WO1994019597A1 - Dispositif de dosage de fluides - Google Patents
Dispositif de dosage de fluides Download PDFInfo
- Publication number
- WO1994019597A1 WO1994019597A1 PCT/DE1994/000212 DE9400212W WO9419597A1 WO 1994019597 A1 WO1994019597 A1 WO 1994019597A1 DE 9400212 W DE9400212 W DE 9400212W WO 9419597 A1 WO9419597 A1 WO 9419597A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- piston
- pressure
- pressure piston
- metering device
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims description 23
- 238000006073 displacement reaction Methods 0.000 claims abstract description 3
- 230000009466 transformation Effects 0.000 claims description 15
- 230000004888 barrier function Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 17
- 239000007924 injection Substances 0.000 abstract description 17
- 239000000446 fuel Substances 0.000 description 13
- 239000003921 oil Substances 0.000 description 13
- 238000007789 sealing Methods 0.000 description 9
- 238000013016 damping Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000010720 hydraulic oil Substances 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/0603—Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/004—Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
- F16K31/007—Piezoelectric stacks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F13/00—Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
- G01F13/006—Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups measuring volume in function of time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/70—Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
- F02M2200/703—Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
Definitions
- a metering valve for metering liquids or gases is described in European patent EP 0 218 895 B1. It serves as an injection valve for fuel injection systems in internal combustion engines, such as direct injection diesel engines and the like.
- a piezo stack variable in length under the effect of a control voltage is connected at one end to the valve needle and at its other end to a damping piston which delimits a liquid-filled damping space and is displaceably guided in the alignment of the piezo stack.
- the piezo stack performs a quick
- GB 2 193 386 A describes a piezoelectric actuator. It is possible to mount an injection mechanism across the actuator as described in the document.
- a piezo stack presses on a bellows that is filled with hydraulic oil on the inside. Since the stamping area of the bellows is larger than the end face of the tappet to be moved, it performs a larger stroke than the piezo stack. An unwanted country Changes in the piezo stack due to temperature fluctuations, as well as the targeted control of the piezo stack, lead to displacement of the plunger. The position of the plunger is therefore not always precisely defined.
- the membrane of the beam will make its own movements transverse to the direction of movement of the ram during the working movements. This fact has a limiting effect on the maximum possible working frequency of the valve.
- the linear working range and the metering accuracy of an injection valve are generally characterized by the quotient from maximum to minimum injection quantity, the so-called dynamic range. This is the area in which the valve characteristic of a linear best fit line, e.g. deviates by no more than 5%.
- Usual electromagnetically driven injection valves have, due to their principle (inductance of the electromagnet, moving masses) small dynamic ranges in the order of 5 to 10, i.e. In the linear working range, opening times shorter than 1 to 2 ms are not possible with maximum opening times of 10 ms. Since the smallest amount of fuel that can be metered is given by the minimum opening time of 1 to 2 ms, it is not possible to maintain the correct air ratio ⁇ , especially in the transient operating states of the engine, in the partial load range and when idling.
- Figure 1 shows the basic structure of an inwardly opening the injection valve.
- Figure 2 shows the injection valve with a stop integrated in the pressure piston.
- FIG. 3 shows a valve working according to the push-pull principle.
- FIG. 4 shows the valve operating according to the push-pull principle with a seal attached between the pressure piston and the housing.
- FIG. 5 shows the valve working according to the push-pull principle, the seal being placed between the reciprocating piston and the pressure piston.
- Figure 6 corresponds to Figure 5, however, with a further seal between the pressure piston and the housing and a further pressure oil connection.
- Figure 7 shows the valve with hermetically separated chambers.
- the drift compensation takes place via a hole in the top of the pressure piston.
- FIG. 8 corresponds to FIG. 7, but here the drift compensation bore is located on the side of the pressure piston.
- FIG. 9 shows the valve using the push-pull principle, the ratio of the pressure piston area to the piston area determining the stroke transformation factor on the side facing the chamber (KAI) being the same as the ratio of the surfaces on the chamber (KA2) and (KA3) facing side.
- the piezo actuator serving as the drive element preferably a multilayer piezo stack or also magnetostrictive or electrostrictive actuators,
- a compact piezoelectric actuator P is used as the drive element, which is supported on the housing side on a compensating bearing LA and acts on the pressure side on the pressure piston DK.
- the special spherical disk bearing LA of the actuator is intended to ensure that the piezo actuator P is in full contact with the pressure piston DK and the housing bearing LA even when the actuator end faces are not parallel, thereby avoiding stroke losses.
- a strong disk spring TF which is attached between the pressure piston DK and the housing GH, serves to reset the pressure piston DK and to mechanically pretension the piezo stack P.
- the pressure piston DK forms the hydraulic chamber KAI with a corresponding cylinder bore in the housing GH.
- the hydraulic chamber KA2 is formed by the bore in the pressure piston DK and the reciprocating piston HK.
- the liquid forces generated by the control of the piezo stack P on the pressure piston DK in the hydraulic chamber KA 1 act for the purpose of the stroke transformation and the reversal of the direction of movement on a small-area piston HK which is connected to a sealed valve needle VN.
- the valve needle VN and the reciprocating piston HK together form the valve tappet.
- the valve needle VN can be lifted from the sealing seat DS in the valve head VK and the valve can be opened. This is achieved by electrical control of the piezo actuator P, the elongation of which is transferred to the pressure piston DK and which thereby causes an overpressure in the hydraulic chamber KAI.
- the valve disc lifts off the valve seat and the valve is open.
- the fuel flows through the fuel supply KRZ to the injection opening EO.
- the piezo stack P is discharged electrically.
- the valve needle VN is then supported by the spiral spring RF by hydraulic forces, pressed against the sealing seat DS again and the valve closed.
- the spiral compression spring RF also ensures that the valve is closed when not activated.
- the hydraulic drive shown in Figure 1 is characterized by a compact design. The stroke transformation and the reversal of the direction of movement are coupled in a simple manner with the adaptive tolerance compensation.
- the hydraulic area is completely encapsulated and separated from the fuel circuit by a sealed valve tappet bushing SD.
- a hydraulic oil reservoir should be integrated in the drive.
- the adaptive tolerance compensation which makes the drive independent of temperature influences and manufacturing-related tolerances, consists of a capillary gap KS between the reciprocating piston HK and the pressure piston bore, the one Slow fluid exchange between the hydraulic chamber KAI and compensation chamber KA2 enables so that, for example, due to temperature-related changes in volume of the hydraulic fluid, no static differential pressures can develop between these two chambers.
- the capillary gap (channel) KS can be matched to the viscosity of the hydraulic fluid used in such a way that maximum opening times of up to a few minutes are guaranteed over the entire working temperature range.
- the upper stop is formed by the valve seat DS in the valve head VK.
- the lower stop UA of the valve needle VN can, as in FIG. 1, be located outside the hydraulic chamber KAI or, as shown in FIG. 2, also be integrated in the pressure piston DK.
- the second possibility has the advantage that the lower stop UA can also be designed as a sealing seat DS. When the valve is open, this prevents the hydraulic fluid from flowing out of the hydraulic chamber KAI via the capillary gap KS into the compensating chamber KA2. This allows a very long opening time to be achieved and there is greater scope for dimensioning and matching the capillary gap KS and the viscosity of the hydraulic fluid.
- the hydraulic chamber KAI and the chamber KA3 formed by the pressure piston DK, the housing GH and the actuator P are completely filled with the same hydraulic fluid, preferably an oil, the volume referred to as the compensation chamber KA2 via bores BH with the lower Hy ⁇ Drauliksch KA3 is connected. Since the deflection of the pressure piston DK when the piezo stack P is actuated in the hydraulic Chamber KAI generates an overpressure and in the hydraulic chamber KA3 a negative pressure, the reciprocating piston HK and the valve needle VN connected to it are driven on both sides.
- a pressure spring or, in particular, a pressure accumulator SP must be installed in one of the hydraulic linear transformers, generally the one with the lower transformation ratio.
- the function of this pressure accumulator also corresponds to that of the pressure accumulator SP already presented in FIG. it is intended to compensate for temperature-related expansion processes of the hydraulic fluid, the mechanical internals and the housing GH and to maintain the internal static overpressure with a view to minimizing cavitation effects.
- Such a pressure accumulator SP can be realized by locally reducing the housing wall thickness in the form of a spring or gas pressure-loaded membrane, a rubber bladder or with the aid of a closed-cell oil-resistant and elastic foam. Pressure accumulators are well known from the literature. If the volume of the pressure accumulator SP is sufficient, the additional pressure oil connection shown in FIG. 3 can also be dispensed with.
- the depressions present on the top of the pressure piston are designated by SK.
- These radially arranged flow compensation channels enable the liquid exchange between the oil volume enclosed by the plate spring TF and the top of the pressure piston and serve to avoid compression effects.
- the plate spring TF can also be drilled through.
- a particularly advantageous property of the push-pull drive is the enlargement of the effective piston areas. As a result, the pressure peaks are reduced and loss mechanisms, for example by giving in the housing GH or by compensating processes due to the capillary gap KS, are reduced, which in principle gives the possibility of further reducing the size of the drive. Advantages of this drive principle compared to the principle described in FIG.
- the electrical connections for the piezo actuator P are routed to the outside through a pressure-resistant electrical cable bushing LD in the housing wall.
- the capillary gap KS1 is located between the pressure piston DK and the housing GH.
- the capillary gap KS2 lies between the reciprocating piston HK and the pressure piston bore, as shown in FIG. 3.
- wear-resistant sealing elements can be dispensed with entirely.
- the gap geometries and the viscosity of the hydraulic fluid can be suitably dimensioned and matched to one another.
- At least one of the hydraulic chambers KAI or KA3 can be connected to a pressure oil reservoir via a high flow resistance to compensate for temperature-related changes in volume of the hydraulic fluid to compensate for leakage losses and to prevent cavitation .
- the same criteria apply as for the tolerance compensation, i.e. it must be matched to the viscosity of the hydraulic fluid in such a way that the maximum opening times are achieved over the entire operating temperature range and the dynamics of the drive are not impaired.
- Such a connection can be established, for example, by a small radial housing bore GB in the area of the pressure piston sealing or pressure piston running surface.
- the already available engine pressure oil circuit is suitable as the oil reservoir. It is also possible to realize the pressure oil with the aid of a small closed container with an integrated pressure accumulator or the like, such a container also being able to be integrated directly into the valve housing GH. Inertial gas pressure accumulators, as are sufficiently known from the specialist literature, are particularly advantageous for this application.
- a single connecting channel BD is sufficient instead of the capillary gaps KS1 and KS2 between the hydraulic chambers KAI and KA3, as shown in FIG. 7.
- the simultaneous sealing of reciprocating piston HK and pressure piston DK is also possible if a slow pressure compensation between the hydraulic chambers KAI and KA2 is still ensured for the tolerance compensation via external connection lines with a sufficiently high flow resistance.
- FIG. 7 shows, in the sealed installation of the HK and DK pistons, the pressure compensation required for tolerance compensation can also be achieved via a pressure piston bore BD which connects the hydraulic chambers KAI and KA2 to one another. In this case there is only one
- This pressure accumulator SP can be integrated in the valve housing GH or in the chamber KA4 or can be implemented in the manner shown in FIG. 9 with the aid of an external expansion tank. With a small-volume design of the pressure accumulator SP as a compression spring, an additional connection is expedient. With a sufficient pressure accumulator volume designed for the life of the drive, the external pressure oil connection can also be omitted. The dimensioning of the pressure accumulator volume depends primarily on the tightness of the valve tappet bushing SD and on the absolute chamber volumes KAI, KA2, KA3 and KA4. Due to the identical transformation conditions, the internal pressure accumulator SP, which is otherwise indispensable in one of the hydraulic chambers, can be omitted.
- fuel can also be used as the hydraulic medium. This simplifies the structure considerably, e.g. possible with the valve tappet bushing SD. With increasing vapor pressure or decreasing boiling point of the fuel or the hydrocarbon compounds contained therein, the static internal operating pressure of the drive must be increased accordingly.
- Additional variations that can be used in the exemplary embodiments presented consist in the replacement of the O-ring seals with membrane seals and in the convex design of the pistons. With the latter measure, the requirements for the axial symmetry and the centricity of the structure can be reduced.
- the use of the device is not limited to the example of the injection valve described above, but is generally suitable for use as a metering device for fluids.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6518561A JPH08506883A (ja) | 1993-02-26 | 1994-02-28 | 流体のための調量装置 |
EP94908270A EP0686235A1 (fr) | 1993-02-26 | 1994-02-28 | Dispositif de dosage de fluides |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4306073.0 | 1993-02-26 | ||
DE19934306073 DE4306073C1 (de) | 1993-02-26 | 1993-02-26 | Zumeßvorrichtung für Fluide |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994019597A1 true WO1994019597A1 (fr) | 1994-09-01 |
Family
ID=6481472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1994/000212 WO1994019597A1 (fr) | 1993-02-26 | 1994-02-28 | Dispositif de dosage de fluides |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0686235A1 (fr) |
JP (1) | JPH08506883A (fr) |
DE (1) | DE4306073C1 (fr) |
WO (1) | WO1994019597A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057059A1 (fr) | 1997-06-11 | 1998-12-17 | Robert Bosch Gmbh | Injecteur |
WO2006003048A1 (fr) * | 2004-07-01 | 2006-01-12 | Robert Bosch Gmbh | Injecteur 'common rail' |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0861181A (ja) * | 1994-08-25 | 1996-03-05 | Mitsubishi Electric Corp | 燃料噴射装置 |
DE4442649C2 (de) * | 1994-11-30 | 1996-10-24 | Siemens Ag | Elektrohydraulischer Antrieb |
DE19500706C2 (de) * | 1995-01-12 | 2003-09-25 | Bosch Gmbh Robert | Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen |
DE19519191C2 (de) * | 1995-05-24 | 1997-04-10 | Siemens Ag | Einspritzventil |
US5682861A (en) * | 1996-05-23 | 1997-11-04 | Caterpillar Inc. | Fluid seal for cyclic high pressures within a fuel injection |
DE19624006A1 (de) * | 1996-06-15 | 1997-12-18 | Mtu Friedrichshafen Gmbh | Piezoelektrischer Kraftstoffinjektor |
DE29613191U1 (de) * | 1996-07-30 | 1996-09-19 | Technotrans GmbH, 48336 Sassenberg | Selbsttätig umschaltende Kolben-/Zylinderantriebsanordnung, insbesondere für volumetrische Dosiervorrichtungen |
DE19712921A1 (de) | 1997-03-27 | 1998-10-01 | Bosch Gmbh Robert | Brennstoffeinspritzventil mit piezoelektrischem oder magnetostriktivem Aktor |
DE19712923A1 (de) * | 1997-03-27 | 1998-10-01 | Bosch Gmbh Robert | Piezoelektrischer Aktor |
DE19752028C2 (de) * | 1997-11-24 | 1999-09-30 | Siemens Ag | Verfahren zur Justierung des Ventilnadelhubs bei Dosierventilen und Dosierventil mit nach diesem Verfahren justierten Ventilnadelhub |
DE19818475C2 (de) * | 1998-04-24 | 2001-05-31 | Siemens Ag | Fluiddichtungsanordnung und Verfahren zur Abdichtung |
DE19821768C2 (de) * | 1998-05-14 | 2000-09-07 | Siemens Ag | Dosiervorrichtung und Dosierverfahren |
DE19827287A1 (de) | 1998-06-19 | 1999-12-23 | Bosch Gmbh Robert | Brennstoffeinspritzventil-Drucksensor- Kombination |
DE19839125C1 (de) * | 1998-08-27 | 2000-04-20 | Siemens Ag | Vorrichtung und Verfahren zur Dosierung von Fluid |
DE19843570A1 (de) | 1998-09-23 | 2000-03-30 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE19843578A1 (de) | 1998-09-23 | 2000-03-30 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE19843535A1 (de) | 1998-09-23 | 2000-03-30 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE19843534A1 (de) | 1998-09-23 | 2000-03-30 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE50010902D1 (de) | 1999-04-20 | 2005-09-15 | Siemens Ag | Fluiddosiervorrichtung |
DE19939487A1 (de) * | 1999-08-20 | 2000-10-19 | Bosch Gmbh Robert | Ventil zum Steuern von Flüssigkeiten |
DE19940055C1 (de) * | 1999-08-24 | 2001-04-05 | Siemens Ag | Dosierventil |
DE19940056A1 (de) | 1999-08-24 | 2001-03-22 | Siemens Ag | Dosiervorrichtung und Verfahren zur Dosierung |
DE19942816A1 (de) * | 1999-09-08 | 2001-03-22 | Daimler Chrysler Ag | Einspritzventil |
DE19946841A1 (de) * | 1999-09-30 | 2001-05-03 | Bosch Gmbh Robert | Ventil zum Steuern von Flüssigkeiten |
DE19950760A1 (de) * | 1999-10-21 | 2001-04-26 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
DE10008546A1 (de) * | 2000-02-24 | 2001-09-20 | Bosch Gmbh Robert | Vorrichtung mit einem hydraulischen System und Verfahren zur Kraftübertragung mit einem hydraulischen Koppler |
DE10029297A1 (de) * | 2000-06-14 | 2001-10-18 | Bosch Gmbh Robert | Ventil zum Steuern von Flüssigkeiten |
DE10029296A1 (de) * | 2000-06-14 | 2001-12-20 | Bosch Gmbh Robert | Ventil zum Steuern von Flüssigkeiten |
DE10140799A1 (de) * | 2001-08-20 | 2003-03-06 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
US6766965B2 (en) | 2001-08-31 | 2004-07-27 | Siemens Automotive Corporation | Twin tube hydraulic compensator for a fuel injector |
DE10213858A1 (de) | 2002-03-27 | 2003-10-30 | Bosch Gmbh Robert | Brennstoffeinspritzventil |
EP1511932B1 (fr) | 2002-04-04 | 2006-11-29 | Siemens Aktiengesellschaft | Soupape d'injection |
DE112004000191B4 (de) * | 2003-05-07 | 2013-08-29 | Richard Steinborn | Antrieb für ein Turbinenventil |
DE10326259A1 (de) * | 2003-06-11 | 2005-01-05 | Robert Bosch Gmbh | Injektor für Kraftstoff-Einspritzsysteme von Brennkraftmaschinen, insbesondere von direkteinspritzenden Dieselmotoren |
DE10347769B3 (de) * | 2003-10-14 | 2005-01-13 | Siemens Ag | Stellgerät |
DE102004004006A1 (de) * | 2004-01-27 | 2005-08-11 | Robert Bosch Gmbh | Integrierter hydraulischer Druckübersetzer für Kraftstoffinjektoren an Hochdruckspeichereinspritzsystemen |
DE102004035313A1 (de) | 2004-07-21 | 2006-02-16 | Robert Bosch Gmbh | Kraftstoffinjektor mit zweistufigem Übersetzer |
US7307371B2 (en) * | 2005-11-18 | 2007-12-11 | Delphi Technologies, Inc. | Actuator with amplified stroke length |
DE102006041073A1 (de) * | 2006-09-01 | 2008-03-06 | Robert Bosch Gmbh | Injektor für eine Kraftstoffeinspritzanlage |
JP4333757B2 (ja) | 2007-03-13 | 2009-09-16 | 株式会社デンソー | 燃料噴射弁 |
DE102009001131A1 (de) | 2008-12-09 | 2010-06-10 | Robert Bosch Gmbh | Kraftstoffinjektor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1944371A (en) * | 1930-06-25 | 1934-01-23 | Ritz Frederick | Injector |
FR2610996A1 (fr) * | 1987-02-14 | 1988-08-19 | Daimler Benz Ag | Soupape a piezo-commande pour la commande de l'injection de carburant par l'intermediaire d'une soupape d'injection dans des moteurs a combustion interne |
EP0473887A2 (fr) * | 1990-08-24 | 1992-03-11 | Firma Carl Freudenberg | Compensateur hydraulique du jeu de soupapes pour moteurs à combustion interne |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0192241B1 (fr) * | 1985-02-19 | 1988-09-21 | Nippondenso Co., Ltd. | Soupape de commande pour régler le passage de fluide |
DE3533085A1 (de) * | 1985-09-17 | 1987-03-26 | Bosch Gmbh Robert | Zumessventil zur dosierung von fluessigkeiten oder gasen |
US4803393A (en) * | 1986-07-31 | 1989-02-07 | Toyota Jidosha Kabushiki Kaisha | Piezoelectric actuator |
-
1993
- 1993-02-26 DE DE19934306073 patent/DE4306073C1/de not_active Expired - Fee Related
-
1994
- 1994-02-28 JP JP6518561A patent/JPH08506883A/ja active Pending
- 1994-02-28 WO PCT/DE1994/000212 patent/WO1994019597A1/fr not_active Application Discontinuation
- 1994-02-28 EP EP94908270A patent/EP0686235A1/fr not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1944371A (en) * | 1930-06-25 | 1934-01-23 | Ritz Frederick | Injector |
FR2610996A1 (fr) * | 1987-02-14 | 1988-08-19 | Daimler Benz Ag | Soupape a piezo-commande pour la commande de l'injection de carburant par l'intermediaire d'une soupape d'injection dans des moteurs a combustion interne |
EP0473887A2 (fr) * | 1990-08-24 | 1992-03-11 | Firma Carl Freudenberg | Compensateur hydraulique du jeu de soupapes pour moteurs à combustion interne |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998057059A1 (fr) | 1997-06-11 | 1998-12-17 | Robert Bosch Gmbh | Injecteur |
WO2006003048A1 (fr) * | 2004-07-01 | 2006-01-12 | Robert Bosch Gmbh | Injecteur 'common rail' |
US7418949B2 (en) | 2004-07-01 | 2008-09-02 | Robert Bosch Gmbh | Common rail injector |
Also Published As
Publication number | Publication date |
---|---|
EP0686235A1 (fr) | 1995-12-13 |
JPH08506883A (ja) | 1996-07-23 |
DE4306073C1 (de) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4306073C1 (de) | Zumeßvorrichtung für Fluide | |
DE19940055C1 (de) | Dosierventil | |
DE4119467C2 (de) | Nach dem Verdrängerprinzip arbeitende Vorrichtung zur Kraft- und Hubübersetzung bzw. -übertragung | |
DE19708304C2 (de) | Vorrichtung zur Übertragung einer Bewegung und Einspritzventil mit einer Vorrichtung zur Übertragung einer Bewegung | |
DE4306072A1 (de) | Vorrichtung zum Öffnen und Verschließen einer in einem Gehäuse vorhandenen Durchtrittsöffnung | |
DE19843570A1 (de) | Brennstoffeinspritzventil | |
DE19803842A1 (de) | Elektrischer Festkörperaktuator mit hydraulischer Übersetzung | |
EP2414662B1 (fr) | Dispositif hydraulique de transmission ou amplification de course | |
DE19709794A1 (de) | Ventil zum Steuern von Flüssigkeiten | |
WO1996017165A1 (fr) | Commande electro-hydraulique | |
EP1456527A1 (fr) | Dispositif pour translater une deviation d'un actionneur, notamment pour une soupape d'injection | |
DE19807903C2 (de) | Vorrichtung und Verfahren zur Kraftübertragung | |
DE4412948C2 (de) | Elektrohydraulische Absperrvorrichtung | |
EP2947308B1 (fr) | Dispositif hydraulique de transmission de course avec un compensateur de température hydraulique | |
DE10217594A1 (de) | Brennstoffeinspritzventil | |
EP1378657B1 (fr) | Injecteur de carburant | |
DE102004001505B4 (de) | Dosierventil mit Längenkompensationseinheit | |
EP1431568A2 (fr) | Soupape d'injection de carburant | |
DE19827293A1 (de) | Elektrohydraulisches Pump- und Antriebselement mit kurzem Piezo-Aktor | |
WO1997014902A1 (fr) | Soupape de commande actionnee par un actionneur piezo-electrique | |
WO2005026528A1 (fr) | Element de compensation hydraulique | |
DE19857338C1 (de) | Dosiervorrichtung | |
DE10030232A1 (de) | Vorrichtung zum Übertragen einer Bewegung mit Spielausgleich | |
DE10353641A1 (de) | Brennstoffeinspritzventil | |
WO2004085831A1 (fr) | Soupape de dosage a unite de compensation de longueur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994908270 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1995 507472 Date of ref document: 19950825 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1994908270 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1994908270 Country of ref document: EP |