WO1995000675A1 - Procede de zingage a chaud par trempe d'une tole grosse d'acier a resistance elevee reduite dans les parties non revetues - Google Patents

Procede de zingage a chaud par trempe d'une tole grosse d'acier a resistance elevee reduite dans les parties non revetues Download PDF

Info

Publication number
WO1995000675A1
WO1995000675A1 PCT/JP1994/001017 JP9401017W WO9500675A1 WO 1995000675 A1 WO1995000675 A1 WO 1995000675A1 JP 9401017 W JP9401017 W JP 9401017W WO 9500675 A1 WO9500675 A1 WO 9500675A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel sheet
plating
dip galvanizing
polishing
Prior art date
Application number
PCT/JP1994/001017
Other languages
English (en)
French (fr)
Inventor
Makoto Isobe
Nobue Fujibayashi
Kazuaki Kyono
Nobuo Totsuka
Nobuyuki Morito
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06029775A external-priority patent/JP3110238B2/ja
Priority claimed from JP02977694A external-priority patent/JP3162901B2/ja
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP94918566A priority Critical patent/EP0657560B1/en
Priority to KR1019950700679A priority patent/KR100260225B1/ko
Priority to DE69407937T priority patent/DE69407937T2/de
Priority to CA002142096A priority patent/CA2142096C/en
Priority to US08/381,971 priority patent/US5677005A/en
Publication of WO1995000675A1 publication Critical patent/WO1995000675A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Definitions

  • the present invention relates to hot-dip galvanizing of high-strength steel sheets with few non-plating defects for producing hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets using high-strength steel sheets used for automobile bodies and the like. About the method. Background art
  • High-strength steel sheets are strengthened by adding Si, Mn, Cr, etc. to the steel.
  • CGL continuous hot-dip galvanizing apparatus
  • Japanese Patent Laid-Open Publication No. Hei 3-243751 discloses that from the viewpoint of improving the passing speed during the production of alloyed zinc-plated steel sheet in P-added steel, the P-added steel is annealed and pickled after annealing. A method for removing the oxide layer and promoting alloying is disclosed.
  • the non-plating defect of the steel sheet added with 31 ⁇ 1 ⁇ 1, Cr, which is the object of the present invention, can be improved by simply removing P on the steel sheet surface after annealing as described later. Can not.
  • the P-enriched layer is removed by pickling, This is merely to improve the alloying speed in steelmaking and to improve the threading speed in the production of steel sheets with alloyed zinc plating. No consideration is given to plating defects. Therefore, even if the prior art successfully promoted the alloying after zinc plating by removing the P-enriched layer, it would not be possible to successfully prevent the occurrence of non-plating defects in the zinc plating itself. is not. Since this conventional technique does not aim at improving the zinc plating itself, when hot-dip galvanizing of a high-strength steel sheet to which Si, Mn or Cr is added, the plating wettability is not improved.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to use a high-strength high-strength steel sheet containing Si, Mn or Cr as a base steel sheet, and to apply a hot-dip galvanized steel sheet or a galvannealed steel sheet.
  • a high-strength high-strength steel sheet containing Si, Mn or Cr as a base steel sheet
  • a hot-dip galvanized steel sheet or a galvannealed steel sheet When manufacturing coated steel sheets, minimize the complexity of processes and reduce productivity as much as possible, and manufacture low-cost hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets with no non-plating defects.
  • Zinc plating method To offer.
  • Means for solving the above problems in the present invention are as follows.
  • the present inventors measured the steel sheet surface enrichment state after recrystallization annealing in a steel sheet to which Si, Mn or Cr added by the present invention is intended by the glow discharge spectroscopy (GDS). went.
  • Figure 1a) shows the GDS spectrum of the steel sheet surface after recrystallization annealing. From these results, it was found that all of these elements were concentrated on the surface of the steel sheet containing Si, Mn, and Cr.
  • the present inventors examined the conditions of reduction annealing, the amount of surface-concentrated layer and the plating wettability in detail, and as a result, removed the surface-concentrated layer after annealing a cold-rolled high-tensile steel sheet at the recrystallization temperature. In this case, it was found that in the reheating reduction before hot-dip galvanizing, the surface concentration of Si, Mn, and Cr was less likely to occur again, and the effect of improving the plating wettability was observed.
  • FIG. 1b shows the surface concentration of the high-strength steel sheet obtained by GDS and reheated and reduced after annealing at 850 ° C.
  • Fig. 2 shows the effect of annealing temperature and heat reduction temperature after annealing polishing on the surface concentration using Mn as an example. From these results, it was found that the surface concentrated layer was removed after annealing, and then reheated and reduced, so that it could be immersed in a bath with a small amount of surface concentrated layer in a molten zinc plating bath.
  • the present inventors performed recrystallization annealing using a continuous annealing facility (hereinafter, referred to as CAL) capable of producing cold-rolled and annealed steel sheets with high productivity, and then performed Si, Mn, Cr on the surface. After removing the enriched layer of steel components such as by polishing, pickling, or a combination of these, it is re-heated and reduced again by CGL at a temperature of 650 ° C or higher and lower than the recrystallization temperature. It has been found for the first time that zinc plating can be performed successfully without causing non-plating defects.
  • CAL continuous annealing facility
  • the present invention has been made for the first time based on the above-mentioned knowledge, and is obtained by Si: 0.1% or more by weight% after cold rolling, 2.0? ⁇ ⁇ T ", and Mn: 0.5% or more by 2.0%. % Or less, Cr: 0.1% or more and 2.0% or less, steel sheets containing at least one of them are recrystallized and annealed by continuous annealing equipment, and after cooling, the concentrated layer of steel components on the steel sheet surface is removed. And hot-reducing the steel sheet again at 650 ° C or higher and below the recrystallization temperature in a continuous hot-dip galvanizing facility to perform hot-dip galvanizing. It is intended to provide a zinc plating method.
  • the present invention is characterized in that, after cold rolling, in terms of% by weight: ⁇ i: 0.1% or more and 2.0% or less, Mn: 0.5% or more and 2.0% or less, Cr: 0.1% or more
  • a steel sheet containing at least one of 2.0% or less and further containing P: 0.2% or less is recrystallized and annealed by continuous annealing equipment, and after cooling, enrichment of steel components on the steel sheet surface
  • the layer is removed, and the steel sheet is reduced again by heating at a temperature of not less than 65 ° C. and a recrystallization temperature of not more than a recrystallization temperature in a continuous hot-dip galvanizing apparatus to perform hot-dip galvanizing.
  • the purpose of the present invention is to provide a method for hot-dip galvanizing of high strength steel sheets.
  • the concentrated layer of the components in the steel is removed by pickling or polishing or a combination of polishing and pickling.
  • the present invention also relates to a method for hot-dip galvanizing of a high-strength steel sheet having a small number of non-plating defects, wherein the hot-dip method is a hot-dip galvanizing method according to any one of the above aspects. Is provided.
  • the present invention provides the hot-dip galvanizing method according to each of the above aspects, further comprising alloying the hot-zinc-coated high-strength steel sheet, wherein the high-strength steel sheet has a small number of non-plating defects. Is provided.
  • FIG. 1 Determined by glow discharge spectroscopy showing the state of surface thickening of a high strength steel sheet. (A) after annealing, and (b) after annealing-polishing-reheating reduction.
  • FIG. 2 is a graph showing the effect of the reduction temperature on the surface concentration of Mn.
  • FIG. 3 is a graph showing the effect of reheating reduction temperature on non-plating defects.
  • the method of hot-dip galvanizing of a high-strength steel sheet having a small number of non-plating defects for producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet according to the present invention includes any one of Si, Mn, and Cr.
  • a high-tensile steel sheet with steel added as a base steel sheet it is annealed at the recrystallization annealing temperature in a continuous annealing facility, and after cooling, the concentrated layer of steel components on the steel sheet surface is polished or pickled or polished.
  • the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet obtained as described above may be further plated as necessary.
  • the components of the steel such as Si, Mn, and Cr are concentrated as oxides on the surface. After cooling, the surface thickened layer is polished, pickled or removed together, and then the steel sheet is introduced into CGL.
  • pickling, polishing, a combination of polishing and pickling can be typically given.
  • pickling is a process in which the surface of the steel sheet is chemically dissolved by the pickling bath, as described above, if the surface of the high-tensile steel sheet is significantly concentrated after recrystallization annealing, it is necessary to remove the surface-concentrated layer. It takes a long time, the line speed decreases, that is, the productivity decreases, and the roughness (irregularity) of the steel plate surface becomes severe, which may adversely affect the adhesion and sharpness. Can be advantageously used when the surface concentration is small. Furthermore, when the surface concentration of the steel sheet is small, the pickling time can be shortened according to the degree of the surface concentration, and there is an advantage that the line speed does not decrease.
  • polishing involves mechanical (physical) rubbing (sharpening) of the steel sheet surface, which makes the equipment more complicated than pickling.
  • the required polishing time cannot be shortened, and a certain amount of time may be required.However, even if the removal of the surface thickening layer is reliable and the surface There is an advantage that the removal can be surely performed without causing a significant increase in time, and the surface finish after removing the surface concentrated layer is beautiful.
  • polishing and pickling may be used in any combination as long as they are used in combination, and even if the steel sheet surface that has been physically removed by polishing is chemically dissolved by pickling, Polishing after washing, polishing or pickling may be further performed on these, or both may be alternately repeated. For this reason, the simultaneous use of polishing and pickling has the disadvantage of complicating the equipment because both equipments are required.However, irrespective of the degree of surface thickening of the high tension steel sheet, There is an advantage that the removal can be performed reliably and sufficiently, and the productivity is high because the line speed is not reduced.
  • the degree of surface-concentration is determined in consideration of the characteristics of the above-mentioned pickling, polishing, and the combination (combination) of polishing and pickling. Depending on the equipment configuration, productivity, etc., it is sufficient to use pickling, polishing and a combination of these.
  • the cooling of the high-strength steel sheet after the recrystallization annealing is not particularly limited, and the temperature at which polishing or pickling can be performed in a usual manner, for example, by exposing the steel sheet to cold air of the atmosphere gas of continuous annealing, for example, 0 to 100 ° C, preferably from room temperature to about 80 ° C.
  • Polishing of the high-strength steel sheet after recrystallization annealing may be performed by any method as long as the surface condensed layer can be removed, and there is no particular limitation.
  • a rubbing method using a plastic brush containing metal or a rubbing method using a metal wire brush can be used.
  • As the abrasive for example, typically, alumina, silica sand and the like can be mentioned.
  • the polishing amount is What is necessary is just to determine suitably according to the thickness of a surface concentration layer.
  • the pickling of the high-tensile steel sheet after the recrystallization annealing is not particularly limited, and any condition may be used as long as a known method can be used and a surface-concentrated layer can be removed. bath, such as HC KH 2 S0 4 can be carried out using.
  • the bath concentration is 2 to 2 Owt% when using HC1, for example 5 wt%
  • the bath temperature is about room temperature to 80 ° C, for example, 50 ° C
  • the pickling time is 5 to 60. Seconds, for example, 10 seconds.
  • electrolytic pickling may be performed.
  • polishing and pickling are used together, either may be performed first, but it is preferable to perform both in succession.
  • the concentrated layer removal device is
  • Heat reduction with CGL is applied to hot rolled steel sheets with little addition of Si, Mn and Cr.
  • the reheating reduction temperature is preferably lower than the recrystallization annealing temperature in CAL (see Fig. 3). Therefore, in the present invention, the reheating reduction temperature is limited to not less than 650 ° C. and not more than the recrystallization annealing temperature.
  • the reheating reduction atmosphere in the CGL is not particularly limited as long as it is a reducing atmosphere as in the case of CAL: N 2 gas or H 2 gas containing 0.5% or more of H 2 can be used. Although possible, it is preferable to use N 2 gas containing preferably 1 to 20% H 2 , generally about 5% H 2 .
  • the steel sheet re-annealed and reduced at the above temperature is cooled to around 500 ° C in the same way as normal hot-dip galvanizing, then from 460 ° C to 500 ° C, and the dissolved A1 concentration 0.12 to
  • the molten zinc is introduced into a molten zinc plating bath of about 0.20 wt%, more preferably about 0.13 to 0.14 wt%, and is coated with zinc.
  • the weight per unit area is adjusted by gas wiping at the time of rising from the bath.
  • a hot-dip galvanized steel sheet is manufactured. If necessary, it is immediately heat-alloyed to produce an alloyed hot-dip galvanized steel sheet.
  • the alloying temperature should be 460 ° C or higher for productivity and 560 ° C or lower for plating adhesion during press forming.
  • Si, Mn, and Cr are added to increase the strength of the steel. Further contains P, 0
  • Si is set to 0.1% or more, which has the effect of increasing the strength of steel, and is set to 2.0% or less to form an oxide film on the surface and reduce the adhesion to the plating bath.
  • Mn is set to 0.5% or more, which has the effect of increasing the strength of steel, and is set to 2.0% or less because it has an adverse effect on deep drawability.
  • Cr is set to 0.1% or more, which has the effect of increasing the strength of steel, and is set to 0.1% or more and 2.0% or less due to the saturation of the effect of improving strength and economy.
  • P can be strengthened with a small amount of addition, and is relatively inexpensive, so it can be added as needed. However, secondary working embrittlement is likely to occur and deep drawability is also adversely affected. Therefore, even when intentionally added, the content is 0.2% or less. In the present invention, it is not necessary to add P, so there is no particular need to set a lower limit, but if intentionally added, it is preferably at least 0.03%.
  • the present invention is effective in steel sheets to which at least one of Si, Mn, and Cr is added.In addition to P, carbonitride forming elements added to these steel sheets to improve formability are used.
  • the present invention is also effective for steel sheets to which certain Ti and Nb are added.
  • B is added to steel sheets to which at least one of Si, Mn, and Cr and, if necessary, I of P, Ti, and Nb, or at least one of them, are added to improve secondary work brittleness and weldability. It is good to use a steel plate that has been made. Examples Hereinafter, the present invention will be specifically described based on examples. In the laboratory, the steel sheet was vacuum-melted and 0.7 mm thick by hot rolling and cold rolling.
  • a vertical CGL simulator was used for annealing and plating.
  • a resistance heating furnace with direct energization was used for the alloying.
  • Table 1 shows the composition of the test steel sheet. After pre-cleaning the steel sheet, apply the conventional method of annealing only or the present method of annealing and removal of the concentrated layer-reheating reduction, then apply hot-dip zinc coating and melt. A zinc-plated steel sheet was obtained. Thereafter, the molten zinc-plated steel sheet was alloyed to obtain an alloyed zinc-plated steel sheet. The plating appearance of the obtained steel sheet, the iron content in the plating layer, and the padding resistance were evaluated.
  • the steel sheet is put into a plating bath when the temperature reaches a predetermined temperature after annealing.
  • the steel sheet is once cooled to room temperature, a concentrated layer is removed, and then reduced again by heating.
  • the steel sheet has cooled to a predetermined temperature, it is put into a plating bath. Thickening layer removal processing conditions
  • Processing method 10 roundtrips vertically and horizontally (rubbing)
  • Table 2-2 Conventional method Method of the present invention Method of alloying Melting Melting Upper layer Resistant to padding Temperature for temperature Measuring Measuring Ring properties Lack of annealing temperature Annealing temperature Conditioning temperature Concentration removal Removal Refund amount Iron content Evaluation plate C Reso Liifllli or Re ° C go '/ m 2 % CPS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

明 細 書 発明の名称
不めっき欠陥の少ない高張力鋼板の溶融亜鉛めつき方法 技術分野
本発明は、 自動車車体用などに用いられる高張力鋼板を素材とした溶融亜 鉛めつき鋼板および合金化溶融亜鉛めつき鋼板を製造するための不めっき欠陥の 少ない高張力鋼板の溶融亜鉛めつき方法に関する。 背景技術
従来より自動車用鋼板として耐食性の優れた種々の表面処理鋼板が用いられて いる。 その中でも、 再結晶焼鈍およびめつきを同一ラインで行う連続式溶融亜鉛 めっき設備において製造されている溶融亜鉛めつき鋼板は高度な耐食性と安価な 製造が可能であり、 また、 溶融亜鉛めつきに加熱処理を施した合金化溶融亜 鉛めつき鋼板は耐食性に加え、 溶接性やプレス加工性に優れていることから多く 用いられている。
一方近年、 地球環境問題がクローズアップされ、 自動車の燃費向上のため軽量 化が迫られている。 そのため、 鋼板の強度を高めた高強度 ·高張力鋼板が開発さ れ、 現在では耐食性のため溶融亜鉛めつき化および合金化溶融亜鉛めつき化が必 要となってきている。
高張力鋼板は、 鋼中に S i、 Mn、 C rなどを添加することで強度を高めてい るが、 連続溶融亜鉛めつき装置(以下 C G Lと称す) での溶融亜鉛めつき鋼板の 製造において、 焼鈍還元時に高強度化のために添加した成分の鋼板表面への濃化 が見られる。 これらの元素は酸化物として表面に酸化膜を生成する。
その結果、 鋼板と溶融亜鉛との濡れ性が著しく劣化し、 不めっき欠陥が発生す る。
このような不めっき欠陥の発生を防止する従来方法としては、 C G Lに鋼 板を導入する前に電気めつきを行う方法 (特開平 2 - 1 9 4 1 5 6号公報) あるいはクラッ ド法により S i、 M n等の含有量の少ない鋼を表層にして めっき濡れ性を改善する方法 (特開平 3— 1 9 9 3 6 3号公報) が考案され ている。 一方、 鋼中にさらに T iを添加して、 溶融亜鉛との濡れ性を改善する方 法(特開平 4 - 1 4 8 0 7 3号公報) も考案されている。
ところで、 C G Lに鋼板を導入する前に N i系あるいは F e系の電気めつきを 行うことにより、 S i、 Mn等を含有する高強度鋼板の溶融亜鉛めつきは可能に なるが、 電気めつき設備の増設、 工程数増加による煩雑化、 生産性の低下を 免れない。 クラッド化によるめつき性改善方法も工程を煩雑化し、 生産性低下を 招く。
また、 特開平 3— 2 4 3 7 5 1号公報には P添加鋼において合金化亜鉛めつき 鋼板製造時の通板速度を向上させる観点から、 P添加鋼を焼鈍後酸洗して P濃化 層を除去し合金化を促進する方法が開示されている。 し力、し、 本発明で対象とす る、 3 1ゃ1^ 1、 C rを添加した鋼板の不めっき欠陥は、 後述する様に単に焼鈍 後に、 鋼板表面の Pを除去するのみでは改善できない。
すなわち、 ここに開示されているのは、 酸洗によって P濃化層を除去し、 P添 加鋼における合金化速度を向上させ、 合金化亜鉛めつき鋼板製造時の通板速度の 向上を図ることにすぎず、 本発明が対象とする S iや Mnや C rを添加した鋼板 の不めっき欠陥については全く考慮していない。 従って、 たとえ、 この従来技術 によって P濃化層の除去によつて亜鉛めつき後の合金化をうまく促進することが できたとしても、 亜鉛めつきそのものの不めっき欠陥の発生をうまく防止できる わけではない。 この従来技術は亜鉛めつき自体の改善を目的とするものではない ため、 S iや Mnや C rを添加した高張力鋼板を溶融亜鉛めつき処理する際に、 めっき濡れ性が改善されず不めつき欠陥が発生していると、 この従来技術を適用 することによってめっき後の合金化を促進したとしても品質の良レ、合金化溶融亜 鉛めつき鋼板を製造することはできない。 このため、 特開平 3— 2 4 3 7 5 1号 公報に開示された P濃化層除去のための酸洗処理および鋼板表面清浄化処理 では、 溶融亜鉛めつきにおいて発生する不めっき欠陥を十分に防止すること はできず、 溶融亜鉛めつき鋼板における不良品の発生を十分に防止できないし、 めっき後の合金化を促進しても、 めっきそのものに欠陥が存在するため、 合金化 溶融めつき鋼板にももちろん不良品が発生することになる。 発明の開示
本発明の目的は、 上記従来技術の問題点を解消し、 S i、 Mnまたは C rを含 有する高強度 ·高張力鋼板を素地鋼板に用いて、 溶融亜鉛めつき鋼板または合金 化溶融亜鉛めつき鋼板を製造するにあたり、 できるだけ工程の煩雑化や生産性低 下を最低限にとどめ、 不めっき欠陥がなく品質のよい溶融亜鉛めつき鋼板および 合金化溶融亜鉛めつき鋼板を安価に製造することのできる溶融亜鉛めつき方法を 提供するにある。
本発明におレ、て上記問題点を解決する手段は以下の通りである。
本発明者らは、 本発明が目的とする S i、 Mnあるいは C rが添加されている 鋼板における再結晶焼鈍後の鋼板表面濃化状態の測定をグロ一放電分光分析 法 (GD S) により行った。 図 1 a ) に再結晶焼鈍後の鋼板表面の GD Sスぺク トルを示す。 これらの結果により、 S i、 Mn、 C rの添加鋼板において、 これ らのすベての元素が表面に濃化していることがわかつた。
よって、 めっき濡れ性の改善のためには、 溶融亜鉛めつき浴に鋼板が導かれる 時点において、 これらの元素の表面濃化層量を少なくすればよいと考えられる。 そこで本発明者らは、 還元焼鈍条件、 表面濃化層量とめっき濡れ性を詳細に検 討した結果、 高張力鋼板の冷延板を再結晶温度で焼鈍した後に表面濃化層を除去 した場合、 溶融亜鉛めつき前の再加熱還元において再度の S i、 Mn、 C rの表 面濃化が起こり難く、 めっき濡れ性の改善効果がみられることを知見した。 本発明が対象とする S i、 Mn、 C rが添加された高張力鋼板において、 これ らの添加量によっては、 酸洗のみでも還元焼鈍 (再結晶焼鈍) 後の表面濃化層の 除去効果がみられる。 しかし、 特に本発明が目的とする高張力鋼板において S i、 Mn、 C rの添加量が多い場合、 酸洗だけで表面濃化層を除去するために はラインスピードを遅くするなどの手段により長時間酸洗が必要となり、 また、 鋼板表面が長時間酸洗により荒れて凹凸が激しくなり、 溶融亜鉛めつき、 合金化 溶融亜鉛めつきの密着性ゃ鮮映性などに悪影響を及ぼすことがある。 よって、 研 磨技術または研磨と酸洗とを組み合わせる技術によつて表面濃化層を十分に除去 するのが望ましい。 図 1 b) には GDSにより求めた 850 °C焼鈍研磨後さらに再加熱還元した高 張力鋼板の表面濃化の様子を示す。 また、 図 2には Mnを例に取って焼鈍温度お よび焼鈍研磨後の加熱還元温度の表面濃化におよぼす影響を示す。 これらの結果 より焼鈍後表面濃化層を除去し再加熱 ·還元することにより表面濃化層量の少な い状態で溶融亜鉛めつき浴に浸漬できることがわかった。
しかし、 表面濃化層を除去した後の鋼板を再度加熱還元してめつき浴に導レ、た 処、 再加熱還元温度がめっき浴温近傍の 450 °Cから 600 °C程度では不めっき 欠陥が著しく、 650°C以上ではじめて不めっき欠陥の少ない溶融亜鉛めつきが 得られることを新たに知見した (図 3参照)。
従って、 本発明者らは、 冷延、 焼鈍鋼板を高生産性で生産できる連続焼鈍設備 (以下、 CALと称す) を用いて再結晶焼鈍を行った後に、 表面の S i、 Mn、 C r等の鋼中成分の濃化層を研磨、 酸洗あるいはこれらの併用によって除去した 後、 CGLで再び 650°C以上再結晶温度以下の温度で再加熱還元することによ り、 この後の溶融亜鉛めつきを不めっき欠陥を発生させることなく良好に行うこ とができることをはじめて見いだした。
すなわち、 本発明は、 上記知見によってはじめてなされたもので、 冷間圧延後 の、 重量%で S i : 0. 1 %以上 2. 0?^¾T"、 Mn : 0. 5%以上 2. 0 %以 下、 Cr : 0. 1 %以上 2. 0%以下のうち少なくとも一種以上を含有する鋼板 を連続焼鈍設備で再結晶焼鈍し、 冷却後に鋼板表面の鋼中成分の濃化層を除 去し、 連続溶融亜鉛めつき設備にて再度前記鋼板を 650°C以上再結晶温度以下 で加熱還元して溶融亜鉛めつきを行うことを特徴とする不めっき欠陥の少なレ、高 張力鋼板の溶融亜鉛めつき方法を提供するものである。 また、 本発明は、 冷間圧延後の、 重量%で≤ i : 0 . 1 %以上 2. 0 %以下、 Mn : 0 . 5 %以上 2. 0 %以下、 C r : 0 . 1 %以上 2. 0 %以下のうち少な くとも一種以上を含有し、 さらに P : 0 . 2 %以下を含有する鋼板を連続焼鈍設 備で再結晶焼鈍し、 冷却後に鋼板表面の鋼中成分の濃化層を除去し、 連続溶融亜 鉛めつき設備にて再度前記鋼板を 6 5 0 °C以上再結晶温度以下で加熱還元して溶 融亜鉛めつきを行うことを特徴とする不めっき欠陥の少なレ、高張力鋼板の溶融亜 鉛めつき方法を提供するものである。
ここで、 上記本発明の各態様において、 前記鋼中成分の濃化層の除去を酸洗ま たは研磨もしくは研磨および酸洗の併用 (組み合わせ) のいずれかによつて行う のが好ましい。
また、 本発明は、 上記各態様の溶融めつき方法であって、 溶融めつき後、 さら に上層めつきを行うことを特徴とする不めっき欠陥の少ない高張力鋼板の溶融亜 鉛めつき方法を提供するものである。
また、 本発明は、 上記各態様の溶融亜鉛めつき方法であって、 溶融亜鉛めつき された高張力鋼板に、 さらに合金化を行うことを特徴とする不めっき欠陥の少な レ、高張力鋼板の溶融亜鉛めつき方法を提供するものである。
ここで、 上記各態様の溶融亜鉛めつき方法であって、 合金化後、 さらに上 層めつきを行うことを特徴とする不めっき欠陥の少ない高張力鋼板の溶融亜 鉛めつき方法を提供するものである。 図面の簡単な説明
(図 1 ) 高張力鋼板の表面濃化の状態を示すグロ一放電分光分析法により求 めた図であり、 (a ) は焼鈍後、 (b ) は焼鈍一研磨一再加熱還元後の図で める
(図 2 ) Mnについての表面濃化に及ぼす還元温度の影響を示す図である。 (図 3 ) 不めっき欠陥に及ぼす再加熱還元温度の影響を示す図である。 発明を実施するための最良の形態
本発明の、 溶融亜鉛めつき鋼板および合金化溶融亜鉛めつき鋼板の製造す るための不めっき欠陥の少ない高張力鋼板の溶融亜鉛めつき方法は、 S i、 M n、 C rのいずれかを添加してなる高張力鋼板を素地鋼板として用いる場 合に、 連続焼鈍設備にて再結晶焼鈍温度で焼鈍し、 冷却後に鋼板表面の鋼中成分 の濃化層を研磨あるいは酸洗または研磨と酸洗との組み合わせにより除去し、 連 続溶融亜鉛めつき設備にて再度鋼板を 6 5 0 °C以上再結晶温度以下で加熱還元し て溶融亜鉛めつきを行う方法および以上のように製造された溶融亜鉛めつき鋼板 に合金化処理を行う方法である。 合金化に際しての加熱処理は、 4 6 0 °Cより低 温の場合長時間の加熱が必要であり生産性が低下するため 4 6 0 °C以上、 プレス 成形時のめっき密着性の確保より 5 6 0 °C以下がよい。 以上のようにして得られ た溶融亜鉛めつき鋼板および合金化溶融亜鉛めつき鋼板は必要に応じてさらに上 層にめっきを施してもよい。
以下に、 本発明をさらに詳細に説明する。
まず、 本発明に用いられる高張力鋼板に C A Lおよび C G Lにて溶融亜鉛 めっきおよびその後の合金化を行う方法について述べる。 めっき素材となる鋼板 は熱延および冷延によつて板厚を調整された後、 C A Lにより再結晶温度で焼鈍 される。 C A Lの雰囲気はスケールの発生を防止するため、 鋼板に対し還元性が 必要であり、 0. 5 %以上の H2 を含有する N2 ガスもしくは H2 ガスを用いる ことが可能である力、 好ましくは 1〜2 0 %H2 、 一般的には 5 %程度の H2 を 含有する N2 ガスを用いれば良い。 C A Lでの鋼板到達温度は鋼中成分および目 標材質により異なるが 7 5 0 °Cから 9 5 0 °Cの範囲が一般的である。
C A Lにて再結晶温度で焼鈍された鋼板は、 表面には鋼中成分の S i、 Mn、 C rなどが酸化物として濃化する。 冷却後、 この表面濃化層を研磨または酸洗あ るいはこれらの併用除去した後、 C G Lへ鋼板を導入する。
本発明において用いられる表面濃化層の除去方法としては、 代表的に酸洗、 研 磨、 研磨と酸洗との併用などを挙げることができる。
ここで、 酸洗は、 酸洗浴によって鋼板表面を化学溶解するものであるので、 前 述したように、 再結晶焼鈍後の高張力鋼板の表面濃化が著しいと、 表面濃化層の 除去に長時間を要し、 ライン速度が低下し、 すなわち生産性が低下し、 また、 鋼 板表面の荒れ (凹凸) が激しくなり、 密着性ゃ鮮映性などに悪影響を及ぼすこと があるが、 設備が簡単であるので、 表面濃化が少ない場合には有利に用いること ができる。 さらに鋼板の表面濃化が少ない場合には、 表面濃化の程度に応じて酸 洗時間も短かくすることができ、 ライン速度の低下を招かないという利点も ある。
一方、 研磨は、 鋼板表面を機械的 (物理的) に擦り (削り)取るものであるの で、 酸洗に較べ設備が複雑になり、 設備によっては表面濃化が少ない場合でも、 表面濃化の程度に応じて必要な研磨時間を短かくできず、 一定の時間が必要とな ることもあるが、 表面濃化層の除去が確実で、 表面濃化が著しい場合でも、 研磨 時間の大幅な増大を招くことはなく、 確実に除去でき、 また表面濃化層除去後の 表面仕上りが美麗であるという利点を有する。
また、 研磨と酸洗との併用は、 両者を組み合わせて用いればどのように組み合 わせてもよく、 研磨による物理的除去を行った鋼板表面に酸洗による化学的溶解 を施しても、 酸洗後研磨しても、 これらにさらに研磨か酸洗のいずれかを行って もよいし、 両者交互に繰り返し行ってもよい。 このため、 研磨と酸洗との併 用は、 両方の設備が必要となるので設備が複雑になるという不利はあるが、 高張 力鋼板における表面濃化の程度によらず、 表面濃化層の除去を確実かつ十分に行 うことができ、 またライン速度の低下を招くことがないので生産性が高いという 利点がある。
従って、 本発明法によって高張力鋼板の表面濃化層の除去を行う場合、 上述し た酸洗、 研磨、 研磨と酸洗との併用 (組み合わせ) の特性を考慮して、 表面濃化 の程度、 設備の構成、 生産性などによって酸洗、 研磨およびこれらの併用を使い 分ければよい。
再結晶焼鈍後の高張力鋼板の冷却は、 特に制限的でなく、 常法に従って、 例え ば連続焼鈍伊の雰囲気ガスの冷風にさらすことによって、 研磨または酸洗できる 温度、 例えば 0〜1 0 0 °C、 好ましくは室温〜 8 0 °C程度まで冷却すればよい。 また、 再結晶焼鈍後の高張力鋼板の研磨は、 表面濃化層を除去できれば、 どの ような方法によって行ってもよく、 特に制限はないが、 研磨方法としては、 例えば、 代表的に研磨剤入りプラスチック製ブラシによる擦動方法、 金属製 ワイヤーブラシによる擦動方法などを挙げることができる。 研磨剤としては、 例 えば、 代表的にアルミナ、 硅砂などを挙げることができる。 また研磨量としては 表面濃化層の厚さに応じて適宜定めればよい。
また、 再結晶焼鈍後の高張力鋼板の酸洗も特に制限はなく、 公知の方法を用い ることができ、 表面濃化層を除去できれば、 どのような条件であってもよいが、 例えば、 HC K H2 S04 などの浴を用いて行うことができる。
酸洗条件としては、 例えば、 代表的に浴濃度は HC 1を用いる場合では 2〜2 Owt%、 例えば 5wt%、 浴温 室温〜 80°C程度、 例えば 50 °C、 酸 洗時間 5〜60秒、 例えば 10秒とすることができる。 なお、 表面濃化層の厚さ によっては、 電解酸洗してもよい。
ここで、 研磨と酸洗を併用する場合には、 どちらを先にやってもよいが、 両者 を続けて行うのがよい。
濃化層除去装置は、
①連続焼鈍設備(ライン)(CAL)の出側に連結、
②連続溶融亜鉛めつき装置(ライン)(CGL)の入側に連結、
③ CAL, CGLとは別ライン、
④ CAL、 除去装置、 CGLが同一ライン、
などのように設置することが可能である。
CGLでの加熱還元は S i、 Mn、 C rの添加の少ない熱延仕上げの鋼板では
600 °C程度で十分で、 めっき可能であるが、 S i、 Mn、 Crを添加した冷延 後再結晶焼鈍した鋼板ではめつき浴との反応性、 めっき濡れ性のために、 再加熱 還元温度が 650 °C以上で改善効果が現れ、 700 °C以上で好適範囲にはいる。 しかし、 再表面濃化防止のためおよび鋼板材質上、 CALでの再結晶焼鈍温度以 下が再加熱還元温度として好ましい (図 3参照)。 従って、 本発明においては、 再加熱還元温度を 650 °C以上再結晶焼鈍温度以 下に限定する。 再加熱還元温度が 6 5 0 C未満では、 図 3に示されるように 不めっき欠陥が生じるので、 たとえめつき後に合金化をうまく行ったとしても、 製品としては不良品となってしまうからであり、 再結晶温度超では、 再び鋼板表 面に鋼中成分の表面濃化層が形成されるので、 溶融亜鉛めつきの不めっき欠陥が 発生し、 不良品となってしまうからである。 CGLでの再加熱還元雰囲気 は、 CALと同様に、 還元性雰囲気であれば、 特に制限的ではないが: 0. 5% 以上の H2 を含有する N2 ガスもしくは H2 ガスを用いることが可能であるが、 好ましくは 1〜20%H2 、 一般的には 5%程度の H2 を含有する N2 ガスを用 いれば良い。
上記温度で再焼鈍還元された鋼板は、 通常の溶融亜鉛めつきと同様に 500°C 前後に降温後、 4 6 0 °Cから 5 0 0 °C程度、 溶解 A 1濃度 0. 1 2〜 0. 20wt %、 より好ましくは 0. 1 3から 0. 1 4wt %程度の溶融亜 鉛めつき浴に導入され亜鉛めつきされ、 浴からの立ち上がり時にガスワイビング により目付量が調整される。 こうして、 溶融亜鉛めつき鋼板が製造される。 必要 に応じて、 その後直ちに加熱合金化処理され、 合金化溶融亜鉛めつき鋼板が製造 される。 合金化温度は生産性より 460 °C以上、 また、 プレス成形時のめっき密 着性より 560°C以下とするのがよい。
溶融亜鉛めつき後あるいは合金化溶融亜鉛めつき後、 必要に応じて上層めつき を行い、 めっき特性の改善をはかることも可能である。 例えば、 上層めつきとし て、 プレス時の摺動性改善のために行われる F e— Znや F e— Pめっきなどを 施しても良い。 この上層めつきは特に制限はなく、 用途に応じて如何なるめっき でも良い。
本発明において用いられる高張力鋼板の鋼中成分について以下に説明する。
S i、 Mn、 Crは鋼に強度をもたせるために添加している。 さらに Pが含有 されてもょレ、0
S iは鋼の強度を高める効果の現れる 0. 1 %以上とし、 表面に酸化膜を形成 し、 めっき浴との密着性を低下させるため 2. 0%以下とする。
Mnは鋼の強度を高める効果の現れる 0. 5%以上とし、 また、 深絞り性に悪 影響を及ぼすため 2. 0%以下とする。
C rは鋼の強度を高める効果の現れる 0. 1 %以上とし、 強度向上効果の飽和 と経済性より 0. 1%以上 2. 0%以下とする。
Pは少量の添加で強度を持たせることが可能であり、 比較的安価であるため、 必要に応じ添加できる。 但し、 2次加工脆性を起こし易く、 また深絞り性にも悪 影響であるため、 意図的に添加する場合でも 0. 2%以下とする。 本発明では必 ずしも Pを添加する必要はないので、 下限は特に設ける必要はないが、 意図的に 添加する場合には 0. 03%以上であるのがよい。
本発明は、 S i、 Mn、 C rの少なくとも 1種を添加した鋼板において効果が みられるが、 Pの他、 これらの鋼板に成形性改善のために添加される炭窒化物形 成元素である T iや Nbを添加した鋼板においても、 本発明は有効である。 また、 S i、 Mn、 Crの少なくとも 1種と、 必要に応じて P、 Ti、 Nbの I、ずれか少なくとも 1種を添加した鋼板に 2次加工脆性改善および溶接性のため さらに Bを添加した鋼板を用いても良レ、。 実施例 以下に本発明を実施例に基づいて具体的に説明する。 実験室的に鋼板は真空溶製し、 熱延、 冷延により 0 . 7 mm厚とした。 焼鈍お よびめつきには縦型の C G Lシミュレータを用いた。 合金化は、 直接通電による 抵抗発熱炉を用いた。 表 1に供試鋼板の組成を示す。 予め清浄化処理をした鋼板に、 従来方法である焼鈍のみの処理、 あるいは本発 明方法である焼鈍一濃化層除去 -再加熱還元の処理を施した後、 溶融亜鉛めつき を行い、 溶融亜鉛めつき鋼板を得た。 この後、 この溶融亜鉛めつき鋼板を合金化 処理して合金化亜鉛めつき鋼板を得た。 得られた鋼板のめっき外観評価、 めっき 層中の鉄含有率および耐パゥダリング性を評価した。 ここで、 焼鈍後濃化層を除去することなく溶融亜鉛めつきした例 (従来 方法) 、 および焼鈍後濃化層を除去した後再加熱還元処理を行った例 (本発明方 法) を表 2示す。 焼鈍条件、 再加熱還元条件、 濃化層除去処理条件、 亜鉛めつき 条件および合金化処理条件ならびに得られた鋼板の評価方法を以下に示す。 ·焼鈍条件および再加熱還元条件
5 %H 2 — N2 ガス (露点— 2 0 °C)
温 度 表 2
時 間 2 0秒 従来方法は、 焼鈍後鋼板が所定温度になった時点でめっき浴に投入する。 本発明方法は、 焼鈍後一旦室温まで冷却し、 濃化層を除去した後、 再度加熱 還元し、 鋼板が所定温度まで降温した時点でめっき浴に投入する。 濃化層除去処理条件
研 磨 材 料 アルミナ研磨剤入りナイロンブラシ
処理方法 縦横 1 0往復 (擦動)
酸 洗 塩酸濃度 5%HC 1水溶液
温 度 60 °C
時 間 6秒 上記条件にて研磨あるいは酸洗または研磨と酸洗の組み合わせを行った c めっき条件 めっき浴 A 1濃度 0. 1 3wt %
浴 温 475 °C
板 温 475°C
3秒
S付量 4 5 g/m2 合金化条件 表 2
時 間 表 2
•評価方法 不めっき欠陥の判定は目視により行い、 不めっき欠陥が全くないものを 「1」 、 最も不めっきの多いものを 「5 J とした。 めっき層中鉄含有率は硫酸にてめつき層を溶解し、 原子吸光にて測定した。 耐パゥダリング性は 9 0°C曲げ戻し試験の後、 セロテープに付着した亜鉛粉を 蛍光 X線にて測定した。 その結果を表 2に示す。 ミ SL90 OSS6M
刚 Ό 10 ·0 Ζ00Ό 82 ·0 19 "0 0 00 Ν
100 ·0 εοο Ό 10 900 '0 Ζ8"0 63 Ό S刚 ΙΛΙ εοοο ·ο 10 ·0 20 Ό ΖΖΌ 90 Ό 2 90 Ό ΟΙΟ'Ο Ί.
80 ·0 8"1 I ·ο U0 ·0 >τ 一 10 '0 C0"0 ― 一 ί Ό 9 ΖΊ ΙΙΟ'Ο Γ
200 ·0 90 II ·0 9Ί 9"0 800 Ό I
100 Ό 90 '0 Ζ0Ό ΟΊ δ'Ο εοοΌ Η
89 Ό Ο '0 ΖΌ I Ό 900 Ό
― 一 一 一 SO'O I 90 ·0 600 Ό ά
91 ·0 2·0 ' 0 刚 Ό a
100 '0 01 ·0 2"0 I ·0 刚 α
1100 ·0 iOO'O ·0 S6O 2S"0 9900 ·0 0 εοο ·ο ΙΪΟ'Ο 96 Ό 20 Ό 990-0 a
900 '0 99*0 Q10-0 89 Ί 20 ·0 2 Ο'Ο V
9 qN ί丄 S J 0 d U I S 3
表 2— 1 使 従来方法 本発明方法 合金化 溶 融 溶 融 上 層 而†ハ0ゥダ ィヽの 区 用 温 度, めっき めつ 暦 めつ リング'『生 き欠陥 鋼 焼鈍温度 ' 鉞 度 濃 ισ¾仆匾除 Π去 再加埶還 目付量 鉄含有率 評 価 板、入 °C °P UtimD °c p/m2 % CPS
1 丄 A \ 820 60 4 比
2 B 820 60 4 比
3 c 850 60 4 比
4 A O Q 90 \J な し 7 n 60 5 比
A Q O 9 n u Ά R u Q o n u 6 0 2 荬
6 A c O o n \J 西 77 n 60 実
7 B 0 Q ώ n u 西 φ 7 70 60 実
« c O Q J n U 西 Φ 7 n 0 60 実 q c o Q r u; n u 西 ί 7 ς n R 0 卖 in c o Q n 西 MX. o Q n n 6 0 実
11 c o Q p u; n u 西 Φ δ O p o;
Figure imgf000018_0001
60 実
12 c 8 o 5 u 0 u iff 歷 R u ft u 0 u 60 実
13 c β 0 研 庭 7 1 o 60 実
14 c 850 研 1 薛 750 60 j 実
15 c 85 0 研 磨 800 6 0 j
16 c 85 0 研 磨 850 6 0 2 実
17 D 820 5 6 0 45 1 0. 5 ― 3 75 0 4 比
18 D 820 な し 700 5 6 0 45 1 0. 8 4 7 1 0 4 比
19 D 820 研 磨 600 520 4 5 9. 5 25 8 0 3 比
20 D 820 研 磨 650 4 9 0 4 5 9. 9 1 6 6 0 2 実
21 D 820 研 磨 700 4 9 0 4 5 1 0. 8 2 0 5 0 1 実
22 D 820 研 磨 750 4 9 0 4 5 1 0. 7 1 9 3 0 1 実
23 D 820 研 磨 800 4 9 0 4 5 1 0. 0 2 3 1 0 2 実
24 D 820 研 磨 850 5 20 4 5 1 0. 0 3 1 8 0 3 比
25 D 820 研磨→酸洗 600 5 20 4 5 1 0. 9 32 7 0 3 比
表 2— 2 使 従来方法 本発明方法 合金化 溶 融 溶 融 上 層 耐パゥダ 不めつ 区 用 温 度 めつさ めつさ リング性 欠 ι nέn 鐧 焼鈍温度 條鈍温度 濃化曆除去 再加埶還 曰付量 鉄含有率 評 価 板 C レ ソ Liifllli又 レ °C g o'/m2 % CPS
9R D « u? n w\ H¾ U 7 Ω 4 90 4 5 1 0 2 2390 1 実
97 E 840 580 \j A 5 1 0 1 4 770 5 比
28 E » O 4 n W な し 7 Π 0 580 4 5 9 1 4 1 70 比
E O Q 41 Π U iff 睦 R Ό o n 5 60 4 5 1 0 6 ¾ 9 o 0 4 比
30 E 4 n iff 磨 70 0 520 4 5 1 0 9 235 0 2
Q1 F O Q 1 n u iff 睦 Q o n n ? n A R 1 0 5 ? q n 1 室
O Q 4 /! Π U 7 Π 0 90 4 R q 7 ? 0 0 0 1 室
F β 9 o 9 0 \J q A Q o 0 y o 比
F O Δ n \J レ 7 Π Π t ? n δ 7 ? 7 0 0 u tf-
Q o ώ 9 0 υ iff 蔭 R Ό c n \ 9 n \J 1 0 ? ? 4 q n ? 寒
-4
F Ο 9 π u IS 7 P J n R ? n 1 n R 1 1 宰
F Ο ώ 9 Π U iff IS O p U n U 20 q q ¾ 7 R n 4Ί
F ο δ ? Ω R υ n u n u ? n \J τ: « o 1 Q R n 4
39 F δ Ο i ?j η \J 7 nリ Ω u 520 1 o Q 9 8 1 0 1 卖
40 F 820 研磨→酸洗 820 5 20 4 5 9 1 1 7 q 0 9 卖
41 F 850 研磨→酸洗 820 R 90 1 o R ? R U n U 1 実 /JU
42 G 850 550 4 5 9. 7 ― 3550 5 比
43 G 8 50 研 磨 6 0 0 550 4 5 1 0. 2 329 0 3 比
44 G 850 研 磨 70 0 500 4 5 9. 7 1 75 0 1 実
45 G 850 研 磨 80 0 500 4 5 9. 5 1 8 90 1 実
46 G 850 研 磨 9 0 0 550 4 5 9. 0 2 950 3 比
47 G 850 研磨→酸洗 8 0 0 500 4 5 1 0. 5 2390 1 実
48 H 8 5 0 570 4 5 9. 3 3 6 5 0 5 比
49 H 85 0 研 磨 600 5 30 4 5 9. 8 3 3 1 0 4 比
50 H 8 50 研 磨 6 5 0 530 4 5 9. 5 30 5 0 3 実
表 2— 3 使 従来方法 本発明方法 -Α口·伞 1 U ¾ 融 § gib 上 層 耐 IIU ヾゥ 、 exリつ 用 ίππ. λ? S ¾ CT / ί¾Β ¾S J c? リ ンゲ Φ 1ェΦ
鋼 '鮮銶潟度 濃 陣险 Φ 苗 fm埶;晋 PI I Jf*"m* 鉄今お率' Ρ 曜而 板 °C し ソし itnltS °c g/m2 /リ PP ΓQj
O 1 H 0 Q P J; Π u 71 Π U Π U % o \ n \ 4 R Q 7 I 1 R υ Q Π U ο
夫 9 H O Q P; 0 u iff 7 Π 4 q n A R 1 Ω 11 9 π Q 0 11 宝夫 I
H Q 0 C u 0 U iff P¾ 7 Π 4 q n 4 5 1 0 1 1 C Lll A ^ ( \)\ 11
H Q 0 P 0; 0 u iff 7 η 4 q ΰ n U 4 1 n 1 I c U U 11 ま夫 ΐ
0 o P ϋ; n U iff Ο Ο π υ π υ u o u n u 4 *1 Δ O Q Q 0 Π 1
\ 夫 O Q P 0: Π u iff 麻 ο ο F ο; Π υ u Π u Π u A 1 n Q 9 O fi O Π \J Δ 犬
U 1 o Q o δ n u R u o u n u 1 0 fi ^ J 0 Q Al 0 u V
J
τ
0 Q o Q Π u iff β υ π υ π υ c 7 I n U 1 Π R ¾ Q β O 0 U ΐιΐ τ
O Q 0 Q Π u Tiff 7 η π 4 J Q o . 丄 1 7 Π 9
夫 τ
O Q 0 Q 0 u ο Q Π υ Π 5 1 0 4 s q Q 1 q
o WT υ 1 Q n \ 1 o 丄 夫? t fil τ
リ 1 Q o o Q Π u iff Q y η U π υ fi u nリ 0リ 4 5 1 1 Π o Q Q o o Q Π u o Li¾) τ
R9 O Q Q 0 0 u OTJ ¾Oti D υ υ fi u n u n u 4 1 Ω R O Q R U I 1 0 υ ϋΐ
R¾ τ
o Q o Q 0 u 7 Π Π q Q 1
1 τ
o Q Q o Π u 1171 8 ο Π υ Π U q q o 0J Δ 9 Π \J 1 1 τ
65 8 8 0 研磨→酸洗 9 0 0 fi υ n u n u 4 1 Π Q
O し ¾
66 8 8 0 酸洗→研磨 6 0 0 fi U 0 v 0 U *± 1 Ω fi O Q O Q 44 Π U 4 し ¥
67 I ― 880 酸洗→研磨 700 5 1 0 4 5 9. 1 ― 1 5 70 2 実
68 880 酸洗—研磨 800 5 1 0 45 9. 8 1 9 3 0 1 実
69 880 酸洗→研磨 900 60 0 4 5 1 0. 4 28 70 3 比
70 J 900 570 4 5 9. 0 34 6 0 5 比
71 J 900 研 磨 60 0 570 4 5 8. 5 25 5 0 4 比
72 J 900 研 磨 700 520 4 5 9. 6 28 5 0 3 実
73 J 900 研 磨 80 0 520 4 5 1 0. 1 2 6 3 0 1 実
74 J 900 研 磨 900 520 4 5 9. 8 23 6 0 2 実
75 K 84 0 5 5 0 4 5 1 0. 1 4 6 9 0 5 比
表 2— 4 使 従来方法 本発明方法 合金化 溶 融 溶 融 上 層 耐パウダ 不めつ 区 用 温 度 めっき めっき層 めっき リング性 き欠陥 鋼 焼鈍温度 焼鈍温度 濃化層除去 再加熱還 目付量 鉄含有率 評 価 板 °C 。C 元温度 °C 。c g/mz % CPS
76 Κ ― 8 4 0 な し 8 0 0 5 5 0 4 5 9. 0 一 3 7 6 0 5 比
77 Κ ― 8 4 0 研 磨 7 0 0 4 9 0 4 5 9. 6 ― 1 8 5 0 1 実
78 Κ ― 8 4 0 研 磨 8 0 0 4 9 0 4 5 1 0. 2 ― 2 4 9 0 1 実
79 Κ 一 8 4 0 研 磨 8 5 0 4 9 0 4 5 9. 6 ― 2 4 4 0 3 比
80 Κ ― 8 4 0 研磨→酸洗 7 0 0 4 9 0 4 5 1 0. 1 ― 2 2 3 0 1 実
81 Κ ― 8 4 0 研磨—酸洗 8 0 0 4 9 0 4 5 1 0. 4 一 2 6 9 0 1 実
82 Κ ― 8 4 0 研磨→酸洗 8 5 0 4 9 0 4 5 8. 3 一 1 6 1 0 4 比
83 L 8 5 0 5 8 0 4 5 9. 7 ― 3 6 6 0 5 比
84 L ― 8 5 0 な し 7 5 0 5 8 0 4 5 8. 0 一 1 9 0 0 5 比
85 し 一 8 5 0 研 磨 6 0 0 5 3 0 4 5 1 0. 6 一 3 3 9 0 4 比
86 し 一 8 5 0 研 磨 7 0 0 5 3 0 4 5 1 0. 8 一 2 6 9 0 1 実
87 L 一 8 5 0 研 磨 8 0 0 5 3 0 4 5 1 0. 6 一 2 4 3 0 1 実
88 L ― 8 5 0 研 磨 8 5 0 5 3 0 4 5 1 0. 4 _ 2 8 9 0 2 実
89 L ― 8 5 0 研磨→酸洗 6 0 0 5 8 0 4 5 1 0. 1 ― 3 1 5 0 4 比
90 L 一 8 5 0 研磨→酸洗 8 0 0 5 3 0 4 5 1 0. 9 一 2770 1 実
91 L ― O に Λ
0 0 1) mmmu 0
0 c 0 n U 5 3 0 4 5 9. 9 一 2 1 4 0 2 実
92 Ε 8 2 0 5 7 0 4 5 1 1. 0 ― 4 4 5 0 5 比 no 820 な し 700 C 7 Π C
4 u 11 Π U . 0 Q ί 1 υ 0
94 Ε 8 2 0 酸 洗 6 0 0 5 5 0 4 5 1 0. 5 4 1 5 0 5 比
95 Ε 8 2 0 酸 洗 6 5 0 5 0 0 4 5 9. 9 2 0 6 0 3 実
96 Ε 8 2 0 酸 洗 7 0 0 5 0 0 4 5 1 0. 5 2 1 5 0 1 実
97 Ε 8 2 0 酸 洗 7 0 0 5 0 0 4 5 1 0. 5 Fe-Zn 2 4 5 0 1 実
98 Ε 8 2 0 酸 洗 7 5 0 5 0 0 4 5 1 0. 0 2 3 1 0 1 実
99 Ε 8 2 0 酸 洗 7 5 0 5 0 0 4 5 1 0. 0 Fe-P 2 3 8 0 1 実
100 Ε 8 2 0 酸 洗 8 0 0 5 3 0 4 5 1 0. 9 2 5 8 0 3 実
表 2— 5
t
o
Figure imgf000022_0001
表 2— 6 使 従来方法 本発明方法 合金化 溶 融 溶 融 上 層 耐パウダ 不めつ 区 用 温 度 めっき めっき層 めっき リング性 き欠陥 鋼 焼鈍温度 焼純温度 濃化層除去 再加熱還 §付量 鉄含有率 評 価 板 °C °C Τΐ¾πι{ »し °C g/m2 % CPS
126 I 一 900 酸 洗 800 500 4 5 1 0. 6 ― 2380 1 実
127 I 一 900 酸 洗 850 500 45 1 0. 9 ― 258 0 2 実
128 J 820 54 0 4 5 9. 8 ― 384 0 5 比
129 J 820 酸 洗 6 00 540 45 9. 6 ― 23 6 0 4 比
130 J 一 820 酸 洗 700 500 4 5 1 0. 1 一 20 70 2 実
131 J 一 820 酸 洗 8 00 480 4 5 8. 8 ― 1 5 30 1 実
132 J ― 820 酸 洗 8 50 480 4 5 3. 9 一 5 比
133 K 800 540 4 5 6. 0 ― 一 5 比
134 K 一 800 酸 洗 6 0 0 540 4 5 1 0. 0 ― 276 0 4 比 to 135 K ― 800 酸 洗 75 0 500 4 5 9. 6 一 1 85 0 1 実
136 K — 800 酸 洗 75 0 500 4 5 9. 6 Fe-Zn 20 3 0 1 実
137 K 一 8 00 酸 洗 80 0 500 4 5 9. 1 23 6 0 2 実
138 し 84 0 54 0 4 5 6. 0 一 一 5 比
139 L ― 840 酸 洗 6 00 540 4 5 1 0. 0 一 27 6 0 4 比
140 L ― 84 0 酸 洗 750 4 90 4 5 9. 6 ― 1 8 5 0 1 実
141 L ― 84 U m o η
洗 ο υ 0 500 45 1 0. 2 一 24 9 0 1 実
142 M 850 550 5 5 1 0. 5 ― 3 75 0 4 比
1 1 /1ο iVI 850 な し 700 p ϋ e 0 n U C 0
Ό Q 1
0 1 π r
U, o 4 < 1 1) 0
144 M 8 5 0 研 磨 6 0 0 520 6 1 9. 5 29 8 0 4 比
145 M 850 研 磨 650 490 4 8 9. 9 1 6 6 0 2 実
146 M 850 研 磨 700 4 90 5 5 1 0. 8 20 5 0 1 実
147 M 8 50 研 磨 75 0 85 0. 6 0 1 実
148 M 850 研 磨 75 0 4 90 5 1 1 0. 7 1 9 30 1 実
149 M 850 研 磨 80 0 4 90 5 0 1 0. 9 0 1 実
150 M 850 研 磨 8 50 520 5 8 1 0. 0 2 1 8 0 1 実
表 2— 7 使 従来方法 本発明方法 合金化 溶 融 溶 融 上 層 耐パウダ 小めつ 区 用 温 度 めつさ めつさ層 めっき リング性 き欠陥 鋼 焼鈍温度 焼鈍温度 濃化層除去 再加熱還 百付量 鉄含有率 評 価 板 °C °C 元温度。 C 。C g/m2 % CPS
151 M 8 5 0 研 磨 9 0 0 5 2 0 6 1 1 0 . 9 3 7 7 0 3 比
152 N 8 8 0 5 5 0 6 1 1 0 . 1 4 2 7 0 5 比
153 N 8 8 0 な し 7 0 0 5 5 0 6 0 9 . 1 3 5 7 0 5 比
154 N 8 8 0 研 磨 6 0 0 5 5 0 5 8 1 0 . 6 4 2 0 0 3 比
155 N 8 8 0 研 磨 7 0 0 5 5 0 5 5 1 0 . 2 2 3 5 0 1 実
156 N 8 8 0 酸 洗 7 0 0 5 5 0 5 3 9 . 7 2 0 0 0 1 実 t
t 157 N 8 8 0 研 磨 8 0 0 5 5 0 5 8 1 0 . 5 2 5 9 0 1 実
産業上の利用可能性
以上、 詳述したように、 本発明によれば、 溶融亜鉛めつきにおいて難めつき性 を示す S i、 Mn、 C r等を含有する高張力鋼板であっても、 不めっき欠陥がな い鋼板を得ることができる。 また、 ラインの煩雑化や生産性の低下を招くことは ない。 また、 本発明によれば、 上記効果を得るのに、 従来の設備を使用すること ができるので、 設備投資が不要であるという効果もある。

Claims

請求の範囲
1. 冷間圧延後の、 重量%で S i : 0. 1 %以上 2. 0%以下、 Mn : 0. 5% 以上 2. 0%以下、 C r : 0. 1 %以上 2. 0%以下のうち少なくとも一種以上 を含有する鋼板を連続焼鈍設備で再結晶焼鈍し、 冷却後に鋼板表面の鋼中成分の 濃化層を除去し、 連続溶融亜鉛めつき設備にて再度前記鋼板を 650°C以上再結 晶温度以下で加熱還元して溶融亜鉛めつきを行うことを特徴とする不めっき欠陥 の少ない高張力鋼板の溶融亜鉛めつき方法。
2. 前記鋼中成分の濃化層の除去を酸洗によって行う請求項 1に記載の不めっき 欠陥の少ない高張力鋼板の溶融亜鉛めつき方法。
3. 前記鋼中成分の濃化層の除去を研磨によって行う請求項 1に記載の不めっき 欠陥の少ない高張力鋼板の溶融亜鉛めつき方法。
4. 前記鋼中成分の濃化層の除去を研磨および酸洗を併用して行う請求項 1に記 載の不めっき欠陥の少ない高張力鋼板の溶融亜鉛めつき方法
5. 請求項 1〜4のいずれかに記載の溶融亜鉛めつき方法であって、 溶融亜 鉛めつき後、 さらに上層めつきを行うことを特徴とする不めっき欠陥の少ない高 張力鋼板の溶融亜鉗めつき方法。
6. 請求項 1〜5のいずれかに記載の溶融亜鉛めつき方法であって、 溶融亜 鉛めつきされた高張力鋼板に、 さらに合金化を行うことを特徴とする不めっき欠 陥の少ない高張力鋼板の溶融亜鉛めつき方法。
7. 請求項 6に記載の溶融亜鉛めつき方法であって、 合金化後、 さらに上層 めっきを行うことを特徴とする不めっき欠陥の少ない高張力鋼板の溶融亜鉛 めっき方法。
8. 冷間圧延後の、 重量%で3 i : 0. 1 %以上 2. 0%以下、 Mn : 0. 5 % 以上 2. 0%以下、 C r : 0. 1 %以上 2. 0%以下のうち少なくとも一種以上 を含有し、 さらに P : 0. 2%以下を含有する鋼板を連続焼鈍設備で再結晶焼鈍 し、 冷却後に鋼板表面の鋼中成分の濃化層を除去し、 連続溶融亜鉛めつき設備に て再度前記鋼板を 650 °C以上再結晶温度以下で加熱還元して溶融亜鉛めつきを 行うことを特徴とする不めっき欠陥の少ない高張力鋼板の溶融亜鉛めつき方法。
9. 前記鋼中成分の濃化層の除去を酸洗によって行う請求項 8に記載の不めっき 欠陥の少ない高張力鋼板の溶融亜鉛めつき方法。
1 0. 前記鋼中成分の濃化層の除去を研磨によって行う請求項 8に記載の不 めっき欠陥の少なレ、高張力鋼板の溶融亜鉛めつき方法。
1 1. 前記鋼中成分の濃化層の除去を研磨および酸洗を併用して行う請求項 8に 記載の不めっき欠陥の少ない高張力鋼板の溶融亜鉛めつき方法
1 2. 請求項 8〜1 1のいずれかに記載の溶融亜鉛めつき方法であって、 溶融亜 鉛めつき後、 さらに上層めつきを行うことを特徴とする不めっき欠陥の少ない高 張力鋼板の溶融亜鉛めつき方法。
1 3. 請求項 8〜1 2のいずれかに記載の溶融亜鉛めつき方法であって、 溶融亜 鉛めつきされた高張力鋼板に、 さらに合金化を行うことを特徴とする不めっき欠 陥の少ない高張力鋼板の溶融亜鉛めつき方法。
1 4. 請求項 1 3に記載の溶融亜鉛めつき方法であって、 合金化後、 さらに上層 めっきを行うことを特徵とする不めっき欠陥の少ない高張力鋼板の溶融亜鉛 めっき方法。
PCT/JP1994/001017 1993-06-25 1994-06-24 Procede de zingage a chaud par trempe d'une tole grosse d'acier a resistance elevee reduite dans les parties non revetues WO1995000675A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP94918566A EP0657560B1 (en) 1993-06-25 1994-06-24 Method of hot-dip-zinc-plating high-tension steel plate reduced in unplated portions
KR1019950700679A KR100260225B1 (ko) 1993-06-25 1994-06-24 도금 결함이 적은 고장력강판의 용융아연도금방법
DE69407937T DE69407937T2 (de) 1993-06-25 1994-06-24 Verfahren zum feuerverzinken von hochfestem stahlblech mit weniger unbeschichteten stellen
CA002142096A CA2142096C (en) 1993-06-25 1994-06-24 Method of hot-dip-zinc-plating high-tension steel plate reduced in unplated portions
US08/381,971 US5677005A (en) 1993-06-25 1994-06-24 Method for hot dip galvanizing high tensile steel strip with minimal bare spots

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP5/155110 1993-06-25
JP15511093 1993-06-25
JP06029775A JP3110238B2 (ja) 1993-06-25 1994-02-28 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP6/29775 1994-02-28
JP6/29776 1994-02-28
JP02977694A JP3162901B2 (ja) 1993-06-25 1994-02-28 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO1995000675A1 true WO1995000675A1 (fr) 1995-01-05

Family

ID=27286716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001017 WO1995000675A1 (fr) 1993-06-25 1994-06-24 Procede de zingage a chaud par trempe d'une tole grosse d'acier a resistance elevee reduite dans les parties non revetues

Country Status (7)

Country Link
US (1) US5677005A (ja)
EP (1) EP0657560B1 (ja)
KR (1) KR100260225B1 (ja)
CN (1) CN1055510C (ja)
CA (1) CA2142096C (ja)
DE (1) DE69407937T2 (ja)
WO (1) WO1995000675A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177140B1 (en) 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
US6410163B1 (en) 1998-09-29 2002-06-25 Kawasaki Steel Corporation High strength thin steel sheet, high strength alloyed hot-dip zinc-coated steel sheet, and method for producing them
TW500827B (en) * 1999-08-06 2002-09-01 Sms Demag Ag Process and installation for hot galvanizing of hot rolled steel strip
DE60029428T2 (de) 1999-10-25 2007-04-19 Nippon Steel Corp. Metallbeschichteter stahldraht mit hervorragendem korrosionswiderstand und bearbeitbarkeit und herstellungsverfahren
EP1342801B1 (en) * 2000-09-12 2011-02-02 JFE Steel Corporation High tensile strength hot dip plated steel sheet and method for production thereof
JP3778037B2 (ja) * 2000-12-05 2006-05-24 Jfeスチール株式会社 めっき層中合金相の定量方法
JP3582511B2 (ja) * 2001-10-23 2004-10-27 住友金属工業株式会社 熱間プレス成形用表面処理鋼とその製造方法
JP2004124144A (ja) * 2002-10-01 2004-04-22 Chugai Ro Co Ltd 連続溶融金属めっき設備
KR100519854B1 (ko) * 2003-11-01 2005-10-10 현대하이스코 주식회사 도금 밀착성 및 가공성이 뛰어난 고강도 합금화 용융아연도금강판의 제조방법
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
DE102008005605A1 (de) * 2008-01-22 2009-07-23 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
KR101076119B1 (ko) 2008-10-28 2011-10-21 현대제철 주식회사 도금밀착성이 우수한 고강도 냉연강판의 제조방법
MX2014012798A (es) * 2012-04-23 2015-04-14 Kobe Steel Ltd Metodo de fabricacion de hoja de acero galvanizado para estampacion en caliente, hoja de acero galvanizado y recocido por inmersion en caliente para estampacion en caliente y metodo de fabricacion de las mismas, y componente estampado en caliente.
CN105452517B (zh) * 2013-08-12 2019-05-07 杰富意钢铁株式会社 高强度热浸镀锌钢板的制造方法和高强度合金化热浸镀锌钢板的制造方法
KR101893512B1 (ko) 2014-04-22 2018-08-30 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 고강도 합금화 용융 아연 도금 강판의 제조 방법
CN107849662B (zh) 2015-07-29 2020-01-24 杰富意钢铁株式会社 冷轧钢板、镀覆钢板和它们的制造方法
CN109097714B (zh) * 2018-08-03 2021-01-15 首钢集团有限公司 一种表面汽车面板用热镀锌钢板及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138013A (en) * 1976-05-14 1977-11-17 Nippon Kokan Kk <Nkk> Continuous annealing equipment
JPH0361352A (ja) * 1989-07-28 1991-03-18 Nippon Steel Corp 溶融亜鉛めっき熱延鋼板の製造方法
JPH03207845A (ja) * 1990-01-04 1991-09-11 Nippon Steel Corp 溶融合金化亜鉛メッキ鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU77032A1 (ja) * 1976-04-01 1977-07-22
US4415415A (en) * 1982-11-24 1983-11-15 Allegheny Ludlum Steel Corporation Method of controlling oxide scale formation and descaling thereof from metal articles
JPH079055B2 (ja) * 1990-02-21 1995-02-01 新日本製鐵株式会社 合金化亜鉛めっき鋼板の製造方法
US5175026A (en) * 1991-07-16 1992-12-29 Wheeling-Nisshin, Inc. Method for hot-dip coating chromium-bearing steel
JPH05156367A (ja) * 1991-12-04 1993-06-22 Sumitomo Metal Ind Ltd 加工性に優れた高張力溶融めっき鋼板の製造方法
JP2674429B2 (ja) * 1992-07-23 1997-11-12 住友金属工業株式会社 珪素含有鋼板の溶融亜鉛めっき方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138013A (en) * 1976-05-14 1977-11-17 Nippon Kokan Kk <Nkk> Continuous annealing equipment
JPH0361352A (ja) * 1989-07-28 1991-03-18 Nippon Steel Corp 溶融亜鉛めっき熱延鋼板の製造方法
JPH03207845A (ja) * 1990-01-04 1991-09-11 Nippon Steel Corp 溶融合金化亜鉛メッキ鋼板の製造方法

Also Published As

Publication number Publication date
CN1055510C (zh) 2000-08-16
EP0657560B1 (en) 1998-01-14
EP0657560A4 (en) 1995-11-29
DE69407937T2 (de) 1998-05-28
DE69407937D1 (de) 1998-02-19
CA2142096C (en) 2000-10-03
CN1112789A (zh) 1995-11-29
EP0657560A1 (en) 1995-06-14
US5677005A (en) 1997-10-14
KR100260225B1 (ko) 2000-07-01
CA2142096A1 (en) 1995-01-05

Similar Documents

Publication Publication Date Title
WO1995000675A1 (fr) Procede de zingage a chaud par trempe d&#39;une tole grosse d&#39;acier a resistance elevee reduite dans les parties non revetues
EP3081665B1 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet
JP5513216B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
MX2013014523A (es) Lamina de acero galvanizado de alta resistencia excelente en terminos de adherencia de recubrimiento y metodo para la fabricacion de la misma.
JP2004263271A (ja) 高張力溶融亜鉛めっき鋼板の製造方法
JP3731560B2 (ja) 加工性と形状凍結性に優れた鋼板とその製造方法
JP2006097102A (ja) 高張力合金化溶融亜鉛めっき鋼板およびその製造方法
EP3396005B1 (en) Mn-containing hot-dip galvannealed steel sheet and manufacturing method therefor
JP4781577B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2003328099A (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JPH08246121A (ja) 高加工性、高強度溶融亜鉛めっき鋼板の製造方法
JP4148235B2 (ja) 加工性と形状凍結性に優れた鋼板とその製造方法
JPH06158254A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP3162901B2 (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JPH0770723A (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2932701B2 (ja) 合金化溶融亜鉛めっき鋼板
JP3598889B2 (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP3580541B2 (ja) 加工性と加工部耐食性に優れた表面処理鋼板及びその製造方法
JPS63420A (ja) 一回掛けホ−ロ−用鋼板の製造方法
JP3921101B2 (ja) 形状凍結性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法
JP2956361B2 (ja) めっき密着性の優れた強加工用合金化溶融亜鉛めっき鋼板の製造方法
JPH07316764A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP3766655B2 (ja) めっき密着性と加工性に優れた高Si高強度合金化溶融亜鉛めっき鋼板の製造方法
JP3643559B2 (ja) 加工性と加工部耐食性に優れた表面処理鋼板及びその製造方法
JPH05306411A (ja) 耐火用高張力溶融Zn−A1合金めっき鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 2142096

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08381971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994918566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019950700679

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994918566

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994918566

Country of ref document: EP