WO1994024591A1 - Multi-fiber type optical cable coupler and process for production thereof - Google Patents

Multi-fiber type optical cable coupler and process for production thereof Download PDF

Info

Publication number
WO1994024591A1
WO1994024591A1 PCT/JP1994/000638 JP9400638W WO9424591A1 WO 1994024591 A1 WO1994024591 A1 WO 1994024591A1 JP 9400638 W JP9400638 W JP 9400638W WO 9424591 A1 WO9424591 A1 WO 9424591A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
adhesive
glass
reinforcing
Prior art date
Application number
PCT/JP1994/000638
Other languages
English (en)
French (fr)
Inventor
Yoichi Ishiguro
Shigeru Semura
Yuji Kobayashi
Toshiyuki Wakinosono
Tomoyuki Hattori
Hiroshi Suganuma
Eisuke Sasaoka
Hiroaki Takimoto
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to DE69431826T priority Critical patent/DE69431826D1/de
Priority to EP94912693A priority patent/EP0646814B1/en
Priority to US08/360,708 priority patent/US5627930A/en
Publication of WO1994024591A1 publication Critical patent/WO1994024591A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Definitions

  • the present invention relates to a multi-core optical fiber cover formed by fusing and stretching 2 n optical fibers, and a method for manufacturing the same.
  • an optical fiber power bra has a disadvantage in that it has a small diameter portion having an outer diameter of several tens; / m, so that its characteristics are easily changed or damaged by an external force or a temperature change. Therefore, in the conventional optical fiber cover, the fused and expanded optical fiber cover is fixed to a reinforcing substrate having a linear expansion coefficient similar to that of quartz to protect it from external force and to stabilize its characteristics.
  • a plate-shaped member is used as described in Japanese Utility Model Application Laid-Open No. Sho 62-32408, or Japanese Unexamined Patent Application Publication No. Sho 644-36907. As described in the above, pipe-shaped ones are also used.
  • thermosetting or ultraviolet curable adhesives have been used as conventional adhesives for fixing force brass.
  • an optical fiber force bra consisting of two optical fibers is fixed to a reinforcing material
  • a method of reinforcing an optical fiber cover that uses the optical fiber outside the package as a tape-shaped multi-core optical fiber after storing the reinforcing material in one package has been proposed.
  • an optical fiber force bra consisting of two optical fibers is arranged on a comb-shaped fixing member having a plurality of grooves.
  • a method of reinforcing a fiber optic bra has also been proposed. The methods disclosed in the above-mentioned Japanese Patent Application Laid-Open No.
  • Hei 11-29521 and Japanese Patent Application Laid-Open No. Sho 63-254406 are all based on an optical system comprising two optical fibers. Since the fiber cover is mounted at a high density, it takes much time, and it takes a very long time to form a multi-core optical fiber power bra by these methods.
  • FIG. 10A, FIG. 10B and FIG. 1'0C show an example of a reinforcing structure in a conventional multi-core optical fiber cover
  • FIG. 10A is a plan view of the reinforcing structure
  • B is a perspective view of a reinforcing case used for the reinforcing structure of FIG. 1 OA
  • FIG. 10C is a cross-sectional view of a multi-core optical fiber core wire used for the reinforcing structure of FIG. 1 OA.
  • 1 is a multi-core optical fiber core wire.
  • This multi-core optical fiber core wire 1 is obtained by collectively coating four optical fiber wires 2 each having a protective coating layer 2a with a collective coating layer 1a.
  • FIGS. 10A, FIG. 10B and FIG. 1'0C show an example of a reinforcing structure in a conventional multi-core optical fiber cover
  • FIG. 10A is a plan view of the reinforcing structure.
  • B is a perspective view of a reinforcing case
  • reference numeral 3 denotes a reinforcing case.
  • b is provided.
  • the multi-core optical fiber core 1 is obtained by removing a part of the collective coating layer 1 a and the protective coating layer 2 a to expose the glass portion 2 b of the optical fiber 2, and then forming such a core wire.
  • the two glass parts 2b corresponding to the upper and lower sides are heated, stretched and fused, respectively.
  • the glass portion 2 b is fixed to the upper surface 3 a of the reinforcing case 3 and the fixed wall 3 b by the adhesive layer 4 together with the collective coating resin layer 1 a of the optical fiber core wire 1.
  • the resulting optical fiber force braggers often did not have sufficient environmental resistance characteristics.
  • an allowable fluctuation value is generally assumed to be 0.2 dB or less.
  • a variation of about 0.5 dB was sometimes observed as shown in FIG.
  • the fluctuations must be less than 0.2 dB in 100 hours. Variations in excess of 0.3 dB, as shown in 12, were often observed.
  • the horizontal axis represents the time of the heat cycle test
  • the vertical axis represents the temperature of the heat cycle test and the coupling loss changed due to the heat cycle.
  • the horizontal axis represents the time during which the sample was exposed to the moist heat environment
  • the vertical axis the coupling loss that fluctuated under the moist heat environment.
  • the invention according to claim 1 is characterized in that a plurality of optical fiber wires each including a glass part and a protective coating layer for protecting the glass part are arranged in parallel, and the whole is collectively coated resin. Fusion bonding formed by heating and stretching the exposed glass part of the multi-core optical fiber core covered by the layer and the exposed glass of the other multi-core optical fiber core in a state where they face each other. It has a reinforcing structure having a stretched portion, and a peripheral glass portion sandwiching the fused stretched portion from the drawing direction ⁇ side and the protective coating layer outside the glass portion fixed to a reinforcing material.
  • the optical fiber includes an optical fiber made of quartz glass and a protective coating layer formed on the optical fiber.
  • This protective coating layer is two-layered coating of normal Young's modulus 1 kg Zm m 2 follows the soft material and the Young's modulus 1 0 kg Zm m 2 or more hard material is found using one layer coating and three or more layers May be applied. Further, a colored layer may be provided on the outermost layer of the protective coating layer for identification.
  • the multi-core type optical fiber core has a structure in which a plurality of the above optical fibers are arranged in parallel and covered with a resin for collective coating, and examples thereof include two-core, four-core, and eight-core.
  • the number of cores is not limited.
  • the batch coating resin layer is formed by using an ultraviolet-curing or thermosetting resin, but is not limited thereto.
  • the invention described in claim 2 is the multi-core optical fiber described in claim 1.
  • the fixing of the reinforcing structure may be through an adhesive layer.
  • the invention according to claim 3 is the multi-core 'type optical fiber cover according to claim 2, wherein the multi-fiber type optical fiber cover has an adhesive layer different from an adhesive layer interposed for fixing the reinforcing structure. It may have a reinforcing structure in which the collective coating resin layer of the core type optical fiber core wire is fixed to the reinforcing material.
  • the invention according to claim 4 is the multi-fiber optical fiber cover according to claim 3, wherein the bonding between the collective coating resin layer of the multi-core optical fiber core wire and the reinforcing material is performed.
  • the adhesive of the agent layer may have a Young's modulus of 1 kg / mm 2 or less.
  • An invention according to claim 5 is the multi-fiber optical fiber cover according to claim 1 or 2, wherein the fixing between the multi-core optical fiber core wire and the reinforcing material is performed using the peripheral glass.
  • the protective cover layer outside the portion and the surrounding glass portion may be fixed only to the reinforcing material.
  • the invention according to claim 6 is the multi-core optical fiber power bra as set forth in any one of claims 1 to 5, wherein the reinforcing material is the multi-core optical fiber optical fiber. It may have a groove for arranging two fiber strands in parallel.
  • the invention according to claim 7 is the multi-core optical fiber cover according to claim 2, wherein the adhesive layer has a viscosity before curing of 50 P or more and 200 P or less. It may be composed of an agent.
  • the invention according to claim 8 is the multi-core type optical fiber cover according to claim 2, wherein the adhesive layer is made of an ultraviolet-curable adhesive having thermosetting properties. You may.
  • the invention according to claim 9 is a method for manufacturing a multi-core optical fiber power bra.
  • a multi-core optical fiber in which n (n is a natural number) optical fiber wires including a glass portion and a protective coating layer for protecting the glass portion are arranged in parallel, and the whole is covered with a collective coating resin layer. Removing the batch coating resin layer and the protective coating layer in the middle part of the two core wires to expose the glass portion, and heat-fusing and stretching the two glass portions of the exposed optical fiber two by two; Forming a fusion-bonded stretched portion, and fixing a peripheral glass portion sandwiching the fusion-bonded stretched portion from both sides in the stretching direction and the protective coating layer outside the glass portion to a reinforcing material.
  • an adhesive having a viscosity before curing of 50 P or more and 200 P or less is used for the fixing. May be used.
  • the invention according to claim 12 is a method for manufacturing a multi-core type optical fiber power bra, wherein a coating of 2 n (n is a natural number) optical fibers is removed to expose a glass portion, and
  • n is a natural number
  • the glass parts of the optical fiber are attached in parallel two by two, and are fused and stretched at one time, and then fixed to a reinforcing material at one time. It is characterized in that an adhesive whose previous viscosity is in the range of 50 P or more and 200 P or less is used.
  • the adhesive in the manufacturing method according to the thirteenth aspect, may be replaced with an ultraviolet-curable adhesive having thermosetting properties.
  • the invention according to claim 14 is the manufacturing method according to claim 12 or 13, wherein the 2 n optical fibers are two tape optical fiber cores, Is also good.
  • the present invention even if relative movement between the collective coating resin layer and the glass portion occurs by not fixing the collective coating resin layer to the reinforcing material or fixing it to the reinforcing material with a soft adhesive. Can be prevented from affecting the fusion-stretched portion.
  • the fiber by fixing the optical fiber with a resin having a viscosity of not less than 50 P and not more than 200 P before curing, the fiber is surrounded by the optical fiber, thereby preventing a space in the resin from being generated, and a heat cycle. Can be obtained with a small variation in the characteristics of
  • a thermosetting resin as an adhesive, the degree of curing of the resin including the lower portion of the optical fiber can be increased, and a force bra excellent in wet heat characteristics can be obtained.
  • FIGS. 1A, IB and 1C show a first embodiment of a multi-core optical fiber power bra according to the present invention.
  • FIG. 1A is a plan view
  • FIG. 1C is a cross-sectional view taken along a line III-III.
  • FIG. 2 is a perspective view showing a configuration of a reinforcing case applicable to the first embodiment shown in FIGS. 1A, 1B and 1C.
  • FIGS. 3A, 3B and 3C show a second embodiment of the multi-core optical fiber power bra according to the present invention, wherein FIG. 3A is a plan view and FIG. — It is a cross-sectional view along line II, and FIG. 3C is a cross-sectional view along line III-III.
  • FIG. 4 is a perspective view showing a configuration of a reinforcing case applicable to the second embodiment shown in FIGS. 3A, 3B and 3C.
  • FIG. 5A, 5B and 5C show a third embodiment of the multi-core optical fiber power bra according to the present invention, wherein FIG. 5A is a plan view and FIG. — It is a cross-sectional view along the II line, and FIG. 5C is a cross-sectional view along the ⁇ -III line.
  • FIG. 6 is a perspective view showing a configuration of a reinforcing case applicable to the third embodiment shown in FIGS. 5A, 5B and 5C.
  • 7A, 7B and 7C show a fourth embodiment of the multi-core optical fiber power bra according to the present invention, wherein FIG. 7A is a plan view and FIG. 1 is a cross-sectional view along the line II, and FIG. 7C is a cross-sectional view along the line III-III.
  • FIG. 8A and 8B are cross-sectional views showing examples of a tape core wire applicable to the reinforcing structure in the multi-core optical fiber cover of the present invention, and FIG. 8A is a two-core tape core wire. Yes, Figure 8B shows an 8-core tape core.
  • FIG. 9 is a schematic diagram showing a series of devices used to obtain a reinforcing structure in the multi-core optical fiber power bra of the present invention.
  • FIG. 10A, FIG. 10B and FIG. 10C show a reinforcing structure of a conventional multi-core optical fiber power bra
  • FIG. 10A is a plan view
  • FIG. FIG. 1 is a perspective view of a reinforcing case used for the reinforcing structure shown in OA
  • FIG. 10C is a cross-sectional view of a 4-core tape core wire.
  • FIG. 11 is a graph showing a change in coupling loss in a heat cycle test.
  • FIG. 12 is a graph showing a change in coupling loss under a moist heat environment.
  • FIGS. 13A and 13B are cross-sectional views showing an enlarged cross-sectional structure of a fixed portion of a multi-core optical fiber cover, and FIG. 13A shows a space surrounded by a 4-core optical fiber filled with a fixing resin. FIG. 13B shows a structure in which the space is not filled with the fixing resin.
  • FIG. 14 is a cross-sectional view showing PI to P5 obtained by measuring the degree of cure at the fixed portion shown in FIG. 13A.
  • FIG. 1A, 1B and 1C show a first embodiment of a multi-core optical fiber power bra according to the present invention, wherein FIG. 1A is a plan view and FIG. Is a sectional view taken along line II-II, and FIG. 1C is a sectional view taken along line III-III.
  • Fig. 2 shows this embodiment.
  • FIG. 3 is a perspective view showing a reinforcing case as a reinforcing material used for the present invention.
  • FIGS. 1A, 1B, 1C, and 2 Of the constituent elements of the present embodiment shown in FIGS. 1A, 1B, 1C, and 2, the conventional multi-core optical fiber cover shown in FIGS. 10A, 10B, and 10C is used.
  • the same reference numerals are given to components common to the components of the reinforcing structure in the present embodiment, and the description of those portions will be omitted.
  • the four-core optical fiber core wire 1 shown in FIG. 10C description will be made using the four-core optical fiber core wire 1 shown in FIG. 10C.
  • the batch-coated resin layer 1a at the center of the four-core optical fiber core 1 is removed, and the optical fiber 2 is divided into two cores. Thereafter, the protective coating layer 2a of each optical fiber 2 is removed to expose the glass portion 2b.
  • the removal of the protective coating layer 2a is preferably minimized in consideration of the strength stability.
  • FIG. 1B shows a structure for fixing a group of four-core optical fiber wires 2 to a reinforcing case 3
  • FIG. 1C shows a structure for fixing a glass portion which is continuous with the fixing structure of FIG. 1B.
  • FIGS. 3A, 3B and 3C show a second embodiment of the multi-core optical fiber power bra according to the present invention, wherein FIG. 3A is a plan view and FIG. FIG. 3C is a cross-sectional view taken along the line III-III.
  • FIG. 4 is a perspective view showing a reinforcing case as a reinforcing material used in the present embodiment.
  • This embodiment is different from the first embodiment mainly in the structure of the groove of the reinforcing case 3. That is, three partition walls 3c are formed on the upper surface 3a of the reinforcing case 3, and four grooves of the same size are formed between the three partition walls 3c and the fixed wall 3b. In each of the grooves, two optical fiber strands 2 integrated in the fusion-spread portion are provided. The protective coating layer 2 a and the glass portion 2 b of the optical fiber 2 are fixed by the adhesive layer 4 for each groove. Also in this embodiment, similarly to the previous embodiment, since the collective coating resin layer of the multi-core type optical fiber core wire is not fixed to the reinforcing case, it is possible to avoid a decrease in transmission characteristics.
  • FIGS. 5A, 5B and 5C show a third embodiment of the multi-core optical fiber power bra according to the present invention, wherein FIG. 5A is a plan view and FIG. — It is a cross-sectional view along the ⁇ line, and FIG. 5C is a cross-sectional view along the III-III line.
  • FIG. 6 is a perspective view showing a reinforcing case as a reinforcing material used in the present embodiment.
  • the reinforcing case 3 of this embodiment has a configuration in which the groove of the reinforcing case 3 shown in FIG. 2 is formed only at the center, that is, the fixed wall 3b and the partition wall 3c. Is formed only at the center.
  • the multi-core optical fiber core wire a 4-core type optical fiber core wire is used as in the first embodiment.
  • the batch-coated resin layer 1 a of the core wire 1 is also attached to the reinforcing case 3 with an adhesive. Secure with layer 5.
  • FIG. 7A, 7B, and 7C show a fourth embodiment of the present multi-core optical fiber power bra.
  • FIG. 7A is a plan view
  • FIG. FIG. 7C is a sectional view taken along the line II-II
  • FIG. 7C is a sectional view taken along the line III-III.
  • the present embodiment shows an example of a reinforcing structure of a force bra when a reinforcing case having the configuration shown in FIG. 10B is used.
  • the protective coating layer 2 a and the glass portion 2 b of the optical fiber 2 of the 4-core optical fiber core 1 are fixed to the groove of the reinforcing case 3 by the adhesive layer 4.
  • This fixing does not involve fixing of the collective coating resin layer 1 a of the optical fiber core wire 1 and the reinforcing case 3. Therefore, the force bra according to the present embodiment is not affected by the strain remaining in the collectively coated resin layer 1a as described above.
  • a four-core type optical fiber core wire is used.
  • a two-core type optical fiber shown in FIG. 8A or an eight-core type optical fiber shown in FIG. 8B can be used.
  • an ultraviolet curable resin or a thermosetting resin is used, but is not limited thereto.
  • the linear expansion coefficient is quartz. It should be about the same as an optical fiber.
  • quartz, liquid crystal plastic (LCP), fiber reinforced plastic (FRP), invar alloy, etc. can be used.
  • an ultraviolet-curing type, a thermosetting type, or an ultraviolet / heat-setting type adhesive may be used.o
  • FIG. 9 shows a series of devices suitably used for obtaining the multi-core optical fiber cover of the present invention.
  • 11 is an extension stage
  • 12 is an optical fiber clamper
  • 13 is a micro torch
  • 14 is a light source
  • 15 is a power meter
  • 16 is a reinforced case support stage.
  • the heating braid is stretched while monitoring the light branch state of the power bra with the light source 14 and the power meter 15, and the stretching is stopped when the predetermined branch state is reached.
  • the reinforcing case supporting stage 16 is moved to dispose the reinforcing case on the stage at a predetermined position, and the force bra is fixed on the reinforcing case with an adhesive.
  • the refractive index difference between the core and the cladding is 0.396, the core diameter is 8; / m, and the cladding diameter is 1
  • a single-mode optical fiber of 1.3 m band with a length of 25 m was prepared.
  • a 4-core tape core wire was prepared by coating four cores of optical fiber with two layers of protective coating. Using this four-core tape core wire, a coupler having a branching ratio of 50% at a wavelength of 1.3 m was manufactured using the above-described apparatus group.
  • the optical fiber was bonded and fixed in the same manner as in Examples 1 and 2, to obtain the structure shown in FIG. 7A (Example 4). .
  • the package resin layer of the tape core was not fixed to the reinforcing case at all, but was taken out of the case.
  • a heat cycle test at 120 to 160 ° C. was performed on the force brass of Examples 1 to 3 and Comparative Example under the same conditions. During this test, the change in transmission loss of the force bra was measured using a 1.3 m wavelength laser emitting diode (LED). Table 1 shows the measurement results.
  • “1 core”, “2 cores”, “3 cores” and “4 cores” mean force brass determined by numbering from one end of the 4-core tape core wire.
  • the numbers in Table 1 of the loss change show the value of the larger change in the input loss of the straight port and the cross port during the heat cycle test.
  • a multi-core optical fiber having a structure reinforced by an adhesive as described above.
  • Fig. 13A shows the cross section of the fixed part of the force bra, which has excellent environmental resistance characteristics where the characteristic value fluctuation (coupling loss change) in the heat cycle test shown in Fig. 11 was 0.06 dB.
  • Fig. 13B shows the cross section of the fixed part of the force bra, which is also inferior in environmental resistance characteristics, having a characteristic value variation of 0.5 dB in the heat cycle test. As can be seen from Fig.
  • the space between the four-core optical fiber 2b is completely filled with the adhesive layer 4 in the fixing part of the good product.
  • a cavity 6 in which the adhesive layer 4 is not filled occurs between the four-core optical fiber 2b.
  • the viscosity of the resin (adhesive) for fixing the optical fiber is preferably in the range of 50 P or more and 200 P or less. That is, the resin types c to e can be suitably used as a resin (adhesive) for fixing the optical fiber of the multi-core optical fiber force bra of the present invention.
  • the optical fiber fixed portion was cut in the same manner as described above, and the degree of hardening of the resin in the cross section was measured with a micro FTIR (Fourier transform infrared spectrometer).
  • the degree of cure at the measurement point P1 in FIG. 14 was 95%, 96% for P2, 93% for P3, 88% for P4, and 70% for P5.
  • the degree of cure at the lower part (P4 or P5) of the optical fiber was insufficient. Since the optical fibers are fixed together, the light that reaches the lower part of the optical fiber is weakened, and it is considered that the curing of the resin is insufficient. If the curing of the resin is insufficient, it is expected that the part where no polymerization has occurred will react with moisture and the resin will deteriorate in a wet heat environment.
  • the inventors of the present invention have made a trial production using a thermosetting resin in order to make the degree of curing of the resin below the optical fiber the same as that of the other parts.
  • Table 3 shows the results.
  • the * mark in Table 3 indicates a wet heat test under the condition of 100 hours in a 90% atmosphere.
  • thermosetting combined Short 0.05dB As shown in Table 3, the resin combined with thermosetting has good characteristics and productivity. was also found to be preferable.
  • the structure of the force bra can be protected and strengthened, and the transmission characteristics can be improved. Stabilization can also be achieved.
  • An optical fiber cover to which such an augmented structure is added will be able to sufficiently cope with recent high-density optical communication lines by utilizing the stability of its transmission characteristics.
  • the optical fiber by fixing the optical fiber with a resin having a viscosity before curing of 50 P or more and 200 P or less, a space in a portion surrounded by the optical fiber is generated.
  • a resin having a viscosity before curing of 50 P or more and 200 P or less a resin having a viscosity before curing of 50 P or more and 200 P or less.
  • the degree of curing of the resin, including the lower part of the optical fiber can be increased by using a thermosetting ultraviolet curing resin as an adhesive for fixing the optical fiber. It is possible to obtain a multi-core optical fiber cabbra having excellent wet heat characteristics and sufficient environmental resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

明細書
多芯型光ファイバ力ブラおよびその製造方法 技術分野
本発明は、 2 n本の光ファイバを融着 ·延伸して形成される多芯型光ファ ィバカブラおよびその製造方法に関するものである。
背景技術
—般に、 光ファイバ力ブラは外径が数十;/ mである細径部を有するために、 外力や温度変化により容易に特性変化あるいは破損してしまう という欠点を 有する。 従って、 従来の光フアイバカブラでは融着 ,延伸した光フアイバカ ブラ本体を石英と同程度の線膨張係数を有する補強基板に固定して外力から 保護し、 かつ特性の安定化を図るようにしている。
補強基板と しては、 例えば実開昭 6 4 - 2 3 4 0 8号公報に記載されてい るように、 板状の部材が用いられ、 あるいは特開昭 6 4— 6 3 9 0 7号に記 載されているようにパイプ状のものも用いられている。
—方、 従来の力ブラ固定用の接着剤としては、 エポキシ系, ウレタンァク リ レート系, シァノアクリ レート系の熱硬化型あるいは紫外線硬化型接着剤 が用いられている。
近年、 光通信線路の高密度化が進み、 光ファイバ力ブラの使用数も増加し ているが、 従来の力ブラは 1組の光ファイバより構成されているために、 光 フアイバカブラの占有面積の増加、 および光フアイバカブラ両端の光ファィ バの余長収納方法の複雑化を引き起こすという欠点があつた。
これに対し、 例えば特開平 1一 2 9 5 2 1 1号公報に開示されているよう に、 2本の光ファイバからなる光ファイバ力ブラを補強材に固定し、 複数個 の該補強材を 1つのパッケージに収納した後に、 パッケージ外部の光ファィ バをテープ状の多芯型光ファイバとする光フアイバカブラの補強方法が提案 されている。 また、 特開昭 6 3— 2 5 4 4 0 6号公報に開示されているよう に、 2本の光ファィバからなる光ファイバ力ブラを複数の溝を有する櫛歯状 の固定部材に配列させる光フアイバカブラの補強方法も提案されている。 上述の特開平 1一 2 9 5 2 1 1号公報、 およぴ特開昭 6 3— 2 5 4 4 0 6 号公報に開示されている方法は、 いずれも 2本の光ファイバからなる光ファ ィバカブラを高密度に実装するものであるため、 手間がかかり、 これらの方 法により多芯型光ファイバ力ブラを形成するためには、 非常に長い時間を要 するという問題点がある。
このため、 特開平 1一 1 2 0 5 1 0号に開示されているように多芯型光フ アイバ芯線から直接、 多芯型光ファイバ力ブラを製造する試みがなされてい る。 しかし、 かかる多芯型光ファイバ力ブラを補強基板に固定した場合には、 温度変化や湿度変化により、 伝送特性が著しく変化してしまう という問題点 があった。
図 1 0 A, 図 1 0 Bおよび図 1' 0 Cは、 従来の多芯型光ファィバカブラに おける補強構造の一例を示すもので、 図 1 O Aは補強構造の平面図であり、 図 1 0 Bは図 1 O Aの補強構造に用いられる補強ケースの斜視図であり、 図 1 0 Cは図 1 O Aの補強構造に用いられる多芯型光ファイバ芯線の断面図で ある。 図 1 0 Cにおいて 1は多芯型光フアイバ芯線である。 この多芯型光フ アイパ芯線 1は各々保護被覆層 2 aを有する 4本の光ファイバ素線 2を一括 被覆層 1 aにより一括被覆してなるものである。 図 1 0 Aおよび図 1 0 Bに おいて 3は補強ケースである。 この補強ケース 3の上面 3 aには、 その両側 縁にケースの長手方向に沿って互いに平行に形成されると共に、 上記補強構 造による光フアイバ芯線 1の位置ずれを防止する一対の固定壁 3 bが設けら れている。 この多芯型光ファイバ芯線 1 はその一括被覆層 1 aおよび保護被覆層 2 a の一部を除去して光フ 7ィバ素線 2のガラス部分 2 bを露出したのち、 この ような芯線 1 を上下に 2本重ね合わせ、 上下に対応するガラス部分 2 b同士 をそれぞれ加熱、 延伸して融着している。 このガラス部分 2 bは、 光フアイ バ芯線 1の一括被覆樹脂層 1 aと共に、 補強ケース 3の上面 3 aおよび固定 壁 3 bに接着剤層 4によ り固定される。
しかしながら、 多芯型光ファイバ芯線 1の製造時から一括被覆樹脂層 1 a に残留している歪が温度変化や湿度変化等によ り一括被覆樹脂層 1 aの収縮 という形で開放されるため、 融着延伸部分を有するガラス部分 2 bと一括被 覆樹脂層 1 aとの間に相対的な移動が生じる。 従来の多芯型光ファイバカブ ラでは、 図 1 O Aおよび図 1 0 Bに示したように一括被覆榭脂層 1 aが補強 ケース 3に強固に固定されているため、 細径である融着延伸部分に応力が生 じ、 光ファイバ力ブラの伝送特性を変化させてしまう不都合が生じる。
また、 4本以上の光ファイバを一括して補強材に接着固定した場合、 でき 上がった光ファイバ力ブラは十分な耐環境特性を持たないことが多かった。 例えば、 光ファイバ力ブラに一 2 0でから + 6 0 の温度負荷をかけ、 特性 変動をみるヒートサイクル試験においては、 許容できる変動値は一般に 0 . 2 d B以下とされているが、 上記の場合には、 図 1 1に示すように 0 . 5 d B程度の変動が観察されることがあった。 また、 6 0 、 9 5 %の湿熱環境 下での特性変動をみる試験では、 変動値が、 1 0 0時間で 0 . 2 d B以下で ある必要があるが、 上記の場合には、 図 1 2に示すように 0 . 3 d Bを越え る変動がしばしば観察された。 なお、 図 1 1においては、 横軸にヒートサイ クル試験の時間をとり、 縦軸にヒートサイクル試験の温度、 および当該ヒー トサイクルを受けて変化した結合損失をとつた。 図 1 2においては、 横軸に 湿熱環境下にサンプルを晒した時間をとり、 縦軸に当該湿熱環境下で変動し た結合損失をとつた。 本発明の目的は、 光フアイバ芯線の製造時から一括被覆樹脂層に残留して いる歪等によ り、 一括被覆樹脂層と光フアイバ芯線のガラス部分との相対的 な移動が生じたと しても、 その移動によ り融着 ·延伸部が影響を受けること がなく、 しかも十分な耐環境特性を有する補強構造を有する多芯型光ファィ バカブラおよびその製造方法を提供することにある。 発明の開示
上記の目的を達成するために、 請求の範囲 1記載の発明は、 ガラス部分と 該ガラス部分を保護する保護被覆層とを含む光ファイバ素線を複数本、 並行 に配列し全体を一括被覆樹脂層により被覆してなる多芯型光フアイバ芯線の 露出したガラス部分と他の多芯型光ファイバ芯線の露出したガラス部分とを 対向させた状態で加熱融着し延伸して形成された融着延伸部を有し、 該融着 延伸部を延伸方向两側から挟む周辺ガラス部分と該ガラス部分の外側の前記 保護被覆層とを補強材に固定した補強構造を有することを特徴とする。
上記光ファイバ素線は、 石英系のガラスよりなる光ファイバ上に保護被覆 層が形成されたものを含む。 この保護被覆層は通常ヤング率 1 k g Zm m2以 下の軟質材料とヤング率 1 0 k g Zm m2以上の硬質材料の 2層被覆が用いら れているが、 1層被覆および 3層以上の被覆が施してあってもよい。 また、 保護被覆層の最外層に識別のため着色層が設けられてもよい。
多芯型光ファィバ芯線は上記光ファイバ素線を複数本並行に配列し一括被 覆樹脂で被覆してなる構造を有しており、 例えば、 2芯, 4芯, 8芯のもの が挙げられるが、 芯数には限定されない。
上記一括被覆樹脂層は、 紫外線硬化型あるいは熱硬化型の樹脂が使用され て形成されるが、 これらに限定されることはない。
請求の範囲第 2項記載の発明は、 請求の範囲第 1項記載の多芯型光ファィ バカブラにおいて、 前記補強構造の固定は接着剤層を介したものであっても よい。
請求の範囲第 3項記載の発明は、 請求の範囲第 2項記載の多芯'型光ファィ バカブラにおいて、 前記補強構造の固定に介在した接着剤層と異なる接着剤 層を介して、 前記多芯型光フアイバ芯線の一括被覆樹脂層を前記補強材に固 定した補強構造を有するものであってもよい。
請求の範囲第 4項記載の発明は、 請求の範囲第 3項記載の多芯型光ファィ バカブラにおいて、 前記多芯型光ファィバ芯線の一括被覆樹脂層と前記補強 材との固定に介在した接着剤層の接着剤は、 ヤング率が 1 k g / m m2以下の ものであってもよい。
請求の範囲第 5項記載の発明は、 請求の範囲第 1項または第 2項に記載の 多芯型光フアイバカブラにおいて、 前記多芯型光フアイバ芯線と前記補強材 との固定は、 前記周辺ガラス部分および該周辺ガラス部分の外側の前記保護 被覆層と、 前記補強材との固定のみからなるものであってもよい。
請求の範囲第 6項記載の発明は、 請求の範囲第 1項ないし第 5項のいずれ かに記載の多芯型光ファイバ力ブラにおいて、 前記補強材は、 前記多芯型光 フアイバ芯線の光フアイバ素線を 2本ずつ並行して配設するための溝を有す るものであってもよい。
請求の範囲第 7項記載の発明は、 請求の範囲第 2項記載の多芯型光ファィ バカブラにおいて、 前記接着剤層は硬化前の粘度が 5 0 P以上 2 0 0 P以下 の範囲の接着剤からなるものであってもよい。
請求の範囲第 8項記載の発明は、 請求の範囲第 2項記載の多芯型光ファィ バカブラにおいて、 前記接着剤層は熱硬化性もあわせ持つ紫外線硬化型の接 着剤からなるものであってもよい。
請求の範囲第 9項記載の発明は、 多芯型光ファイバ力ブラの製造方法であ つて、 ガラス部分と該ガラス部分を保護する保護被覆層とを含む光ファィバ 素線を n ( nは自然数) 本、 並行に配列し全体を一括被覆樹脂層により被覆 してなる多芯型光ファイバ芯線 2本の中間部の前記一括被覆樹脂層および前 記保護被覆層を除去して前記ガラス部分を露出させる工程と、 露出した光フ アイバ素線のガラス部分を 2本ずつ加熱融着し延伸して融着延伸部を形成す る工程と、 該融着延伸部を延伸方向両側から挟む周辺ガラス部分と該ガラス 部分の外側の前記保護被覆層とを補強材に固定する工程を含むことを特徴と する。
請求の範囲第 1 0項記載の発明は、 請求の範囲第 9項記載の製造方法にお いて、 前記固定に、 硬化前の粘度が 5 0 P以上 2 0 0 P以下の範囲の接着剤 を用いてもよい。
請求の範囲第 1 1項記載の発明は、 請求の範囲第 9項記載の製造方法にお いて、 前記固定に熱硬化性もあわせ持つ紫外線硬化型の接着剤を用いてもよ い o
請求の範囲第 1 2項記載の発明は、 多芯型光ファイバ力ブラの製造方法で あって、 2 n ( nは自然数) 本の光ファイバの被覆を除去してガラス部分を 露出させ、 該光ファイバのガラス部分を 2本ずつ平行に添わせ、 一括して融 着延伸した後、 一括して補強材に固定し、 多芯型光ファイバ力ブラを製造す る方法において、 前記固定に硬化前の粘度が 5 0 P以上 2 0 0 P以下の範囲 の接着剤を用いることを特徴とする。
請求の範囲第 1 3項記載の発明は、 請求の範囲第 1 2項記載の製造方法に おいて、 前記接着剤を、 熱硬化性もあわせ持つ紫外線硬化型の接着剤に代え てもよい。
請求の範囲第 1 4項記載の発明は、 請求の範囲第 1 2項または第 1 3項に 記載の製造方法において、 前記 2 n本の光ファイバは 2本のテープ光フアイ バ芯線であってもよい。 本発明においては、 一括被覆樹脂層を補強材に固定しないか、 あるいは軟 質の接着剤により補強材に固定することにより、 一括被覆樹脂層とガラス部 分の相対的な移動が生じてもそれが融着延伸部に影響を及ぼすことを防ぐこ とができる。
本発明においては、 硬化前の粘度が 5 0 P以上 2 0 0 P以下の榭脂で光フ アイバを固定することにより、 光ファイバで囲まれ、 樹脂中の空間の発生を 防ぎ、 ヒートサイクルでの特性変動の少ない力ブラを得ることができる。 ま た、 熱硬化併用型の樹脂を接着剤として用いることにより、 光ファイバ下部 も含め、 樹脂の硬化度を上げ、 湿熱特性に優れた力ブラを得ることができる。 図面の簡単な説明
図 1 A、 図 I Bおよび図 1 Cは、 本発明の多芯型光ファイバ力ブラの第 1 の実施例を示すものであって、 図 1 Aは平面図であり、 図 1 Bは II一 II線に沿 う断面図であり、 図 1 Cは III一 III線に沿う断面図である。
図 2は、 図 1 A、 図 1 Bおよび図 1 Cに示した第 1の実施例に適用可能な 補強ケースの構成を示す斜視図である。
図 3 A、 図 3 Bおよび図 3 Cは、 本発明の多芯型光ファイバ力ブラの第 2 の実施例を示すものであって、 図 3 Aは平面図であり、 図 3 Bは II— II線に沿 う断面図であり、 図 3 Cは III一 III線に沿う断面図である。
図 4は、 図 3 A、 図 3 Bおよび図 3 Cに示した第 2の実施例に適用可能な 補強ケースの構成を示す斜視図である。
図 5 A、 図 5 Bおよび図 5 Cは、 本発明の多芯型光ファイバ力ブラの第 3 の実施例を示すものであって、 図 5 Aは平面図であり、 図 5 Bは II— II線に沿 う断面図であり、 図 5 Cは ΙΠ - III線に沿う断面図である。
図 6は、 図 5 A、 図 5 Bおよび図 5 Cに示した第 3の実施例に適用可能な 補強ケースの構成を示す斜視図である。 図 7 A、 図 7 Bおよび図 7 Cは、 本発明の多芯型光ファイバ力ブラの第 4 の実施例を示すものであって、 図 7 Aは平面図であり、 図 7 Bは II一 II線に沿 う断面図であり、 図 7 Cは III - III線に沿う断面図である。
図 8 Aおよび図 8 Bは、 本発明の多芯型光フアイバカブラにおける補強構 造に適用可能なテープ芯線の例を示す断面図であって、 図 8 Aは 2芯型のテ ープ芯線であり、 図 8 Bは 8芯型のテープ芯線である。
図 9は、 本発明の多芯型光ファイバ力ブラにおける補強構造を得るのに用 いられる一連の装置群を示す模式図である。
図 1 0 A、 図 1 0 Bおよび図 1 0 Cは、 従来の多芯型光ファイバ力ブラに おける補強構造を示すものであって、 図 1 O Aは平面図であり、 図 1 0 Bは 図 1 O Aに示した補強構造に用いられる補強ケースの斜視図であり、 図 1 0 Cは 4芯型のテープ芯線の断面図である。
図 1 1は、 ヒートサイクル試験での結合損失変化を示すグラフである。 図 1 2は、 湿熱環境下での結合損失変化を示すグラフである。
図 1 3 Aおよび図 1 3 Bは、 多芯型光フアイバカブラにおける固定部分の 拡大断面構造を示す断面図であって、 図 1 3 Aは 4芯光ファイバが囲む空間 に固定用樹脂が充填された構造を示し、 図 1 3 Bは当該空間に固定用樹脂が 充填されていない構造を示す。
図 1 4は、 図 1 3 Aに示した固定部分における硬化度を測定した P I 〜P 5 を示す断面図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施例を説明する。
図 1 A、 図 1 Bおよぴ図 1 Cは、 本発明の多芯型光ファイバ力ブラの第 1 の実施例を示すものであって、 図 1 Aは平面図であり、 図 1 Bは II一 II線に沿 う断面図であり、 図 1 Cは III一 III線に沿う断面図である。 図 2は本実施例 に用いられる補強材としての補強ケースを示す斜視図である。
以下、 図面を参照して本発明の実施例を説明する。
図 1 A、 図 1 B、 図 1 Cおよび図 2に示す本実施例の構成要素のうち、 図 1 0 A、 図 1 0 Bおよび図 1 0 Cに示した従来の多芯型光ファィバカブラに おける補強構造の構成要素と共通するものについては、 同一符号を付し、 そ の部分の説明を省略する。
本実施例では、 図 1 0 Cに示した 4芯型光ファイバ芯線 1を用いて説明す る。 この 4芯型光ファイバ芯線 1の中央部分の一括被覆樹脂層 1 aを除去し て 2芯ずつの光ファイバ素線 2に分ける。 この後、 各光ファイバ素線 2の保 護被覆層 2 aを除去してガラス部分 2 bを露出させる。 ここで、 光ファイバ 素線 2に分けられた部分の全長にわたって保護被覆層 2 aを全部除去するの ではなく、 保護被覆層 2 aの除去は強度安定性を考慮すると最小限が好まし い。 このようにしてガラス部分 2 bまで露出したのと同様の他の 4芯型光フ アイバ芯線 1を用意し、 前述の芯線 1の上に重ね、 上下に各々対応した光フ アイバ素線 2のガラス部分 2 b同士を加熱し、 互いに融着したのち、 延伸し て図 1 Aに示すように細径の融着延伸部 2 cをそれぞれ形成する。 光フアイ バ素線 2は 2芯ずつに分けられているから、 融着延伸により上下合わせて 4 芯の光ファイバ素線 2が 1群を形成する。 これにより、 上下に重ねられた 2 本の 4芯型光フアイパ芯線 1から、 2群の 4芯光フアイパ素線 2からなる多 芯型光ファィバカブラを得ることができる。
このような多芯型光ファイバ力ブラを図 2に示す補強ケース 3に固定する 構造に本実施例の特徴がある。 すなわち、 図 2に示す補強ケース 3は、 図 1 0 Bに示した補強ケース 3の上面 3 aのうち、 その両側の固定壁 3 bの中央 部分に仕切壁 3 cを有しており、 この仕切壁 3 cにより溝は 2分割されてい る。 この補強ケース 3の各溝には、 上記融着延伸部 2 cが溝の中央部に位置 するように上記 1群の 4芯光フアイパ素線 2が配設され、 この各光ファイバ 素線 2のガラス部分 2 bおよび保護被覆層 2 aが接着剤層 4を介して上記溝 に固定される。 図 1 Bは 1群の 4芯光ファイバ素線 2の補強ケース 3への固 定構造を示し、 図 1 Cは図 1 Bの固定構造に連続するガラス部分の固定構造 を示す。
本実施例では、 光フアイバ芯線 1の一括被覆樹脂層 1 aは補強ケース 3の 溝に固定されないから、 光ファイバ芯線 1の製造時から一括被覆樹脂層 1 a に残留する歪による影響を排除することができ、 伝送特性の低下を免れるこ とができる。
図 3 A、 図 3 Bおよび図 3 Cは、 本発明の多芯型光ファイバ力ブラの第 2 の実施例を示すものであって、 図 3 Aは平面図であり、 図 3 Bは II一 II線に沿 う断面図であり、 図 3' Cは III一 III線に沿う断面図である。 図 4は本実施例 に用いられる補強材としての補強ケースを示す斜視図である。
本実施例が第 1の実施例と異なる点は、 主に補強ケース 3の溝の構造の違 いにある。 すなわち、 補強ケース 3の上面 3 aには、 3つの仕切壁 3 cが形 成され、 固定壁 3 bとの間に互いに同寸法の溝が 4本形成されている。 この 溝ごとに、 融着延伸部において一体となっている 2本の光ファイバ素線 2が それぞれ配設されている。 そして、 各溝ごとに、 光ファイバ素線 2の保護被 覆層 2 aおよびガラス部分 2 bは接着剤層 4により固定されている。 本実施 例でも、 先の実施例と同様に多芯型光ファィバ芯線の一括被覆樹脂層を補強 ケースに固定しないので、 伝送特性の低下を免れることができる。
図 5 A、 図 5 Bおよび図 5 Cは、 本発明の多芯型光ファイバ力ブラの第 3 の実施例を示すものであって、 図 5 Aは平面図であり、 図 5 Bは Π— Π線に沿 う断面図であり、 図 5 Cは III - III線に沿う断面図である。 図 6は本実施例 に用いられる補強材としての補強ケースを示す斜視図である。
本実施例が第 1の実施例と異なる点は、 主に補強ケース 3の構造の違いと 力ブラの補強ケースへの固定にヤング率の異なる 2種類の接着剤を用いると ころにある。 まず、 図 6に示すように、 本実施例の補強ケース 3 と しては、 図 2に示した補強ケース 3の溝を中央部にのみ形成した構成、 すなわち固定 壁 3 bおよび仕切壁 3 cが中央部にのみ形成された構成のものが用いられる。 多芯型光フアイバ芯線と しては、 第 1の実施例と同様に 4芯型のものが用い られるが、 本実施例ではその芯線 1の一括被覆樹脂層 1 aも補強ケース 3に 接着剤層 5によ り固定する。 しかし、 この接着剤層 5は、 光ファイバ素線 2 の保護被覆層 2 aおよびガラス部分 2 bの補強ケース 3への固定に係わる接 着剤層 4よ り軟質のものである。 このため、 光ファイバ芯線 1の一括被覆樹 脂層 1 aが補強ケース 3に直接固定されていても、 その一括被覆樹脂層 1 a に残留する製造時の歪みの影響を、 接着剤層 4および 5のヤング率の差異に よ り吸収することができるので、 力ブラの伝送特性を低下させることはない。 図 7 A、 図 7 Bおよび図 7 Cは、 本癸明の多芯型光ファイバ力ブラの第 4 の実施例を示すものであって、 図 7 Aは平面図であり、 図 7 Bは II一 II線に沿 う断面図であり、 図 7 Cは III一 III線に沿う断面図である。
本実施例は、 補強ケースとして図 1 0 Bに示した構成のものを用いた場合 の力ブラにおける補強構造の例を示すものである。 本実施例でも、 4芯型光 フアイバ芯線 1の光フアイバ素線 2の保護被覆層 2 aおよびガラス部分 2 b が接着剤層 4により補強ケース 3の溝に固定される。 この固定には、 光ファ ィバ芯線 1の一括被覆樹脂層 1 aと補強ケース 3との固定は関与しない。 し たがって、 本実施例の力ブラは、 前述のように一括被覆榭脂層 1 aに残留す る歪みの影響を受けない。
上記実施例では、 多芯型光ファイバ芯線として 4芯型のものを用いたが、 他に例えば図 8 Aに示す 2芯型、 図 8 Bに示す 8芯型のものなども使用可能 である。 また、 上記実施例に用いられる一括被覆樹脂層の形成材料としては 紫外線硬化型樹脂あるいは熱硬化型樹脂が用いられるが、 これに限定される ものではない。 さらに、 補強ケースの形成材料としては、 線膨張係数が石英 光ファイバとほぼ同程度であることが必要であり、 例えば石英、 液晶プラス チック (L C P ) 、 繊維強化プラスチック (F R P ) 、 インバー合金等を用 いることができる。 また、 接着剤層を形成する接着剤と しては、 紫外線硬化 型、 熱硬化型、 あるいは紫外線一熱併用硬化型接着剤等を用いることができ る o
図 9は、 本発明の多芯型光ファィバカブラを得るために好適に用いられる 一連の装置群を示すもので、 図において 1 1は延伸ステージ、 1 2は光ファ ィバクランパ、 1 3はマイクロ トーチ、 1 4は光源、 1 5はパワーメータ、 1 6は補強ケース支持ステージである。
次に、 これら装置群を用いて本発明に用いられる多芯型光フアイバカブラ を補強ケースに固定するまでの工程を概略説明する。 例えば、 図 1 Aに示し た多芯型光ファイバ芯線 1の中央部の一括被覆榭脂層 1 aを除去し、 複数本 の光フアイバ素線 2に分けた後、 各光フアイバ素線 2の保護被覆層 2 aを除 去してガラス部分 2 bを露出させる。 この露出したガラス部分 2 bを光ファ ィバクランパ 1 2により固定し、 マイクロ トーチ 1 3により加熱し融着する c その後、 光ファイバクランパ 1 2を外し、 融着された光フアイバに張力をか けた状態に維持しながら、 その融着箇所を加熱し延伸する。 このとき、 光源 1 4およびパワーメータ 1 5により力ブラの光分岐状態をモニタしながら加 熱延伸し、 所定の分岐状態となったところで延伸を停止する。 次に、 補強ケ —ス支持ステージ 1 6を移動して当該ステージ上の補強ケースを所定位置に 配置し、 接着剤により上記力ブラを補強ケース上に固定する。 このとき、 融 着延伸部 2 cの両側に位置する周辺ガラス部分としてのガラス露出部分およ びその後方の保護被覆層を補強ケースに接着剤により固定することが重要で め 。
以下、 本発明の具体的な実施例を説明する。
コアとクラッ ドの屈折率差を 0 . 3 96、 コア径を 8 ;/ m、 クラッ ド径を 1 2 5 mと した 1. 3 m帯シングルモ一 ド光フアイノ に 2層の保護被覆を 施した光ファイバ素線 4芯を一括被覆した 4芯テープ芯線を用意した。 この 4芯テープ芯線を用いて波長 1. 3 mにおける分岐比が 5 0 %となるカブ ラを前述の装置群を用いて製造した。
補強ケースとしては、 結晶化ガラス (線膨張係数: 1. 5 X 1 (T7Z°C) 製のものを用いた。
図 2に示した構造の補強ケースの各溝に 2芯ずつの光フアイバ素線を収納 し、 各光フアイパ素線の非延伸部分であるガラス部分および保護被覆層を補 強ケースに固定し、 図 1 Aに示した構造を得た。 固定には紫外線硬化型接着 剤を用いた (実施例 1 ) 。
また、 図 4に示した構造の補強ケースの各溝に 1芯ずつの光ファイバ素線 を収納し、 各光フアイバ素線の非延伸部分であるガラス部分および保護被覆 層を補強ケースに紫外線硬化型接着剤により固定し、 図 3 Aに示した構造を 得た (実施例 2) 。
さらに、 図 6に示した構造の補強ケースの各溝に 2芯ずつの光ファィバ素 線を収納し、 各光フアイバ素線の非延伸部分であるガラス部分をその溝に紫 外線硬化型接着剤により固定すると共に、 補強ケースの溝のない面にテープ 芯線を軟質 (ヤング率:約 0. O T k gZmm2 ) の熱硬化型接着剤により固 定し、 図 5 Aに示した構造を得た (実施例 3) 。
また、 図 1 0 Bに示した構造の補強ケースを用い、 実施例 1、 2と同様に して光ファイバ素線を接着固定し、 図 7 Aに示した構造を得た (実施例 4) 。 すなわち、 テープ芯線の一括被覆樹脂層を補強ケースに一切固定せず、 ケー ス外に出した構造とした。
—方、 図 1 0 Bに示した構造の補強ケースに上記と同様の多芯型光フアイ バカブラを紫外線硬化型接着剤により固定した。 この場合、 一括被覆樹脂層 も補強ケースに同じ接着剤によ り固定し、 図 1 0 Aに示した構造を得た (比 較例) 。
上記実施例 1〜 3および比較例の各力ブラに対して、 一 2 0〜十 6 0 °Cの ヒー トサイクル試験を同一条件下で行った。 この試験中、 波長 1 . 3 mの レーザ発光ダイオー ド (L E D ) を用いて力ブラの伝送損失の変化を測定し た。 測定結果を表 1 に示す。 表 1 において、 「 1芯」 、 「2芯」 、 「3芯」 および 「4芯」 は 4芯のテープ芯線の一方の端から番号付けして決定した力 ブラを意味する。 また、 損失変化の表 1中の数字は、 ヒートサイクル試験中 のス トレートポー トおよびクロスポー トの揷入損失のうち変化の大きい方の 値を示したものである。
【表 1】
Figure imgf000016_0001
表 1から明らかなように、 比較例では温度により著しい特性変化を生じて おり、 テ一プ芯線の製造時から一括被覆樹脂層に残留している歪みの影響が 現れているといえる。 一方、 実施例 1〜3では、 そのような歪みによる影響 が皆無であるので、 力ブラの伝送特性が安定していることがわかる。
ところで、 上記のような接着剤による補強構造を有する多芯型光フアイバ 力ブラが、 特定の環境試験 (ヒー トサイクル、 湿熱) 下において、 いかなる 特性変動を示すかについて研究した。 すなわち、 本発明者ら力 、 上記の環境 試験での特性変動の原因を追求した結果、 次のようなことがわかった。 図 1 3 Aは、 図 1 1に示したヒー トサイクル試験での特性値変動 (結合損失変化) が 0 . 0 6 d Bであった耐環境特性に優れた力ブラの固定部分の断面を示し たものであり、 図 1 3 Bは、 同じく ヒー トサイクル試験での特性値変動が 0 . 5 d Bあった耐環境特性に劣る力ブラの固定部分の断面を示したものである。 図 1 3 Aからわかるように、 良好品の固定部分は、 4芯の光ファイバ 2 bの 間の空間に完全に接着剤層 4が充填されており、 不良品の固定部分には、 図 1 3 Bからわかるように、 4芯の光フアイバ 2 bの間に接着剤層 4が充填さ れない空洞 6が生じている。 ヒー トサイクル試験において低温が負荷された 時、 樹脂の膨張 '収縮が不均一に起こり、 各光フアイバ 2 b ( 1 2 5 m ) に微小な曲げが生じて特性が変化したものと考えられる。 本発明者らは、 上 記の空洞 6の発生、 ひいては、 ヒートサイクル試験での特性変動を低減する ため、 固定部分の樹脂 (接着剤) の粘度を変えて試作を行った。 表 2にその 結果を示す。
【表 2】
樹脂 (接着剤) 粘度と空洞の発生率、 ヒー トサイクル不良品発生率 樹脂種別 粘度 空洞が 特性変動 (0.2dB以上)
あった場合 があった場合
a 800P 60% 50%
b 400 20 10
c 200 5 0
d 100 0 0
e 50 0 0
(塗りにくレ、)
f 30
(流れて塗れなレ 上記の表 2 よ り、 光ファイバ固定用の樹脂 (接着剤) の粘度は 5 0 P以上 2 0 0 P以下の範囲であるが好ま しいことがわかった。 すなわち、 樹脂種別 c〜 eは、 本発明の多芯型光ファイバ力ブラの光ファイバ固定用の樹脂 (接 着剤) と して好適に使用可能である。
次に、 光ファイバ固定部分を上記と同じように切断し、 断面内の樹脂の硬 化度をマイクロ F T I R (フーリエ変換型赤外分光器) によって測定した。 図 1 4における測定点 P 1 での硬化度は 9 5 %、 P 2では 9 6 %、 P 3では 9 3 %、 P 4では 8 8 %、 P 5 では 7 0 %であった。 図 1 4からわかるように、 光ファイバの下部 (P 4 または P 5 ) での硬化度が不足していることが分かつ た。 光ファイバを一括して固定しているため、 光ファイバ下部までまわりこ む光が弱くなり、 樹脂の硬化が不十分になっていると考えられる。 樹脂の硬 化が不十分であれば、 重合の起こっていない部分が水分と反応して、 湿熱環 境下で樹脂の劣化が起こることは予想される。
本発明者らは、 上記の光ファイバ下部での樹脂の硬化度を、 それ以外の部 分と同程度にするため、 熱硬化併用型樹脂を採用して試作を行った。 表 3に その結果を示す。 表 3中の *印は 60で、 90%雰囲気中で 100時間という条件 の湿熱試験である。
【表 3】
樹脂、 製造条件と湿熱試験での変動値 榭脂種別 硬化条件 湿熱試験 *特性変動値度
UV硬化 短い 0. 13dB
UV硬化 長い O. ldB
熱硬化併用 短い 0.05dB 表 3より、 熱硬化併用型の樹脂は、 特性的にも良好であり、 生産性の点で も好ましいことが分かった。
次に、 固定に紫外線硬化型接着剤を用いていない実施例 1および 3の各力 ブラに対し、 60°C 90 %雰囲気中で 100時間という条件の湿熱試験を行った, モニタ波長 1 . 3 1 であり、 その各力ブラの 「芯」 ごとに伝送損失の変 化を測定した。 測定結果を表 4に示す。 表 4において、 「 1芯」 、 「2芯」 .
「3芯」 および 「4芯」 は表 1の場合と同様である。
【表 4】
湿熱試験の結果 実施例 1 実施例 2
Figure imgf000019_0001
0.04 0.05
0.06 0.03
4 0.08 0.02 表 4から明らかなように、 実施例 1および 3の力ブラは特性変動が極めて小 さいことが分かる。 産業上の利用可能性
以上説明したように、 本発明によれば、 多芯型光ファイバ芯線の一括被覆 樹脂層に残留している歪みの影響を排除したので、 力ブラの構造自体を保護 強化できると共に、 伝送特性の安定化をも図ることができる。 このような補 強構造が付加された光フアイバカブラは、 その伝送特性の安定性を生かして 近年の光通信線路の高密度化に十分対応できるものとなる。
また、 本発明によれば、 硬化前の粘度が 5 0 P以上 2 0 0 P以下の樹脂で 光ファイバを固定することにより、 光ファイバで囲まれる部分の空間の発生 を防ぎ、 ヒー トサイクルでの特性変動が少なく、 十分な耐環境性を有する多 芯型光ファィバカブラを得ることができる。
さらに、 本発明によれば、 熱硬化併用型の紫外線硬化樹脂を光ファイバ固 定用の接着剤と して使うことによ り、 光ファイバ下部も含め、 樹脂の硬化度 を上げることができるので、 湿熱特性に優れた、 十分な耐環境性を有する多 芯型光ファィバカブラを得ることができる。

Claims

請求の範囲
1 . ガラス部分と該ガラス部分を保護する保護被覆層とを含む光ファイバ 素線を複数本、 並行に配列し全体を一括被覆樹脂層によ り被覆してなる多芯 型光ファイバ芯線の露出したガラス部分と他の多芯型光フアイバ芯線の露出 したガラス部分とを対向させた状態で加熱融着し延伸して形成された融着延 伸部を有し、 該融着延伸部を延伸方向両側から挟む周辺ガラス部分と該ガラ ス部分の外側の前記保護被覆層とを補強材に固定した補強構造を有すること を特徴とする多芯型光フアイバカブラ。
2 . 請求の範囲第 1項記載の多芯型光ファイバ力ブラにおいて、 前記補強 構造の固定は接着剤層を介したものであることを特徴とする多芯型光フアイ バカブラ。
3 . 請求の範囲第 2項記載の多芯型光ファイバ力ブラにおいて、 前記補強 構造の固定に介在した接着剤層と異なる接着剤層を介して、 前記多芯型光フ アイバ芯線の一括被覆樹脂層を前記補強材に固定した補強構造を有すること を特徴とする多芯型光ファイバ力ブラ。
4 . 請求の範囲第 3項記載の多芯型光ファイバ力ブラにおいて、 前記多芯 型光フアイバ芯線の一括被覆榭脂層と前記補強材との固定に介在した接着剤 層の接着剤は、 ヤング率が 1 k g Zm m2以下のものであることを特徴とする 多芯型光ファイバ力ブラ。
5 . 請求の範囲第 1項または第 2項に記載の多芯型光ファイバ力ブラにお いて、 前記多芯型光ファイバ芯線と前記補強材との固定は、 前記周辺ガラス 部分および該周辺ガラス部分の外側の前記保護被覆層と、 前記補強材との固 定のみからなるものであることを特徵とする多芯型光フアイパカブラ。
6 . 請求の範囲第 1項ないし第 5項のいずれかに記載の多芯型光ファィバ 力ブラにおいて、 前記補強材は、 前記多芯型光ファイバ芯線の光ファイバ素 線を 2本ずつ並行して配設するための溝を有するものであることを特徴とす る多芯型光ファイバ力ブラ。
7 . 請求の範囲第 2項記載の多芯型光ファイバ力ブラにおいて、 前記接着 剤層は硬化前の粘度が 5 0 P以上 2 0 0 P以下の範囲の接着剤からなるもの であることを特徴とする多芯型光ファイバ力ブラ。
8 . 請求の範囲第 2項記載の多芯型光ファイバ力ブラにおいて、 前記接着 剤層は熱硬化性もあわせ持つ紫外線硬化型の接着剤からなるものであること を特徴とする多芯型光ファイバ力ブラ。
9 . ガラス部分と該ガラス部分を保護する保護被覆層とを含む光フアイバ 素線を n ( nは自然数) 本、 並行に配列し全体を一括被覆樹脂層によ り被覆 してなる多芯型光フアイバ芯線 2本の中間部の前記一括被覆樹脂層および前 記保護被覆層を除去して前記ガラス部分を露出させる工程と、 露出した光フ アイバ素線のガラス部分を 2本ずつ加熱融着し延伸して融着延伸部を形成す る工程と、 該融着延伸部を延伸方向雨側から挟む周辺ガラス部分と該ガラス 部分の外側の前記保護被覆層とを補強材に固定する工程を含むことを特徴と する多芯型光ファイバ力ブラの製造方法。
1 0 . 請求の範囲第 9項記載の製造方法において、 前記固定に、 硬化前の 粘度が 5 0 P以上 2 0 0 P以下の範囲の接着剤を用いることを特徴とする多 芯型光フアイバカブラの製造方法。
1 1 . 請求の範囲第 9項記載の製造方法において、 前記固定に熱硬化性も あわせ持つ紫外線硬化型の接着剤を用いることを特徴とする多芯型光フアイ バカブラの製造方法。
1 2 . 2 n ( nは自然数) 本の光ファイバの被覆を除去してガラス部分を 露出させ、 該光ファイバのガラス部分を 2本ずつ平行に添わせ、 一括して融 着延伸した後、 一括して補強材に固定し、 多芯型光ファイバ力ブラを製造す る方法において、 前記固定に硬化前の粘度が 5 0 P以上 2 0 0 P以下の範囲 の接着剤を用いることを特徴とする多芯型光ファイバ力ブラの製造方法。
1 3 . 請求の範囲第 1 2項記載の製造方法において、 前記接着剤を、 熱硬 化性もあわせ持つ紫外線硬化型の接着剤に代えたことを特徴とする多芯型光 ファイバ力ブラの製造方法。
1 4 . 請求の範囲第 1 2項または第 1 3項に記載の製造方法において、 前 記 2 n本の光ファイバは 2本のテープ光ファィバ芯線であることを特徴とす る多芯型光フアイバカブラの製造方法。
PCT/JP1994/000638 1993-04-19 1994-04-18 Multi-fiber type optical cable coupler and process for production thereof WO1994024591A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69431826T DE69431826D1 (de) 1993-04-19 1994-04-18 Optischer kabelkoppler vom multifasertyp und sein herstellungsverfahren
EP94912693A EP0646814B1 (en) 1993-04-19 1994-04-18 Multi-fiber type optical cable coupler and process for production thereof
US08/360,708 US5627930A (en) 1993-04-19 1994-04-18 Arrayed optical fiber coupler and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/91094 1993-04-19
JP9109493 1993-04-19

Publications (1)

Publication Number Publication Date
WO1994024591A1 true WO1994024591A1 (en) 1994-10-27

Family

ID=14016938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000638 WO1994024591A1 (en) 1993-04-19 1994-04-18 Multi-fiber type optical cable coupler and process for production thereof

Country Status (4)

Country Link
US (1) US5627930A (ja)
EP (1) EP0646814B1 (ja)
DE (1) DE69431826D1 (ja)
WO (1) WO1994024591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885306A (zh) * 2016-04-15 2018-11-23 株式会社藤仓 光纤保护构造及使用该光纤保护构造的光合路构造

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802224A (en) * 1994-05-23 1998-09-01 Kyocera Corporation Optical coupler for performing light branching and light mixing/branch filtering in a light communication network
US6084999A (en) * 1997-11-12 2000-07-04 Alliance Fiber Optics Products, Inc. Optical coupler assembly and method making the same
SE511106C3 (sv) * 1997-12-01 1999-08-30 Ericsson Telefon Ab L M Foerfarande och anordning foer att fixera optofibrer
US5995693A (en) * 1998-07-02 1999-11-30 Alcatel Method of making an optical fiber ribbon with improved planarity and an optical fiber ribbon with improved planarity
US6099170A (en) * 1999-01-07 2000-08-08 Thomas & Betters International, Inc. Splice protection sleeve for a plurality of optical fibers and method of installation
SE514477C2 (sv) * 1999-04-28 2001-02-26 Ofcon Optical Fiber Consultant Kopplare för att kombinera eller dela upp ljus samt förfarande för att framställa en sådan
JP2001141930A (ja) * 1999-09-03 2001-05-25 Univ Nagoya 光導波路素子、三次元光導波路回路および光学システム
JP4152564B2 (ja) * 2000-05-15 2008-09-17 日昭無線株式会社 ファイバ融着形カプラの製造方法
US7006737B2 (en) * 2001-10-05 2006-02-28 Fiber Optics Network Solutions Corp. Integrated optical splitter system
US20030165318A1 (en) * 2002-03-04 2003-09-04 Quality Quartz To America, Inc. Fiber optic device with multiple independent connecting regions and method for making same
JP5564026B2 (ja) * 2011-10-18 2014-07-30 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
KR20140082763A (ko) * 2011-10-19 2014-07-02 크로미스 파이버옵틱스, 인크. 모놀리식 중합체 광섬유 리본
US8798467B2 (en) 2012-06-26 2014-08-05 The Boeing Company Optical coupler testing system
JP7521458B2 (ja) * 2021-03-04 2024-07-24 住友電気工業株式会社 光コネクタケーブル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205615A (ja) * 1987-02-21 1988-08-25 Nippon Telegr & Teleph Corp <Ntt> 光フアイバカツプラならびにその製造方法および製造装置
JPS63254406A (ja) * 1987-04-13 1988-10-21 Nippon Telegr & Teleph Corp <Ntt> 多心光フアイバカツプラ補強器
JPH01267603A (ja) * 1988-04-20 1989-10-25 Nippon Telegr & Teleph Corp <Ntt> 光ファイバカップラ実装体とその製造方法
JPH0229007U (ja) * 1988-08-15 1990-02-23
JPH03107111A (ja) * 1989-09-20 1991-05-07 Hitachi Cable Ltd 融着延伸型光ファイバカップラの補強方法
JPH0534540A (ja) * 1991-08-01 1993-02-12 Sumitomo Electric Ind Ltd 光フアイバカプラの補強方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657803A (en) * 1979-10-17 1981-05-20 Somar Corp Curable resin composition
JPS6340107A (ja) * 1986-08-05 1988-02-20 Ngk Insulators Ltd 光フアイバ接続用補強部材
NL8702493A (nl) * 1986-10-31 1988-05-16 Seiko Epson Corp Optisch opnamemedium en werkwijze voor het vervaardigen daarvan.
KR910004713B1 (ko) * 1987-02-06 1991-07-10 스미도모덴기 고오교오 가부시기가이샤 광파이버 심선의 정렬장치 및 그 일괄융착접속방법
JPH087295B2 (ja) * 1988-07-13 1996-01-29 住友電気工業株式会社 光分岐結合器の製造方法
JPH0229007A (ja) * 1988-07-18 1990-01-31 Mitsubishi Electric Corp アンテナ装置
US4984865A (en) * 1989-11-17 1991-01-15 Minnesota Mining And Manufacturing Company Thermoplastic adhesive mounting apparatus and method for an optical fiber connector
US5109460A (en) * 1991-08-23 1992-04-28 Eastman Kodak Company Optical fiber array for a thermal printer and method of making same
JP3136741B2 (ja) * 1992-02-07 2001-02-19 住友電気工業株式会社 光ファイバ補強方法
JPH06222238A (ja) * 1993-01-21 1994-08-12 Sumitomo Electric Ind Ltd 光ファイバカップラの保護構造および保護方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205615A (ja) * 1987-02-21 1988-08-25 Nippon Telegr & Teleph Corp <Ntt> 光フアイバカツプラならびにその製造方法および製造装置
JPS63254406A (ja) * 1987-04-13 1988-10-21 Nippon Telegr & Teleph Corp <Ntt> 多心光フアイバカツプラ補強器
JPH01267603A (ja) * 1988-04-20 1989-10-25 Nippon Telegr & Teleph Corp <Ntt> 光ファイバカップラ実装体とその製造方法
JPH0229007U (ja) * 1988-08-15 1990-02-23
JPH03107111A (ja) * 1989-09-20 1991-05-07 Hitachi Cable Ltd 融着延伸型光ファイバカップラの補強方法
JPH0534540A (ja) * 1991-08-01 1993-02-12 Sumitomo Electric Ind Ltd 光フアイバカプラの補強方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0646814A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885306A (zh) * 2016-04-15 2018-11-23 株式会社藤仓 光纤保护构造及使用该光纤保护构造的光合路构造

Also Published As

Publication number Publication date
DE69431826D1 (de) 2003-01-16
EP0646814A4 (en) 1995-08-23
EP0646814B1 (en) 2002-12-04
EP0646814A1 (en) 1995-04-05
US5627930A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
CA2074860C (en) Method of reinforcing optical fiber coupler
JP2716212B2 (ja) 光ファイバリボン
AU713820B2 (en) Optical fiber diffraction grating, a method of fabricating thereof and a laser light source
WO1994024591A1 (en) Multi-fiber type optical cable coupler and process for production thereof
CA1321072C (en) Method of manufacturing optical branching and coupling device
US9453979B2 (en) Multi-core optical fiber tape
CN105518498B (zh) 光纤带
US5548672A (en) Reinforced multicore optical fiber coupler
AU734053B2 (en) Light waveguide module
EP1350131A2 (en) Optical fiber ribbon cables with controlled bending behavior
US10663681B2 (en) Hinged optical fiber ribbon moveable between aligned and collapsed positions
KR0172629B1 (ko) 다심형 광파이버커플러의 보강구조
JP3412250B2 (ja) 多芯型光ファイバカプラおよびその製造方法
JP7567192B2 (ja) 光ファイバユニットおよび光ファイバケーブル
JPH08122554A (ja) 多心型光ファイバカプラ
JPH08122555A (ja) 多心型光ファイバカプラの製造方法
JPH05224108A (ja) 多芯型光ファイバカプラの補強方法
JPH1010379A (ja) 高強度光ファイバコード
JPH06242339A (ja) 光ファイバカプラの製造方法
JPH08194128A (ja) 多心型光ファイバカプラおよびその製造方法
JP2000180677A (ja) 偏波保持光ファイバの保護構造
JP2002228898A (ja) 光ファイバ配列変換心線
JPH0248607A (ja) 光フアイバユニツト
JPH08179153A (ja) 光ファイバカプラの製造方法
JPH06273647A (ja) 多心テープ心線用ジャンパテープ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1994912693

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994912693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08360708

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1994912693

Country of ref document: EP