WO1993026143A1 - Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung - Google Patents

Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung Download PDF

Info

Publication number
WO1993026143A1
WO1993026143A1 PCT/CH1993/000145 CH9300145W WO9326143A1 WO 1993026143 A1 WO1993026143 A1 WO 1993026143A1 CH 9300145 W CH9300145 W CH 9300145W WO 9326143 A1 WO9326143 A1 WO 9326143A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
holes
semi
plating
Prior art date
Application number
PCT/CH1993/000145
Other languages
English (en)
French (fr)
Inventor
Walter Schmidt
Marco Martinelli
Original Assignee
Dyconex Patente Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27543613&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993026143(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB929212648A external-priority patent/GB9212648D0/en
Application filed by Dyconex Patente Ag filed Critical Dyconex Patente Ag
Priority to AU40585/93A priority Critical patent/AU4058593A/en
Priority to EP93909754A priority patent/EP0600051B1/de
Priority to US08/193,191 priority patent/US5436062A/en
Priority to JP6500995A priority patent/JPH07500951A/ja
Priority to DE59309575T priority patent/DE59309575D1/de
Priority to CA002114954A priority patent/CA2114954A1/en
Publication of WO1993026143A1 publication Critical patent/WO1993026143A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0041Etching of the substrate by chemical or physical means by plasma etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0064Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a polymeric substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4084Through-connections; Vertical interconnect access [VIA] connections by deforming at least one of the conductive layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4635Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating flexible circuit boards using additional insulating adhesive materials between the boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4641Manufacturing multilayer circuits by laminating two or more circuit boards having integrally laminated metal sheets or special power cores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • H05K1/0289Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns having a matrix lay-out, i.e. having selectively interconnectable sets of X-conductors and Y-conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0397Tab
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/0909Preformed cutting or breaking line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09327Special sequence of power, ground and signal layers in multilayer PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09536Buried plated through-holes, i.e. plated through-holes formed in a core before lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09554Via connected to metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09572Solder filled plated through-hole in the final product
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09609Via grid, i.e. two-dimensional array of vias or holes in a single plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09627Special connections between adjacent vias, not for grounding vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09836Oblique hole, via or bump
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09945Universal aspects, e.g. universal inner layers or via grid, or anisotropic interposer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10666Plated through-hole for surface mounting on PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0554Metal used as mask for etching vias, e.g. by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0736Methods for applying liquids, e.g. spraying
    • H05K2203/0746Local treatment using a fluid jet, e.g. for removing or cleaning material; Providing mechanical pressure using a fluid jet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1184Underetching, e.g. etching of substrate under conductors or etching of conductor under dielectrics; Means for allowing or controlling underetching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1572Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the invention is in the field of the production of printed circuit boards and relates to a method for producing a semi-finished product for use in printed circuit board manufacture, and a roll-to-roll process for producing printed circuit boards using semi-finished products according to the invention.
  • Printed circuit boards have been known from the early days of electrical engineering as single-layer or multi-layer "printed" circuits, which consist of a combination of flat current paths (connections of the electronic circuit) and an insulating plate (the electrically insulating mechanical carrier).
  • the circuit (layout) is structured by means of photochemical processes. Apart from the surface-mounted device or SMD technology, the circuit boards have passages that are used for push-through fitting (electrical contacting and mechanical fastening) of simple electronic components (such as resistors, capacitors, coils, etc.) and, on the other hand Connect the current paths of different layers of a printed circuit board to each other electrically using through plating.
  • Printed circuit boards, prepregs and also conductor foils are mostly 0.1 to 1 or 2 mm thick, their hole diameters are necessarily 0.2 to 0.5 mm. Such dimensions are thus two to three orders of magnitude (100-1000) above the corresponding dimensions of the conductor thickness and conductor spacing in integrated circuits (ICs). There is a very large dimensional gap between printed circuit boards and ICs.
  • Miniaturization is also no longer restricted to the smallest dimensions of conductor spacing in integrated circuits, but also applies to the electrical and electronic devices themselves.
  • Small pocket televisions, portable personal computers (laptops), handheld cameras and other highly complex devices are also necessary small sized printed circuit boards and foils. It is often necessary to adapt the shape and design of printed circuit boards to the devices, and flexible conductor foils are particularly suitable for this.
  • Films can be processed from roll to roll, which enables a high degree of automation.
  • the continuous systems used in conventional materials for example for developing the photobooth, etching, stripping, brushing, etc., are always equipped with a transport system (conveyor belt, clamps) that transports the rigid plates through the machine.
  • a transport system conveyor belt, clamps
  • such a transport system can be dispensed with, which not only brings savings on the plant side, but also eliminates the transport system which often produces defects on the product, such as scratches, pressure points and so on.
  • the foils do not generate dust; this is another major advantage.
  • dust is released from the cut edges, which subsequently leads to a reduced yield. Thanks to its flatness and smooth surface, the film surface can also be cleaned very easily. When rolled up, the surface of the film material is also protected from all contaminations, in particular dust.
  • a film is produced in a continuous process, which means that the material shows constant parameter values along the film web.
  • the shrinkage and / or elongation behavior is constant and can therefore be easily compensated.
  • the film surface is very flat or smooth and is not, so to speak, surface-modulated by the glass fiber fabric. This enables better exploitation in the photochemical transmission of images, in particular during exposure. And since the film is also flexible, it can easily cling to the photo mask, which is also a film, thereby avoiding so-called hollow exposures. Of course, this also leads to better yield.
  • a thin film poses no problems with regard to the thermal expansion occurring in the Z direction.
  • Conventional printed circuit boards with a thickness of 1 to 5 mm show in the Z direction a thermal expansion that should not be underestimated, which can lead to the galvanic layer inserted in the holes cracking, which represents an electrical defect.
  • heat dissipation is usually also a very big problem.
  • heat sinks are therefore laminated in or laminated onto the surface.
  • These consist of thermally highly conductive materials such as copper or aluminum and have the task of transferring the thermal energy generated by the components as efficiently as possible to the cool points such as the housing wall. Since, in conventional technology, the circuit board is usually 1-5 mm thick, this means that the thermal energy generated by the components must first be conducted through the circuit board to the cooling plate. Since the printed circuit board primarily consists of a poor heat conductor (plastic, glass), this results in a high thermal resistance between the heat-generating component and the cooling plate.
  • thermal vias thermal vias
  • the circuit board Even with the most extreme packing and connection densities (conductor tracks), the circuit board only becomes about 0.1 - 0.2 mm thick. This film therefore represents a comparatively low thermal resistance and thereby significantly improves thermal management.
  • So-called Leedless Ceramic Chip Charriers (LCCC) or larger ceramic capacitors and other components made of a material with small thermal expansion coefficients are used to build up the electronic circuit and these are used directly without an elastic connection to the substrate (that would be, for example, elastic contact pins) soldered onto the circuit board, the circuit board's thermal expansion behavior must be adapted to achieve a sufficiently high reliability of the solder joints.
  • Rolled metal foils made of copper-Invar-copper (CIC) or copper-molybdenum-copper (CMC) with an expansion coefficient of approx. 4-6 ppm / ° K are usually used.
  • Applications with carbon fiber composites or aramid fiber composites are also known.
  • the unreinforced printed circuit boards always have a range of 16-18 ppm / ° K and, since the boards are usually between 1-5 mm thick, must be stabilized by a great deal of CIC or CMC etc. This leads to a further increase in the total thickness of the printed circuit boards, which not only negatively affects reliability, but also complicates thermal management. In addition, such printed circuit boards become relatively heavy, which is particularly undesirable in avionics.
  • the overall thickness of a complex printed circuit board is approximately 0.1 to 0.2 mm. If this foil conductor laminated onto a carrier which has a low coefficient of thermal expansion, the coefficient of expansion of the circuit board surface is almost identical to that of the support plate, since the thin film has no major influence on the overall structure.
  • the film is not reinforced by glass fibers, that is, the elastic modulus of the film is significantly lower than the elastic modulus of glass fiber reinforced materials and therefore the stabilizing effect of the support plate is not adversely affected.
  • the so-called impedance (this is the characteristic impedance) of the electrical lines plays an important role.
  • impedance this is the characteristic impedance
  • cables with 50 ⁇ impedance (standard) or higher are required.
  • the constancy over the conductor length is also very important for the high-frequency properties.
  • the constancy of thickness of the dielectric plays an important role here. The use of a film gives much better tolerances in terms of dielectric constant and material thickness compared to conventional base materials.
  • the object of the present invention is to achieve an optimal and densest current path assignment on printed circuit boards. It is intended to show a way in which printed circuit boards can also be produced for printed circuit boards with highly complex functions without a significant increase in costs with a considerably increased functional density (the interaction of components and their connections, increased wiring density, etc.).
  • Known and proven techniques, materials and the like are to be used, for example, known wet-chemical processes are to be used for producing the conductor structures.
  • These Leite ⁇ latten should ge Compared to known printed circuit boards, the functional density is increased by an order of magnitude or more, and yet they are said to be compatible with known systems with regard to further processing, in particular with regard to assembly and use.
  • the production of Leite ⁇ latten using such semi-finished products should be able to be carried out automatically, for example from roll to roll, it also being possible to carry out batch operation by introducing, for example, support plates.
  • the idea according to the invention consists in a first approach in functionally separating the requirement for mechanical strength from the hitherto associated requirement of the circuit connection, in order to make the pure circuit connection, in particular for signals, "closer" to the electrical-technical Properties of the chips.
  • the layout miniaturization is optimized regardless of the mechanical strength of the substrate.
  • the electrical power supply can also be functionally separated and optimized separately.
  • the present invention thus aims to downsize all dimensions of the printed circuit boards, in which the individual functions (signal routing, supply, mechanical strength) are functionally miniaturized so that they become one in finalizing process steps to "synthesize" highly compressed conductive plate.
  • the method according to the invention is essentially based on the fact that, in place of a guide plate separating all functions that have nothing to do with the layout, a semi-finished product that can be built up to form a guide plate is produced in a previous process step, which enables the functional units to be drastically downsized Leite ⁇ latten and to achieve such an increase in their functional density.
  • the semi-finished product according to the invention consists of an extremely thin film with extremely small holes. The hole diameter can be reduced by almost an order of magnitude (up to 20 ⁇ m), which enables, for example, a clear sub-100 ⁇ m technique.
  • Such a semi-finished product serves as a rigid mechanical support; it is only provided for signal routing which conductor tracks are to be realized in a later manufacturing step in accordance with the specified layout. Also conductor tracks for the electrical supply are advantageously not located on such a semi-finished product.
  • the effect of miniaturization manifests itself above all in the diameter for the through-plating holes; a decrease in the hole diameter is quadratic with the density of the current path assignment.
  • Such Leite ⁇ latten enable the transmission of high-frequency signals (with frequencies> 1GHz) due to their low impedance structure. Even with two to three times smaller hole diameters, only three to four day multilayers around the same are required To achieve circuit complexity like today with 20- or 25-layer circuit boards.
  • 1 shows a diagram in which the connection density of different substrate technologies is shown in relation to the associated area costs.
  • 2 shows in an enlarged detail an exemplary embodiment of current paths and through-plating of part of a conductive plate.
  • 3 shows a comparison of the conductor density of two traditional layouts, current paths and through-plating in DIL and SMD technology compared to the markedly increased: Conductor line of an exemplary embodiment of current paths and through-plating of conductive plates, produced from semi-finished products according to the method according to the invention.
  • 4 shows an enlarged representation of current paths and prepared soldering areas, the prepared soldering areas having plasma-etched through-plating.
  • 5 shows an enlarged representation of an exemplary embodiment of two layers of current paths of an MCM made from semi-finished products according to the invention.
  • 6 shows the individual steps (6a-6e) of producing a semi-finished product according to the method according to the invention, which is manufactured in further steps to an MCM (for example according to FIG. 5).
  • 7 shows an exemplary embodiment of a part of a printed circuit board made from a semi-finished product according to the invention. sen process, which is connected to a mechanical carrier.
  • FIG 8 shows an exemplary embodiment of a fully equipped MCM, which was produced from semi-finished products according to the method according to the invention.
  • 9a to 9d show schematically and partly in section the arrangement of preconditioned through-plating.
  • FIG. 10 schematically shows a method for producing through-plating in film material on conveyor systems, which film material is finally rolled up as an endless universal substrate and kept ready for further processing.
  • 11 to 16 show the different stages for the production of a four-layer diaphragm, in which the principle can also be seen for the construction of -leide plates with a plurality of layers.
  • 17 and 18 show examples of a supporting measure during processing on conveyor systems, for example according to FIG. 10.
  • FIG. 1 shows an illustrative diagram of the connection density of different substrate technologies compared with the associated area costs.
  • the cost increase of MCMs in the usual conductive plate technology will be compared with those according to the invention which are produced from semi-finished products to be discussed below.
  • the connection density D (the number of connections per unit area) is plotted in arbitrary units on the abscissa. As a function of this density D, the ordinate represents the approximate relative costs K for the production of a -director plate per unit area.
  • the left area LP indicates the density D according to the inexpensive and less compressed conventional printed circuit boards or PCB technology
  • the right area IC indicates the density D of highly compressed circuits as they are used today.
  • the upper area MCM marks the more expensive in Kera- Multi-layer technology or thin-layer multi-layer structures produced MCMs.
  • the lower area 1 characterizes the slightly increasing costs for conductive plates made from semi-finished products with increasing compaction according to the present method for MCMs.
  • the products from the process according to the invention have been launched on the market under the name DYCOstrate (R) .
  • the MCMs produced in ceramic multilayer technology or thin-layer multilayer structures have a natural miniaturization limit, such that even they do not reach the compression area IC despite the high outlay (see area MCM).
  • the method according to the invention see area 1).
  • complex (MCM) printed circuit boards made from semi-finished products according to the method according to the invention are very well able to come much closer to the compression area IC.
  • FIG. 2 shows an exemplary embodiment of a signal line layer in an MCM in a magnification of more than 40 times.
  • the current paths 4 are 75 ⁇ m
  • the through-plating holes 2 are 100 ⁇ m (tin-plated correspondingly smaller)
  • the soldering eyes 3 here are 200 ⁇ m in diameter, as much as the smallest conventionally drilled hole, and the density of the through-plating is higher, therefore 100,000 per dm 2 .
  • the thickness of the conductor foil is 25 to 50 ⁇ m.
  • the semifinished product from which such foils are produced has only the through-plating holes 2, the production of which is discussed below. The dimensions shown here can be reduced even further without major technical problems.
  • FIG. 1 shows an exemplary embodiment of a signal line layer in an MCM in a magnification of more than 40 times.
  • the current paths 4 are 75 ⁇ m
  • the through-plating holes 2 are 100 ⁇ m (tin-plated correspondingly smaller)
  • the soldering eyes 3 here are 200
  • FIG. 3 two exemplary embodiments of traditional conductive plate technology can be seen illustratively in comparison to the production of guide plates with a semifinished product according to the invention. These are cut-outs of unassembled -Leit ⁇ latten.
  • a guide plate constructed according to the dual inline or DIL technology is shown, in the middle, a guide plate constructed according to the SMD technology is shown, on the right-hand side, a guide plate DS made of semi-finished products according to the method according to the invention is shown ( DS stands for DYCOstrate (R) ).
  • DS stands for DYCOstrate (R)
  • FIG. 3 clearly shows that the reduction in the diameter of the through-plating leads to a quadrant growing compression of the structured circuit.
  • Circular metallic plating forms are used in the -Leitel plate according to the DIL technique shown.
  • Printed current paths are present on the electrically insulating carrier using known photochemical processes. Through-plating connects the current paths to one side of a conductor plate. The dimensions of the current paths and through-plating are in the millimeter range. It is remarkable that the diameter of the cladding is a factor of 5 larger than the width of the current paths.
  • the number of current paths has increased compared to the number of through plating. It can be said that the dimensions of the current paths and plated-through holes in the half-millimeter range, they amount "respectively 0.3 to 0.7 mm. The diameter of the plated-through holes is approximately a factor of 3 greater than the width of the printed current paths.
  • the -Leit ⁇ latten DS produced from semi-finished products by the method according to the invention have through-plating produced by a known and proven plasma etching method and current paths structured by photochemical methods.
  • the current paths are electrically isolated from one another by a thin non-metal foil. What is striking is the drastic increase in the number of printed current paths. Only at a second glance do you notice the through plating.
  • This compression of the layout is a direct consequence of the reduction in the diameter of the through-plating carried out in the method according to the invention. This compression is the first desired effect of the method according to the invention.
  • the plasma-etched holes have diameters significantly smaller than 100 ⁇ m. You can reach 20 ⁇ m.
  • the width of the current paths is of the same order of magnitude.
  • the plasma-etched holes used as through-plating according to the present inventive method are thus a factor of 30 and 10 smaller, respectively.
  • the diameter of the plated-through holes is no longer 5 times larger than the width of the current paths, as in the DIL and SMD techniques, this factor is smaller, for example 3, 2 or 1 (same size).
  • FIG. 4 shows an exemplary embodiment of prepared soldering areas of conductive plates, which are also used to introduce plasma-etched through-plating. It is a section of a not yet installed -Leite ⁇ latte. The section is shown at around 35x magnification.
  • the plasma-etched through-plating here are circular holes 6, which were made in the middle of, here rectangular, prepared soldering areas 3 for connections, for example. This circular shape of the mouths of the plasma-etched holes is of course not mandatory, holes with other regular or irregular shapes can also be produced.
  • the through plating is connected to one another via current paths 4.
  • the current paths 4 are printed on an electrically insulating carrier 5 and are electrically insulated from one another by this.
  • FIG. 4 also shows that Plasma-etched holes are at least an order of magnitude smaller than holes traditionally produced by mechanical drilling or by means of wet chemistry. It also shows that such small holes, which are significantly smaller than 100 ⁇ m, can, if necessary, be made directly in conductor tracks. In this example the through plating is around 30 times smaller than the prepared soldering area. Such a large "prepared" soldering surface is used for macroscopic soldering with correspondingly large solder eyes (see description of FIG. 2).
  • FIG. 5 shows a further, very impressive realization of the sub-100 ⁇ m technology for lead plates, as is possible with semi-finished products according to the invention. It is a section that has been enlarged around twice. You can see that the overlay of two layout layers alone creates a very dense pattern (condensed wiring diagram). With more layers, it is correspondingly more complicated. Figure 5 shows that resulting from the inventive method reduce 'the number of layers of Lei ⁇ te ⁇ latten not only to material savings (less layers is gleichbedeu ⁇ tend using less material), but also leads to a significant reduction in the amount of work, because This is important when it comes to designing multilayer boards.
  • FIG. 6 shows the individual steps 6a to 6e in the production of an exemplary embodiment of a semi-finished product using the method according to the invention.
  • the illustration is highly schematic to illustrate the process.
  • Known wet chemical processes or known plasma etching processes can be used as the etching process. Combinations of these methods are also possible. With all etching methods, it is generally necessary to ensure that those parts which are not to be etched away are protected by a photoresist layer.
  • 6a shows a section of a two-layer conductor foil, consisting of a first metal layer 7, for example made of copper, and a second metal layer 9, also made of copper for example, and finally an intermediate non-metal layer 8, for example made of polyimide or epoxy resin.
  • this three-layer film is typically 50 to 120 ⁇ m, it can of course also be thinner.
  • Such a three-layer film is the starting material for the semifinished products to be produced in the process according to the invention for use in multilayer conductive plates with through-plating.
  • This three-layer film can be rigid or flexible.
  • the two metal layers 7, 9 are coated with photoresist 10, 11.
  • the conductor foil is usually cleaned by chemical etching or jet scrubbing. Commercial, dry or liquid photoresist can be applied.
  • the layer of photoresist 10 covers the metal layer 7, the layer of photoresist 11 covers the metal layer 9.
  • the structuring of the through-plating takes place in a known and proven photochemical method.
  • the layers of photoresist 10, 11 are exposed and systems for the openings 12, 12 ', 15, 15' are produced.
  • These openings 12, 12 ', 15, 15' represent pre-processed through-plating. They extend from the outer surface of the photoresist-coated conductor foil down to the metal layers 7, 9.
  • the photoresist layers provided with such holes 12, 12 ', 15, 15' are referred to as layers of photoresist 10 ', 11'.
  • these openings have diameters of less than 100 ⁇ m, so they are very small.
  • the metal layers 7, 9 are etched through by wet chemistry in the area of the openings 12, 12 ', 15, 15'.
  • the openings 13, 13 ', 16, 16' resulting from this likewise known and proven method step extend from the outer surface of the photoresist-coated conductor foil down to the intermediate non-metal layer 8.
  • These openings 13, 13 ', 16, 16', which extend down to the non-metal layer 8, are also only pre-worked through plating. After this process step, the dielectric is exposed.
  • the layers of photoresist 10 ', 11' are removed by wet chemical stripping.
  • the intermediate non-metal layer 8 is removed in the region of the openings 13, 13 ', 16, 16' by plasma etching.
  • the "plasma-drilled" non-metal layer is designated 8 '.
  • This process step creates small through holes 14, 14 'through which the two metal layers 7, 9 of the two-layer conductor film can later be contacted.
  • the hole diameter of these small through holes 14, 14 ' is less than 100 ⁇ m down to 20 ⁇ m.
  • This two-layer film guide plate shown schematically in FIG.
  • FIGS. 6f and 6g are exemplary embodiments of a semifinished product for use for multi-layer guide plates with through-plating. It is a semi-finished product in that the through holes 14, 14 'are not yet electrically conductive connections in the form of through-plating between the metal layers 7, 9 and the entire circuit design, ie the current paths, have not yet been defined.
  • FIG. 6f there is a continuous metallization both of the inner surfaces of the through holes 14, 14 'and of the outer surfaces of the metal layers 7, 9 of the semi-finished product.
  • This is, for example, a galvanically generated reinforcement of the metal layers 7, 9; these metal layers are then called reinforced metal layers 7 ', 9'.
  • this provides the through holes 14, 14 'with a plating such that they form electrically conductive connections between the reinforced metal layers 7', 9 '.
  • These plated-through holes 14, 14 ' are called plated-through holes 17, 17'.
  • the product is still a semi-finished product, ready to implement the layout.
  • FIG. 6g shows how the semifinished product from FIGS. 6e and 6f is finished after the photochemical structuring (layout) of the layers 7 ', 9' to form the conductor plate.
  • the current paths 18 are etched out as a wiring diagram and thus a two-layer foil guide plate 19 is produced.
  • the metal between the conductors is etched down to the surfaces 8.1 ', 8.2' of the thin intermediate non-metal layer 8 ', so that current paths 18 are carried by the intermediate non-metal layer 8' and electrically insulated from one another by the surfaces 8.1 ', 8.2' to the mouths of the plating 17, 17 'can be brought up.
  • the process steps 6a to 6e or 6f for producing a semifinished product according to the invention and (with steps 6f and 6g) a conductor foil 19 therefrom contain mature known and proven and thus risk-free techniques of the printed circuit board industry. They can be carried out by a person skilled in the art with knowledge of the present invention on common apparatus.
  • the method according to the invention has the advantage that all process steps in all surface areas of the conductor foil according to FIGS. 6a to 6d and of the semi-finished product according to FIGS. 6e to 6g are carried out at the same time. be performed. Therefore, all areas exposed to the plasma etching medium, in the example on both sides of the semi-finished product, are simultaneously etched.
  • Thin metal-coated foils are used, for example thin, non-cured polyimide foils or epoxy resin foils (12 to 100 ⁇ m thick) coated with thin copper foil (3 to 70 ⁇ m thick).
  • the layers are mechanically connected to one another, for example in a simple manner by pressing and temperature, in such a way that there is an intermediate non-metal layer which electrically insulates the two metal layers from one another.
  • Other processes for producing such films are known and are used on an industrial scale.
  • Thin metal / non-metal foils made of these materials ( ⁇ 100 ⁇ m thick) are also available on the market.
  • such a thin metal / non-metal foil is mechanically connected to a thin copper foil in a simple manner by pressing and temperature, in such a way that there is an intermediate non-metal layer which electrically insulates the two metal layers from one another.
  • the present invention accordingly leads to conductive plates which, owing to the thin metal and non-metal layers (each 12 to 150 ⁇ m thick) and the small through-plating (diameter smaller than 100 ⁇ m), are outstandingly suitable for applications in the high-frequency range.
  • This is of greater technical importance, since the tendency is that, for example, personal computers (PCs) not only operate at very high clock rates in the central processing unit (several hundred megahertz), but also for the bus system these clock frequencies are aimed at.
  • PCs personal computers
  • This is hardly possible with conventional conductor plates due to the macroscopic dimensions of layer thicknesses and conductor widths, as well as due to the changing composition and changing thickness of the dielectric made of glass fiber fabric and the changing thickness of the matrix made of epoxy or polyimide resin.
  • FIG. 7 shows an example of an embodiment of a part of a printed circuit board, produced from a semifinished product according to the method according to the invention, which is connected to a mechanical support.
  • One of the Properties of the Leite ⁇ latten according to the inventive method is that they are very thin. You can be flexible or rigid. As soon as the mechanical strength is to find its way, the strength function must be introduced, knowingly having separated these functions. In this case, a connection with a mechanical support is provided, for example for fixing this conductive plate in a housing, or for dissipating the heat generated by the structural elements of this conductive plate and so on.
  • Such a conductor foil can be processed by laminating or gluing it onto a mechanical carrier to form the conductor plate.
  • a conductive plate 19 produced from a semifinished product by the method according to the invention can be equipped with components before or after such an assembly on a mechanical support.
  • Such a guide plate or partial guide plate 19 - ⁇ is advantageously equipped at least to such an extent that it is already finished in the areas that are no longer accessible or difficult to access with a mechanical support. If, as can be seen in FIG. 7, one side of a thin partial circuit board 19 is connected to a mechanical support, this concealed side can, for example, be fitted beforehand.
  • a mechanical carrier 20 can consist of metal, of plastic, also of ceramic, of prepared paper, of prepared cardboard, etc. It can be provided on its surface with an electrical power supply 22, for example in the form of a supply layer.
  • the supply layer 22 is structured such that it is electrical. has conductor tracks insulated from one another, which enable the transmission of technical DC voltages.
  • Such a supply layer 22, as can be seen in FIG. 7, can be produced by using a thin, fully structured partial conductor plate or semi-finished film 19 glued on one side with adhesive films made of, for example, acrylic, epoxy or polyimide resin with a mechanical carrier or carrier plate 20 by applying pressure and temperature.
  • the support plate can have at its interface to the semi-finished film 19 an electrically functional conductor level, which was previously generated on the support plate 20 by the usual methods of the guide plate technology.
  • the Träge ⁇ latte 20 carries only rough conductor structures such as supply lines or surfaces.
  • the stable mechanical support 20, which is thick in relation to the thin printed circuit board 19 and the supply layer 22, is, if necessary, electrically insulated from the supply layer 22 by means of a plastic film 21.
  • the conductor plate 19 and the supply layer 22 can be contacted with one another via power-supply through plating 24.
  • the hole diameter of the current versorge 'n the plated-through holes 24 need not be minimized, since usually only a limited number of such power supplying interfacial connections be taken benö ⁇ 24th
  • the method according to the invention enables a separation between the smallest possible dimension of the current paths for the transmission of high-frequency signals of a thin, for example two-layer circuit board 19 with correspondingly small through-plating between the conductor levels of the circuit board 19 and from the power supply lines with technical currents and, for example, low voltage DC voltages can be realized via a supply layer 22 and finally the mechanical carrier layer.
  • a conductive plate made according to the example is composed of three components: a highly compressed conductive plate 19 for the signal level, a less compressed electrical power supply 22 and a mechanical support 20 as a strength and /
  • a two-layer foil guide plate is made from a three-layer foil (see FIG. 6a) and a semifinished product (see FIG. 6e) by the method according to the invention as described in FIG. 6, by subsequently attaching further ones Metal and non-metal layers multilayer Leite ⁇ latten can be generated.
  • FIG. 7 there is accordingly a three-layer conductive plate which also has an external mechanical support.
  • the process steps required for this are known and proven techniques of the printed circuit board industry. They can therefore be carried out by a person skilled in the art with knowledge of the present invention on common apparatus.
  • Figure 8 shows a highly integrated, fully equipped Leite ⁇ latte, an MCM, which is made from a semi-finished product according to the inventive method.
  • the image takes place with a magnification of around 1.5 times.
  • a flexible or rigid thin Leite ⁇ latte 19 (for example as a two-layer Leite ⁇ latte manufactured according to the description of FIG. 6) is equipped with several components 26. These components can be more or less complex, with a smaller or larger number of necessary electrical connections for the power supply and with more or less many contacted current paths (for example via the current paths 18 according to FIG. 6g). These current paths advantageously run on the two levels of the conductive plate 19 and connect the components 26 to one another.
  • the current paths of different levels can be in electrical contact with one another through plating (for example via the plating 17, 17 'according to FIG. 6g).
  • the connections for the power supply of the components 26 have electrical contact with conductive traces of a supply layer (for example the supply layer 22 according to FIG. 7) via power-supply through plating (for example via the power supply through plating 24 according to FIG. 7).
  • This supply layer cannot be seen in FIG. 8, in this view it lies under the Leite ⁇ latte 19 and is covered by it.
  • the conductive plate 19 has contact points 25 ', 25 ", via which the conductive plate 19 can be electrically contacted, for example, with other conductor tracks or components.
  • the conductive plate 19 and the supply layer are on an external mechanical carrier 20 (for example on a mechanical support 20 according to Figure 7. In this way, this unit consisting of a conductive plate 19, supply 22 and support 20 can be installed in any other device.
  • FIGS. 9a-d now show in a sequence a to d, for example, the production of a universal substrate as a semi-finished product.
  • FIG. 9a shows a film 8 coated on both sides with copper 7.9, which shows a regular pattern of blind holes 12 in a double-sided etching resist layer 10.11 up to the copper layer 7.9.
  • Such a hole pattern, universal or layout-oriented, is exposed, developed and etched on an etching resist layer.
  • the etching resist layers 10, 11 are removed and, as shown in FIG.
  • the holes are plated through with copper, or electrically connected through using other methods (FIG. 9d).
  • the through plating is designated with the number 17.
  • a screen printing process for example, by means of which electrically conductive material, conductive paste is introduced into the holes and then hardened, or by means of a copier-like process in which conductive toner is introduced into the holes and by heat (melting of the Toner) is solidified.
  • solder solder
  • Figure 10 finally shows how semi-finished products, Universalleite ⁇ latten, Leite ⁇ latten etc. with plated-through contacts on belt systems, in continuous process manufacturing • can be provided.
  • the advantage of continuous processes is that films can be processed from roll to roll.
  • the etching of holes in plastic films coated on both sides, as is shown and described, for example, in FIGS. 6a to 6g and 9a to 9d, can be carried out with a belt system of this type.
  • the application of the conductor pattern can also be carried out in a flow process.
  • the lamination of finished conductive plates with one-sided metal-coated films with an adhesive film can also be carried out from a roll, so that to a certain degree multilayers can be produced from a roll.
  • the belt system described here in principle can be used for the pre-process of semi-finished product manufacture and for the main process of the production of printed circuit boards. In this way, a plant can also be better utilized.
  • the plastic film 70 which is provided on both sides with a layer of metal, is finally fed via various process steps and transport rolls 71 to a take-up roll 70.2, which picks up the finished product, namely the perforated film.
  • the plastic film 70 is provided on both sides with a layer of photoresist by means of conventional coating methods 73 such as rolling up, spraying on, dip coating or electrophoretic deposition.
  • the layer is then dried in a continuous oven 74. Then the necessary structuring of the hole pattern takes place by exposure in a UV exposure unit 75 with subsequent development in a development tion system 76.
  • the layer of metal at the recesses where through holes or holes are to be created is first etched away and then the remaining photoresist is removed. Finally, the through holes and / or holes are etched out in a plasma reactor 78.
  • the through-plating process included therein can be accomplished by means of conventional strip electroplating or else by pressing electrically conductive material into the holes or by vapor deposition or sputtering on metallic layers.
  • FIGS. 11 to 16 Now that it has been shown how a variety of different implementations can be created in plastic films, which can then be plated through, the following sequence from FIGS. 11 to 16 now shows how the procedure discussed can be used to build up a four-day film guide plate.
  • a film guide plate 19 produced according to FIGS. 6a to 6g is provided on both sides with a film 81, 82 coated with metal on one side. This is done, for example, by means of an adhesive film 83.
  • FIG. 11 shows the corresponding ensemble before lamination, namely the film guide plate 19 and, on both sides, a film 81 with metal layer 82 and adhesive 83 on top and bottom. After lamination to the conductor plate, one obtains an approximately 3-fold thick film, which has a metal coating 82 on both sides and, in the core area, contains the previously produced film 19 as shown in FIG. 6g (shown in FIG. 12). The starting point is again the same as that shown in FIG.
  • FIG. 13 shows such connection holes 84 and FIG. 15 shows them after being plated through with a metal layer.
  • Another measure can support roll-to-roll production.
  • Starting materials and / or intermediate products are conditioned in such a way that they can be processed at least in part of the processing steps as a virtually endless, articulated tape or folding worm and that intermediate and / or end products can be stacked as folding stacks, as described by the Continuous paper is known.
  • the main advantages of the folding stack compared to the roll are that the product in the folding stack is not under tension and is not bent.
  • the effective processing of the folding stack differs little from the effective processing from and on rolls, unless the product goes through a processing step in a more or less closely folded formation.
  • the formation of a "folding worm" from quasi-endless film material consists in the fact that in this material, which consists of a plastic film or several plastic films lying on top of one another with metal layers or interconnect layers lying on and / or in between, transversely to its quasi-endless expansion by corresponding Attenuation along advantageously equidistant lines should be generated.
  • the formation of a folding worm from foil material in the form of piece goods consists in that the individual pieces are connected to one another with a kinkable connection (flexible connection) to form a virtually endless row.
  • the piece material-shaped sheet material can be base material or an intermediate product produced by other processes.
  • the predetermined kinks in the quasi-endless material are created by weakening the material, for example perforations or reducing the thickness, together with functionally relevant openings, such as openings for through-plating or blind holes, in the same processing steps, advantageously by plasma etching.
  • functionally relevant openings such as openings for through-plating or blind holes
  • rows of holes along the longitudinal edges of the material which are necessary for transport by means of a pinwheel arrangement, can also be created.
  • This means that the production of the predetermined kinks and the rows of transport holes does not require any additional process steps.
  • This results in the further advantage that the tolerance between predetermined kinks or rows of transport holes and functionally relevant openings is kept to an absolute minimum, such that the predetermined kinks and / or rows of transport holes can also serve as alignment aids for further processing steps.
  • the flexible connections for connecting piece-wise film material are created, for example, by attaching adhesive films in a separate working step.
  • After making the flexible connections can be etched in the manner described above transport hole rows, which are also advantageously etched here together with functionally relevant openings and can thus be used as alignment aids.
  • FIG. 17 shows a form of further processing of a product already present as a folded stack.
  • a foil coated on one side with metal is laminated onto the printed circuit boards with two printed conductor layers (folding stack 90).
  • the foils coated on one side are fed in from rolls 91.1 and 91.2, as is an adhesive layer each for connecting the various foils which are fed in from rolls 92.1 and 92.2.
  • the same process steps A, B, C and H follow, as already described in connection with FIGS. 11 to 16, in which the laminated film layers are processed.
  • process steps A and B not only functionally relevant openings, e.g.
  • blind holes for connecting the outer interconnect layers with the inner ones can be etched into the plastic films, but also openings or partial ablations to weaken the material at the predetermined kink points, the location of which through the existing predetermined kinks in product 90 are specified. Rows of transport holes can also be created again.
  • a quasi-endless series of foil conductive plates with four interconnect layers connected by predetermined bend points is created, which is stored as a folded stack 93.
  • This stack can, for example, be fed directly into an apparatus for automated assembly, in which the individual lead plates are then also advantageously separated from one another and the areas with the rows of transport holes are separated.
  • it can also be a semifinished product, the outer conductor track layers of which are still individualized or which is processed with further film layers to form film conductor plates with more than four conductor track layers.
  • a variant consists in that, with a correspondingly low inherent rigidity of the films from rolls 91.1 and 91.2 in the process according to FIG. 17, no openings or material removals are made for the predetermined kink, that is to say that the predetermined kinks in the folded stack 90 are sufficient to include three Fold layers of existing product into a folding stack.
  • FIG. 18 shows a further variant of the auxiliary method mentioned above.
  • Piece material-shaped film material 94 for example still unprocessed films or intermediate products with one or more film layers, is fed into a processing step G.
  • a further layer of film from rolls 91.1 and 91.2 is to be laminated onto the piece material film material 94 on both sides with the aid of adhesive layers from rolls 92.1 and 92.2.
  • Laminating the intermediate product in the form of a piece goods with the quasi-endless, flexible films from rolls 91.1 and 91.2 creates a folding worm which can be processed in the following processing steps A, B, C, H in the manner already described in connection with the preceding figures.
  • the folding stack that is produced can be transported using spiked wheels. Corresponding rows of transport holes can also be produced in processing steps A and B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Selective Calling Equipment (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Transmitters (AREA)

Abstract

Beim erfindungsgemässen Halbzeug ist man davon ausgegangen, die Anforderung an die mechanische Festigkeit von der bis anhin damit verbundenen Anforderung der Schaltungsverbindung funktionsmässig zu trennen, um die reine Schaltungsverbindung, insbesondere für Signale, 'näher' an die elektrisch-technischen Eigenschaften der Chips bringen zu können. Um dies zu realisieren wird die Layout-Miniaturisierung ohne Rücksicht auf die mechanische Festigkeit des Substrates optimiert. An Stelle einer Leiterplatte (MCM) wird ein zu einer Leiterplatte aufbaubares Halbzeug hergestellt. Das erfindungsgemässe Halbzeug besteht aus einer extrem dünnen Folie (8) mit einer Vielzahl von extrem kleinen, in einem Ätzprozess simultan geätzten Löchern (14). Die Lochdurchmesser können um fast eine Grössenordnung (bis zu 20 νm) verkleinert werden, was bspw. eine klare Sub-100νm-Technik ermöglicht. Ein solches Halbzeug dient nicht als mechanischer Träger, es ist nur zur Signalführung vorgesehen. Das Halbzeug (19), welches das verdichtete Verdrahtungsbild trägt, wird mit einer unverdichteten Stromversorgungsebene (22), die als Serviceebene dient, verbunden, und die so gefertigte Leiterplatte wird schliesslich mit einem mechanischen Träger (20) zusammengebracht.

Description

VERFAHREN ZUR HERSTELLUNG VON LEITERPLATTEN UNTER VER¬ WENDUNG EINES HALBZEUGES MIT EXTREM DICHTER VERDRAH¬ TUNG FÜR DIE SIGNALFÜHRUNG.
Die Erfindung liegt auf dem Gebiete der Herstellung von Leiterplatten und betrifft ein Verfahren zur Herstellung eines Halbzeugs zur Verwendung in der Leiterplattenfabrikation, sowie ein von Rolle-zu-Rolle verlaufendes Verfahren zur Herstellung von Leiterplatten unter Verwendung von Halbzeugen gemäss Erfindung.
Leiterplatten sind seit der Frühzeit der Elektrotechnik bekannte einlagige oder mehrlagige "gedruckte" Schaltungen, welche aus einer Kombination fla- eher Strompfade (Verbindungen der elektronischen Schaltung) und einer Isolierplatte (dem elektrisch isolierenden mechanischen Träger) bestehen. Die Strukturierung der Schaltung (Layout) erfolgt mittels photochemischer Ver¬ fahren. Abgesehen von der Surface-Mounted-Device- oder SMD-Technik weisen die Leiterplatten Durchgänge auf, die einerseits zur Durchsteck-Be- stücküng (elektrische Kontaktierung und mechanische Befestigung) einfacher elektronischer Bauelemente (wie Widerstände, Kondensatoren, Spulen etc.) dienen und andererseits Strompfade verschiedener Lagen einer Leiterplatte über Durchplattierungen elektrisch miteinander verbinden. Die Entwicklung komplexer Schaltungen dagegen erfolgte auf der Ebene der integrierten Schaltkreise (Integrated Circuits (ICs)), welche aus einer grossen Anzahl elektronischer Elemente (Transistoren) auf einem gemeinsamen Sub¬ strat bestehen und durch ein Gehäuse geschützt sind (Chips). Diese Chips weisen eine sehr hohe und ständig wachsende Verdichtung an Schaltungen auf, was weitgehend durch Miniaturisierung bzw. Reduzierung der Leiterbahn¬ dicken und Leiterbahnenabstände im Si-Substrat in einem Sub-μm-Bereich ge¬ schieht. Die Gehäusedimension solcher Chips bleibt zur einfachen Handha¬ bung allerdings in der Grössenordnung der oben erwähnten einfachen Bauele- mente, auch die Dimension der Leiterplatte und ihrer Löcher bzw. Durch- plattierungen blieb im wesentlichen unverändert. Somit erfolgt die Miniaturi¬ sierung von Schaltungen in erster Linie über integrierte Schaltungen, welche an sich selbständige, funktionengebundene Einheiten darstellen, die einfach auf Leiterplatten zu bestücken sind.
Die strukturelle Dimensionierung von Leiterplatten hat sichtbar an dieser Miniaturisierung nur unvollständig teilgenommen. Eine gewisse Miniaturisie¬ rung der Leiterplatten mit der klassischen Technik erfolgte wohl, dies aller- dings weniger durch rigorose Verdichtung als durch möglichstes Schmalerma¬ chen der Leiterbahnen. Wesentliche Fortschritte hierbei wurden aber rasch durch die unverzichtbaren Durchplattierungen behindert, welche bislang zwar Gegenstand von Präzisionsverbesserungen, nicht aber einer Miniaturisierung waren. Der Grund hierfür liegt daran, dass die Leiterplattendurchplattierun- gen eine strukturell bedingte untere Grenze erreicht haben, man kann sie nicht weiter verkleinern, da, nebst der Grenze der Bohrdurchmesser, vor allen Dingen die Lötaugen und die vorbereiteten Lötflächen sehr viel Platz bean¬ spruchen. Wünschbar wäre aber, Substrate (Leiterplatten) mit 10-fach höherer Dichte herstellen zu können, was mit der graduellen Miniaturisierung der klassischen Technik jedoch nicht mehr möglich ist. Dieser Sprung in der Di¬ mensionierung über eine Grössenordnung führt zu Zielkonflikten. Leiterplatten, Prepregs und auch Leiterfolien sind meistens 0,1 bis 1 oder 2mm dick, ihre -Lochdurchmesser betragen gezwungenermassen 0,2 bis 0,5mm. Solche Dimensionen liegen somit um zwei bis drei Grössenordnungen (100- 1000) über entsprechenden Dimensionen der Leiterbahndicken und Leiter- bahnenabstände in intergrierten Schaltkreisen (ICs). Zwischen Leiterplatten und ICs besteht sehr grosse Dimensionskluft.
Der Grund für die noch heute übliche, man möchte fast sagen, archaische Bauweise von Leiterplatten ist wohl darin zu sehen, dass es bisher nicht nötig war, wesentliche Neuerungen in der Leiterplattentechnik bezüglich der Ab- wärts-Di ensionierung durchzuführen. Die heute übliche Bauweise ist auch technisch bedingt. Um Bauelemente tragen zu können, müssen die Leiterplat¬ ten eine gewisse Festigkeit aufweisen, wovon man bisher auch nicht abgekom- men ist. Dies führt direkt zu Sachzwängen. Dem mechanischen Durchbohren zur Herstellung von Durchplattierungen bspw. sind mit den heute kleinsten Bohrdurchmessern von 0,2mm Grenzen gesetzt, Grosse und Lagegenauigkeit galvanisch durchplattierter Löcher sind ebenfalls limitiert.
Dieses sozusagen Stagnieren der traditionellen Herstellungstechnik von Lei¬ terplatten, bei gleichzeitig rasanter Entwicklung der integrierten Bauelemente führt unausweichbar zu den oben erwähnten Strukturproblemen. Komplexe Chips führen zu immer komplizierteren Vernetzungen auf der Leiterplatte. Die Dimensionen der Strompfade, der Löcher und Durchplattierungen sind aber seit einiger Zeit praktisch unverändert geblieben. Dies hat die Folge, dass man bei heutigen Anwendungen bis zu 60-lagige Leiterplatten verwendet, deren Layouterstellung einen hohen Aufwand verursacht und deren Herstel¬ lung immer kostspieliger wird. Die Miniaturisierung kompletter Schaltungen wird durch den Zielkonflikt der Chips, die vorzu dichter integriert werden und den Leiterplatten, die an die Layout-Miniaturisierungsgrenze stossen und den Anforderungen nicht mehr folgen können, überproportional verschärft. Ein Ausweg über die Erhöhung der Lagenzahl für Multi-Chip-Module (MCM) in Leiterplatten in Folge der Verdichtung der Chips, führt zu ebensolchen über¬ proportionalen Herstellungskostensteigerungen, verglichen mit den Herstel¬ lungskosten der Chips selbst, den eigentlichen Herzstücken der gesamten Schaltung.
Auch ist die Miniaturisierung nicht mehr nur auf kleinste Dimensionen von Leiterbahnenabstände in integrierten Schaltungen beschränkt, sondern sie gilt auch für die elektrischen und elektronischen Geräte selbst. Kleine Taschen- Fernseher, tragbare Personal-Computer (Laptop), Handkameras und andere hochkomplexe Geräte bedingen notwendigerweise auch klein dimensionierte Leiterplatten und Leiterfolien. Oft ist es notwendig, die Form und Gestaltung von Leiterplatten den Geräten anzupassen, hierfür eignen sich insbesonders flexible -Leiterfolien.
Folien können von Rolle zu Rolle verarbeitet werden, was einen hohen Auto- matisierungsgrad ermöglicht. Ausserdem sind die bei herkömmlichen Materia¬ lien verwendeten Durchlauf anlagen für zum Beispiel Entwickeln des Fotobil¬ des, Aetzen, Strippen, Bürsten etc. immer mit einem Transportsystem (Fliess¬ band, Klammern), das die starren Platten durch die Maschine transportiert. Bei einer Folie kann auf ein derartiges Transportsystem verzichtet werden, was nicht nur anlageseitige Einsparungen mit sich bringt, sondern auch das Transportsystem eliminiert, das oftmals Defekte am Produkt erzeugt, wie Kratzer, Druckstellen und so weiter.
Ferner generieren die Folien keinen Staub; dies ist ein weiterer wesentlicher Vorteil. Bei starren Materialien, die in Form von Nutzen verarbeitet werden. wird von den Schnittkanten Staub freigesetzt, der in der Folge zu einer redu¬ zierten Ausbeute führt. Die Folienoberfläche kann auch, dank ihrer Ebenheit und glatten Oberfläche sehr einfach gereinigt werden. Im aufgerollten Zu¬ stand ist die Oberfläche des Folienmaterials auch von allen Kontaminationen, insbesondere Staub, geschützt.
Eine Folie wird im Unterschied zum herkömmlichen Material in einem kon¬ tinuierlichen Prozess hergestellt, das heisst, das Material zeigt konstante Para- meterwerte entlang der Folienbahn. Insbesondere das Schrumpf- und/oder Elongationsverhalten ist konstant und kann daher einfach kompensiert wer¬ den. Die Folienoberfläche ist im Gegensatz zu starrem, glasfasergewebever- stärktem Material sehr eben bzw. glatt und nicht durch das Glasfasergewebe sozusagen oberflächenmoduliert. Dies ermöglicht bei der photochemischen Uebertragung von Bildern, insbesonder beim Belichten, eine bessere Ausbeu¬ te. Und da die Folie ausserdem flexibel ist, kann sie sich leicht an die Photo¬ maske, die auch ein Film ist, anschmiegen, wodurch sogenannte Hohlbelich¬ tungen vermieden werden. Dies führt natürlich auch zu einer besseren Aus¬ beute.
Durch den Einsatz einer Folie können sowohl starre als auch flexible Anwen¬ dungen abgedeckt werden. Ausserdem sind starr-flexible Kombinationen mög¬ lich. Bei der Verwendung einer dünnen Folie, sind die entstehenden Loch- durchmesser im Verhältnis zur Lochlänge (Lochtiefe) sehr gross, wenn man dieses Verhältnis mit üblichen Leiterplatten vergleicht. Eine 25 μm dicke Folie mit einem relativ feinen Loch von nur 80 μm hat ein Verhältnis von mehr als 1:3. Dies ist beim elektrogalvanischen Durchkontaktieren von gros- sem Vorteil, da der Materialaustausch vom Loch zum umgebenden Elektrolyt wesentlich besser funktioniert als in dünnen, langen Löchern herkömmlicher Art in Leiterplatten, die bekanntlich sehr schwierig galvanisch durchzukon- taktieren sind.
Eine dünne Folie bereitet bezüglich der in Z-Richtung auftretenden thermi¬ schen Expansion keinerlei Probleme. Herkömmliche Leiterplatten mit 1 bis 5 mm Dicke, zeigen in Z-Richtung eine nicht zu unterschätzende thermische Ausdehnung, die dazu führen kann, dass die in den Löchern eingebrachte galvanische Schicht reisst, was einen elektrischen Defekt darstellt.
Bei elektronischen Schaltungen hoher Packungsdichte ist üblicherweise auch die Wärmeableitung ein sehr grosses Problem. In herkömmlichen Leiterplat¬ ten werden daher sogenannte Heat Sinks einlaminiert oder auf die Oberfläche auflaminiert. Diese bestehen aus thermisch gut leitfähigen Materialien wie Kupfer oder Aluminium und haben die Aufgabe, die von den Komponenten erzeugte Wärmeenergie möglichst effizient an die kühlen Stellen wie bspw. die Gehäusewand weiterzuleiten. Da in der konventionellen Technik die Lei¬ terplatte meist 1 - 5 mm dick ist, bedeutet dies, dass die von den Komponen- ten generierte Wärmeenergie zuerst durch die Leiterplatte hindurch zur Kühl¬ platte geleitet werden muss. Da die Leiterplatte primär aus einem schlechten Wärmeleiter (Kunststoff, Glas) besteht, ergibt sich dadurch ein hoher thermi¬ scher Widerstand zwischen dem wärmeerzeugenden Baustein und der Kühl¬ platte. In vielen Fällen müssen daher spezielle, nur für den Zweck der Wär- meleitung vorgesehene Durchkontaktierungen (thermal vias) vorgesehen wer¬ den, die aber sehr viel kostbaren Platz beanspruchen. Dies führt in vielen Fällen dazu, dass weitere Leiterlagen nötig werden, die die Dicke der Leiter¬ platte nochmals steigern. Bei Verwendung von dünnen Folien wird selbst bei extremsten Packungs- und Verbindungsdichten (Leiterbahnen) die Leiterplatte nur etwa 0,1 - 0,2 mm dick. Diese Folie stellt daher einen vergleichsweisen geringen Wärmewider¬ stand dar und verbessert dadurch das thermische Management wesentlich.
Werden zum Aufbau der elektronischen Schaltung sogenannte Leedless Cera- mic Chip Charriers (LCCC) bzw. grössere keramische Kondensatoren und andere Bauteile aus einem Material mit kleinen thermischen Ausdehnungs- koeffizienten verwendet und diese ohne elastische Verbindung zum Substrat (das wären bspw. elastische Kontaktbeinchen) direkt auf die Leiterplatte gelötet, so muss zur Erzielung einer hinreichend hohen Zuverlässigkeit der Lötstellen die Leiterplatte in ihrem thermischen Ausdehnungsverhalten ange- passt werden. Ueblicherweise werden dabei gewalzte Metallfolien aus Kupfer- Invar-Kupfer (CIC) oder Kupfer-Molybdän-Kupfer (CMC) mit einem Aus¬ dehnungskoeffizienten von ca. 4 - 6 ppm/°K verwendet. Des weiteren sind Anwendungen mit Kohlenstoffaser-Verbundwerkstoffen bzw. Aramidfaser- Verbundwerkstoffen bekannt.
In der konventionellen Technik haben die unverstärkten Leiterplatten immer im Bereich von 16-18 ppm/°K und müssen, da die Platten üblicherweise zwi¬ schen 1-5 mm dick sind, durch sehr viel CIC bzw. CMC etc. stabilisiert wer¬ den. Dies führt zu einer weiteren Zunahme der Gesamtdicke der Leiterplat- ten, was nicht nur die Zuverlässigkeit negativ beeinflusst, sondern auch das thermische Management erschwert. Zudem werden solche Leiterplatten rela¬ tiv schwer, was insbesondere in der Avionik nicht erwünscht ist.
Werden dagegen Folien als Basismaterial verwendet, so liegt die Gesamtdicke einer komplexen Leiterplatte bei ca. 0,1 bis 0,2 mm. Wird diese Folienleiter- platte auf einen Träger auflaminiert, der einen niedrigen thermischen Aus¬ dehnungskoeffizienten aufweist, so ist der Ausdehnungskoeffizient der Leiter¬ plattenoberfläche fast identisch mit dem der Supportplatte, da die dünne Folie keinen grossen Einfluss auf die Gesamtstruktur ausübt. Zudem ist die Folie nicht durch Glasfasern verstärkt, das heisst, der Elastizitätsmodul der Folie ist wesentlich niedriger als der Elastizitätsmodul glasfaserverstärkter Materialien und demnach wird die stabilisierende Wirkung der Supportplatte nicht negativ beeinflusst.
Werden innerhalb einer elektronischen Schaltung hochfrequente Signale ver¬ wendet, so spielt die sogenannte Impedanz (das ist der Wellenwiderstand) der elektrischen Leitungen eine wesentliche Rolle. So werden zur Vermeidung von Reflexionen Leitungen mit 50 Ω Impedanz (Standard) oder höher gefor- dert. Neben der absoluten Grosse des Wellenwiderstandes ist auch die Kon¬ stanz über die Leiterlänge für die Hochfrequenzeigenschaften sehr wichtig. Dabei spielt die Dickenkonstanz des Dielektrikums eine wichtig Rolle. Die Verwendung einer Folie gibt gegenüber herkömmlichen Basismaterialien wesentlich bessere Toleranzen bezüglich der Dielektrikumskonstante und Materialdicke.
Die vorliegende Erfindung hat zur Aufgabe, eine optimale und dichteste Strompfadbelegung auf Leiterplatten zu erzielen. Sie soll einen Weg zeigen, auf welchem Leiterplatten ohne wesentliche Kostensteigerung mit erheblich erhöhter Funktionsdichte (dem Zusammenwirken von Bauelementen und de¬ ren Verbindungen, erhöhter Verdrahtungsdichte, etc) auch für Leiterplatten mit hochkomplexen Funktionen hergestellt werden können. Es sollen dabei bekannte und bewährte Techniken, Materialien und dergleichen zur Anwen- düng kommen, bspw. zur Herstellung der Leiterstrukturen sollen bekannte nasschemische Verfahren anwendbar sein. Diese Leiteφlatten sollen eine ge genüber bekannten Leiteφlatten um eine Grössenordnung oder darüber er¬ höhte Funktionsdichte aufweisen und trotzdem sollen sie in bezug auf die Weiterverarbeitung, insbesonders bezüglich der Bestückung und der Anwen¬ dung mit bekannten Systemen kompatibel sein. Ferner soll die Herstellung von Leiteφlatten unter Verwendung solcher Halbzeuge automatisch, bspw. von-Rolle-zu-Rolle ablaufbar sein, wobei auch ein zuführender Chargenbe- trieb durch Einschleusung von bspw. Trägeφlatten möglich sein soll.
Diese Aufgabe wird durch die in den Patentansprüchen definierte Erfindung gelöst.
Die erfindungsgemässe Idee besteht in einem ersten Ansatz darin, die Anfor- derung an die mechanische Festigkeit von der bis anhin damit verbundenen Anforderung der Schaltungsverbindung funktionsmässig zu trennen, um die reine Schaltungsverbindung, insbesondere für Signale, "näher" an die elek¬ trisch-technischen Eigenschaften der Chips bringen zu können. Um dies zu realisieren wird die Layout-Miniaturisierung ohne Rücksicht auf die mechani- sehe Festigkeit des Substrates optimiert. Auch die elektrische Stromversor¬ gung kann funktional abgetrennt und separat optimiert werden. Anders als bei der üblichen Entwicklung integrierter Schaltungen strebt die vorliegende Er¬ findung somit eine Verkleinerung sämtlicher Dimensionen der Leiteφlatten an, in dem die einzelnen Funktionen (Signalführung, Speisung, mechanische Festigkeit) funktioneil getrennt miniaturisiert werden, um sie in finalisieren- den Verfahrensschritten zu einer hochverdichteten Leiteφlatte zu "synthetisie¬ ren". Die rigorose Miniaturisierung des signalführenden Layouts gelingt über ein rein chemisches Vorgehen unter Vermeidung mechanischer Mitteln. Mit Molekülen und Atomen kann man feinere Durchplattierungen "bohren" und erst noch alle simultan. Auf diese Weise kann der Zielkonflikt zwischen den integrierten Schaltungen und den Leiteφlatten mittels eines Dimensionie- rungssprunges überwunden werden. Durch die sehr markante Herabminde¬ rung der Dicke und damit der Steifigkeit einer Leiteφlatte ist der Aufbau einer solchen einer Rolle-zu-Rolle-Fertigung zugänglich. Bei einer Dickenzu- nahme, bei der die Radienänderung durch Biegen beim Rollen kritisch wer¬ den könnte, wird eine Faltung des aus Leiteφlatten bestehenden Bandes an bestimmten Sollbruchstellen vorgenommen. Ein solcher Faltstapel als Prozes- spuffer kann in jegliche weiter "Rollenverarbeitung" einbezogen werden und bietet ausserdem die Möglichkeit für einen partiellen Chargenbetrieb, bspw. zum Einführen eines Substrates, Stabilisierungselementes und so fort.
Das erfindungsgemässe Verfahren beruht im wesentlichen darauf, dass an Stelle einer Leiteφlatte in Abtrennung aller Funktionen, die nichts mit dem Layout zu tun haben, in einem vorgängigen Verfahrensschritt ein zu einer Leiteφlatte aufbaubares Halbzeug hergestellt wird, welches es ermöglicht, eine drastische Verkleinerung der Funktionseinheiten auf Leiteφlatten und eine ebensolche Erhöhung ihrer Funktionsdichte zu erzielen. Das erfindungs¬ gemässe Halbzeug besteht aus einer extrem dünnen Folie mit extrem kleinen Löchern. Die Lochdurchmesser können um fast eine Grössenordnung (bis zu 20μm) verkleinert werden, was bspw. eine klare Sub-lOOμm-Technik ermög¬ licht. Ein solches Halbzeug dient als steifer mechanischer Träger, es ist nur zur Signalführung vorgesehen, welche Leiterbahnen in einem späteren Her¬ stellungsschritt gemäss vorgegebenem Layout realisiert werden. Auch Leiter¬ bahnen für die elektrische Speisung werden vorteilhafterweise nicht auf einem solchen Halbzeug angesiedelt. Die Wirkung der Miniaturisierung äussert sich vor allen Dingen im Durchmesser für die Durchplattierungslöcher; eine Er¬ niedrigung der Lochdurchmesser geht quadratisch mit der Dichte der Strom¬ pfadbelegung ein. Solche Leiteφlatten ermöglichen durch ihren bezüglich der Impedanz günstigen Aufbau auch die Übertragung hochfrequenter Signale (mit Frequenzen > 1GHz). Schon mit zwei- bis dreimal kleineren Lochdurch¬ messern benötigt man lediglich drei- bis viertägige Multilayer um dieselbe Schaltungskomplexität wie heute mit 20- oder 25- lagigen Leiteφlatten zu erreichen.
Im folgenden wird anhand einiger Ausführungsformen ein erfindungsgemässes Vorgehen diskutiert. Die nachfolgend aufgeführten Figuren zeigen im Detail, wie man am besten vorgeht.
Fig. 1 zeigt ein Diagramm, in dem die Verbindungsdichte verschiedener Substrattechnologien gegenüber der damit einhergehenden Flächen¬ kosten gezeigt werden. Fig. 2 zeigt in einem vergrösserten Ausschnitt eine beispielhafte Ausfüh¬ rungsform von Strompfaden und Durchplattierungen eines Teils einer Leiteφlatte. Fig. 3 zeigt im Vergleich die Leiterdichte zweier traditioneller Layouts, Strompfade und Durchplattierungen in DIL- und SMD-Technik gegenüber der markant erhöhte: Leiterdiehte einer beispielhaften Ausführungsform von Strompfaden und Durchplattierungen von Leiteφlatten, hergestellt aus Halbzeugen nach dem erfmdungsge- mässen Verfahren.
Fig. 4 zeigt in vergrösserter Darstellung Strompfade und vorbereitete -Lötflächen, wobei die vorbereiteten Lötflächen plasma-geätzte Durchplattierungen aufweisen. Fig. 5 zeigt in vergrösserter Darstellung eine beispielhafte Ausführungs- form zweier Lagen von Strompfaden eines MCMs aus Halbzeugen gemäss Erfindung hergestellt. Fig. 6 zeigt die einzelnen Schritte (6a-6e) der Herstellung eines Halbzeu¬ ges nach dem erfindungsgemässen Verfahren, das in weiteren Schritten zu einem MCM (bspw. gemäss Figur 5) gefertigt wird. Fig. 7 zeigt eine beispielhafte Ausführungsform eines Teils einer Leiter¬ platte hergestellt aus einem Halbzeug nach dem erfindungsgemäs- sen Verfahren, welche mit einem mechanischen Träger verbunden ist.
Fig. 8 zeigt eine beispielhafte Ausführungsform eines fertig bestückten MCM, das aus Halbzeugen nach dem erfindungsgemässen Verfah- ren hergestellt wurde.
Fig. 9a bis 9d zeigen schematisch und teilweise im Schnitt die Anordnung von präkonditionierten Durchplattierungen.
Fig. 10 zeigt schematisch ein Verfahren zur Herstellung von Durchplattie¬ rungen in Folienmaterial auf Bandanlagen, welches Folienmaterial als Endlos-Universalsubstrat schliesslich aufgerollt und zur Weiter¬ verarbeitung bereit gehalten wird.
Fig. 11 bis 16 zeigen die verschiedenen Stufen für die Herstellung einer Vierlagenleiteφlatte, darin wird auch das Prinzip erkennbar für den Aufbau von -Leiteφlatten mit eine Vielzahl von Lagen. Fig. 17 und 18 zeigen Beispiele einer unterstützenden Massnahme bei der Verarbeitung auf Bandanlagen wie bspw. gemäss Figur 10.
Figur 1 zeigt ein anschauliches Diagramm der Verbindungsdichte verschiede- ner Substrattechnologien gegenüber den damit einhergehenden Flächenko¬ sten. Es wird der Kostenanstieg von MCMs in üblicher Leiteφlattentechnik mit solchen gemäss Erfindung verglichen werden, die aus nachfolgend zu diskutierenden Halbzeugen hergestellt werden. Auf der Abszisse ist die Ver¬ bindungsdichte D (der Anzahl Verbindungen pro Einheitsfläche) in beliebigen Einheiten aufgetragen. In Funktion dieser Dichte D gibt die Ordinate die ungefähren relativen Kosten K der Herstellung einer -Leiteφlatte pro Flä¬ cheneinheit wieder. Der linke Bereich LP kennzeichnet die Dichte D gemäss der kostengünstigen und wenig verdichteten konventioneller Printed Circuit Boards- oder PCB-Technik, der rechte Bereich IC kennzeichnet die Dichte D hochverdichteter Schaltkreise, wie sie heute gebraucht werden. Der obere Bereich MCM kennzeichnet die mit wachsender Verdichtung teueren in Kera- mik-Mehrlagentechnik oder Dünnschicht-Mehrlagenstrukturen hergestellten MCMs. Der untere Bereich 1 kennzeichnet die mit wachsender Verdichtung geringfügig ansteigenden Kosten für Leiteφlatten aus Halbzeugen gemäss dem vorhegenden erfindungsgemässen Verfahren für MCMs. Die Produkte aus dem erfindungsgemässen Verfahren sind unter dem Namen DYCOstra- te(R) im Markt eingeführt worden. Aus der Darstellung von Figur 1 können drei Aussagen getroffen werden. Erstens weist die Herstellung klassischer Lei¬ teφlatten einen sehr starken Preisanstieg mit der Verdichtung auf, ohne je¬ doch den gewünschten Bereich IC hochverdichteter Schaltkreise zu erreichen (siehe Bereich LP). Zweitens weisen die in Keramik-Mehrlagentechnik oder Dünnschicht-Mehrlagenstrukturen hergestellten MCMs eine natürliche Minia- turisierungsgrenze auf, derart, dass auch sie den Verdichtungsbereich IC trotz hohem Aufwand nicht erreicht (siehe Bereich MCM). Drittens werden gerade diese beiden Nachteile der bisherigen MCM-Technik (hohe Kosten und Be- grenztheit) durch das erfindungsgemässe Verfahren überwunden (siehe Be¬ reich 1). Verglichen mit der üblichen Technik sind komplexe (MCM) Leiter¬ platten, hergestellt aus Halbzeugen nach dem erfindungsgemässen Verfahren sehr wohl in der Lage, wesentlich näher an den Verdichtungsbereich IC zu kommen.
Figur 2 zeigt eine beispielhafte Ausführungsform einer Signalleitungsschicht in einem MCM in über 40-facher Vergrösserung. Die Strompfade 4 sind 75 μm, die Durchplattierungslöcher 2 sind 100 μm (verzinnt entsprechend kleiner), die -Lötaugen 3 sind hier 200 μm im Durchmesser, soviel, wie das kleinste konventionell gebohrte Loch, und die Dichte der Durchplattierungen ist höher also lO'OOO pro dm2. Die Dicke der Leiterfolie beträgt 25 bis 50 μm. Das Halbzeug, aus dem solche Folien hergestellt werden, weist nur die Durchplat¬ tierungslöcher 2 auf, deren Herstellung weiter unten diskutiert wird. Diese hier gezeigten Dimensionen können ohne grosse technische Probleme noch weiter verkleinert werden. In Figur 3 sind illustrativ zwei beispielhafte Ausführungsformen traditioneller Leiteφlattentechnik im Vergleich zur Herstellung von Leitplatten mit erfin- dungsgmässem Halbzeug zu sehen. Es handelt sich um Ausschnitte von nicht- bestückten -Leiteφlatten. Auf der linken Seite ist eine nach der Dual Inline- oder DIL-Technik konstruierte -Leiteφlatte abgebildet, in der Mitte ist eine nach der SMD-Technik konstruierte Leiteφlatte abgebildet, auf der rechten Seite ist eine Leiteφlatte DS aus Halbzeugen nach dem erfindungsgemässen Verfahren abgebildet (DS steht für DYCOstrate(R)). Diese drei Ausschnitte von Leiteφlatten sind im Massstab 1:1 abgebildet. Figur 3 zeigt anschaulich, dass die Reduzierung der Durchmesser der Durchplattierungen zu einer qua¬ dratisch wachsenden Verdichtung der strukturierten Schaltung führt.
In der gezeigten -Leiteφlatte nach der DIL-Technik werden kreisrunde metal- lische Plattierungsformen verwendet. Auf dem elektrisch isolierenden Träger liegen nach bekannten photochemischen Verfahren gedruckte Strompfade vor. Durchplattierungen verbinden die Strompfade je einer Seite einer Leiteφlatte miteinander. Die Dimensionen der Strompfade und der Durchplattierungen liegen im Millimeterbereich. Bemerkenswert ist, dass der Durchmesser der Plattierungen um einen Faktor 5 grösser ist als die Breite der Strompfade.
In der gezeigten -Leiteφlatte nach der SMD-Technik werden mechanisch oder galvanisch erzeugte Durchplattierungen und nach bekannten und gängigen photochemischen Verfahren gedruckte elektrische Strompfade verwendet. Die kreisrunden, doch schon kleineren Durchplattierungen verbinden zwei Ebenen der -Leiteφlatte, beispielsweise deren Vorder- und Rückseite miteinander. Sie dienen auch zur Bestückung mit einfachen elektronischen Bauelementen. Die elektrische Kontaktierung und mechanische Befestigung solcher einfacher Bauelemente erfolgt über Lötflächen (nicht sichtbar, da diese Abbildung eine Signalebene zeigt, die keine Lötflächen beinhaltet). Verglichen mit den Durchplattierungen der DIL-Technik sind die Durchplattierungen der SMD- Technik, inklusive der Lötflächen und der Lötaugen, etwa um eine Faktor 3 kleiner. Auch die gedruckten Strompfade sind schmaler dimensioniert. Als Folge davon hat die Anzahl der Strompfade verglichen mit der Anzahl der Durchplattierungen zugenommen. Man kann sagen, dass die Dimensionen der Strompfade und der Durchplattierungen im Halb-Millimeterbereich liegen, sie "betragen respektive 0,3 bis 0,7mm. Der Durchmesser der Durchplattierungen ist ca. um einen Faktor 3 grösser als die Breite der gedruckten Strompfade.
Die aus Halbzeugen nach dem erfindungsgemässen Verfahren hergstellten -Leiteφlatten DS, weisen nach einem bekannten und bewährten Plasma-Ätz- Verfahren erzeugte Durchplattierungen und nach photochemischen Verfahren strukturierte Strompfade auf. Die Strompfade sind gegeneinander durch eine dünne Nichtmetallfohe elektrisch isoliert. Auffallend ist die drastische Steige¬ rung der Anzahl gedruckter Strompfade. Erst auf den zweiten Blick nimmt man die Durchplattierungen wahr. Diese Verdichtung des Layouts ist eine direkte Folge der im erfindungsgemässen Verfahren vorgenommenen Redu¬ zierung des Durchmessers der Durchplattierungen. Diese Verdichtung ist der erste erwünschte Effekt des erfindungsgemässen Verfahrens. Die plasma-ge- ätzten Löcher haben Durchmesser deutlich kleiner als lOOμm. Sie können an 20μm heranreichen. Die Breite der Strompfade liegt in der gleichen Grössen¬ ordnung. Dieses Verfahren zur Herstellung solcher Halbzeuge wird weiter unten in der Beschreibung gemäss Figuren 6a bis 6g im Detail beschrieben. Verglichen mit den Durchplattierungen der DIL-Technik und den Durchplat¬ tierungen der SMD-Technik sind die als Durchplattierungen verwendeten plasma-geätzten Löcher nach dem vorliegenden erfindungsgemässen Verfah¬ ren somit um einen Faktor 30 respektive 10 kleiner. Die Durchmesser der Durchplattierungen sind nicht mehr um einen Faktor 5 grösser als die Breite der Strompfade, wie bei den DIL- und SMD-Techniken, dieser Faktor ist kleiner, beispielsweise 3, 2 oder auch 1 (gleich gross). Aus dieser Reduzierung der Durchmessers der Durchplattierungen folgt zum einen, dass pro Einheits¬ fläche der verwendeten Leiteφlatte mehr Durchplattierungen und Strompfade angebracht werden können (Verdichtung oder erster erwünschter Effekt), zum anderen folgt, dass prinzipiell mehr Platz für Strompfade vorhanden ist. Die- ser "zusätzliche" Platz für Strompfade wird zur Ansteuerung, Versorgung und Kontaktierung der grossen Anzahl von Ein- und Ausgängen hochkomplexer Bauelemente dringend benötigt, dies ist der zweite erwünschte Effekt des erfindungsgemässen Verfahrens. Dies wird an der im Ausschnitt der Leiter¬ platte DS in Figur 3 festzustellenden Zunahme der Anzahl der Strompfade relativ zur Anzahl der Durchplattierungen (verglichen mit den DIL- und SMD-Techniken) offensichtlich. Der "zusätzliche" Platz erlaubt einen vollstän¬ dig anderen Aufbau von Leiteφlatten. Durch diese nun ermöglichte Verlage¬ rung der Strompfade in die einzelnen Ebenen einer (in der Regel mehrlagi¬ gen) Leiteφlatte erzielt man einen dritten erwünschten Effekt, nämlich dass die Anzahl der Ebenen solcher erfindungsgemässen Leiteφlatten drastisch reduziert wird, von beispielsweise 25 auf drei oder vier. Dies wird weiter unten in der Beschreibung gemäss Figur 6 im Detail beschrieben.
Figur 4 zeigt eine beispielhafte Ausführungsform von vorbereiteten Lötflächen von Leiteφlatten, die auch dazu benützt werden, um plasma-geätzte Durch¬ plattierungen einzubringen. Es handelt sich um einen Ausschnitt einer noch nicht bestückten -Leiteφlatte. Der Ausschnitt ist mit rund 35-facher Vergrös- serung abgebildet. Die plasma-geätzten Durchplattierungen sind hier kreis- runde Löcher 6, welche mitten in, hier rechteckige, vorbereitete Lötflächen 3 für bspw. Anschlüsse eingebracht wurden. Diese Kreisform der Mündungen der plasma-geätzten Löcher ist natürlich nicht zwingend, es lassen sich auch Löcher mit anderen regelmässigen oder unregelmässigen Formen herstellen. Die Durchplattierungen sind über Strompfade 4 miteinander verbunden. Die Strompfade 4 sind auf einem elektrisch isolierenden Träger 5 gedruckt und durch diesen gegeneinander elektrisch isoliert. Figur 4 zeigt ausserdem, dass plasma-geätzte Löcher um mindestens eine Grössenordnung kleiner sind als traditionell mittels mechanischen Aufbohrens oder mittels Nasschemie galva¬ nisch erzeugte Löcher. Sie zeigt ferner, dass sich solch kleine Löcher, die deutlich kleiner als lOOμm sind, nötigenfalls direkt in Leiterbahnen einge¬ bracht werden können. In diesem Beispiel ist die Durchplattierung rund 30- mal kleiner als die vorbereitete Lötfläche. Eine solch grosse vorbereitete "Lötfläche wird für makroskopisches Löten mit dementsprechend grossen Löt¬ augen benutzt (siehe Beschreibung zu Figur 2).
Figur 5 zeigt eine weitere, sehr eindrückliche Realisierung der Sub-lOOμm- Technik für -Leiteφlatten, wie sie mit Halbzeugen gemäss Erfindung möglich ist. Es handelt sich um einen rund zweimal vergrösserten Ausschnitt. Man sieht, dass alleine die Überlagerung von zwei Layout-Lagen schon ein sehr dichtes Muster erzeugt (verdichtetes Verdrahtungsbild). Bei mehr Lagen ist es entsprechend komplizierter. Die Figur 5 zeigt auf, dass die aus dem erfin¬ dungsgemässen Verfahren resultierende Reduzierung 'der Lagenzahl der Lei¬ teφlatten nicht nur zu Materialeinsparungen (weniger Lagen ist gleichbedeu¬ tend mit weniger Material), sondern auch zu einer bedeutenden Verringerung des Arbeitsaufwands führt, denn dieser ist bedeutend, wenn es darum geht, Leiteφlatten mit vielen Lagen zu entwerfen.
In Figur 6 sind die einzelnen Schritte 6a bis 6e der Herstellung einer bei- spielsweisen Ausführungsform eines Halbzeugs nach dem erfindungsgemässen Verfahren zu sehen. Die Darstellung ist zur Veranschaulichung des Verfah¬ rens stark schematisiert. Als Ätzverfahren können bekannte nasschemische Verfahren oder bekannte Plasma-Ätz- Verfahren verwendet werden. Ebenso sind Kombinationen dieser genannten Verfahren möglich. Bei allen Ätzver- fahren muss im allgemeinen dafür gesorgt werden, dass diejenigen Teile, die nicht weggeätzt werden sollen, durch eine Photresistschicht geschützt sind. In Figur 6a sieht man im Schnitt eine zweilagigen Leiterfolie, bestehend aus einer ersten Metallschicht 7, beispielsweise aus Kupfer, sowie einer zweiten Metallschicht 9, ebenfalls beispielsweise aus Kupfer, und schliesslich einer intermediären Nichtmetallschicht 8, beispielsweise aus Polyimid oder aus Epoxydharz. Die Dicke dieser dreischichtigen Folie beträgt typiscberweise 50 bis 120μm, sie kann natürlich auch dünner sein. Eine solche dreischichtige Folie ist das Ausgangsmaterial für die im erfindungsgemässen Verfahren herzustellenden Halbzeuge zur Verwendung für mehrlagige Leiteφlatten mit Durchplattierungen. Diese dreischichtige Folie kann starr oder flexibel sein.
In Figur 6b werden die beiden Metallschichten 7, 9 mit Photoresist 10, 11 be¬ schichtet Vor diesem Beschichtungsvorgang des Photoresists wird die Lei¬ terfohe gewöhnlicherweise durch chemisches Ätzen oder Jet-Scrubbing gerei- nigt. Es kann handelsübliches, trockenes oder flüssiges Photoresist aufgetragen werden. Die Schicht Photoresist 10 bedeckt die Metallschicht 7, die Schicht Photoresist 11 bedeckt die Metallschicht 9.
In Figur 6c erfolgt in einem bekannten und bewährten photochemischen Ver¬ fahren die Strukturierung der Durchplattierungen. Gemäss einer Photomaske werden die Schichten Photoresist 10, 11 belichtet und Anlagen für die Öffnun¬ gen 12, 12', 15, 15' erzeugt. Diese Öffnungen 12, 12', 15, 15' stellen vorgear¬ beitete Durchplattierungen dar. Sie reichen von der äusseren Oberfläche der photoresistbeschichteten Leiterfolie aus gesehen bis auf die Metallschichten 7, 9 hinab. Die mit solchen Löchern 12, 12', 15, 15' versehenen Photoresist- schichten werden als Schichten Photoresist 10', 11' bezeichnet. Typischerweise haben dies Öffnungen Durchmesser von weniger als 100 μm, sie sind also sehr klein. In Figur 6d werden die Metallschichten 7, 9 im Bereich der Öffnungen 12, 12', 15, 15' nasschemisch durchgeätzt. Die aus diesem ebenfalls bekannten und be¬ währten Verfahrensschritt resultierenden Öffnungen 13, 13', 16, 16' reichen von der äusseren Oberfläche der photoresistbeschichteten -Leiterfolie aus gesehen bis auf die intermediäre Nichtmetallschicht 8 hinab. Auch diese bis auf die Nichtmetallschicht 8 hinabreichenden Öffnungen 13, 13', 16, 16' sind lediglich vorgearbeitete Durchplattierungen. Nach diesem Verfahrensschritt hegt das Dielektrikum frei.
In Figur 6e werden die Schichten Photoresist 10', 11' durch nasschemisches Strippen entfernt. Im gleichen Ätzvorgang wird im Bereich der Öffnungen 13, 13', 16, 16' die intermediäre Nichtmetallschicht 8 durch Plasma-Ätzen abgetra¬ gen. Die derart "plasmagebohrte" Nichtmetallschicht wird mit 8' bezeichnet. Durch diesen Verfahrensschritt entstehen kleine Durchgangslöcher 14, 14', durch welche später die beiden Metallschichten 7, 9 der zweilagigen Leiterfo- lie miteinander kontaktiert werden können. Der Lochdurchmesser dieser kleinen Durchgangslöcher 14, 14' beträgt weniger als lOOμm bis hinunter zu 20μm. Diese in Figur 6e schematisch abgebildete zweilagige Folienleiteφlatte, mit dünnen Metallschichten 7, 9, mit einer dünnen intermediären Nichtmetall¬ schicht 8' und mit kleinen Durchgangslöchern 14, 14', ist eine beispielhafte Ausführungsform eines Halbzeugs zur Verwendung für mehrlagige Leiteφlat¬ ten mit Durchplattierungen. Es handelt sich insofern um ein Halbzeug da die Durchgangslöcher 14, 14' noch nicht elektrisch leitende Verbindungen in Form von Durchplattierungen zwischen den Metallschichten 7, 9 darstellen und der ganze Schaltungsentwurf, d.h. die Strompfade noch nicht definiert sind. Die Durchgangslöcher 14, 14' sind lediglich photomechanisch gebohrte und vorgearbeitete Durchplattierungen, die im Layout verwendet werden können oder nicht. Bei Universalrastern kann das Halbzeug zwischengelagert werden, bei spezifischen Layouts kann es in einem Zuge weiterverarbeitet werden. Dies ist in den Figuren 6f bzw. 6g gezeigt. In Figur 6f erfolgt eine durchgehende Metallisierung sowohl der inneren Oberflächen der Durchgangslöcher 14, 14' als auch der äusseren Oberflächen der Metallschichten 7, 9 des Halbzeugs. Es handelt sich hierbei beispielsweise um eine galvanisch erzeugte Verstärkung der Metallschichten 7, 9, diese Me- tallschichten heissen daraufhin verstärkte Metallschichten 7', 9'. Andererseits erhalten hierdurch die Durchgangslöcher 14, 14' eine Aufplattierung, derart, dass sie elektrisch leitenden Verbindungen zwischen den verstärkte Metall¬ schichten 7', 9' bilden. Diese aufplattierten Durchgangslöcher 14, 14' werden Durchplattierungen 17, 17' genannt. Das Produkt ist in dieser Form immer noch ein Halbzeug, bereit zur Realisierung des Layouts.
Figur 6g zeigt, wie das Halbzeug aus Figur 6e bzw. 6f nach erfolgter photo¬ chemischer Strukturierung (Layout) der Lagen 7', 9' zur Leiteφlatte fertigge- stellt wird. Gemäss einem Schaltungsentwurf werden die Strompfade 18 als Verdrahtungsbild herausgeätzt und somit eine zweilagige Folienleiteφlatte 19 hergestellt. Das Metall zwischen den Leitern wird bis auf die Oberflächen 8.1',8.2' der dünnen intermediären Nichtmetallschicht 8' heruntergeätzt, sodass Strompfade 18 von der intermediären Nichtmetallschicht 8' getragen werden und von den Oberflächen 8.1', 8.2' gegeneinander elektrisch isoliert bis an die Mündungen der Durchplattierungen 17, 17' herangeführt werden können.
Die Verfahrenschritte 6a bis 6e bzw. 6f zur Herstellung eines erfindungsge- mässen Halbzeugs und (mit den Schritten 6f und 6g) einer Leiterfolie 19 daraus, beinhalten ausgereifte bekannte und bewährte und damit risikolose Techniken der Leiteφlatten-Industrie. Sie können von einem Fachmann bei Kenntnis der vorliegenden Erfindung auf gängigen Apparaturen ausgeführt werden. Das erfindungsgemässe Verfahren hat den Vorteil, dass alle Verfah- rensschritte in allen Oberflächenbereichen der Leiterfolie gemäss den Figuren 6a bis 6d, sowie des Halbzeugs gemäss den Figuren 6e bis 6g zeitgleich durch- geführt werden. Daher wird auch auf allen dem Plasma-Ätz-Medium expo¬ nierten Bereichen, in dem Beispiel auf beiden Seiten des Halbzeugs gleichzei¬ tig geätzt. Demgemäss kann man beispielsweise bei Verwendung sehr dünner Photolacke diese gleichzeitig mit dem Plasma-Ätzen der Durchgangslöcher 14, 14' entfernen. Es können zehntausende von Löchern gleichzeitig plasma-geätzt oder, besser gesagt, plasma-gebohrt werden. Die Ätzdauer wird bei zwei gleichzeitig geätzten Seiten eines Halbzeugs halbiert. Auch auf beiden Seiten gleichzeitig unterschiedliche Strukturen plasma-geätzt werden. Gemäss dem Layout können beispielsweise auf einer Seite Durchplattierungen und auf der anderen Seite Sacklöcher gleichzeitig, in einem Verfahrensschritt geätzt wer¬ den. All diese einzigartigen Vorteile des Folienätzens reduzieren die Herstel¬ lungskosten beträchtlich. Dies ist zu unterscheiden vom zeitlich nacheinander ablaufenden mechanischen Aufbohren oder auch Laserbohren von Durch¬ gangslöchern und Sacklöchern. Solche Verfahren kennzeichnen sich durch viele Prozessschritte, vergleichbar schlechte Ausbeuten, hohe Kosten.
Die Materialien, die verwendet werden, sind einfach und kostengünstig. Zur Verwendung kommen dünne mit Metall beschichtete Folien, beispielsweise mit dünner Kupferfolie (3 bis 70μm dick) beschichtete dünne, nichtausgehär- tete Polyimid-Folien oder Epoxydharz-Folien (12 bis lOOμm dick). Zur Her¬ stellung des Ausgangsmaterials für dreischichtige Folien gemäss Figur 6a werden die Schichten beispielsweise auf einfache Weise durch Pressen und Temperatur mechanisch miteinander verbunden, derart, dass eine intermediä- re Nichtmetallschicht vorliegt, welche die beiden Metallschichten elektrisch voneinander isoliert. Andere Verfahren zur Herstellung solcher Folien sind bekannt und werden grosstechnisch eingesetzt. Auf dem Markt werden auch dünne Metall/Nichtmetallfolien aus diesen Materialien (~ 100μm dick) ange¬ boten. Zur Herstellung einer dreischichtigen Folie gemäss Figur 6a wird eine solche dünne Metall/Nichtmetallfolien auf einfache Weise durch Pressen und Temperatur mechanisch mit einer dünnen Kupferfolie verbunden, derart, dass eine intermediäre Nichtmetallschicht vorhegt, welche die beiden Metallschich¬ ten elektrisch voneinander isoliert.
Um bei hochfrequenten Anwendungen (bis zu Frequenzen > 1GHz) uner¬ wünschte Effekte, wie hohe Dämpfungen, Reflexionen oder Übersprechen von Signalen zu verhindern, ist es notwendig, nicht nur die Abstände der Signalla¬ gen und der Erdungslagen, sondern auch deren Breiten in bestimmten engen Grössenbeziehungen gestalten. Die gleichmässige Dicke der Dielektrikum- schichten, die kleinen Dämpfungswerte und Dielektrizitätskonstanten der verwendeten Folien und auch die engen Toleranzbreiten der Dielektrizitäts¬ konstanten der verwendeten Folien in x- und y-Richtungkommen diesen Er¬ fordernissen der Hochfrequenztechnik hervorragend entgegen. Die vorhegen¬ de Erfindung führt demgemäss zu Leiteφlatten, die aufgrund der dünnen Metall- und Nichtmetallschichten (jeweils 12 bis 150μm dick) und den kleinen Durchplattierungen (Durchmesser kleiner lOOμm) hervorragend für Anwen¬ dungen im Hochfrequenzbereich geeignet sind. Dies ist von grösser techni¬ scher Bedeutung, da die Tendenz dahingeht, dass beispielsweise Personal Computers (PCs) nicht nur in der zentralen Recheneinheit sehr hoch (mehre- re Hundert Mega-Hertz) getaktet arbeiten, sondern dass auch für das Bussy¬ stem auf den -Leiteφlatten diese Taktfrequenzen angestrebt werden. Mit gängigen Leiteφlatten ist dies aufgrund der makroskopischen Dimensionen von -Lagendicken und -Leiterbreiten, wie auch aufgrund der wechselnden Zu¬ sammensetzung und wechselnden Dicke des Dielektrikums aus Glasfasergewe- be und der wechselnden Dicke der Matrix aus Epoxyd- oder Polyimid-Harz, schwerlich möglich.
In Figur 7 ist eine beispielsweise Ausführungsform eines Teils einer Leiter- platte, hergestellt aus einem Halbzeug nach dem erfindungsgemässen Verfah¬ ren, zu sehen, welche mit einem mechanischen Träger verbunden ist. Eine der Eigenschaften der Leiteφlatten nach dem erfindungsgemässen Verfahren ist die, dass sie sehr dünn sind. Sie können flexibel oder auch starr sein. Sobald die mechanische Festigkeit Eingang finden soll, muss, man hat diese Funktio¬ nen ja wissentlich getrennt, die Festigkeitsfunktion eingebracht werden. In diesem Fall wird eine Verbindung mit einem mechanischen Träger vorgese¬ hen, beispielsweise zur Fixierung dieser Leiteφlatte in einem Gehäuse, oder zur Abfuhr der von den Bauelelementen dieser Leiteφlatte generierten Wär¬ me und so weiter. Eine solche -Leiterfolie kann durch Auflaminieren oder Aufkleben auf einen mechanischen Träger zur -Leiteφlatte verarbeitet wer- den.
Eine nach dem erfindungsgemässen Verfahren (siehe Figur 6) aus einem Halbzeug hergestellte Leiteφlatte 19 kann vor oder nach einer solchen Mon- tage auf einen mechanischen Träger mit Bauelementen bestückt werden. Vor- teilhafterweise rüstet man eine solche Leiteφlatte oder Teil-Leiteφlatte 19 -^mindesten soweit aus, dass sie in den Bereichen, die nach der Montage mit einem mechanischen Träger nicht mehr oder nur schwer zugänglich sind, schon fertig gestellt ist. Wenn, wie in Figur 7 zu sehen, eine Seite einer dün- nen Teil-Leiteφlatte 19 mit einem mechanischen Träger verbunden wird, kann beispielsweise diese verdeckte Seite vorher bestückt werden.
Ein mechanischer Träger 20 kann aus Metall, aus Kunststoff, auch aus Kera- mik, aus präpariertem Papier, aus präpariertem Karton etc. bestehen. Er kann auf seiner Oberfläche mit einer elektrischen Stromversorgung 22 beispiels¬ weise in Form einer Versorgungsschicht versehen sein. Die Versorgungs¬ schicht 22 ist derart strukturiert, dass sie elektrisch. voneinander isolierte Lei¬ terbahnen aufweist, welche die Übertragung von technischen Gleichspannun- gen ermöglichen. Man kann eine solche Versorgungsschicht 22, wie in Figur 7 zu sehen, herstellen, indem man eine dünne, fertig strukturierte Teil-Leiter- platte oder Halbzeug-Folie 19 einseitig mit Klebefolien aus beispielsweise Acryl-, Epoxyd- oder Polyimid-Harz mit einem mechanischen Träger oder Trägeφlatte 20 durch Anwendung von Druck und Temperatur verklebt. Die Trägeφlatte kann an ihrer Grenzfläche zur Halbzeug-Folie 19 eine elektrisch funktioneile Leiterebene aufweisen, die vorab auf der Trägeφlatte 20 nach den üblichen Verfahren der Leiteφlattentechnik erzeugt wurde. Vorteilhafter- weise trägt die Trägeφlatte 20 nur grobe Leiterstrukturen, wie beispielsweise Versorgungsleiter bzw. Flächen. Der stabile, im Verhältnis zur dünnen Leiter¬ platte 19 und der Versorgungsschicht 22, dicke mechanische Träger 20 wird, falls nötig, über die eine Kunststoff -Fohe 21 von der Versorgungsschicht 22 elektrisch isoliert.
Um die Versorgungsschicht 22 zur elektrischen Stromversorgung der Leiter- platte 19 zu verwenden, sind natürlich eine gewisse Anzahl elektrischer Ver¬ bindungen zwischen der Versorgungsschicht 22 und der Leiteφlatte 19 not¬ wendig. Um dies zu realisieren, werden im gleichen Arbeitsgang wie zur Her¬ stellung der Durchplattierungen oder Mikro-Durchgangslöcher 17 (hierfür siehe Figuren 6a bis 6g), grössere Löcher 8.21 in der intermediären Nicht- metallschicht 8' hergestellt. Deren Durchmesser betagt 200 bis 400μm. Ver¬ wendet man zum Verkleben der Halbzeug-Folie 19 mit der Trägeφlatte 20 eine an den Positionen der Löcher 8.21 vorgebohrte Klebefolie aus Acryl- oder Epoxyd-Harz, so entstehen an diesen vorgegebohrten Positionen die Löcher 8.21, welche bis auf die Versorgungsschicht 22 hinunterreichen. Bei- spielsweise durch Aufbringen von Lötzinn oder beispielsweise durch Aufplat¬ tieren einer metallischen Form in diese Löcher können die Leiteφlatte 19 und die Versorgungsschicht 22 über stromversorgende Durchplattierungen 24 miteinander kontaktiert werden. Der Lochdurchmesser dieser stromversorge'n- den Durchplattierungen 24 muss nicht minimalisiert werden, da meist nur eine beschränkte Anzahl solcher stromversorgenden Durchplattierungen 24 benö¬ tigt werden. Demgemäss kann durch das erfindungsgemässe Verfahren eine Trennung zwischen möglichst klein dimensionierten Strompfaden für die Übertragung hochfrequenter Signale einer dünnen beispielsweise zweilagigen -Leiteφlatte 19 mit dementsprechend möglichst klein dimensionierte Durchplattierungen zwischen den Leiterebenen der Leiteφlatte 19 und von den stromversorgen¬ den Zuleitungen mit technischen Stömen und beispielsweise niedervoltigen -Gleichspannungen über eine Versorgungsschicht 22 und schliesslich der me¬ chanischen Trägerschicht realisiert werden. Wie in Figur 7 dargestellt, setzt sich eine gemäss Beispiel gefertigte Leiteφlatte aus drei Komponenten zu- sammen: einer hochverdichteten -Leiteφlatte 19 für die Signalebene, einer weniger verdichteten elektrischen Stromversorgung 22 und einem mechani¬ schen Träger 20 als Festigkeits- und/oder Kühlebene.
Der Vorteil einer solchen Montage liegt darin, dass aus einer zweilagigen Folienleiteφlatte die aus einer dreischichtigen Folie (siehe Figur 6a) und einem Halbzeug (siehe Figur 6e) nach dem erfindungsgemässen Verfahren gemäss der Beschreibung zu Figur 6 hergestellt ist, durch nachträgliches An¬ bringen weiterer Metall- und Nichtmetallschichten mehrlagige Leiteφlatten erzeugt werden können. In der beispielhaften Ausführungsform gemäss Figur 7 hegt demgemäss eine dreilagige -Leiteφlatte vor, die auch noch über einen externen mechanischen Träger verfügt. Auch hier gilt, dass die hierfür not¬ wendigen Verfahrensschritte bekannte und bewährte Techniken der Leiter¬ plattenindustrie sind. Sie können also von einem Fachmann bei Kenntnis der vorliegenden Erfindung auf gängigen Apparaturen ausgeführt werden.
Figur 8 zeigt eine hochintegrierte, fertig bestückte Leiteφlatte, ein MCM, die aus einem Halbzeug nach dem erfindungsgemässen Verfahren hergestellt ist. Die Abbildung findet mit rund 1,5-facher Vergrösserung statt. Eine flexible oder starre dünne Leiteφlatte 19 (beispielsweise als zweilagige Leiteφlatte gemäss der Beschreibung zu Figur 6 fabriziert) ist mit mehreren Bauelemen¬ ten 26 bestückt. Diese Bauelemente können mehr oder weniger komplex sein, mit einer kleineren oder grösseren Anzahl notwendiger elektrischer Verbin¬ dungen für die Stromversorgung und mit mehr oder weniger vielen kontaktier- ten Strompfaden (beispielsweise über die Strompfade 18 gemäss Figur 6g). Diese Strompfade verlaufen vorteilhafterweise auf den beiden Ebenen der Leiteφlatte 19 und verbinden die Bauelemente 26 miteinander. Die Stromp¬ fade verschiedener Ebenen können über Durchplattierungen (beispielsweise über die Durchplattierungen 17, 17' gemäss Figur 6g) miteinander im elek- trischen Kontakt stehen. Die Verbindungen für die Stromversorgung der Bau¬ elemente 26 haben über stromversorgende Durchplattierungen (beispielsweise über die stromversorgenden Durchplattierungen 24 gemäss Figur 7) elektri¬ schen Kontakt mit Leiterbahnen einer Versorgungsschicht (beispielsweise die Versorgungsschicht 22 gemäss Figur 7). Diese Versorgungsschicht ist in Figur 8 nicht zu sehen, sie liegt in dieser Ansicht unter der Leiteφlatte 19 und wird durch sie verdeckt. Die Leiteφlatte 19 weist Kontaktstellen 25', 25" auf, über die die Leiteφlatte 19 beispielsweise mit anderen Leiterbahnen oder Bauele¬ menten elektrisch kontaktiert werden kann. Die Leiteφlatte 19 und die Ver¬ sorgungsschicht sind auf einem externen mechamschen Träger 20 (beispiels- weise auf einen mechanischen Träger 20 gemäss Figur 7) montiert. Derart kann diese Einheit bestehend aus Leiteφlatte 19, Versorgung 22 und Träger 20 in beliebige andere Geräte eingebaut werden.
Die Figuren 9a-d zeigen nun in einer Sequenz a bis d die beispielsweise Her¬ stellung eines Universalsubstrates als Halbzeug. In Figur 9a ist eine beidseitig mit Kupfer 7,9 beschichtete Folie 8 dargestellt, die ein regelmässiges Muster von Sacklöchern 12 in einer beidseitigen Ätzresistschicht 10,11 bis zur Kupfer¬ schicht 7,9 zeigt. Solch ein Lochbild, universell oder layoutorientiert, wird auf eine Ätzresistschicht belichtet, entwickelt und geätzt. Nach dem Aetzen des Kupfers der Kupferschichten 7,9, wie in Figur 9b gezeigt, entstehen Ausneh- mungen oder Fenster 13,16, es sind auch Sacklöcher, in welchen die Kunststoffolie 8 freigelegt ist. Die Ätzresistschichten 10,11 werden entfernt und in diese, in der Kupferschichten 7,9 freigelegten Stellen der Folie 8 wer¬ den, wie in Figur 9c gezeigt, die Durchführung bzw. Löcher durch die Folie mit einem weiteren Ätzprozess, bspw. einem Plasma-Aetzprozess hindurch geätzt, so, wie dies im Zusammenhang mit den Figuren 6a bis 6e bereits im Detail diskutiert wurde.
Nach dem Plasmaätzen werden die Löcher galvanisch mittels Kupfer durch¬ plattiert, oder auch mittels anderer Methoden elektrisch durchverbunden (Figur 9d). Die Durchplattierung ist mit der Ziffer 17 bezeichnet. Durch die Durchplattierung wird der Lochdurchmesser wieder kleiner, wobei bspw. zu Kühlzwecken oder für einen einfacheren Durchplattierungsprozess diese Lö- eher auch ausgefüllt sein können. Sehr kostengünstig arbeitet beispielsweise ein Siebdruckverfahren, mittels welchem elektrisch leitfähiges Material, leitfä¬ hige Paste in die Löcher eingebracht und anschliess'end gehärtet wird, oder mittels eines kopierähnlichen Verfahrens, bei dem leitfähiger Toner in die Lö¬ cher eingebracht und durch Wärme (Schmelzen des Toners) verfestigt wird. Man kann Durchplattierungen herstellen, in denen die Löcher erhalten blei¬ ben, bspw. durch Aufdampfen von Lot (Zinnlot), wobei die Kupferschicht zwischen den Löchern mit überzogen werden kann.
Nun hat man eine beidseitig metallbeschichtete, in zwei Dimensionen elek¬ trisch leitfähige Folie mit den durchplattierten Löchern (Figur 9d), wie sie später im gewünschten Leiterbild dann über Lötaugen mit Leiterbahnen kon¬ taktiert werden. Diese Leiterbahnen werden in einem zweiten Belichtungs¬ und Ätzprozess erzeugt, welcher dann im Herstellungsprozess für Leiteφlat- ten unter Verwendung des Umversalsubtstrats als Vor- oder Halbfabrikat hergestellt wird. Das fertige Halbfabrikat ist in diesem Beispiel auf eine Rolle aufgewickelt.
Figur 10 zeigt schliesslich, wie Halbzeuge, Universalleiteφlatten, Leiteφlatten u.s.f mit durchplattierten Kontakten auf Bandanlagen im Fliessverfahren her- gestellt werden können. Der Vorteil von kontinuierlich ablaufenden Verfah¬ ren besteht darin, dass Folien von Rolle zu Rolle verarbeitet werden können. Das Aetzen von Löchern in beidseitig beschichtete Kunststoffolien, so wie es z.B. in den Figuren 6a bis 6g und 9a bis 9d dargestellt und beschrieben ist, kann mit einer Bandanlage dieser Art erfolgen. Auch das Aufbringen des Leiterbildes kann in einem Fliessprozess durchgeführt werden. Ferner kann das Laminieren von fertigen -Leiteφlatten mit einseitig metallbeschichteten Folien mit einer Klebefolie ebenfalls ab Rolle erfolgen, sodass bis zu einem gewissen Grad Multilayer ab Rolle gefertigt werden können. Die hier vom Prinzip her beschriebene Bandanlage kann für den Voφrozess der Halbfabri¬ katherstellung und für den Hauptprozess der Leiteφlattenherstellung verwen¬ det werden. Auf diese Weise kann eine Anlage auch besser ausgelastet wer¬ den.
Von einer Vorratsrolle 70.1 wird die Kunststoffolie 70, die beidseitig mit einer Schicht aus Metall versehen ist, über verschiedene Verfahrenschritte und Transportrollen 71 letzlich einer Aufnahmerolle 70.2 zugeführt, die das fertige Produkt, nämlich die gelochte Folie, aufnimmt. In einem ersten Verfahrens¬ schritt wird mittels herkömmlicher Beschichtungsverfahren 73 wie Aufrollen, Aufsprühen, Tauchbeschichtung oder elektrophoretischer Abscheidung die Kunststoffolie 70 beidseitig mit einer Schicht aus Photoresist versehen. In einem Durchlaufofen 74 wird anschliessend die Schicht getrocknet. Dann erfolgt die notwendige Strukturierung des Lochmusters durch Belichtung in einem UV-Belichter 75 mit anschliessender Entwicklung in einer Entwick- lungsanlage 76. Daraufhin wird in einem Metallätzer- und Photolackstripper 77 zuerst die Schicht aus Metall an den Ausnehmungen, wo Durchgangslöcher oder Löcher entstehen sollen, weggeätzt und dann der übriggebliebene Photo¬ resist entfernt. Schliesslich werden in einem Plasmareaktor 78 die Durch- gangslöcher und/oder Löcher herausgeätzt.
Der darin eingeschlossene Durchplattierungsprozess kann mittels herkömm¬ licher Bandgalvanik oder aber auch durch Eindrücken elektrisch leitfähigem Materials in die Löcher bzw. Aufdampfen oder Aufsputtern metallischer Schichten bewerkstelligt werden.
Nachdem nun gezeigt wurde, wie man eine Vielfalt verschiedener Durchfüh- rungen in Kunststoffolien anlegt, welche anschliessend durchkontaktiert wer¬ den können, zeigt nun die folgende Sequenz von Figuren 11 bis 16, wie man mit dem diskutierten Vorgehen eine viertägige Filmleiteφlatte aufbaut.
Eine gemäss Figuren 6a bis 6g hergestellte Filmleiteφlatte 19 wird beidseitig mit einer einseitig metallbeschichteten Folie 81,82 versehen. Dies geschieht bspw. mittels einer Klebefolie 83. Figur 11 zeigt das entsprechende Ensemble vor dem Laminieren, nämlich die Filmleiteφlatte 19 und auf beiden Seiten, oben und unten je eine Folie 81 mit Metallschicht 82 und Kleber 83. Nach dem Auflaminieren auf die Leiteφlatte erhält man eine ca. 3-fach dicke Fo¬ lie, die auf beiden Seiten eine Metallbeschichtung 82 aufweist und im Kernbe¬ reich die früher gefertigte Folie 19 gemäss Figur 6g eingeschlossen enthält (gezeigt in Figur 12). Man hat nun wieder die gleiche Ausgangslage, wie sie in Figur 6a dargestellt ist, ein Vor- oder Zwischenfabrikat, auf das ein bestimm- tes Leiterbild aufgebracht und in das bestimmte Durchätzungen eingebracht werden sollen. Wie in früheren Herstellungsschritten werden auf die beiden metallbeschichteten Seiten mittels eines Photoprozesses die Muster für die Durchplattierungen aufgebracht, was Figur 13 zeigt. Und nun kommt die Her¬ stellung von Sacklöchern, die analog zu den Durchätzungen beschrieben im Zusammenhang mit den Figuren 6a bis 6e hergestellt werden: nach dem Plas- maätzen hat man das Muster von Sacklöchern, die auf die Leiterbahnen- schicht der im Inneren des Verbundes eingeschlossenen Filmleiteφlatte 19 führen. Figur 14 zeigt solche Anschlusslöcher 84 und Figur 15 zeigt diese nach dem Durchplattieren mit einer Metallschicht. So reichen in dem gezeigten Beispiel auf der einen Seite zwei und auf der anderen Seite drei Sacklöcher in die Zwischenebene mit der Leiteφlatte 19. Mittels eines weiteren Photopro¬ zesses wird schliesslich das Leiterbild erzeugt und man hat nun einen 4- lagigen Film-Multilayer gemäss Figur 16. So kann durch Wiederholung der Verfahrensschritte gemäss Fig. 11 bis 16 eine 5- oder 6-lagige Leiteφlatte und so weiter, auf einer der beiden oder auf beiden Seiten des Produktes aufge- baut werden. Dieser Prozess kann solange weitergeführt werden, wie man Schichten in einer mehrlagigen -Leiteφlatte vorgesehen hat. Er weist alle die, in der Beschreibung zu den Figuren 6a bis 6g erwähnten Vorteile auf, die aus dem gleichzeitigen Ätzen mehrerer Seiten der Leiteφlatte entstehen.
Einen grossen Vorteil dieses Verfahren erkennt man schon in den Verfah¬ rensschritten gemäss den Figuren 11 bis 16; es hat keine "langen" Durchfüh¬ rungen oder Durchplattierungen, diese reichen jeweils "eine Schicht tief und können deshalb mit der grössten Präzision, die möglich ist, realisiert werden, weil anschliessend wiederum nur die Präzision über eine Schicht hinweg ein¬ gehalten werden muss. Es entsteht so keine Toleranzfehlerkette, wie sie bei der Stapelung von Multilayern nach üblicher Bauweise auftritt (und Ausschuss produziert). Ferner führt die Vermeidung von langen Durchplattierungen zu einem besseren thermischen Verhalten. Die gemäss Erfindung aufgebauten Multilayer verhalten sich gegen Temperaturschwankungen robuster. Falls durch eine grössere Anzahl von Verfahrensschritten entstehende Pro¬ dukte, die durch Aufbringen von immer mehr Schichten ständig dicker wer¬ den, irgend wann während ihrem Entstehen vereinzelt und als Stückgut wei¬ terverarbeitet werden müssen, da sie wegen zu hoher Steifigkeit nicht mehr über Rollen geführt oder aufgerollt werden können. Das heisst aber auch, dass unter Umständen ein Teil der Herstellungsschritte am quasi endlosen Material und ein Teil der Herstellungsschritte, die die genau gleichen Schritte sein können, am Stückgut durchgeführt werden müssen. Es bedeutet also, dass die Verarbeitungsart (Rolle-zu-Rolle oder Stückgut) nur vom Produkt abhän- gig ist und nicht vom Verarbeitungsschritt, dass also unter Umständen ein Verarbeitungsschritt, der sich hervorragend für eine Rolle-zu-Rolle-Verarbei- tung eignen würde, mit Stückgut betrieben werden muss, nur weil das zu verarbeitende Produkt nicht aufgerollt werden kann (bspw. kritische Biegera¬ dien).
Um diesen Effekt zu mildern kann eine weitere Massnahme die Rolle-zu- Rolle Fertigung unterstützen. Dabei werden Ausgangsmaterialien und/oder Zwischenprodukte derart konditioniert, dass sie mindestens in einem Teil der Verarbeitungsschritte als quasi endloses, gelenkiges Band oder Faltwurm ver¬ arbeitet werden können und dass Zwischen- und/oder Endprodukte als Falt¬ stapel gestapelt werden können, wie dies vom Endlospapier bekannt ist.
Die Vorteile des Faltstapels gegenüber der Rolle sind vor allem die, dass im Faltstapel das Produkt nicht unter Spannung steht und nicht gebogen ist. Die effektive Verarbeitung des Faltstapels unterscheidet sich dabei wenig von der effektiven Verarbeitung von und auf Rolle, es sei denn, das Produkt durch¬ laufe einen Verarbeitungsschritt in mehr oder weniger eng gefalteter Forma- tion. Die Bildung eines "Faltwurmes" aus quasi endlosem Folienmaterial besteht darin, dass in diesem Material, das aus einer Kunststoffolie oder mehreren, aufeinanderliegenden Kunststoffolien mit darauf- und/oder dazwischenliegen¬ den Metallschichten bzw. Leiterbahnenlagen besteht, quer zu seiner quasi endlosen Ausdehnung durch entsprechende Schwächung entlang vorteilhaf¬ terweise äquidistanten -Linien Sollknickstellen erzeugt werden. Die Bildung eines Faltwurmes aus Folienmaterial in Stückgutform besteht darin, dass die einzelnen Stücke mit einer knickbaren Verbindung (flexible Verbindung) miteinander zu einer quasi endlosen Reihe verbunden werden. Das stückgut- förmige Folienmaterial kann dabei Grundmaterial oder nach anderen Ver¬ fahren hergestelltes Zwischenprodukt sein.
Die Sollknickstellen im quasi endlosen Material werden durch Materialschwä- chungen, beispielsweise Perforierungen oder Dickenverminderungen zusam¬ men mit funktionsrelevanten Öffnungen, wie beispielsweise Öffnungen für Durchplattierungen oder Sacklöcher, in denselben' Verarbeitungsschritten, vorteilhafterweise durch Plasmaätzen erstellt. In demselben Ätzschritt können auch für einen Transport mittels Stachelradanordnung notwendige Lochreihen entlang den Längskanten des Materials erstellt werden. Dies bedeutet, dass die Herstellung der Sollknickstellen und der Transportlochreihen keine zu¬ sätzlichen Verfahrensschritte erfordert. Dadurch ergibt sich der weitere Vor¬ teil, dass die Toleranz zwischen Sollknickstellen bzw. Transportlochreihen und funktionsrelevanten Öffnungen auf ein absolutes Minimum beschränkt bleibt, derart, dass die Sollknickstellen und/oder die Transportlochreihen auch als Ausrichthilfen für weitere Verarbeitungsschritte dienen können.
Die flexiblen Verbindungen zur Verbindung von stückgutförmigem Folienma- terial werden beispielsweise durch Anbringen von Kleberfolien in einem sepa¬ raten Arbeitsschritt erstellt. Nach der Herstellung der flexiblen Verbindungen können in der oben beschriebenen Art Transportlochreihen geätzt werden, die auch hier vorteilhafterweise zusammen mit funktionsrelevanten Öffnungen geätzt werden und damit als Ausrichthilfen verwendet werden können.
Figur 17 zeigt eine Form der Weiterverarbeitung eines bereits als Faltstapel vorhegenden Produktes. Auf die Leiteφlatten mit zwei -Leiterbahnenlagen (Faltstapel 90) werden in einem Verfahrensschritt E beispielsweise beidseitig eine einseitig metallbeschichtete Fohe auflaminiert. Die einseitig beschichte- ten Fohen werden ab Rollen 91.1 und 91.2 eingespeist, ebenso je eine Kleber¬ schicht zur Verbindung der verschiedenen Folien, die ab Rollen 92.1 und 92.2 eingespeist werden. Es folgen dieselben Verfahrensschritte A, B, C und H, wie bereits im Zusammenhang mit den Figuren 11 bis 16 beschrieben, in denen die auflaminierten Folienlagen bearbeitet werden. Dabei können in den Verfahrensschritten A und B, nicht nur funktionsrelevante Öffnungen, z.B Sacklöcher zur Verbindung der äusseren Leiterbahnenlagen mit den inneren, in die Kunststoffolien geätzt werden, sondern wiederum auch Öffnungen oder teilweise Abtragungen zur Schwächung des Materials an den Sollknickstellen, deren Lage durch die bereits bestehenden Sollknickstellen im Produkt 90 vorgegeben sind. Es können auch wieder Transportlochreihen erzeugt werden.
Nach diesem Verfahren entsteht eine quasi endlose Serie von durch Sollknick¬ stellen verbundenen, Folienleiteφlatten mit vier Leiterbahnenlagen, die als Faltstapel 93 abgelegt wird. Dieser Stapel kann beispielsweise direkt in eine Apparatur zur automatisierten Bestückung eingespeist werden, in der die einzelnen Leiteφlatten dann auch vorteilhafterweise voneinander getrennt und die Bereiche mit den Transportlochreihen abgetrennt werden. Es kann sich aber auch um ein Halbzeug handeln, dessen äussere Leiterbahnenlagen noch individualisiert werden oder das mit weiteren Folienlagen zu Folienlei¬ teφlatten mit mehr als vier Leiterbahnenlagen verarbeitet wird. Eine Variante besteht darin, dass bei entsprechend kleiner Eigensteifigkeit der Folien ab Rollen 91.1 und 91.2 im Verfahren gemäss Figur 17 keine Öff¬ nungen oder Materialabtragungen für die Sollknickstelle angebracht werden, das heisst, dass die Sollknickstellen im Faltstapel 90 genügen, um auch das aus drei Folienlagen bestehende Produkt zu einem Faltstapel zu falten.
Figur 18 zeigt eine weitere Variante des oben angesprochenen Hilfs- Verfah¬ rens. Stückgutförmiges Folienmaterial 94, beispielsweise noch unbearbeitete Folien oder Zwischenprodukte mit einer oder mehreren Folienlagen, wird in einen Verarbeitungsschritt G gespeist. Auf das stückgutförmige Folienmaterial 94 soll beispielsweise beidseitig je eine weitere Folienlage ab Rollen 91.1 und 91.2 mit Hilfe von Kleberschichten ab Rollen 92.1 und 92.2 auflaminiert wer¬ den. Durch Zusammenlaminieren des stückgutförmigen Zwischenproduktes mit den quasi endlosen, flexiblen Folien ab Rollen 91.1 und 91.2 entsteht ein Faltwurm, der in den folgenden Verarbeitungsschtritten A, B, C, H in im Zusammenhang mit den vorgehenden Figuren bereits beschriebener Weise bearbeitet werden kann.
Ist das ab Rollen 91.1 und 91.2 gelieferte Folienmaterial etwas breiter als das stückgutförmige Folienmaterial 94 und besitzt es Transportlochreihen, kann der entstehende Faltstapel mit Hilfe von Stachelrädern transportiert werden. Entsprechende Transportlochreihen können auch in den Verarbeitungsschrit- ten A und B hergestellt werden.

Claims

P A T E N T A N S P R U C H E
Verfahren zur Herstellung von mehrschichtigen Leiteφlatten mit extrem dichter Verdrahtung, mit folgenden Verfahrensschritten, in einem ersten Schritt wird ein Halbzeug hergestellt mit mindestens einer stromleitenden Schicht belegten stromisolierenden Folie mit einer Dicke kleiner 500μm, in welche mittels photochemischer Ver- 5 fahren das verdichtete Verdrahtungsbild und die zugehörigen Durch- plattierungsöffnungen in der stromleitenden Schicht angelegt und an- schliessend ausgeätzt werden und in einem weiteren Verfahrensschritt wird mittels eines Ätzprozesses durch die in der Metallschicht ange¬ legten Öffnungen die Folie so durchgeätzt, dass simultan eine Viel- 10 zahl von Durchplattierungsöffnungen für die Verbindung mit anderen stromleitenden Schichten entstehen worauf in einem weiteren Ver¬ fahrensschritt das so hergestellte Halbzeug, welches das verdichtete Verdrahtungsbild trägt, mit einer unverdichteten Stromversorgungs¬ ebene, die als Serviceebene dient, verbunden wird und schliesslich 15 die so gefertigte -Leiteφlatte mit einem mechanischen Träger zusam¬ mengebracht wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Her- 20 Stellung des Halbzeuges in eine Mehrzahl von mit einer stromleiten¬ den Schicht belegten stromisolierenden Folie mit einer Dicke kleiner 500μm das Verdrahtungsbild und die Durchplattierungsöffnungen in der stromleitendeπ Schicht angelegt und anschliessend ausgeätzt werden und mittels eines Ätzprozesses durch die in der Metallschicht 25 angelegten Öffnungen die Folie so durchgeätzt wird, dass simultan eine Vielzahl von Durchplattierungsöffnungen für die Verbindung mit anderen stromleitenden Schichten entstehen und dass in einem weite¬ ren Verfahrensschritt die Mehrzahl der strukturierten Folien zu ei¬ nem mehrschichtigen Halbzeug verbunden werden um mit einer Stromversorgungsebene als Serviceebene verbunden zu werden und die fertige, mehrschichtige Leiteφlatte mit einem mechanischen Träger zusammengebracht wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass aus der 10 Mehrzahl der Leiterfolien mindestens eine Leiterfolie zusammen¬ hängend ab einer Lagermenge (Rolle, Stapel) abgezogen und nach Strukturierung zusammen mit weiteren Folienlagen wieder zu einer Lagermenge (Rolle, Stapel) zusammengebracht wird.
15
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass jede Leit¬ erfolie der Mehrzahl zu einer mehrschichtigen Leiteφlatte zusammen zu führenden Einzelfolien ab einer Lagermenge abgezogen wird und die fertige mehrschichtige Leiteφlatte zu einer Lagermenge zusam- 20 mengebracht wird.
Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Lagermengen eine Rollen sind von welchen die Einzelfolien abgerollt 25 werden und die Leiteφlatte aufgerollt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass minde¬ stens die Lagermenge für die Leiteφlatte ein Faltstapel ist. 30 7. Verfahren nach einem der Ansprüche 1 bis 6 zum Herstellen eines
Universalsubstrats aus einer beidseitig stromleitend beschichteten Kunststoffolie, dadurch gekennzeichnet, dass die wenigstens eine dünne Schicht aus einem ätzresistenten Material besteht oder aus einem Material das ätzresistenter ist als die Kunststoffolie, dass in 5 diese wenigstens eine dünne Schicht in einem gesonderten Verfah¬ rensschritt eine regelmässige oder layoutbezogene Anordnung von Ausnehmungen, die sich in regelmässigen Abständen wiederholen, geätzt werden an Stellen, an denen Löcher entstehen sollen und dass die Herstellung der Löcher in einem weiteren Verfahrensschritt mit 10 einem Aetzverfahren erfolgt, und in einem folgenden Verfahrens¬ schritt diese Löcher durchplattiert werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die wenig- 15 stens eine dünne Schicht an gegenüberliegenden Stellen der beidsei- tigen Beschichtung im wesentlichen gleichgeformte Ausnehmungen aufweist, so dass durch das Aetzen Durchgangslöcher entstehen.
20
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeich¬ net, dass die Löcher zur Durchkontaktierung mittels eines Siebdruck¬ verfahrens mit einem elektrisch leitenden Material gefüllt werden und das Material anschliessend verfestigt wird.
25
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeich¬ net, dass die Löcher zur Durchkontaktierung mittels eines Kopier¬ verfahrens "mit einem elektrisch leitenden Material gefüllt werden und das Material anschliessend verfestigt wird. 30 11. Verfahren nach einem der Ansprüche 2 bis 10, dadurch gekennzeich¬ net, dass die metallbeschichtete Folie von einem Endlosvorrat in den Prozess eingeführt wird und wieder zu einem Endlosvorrat gespei¬ chert wird.
5
12. -Leiteφlatte, hergestellt nach dem Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass es ein einem Endlosvorrat sich wie¬ derholende regelmässige Anordnungen von Durchplattierungen auf¬ weist. 10
13. Leiteφlatte hergestellt nach dem Verfahren gemäss Anspruch 12, dadurch gekennzeichnet, dass es ein einem Endlosvorrat sich wie¬ derholende regelmässige Anordnungen von Durchplattierungen in 15 einer zusammenhängenden Metallschicht aufweist, in welche in ei¬ nem Herstellungsprozess für Leiteφlatten Leiterbahnen ausgeätzt werden.
20
14. Verfahren zum Herstellen von Leiteφlatten mit einer beidseitig be¬ schichteten Kunststoffolie (1), gemäss den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die Beschichtung wenigstens eine dün¬ ne Schicht (2,2',3, 3') aus einem andern Material als die Kunststoffo¬ lie (1), vorzugsweise ein elektrisch leitfähiges Material, aufweist und 5 Weiterverwendung der Leiteφlatten für den Aufbau von Multilayern, und dass die wenigstens eine dünne Schicht (2,2',3,3') aus einem ätzresistenten Material besteht oder aus einem Material das ätzresi¬ stenter ist als die Kunststoffolie (1), dass in diese wenigstens eine dünne Schicht (2,2',3,3') in einem gesonderten Verfahrensschritt 10 Ausnehmungen (4,4') geätzt werden an Stellen, an denen Löcher entstehen sollen und dass die Herstellung der Löcher in einem weite¬ ren Verfahrensschritt mit einem Aetzverfahren erfolgt, und in einem folgenden Verfahrensschritt eine gewünschte Anzahl dieser Löcher durchplattiert werden und darauffolgend das Leiterbild erzeugt wird, wobei eine der Foliendicke entsprechende Leiteφlatte (A) entsteht, die in weiteren Verfahrensschritten zu mehrschichtigen Leiteφlatten (B) zusammengefügt werden können.
15. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeich- 10 net, dass auf eine fertiggestellte -Leiteφlatte (A) auf mindestens einer Seite eine weitere metallbeschichtete Folie aufgetragen wird, durch welche in einem ersten Schritt Löcher (4,6) geätzt und in einem weiteren Schritt diese Löcher durchplattiert werden, um die zusätzli¬ che Metallschicht mit der -Leiterschicht der Leiteφlatte (A) zu ver- 15 binden.
16. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeich¬ net, dass auf ein fertiges Leiterbild einer Leiteφlatte (A,B) eine 20 weitere metallbeschichtete Folie aufgebracht wird, die mit Durch¬ führungen (4,6) und einem eigenen Leiterbild eine weitere Schicht einer mehrschichtigen Leiteφlatte bildet.
25
17. Leiteφlatte, hergestellt nach dem Verfahren einer der Ansprüche 15 bis 16, dadurch gekennzeichnet, dass Durchkontaktierungen in der Leiteφlatte, auch bei einer Mehrzahl von Schichten stets zwei be¬ nachbarte Schichten verbindet.
30 18. Verfahren zur Herstellung von Folienleiteφlatten oder von Halbzeu¬ gen für Folienleiteφlatten gemäss einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass aus dem ein- oder mehrlagigen Folien¬ material mindestens für einen Teil der Bearbeitung ein quasi endlo¬ ser Faltwurm mit quer zu seiner quasi endlosen Ausdehnung gerich¬ teten Sollknickstellen (SK) gebildet wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass am ein- oder mehrlagigen Folienmaterial zusätzlich zu den Sollknickstellen 10 (SK) entlang den Längskanten Transportlochreihen (L) erstellt wer¬ den und dass der quasi endlose Faltwurm mittels mindestens einer Stachelradanordnung (40, 41, 42) transportiert wird.
15
20. Verfahren nach einem der Ansprüche 18 oder 19, dadurch gekenn¬ zeichnet, dass das ein- oder mehrlagige Folienmaterial (30) quasi endlos ist und dass zur Bildung des Faltstapels darin Sollknickstellen (SK) hergestellt werden, indem entlang von im wesentlichen äqui- distanten Linien quer zur quasi endlosen Ausdehnung des Folienma- 20 terials mindestens eine der elektrisch isolierenden Folienlagen (1.2) derart geschwächt wird, dass das Folienmaterial entlang der genann¬ ten Linien faltbar wird.
25
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass in den gleichen Verfahrensschritten (A, B), in denen mindestens eine Fo¬ lienlage (1.2) des Folienmaterials zur Herstellung der Sollknickstellen (SK) geschwächt wird, auch funktionsrelevante Öffnungen (10, 11, 12,
13) in derselben Folienlage (1.2) des Folienmaterials erstellt werden. 30 22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass in den gleichen Verfahrensschritten (A, B), in denen mindestens eine Folienlage (1.2) zur Herstellung der Sollknickstellen (SK) geschwächt wird, auch Transportlochreihen (L) erstellt werden.
5
23. ' Verfahren nach einem der Ansprüche 18 bis 22, dadurch gekenn¬ zeichnet, dass die mindestens eine elektrisch isolierende Folienlage (1.2) des Folienmaterials durch Plasmaätzen geschwächt wird.
10
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die min¬ destens eine Folienlage (1.2) des Folienmaterials an der Sollknick¬ stelle (SK) durch örtliches Durchätzen oder durch örtliches Anätzen geschwächt wird. 15
PCT/CH1993/000145 1992-06-15 1993-06-09 Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung WO1993026143A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU40585/93A AU4058593A (en) 1992-06-15 1993-06-09 Process for producing printed circuit boards using a semi-finished product with extremely dense wiring for signal conduction
EP93909754A EP0600051B1 (de) 1992-06-15 1993-06-09 Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung
US08/193,191 US5436062A (en) 1992-06-15 1993-06-09 Process for the production of printed circuit boards with extremely dense wiring using a metal-clad laminate
JP6500995A JPH07500951A (ja) 1992-06-15 1993-06-09 信号誘導のための超高密度配線を有するメタルクラッドラミネートを使用するプリント配線回路基板の製造方法
DE59309575T DE59309575D1 (de) 1992-06-15 1993-06-09 Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung
CA002114954A CA2114954A1 (en) 1992-06-15 1993-06-09 Process for producing printed circuit boards using a semi-finished product with extremely dense wiring for signal conduction

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CH187892 1992-06-15
GB9212648.1 1992-06-15
CH1878/92-7 1992-06-15
CH1872/92-6 1992-06-15
GB929212648A GB9212648D0 (en) 1992-06-15 1992-06-15 Etched foil pcb
CH187292 1992-06-15
CH1017/93-6 1993-04-01
CH101793 1993-04-01
CH1050/93-4 1993-04-06
CH105093 1993-04-06
CH1639/93-7 1993-06-02
CH163993 1993-06-02

Publications (1)

Publication Number Publication Date
WO1993026143A1 true WO1993026143A1 (de) 1993-12-23

Family

ID=27543613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1993/000145 WO1993026143A1 (de) 1992-06-15 1993-06-09 Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung

Country Status (8)

Country Link
US (1) US5436062A (de)
EP (1) EP0600051B1 (de)
JP (1) JPH07500951A (de)
AT (1) ATE180137T1 (de)
AU (1) AU4058593A (de)
CA (1) CA2114954A1 (de)
DE (1) DE59309575D1 (de)
WO (1) WO1993026143A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021517A1 (de) * 1994-02-01 1995-08-10 Dyconex Patente Ag Strukturieren von leiterplatten
EP0668712A1 (de) * 1994-02-21 1995-08-23 Dyconex Patente Ag Verfahren zum Herstellen von Strukturierungen
WO1995026123A1 (de) * 1994-03-23 1995-09-28 Dyconex Patente Ag Verfahren zur herstellung von folienleiterplatten oder halbzeugen für folienleiterplatten
WO1995026122A1 (de) * 1994-03-23 1995-09-28 Dyconex Patente Ag Folienleiterplatten und verfahren zu deren herstellung
WO1995031883A1 (de) * 1994-05-18 1995-11-23 Dyconex Patente Ag Verfahren zur herstellung von folienleiterplatten oder halbzeugen für folienleiterplatten sowie nach dem verfahren hergestellte folienleiterplatten und halbzeuge
WO1996000491A1 (en) * 1994-06-24 1996-01-04 Sheldahl, Inc. Metallized laminate material having ordered distribution of conductive through holes
WO1996012392A1 (de) * 1994-10-18 1996-04-25 Atotech Deutschland Gmbh Verfahren zur herstellung elektrischer schaltungsträger
WO1997000598A1 (de) * 1995-06-15 1997-01-03 Dyconex Patente Ag Verbindungssubstrat
WO1997018695A1 (de) * 1995-11-15 1997-05-22 Dyconex Patente Ag Verfahren zur herstellung von mehrschichtigen folienleiterplatten
WO1998006243A1 (de) * 1996-07-31 1998-02-12 Dyconex Patente Verfahren zur herstellung von verbindungsleitern
US6221440B1 (en) 1994-10-18 2001-04-24 Atotech Deutschland Gmbh Process for plating metal coating
US6293008B1 (en) 1994-03-23 2001-09-25 Dyconex Pantente Ag Method for producing foil circuit boards
DE102016120781A1 (de) 2016-10-31 2018-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbundfolie zur Beschichtungsstoffübertragung, deren Verwendung und ein Verfahren zur Herstellung der Verbundfolie sowie ein Verfahren zur Herstellung eines beschichteten Kunststoffbauteiles

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807469A (en) * 1995-09-27 1998-09-15 Intel Corporation Flexible continuous cathode contact circuit for electrolytic plating of C4, tab microbumps, and ultra large scale interconnects
US5930117A (en) * 1996-05-07 1999-07-27 Sheldahl, Inc. Heat sink structure comprising a microarray of thermal metal heat channels or vias in a polymeric or film layer
US5874770A (en) * 1996-10-10 1999-02-23 General Electric Company Flexible interconnect film including resistor and capacitor layers
US5879787A (en) * 1996-11-08 1999-03-09 W. L. Gore & Associates, Inc. Method and apparatus for improving wireability in chip modules
US5847327A (en) * 1996-11-08 1998-12-08 W.L. Gore & Associates, Inc. Dimensionally stable core for use in high density chip packages
US5925206A (en) * 1997-04-21 1999-07-20 International Business Machines Corporation Practical method to make blind vias in circuit boards and other substrates
US6423907B1 (en) * 1998-02-09 2002-07-23 Tessera, Inc. Components with releasable leads
US6175087B1 (en) 1998-12-02 2001-01-16 International Business Machines Corporation Composite laminate circuit structure and method of forming the same
US6268070B1 (en) * 1999-03-12 2001-07-31 Gould Electronics Inc. Laminate for multi-layer printed circuit
JP3592129B2 (ja) * 1999-04-15 2004-11-24 新光電気工業株式会社 多層配線基板の製造方法
DE19929179A1 (de) * 1999-06-25 2001-01-11 Siemens Ag Flexible Leiterplatte mit beidseitigem Zugriff
US6452117B2 (en) * 1999-08-26 2002-09-17 International Business Machines Corporation Method for filling high aspect ratio via holes in electronic substrates and the resulting holes
DE19961842B4 (de) * 1999-12-21 2008-01-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrschichtleiterplatte
US6426284B1 (en) 2000-03-20 2002-07-30 Illinois Tool Works Inc. Method of manufacturing wire bond pad
US6734369B1 (en) * 2000-08-31 2004-05-11 International Business Machines Corporation Surface laminar circuit board having pad disposed within a through hole
US6772515B2 (en) * 2000-09-27 2004-08-10 Hitachi, Ltd. Method of producing multilayer printed wiring board
WO2002047899A1 (en) * 2000-12-12 2002-06-20 Shri Diksha Corporation Lightweight circuit board with conductive constraining cores
JP2003023248A (ja) * 2001-07-05 2003-01-24 Nitto Denko Corp 多層フレキシブル配線回路基板およびその製造方法
TWI312166B (en) * 2001-09-28 2009-07-11 Toppan Printing Co Ltd Multi-layer circuit board, integrated circuit package, and manufacturing method for multi-layer circuit board
TW545092B (en) * 2001-10-25 2003-08-01 Matsushita Electric Ind Co Ltd Prepreg and circuit board and method for manufacturing the same
FR2834180B1 (fr) * 2001-12-20 2004-03-12 Org Europeene De Rech Procede de fabrication d'un module multicouches a circuits imprimes a haute densite
JP3941573B2 (ja) * 2002-04-24 2007-07-04 宇部興産株式会社 フレキシブル両面基板の製造方法
US7438969B2 (en) * 2002-07-10 2008-10-21 Ngk Spark Plug Co., Ltd. Filling material, multilayer wiring board, and process of producing multilayer wiring board
JP4173374B2 (ja) * 2003-01-08 2008-10-29 株式会社ルネサステクノロジ 半導体装置の製造方法
CN100477891C (zh) * 2003-01-16 2009-04-08 富士通株式会社 多层布线基板及其制造方法、纤维强化树脂基板制造方法
KR100567087B1 (ko) * 2003-10-20 2006-03-31 삼성전기주식회사 층간 전기 접속이 향상된 병렬적 다층 인쇄회로기판 제조방법
JP2005205071A (ja) * 2004-01-26 2005-08-04 Olympus Corp カプセル型医療装置
US20050257957A1 (en) * 2004-05-15 2005-11-24 Kaluk Vasoya Printed wiring board with conductive constraining core including resin filled channels
WO2006024009A2 (en) * 2004-08-24 2006-03-02 C-Core Technologies, Inc. Edge plated printed wiring boards
US7301105B2 (en) * 2004-08-27 2007-11-27 Stablcor, Inc. Printed wiring boards possessing regions with different coefficients of thermal expansion
US20060231198A1 (en) * 2005-03-15 2006-10-19 Vasoya Kalu K Manufacturing process: how to construct constraining core material into printed wiring board
USRE45637E1 (en) 2005-08-29 2015-07-28 Stablcor Technology, Inc. Processes for manufacturing printed wiring boards
TWI277373B (en) * 2005-09-16 2007-03-21 Foxconn Advanced Tech Inc Method of continuous producing flexible printed circuit board
CN103298243B (zh) 2006-07-14 2016-05-11 斯塔布科尔技术公司 具有构成电路一部分的核心层的增层印刷线路板衬底
JP2008140886A (ja) * 2006-11-30 2008-06-19 Shinko Electric Ind Co Ltd 配線基板及びその製造方法
CN101562952B (zh) * 2008-04-18 2012-04-11 富葵精密组件(深圳)有限公司 线路基板、线路基板的制作方法及电路板的制作方法
KR101153680B1 (ko) * 2009-09-18 2012-06-18 삼성전기주식회사 인쇄회로기판의 제조 방법
WO2011140119A2 (en) * 2010-05-03 2011-11-10 The Regents Of The University Of California Flexible and moldable materials with bi-conductive surfaces
TWI451817B (zh) 2011-05-26 2014-09-01 豐田自動織機股份有限公司 配線板及配線板的製造方法
JP2013000995A (ja) * 2011-06-17 2013-01-07 Panasonic Corp 金属張積層板、及びプリント配線板
US20130002685A1 (en) * 2011-06-30 2013-01-03 Qualcomm Mems Technologies, Inc. Bonded double substrate approach to solve laser drilling problems
CN103068149A (zh) * 2011-10-19 2013-04-24 上海嘉捷通信息科技有限公司 一种拼板优化的印制板
JP2013123907A (ja) * 2011-12-16 2013-06-24 Panasonic Corp 金属張積層板、及びプリント配線板
CN103188886B (zh) * 2011-12-31 2016-02-03 北大方正集团有限公司 一种印制电路板及其制作方法
KR102539522B1 (ko) * 2013-09-27 2023-06-05 택토텍 오와이 전기기계의 구조를 제작하기 위한 방법 및 그 방법을 수행하기 위한 배열
CN105746001B (zh) 2013-11-21 2018-08-31 Zf腓德烈斯哈芬股份公司 多功能的强电流电路板
DE102013223761A1 (de) * 2013-11-21 2015-05-21 Zf Friedrichshafen Ag Mehrfunktionale Hochstromleiterplatte
DE102013223888A1 (de) * 2013-11-22 2015-05-28 Zf Friedrichshafen Ag Mehrfunktionale Hochstromleiterplatte
US9332632B2 (en) 2014-08-20 2016-05-03 Stablcor Technology, Inc. Graphene-based thermal management cores and systems and methods for constructing printed wiring boards
US10283445B2 (en) * 2016-10-26 2019-05-07 Invensas Corporation Bonding of laminates with electrical interconnects
KR20200038814A (ko) * 2018-10-04 2020-04-14 주식회사 엘지화학 회로 기판 제조용 연속 시트의 제조 방법 및 이로부터 제조된 회로 기판 제조용 연속 시트

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1574301A (de) * 1967-07-07 1969-07-11
FR2117172A5 (en) * 1970-12-02 1972-07-21 Siemens Ag Printed laminated circuits - by bonding separate circuit plates of metal coated, glass fibre reinforced epoxy resin
US3820994A (en) * 1972-06-07 1974-06-28 Westinghouse Electric Corp Penetration of polyimide films
US4118523A (en) * 1975-10-22 1978-10-03 International Computers Limited Production of semiconductor devices
EP0154909A2 (de) * 1984-03-09 1985-09-18 Hoechst Aktiengesellschaft Verfahren und Schichtmaterial zur Herstellung durchkontaktierter elektrischer Leiterplatten
GB2163007A (en) * 1984-08-08 1986-02-12 Krone Gmbh Sheet with printed conductors on both sides and method of forming interconnections between the conductors
EP0275686A1 (de) * 1986-12-19 1988-07-27 Prestwick Circuits Limited Gedruckte Mehrschicht-Schaltungsplatte und Verfahren zur Herstellung von solchen Platten
EP0283546A1 (de) * 1987-03-27 1988-09-28 Ibm Deutschland Gmbh Verfahren zum Herstellen beliebig geformter mikromechanischer Bauteile aus planparallelen Platten aus Polymermaterial oder beliebig geformter Duchführungsöffnungen in denselben
US4830691A (en) * 1986-03-31 1989-05-16 Hitachi Chemical Company, Ltd. Process for producing high-density wiring board
EP0451541A1 (de) * 1990-04-05 1991-10-16 Dyconex AG Herstellung von mehrschichtigen Leiterplatten mit erhöhter Leiterbahnendichte

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2034527B (en) * 1978-10-11 1983-03-02 Matsushita Electric Ind Co Ltd Method of manufacturing flexible printed circuit sheets
JPS60227496A (ja) * 1984-04-26 1985-11-12 日本電気株式会社 多層印刷配線板の製造方法
US5232548A (en) * 1991-10-29 1993-08-03 International Business Machines Corporation Discrete fabrication of multi-layer thin film, wiring structures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1574301A (de) * 1967-07-07 1969-07-11
FR2117172A5 (en) * 1970-12-02 1972-07-21 Siemens Ag Printed laminated circuits - by bonding separate circuit plates of metal coated, glass fibre reinforced epoxy resin
US3820994A (en) * 1972-06-07 1974-06-28 Westinghouse Electric Corp Penetration of polyimide films
US4118523A (en) * 1975-10-22 1978-10-03 International Computers Limited Production of semiconductor devices
EP0154909A2 (de) * 1984-03-09 1985-09-18 Hoechst Aktiengesellschaft Verfahren und Schichtmaterial zur Herstellung durchkontaktierter elektrischer Leiterplatten
GB2163007A (en) * 1984-08-08 1986-02-12 Krone Gmbh Sheet with printed conductors on both sides and method of forming interconnections between the conductors
US4830691A (en) * 1986-03-31 1989-05-16 Hitachi Chemical Company, Ltd. Process for producing high-density wiring board
EP0275686A1 (de) * 1986-12-19 1988-07-27 Prestwick Circuits Limited Gedruckte Mehrschicht-Schaltungsplatte und Verfahren zur Herstellung von solchen Platten
EP0283546A1 (de) * 1987-03-27 1988-09-28 Ibm Deutschland Gmbh Verfahren zum Herstellen beliebig geformter mikromechanischer Bauteile aus planparallelen Platten aus Polymermaterial oder beliebig geformter Duchführungsöffnungen in denselben
EP0451541A1 (de) * 1990-04-05 1991-10-16 Dyconex AG Herstellung von mehrschichtigen Leiterplatten mit erhöhter Leiterbahnendichte

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651899A (en) * 1994-02-01 1997-07-29 Dyconex Patente Ag Structuring of printed circuit boards
WO1995021517A1 (de) * 1994-02-01 1995-08-10 Dyconex Patente Ag Strukturieren von leiterplatten
EP0668712A1 (de) * 1994-02-21 1995-08-23 Dyconex Patente Ag Verfahren zum Herstellen von Strukturierungen
US5639389A (en) * 1994-02-21 1997-06-17 Dyconex Patente Ag Process for the production of structures
WO1995026123A1 (de) * 1994-03-23 1995-09-28 Dyconex Patente Ag Verfahren zur herstellung von folienleiterplatten oder halbzeugen für folienleiterplatten
WO1995026122A1 (de) * 1994-03-23 1995-09-28 Dyconex Patente Ag Folienleiterplatten und verfahren zu deren herstellung
US6293008B1 (en) 1994-03-23 2001-09-25 Dyconex Pantente Ag Method for producing foil circuit boards
US6162996A (en) * 1994-03-23 2000-12-19 Dyconex Patente Ag Insulating foil circuit board with rigid and flexible sections
WO1995031883A1 (de) * 1994-05-18 1995-11-23 Dyconex Patente Ag Verfahren zur herstellung von folienleiterplatten oder halbzeugen für folienleiterplatten sowie nach dem verfahren hergestellte folienleiterplatten und halbzeuge
US6218628B1 (en) 1994-05-18 2001-04-17 Dyconex Patente Ag Foil circuit boards and semifinished products and method for the manufacture thereof
WO1996000491A1 (en) * 1994-06-24 1996-01-04 Sheldahl, Inc. Metallized laminate material having ordered distribution of conductive through holes
US5840402A (en) * 1994-06-24 1998-11-24 Sheldahl, Inc. Metallized laminate material having ordered distribution of conductive through holes
US6221440B1 (en) 1994-10-18 2001-04-24 Atotech Deutschland Gmbh Process for plating metal coating
WO1996012392A1 (de) * 1994-10-18 1996-04-25 Atotech Deutschland Gmbh Verfahren zur herstellung elektrischer schaltungsträger
WO1997000598A1 (de) * 1995-06-15 1997-01-03 Dyconex Patente Ag Verbindungssubstrat
US6321443B1 (en) 1995-06-15 2001-11-27 Dyconex Patente Ag Connection substrate
WO1997018695A1 (de) * 1995-11-15 1997-05-22 Dyconex Patente Ag Verfahren zur herstellung von mehrschichtigen folienleiterplatten
WO1998006243A1 (de) * 1996-07-31 1998-02-12 Dyconex Patente Verfahren zur herstellung von verbindungsleitern
US6486394B1 (en) 1996-07-31 2002-11-26 Dyconex Patente Ag Process for producing connecting conductors
DE102016120781A1 (de) 2016-10-31 2018-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbundfolie zur Beschichtungsstoffübertragung, deren Verwendung und ein Verfahren zur Herstellung der Verbundfolie sowie ein Verfahren zur Herstellung eines beschichteten Kunststoffbauteiles
WO2018078189A1 (de) 2016-10-31 2018-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbundfolie zur beschichtungsstoffübertragung, deren verwendung und ein verfahren zur herstellung der verbundfolie sowie ein verfahren zur herstellung eines beschichteten kunststoffbauteiles

Also Published As

Publication number Publication date
ATE180137T1 (de) 1999-05-15
EP0600051A1 (de) 1994-06-08
AU4058593A (en) 1994-01-04
EP0600051B1 (de) 1999-05-12
US5436062A (en) 1995-07-25
JPH07500951A (ja) 1995-01-26
CA2114954A1 (en) 1993-12-23
DE59309575D1 (de) 1999-06-17

Similar Documents

Publication Publication Date Title
EP0600051B1 (de) Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung
DE102006050890B4 (de) Verfahren zur Herstellung einer Leiterplatte mit feinen Leiterstrukturen und lötaugenfreien Durchkontaktierungen
EP0035093B1 (de) Anordnung zum Packen mehrerer schnellschaltender Halbleiterchips
DE69117381T2 (de) Mehrschichtleiterplatte und Verfahren zu ihrer Herstellung
DE69411438T2 (de) Schaltungsanordnungen und Verfahren zu deren Herstellung
DE102006051762B4 (de) Hochdichte Leiterplatte und Verfahren zu ihrer Herstellung
EP0175045B1 (de) Verfahren zur Herstellung von durchkontaktierten flexiblen Leiterplatten für hohe Biegebeanspruchung
DE69728234T2 (de) Verfahren zur herstellung von erhöhten metallischen kontakten auf elektrischen schaltungen
DE69513398T2 (de) Metallisiertes laminatmaterial mit geordneter verteilung von leitfähigen durchgangslöchern
DE69730629T2 (de) Leiterplatte und Elektronikkomponente
DE69331511T2 (de) Zweiseitig gedruckte Leiterplatte, mehrschichtige Leiterplatte und Verfahren zur Herstellung
DE2810054C2 (de) Elektronische Schaltungsanordnung und Verfahren zu deren Herstellung
DE69218344T2 (de) Herstellungsverfahren für eine gedruckte Schaltung
DE69215192T2 (de) Leiterplatte mit abgeschirmten bereichen sowie herstellungsverfahren einer solchen leiterplatte
DE4100233A1 (de) Verfahren zum herstellen gedruckter schaltungen
DE2539925A1 (de) Verfahren zur herstellung einer mehrschichtigen gedruckten schaltungsplatte
DE112012003002T5 (de) Herstellungsverfahren einer starrflexiblen gedruckten Leiterplatte und starrflexible gedruckte Leiterplatte
DE10329657A1 (de) Gedruckte Schaltkarte mit darin eingebetteten Kondensatoren und Verfahren zur Herstellung derselben
DE102006047992A1 (de) Kernloses Substrat und dessen Herstellverfahren
DE102005056014A1 (de) Elektroniksteuermodul mit einer inneren elektrischen Erdung und Verfahren zu seiner Herstellung
DE102007060510A1 (de) Leiterplatten-Herstellungsverfahren, Leiterplatte und elektronische Anordnung
EP0451541B1 (de) Herstellung von mehrschichtigen Leiterplatten mit erhöhter Leiterbahnendichte
DE10348010A1 (de) Mehrschichtleiterplatte, Verfahren zu deren Herstellung und Mehrschichtleiterplatte verwendendes Mobilgerät
DE69800219T2 (de) Verfahren zur Herstellung einer Mehrlagenleiterplatte
DE19910482A1 (de) Verfahren zur Herstellung von Leiterplatten-Schaltungsebenen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA HU JP KR RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2114954

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993909754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08193191

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993909754

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993909754

Country of ref document: EP