode konnte Elektrolumineszenz beobachtet werden.
Eine Verbesserung der Effizienz der Elektrolumines¬ zenz läßt sich dadurch erreichen (Fig. 6(b)), daß Isolationsschichten aufgebracht werden. Fig. 6(b) zeigt einen Beispielsfall für den Aufbau einer der- artigen Elektrolumirieszenzanwendung. Auf dem Glassub- strat ist dabei wie in Fig. 6(a) eine Indium-Zinn¬ oxid-Kontaktelektrode aufgebracht. Die aktive Schicht AL ist jedoch von zwei Isolationsschichten IL umge¬ ben. Die Dicke einer derartigen Schicht liegt im Be- reich von 20 bis 500 Ä. Eine derartige Isolator¬ schicht kann z.B. aus amorphem SiC:H oder amorphem SiN:H bestehen. Wird eine Wechselspannung angelegt, so gelangen die Ladungsträger durch Tunneln in die aktive Schicht und erreichen sie mit hoher Energie. Wichtige Parameter für diesen ac-Betrieb sind a Spannung (bestimmt durch die Dicke und Zusammen¬ setzung der Isolatorschicht) und b Frequenz (bestimmt durch die Transporteigen¬ schaften und die Zustandsdichte des aktiven Ma- terials.
Die Elektrolumineszenz bei einem derartigen Aufbau zeigt eine deutlich bessere Effizienz als die pn-Dio¬ de nach Fig. 6(a).
Eine nochmalige Steigerung läßt sich durch sogenannte Multischichten (Fig. 6(c)) erreichen. Bei einem der¬ artigen Aufbau wird durch die Wiederholung der akti¬ ven und isolierenden Schicht eine nochmalige deutli- ehe Steigerung der Ausbeute erreicht. Die Betriebs¬ spannung erhöht sich entsprechend.
Figure imgf000019_0001

Claims

Patentansprüche
1. Verfahren zum Herstellen von mikrokristallinen Schichten aus Elementen der IV.HGr, insbesondere
Si, Ge, Sn oder deren Legierungen wie SiC bzw. SiGe mittels zyklischer CVD oder verwandter Me¬ thoden, wobei ein Zyklus aus zwei Schritten be¬ steht, einem ersten Schritt zur Herstellung ei- ner amorphen Schicht des Elementes in der Weise, daß ein geeignetes Prozeßgas wie z.B. die Ele¬ ment-Wasserstoff-Verbindungen und Wasserstoff unter üblichen CVD-Bedingungen über getrennte Zuführungen in den Reaktor über das Substrat geführt wird, und daß in einem zweiten Schritt eine Wasserstoffbehandlung erfolgt, dadurch g e k e n n z e i c h n e t , daß zumindest zeitweise während des zweiten Schrittes die Zuführung des Prozeßgasstromes, die Wasserstoffzufuhr sowie die Verbindung des
CVD-Reaktors zur Pumpe geschlossen sind, so daß die Wasserstoffbehandlung in einem geschlossenen CVD-Prozeß (CC-CVD-Prozeß) mit der im Reaktor befindlichen Menge an Wasserstoff bzw. Element- WasserstoffVerbindungen erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Wasserstoffzu¬ fuhr zeitlich später unterbrochen wird, späte- stens, wenn der Druck im Reaktor bis etwa 1 At¬ mosphäre gestiegen ist.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Dauer der Was- serstoffbehandlung in Abhängigkeit des gewünschten Kristallit-Anteils ausgewählt wird, der im Bereich von 20 bis 95 % liegt.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß 2 bis 2000 Zyklen durchgeführt werden.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die mikrokristalli¬ nen Schichten mittels ECR-CVD- oder VHF-CVD- oder Heißdraht-CVD-Prozessen hergestellt werden.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Element Silizium ist.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Prozeßgase SiH4 und H2 mit üblichen Volumenanteilen sind.
8. Verwendung der mikrokristallinen Schichten her- gestellt nach mindestens einem der Ansprüche 1 bis 7 zum Herstellen von Solarzellen, wobei eine Schichtdicke von 1 bis 40 μm mit einem Kri¬ stallitanteil von 70 bis 95 %, insbesondere 90 bis 95 %, eingesetzt wird.
9. Verwendung der mikrokristallinen Schichten her¬ gestellt nach mindestens einem der Ansprüche 1 bis 7 zum Herstellen von mikrokristallinen Dünn Schichttransistoren (TFT) , wobei eine Schicht- dicke von 0,01 bis 1 μm mit einem Kri¬ stallitanteil von 70 bis 95 % hergestellt wird.
10. Verwendung der mikrokristallinen Schicht, herge- stellt nach mindestens einem der Ansprüche 1 bis
7 zum Herstellen von lumineszenten Elementstruk¬ turen.
PCT/DE1994/001158 1993-09-30 1994-09-29 Verfahren zum herstellen mikrokristalliner schichten und deren verwendung WO1995009435A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94928282A EP0721656A1 (de) 1993-09-30 1994-09-29 Verfahren zum herstellen mikrokristalliner schichten und deren verwendung
JP7510063A JPH09508236A (ja) 1993-09-30 1994-09-29 微結晶層を製造する方法、および、それら微結晶層の利用
US08/624,403 US5851904A (en) 1993-09-30 1994-09-29 Method of manufacturing microcrystalline layers and their utilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4333416.4 1993-09-30
DE4333416A DE4333416C2 (de) 1993-09-30 1993-09-30 Verfahren zur Herstellung von mikrokristallinen Schichten und deren Verwendung

Publications (1)

Publication Number Publication Date
WO1995009435A1 true WO1995009435A1 (de) 1995-04-06

Family

ID=6499119

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/DE1994/001158 WO1995009435A1 (de) 1993-09-30 1994-09-29 Verfahren zum herstellen mikrokristalliner schichten und deren verwendung
PCT/DE1994/001168 WO1995009443A1 (de) 1993-09-30 1994-09-30 Verfahren zum herstellen von lumineszenten elementstrukturen

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001168 WO1995009443A1 (de) 1993-09-30 1994-09-30 Verfahren zum herstellen von lumineszenten elementstrukturen

Country Status (5)

Country Link
US (1) US5851904A (de)
EP (1) EP0721656A1 (de)
JP (1) JPH09508236A (de)
DE (1) DE4345229C2 (de)
WO (2) WO1995009435A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711268B4 (de) * 1996-03-18 2004-09-16 Boe-Hydis Technology Co., Ltd. Chemisches Dampfabscheidungsverfahren mit induktiv gekoppeltem Plasma, Verwendung des Verfahrens zum Herstellen von Dünnschichttransistoren und durch das Verfahren hergestellte Dünnschichten aus amorphen Silizium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303945B1 (en) 1998-03-16 2001-10-16 Canon Kabushiki Kaisha Semiconductor element having microcrystalline semiconductor material
FR2812763B1 (fr) * 2000-08-04 2002-11-01 St Microelectronics Sa Formation de boites quantiques
US7122736B2 (en) * 2001-08-16 2006-10-17 Midwest Research Institute Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
JP2003298077A (ja) * 2002-03-29 2003-10-17 Ebara Corp 太陽電池
US7273818B2 (en) * 2003-10-20 2007-09-25 Tokyo Electron Limited Film formation method and apparatus for semiconductor process
TW200905730A (en) * 2007-07-23 2009-02-01 Ind Tech Res Inst Method for forming a microcrystalline silicon film
WO2009145068A1 (ja) 2008-05-26 2009-12-03 三菱電機株式会社 薄膜形成装置および半導体膜製造方法
GB2549951B (en) * 2016-05-03 2019-11-20 Metodiev Lavchiev Ventsislav Light emitting structures and systems on the basis of group-IV material(s) for the ultra violet and visible spectral range

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526779A1 (de) * 1991-08-05 1993-02-10 International Business Machines Corporation Plasmaunterstützte Gasphasenabscheidung von Silizium mit gepulster Gas-Einspeisung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871589A (ja) * 1981-10-22 1983-04-28 シャープ株式会社 薄膜el素子
JPS59181683A (ja) * 1983-03-31 1984-10-16 Hiroshi Kukimoto 発光素子
NL8501769A (nl) * 1984-10-02 1986-05-01 Imec Interuniversitair Micro E Bipolaire heterojunctie-transistor en werkwijze voor de vervaardiging daarvan.
US4920387A (en) * 1985-08-26 1990-04-24 Canon Kabushiki Kaisha Light emitting device
US5160543A (en) * 1985-12-20 1992-11-03 Canon Kabushiki Kaisha Device for forming a deposited film
DE4042389C2 (de) * 1989-06-23 1993-10-21 Sharp Kk Dünnfilm-Elektrolumineszenzvorrichtung
JP2880322B2 (ja) * 1991-05-24 1999-04-05 キヤノン株式会社 堆積膜の形成方法
DE4126955C2 (de) * 1991-08-14 1994-05-05 Fraunhofer Ges Forschung Verfahren zum Herstellen von elektrolumineszenten Siliziumstrukturen
US5206523A (en) * 1991-08-29 1993-04-27 Goesele Ulrich M Microporous crystalline silicon of increased band-gap for semiconductor applications
JPH06326024A (ja) * 1993-05-10 1994-11-25 Canon Inc 半導体基板の製造方法及び非晶質堆積膜の形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526779A1 (de) * 1991-08-05 1993-02-10 International Business Machines Corporation Plasmaunterstützte Gasphasenabscheidung von Silizium mit gepulster Gas-Einspeisung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. ASANO: "Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films", APPLIED PHYSICS LETTERS., vol. 56, no. 6, 5 February 1990 (1990-02-05), NEW YORK US, pages 533 - 535 *
A.ASANO ET AL.: "Preparation of highly photoconductive hydrogenated amorphous silicon carbide films with a multiplasma-zone apparatus", JOURNAL OF APPLIED PHYSICS, vol. 65, no. 6, 15 March 1989 (1989-03-15), NEW YORK US, pages 2439 - 2444 *
M. OTOBE ET AL.: "Growth mechanism of microcrystalline silicon prepared by alternating deposition of amorphous silicon and hydrogen radical annealing", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 2, vol. 31, no. 10A, 1 October 1992 (1992-10-01), TOKYO JP, pages L1388 - L1391 *
S. KOYNOV ET AL.: "Closed-Chamber Chemical Vapor deposition: new cyclic method for preparation of microcrystalline silicon films", JAPANESE JOURNAL OF APPLIED PHYSICS, PART 1, vol. 33, no. 8, August 1994 (1994-08-01), TOKYO JP, pages 4534 - 4539 *
S. KOYNOV ET AL.: "Properties and stability of hydrogenated amorphous silicon films with a low hydrogen content prepared by cyclic chemical vapour deposition and hydrogenation", MATERIALS SCIENCE AND ENGINEERING B, vol. B17, no. 1/3, 28 February 1993 (1993-02-28), LAUSANNE CH, pages 82 - 86 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711268B4 (de) * 1996-03-18 2004-09-16 Boe-Hydis Technology Co., Ltd. Chemisches Dampfabscheidungsverfahren mit induktiv gekoppeltem Plasma, Verwendung des Verfahrens zum Herstellen von Dünnschichttransistoren und durch das Verfahren hergestellte Dünnschichten aus amorphen Silizium

Also Published As

Publication number Publication date
DE4345229C2 (de) 1998-04-09
DE4345229A1 (de) 1995-04-06
US5851904A (en) 1998-12-22
WO1995009443A1 (de) 1995-04-06
EP0721656A1 (de) 1996-07-17
JPH09508236A (ja) 1997-08-19

Similar Documents

Publication Publication Date Title
DE2940994C2 (de)
DE102011018268A1 (de) Single Junction CIGS/CIC Solar Module
DE3317535A1 (de) Duennfilmtransistor
NL8102411A (nl) Werkwijze voor het maken van een p-halfgeleiderlegering, en een deze legering bevattend orgaan.
DE112011101329T5 (de) Multi-layer SiN für funktional und optische abgestufte Arc-Schichten auf kristallinen Solarzellen
DE112009002238T5 (de) Verfahren und Struktur für eine photovoltaische Dünnschicht-Tandemzelle
DE102011054716A1 (de) Gemischtes Sputtertarget aus Cadmiumsulfid und Cadmiumtellurid und Verfahren zu ihrer Verwendung
EP0545388A1 (de) Einrichtung mit einen lumineszenzfähigen Material und Verfahren zu ihrer Herstellung
DE2711365A1 (de) Halbleiteranordnung mit schottky- grenzschicht
DE2818261A1 (de) Halbleiter-solarzelle und verfahren zu ihrer herstellung
DE102004003760A1 (de) Transparente und leitfähige Oxidschicht, Herstellung sowie Verwendung derselben in einer Dünnschichtsolarzelle
EP0949688A1 (de) Dünnschichtsolarzelle, Verfahren zu deren Herstellung sowie Vorrichtung zur Durchführung des Verfahrens
EP0721656A1 (de) Verfahren zum herstellen mikrokristalliner schichten und deren verwendung
DE3790981B4 (de) Verfahren zum Herstellen einer Photovoltaik-Solarzelle
DE112009001336T5 (de) Photovoltaische Zelle hohen Wirkungsgrads und Herstellungsverfahren
EP0201453B1 (de) Solarzellen auf der Basis von CuInS2 und Verfahren zu deren Herstellung
WO1991012632A1 (de) Lichtalterungsstabiles halbleitermaterial auf der basis von amorphem germanium und verfahren zu seiner herstellung
WO2013071925A2 (de) Verfahren zur herstellung einer solarzelle mit pecvd-kombinationsschicht und solarzelle mit pecvd-kombinationsschicht
DE102012104616B4 (de) Verfahren zum Bilden einer Fensterschicht in einer Dünnschicht-Photovoltaikvorrichtung auf Cadmiumtelluridbasis
DE4333416C2 (de) Verfahren zur Herstellung von mikrokristallinen Schichten und deren Verwendung
EP1807872B1 (de) Photovoltaische zelle mit einem photovoltaisch aktiven halbleitermaterial
DE3049226A1 (de) &#34;solarzelle&#34;
CN110606807A (zh) 一种利用乙醇调控二维钙钛矿结晶过程的后处理方法
DE3119631A1 (de) &#34;photovoltaische solarzelle&#34;
DE19743692A1 (de) Multifunktionsschicht zur Verbesserung des Wirkungsgrades von kristallinen Dünnschicht Silizium Solarzellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994928282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08624403

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994928282

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994928282

Country of ref document: EP