WO1994019597A1 - Dispositif de dosage de fluides - Google Patents

Dispositif de dosage de fluides Download PDF

Info

Publication number
WO1994019597A1
WO1994019597A1 PCT/DE1994/000212 DE9400212W WO9419597A1 WO 1994019597 A1 WO1994019597 A1 WO 1994019597A1 DE 9400212 W DE9400212 W DE 9400212W WO 9419597 A1 WO9419597 A1 WO 9419597A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
piston
pressure
pressure piston
metering device
Prior art date
Application number
PCT/DE1994/000212
Other languages
German (de)
English (en)
Inventor
Andreas Kappel
Randolf Mock
Hans Meixner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP6518561A priority Critical patent/JPH08506883A/ja
Priority to EP94908270A priority patent/EP0686235A1/fr
Publication of WO1994019597A1 publication Critical patent/WO1994019597A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
    • G01F13/006Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups measuring volume in function of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic

Definitions

  • a metering valve for metering liquids or gases is described in European patent EP 0 218 895 B1. It serves as an injection valve for fuel injection systems in internal combustion engines, such as direct injection diesel engines and the like.
  • a piezo stack variable in length under the effect of a control voltage is connected at one end to the valve needle and at its other end to a damping piston which delimits a liquid-filled damping space and is displaceably guided in the alignment of the piezo stack.
  • the piezo stack performs a quick
  • GB 2 193 386 A describes a piezoelectric actuator. It is possible to mount an injection mechanism across the actuator as described in the document.
  • a piezo stack presses on a bellows that is filled with hydraulic oil on the inside. Since the stamping area of the bellows is larger than the end face of the tappet to be moved, it performs a larger stroke than the piezo stack. An unwanted country Changes in the piezo stack due to temperature fluctuations, as well as the targeted control of the piezo stack, lead to displacement of the plunger. The position of the plunger is therefore not always precisely defined.
  • the membrane of the beam will make its own movements transverse to the direction of movement of the ram during the working movements. This fact has a limiting effect on the maximum possible working frequency of the valve.
  • the linear working range and the metering accuracy of an injection valve are generally characterized by the quotient from maximum to minimum injection quantity, the so-called dynamic range. This is the area in which the valve characteristic of a linear best fit line, e.g. deviates by no more than 5%.
  • Usual electromagnetically driven injection valves have, due to their principle (inductance of the electromagnet, moving masses) small dynamic ranges in the order of 5 to 10, i.e. In the linear working range, opening times shorter than 1 to 2 ms are not possible with maximum opening times of 10 ms. Since the smallest amount of fuel that can be metered is given by the minimum opening time of 1 to 2 ms, it is not possible to maintain the correct air ratio ⁇ , especially in the transient operating states of the engine, in the partial load range and when idling.
  • Figure 1 shows the basic structure of an inwardly opening the injection valve.
  • Figure 2 shows the injection valve with a stop integrated in the pressure piston.
  • FIG. 3 shows a valve working according to the push-pull principle.
  • FIG. 4 shows the valve operating according to the push-pull principle with a seal attached between the pressure piston and the housing.
  • FIG. 5 shows the valve working according to the push-pull principle, the seal being placed between the reciprocating piston and the pressure piston.
  • Figure 6 corresponds to Figure 5, however, with a further seal between the pressure piston and the housing and a further pressure oil connection.
  • Figure 7 shows the valve with hermetically separated chambers.
  • the drift compensation takes place via a hole in the top of the pressure piston.
  • FIG. 8 corresponds to FIG. 7, but here the drift compensation bore is located on the side of the pressure piston.
  • FIG. 9 shows the valve using the push-pull principle, the ratio of the pressure piston area to the piston area determining the stroke transformation factor on the side facing the chamber (KAI) being the same as the ratio of the surfaces on the chamber (KA2) and (KA3) facing side.
  • the piezo actuator serving as the drive element preferably a multilayer piezo stack or also magnetostrictive or electrostrictive actuators,
  • a compact piezoelectric actuator P is used as the drive element, which is supported on the housing side on a compensating bearing LA and acts on the pressure side on the pressure piston DK.
  • the special spherical disk bearing LA of the actuator is intended to ensure that the piezo actuator P is in full contact with the pressure piston DK and the housing bearing LA even when the actuator end faces are not parallel, thereby avoiding stroke losses.
  • a strong disk spring TF which is attached between the pressure piston DK and the housing GH, serves to reset the pressure piston DK and to mechanically pretension the piezo stack P.
  • the pressure piston DK forms the hydraulic chamber KAI with a corresponding cylinder bore in the housing GH.
  • the hydraulic chamber KA2 is formed by the bore in the pressure piston DK and the reciprocating piston HK.
  • the liquid forces generated by the control of the piezo stack P on the pressure piston DK in the hydraulic chamber KA 1 act for the purpose of the stroke transformation and the reversal of the direction of movement on a small-area piston HK which is connected to a sealed valve needle VN.
  • the valve needle VN and the reciprocating piston HK together form the valve tappet.
  • the valve needle VN can be lifted from the sealing seat DS in the valve head VK and the valve can be opened. This is achieved by electrical control of the piezo actuator P, the elongation of which is transferred to the pressure piston DK and which thereby causes an overpressure in the hydraulic chamber KAI.
  • the valve disc lifts off the valve seat and the valve is open.
  • the fuel flows through the fuel supply KRZ to the injection opening EO.
  • the piezo stack P is discharged electrically.
  • the valve needle VN is then supported by the spiral spring RF by hydraulic forces, pressed against the sealing seat DS again and the valve closed.
  • the spiral compression spring RF also ensures that the valve is closed when not activated.
  • the hydraulic drive shown in Figure 1 is characterized by a compact design. The stroke transformation and the reversal of the direction of movement are coupled in a simple manner with the adaptive tolerance compensation.
  • the hydraulic area is completely encapsulated and separated from the fuel circuit by a sealed valve tappet bushing SD.
  • a hydraulic oil reservoir should be integrated in the drive.
  • the adaptive tolerance compensation which makes the drive independent of temperature influences and manufacturing-related tolerances, consists of a capillary gap KS between the reciprocating piston HK and the pressure piston bore, the one Slow fluid exchange between the hydraulic chamber KAI and compensation chamber KA2 enables so that, for example, due to temperature-related changes in volume of the hydraulic fluid, no static differential pressures can develop between these two chambers.
  • the capillary gap (channel) KS can be matched to the viscosity of the hydraulic fluid used in such a way that maximum opening times of up to a few minutes are guaranteed over the entire working temperature range.
  • the upper stop is formed by the valve seat DS in the valve head VK.
  • the lower stop UA of the valve needle VN can, as in FIG. 1, be located outside the hydraulic chamber KAI or, as shown in FIG. 2, also be integrated in the pressure piston DK.
  • the second possibility has the advantage that the lower stop UA can also be designed as a sealing seat DS. When the valve is open, this prevents the hydraulic fluid from flowing out of the hydraulic chamber KAI via the capillary gap KS into the compensating chamber KA2. This allows a very long opening time to be achieved and there is greater scope for dimensioning and matching the capillary gap KS and the viscosity of the hydraulic fluid.
  • the hydraulic chamber KAI and the chamber KA3 formed by the pressure piston DK, the housing GH and the actuator P are completely filled with the same hydraulic fluid, preferably an oil, the volume referred to as the compensation chamber KA2 via bores BH with the lower Hy ⁇ Drauliksch KA3 is connected. Since the deflection of the pressure piston DK when the piezo stack P is actuated in the hydraulic Chamber KAI generates an overpressure and in the hydraulic chamber KA3 a negative pressure, the reciprocating piston HK and the valve needle VN connected to it are driven on both sides.
  • a pressure spring or, in particular, a pressure accumulator SP must be installed in one of the hydraulic linear transformers, generally the one with the lower transformation ratio.
  • the function of this pressure accumulator also corresponds to that of the pressure accumulator SP already presented in FIG. it is intended to compensate for temperature-related expansion processes of the hydraulic fluid, the mechanical internals and the housing GH and to maintain the internal static overpressure with a view to minimizing cavitation effects.
  • Such a pressure accumulator SP can be realized by locally reducing the housing wall thickness in the form of a spring or gas pressure-loaded membrane, a rubber bladder or with the aid of a closed-cell oil-resistant and elastic foam. Pressure accumulators are well known from the literature. If the volume of the pressure accumulator SP is sufficient, the additional pressure oil connection shown in FIG. 3 can also be dispensed with.
  • the depressions present on the top of the pressure piston are designated by SK.
  • These radially arranged flow compensation channels enable the liquid exchange between the oil volume enclosed by the plate spring TF and the top of the pressure piston and serve to avoid compression effects.
  • the plate spring TF can also be drilled through.
  • a particularly advantageous property of the push-pull drive is the enlargement of the effective piston areas. As a result, the pressure peaks are reduced and loss mechanisms, for example by giving in the housing GH or by compensating processes due to the capillary gap KS, are reduced, which in principle gives the possibility of further reducing the size of the drive. Advantages of this drive principle compared to the principle described in FIG.
  • the electrical connections for the piezo actuator P are routed to the outside through a pressure-resistant electrical cable bushing LD in the housing wall.
  • the capillary gap KS1 is located between the pressure piston DK and the housing GH.
  • the capillary gap KS2 lies between the reciprocating piston HK and the pressure piston bore, as shown in FIG. 3.
  • wear-resistant sealing elements can be dispensed with entirely.
  • the gap geometries and the viscosity of the hydraulic fluid can be suitably dimensioned and matched to one another.
  • At least one of the hydraulic chambers KAI or KA3 can be connected to a pressure oil reservoir via a high flow resistance to compensate for temperature-related changes in volume of the hydraulic fluid to compensate for leakage losses and to prevent cavitation .
  • the same criteria apply as for the tolerance compensation, i.e. it must be matched to the viscosity of the hydraulic fluid in such a way that the maximum opening times are achieved over the entire operating temperature range and the dynamics of the drive are not impaired.
  • Such a connection can be established, for example, by a small radial housing bore GB in the area of the pressure piston sealing or pressure piston running surface.
  • the already available engine pressure oil circuit is suitable as the oil reservoir. It is also possible to realize the pressure oil with the aid of a small closed container with an integrated pressure accumulator or the like, such a container also being able to be integrated directly into the valve housing GH. Inertial gas pressure accumulators, as are sufficiently known from the specialist literature, are particularly advantageous for this application.
  • a single connecting channel BD is sufficient instead of the capillary gaps KS1 and KS2 between the hydraulic chambers KAI and KA3, as shown in FIG. 7.
  • the simultaneous sealing of reciprocating piston HK and pressure piston DK is also possible if a slow pressure compensation between the hydraulic chambers KAI and KA2 is still ensured for the tolerance compensation via external connection lines with a sufficiently high flow resistance.
  • FIG. 7 shows, in the sealed installation of the HK and DK pistons, the pressure compensation required for tolerance compensation can also be achieved via a pressure piston bore BD which connects the hydraulic chambers KAI and KA2 to one another. In this case there is only one
  • This pressure accumulator SP can be integrated in the valve housing GH or in the chamber KA4 or can be implemented in the manner shown in FIG. 9 with the aid of an external expansion tank. With a small-volume design of the pressure accumulator SP as a compression spring, an additional connection is expedient. With a sufficient pressure accumulator volume designed for the life of the drive, the external pressure oil connection can also be omitted. The dimensioning of the pressure accumulator volume depends primarily on the tightness of the valve tappet bushing SD and on the absolute chamber volumes KAI, KA2, KA3 and KA4. Due to the identical transformation conditions, the internal pressure accumulator SP, which is otherwise indispensable in one of the hydraulic chambers, can be omitted.
  • fuel can also be used as the hydraulic medium. This simplifies the structure considerably, e.g. possible with the valve tappet bushing SD. With increasing vapor pressure or decreasing boiling point of the fuel or the hydrocarbon compounds contained therein, the static internal operating pressure of the drive must be increased accordingly.
  • Additional variations that can be used in the exemplary embodiments presented consist in the replacement of the O-ring seals with membrane seals and in the convex design of the pistons. With the latter measure, the requirements for the axial symmetry and the centricity of the structure can be reduced.
  • the use of the device is not limited to the example of the injection valve described above, but is generally suitable for use as a metering device for fluids.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Le piston de pression (DK) à large surface d'une soupape d'injection qui s'ouvre vers l'intérieur est relié à l'actionneur piézoélectrique (P) et forme un transformateur hydraulique avec le piston alternatif (HK) à petite surface, monté mobile dans l'alésage du piston de pression. Les petites courses et les grandes forces de l'actionneur (P) sont converties en grandes courses de l'aiguille de la soupape dans la direction contraire à celle de l'actionneur. Les chambres hydrauliques de la soupape d'injection sont agencées de sorte que des forces de pression s'exercent sur un côté du piston alternatif (HK) pendant que des forces de traction s'exercent sur l'autre côté du piston alternatif (HK). Les chambres hydrauliques sont mutuellement reliées par un système de canaux à étranglement de sorte qu'un déplacement similaire à une dérive du piston de pression (DK) ou un allongement similaire à une dérive de l'actionneur (P) n'influent pas sur la position du piston alternatif (HK).
PCT/DE1994/000212 1993-02-26 1994-02-28 Dispositif de dosage de fluides WO1994019597A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6518561A JPH08506883A (ja) 1993-02-26 1994-02-28 流体のための調量装置
EP94908270A EP0686235A1 (fr) 1993-02-26 1994-02-28 Dispositif de dosage de fluides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4306073.0 1993-02-26
DE19934306073 DE4306073C1 (de) 1993-02-26 1993-02-26 Zumeßvorrichtung für Fluide

Publications (1)

Publication Number Publication Date
WO1994019597A1 true WO1994019597A1 (fr) 1994-09-01

Family

ID=6481472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000212 WO1994019597A1 (fr) 1993-02-26 1994-02-28 Dispositif de dosage de fluides

Country Status (4)

Country Link
EP (1) EP0686235A1 (fr)
JP (1) JPH08506883A (fr)
DE (1) DE4306073C1 (fr)
WO (1) WO1994019597A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057059A1 (fr) 1997-06-11 1998-12-17 Robert Bosch Gmbh Injecteur
WO2006003048A1 (fr) * 2004-07-01 2006-01-12 Robert Bosch Gmbh Injecteur 'common rail'

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861181A (ja) * 1994-08-25 1996-03-05 Mitsubishi Electric Corp 燃料噴射装置
DE4442649C2 (de) * 1994-11-30 1996-10-24 Siemens Ag Elektrohydraulischer Antrieb
DE19500706C2 (de) * 1995-01-12 2003-09-25 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
DE19519191C2 (de) * 1995-05-24 1997-04-10 Siemens Ag Einspritzventil
US5682861A (en) * 1996-05-23 1997-11-04 Caterpillar Inc. Fluid seal for cyclic high pressures within a fuel injection
DE19624006A1 (de) * 1996-06-15 1997-12-18 Mtu Friedrichshafen Gmbh Piezoelektrischer Kraftstoffinjektor
DE29613191U1 (de) * 1996-07-30 1996-09-19 Technotrans GmbH, 48336 Sassenberg Selbsttätig umschaltende Kolben-/Zylinderantriebsanordnung, insbesondere für volumetrische Dosiervorrichtungen
DE19712921A1 (de) 1997-03-27 1998-10-01 Bosch Gmbh Robert Brennstoffeinspritzventil mit piezoelektrischem oder magnetostriktivem Aktor
DE19712923A1 (de) * 1997-03-27 1998-10-01 Bosch Gmbh Robert Piezoelektrischer Aktor
DE19752028C2 (de) * 1997-11-24 1999-09-30 Siemens Ag Verfahren zur Justierung des Ventilnadelhubs bei Dosierventilen und Dosierventil mit nach diesem Verfahren justierten Ventilnadelhub
DE19818475C2 (de) * 1998-04-24 2001-05-31 Siemens Ag Fluiddichtungsanordnung und Verfahren zur Abdichtung
DE19821768C2 (de) * 1998-05-14 2000-09-07 Siemens Ag Dosiervorrichtung und Dosierverfahren
DE19827287A1 (de) 1998-06-19 1999-12-23 Bosch Gmbh Robert Brennstoffeinspritzventil-Drucksensor- Kombination
DE19839125C1 (de) * 1998-08-27 2000-04-20 Siemens Ag Vorrichtung und Verfahren zur Dosierung von Fluid
DE19843570A1 (de) 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19843578A1 (de) 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19843535A1 (de) 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19843534A1 (de) 1998-09-23 2000-03-30 Bosch Gmbh Robert Brennstoffeinspritzventil
DE50010902D1 (de) 1999-04-20 2005-09-15 Siemens Ag Fluiddosiervorrichtung
DE19939487A1 (de) * 1999-08-20 2000-10-19 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE19940055C1 (de) * 1999-08-24 2001-04-05 Siemens Ag Dosierventil
DE19940056A1 (de) 1999-08-24 2001-03-22 Siemens Ag Dosiervorrichtung und Verfahren zur Dosierung
DE19942816A1 (de) * 1999-09-08 2001-03-22 Daimler Chrysler Ag Einspritzventil
DE19946841A1 (de) * 1999-09-30 2001-05-03 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE19950760A1 (de) * 1999-10-21 2001-04-26 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10008546A1 (de) * 2000-02-24 2001-09-20 Bosch Gmbh Robert Vorrichtung mit einem hydraulischen System und Verfahren zur Kraftübertragung mit einem hydraulischen Koppler
DE10029297A1 (de) * 2000-06-14 2001-10-18 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10029296A1 (de) * 2000-06-14 2001-12-20 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10140799A1 (de) * 2001-08-20 2003-03-06 Bosch Gmbh Robert Brennstoffeinspritzventil
US6766965B2 (en) 2001-08-31 2004-07-27 Siemens Automotive Corporation Twin tube hydraulic compensator for a fuel injector
DE10213858A1 (de) 2002-03-27 2003-10-30 Bosch Gmbh Robert Brennstoffeinspritzventil
EP1511932B1 (fr) 2002-04-04 2006-11-29 Siemens Aktiengesellschaft Soupape d'injection
DE112004000191B4 (de) * 2003-05-07 2013-08-29 Richard Steinborn Antrieb für ein Turbinenventil
DE10326259A1 (de) * 2003-06-11 2005-01-05 Robert Bosch Gmbh Injektor für Kraftstoff-Einspritzsysteme von Brennkraftmaschinen, insbesondere von direkteinspritzenden Dieselmotoren
DE10347769B3 (de) * 2003-10-14 2005-01-13 Siemens Ag Stellgerät
DE102004004006A1 (de) * 2004-01-27 2005-08-11 Robert Bosch Gmbh Integrierter hydraulischer Druckübersetzer für Kraftstoffinjektoren an Hochdruckspeichereinspritzsystemen
DE102004035313A1 (de) 2004-07-21 2006-02-16 Robert Bosch Gmbh Kraftstoffinjektor mit zweistufigem Übersetzer
US7307371B2 (en) * 2005-11-18 2007-12-11 Delphi Technologies, Inc. Actuator with amplified stroke length
DE102006041073A1 (de) * 2006-09-01 2008-03-06 Robert Bosch Gmbh Injektor für eine Kraftstoffeinspritzanlage
JP4333757B2 (ja) 2007-03-13 2009-09-16 株式会社デンソー 燃料噴射弁
DE102009001131A1 (de) 2008-12-09 2010-06-10 Robert Bosch Gmbh Kraftstoffinjektor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944371A (en) * 1930-06-25 1934-01-23 Ritz Frederick Injector
FR2610996A1 (fr) * 1987-02-14 1988-08-19 Daimler Benz Ag Soupape a piezo-commande pour la commande de l'injection de carburant par l'intermediaire d'une soupape d'injection dans des moteurs a combustion interne
EP0473887A2 (fr) * 1990-08-24 1992-03-11 Firma Carl Freudenberg Compensateur hydraulique du jeu de soupapes pour moteurs à combustion interne

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192241B1 (fr) * 1985-02-19 1988-09-21 Nippondenso Co., Ltd. Soupape de commande pour régler le passage de fluide
DE3533085A1 (de) * 1985-09-17 1987-03-26 Bosch Gmbh Robert Zumessventil zur dosierung von fluessigkeiten oder gasen
US4803393A (en) * 1986-07-31 1989-02-07 Toyota Jidosha Kabushiki Kaisha Piezoelectric actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944371A (en) * 1930-06-25 1934-01-23 Ritz Frederick Injector
FR2610996A1 (fr) * 1987-02-14 1988-08-19 Daimler Benz Ag Soupape a piezo-commande pour la commande de l'injection de carburant par l'intermediaire d'une soupape d'injection dans des moteurs a combustion interne
EP0473887A2 (fr) * 1990-08-24 1992-03-11 Firma Carl Freudenberg Compensateur hydraulique du jeu de soupapes pour moteurs à combustion interne

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057059A1 (fr) 1997-06-11 1998-12-17 Robert Bosch Gmbh Injecteur
WO2006003048A1 (fr) * 2004-07-01 2006-01-12 Robert Bosch Gmbh Injecteur 'common rail'
US7418949B2 (en) 2004-07-01 2008-09-02 Robert Bosch Gmbh Common rail injector

Also Published As

Publication number Publication date
EP0686235A1 (fr) 1995-12-13
JPH08506883A (ja) 1996-07-23
DE4306073C1 (de) 1994-06-01

Similar Documents

Publication Publication Date Title
DE4306073C1 (de) Zumeßvorrichtung für Fluide
DE19940055C1 (de) Dosierventil
DE4119467C2 (de) Nach dem Verdrängerprinzip arbeitende Vorrichtung zur Kraft- und Hubübersetzung bzw. -übertragung
DE19708304C2 (de) Vorrichtung zur Übertragung einer Bewegung und Einspritzventil mit einer Vorrichtung zur Übertragung einer Bewegung
DE4306072A1 (de) Vorrichtung zum Öffnen und Verschließen einer in einem Gehäuse vorhandenen Durchtrittsöffnung
DE19843570A1 (de) Brennstoffeinspritzventil
DE19803842A1 (de) Elektrischer Festkörperaktuator mit hydraulischer Übersetzung
EP2414662B1 (fr) Dispositif hydraulique de transmission ou amplification de course
DE19709794A1 (de) Ventil zum Steuern von Flüssigkeiten
WO1996017165A1 (fr) Commande electro-hydraulique
EP1456527A1 (fr) Dispositif pour translater une deviation d'un actionneur, notamment pour une soupape d'injection
DE19807903C2 (de) Vorrichtung und Verfahren zur Kraftübertragung
DE4412948C2 (de) Elektrohydraulische Absperrvorrichtung
EP2947308B1 (fr) Dispositif hydraulique de transmission de course avec un compensateur de température hydraulique
DE10217594A1 (de) Brennstoffeinspritzventil
EP1378657B1 (fr) Injecteur de carburant
DE102004001505B4 (de) Dosierventil mit Längenkompensationseinheit
EP1431568A2 (fr) Soupape d'injection de carburant
DE19827293A1 (de) Elektrohydraulisches Pump- und Antriebselement mit kurzem Piezo-Aktor
WO1997014902A1 (fr) Soupape de commande actionnee par un actionneur piezo-electrique
WO2005026528A1 (fr) Element de compensation hydraulique
DE19857338C1 (de) Dosiervorrichtung
DE10030232A1 (de) Vorrichtung zum Übertragen einer Bewegung mit Spielausgleich
DE10353641A1 (de) Brennstoffeinspritzventil
WO2004085831A1 (fr) Soupape de dosage a unite de compensation de longueur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994908270

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 507472

Date of ref document: 19950825

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994908270

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994908270

Country of ref document: EP