WO1994026465A1 - Tool breakage prevention system - Google Patents

Tool breakage prevention system Download PDF

Info

Publication number
WO1994026465A1
WO1994026465A1 PCT/JP1994/000668 JP9400668W WO9426465A1 WO 1994026465 A1 WO1994026465 A1 WO 1994026465A1 JP 9400668 W JP9400668 W JP 9400668W WO 9426465 A1 WO9426465 A1 WO 9426465A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
tool
disturbance torque
disturbance
estimated
Prior art date
Application number
PCT/JP1994/000668
Other languages
English (en)
French (fr)
Inventor
Takashi Nagatomi
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to US08/360,780 priority Critical patent/US5587915A/en
Priority to EP94913798A priority patent/EP0666138B1/en
Priority to KR1019950700097A priority patent/KR950702464A/ko
Priority to DE69427521T priority patent/DE69427521T2/de
Publication of WO1994026465A1 publication Critical patent/WO1994026465A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37245Breakage tool, failure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41371Force estimation using velocity observer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41379Estimate torque from command torque and measured speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50276Detect wear or defect tool, breakage and change tool

Definitions

  • the present invention relates to a tool breakage prevention system for preventing breakage of a tool used in a numerically controlled machine tool.
  • the tool may be damaged due to the abnormal load generated during the cutting process, and various measures have been taken to prevent the damage before it occurs.
  • These tool breakage prevention methods are mainly performed by detecting the cutting load. The following methods are used to detect the cutting load.
  • the above-mentioned conventional method (1) is structurally complicated since a detection sensor is externally mounted and a signal processing control device for the sensor is required separately from the numerical control device. It is also expensive.
  • the present invention has been made in view of the above circumstances, and is intended to easily and accurately detect an abnormal load and accurately prevent a tool from being damaged. In both cases, it is an object of the present invention to provide a tool breakage prevention method capable of appropriately coping with an abnormality when a tool breakage has already occurred.
  • a tool breakage prevention method capable of appropriately coping with an abnormality when a tool breakage has already occurred.
  • a first disturbance torque estimating means for estimating a disturbance torque acting on a spindle for rotating the tool, and controlling a feed of the tool.
  • a second disturbance torque estimating means for estimating a disturbance torque acting on the feed shaft, and a disturbance torque estimated by the first disturbance torque estimating means and an estimated disturbance torque by the second disturbance torque estimating means.
  • Comparing means for comparing the obtained third estimated disturbance torque with a preset reference torque, and a command signal for decelerating or stopping the feed of the tool or replacing the tool in accordance with a result of the discrimination by the comparing means.
  • Deceleration stop command means for outputting
  • a first and a second disturbance torque estimating means for estimating a disturbance load torque applied to a motor driving a main shaft and a feed shaft by a disturbance estimating observer.
  • the comparison means estimates the load applied to the spindle and feed shaft, that is, the load applied to the tool with high accuracy, by combining the disturbance torques acting on both the spindle and the feed shaft to obtain a combined disturbance torque.
  • the combined disturbance torque is compared with a preset reference torque, which is an abnormal load detection level, and is variably set based on factors such as the type of tool and the hardness of the work material. Since the disturbance torque acting on both shafts is combined and compared with the reference torque, the abnormal load detection level is set so as to be well suited to the machining conditions at that time. It is a child.
  • the deceleration stop command means Outputs a command signal to decelerate or stop the feed or change the tool.
  • Fig. 1 is a block diagram showing the principle of the tool breakage prevention method of the present invention.
  • Fig. 2 is a block diagram of the hardware of a numerical controller (CNC) for implementing the tool breakage prevention method of the present invention.
  • CNC numerical controller
  • Fig. 3 is a block diagram of the observer according to the present invention.
  • FIG. 4 is a flowchart showing a first example of a processing procedure in PMC.
  • FIG. 5 is a flowchart showing a second example of a processing procedure in PMC.
  • FIG. 1 is a block diagram showing the principle of the tool breakage prevention method of the present invention.
  • the first disturbance torque estimating means 1 is based on the speed signal XI s of the spindle motor (spindle) 73 and the torque command value U ls to the spindle motor 73.
  • the second disturbance torque estimating means 2 calculates the disturbance acting on the servomotor 63 based on the speed signal X1z of the servomotor (feed axis) 63 and the torque command value U1z to the servomotor 63. Estimate the torque Yz.
  • the comparison means 3 combines the estimated disturbance torques Ys and Yz to obtain a combined disturbance torque Y, and compares the combined disturbance torque ⁇ with a preset reference torque Ye. If the comparing means 3 determines that the combined disturbance torque Y is larger than the reference torque Ye, the deceleration stop command means 4 A command signal for decelerating or stopping the feed of the tool or changing the tool based on the result of the determination is output.
  • FIG. 2 is a block diagram of a hardware of a numerical controller (CNC) for implementing the tool breakage prevention method of the present invention.
  • 10 is a numerical controller (CNC).
  • the processor 11 is a central processor for controlling the entire numerical control device (CNC) 10.
  • the processor 11 reads a system program stored in the ROM 12 via the bus 21 and reads the system program according to the system program.
  • Numerical control unit (CNC) 10 Performs overall control.
  • RAM I3 stores temporary calculation data, display data, and the like.
  • DRAM is used for RA Ml3.
  • the processing program and various parameters are stored in the CMO S 14. Since the CMOS 14 is backed up by a battery (not shown) and is in a non-volatile memory even when the numerical controller (CNC) 10 is turned off, its data is retained as it is.
  • the interface 15 is an interface for an external device, and is connected to an external device 31 such as a paper tape reader, a paper tape puncher, a paper tape reader and a puncher.
  • the processing program is read from the paper tape reader, and the processing program edited in the numerical controller (CNC) 10 can be output to the paper tape puncher.
  • CNC numerical controller
  • PMC Programmable 'Machine' Controller 16 is built into CNC 10 and controls the machine with a sequence program created in ladder format. In other words, according to the M function, S function and T function specified in the machining program, these are converted into the necessary signals on the machine side by the science program, and the I / unit Output from 17 to the machine side.
  • This output signal drives the magnet on the machine side, and activates the hydraulic valve, pneumatic valve, electric actuator and the like. Also, it receives signals from the limit switch on the machine side and the switches on the machine operation panel, etc., performs necessary processing, and passes it to the processor 11.
  • the graphic control circuit 18 converts digital data such as a current position of each axis, an alarm, a parameter, and image data into an image signal and outputs it. This image signal is sent to the display device 26 of the CRTZMDI unit 25, and is displayed on the display device 26.
  • the interface 19 receives the data from the keyboard 27 in the CRT / MDI unit 25 and passes it to the processor 11.
  • the interface 20 is connected to the manual pulse generator 32 and receives a pulse from the manual pulse generator 32.
  • the manual pulse generator 32 is mounted on the machine control panel and is used to manually position the machine working parts precisely.
  • the axis control circuits 41 to 43 receive the movement command of each axis from the processor 11 and output the fingering of each axis to the servo amplifiers 51 to 53 (the servo amplifiers 51 to 53 In response to this movement, the servo motors 61 to 63 of each axis are driven.
  • the servo motor 63 that controls the Z-axis feed has a built-in pulse coder 631 for position detection. The position signal is fed back from the pulse coder 631 as a pulse train to the axis control circuit 43.
  • the servomotors 61 and Y for controlling the X-axis feed are not shown here.
  • the servomotor 62 for controlling the axis feed also has a built-in pulse coder for position detection, similar to the servomotor 63, and the position signal is fed back from the pulse coder as a pulse train.
  • a linear scale is used as the position detector. By converting this pulse train into FZV (frequency Z speed), a speed signal XI z can be generated.
  • the axis control circuit 43 includes a processor (not shown) to perform software processing, and has an observer 410 in a part thereof.
  • the observer 410 receives the speed signal X1z or the like and estimates the disturbance torque Yz acting on the servomotor 63.
  • the estimated disturbance torque ⁇ ⁇ is sent to PMC 16. Details will be described later.
  • the spindle control circuit 71 outputs a spindle speed signal to the spindle amplifier 72 in response to instructions such as a spindle rotation instruction and a spindle orientation.
  • the spindle amplifier 72 receives the spindle speed signal and rotates the spindle motor 73 at the commanded rotation speed.
  • the spindle is positioned at a predetermined position by the orientation command.
  • a spindle coder 82 is connected to the spindle motor 73 by a gear or a belt. Accordingly, the position coder 82 rotates in synchronization with the spindle motor 73 and outputs a feedback pulse, and the feedback pulse is fed back to the spindle control circuit 71. By converting this pulse train into FZV (frequency speed), a speed signal XIs can be generated.
  • FZV frequency speed
  • the spindle control circuit 71 includes a processor (not shown) to perform software processing, and has an observer 710 in a part thereof. .
  • the observer 7110 receives the speed signal X1s and the like, and estimates the disturbance torque Ys acting on the spindle motor 73.
  • the estimated disturbance In the same way as the estimated disturbance torque Yz described above, the torque Ys can be assigned to the PMC 16.
  • the PMC 16 receives these estimated disturbance torques Yz and Ys and performs predetermined software processing. That is, the estimated disturbance torques Yz and Ys are combined to obtain a combined disturbance torque Y, and the combined disturbance torque is compared with the reference torque Ye to detect an abnormal torque. Command feed stop, etc.
  • FIG. 3 is a block diagram of the observer according to the present invention.
  • the processing shown in the block diagram is executed by the observer 410 of the axis control circuit 43 and the observer 7100 of the spindle control circuit 71, as described above. Since the observers 4110 and 7110 have the same configuration, the observer 4110 will be described here, and the description of the observer 710 will be omitted.
  • a current U 1 z is a torque command value output to the servo motor 63 in response to the movement command from the processor 11 described above, and is input to the element 401 to Output torque.
  • the disturbance torque X 2 is added to the output torque of the servomotor 63 in the calculation element 402.
  • the output of the operation element 402 becomes the speed signal X 1 z by the element 403.
  • J is the inertia of the servo motor 63.
  • the current U 1 z is input to the observer 4 10.
  • the controller 410 calculates the estimated speed XX 1 from the current U lz and the speed X 1 z of the servo motor 63 and controls the speed of the servo motor 63.
  • the speed control of the servomotor 63 will be omitted, and only the calculation for estimating the disturbance torque will be described.
  • the current U 1 z is multiplied by (K t J) at the element 4 1 1 and goes to the operation element 4 1 2 Is output.
  • the operation element 4 12 adds the feedback from the operation element 4 14, and the operation element 4 13 adds the feedback from the integration element 4 15.
  • the output unit of the operation elements 4 12 and 4 13 is acceleration.
  • the output of the operation element 4 13 is input to the integration element 4 16 and output as the estimated speed XX 1.
  • the difference between the estimated speed XX 1 and the actual speed X 1 z is obtained by the operation element 4 17, and is fed back to the operation element 4 14 and the integration element 4 15, respectively.
  • the proportional element 4 14 has a gain K 1.
  • the gain of the integral element 4 15 is K 2.
  • the frequency band to be returned is determined by the gain K 1 and the gain K 2.
  • the output of the integral element 4 15 is the estimated acceleration (X X 2 Z J) obtained by dividing the estimated disturbance torque X X 2 by J, and is converted to a current value by the proportional element 4 20. However, in order to display the torque, this current value is displayed as the estimated disturbance torque Yz.
  • J is the same inertia of the servo motor 63 as J of the element 4003, and Kt is the same as the torque constant of the element 401.
  • A is a coefficient, which is a value less than or equal to 1, and is a coefficient for correcting the estimated acceleration (XX2 / J). In this way, the estimated disturbance torque Yz of the servomotor 63 is obtained by using the observer 410, and is sent to the PMC16.
  • the estimated disturbance torque Y s of the spindle motor 73 is similarly obtained using the observer 7110.
  • the observer 7110 obtains the estimated disturbance torque Ys from the current Uls and the speed signal XIs of the spindle motor 73.
  • the current U 1 s is a torque command value output to the spindle motor 73 in response to a spindle rotation command from the processor 11.
  • These estimated disturbance torques Y z and Y s are sent to PMC 16.
  • the PMC 16 determines the abnormal torque using these estimated disturbance torques Yz and Ys, and when it is determined that the torque is abnormal, the servomotor 63 decelerates, stops, or stops. Send a replacement instruction.
  • the processing performed in the PMC 16 will be described with reference to FIGS.
  • FIG. 4 is a flowchart showing a first example of the processing procedure in the PMC.
  • the numeral following S indicates the step number.
  • [S 1] Read the estimated disturbance torques Yz and Ys.
  • the coefficient / S is experimentally determined in consideration of the degree to which Yz and Ys contribute to the abnormal load detection level.
  • [S3] It is determined whether or not the combined disturbance torque ⁇ is equal to or greater than a preset reference torque ⁇ . If ⁇ , the process proceeds to step S6; otherwise, the process proceeds to step S4.
  • the reference torque Upsilon, and reference torque Upsilon 2 is abnormal load detection level, is variably set based on factors such as hardness of the tool species such Ya Waku material.
  • the disturbance torque acting on the servomotor 63 and the spindle motor 73 is estimated using the observers 4110 and 7110, and the occurrence of an abnormal load is determined. Therefore, tool breakage can be easily prevented without adding an external sensor. Also, since the estimated disturbance torque does not include the acceleration / deceleration load, the load applied to the main shaft and feed shaft, that is, the load applied to the tool, can be accurately estimated, and the occurrence of abnormal load can be determined with high accuracy. It can be carried out.
  • the disturbance torque is synthesized and compared with the reference torque Ye, it is possible to set an abnormal load detection level that matches the processing conditions, and it is possible to prevent tool breakage with higher reliability. it can.
  • FIG. 5 is a flowchart showing a second example of the processing procedure in the PMC.
  • the numeral following S indicates the step number.
  • S11 Read the signal during cutting. That is, when the CPU reads, for example, a G code in the machining program, it determines that the CPU is cutting.
  • the coefficient H, / S is Yz
  • Ys is the abnormal load detection level. It is determined experimentally in consideration of the degree of contribution.
  • the reference torques Y 1 and Y 2 are abnormal load detection levels, and are variably set based on factors such as the hardness of the tool type and the material of the workpiece.
  • the cotton throughout during the cutting period connexion synthesis disturbance torque Y is whether the to another determine is the reference torque Y 3 or less.
  • the reference torque Upsilon 3 is set to a minute level. If ⁇ 3 or less, go to step S 18; otherwise, determine that no abnormality has occurred and end the program as it is.
  • the disturbance torque acting on the servomotor 63 and the spindle motor 73 is estimated using the observers 410 and 7110, and the occurrence of an abnormal load is determined. did. Therefore, tool breakage can be easily prevented without adding an external sensor. Since the estimated disturbance torque does not include the acceleration / deceleration load, the load applied to the main shaft and feed shaft, that is, the load applied to the tool, can be accurately estimated, and the occurrence of abnormal load can be determined with high accuracy. Can be performed at any time.
  • the two estimated disturbance torques are combined and compared with the reference torque.However, the reference torque and the reference torque are calculated using only the estimated disturbance torque on either the spindle motor side or the servomotor side. You may comprise so that it may compare.
  • the disturbance torque of the Z-axis servomotor was estimated, but the disturbance torque of the X-axis and Y-axis servomotors was estimated. May be configured.
  • the comparison between the estimated disturbance torque and the reference torque, the deceleration stop command, and the like are performed by the PMC.
  • the processor 11 that controls the entire numerical controller may perform the processing.
  • the disturbance torque acting on the main shaft and the feed shaft is estimated using the observer, and the occurrence of an abnormal load is determined. Therefore, tool breakage can be easily prevented without adding an external sensor.
  • the load applied to the spindle and feed shaft that is, the load applied to the tool, can be accurately estimated, and the occurrence of abnormal load can be determined with high accuracy. Can be performed at any time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

明 細 書 工具破損防止方式 技 術 分 野
本発明は数値制御工作機械に使用される工具の破損を防止す る工具破損防止方式に関する。 背 景 技 術
工作機械では、 その切削加工時に生じる異常負荷によってェ 具が破損することがあるため、 その破損を未然に防止すべく種 々の対策が講じられている。 これらの工具破損防止方法は、 主 に切削負荷を検出して行われるが、 その切削負荷を検出する方 法として次のような方法がとられる。
( 1 ) テーブル上や工具ホルダ等に外部センサを用いる方法。
( 2 ) 主軸モータの電流値を用いる方法。
しかし、 上記従来方法の ( 1 ) では、 外部に検出用センサを 搭載し、 且つ数値制御装置と別にセンサの信号処理用制御装置 が必要であり、 構造的に複雑である。 また、 高価でもある。
また、 上記従来方法の ( 2 ) では、 主軸の回転負荷や加減速 負荷が主軸モータの電流値に含まれるため、 検出精度が悪くェ 焉破損を正確に検出できなかった。 発 明 の 開 示
本発明はこのような点に鑑みてなされたものであり、 簡単に 且つ高精度に異常負荷を検出し的確に工具の破損を防止すると 共に、 工具破損等がすでに発生しているときはその異常に適切 に対処できる工具破損防止方式を提供することを目的とする。 本発明では上記課題を解決するために、
数値制御工作機械に使用される工具の破損を防止する工具破 損防止方式において、 前記工具を回転させる主軸に働く外乱ト ルクを推定する第 1 の外乱トルク推定手段と、 前記工具の送り を制御する送り軸に働く外乱トルクを推定する第 2の外乱トル ク推定手段と、 前記第 1 の外乱トルク推定手段による推定外乱 トルク と前記第 2の外乱トルク推定手段による推定外乱トルク とを合成して得られた第 3の推定外乱トルク と予め設定した基 準トルク とを比較する比較手段と、 前記比較手段の判別結果に 応じて前記工具の送りを減速または停止させあるいは前記工具 を交換させる指令信号を出力する減速停止指令手段と、
を有することを特徴とする工具破損防止方式が、 提供される ( 第 1 及び第 2の外乱トルク推定手段は、 外乱推定オブザーバ によって、 主軸及び送り軸を駆動するモータに加わる外乱負荷 トルクを推定するから、 主軸及び送り軸に加わる負荷、 すなわ ち工具に加わる負荷を精度良く推定する。 比較手段は、 この主 軸及び送り軸の双方に働く外乱トルクを合成して合成外乱トル クを求めると共に、 その合成外乱トルクを予め設定した基準ト ルクと比較する。 この基準トルクは異常負荷検出レベルであり、 工具種類やワーク材質の硬さ等の要因に基づいて可変に設定さ れる。 主軸及び送り軸の双方に働く外乱トルクを合成して基準 トルク と比較するようにしたので、 そのときの加工条件によく 適合するように異常負荷検出レベルを設定するこ とができる。
比較手段の判別結果に応じて、 減速停止指令手段は、 工具の 送りを減速または停止させあるいは工具を交換させる指令信号 を出力する。 図 面 の 簡 単 な 説 明
図 1 は本発明の工具破損防止方式の原理を示すプロ ッ ク図、 図 2は本発明の工具破損防止方式を実施するための数値制御 装置 ( C N C ) のハー ドウェアのブロッ ク図、
図 3は本発明に係るオブザーバのブロッ ク図、
図 4 は P M Cでの処理手順の第 1 の例を示すフローチャー ト- 図 5 は P M Cでの処理手順の第 2の例を示すフローチヤ一ト であ 。 発明を実施するための最良の形態
以下、 本発明の一実施例を図面に基づいて説明する。
図 1 は本発明の工具破損防止方式の原理を示すプロ ッ ク図で ある。 図において、 第 1 の外乱トルク推定手段 1 は、 スピン ド ルモ一夕 (主軸) 7 3の速度信号 X I s とスピン ドルモータ 7 3への トルク指合値 U l sを基にしてスピン ドルモー夕 7 3に 働く外乱トルク Y sを推定する。 第 2の外乱トルク推定手段 2 は、 サーボモータ (送り軸) 6 3の速度信号 X 1 z とサーボモ 一夕 6 3への トルク指合値 U 1 zを基にしてサーボモータ 6 3 に働く外乱トルク Y zを推定する。 比較手段 3は、 その推定外 乱トルク Y s と Y zを合成して合成外乱トルク Yを求めると共 に、 その合成外乱トルク Υを予め設定した基準トルク Y e と比 較する。 比較手段 3において合成外乱トルク Yの方が基準トル ク Y e より大きいと判別したとき、 減速停止指令手段 4 は、 そ の判別結果に基づいて工具の送りを減速または停止させあるい は工具を交換させる指令信号を出力する。
図 2は本発明の工具破損防止方式を実施するための数値制御 装置 ( C N C ) のハ ー ドウヱァのブロ ッ ク図である。 図におい て、 1 0は数値制御装置 (CNC) である。 プロセッサ 1 1 は 数値制御装置 (CNC) 1 0全体の制御の中心となるプロセッ サであり、 バス 2 1 を介して、 R OM 1 2に格納されたシステ 厶プログラムを読み出し、 このシステムプログラムに従って、 数値制御装置 (CNC) 1 0全体の制御を実行する。 RAM I 3には一時的な計算データ、 表示データ等が格納される。 RA M l 3には DRAMが使用される。 CMO S 1 4には加工プロ グラム及び各種パラメ一夕等が格納される。 CMO S 1 4は、 図示されていないバッテリでバッ クアップされ、 数値制御装置 ( C N C ) 1 0の電源がオフされても不揮発性メモ リ となって いるので、 それらのデータはそのまま保持される。
イ ンタ フ ェース 1 5は外部機器用のイ ンタ フ ェ ースであり、 紙テープリ ーダ、 紙テープパンチヤ一、 紙テープリ ーダ . パン チヤ一等の外部機器 3 1が接続される。 紙テープリ ーダからは 加工プログラムが読み込まれ、 また、 数値制御装置 (CNC) 1 0内で編集された加工プログラムを紙テープパンチヤーに出 力するこ とができる。
P M C (プログラマブル ' マシン ' コ ン トローラ) 1 6は C NC 1 0に内蔵され、 ラダー形式で作成されたシーケンスプロ グラムで機械を制御する。 すなわち、 加工プログラムで指合さ れた、 M機能、 S機能及び T機能に従って、 これらをシ一ゲン スプログラムで機械側で必要な信号に変換し、 I /〇ュニッ ト 1 7から機械側に出力する。 この出力信号は機械側のマグネッ ト等を駆動し、 油圧バルブ、 空圧バルブ及び電気ァクチユエ一 夕等を作動させる。 また、 機械側のリ ミ ッ トスイ ツチ及び機械 操作盤のスィ ッチ等の信号を受けて、 必要な処理をして、 プロ セッサ 1 1 に渡す。
グラフイ ツ ク制御回路 1 8は各軸の現在位置、 アラーム、 パ ラメ一夕、 画像データ等のディ ジタルデータを画像信号に変換 して出力する。 この画像信号は C R T Z M D I ユニッ ト 2 5の 表示装置 2 6 に送られ、 表示装置 2 6 に表示される。 イ ンタフ エース 1 9 は C R T / M D I ュニッ ト 2 5内のキーボー ド 2 7 からのデ一夕を受けて、 プロセッサ 1 1 に渡す。
イ ンタフヱ一ス 2 0は手動パルス発生器 3 2に接続され、 手 動パルス発生器 3 2からのパルスを受ける。 手動パルス発生器 3 2は機械操作盤に実装され、 手動で機械稼働部を精密に位置 決めするのに使用される。
軸制御回路 4 1 〜 4 3はプロセッサ 1 1 からの-各軸の移動指 令を受けて、 各軸の指合をサーボアンプ 5 1 〜 5 3に出力する ( サーボアンプ 5 1 〜 5 3はこの移動指合を受けて、 各軸のサ一 ボモータ 6 1 〜 6 3を駆動する。 Z軸の送りを制御するサーボ モー夕 6 3には、 位置検出用のパルスコーダ 6 3 1 が内蔵され ており、 このパルスコーダ 6 3 1 から位置信号がパルス列とし て軸制御回路 4 3にフィー ドバッ クされる。 こ こでは図示され ていないが、 X軸の送りを制御するサ一ボモー夕 6 1 、 Y軸の 送りを制御するサーボモータ 6 2にも、 上記サーボモータ 6 3 と同様に位置検出用のパルスコ一ダが内蔵され、 そのパルスコ ーダから位置信号がパルス列としてフィ一ドバッ クされる。 場 合によっては、 位置検出器と して、 リニアスケールが使用され る。 また、 このパルス列を F Z V (周波数 Z速度) 変換するこ とにより、 速度信号 X I zを生成するこ とができる。
軸制御回路 4 3 は、 こ こでは図示されていないプロセッサを 備えてソフ トゥヱァ処理を行い、 その一部にオブザーバ 4 1 0 を有している。 オブザーバ 4 1 0 は、 上記の速度信号 X 1 z等 を受けてサーボモータ 6 3 に働く外乱 トルク Y z を推定する。 その推定外乱 トルク Υ ζは P M C 1 6 に送られる。 その詳細は 後述する。
ス ピン ドル制御回路 7 1 はス ピン ドル回転指合及びス ピン ド ルのオリエンテーショ ン等の指令を受けて、 スピン ドルアンプ 7 2 にス ピン ドル速度信号を出力する。 ス ピン ドルア ンプ 7 2 はこのスピン ドル速度信号を受けて、 スピン ドルモー夕 7 3を 指令された回転速度で回転させる。 また、 オ リ エンテー シ ョ ン 指令によって、 所定の位置にス ピン ドルを位置決めする。
スピン ドルモー夕 7 3 には歯車あるいはベル トでポジシヨ ン コーダ 8 2が結合されている。 従って、 ポジショ ンコーダ 8 2 はス ピン ドルモ一夕 7 3 に同期して回転し、 帰還パルスを出力 し、 その帰還パルスはス ピン ドル制御回路 7 1 にフ ィ ー ドバッ クされる。 このパルス列を F Z V (周波数 速度) 変換するこ とにより、 速度信号 X I s を生成するこ とができる。
スピン ドル制御回路 7 1 は、 上記軸制御回路 4 3 と同様に、 こ こでは図示されていないプロセッサを備えてソ フ トウヱァ処 理を行い、 その一部にオブザーバ 7 1 0 を有している。 ォブザ ーバ 7 1 0 は、 上記の速度信号 X 1 s等を受けてスピン ドルモ 一夕 7 3 に働く外乱トルク Y s を推定する。 その推定外乱 トル ク Y s は、 上記の推定外乱トルク Y z と同様に、 P M C 1 6 に りれる。
P M C 1 6 は、 これらの推定外乱トルク Y z, Y sを受けて 所定のソフ トウェア処理を行う。 すなわち、 推定外乱トルク Y z、 Y sを合成して合成外乱トルク Yを求め、 その合成外乱ト ルクを基準トルク Y e と比較して異常トルクを検出し、 異常 ト ルク検出の場合は工具の送り停止等を指令する。
図 3は本発明に係るオブザーバのブロッ ク図である。 このブ ロ ッ ク図に示した処理は、 上述したように、 軸制御回路 4 3 の オブザーバ 4 1 0及びスピン ドル制御回路 7 1 のオブザーバ 7 1 0 において実行される。 オブザーバ 4 1 0及び 7 1 0 は、 同 —の構成を有しているので、 ここではオブザーバ 4 1 0 につい て説明し、 オブザーバ 7 1 0の説明は省略する。
図において、 電流 U 1 zは、 上述したプロセッサ 1 1 からの 移動指令を受けてサ一ボモータ 6 3に出力される トルク指令値 であり、 要素 4 0 1 に入力されてサ ボモー夕 6 3の出力 トル ク となる。 サーボモ一夕 6 3の出力 トルクには演算要素 4 0 2 において、 外乱トルク X 2が加算される。 演算要素 4 0 2の出 力は要素 4 0 3によって、 速度信号 X 1 z となる。 こ こで、 J はサーボモータ 6 3のイナーシャである。
一方、 電流 U 1 zはオブザーバ 4 1 0 に入力される。 ォブザ —バ 4 1 0 は電流 U l z とサーボモー夕 6 3 の速度 X 1 zから- 推定速度 X X 1 を求め、 サーボモータ 6 3の速度を制御する。 こ こでは、 これらのサーボモータ 6 3の速度制御については省 略し、 外乱トルクを推定するための演算のみを説明する。 電流 U 1 zは要素 4 1 1 で (K t J ) をかけ、 演算要素 4 1 2へ 出力される。 演算要素 4 1 2では、 演算要素 4 1 4からの帰還 を加え、 さらに、 演算要素 4 1 3で積分要素 4 1 5からの帰還 を加算する。 演算要素 4 1 2及び 4 1 3の出力単位は加速度で ある。 演算要素 4 1 3の出力は積分要素 4 1 6 に入力され、 推 定速度 X X 1 として出力される。 推定速度 X X 1 と実速度 X 1 z との差を演算要素 4 1 7で求め、 それぞれ、 演算要素 4 1 4 及び積分要素 4 1 5 に帰還する。 こ こで、 比例要素 4 1 4 はゲ イ ン K 1 を有する。 積分要素 4 1 5のゲイ ンは K 2である。 こ こで、 ゲイ ン K 1 とゲイ ン K 2によって、 帰還すべき周波数帯 域が決められる。
積分要素 4 1 5の出力は推定外乱トルク X X 2を Jで除した 推定加速度 (X X 2 Z J ) であり、 比例要素 4 2 0 によって、 電流値に変換される。 ただし、 トルク表示をするために、 この 電流値を推定外乱トルク Y zで表示する。 こ こで、 Jは先の要 素 4 0 3 の J と同じサーボモータ 6 3 のイナ一シャであり、 K t は要素 4 0 1 の トルク定数と同じ 'である。 Aは係数であり、 1 以下の数値であり、 推定加速度 (X X 2 / J ) を補正するた めの係数である。 このように、 オブザーバ 4 1 0を用いてサー ボモータ 6 3の推定外乱トルク Y zが求められ、 P M C 1 6 に 送られる。
スピン ドルモー夕 7 3の推定外乱トルク Y s も、 同様にして オブザーバ 7 1 0を用いて求められる。 この場合、 オブザーバ 7 1 0 は、 電流 U l s とスピン ドルモータ 7 3 の速度信号 X I sから推定外乱トルク Y sを求める。 電流 U 1 s は、 プロセッ サ 1 1 からのスピン ドル回転指令を受けてスピン ドルモー夕 7 3に出力される トルク指令値である。 これらの推定外乱トルク Y z及び Y s は P M C 1 6 に送られ る。 P MC 1 6 は、 上述したように、 これらの推定外乱トルク Y z及び Y s を用いて異常トルクの判別を行い、 異常トルクで あると判別したときにサーボモータ 6 3に減速、 停止またはェ 具交換の指令を送る。 この P MC 1 6 において行われる処理を 図 4及び図 5を用いて説明する。
図 4 は P M Cでの処理手順の第 1 の例を示すフローチヤ一 ト である。 図において、 Sに続く数値はステップ番号を示す。 〔S 1 〕 推定外乱トルク Y z、 Y sを読み込む。
〔 S 2〕 推定外乱トルク Y z と推定外乱トルク Y sを次式 ( 1 ) に従って合成し、 合成外乱トルク Yを求める。
Y =ひ Y z + ^ Y s ( 1 )
こ こで、 係数ひ、 /Sは Y z、 Y sが異常負荷検出レベルに対 して寄与する度合を考慮して実験的に定められる。
〔S 3〕 合成外乱トルク Υが予め設定した基準トルク Υ , 以上 であるか否かを判別する。 Υ , 以上であればステップ S 6 に、 そうでなければステップ S 4 にそれぞれ進む。 この基準トルク Υ , 及び基準トルク Υ2 は異常負荷検出レベルであり、 工具種 類ゃヮーク材質の硬さ等の要因に基づいて可変に設定される。
〔 S 4〕 合成外乱トルク Υが基準トルク Υ 2 以上であるか否か を判別する。 Υ2 以上であればステップ S 5 に、 そうでなけれ ば異常でないと判別してプログラムをそのまま終了する。
〔 S 5〕 合成外乱トルク Υが Υ! 以下で Υ2 以上の場合であり 減速信号を出力してサーボモータ 6 3を減速させる。
〔 S 6〕 合成外乱トルク Υが Υ , 以上の場合であり、 異常 トル クが非常に大きいため、 停止信号を出力してサ一ボモータ 6 3 を停止させる。
このように、 本実施例では、 サーボモー夕 6 3及びスピン ド ルモ一夕 7 3 に働く外乱トルクをオブザーバ 4 1 0及び 7 1 0 を用いて推定し、 異常負荷発生を判別するようにした。 したが つて、 工具破損防止を外部センサの追加なしで簡単に行う こ と ができる。 また、 推定した外乱トルクには、 加減速負荷は含ま れないため、 主軸及び送り軸に加わる負荷、 すなわち工具に加 わる負荷を正確に推定することができ、 異常負荷発生の判別を 高精度に行う こ とができる。
さらに、 基準トルク Y eを 2種類設定し、 異常時の対応も減 速または停止の 2段階にしたので、 異常発生に対してより適切 に対応することができる。
また、 外乱トルクを合成して基準トルク Y e と比較するよう にしたので、 加工条件に合った異常負荷検出レベルの設定が可 能となり、 より高い信頼性で工具の破損を防止するこ とができ る。
図 5 は P M Cでの処理手順の第 2の例を示すフローチヤ一ト である。 図において、 Sに続く数値はステップ番号を示す。 〔S 1 1 〕 切削中信号を読み込む。 すなわち、 C P Uが加工プ ログラム中の例えば Gコー ドを読んだときに、 C P Uは切削中 であると判別する。
〔 S 1 2〕 推定外乱トルク Y z、 Y sを読み込む。
〔 S 1 3〕 推定外乱トルク Y z と推定外乱トルク Y sを次式 ( 1 ) に従って合成し、 合成外乱トルク Yを求める。
Y = « Y z + ^ Y s ( 1 )
こ こで、 係数ひ、 /Sは Y z、 Y sが異常負荷検出レベルに対 して寄与する度合を考慮して実験的に定めれらる。
C S 1 4〕 合成外乱トルク Yが予め設定した基準トルク Y > 以 上であるか否かを判別する。 Y! 以上であればステップ S 2 0 に、 そうでなければステップ S 1 5 にそれぞれ進む。 この基準 トルク Y , 及び基準トルク Y 2 は異常負荷検出レベルであり、 工具種類ゃヮーク材質の硬さ等の要因に基づいて可変に設定さ れる。
C S 1 5 ) 合成外乱トルク Υが基準トルク Υ 2 以上であるか否 かを判別する。 Υ 2 以上であればステップ S 1 9 に、 そうでな ければステップ S 1 .6 にそれぞれ進む。
〔 S 1 6〕 切削中信号が終了したか否かを判別する。 終了のと きはステップ S 1 7 に、 そうでなければステップ S 1 4 にそれ ぞれ戻る。
〔 S 1 7〕 切削終了時点において、 その切削期間中全体にわた つて合成外乱トルク Yが基準トルク Y 3 以下であるか否かを判 別する。 この基準トルク Υ 3 は微小レベルに設定されている。 Υ 3 以下であればステップ S 1 8 に、 そうでなければ異常は発 生していないと判別してプログラムをそのまま終了する。
〔 S 1 8〕 合成外乱トルク Υが異常に低いか 0の場合であり、 工具に破損等の異常が発生していると判別し、 停止信号を出力 してサーボモータ 6 3を停止させる。 または工具の交換を指令 する。
〔 S 1 9〕 合成外乱トルク Υが Υ , 以下で Υ 2 以上の場合であ り、 減速信号を出力してサーボモー夕 6 3を減速させる。
〔 S 2 0〕 合成外乱トルク Υが Υ , 以上の場合であり、 異常 ト ルクが非常に大きいため、 停止信号を出力してサ一ボモータ 6 3 を停止させる。 または工具の交換を指合する。
このように、 本実施例では、 サ一ボモ一夕 6 3及びス ピン ド ルモータ 7 3 に働く 外乱 トルクをオブザーバ 4 1 0及び 7 1 0 を用いて推定し、 異常負荷発生を判別するよう にした。 したが つて、 工具破損防止を外部センサの追加なしで簡単に行う こ と ができる。 また、 推定した外乱 トルクには、 加減速負荷は含ま れないため、 主軸及び送り軸に加わる負荷、 すなわち工具に加 わる負荷を正確に推定するこ とができ、 異常負荷発生の判別を 高精度に行う こ とができる。
さ らに、 基準 トルク Y e を 3種類設定し、 異常時の対応も減 速、 停止及び工具交換の 3段階にしたので、 工具の破損等も含 めて切削加工中の異常発生に対してより適切に対応する こ とが できる。
また、 外乱 トルクを合成して基準 トルク Y e と比較するよう にしたので、 加工条件に合つた異常負荷検出レベルの設定が可 能となり、 よ り高い信頼性で工具の破損を防止するこ とができ o
外乱 トルクが微小レベルになったときは、 工具破損等の異常 がすでに発生している として工具交換も指合するよう にしたの で、 異常発生に対してより適切に対処できる。
上記の説明では、 2つの推定外乱トルクを合成して基準 トル ク と比較するようにしたが、 スピン ドルモータ側あるいはサ一 ボモ一夕側のいずれか一方だけの推定外乱 トルクを用いて基準 トルク と比較するように構成してもよい。
また、 Z軸のサ一ボモー夕の外乱 トルクを推定するようにし たが、 X軸や Y軸のサーボモータの外乱トルクを推定するよう に構成してもよい。
さ らに、 上記の説明では、 推定外乱トルク と基準トルクの比 較、 減速停止指令等を P M Cで行ったが、 数値制御装置全体を 制御するプロセッサ 1 1 で行うように構成してもよい。
以上説明したように本発明では、 主軸及び送り軸に働く外乱 トルクをオブザーバを用いて推定し、 異常負荷発生を判別する ようにした。 したがって、 工具破損防止を外部センサの追加な しで簡単に行う こ とができる。
また、 推定した外乱トルクには、 加減速負荷は含まれないた め、 主軸及び送り軸に加わる負荷、 すなわち工具に加わる負荷 を正確に推定するこ とができ、 異常負荷発生の判別を高精度に 行う こ とができる。
さらに、 外乱トルクを合成して基準トルク と比較するように したので、 加工条件に合った異常負荷検出レベルの設定が可能 となり、 より高い信頼性で工具の破損を防止することができる c また、 外乱トルクが微小レベルになったときは、 工具破損等 の異常がすでに発生しているとして工具交換も指令するように したので、 異常発生に対してより適切に対処できる。

Claims

請 求 の 範 囲
1 . 数値制御工作機械に使用される工具の破損を防止するェ 具破損防止方式において、
前記工具を回転させる主軸に働く外乱トルクを推定する第 1 の外乱トルク推定手段と、
前記工具の送りを制御する送り軸に働く外乱トルクを推定す る第 2の外乱トルク推定手段と、
前記第 1 の外乱トルク推定手段による推定外乱トルク と前記 第 2の外乱トルク推定手段による推定外乱トルク とを合成して 得られた合成外乱トルクと予め設定した基準 トルクとを比較す る比較手段と、
前記比較手段の判別結果に応じて前記工具の送りを減速また は停止させあるいは前記工具を交換させる指令信号を出力する 減速停止指令手段と、
を有するこ とを特徴とする工具破損防止方式。
2 . 前記基準トルクは大小 2個設定され、 前記比較手段によ つて前記合成トルクが前記 2個の基準トルクの内大きい方の基 準トルクより大であると判別されたとき、 前記減速停止指合手 段は前記工具の送り停止または前記工具の交換を指令する指令 信号を出力し、 前記比較手段によつて前記合成トルクが前記 2 個の基準トルクの間にあると判別されたとき、 前記減速停止指 令手段は前記工具の送りの減速を指令する指令信号を出力する こ とを特徴とする請求項 1記載の工具破損防止方式。
3 . 前記基準トルクとして微小レベルの トルクを設定し、 前 記比較手段によって前記合成トルクが前記基準トルクより小で あると判別されたとき、 前記減速停止指令手段は前記工具の送 り停止または前記工具の交換を指令する指令信号を出力するこ とを特徴とする請求項 1記載の工具破損防止方式。
4 . 前記合成トルクを Y、 前記第 1 の外乱トルク推定手段に よる推定外乱トルクを Y s、 前記第 2の外乱トルク推定手段に よる推定外乱トルクを Υ ζ とするとき、 前記合成トルクは
Υ二 ひ ' Y z + yS - Y s ( , ;8は係数) で表されることを特徴とする請求項 1記載の工具破損防止方式,
5 . 数値制御工作機械に使用される工具の破損を防止するェ 具破損防止方式において、
前記工具を回転させる主軸に働く外乱トルクを推定する外乱 トルク推定手段と、
前記外乱トルク推定手段による推定外乱トルク と予め設定し た基準トルクとを比較する比較手段と、
前記比較手段によつて前記外乱トルクが前記基準トルクより 大きいと判別されたとき前記工具の送りを減速ま-たは停止させ る指令信号を出力する減速停止指令手段と、
を有することを特徴とする工具破損防止方式。
6 . 数値制御工作機械に使用される工具の破損を防止するェ 具破損防止方式において、
前記工具の送りを制御する送り軸に働く外乱トルクを推定す る外乱トルク推定手段と、
前記外乱トルク推定手段による推定外乱トルク と予め設定し た基準トルクとを比較する比較手段と、
前記比較手段によって前記外乱トルクが前記基準トルクより 大きいと判別されたとき前記工具の送りを減速または停止させ る指令信号を出力する減速停止指合手段と、 を有することを特徵とする工具破損防止方式。
PCT/JP1994/000668 1993-05-11 1994-04-21 Tool breakage prevention system WO1994026465A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/360,780 US5587915A (en) 1993-05-11 1994-04-21 Tool damage prevention system
EP94913798A EP0666138B1 (en) 1993-05-11 1994-04-21 Tool breakage prevention system
KR1019950700097A KR950702464A (ko) 1993-05-11 1994-04-21 공구 파손 방지 방식(tool breakage prevention system)
DE69427521T DE69427521T2 (de) 1993-05-11 1994-04-21 Vorbeugungssystem fur werkzeugbruch

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10915393 1993-05-11
JP5/109153 1993-05-11
JP5/138293 1993-06-10
JP13829393A JP3285663B2 (ja) 1993-05-11 1993-06-10 工具破損検出装置

Publications (1)

Publication Number Publication Date
WO1994026465A1 true WO1994026465A1 (en) 1994-11-24

Family

ID=26448936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000668 WO1994026465A1 (en) 1993-05-11 1994-04-21 Tool breakage prevention system

Country Status (6)

Country Link
US (1) US5587915A (ja)
EP (1) EP0666138B1 (ja)
JP (1) JP3285663B2 (ja)
KR (1) KR950702464A (ja)
DE (1) DE69427521T2 (ja)
WO (1) WO1994026465A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483636B2 (ja) * 1994-12-21 2004-01-06 ファナック株式会社 工具破損・摩耗検出装置
JPH08314516A (ja) * 1995-05-22 1996-11-29 Fanuc Ltd Cncの軸制御方式
JP3655378B2 (ja) * 1995-11-28 2005-06-02 ファナック株式会社 サーボモータの外乱負荷推定方法
DE69739038D1 (de) * 1996-05-30 2008-11-20 Ebara Corp Poliervorrichtung mit Verriegelungsfunktion
US6289256B1 (en) * 1997-01-16 2001-09-11 Matsushita Electric Industrial Co., Ltd. Method and apparatus for mounting parts
US6490500B1 (en) 1998-06-01 2002-12-03 Paradyne Visual drag diagnostic apparatus and method
JP3436899B2 (ja) * 1999-09-10 2003-08-18 義昭 垣野 工具異常検出装置及びこれを備えた数値制御装置
DE19960834B4 (de) * 1999-12-16 2006-10-26 Agie S.A., Losone Verfahren und Vorrichtung zur Störungserfassung, insbesondere zur Kollisionserfassung, im Antriebssystem einer numerisch gesteuerten Werkzeugmaschine
JP3681733B2 (ja) 2003-02-21 2005-08-10 ファナック株式会社 数値制御装置
JP2007152499A (ja) * 2005-12-06 2007-06-21 Fujikoshi Mach Corp ワーク研磨方法
JP4221022B2 (ja) * 2006-11-20 2009-02-12 ファナック株式会社 モータ制御装置
DE102008022361A1 (de) 2008-05-06 2009-11-12 Schneider Gmbh & Co. Kg Verfahren zum Bearbeiten eines Brillenglasrohlings
CN101887250B (zh) * 2009-05-12 2012-05-30 鸿富锦精密工业(深圳)有限公司 Cnc工具机控制装置
TWI414919B (zh) * 2010-05-25 2013-11-11 Delta Electronics Inc 伺服馬達之健康預警裝置及其計算方法
KR101776956B1 (ko) * 2010-12-09 2017-09-19 두산공작기계 주식회사 공작기계의 공구 손상 탐지장치 및 공구손상 탐지방법
ITMI20131145A1 (it) * 2013-07-08 2015-01-09 Inpeco Holding Ltd Impianto di automazione di laboratorio con dispositivo di trazione a doppio motore di nastri trasportatori.
JP6148609B2 (ja) * 2013-11-21 2017-06-14 株式会社マキタ 電動工具
JP6203775B2 (ja) * 2015-03-31 2017-09-27 ファナック株式会社 固定されたワークの異常を判定するロボットシステム、および、異常判定方法
JP6346163B2 (ja) 2015-12-18 2018-06-20 ファナック株式会社 ドア開閉装置を備えた工作機械
DE112017007995T5 (de) * 2017-08-30 2020-06-18 Mitsubishi Electric Corporation Numerisches steuersystem und motorantriebssteuerung
DE102017128628A1 (de) * 2017-12-01 2019-06-06 Point 8 Gmbh Verfahren zum Erfassen mindestens eines Werkzeugzustands eines Werkzeugs einer Werkzeugmaschine zur Bearbeitung von Werkstücken sowie Werkzeugmaschine
JP7068225B2 (ja) 2019-04-08 2022-05-16 ファナック株式会社 主軸及び送り軸を有する工作機械の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033755A (ja) * 1989-05-29 1991-01-09 Okuma Mach Works Ltd 加工負荷監視方法及びその装置
JPH03110606A (ja) * 1989-09-25 1991-05-10 Seiko Instr Inc サーボ制御装置
JPH0372429B2 (ja) * 1985-04-26 1991-11-18 Ookuma Kk

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836834A (en) * 1973-11-13 1974-09-17 Atomic Energy Commission Machine protection system
DE3043827A1 (de) * 1980-11-20 1982-06-03 Gildemeister Ag, 4800 Bielefeld Verfahren und vorrichtung zum ueberwachen der bearbeitungsbedinungen an einer werkzeugmaschine
JPS60171464A (ja) * 1984-02-17 1985-09-04 Yaskawa Electric Mfg Co Ltd モータまたはモータで駆動される移動体の速度検出方式
DE3501579A1 (de) * 1985-01-18 1986-07-24 Emag Maschinenfabrik Gmbh, 7335 Salach Verfahren und vorrichtung zur schnittkraftueberwachung einer werkzeugmaschine
JPS63314606A (ja) * 1987-06-18 1988-12-22 Fanuc Ltd 多関節ロボットの制御装置
JPH0372429A (ja) * 1988-10-07 1991-03-27 Chugai Pharmaceut Co Ltd 血小板減少症の治療剤
JP2569152B2 (ja) * 1988-10-17 1997-01-08 ファナック株式会社 サーボ制御方法
US5115418A (en) * 1989-09-25 1992-05-19 Seiko Instruments Inc. Servo control apparatus
US5304906A (en) * 1989-12-26 1994-04-19 Fanuc Ltd. Collision detecting method using an observer
US5239248A (en) * 1991-01-23 1993-08-24 Seiko Instruments Inc. Servo control system
DE4127191A1 (de) * 1991-08-13 1993-02-18 Mannesmann Ag Verfahren zur verschleisserkennung eines saegeblattes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372429B2 (ja) * 1985-04-26 1991-11-18 Ookuma Kk
JPH033755A (ja) * 1989-05-29 1991-01-09 Okuma Mach Works Ltd 加工負荷監視方法及びその装置
JPH03110606A (ja) * 1989-09-25 1991-05-10 Seiko Instr Inc サーボ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0666138A4 *

Also Published As

Publication number Publication date
EP0666138B1 (en) 2001-06-20
US5587915A (en) 1996-12-24
EP0666138A1 (en) 1995-08-09
KR950702464A (ko) 1995-07-29
JP3285663B2 (ja) 2002-05-27
JPH0751991A (ja) 1995-02-28
EP0666138A4 (en) 1998-05-13
DE69427521T2 (de) 2001-10-11
DE69427521D1 (de) 2001-07-26

Similar Documents

Publication Publication Date Title
WO1994026465A1 (en) Tool breakage prevention system
US5822212A (en) Machining load monitoring system
US5568028A (en) Tool life management system
JP3363958B2 (ja) ドリル加工方式
WO1995004633A1 (fr) Procede d'evaluation de la durabilite d'un outil
JP4261470B2 (ja) 制御装置
KR0158768B1 (ko) 공구 파손 검출 장치
WO1992005480A1 (en) Method of displaying load state
US5659131A (en) Cutter fracture detecting system
JPH02220103A (ja) 主軸制御指令方式
EP0593758B1 (en) Work exchange system
US5313861A (en) Workpiece exchanging system
JPH0751996A (ja) Cncの過剰負荷検出方式
JP3433967B2 (ja) リジッドタップ制御装置
JP2880211B2 (ja) 工具負荷監視制御方法
JPH0751997A (ja) 加工負荷監視方式
JPH0854915A (ja) 加工負荷監視方式
JPH0751992A (ja) 穴開け加工方式
JP2862211B2 (ja) 数値制御装置の主軸の速度到達検出方法
JPH0751993A (ja) Cncの機械要素寿命推定方式
JPH06297296A (ja) 数値制御装置および自動プログラミング装置
JP2002062937A (ja) 位置検出器の異常検出方法及び異常検出装置
JP2622415B2 (ja) 数値制御装置の教示データ作成方式及び加工速度制御方式
JP2001071235A (ja) 数値制御装置
JPH07148618A (ja) リジッドタップ動作の異常検出方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08360780

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994913798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019950700097

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994913798

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994913798

Country of ref document: EP