WO1997018695A1 - Verfahren zur herstellung von mehrschichtigen folienleiterplatten - Google Patents
Verfahren zur herstellung von mehrschichtigen folienleiterplatten Download PDFInfo
- Publication number
- WO1997018695A1 WO1997018695A1 PCT/CH1996/000394 CH9600394W WO9718695A1 WO 1997018695 A1 WO1997018695 A1 WO 1997018695A1 CH 9600394 W CH9600394 W CH 9600394W WO 9718695 A1 WO9718695 A1 WO 9718695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layers
- semi
- finished
- insulator
- layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4652—Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
- H05K3/4655—Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
- H05K2201/0195—Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0358—Resin coated copper [RCC]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/15—Position of the PCB during processing
- H05K2203/1536—Temporarily stacked PCBs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0097—Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
- H05K3/025—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4652—Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4673—Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
- H05K3/4676—Single layer compositions
Definitions
- the invention relates to the production of multilayer printed circuit boards based on foils and relates to a method for the simple and cost-effective pressing of plasma-etchable semi-finished foils into extremely thin and extremely finely structured multilayer foil printed circuit boards.
- Printed circuit boards for the implementation of electronic circuits or substrates for the production of multichip modules carry and connect electronic components such as surface mounted devices (SMD) or leadless ceramic chip carriers (LCCC), as well as increasingly inaccurate components in the case of MCMs (bare Si chips).
- SMD surface mounted devices
- LCCC leadless ceramic chip carriers
- Such circuit boards have dielectric substrates, they have electrical current paths and electrical through-plating. They are connected to form multilayer printed circuit boards. The aim is compactness and a high connection density.
- connection density on circuit carriers is realized in the so-called DYCOstrate® process and is used, for example, in the
- multilayer conductor structures are necessary, you can laminate several foils together to form multilayer circuits.
- a previously produced two-layer film circuit the dielectric of which advantageously consists of polyimide films, is laminated on one or two sides with another polyimide film laminated on one side with a copper film.
- This connection to a higher layer film circuit is carried out by means of an adhesive film at pressure and temperature.
- blind holes for electrical through-plating are plasma-etched into this multilayer film circuit on one or both sides.
- the polyimide films used meet the highest dielectric properties and are very flexible in their applications. However, it has proven to be a disadvantage that the polyimide material and the adhesive films made of acrylate or epoxy-acrylate compounds are not very cost-effective. The adhesive films are also relatively soft and, due to their small thickness of 25 ⁇ m, are difficult to handle manually and therefore expensive.
- a copper foil coated on one side with a hardenable layer of resin can also be used.
- resins consist, for example, of epoxy, polyimide or cyanate ester materials, which melt and harden under pressure and at temperatures from 150 ° C. to 220 ° C. These resins are cheaper to buy than the adhesive films above, and the process is also simplified, since the function of the polyimide film plus that of the adhesive film is fulfilled by the one layer of resin that has been coated on.
- curable resin which is insufficiently low-viscosity under pressure and temperature cannot fill all the cavities of film material. Viscous resin can also be pressed outwards. There is therefore a risk that copper layers are poorly insulated and separated from one another. Such copper layers can get too close to one another due to the lack of (intermediate) resin and even undesired electrical connections can occur.
- US-5362534 describes the use of a hardened, non-flowable layer of resin combined with a hardenable, flowable layer of resin.
- the already hardened layer of resin cannot flow when pressed into multi-layer circuits and serves as a spacer, the hardenable, flowable layer of resin flows into cavities of film material and serves as a connecting means.
- this method proves to be disadvantageous because the one layer of resin has to be cured beforehand in a separate process step, which is time and energy consuming, and because this one layer of cured non-flowing resin when laminated together under pressure and temperature be so stressed that it shrinks and becomes brittle and the circuit connected to it becomes live, warps and, for example, cracks and other damage form.
- the applicant's document GB-9401869.4 suggests adding powdery or fibrous Space ⁇ articles into a layer of uncured resin before painting or coating. These particles enable a minimum distance to be maintained between the copper layers and thus prevent unwanted short circuits. In practice, however, the use of Space ⁇ articles proves to be disadvantageous. The particles must remain dimensionally stable during the pressing process, ie they must not be able to be pressed together. They also have to be structurable in subsequent plasma etching processes, ie they must not be dissolved out faster or more slowly than the resin matrix in order to avoid the formation of undesired cavities or islands.
- the particles must also be compatible with all other manufacturing processes, in particular they must not swell or dissolve in the various wet-chemical process steps in the manufacture of printed circuit boards, ie they must show a low water absorption and may show the general dielectric properties, such as insulation strength, dielectric constant , etc. do not adversely affect the resin matrix.
- Such constraints naturally restrict the choice of possible materials drastically. For this reason, one has to resort to a few and expensive materials, for example the use of aramid fibers as space articles.
- these expensive aramid fibers also have the disadvantage of an irregular particle distribution in the resin matrix, the formation of undesirable air pockets or the local flushing out due to thin-flowing resin during the pressing process.
- the object of the present invention is to demonstrate a method with which a simple and inexpensive pressing of plasma-etchable semi-finished film products into extremely thin and extremely finely structured multilayer film conductive plates is possible.
- It should be known and proven Techniques, materials and the like are used, for example for the manufacture of the conductor structures, known wet chemical processes should be applicable.
- These circuit boards are said to be compatible with known systems, such as the DYCOstrate® process, with regard to further processing, in particular with regard to assembly and use.
- the production of conductive plates using such semi-finished foils should be able to be carried out automatically, for example from roll to roll, and feed batch operation should also be possible by introducing, for example, carrier plates.
- the basic conditions of the idea according to the invention consist in further developing plasma-etchable semi-finished film products in such a way that new process steps do not have to be inserted, previous process steps need not be changed and, if possible, even become superfluous.
- the invention achieves the object in an original manner by specifying a method in which semi-finished film with several insulator layers lying on top of one another is used, which insulator layers perform different functions without the semi-finished film having to be specially pretreated.
- semi-finished film products with several differently viscous but stress-free curable layers of resin are used, the different viscosities of which are optimally matched to one another such that at least one of these layers of resin is highly viscous (no-flow resin) when compressed under pressure and temperature and serves as a spacer and at least one other of these layers of resin is less viscous (standard or high-flow resin) and serves as a connection means.
- At least one of the semi-finished films to be connected to one another is provided with such multiple insulator layers as a connecting semi-finished film.
- Semi-finished films can be distorted without distortion, bubbles and short-circuit-proof to form foil conductive plates, which are suitable for high-frequency applications due to the controlled adjustable layer thicknesses, by separating the functions of the insulator layers into spacers and binding agents.
- the multiple insulator layers come to lie as double insulator layers in foil circuit boards, they connect mechanically and they electrically separate different wiring levels. This connection is suitable for the use of carrier or transfer foils, for simultaneous pressing of more than two semi-finished foils and for roll-to-roll processes.
- Fig. 1 shows parts of embodiments of semi-finished films, which are pressed in a first method according to the prior art with an adhesive film to a film guide plate.
- FIG. 2 shows parts of a foil guide plate of an embodiment according to FIG. 1, which has no short-circuit-prone areas with an adhesive film.
- FIG. 3 shows parts of embodiments of semi-finished foils which are pressed in a further process according to the prior art with a layer of flowable resin to form a foil guide plate. shows parts of a Folieleite ⁇ latte in the embodiment according to Figure 3, which has a layer of flowable resin ve ⁇ resst short-term areas.
- FIG. 1 shows parts of embodiments of semi-finished films, which are pressed in a further method according to the prior art with Space ⁇ articles to a film guide plate.
- FIG. 1 shows parts of embodiments of semi-finished films, which are pressed in a further process according to the prior art with a layer of cured, non-flowable resin and a layer of non-cured, flowable resin to a film guide plate.
- FIG. 7 shows parts of a foil guide plate in the embodiment according to FIG. 7, which has several times hardened, non-flowable resin, and has areas with tensions and cracks.
- FIG. 1 shows parts of two preferred embodiments of semi-finished foils which, in a first variant of the method according to the invention, are pressed together with two layers of curable resin to form a foil circuit board.
- FIG. 9 shows parts of a foil guide plate in the embodiment according to FIG. 9, which according to the invention has two layers once hardened resin ve ⁇ resst no short-circuit areas without tension and cracks.
- FIG. 1 shows parts of two preferred embodiments of semi-finished foils which, in a further variant of the method according to the invention, are pressed together with a carrier foil to form a foil guide plate.
- FIG. 11 shows parts of a Folieleite ⁇ latte in the embodiment according to Figure 11, which according to the invention with a carrier film ve ⁇ resst has no short-circuit areas without tension and cracks.
- FIG. 12 shows parts of a foil guide plate in the embodiment according to FIG. 12 after removal of the carrier foil.
- FIG. 1 shows parts of three preferred embodiments of semi-finished films, which are pressed in a further variant of the method according to the invention with a carrier film to form two film guide plates.
- FIG 14 shows parts of two Folienleite ⁇ latte ⁇ in the embodiments according to FIG 14, which according to the invention with a carrier film have no short-circuit areas without stresses and cracks.
- FIG. 15 shows parts of two foil guide plates in the embodiments according to FIG. 15 after removal of the carrier foil.
- Figures 1 and 2 show parts of two embodiments of semi-finished foils F.1, F.2, which are pressed in a first method according to the prior art with a separate intermediate adhesive foil 2 as a connecting means to a foil guide plate L.1.
- the adhesive film 2 is made of dielectric material and consists, for example, of 25 ⁇ m thick acrylate or epoxy-acrylate compounds.
- the two-layer semi-finished films F1, F-2 have non-flowable layers of dielectric material or insulating layers 7 and 6 and they have layers of electrically conductive material or conductive layers 1 and 5.
- both semi-finished films F.1JF2 consist of a 50 ⁇ m thick polyimide film as an insulator layer 6.7, both of which are laminated on one side with a 20 ⁇ m thick copper film as a conductive layer 1.5.
- the insulator layer 6 serves as a carrier of current paths and as a mechanical carrier of a foil conductor plate
- the insulator layer 7 serves as a spacer for the semi-finished products F.1, F.2 to be connected.
- other common metals and alloys can also be used as guiding layers 1, 5, in particular the use of metal layers made of aluminum, tinned copper, nickel-gold-coated copper, etc.
- the conductive layer 5 of the semi-finished product F.2 is structured in known and proven manufacturing processes, advantageously in wet chemical processes, for example in the DYCOstrate® process, in current paths 4 and in isolator areas 3. In the insulator regions 3, the conductive material is removed except for the non-flowable insulator layer 6 underneath.
- the dimensions of such structuring are of the order of magnitude of the thickness of the layers of conductive and insulator material used and, for example, 10 to 100 ⁇ m.
- the semi-finished film F.1, F.2 are connected in known and proven connection processes, advantageously in press processes under pressure and temperature. This pressing connects the semi-finished film F.IJFJ ⁇ as indicated by the arrows in FIG. 1.
- the curable insulator layer of the adhesive film 2 is liquid under pressure and temperature and flows into the insulator regions 3.
- the two semi-finished products F.1, F.2 are connected to form a foil guide plate L.1.
- the insulator layer 2 flows and covers the structured current paths 5, the insulator regions 3 and (not shown in this figure) equipped components and connecting wires in an insulating and protective manner.
- This Veipressen allows a short-circuit-proof manufacture of foil guide plates. However, the process is costly.
- the piasma-etchable adhesive film 2 available on the market for bonding in particular non-flowable polyimide films 7 are expensive, they are also relatively soft and, finally, the three separate semi-finished products F.1.2, F.2, in particular the thin adhesive film 2 , technically difficult to handle.
- FIGS. 3 and 4 show parts of two embodiments of semi-finished foils F.2, F.3, which in a further process according to the prior art with the aid of a dielectric layer curable resin 2 as a connecting means to form a foil guide plate L * 2 become.
- the two-layer semi-finished film F.3 is provided on one side with a 50 ⁇ m thick layer of uncured resin 2, no separate adhesive film is required for bonding under pressure and temperature and an independent spacer is missing.
- This uncured resin 2 is applied to the copper foil 1, for example, by known painting processes.
- Known epoxy, polyimide, cyanate ester resins are used.
- the insulator layer 2 is pressed incompletely and inhomogeneously in this method according to the prior art. Pores and air pockets in the insulator layer 2, for example painted on, cause defects or even undesired electrical connections.
- the connecting insulator layer 2 also flows faster and more strongly in certain areas, so that hardened insulator layers 2 of different thickness are formed which are prone to failure, since they can cause short circuits, interruptions or corrosion in areas of the structured current paths 4 to the conductive layer 1.
- Such non-uniformly flowed insulator layers 2 solidify during hardening under shear stresses, which is indicated in FIG. 4 by the foil guide plate bent and deformed along its longitudinal axis. Such shear stresses are disadvantageous and can lead to cracks or loosening of connections. Uneven thicknesses of the dielectric layer 2 lead to disturbances in high-frequency applications (frequencies> 1 GHz), such as high attenuation, reflections or crosstalk of signals.
- FIGS. 5 and 6 show parts of two embodiments of semi-finished foils F.2, F.4 which, in a further process according to the prior art, using a dielectric layer curable resin 2, which is provided with spacer material 8, to form a foil conductor plate LJ ve ⁇ resst be.
- the two-layer semi-finished film F.4 is provided on one side with a 50 ⁇ m thick layer of non-resin-coated resin and with space particles 8 integrated therein.
- Aramid fibers for example, are used as such plasma-etchable Space ⁇ articles 8.
- the insulator layer 2 provided with space particles 8 flows very well and covers the structured current paths 5, the insulator regions 3 and (in this Figure not shown) assembled components and connecting wires from insulating and protecting.
- This Ve ⁇ ressen allows a short-circuit-proof manufacture of foil guide plates.
- this method has the disadvantage of high costs.
- Known plasma-etchable space articles 8 are expensive and they are only compatible with other manufacturing processes with difficulty.
- FIGS. 7 and 8 show parts of two embodiments of semi-finished foils F.2, F.5, which are provided in a further process according to the prior art with the aid of a layer of uncured, flowable resin 2, and are pressed together to form a foil guide plate L.4 .
- These embodiments are similar to those according to FIGS. 1 to 6, so that reference is made to these descriptions and only important differences are explained below.
- the three-layer semi-finished film F.5 has an already hardened layer of resin 7, which cannot flow when pressed and which serves as a spacer. It also has a curable, flowable layer of resin 2, which flows into cavities during curing and serves as a connecting means.
- this process proves to be expensive since the one layer of resin 7 has to be cured in a separate process step prior to the application of the further layer of flowable resin 2, which is time-consuming and energy-consuming, and because this one layer hardened, non-flowing resin 7 when laminated together under pressure and temperature are loaded in such a way that they shrink and become brittle, and the circuit connected with them comes under tension, warps and, for example, cracks and other damage form.
- this tension-charged brittle layer of resin 7 of the semi-finished product F.5 is warped with the semi-finished product F.2 to form a foil plate L.4 and has an exemplary one partial detachment of the copper foil 1 from the layer of resin 7 (indicated by the outward tension arrow).
- FIGS. 9 and 10 show parts of two embodiments of semi-finished foils F-2, F.6, which are pressed into a foil circuit board L.5 in the method according to the invention. These embodiments are similar in certain properties to those of the prior art according to FIGS. 1 to 8.
- a two-layer semi-finished film F.2 with an insulator layers 6 on a conductive layer 5 structured in current paths 4 and in insulator regions 3 is used, the insulator layer 6 serves as a carrier of the current path 4 and as a mechanical carrier of the foil conductor plate L.5.
- a three-layer semi-finished film F.6 with at least two curable, viscous insulator layers 2.7 and with a conductive layer 1.
- These two insulator layers 2.7 are advantageously made of the resin materials mentioned above and differ physically in that one of the layers is resin is highly viscous (no-flow) and that another layer of resin is less viscous (standard or high-flow).
- the viscous layer of no-flow resin 7 melts during pouring without flowing and hardens without tension, it serves as an intrinsic spacer.
- the less viscous layer of standard or high-flow resin of the insulator layer 2 becomes doughy, melts when it is pressed into hollow spaces and forms a tension-free, firm connection when hardened.
- the connection is short-circuit proof, all surface areas of the semi-finished film F.2 are provided with an insulating and protective layer of resin 2.
- This connecting means covers the structured current paths 5, the insulator regions 3 and optionally equipped components and connecting wires in an insulating and protective manner.
- the isolator layers 2, 7 of the connecting semi-finished film F.6 are functionally separated.
- the one insulator layer 7 maintains its shape and thickness during connection (shape retention) and thus fulfills the designed function of a spacer.
- the other insulator layer 2 loses its shape and thickness when connected and performs the designed function of a connecting means.
- the connecting, low-viscous insulator layer 2 is optimized for largely uniform tiling in structured insulator regions 3, so that a uniformly flowing insulator layer 2 has a connecting effect after curing, while a shape-retaining, highly viscous insulator layer 7 with uniform thickness cures in an evenly insulating manner.
- This foil guide plate L.5 provided with such insulator layers 2.7 is therefore suitable for high-frequency applications.
- semi-finished film with more than two or three layers of conductive and / or insulator material can also be used. These at least two layers of conductive and / or insulator material coated on one another can each be thicker than 50 ⁇ m or thinner than 15 ⁇ m. The layer thicknesses vary depending on the application and function. The layers of viscous resin are advantageously 15 to 50 ⁇ m thick, while, for example, support plates are several mm thick. Conducting materials other than the copper described can also be used, such as aluminum, nickel, gold, palladium, steel, bronze etc.
- the semi-finished film can be rigid or flexible. It is also possible to connect more than two semi-finished foils together. Flexible film semi-finished products can be pressed together in roll-to-roll processes.
- the layers of insulator material 2, 7 are advantageously coated as resins in one process step to form a semi-finished film F.6.
- a first shift No-flow resin 7 is coated onto a copper foil 1 as a conductive material (and binds the spacer) and then another layer of standard or high-flow resin 2 is applied (and forms the connecting means).
- Different layers of dielectric 2.7 can be combined in such a way that both the viscosity properties and the dielectric properties can be adjusted in a controlled manner.
- the viscosity of the layers of insulating material 2.7 used can be matched to the process conditions (pressure, temperature) and continuously adjusted over a wide range.
- the viscosity, in the curable resin material ranges from the highly viscous no-flow resin with greater / - equal to 10 +3 poise over the medium-viscous standard resin at around 5xl0 +2
- the dielectric constant of the foil guide plate can thus be adjusted in a controlled manner when a combination of cyanate ester resin and epoxy resin is used in the intermediate insulator layers.
- Other insulator materials such as silicon carrier plates, ceramic carrier plates, epoxy-polyimide resins, epoxy-acrylic resins, silicone compositions, polyurethane or cyanate ester resins can also be used.
- the uses of such semi-finished films are varied. For example, such connecting foil semi-finished products F.6 with double insulator layers can also be laminated onto known printed circuit boards in order to generate an additional wiring level. It is also possible to laminate semi-finished film that does not have a conductive layer and only consist of at least two insulator layers on such conductive plates if one does not want to create an additional wiring level. With knowledge of the present invention, the person skilled in the art has many possibilities for realizing method variants.
- FIGS. 11 to 13 show parts of two embodiments of semi-finished foils F.2, F.6 ', which in a variant of the method according to the invention are pressed into a foil guide plate L.5. These embodiments are similar to those of the method according to the invention according to FIGS. 9 and 10, so that only the differences from this method are explained.
- a four-layer semi-finished film F.6 ' is used, which is provided with a conductive layer 1, with an insulator layer 7 as a spacer, with an insulator layer 2 as a connecting means and with a carrier film 9.
- the carrier film 9 of the semi-finished film F.6 ' is a mechanical carrier for carrying extremely thin copper foils of a conductive layer 1 when connected to foil conductive plates.
- the carrier film 9 of the semi-finished film F.6 ' is a mechanical carrier for carrying extremely thin copper foils of a conductive layer 1 when connected to foil conductive plates.
- copper foils with a thickness of 18, 35 or 50 ⁇ m are used, which allow conductor structures with a conductor width of 90 to 500 ⁇ m.
- even thinner layer thicknesses of 5 to 10 ⁇ m thickness are required. In terms of process engineering, these thin foils are very difficult to handle. ben.
- the functional separation of the insulator layers 2, 7 used is not affected by the attachment of such a carrier film 9.
- the spacer is designed for extensive shape retention, while the connecting means is designed for optimal tiling in isolator areas 3 of the semi-finished film F.2 to be connected.
- This prepared foil conductor plate L.5 'provided with intermediate viscous insulator layers 2,7 according to FIG. 12 is hardened without warping.
- the carrier film 9 is used as a reusable aid, for example.
- the carrier film 9 is bonded to the conductive layer 1 with poor adhesion, and is therefore easily pulled off from it, as a result of which the prepared film conductive plate L.5 'is formed with properties similar to those in FIG. 10.
- the conductive layer 1 produced in this process variant can be compared with the embodiment 10 significantly thinner.
- the pressing with the carrier film 9 can also be carried out in roll-to-roll processes.
- FIGS. 14 to 16 show parts of embodiments of three semi-finished foils F2, F.6 "which, in a variant of the method according to the invention, are pressed into two foil guide plates L.5. These embodiments are similar to those of the method according to the invention according to FIGS to 13, so that only the differences from this method are explained.
- a seven-layer semi-finished film F.6 " is used, which consists of a carrier film 9, each with a conductive layer 1, an insulator layers 7 as on both sides Spacer and an insulator layer 2 is provided as a connecting means.
- the seven-layer semi-finished film F.6 " is connected on both sides with a semi-finished film F.2 to form a prepared foil guide plate L.5".
- the viscous layers of no-flow resin do not melt smoothly when pressed and form intrinsic spacers when hardened.
- the less viscous standard or high-flow layers of resin in the insulator layer 2 melt during the molding process and form solid connections when hardened. They cover the structured current paths 5, the insulator regions 3 and optionally equipped components and connecting wires in an insulating and protective manner.
- the carrier film 9 is poorly bonded to the two conductive layers 1. According to Figure 16, the carrier film
- this further variant of the method according to the invention is obvious.
- the simultaneous production of two foil guide plates L.5 makes only one carrier foil 9 needed.
- three semi-finished film F2, F.6 are also connected to one another. This saves material and time.
- this variant of the method has all the properties of the two previous variants and is compatible with known methods such as the DYCOstrate® method and can be operated in roll-to-roll processes.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Herstellen von Leiterplatten aus Folienhalbzeugen (F.2/6/6'/6), bei dem mindestens zwei Folienhalbzeuge (F.2/6/6'/6) miteinander unter Druck und Temperatur über mindestens zwei viskose Isolatorschichten (2, 7) verbunden werden, die sich physikalisch voneinander unterscheiden, indem die eine Isolatorschicht (7) beim Verbinden nicht fliessend aufschmilzt und als Distanzmittel wirkt, dass die andere Isolatorschicht (2) beim Verbinden fliessend aufschmilzt und als Verbindungsmittel wirkt, dass hierfür ein verbindendes Folienhalbzeug (F.6/6'/6) mit Isolatorschichten (2, 7) verwendet wird und dass distanzhaltende Isolatorschichten (7) auf Leitschichten (1) aufgebracht sind und dass verbindende Isolatorschichten (2) auf distanzhaltende Isolatorschichten (7) aufgebracht sind.
Description
VERFAHREN ZUR HERSTELLUNG VON MEHRSCHICHTIGEN FOLIEN¬ LEITERPLATTEN
Die Erfindung bezieht sich auf die Herstellung mehrschichtiger Leiterplatten auf der Basis von Folien und betrifft ein Verfahren zum einfachen und ko¬ stengünstigen Verpressen von plasma-ätzbaren Folienhalbzeugen zu extrem dünnen und extrem fein strukturierten mehrschichtigen Folienleiterplatten.
Leiterplatten für die Realisierung elektronischer Schaltungen bzw. Substrate zur Herstellung von Multichip-Modulen (MCM) tragen und verbinden elek¬ tronische Bauelemente wie Surface Mounted Devices (SMD) oder Leadless Ceramic Chip Carriers (LCCC), wie auch im Falle von MCM's zunehmend ungenauste Bausteine (nackte Si-Chips). Solche Leiterplatten besitzen dielek¬ trische Substrate, sie weisen elektrische Strompfade und elektrische Durch- plattierungen auf. Sie werden zu mehrschichtigen Leiterplatten verbunden. Dabei wird Kompaktheit und hohe Verbindungsdichte angestrebt.
Eine solche Erhöhung der Verbindungsdichte auf Schaltungsträgem ist im sogenannte DYCOstrate®- Verfahren realisiert und wird beispielsweise in den
Schriften WO93/26143 und CH-3486/93-7 der Aximelderin offenbart. Dabei werden die üblicherweise verwendeten glasfaserverstärkten Dielektrika durch
dünne Kunststoffolien ersetzt und die zur elektrischen Durchverbindung in Z- Richtung notwendigen elektrischen Durchkontaktierungslöcher werden mittels Plasma geätzt. Dieses Verfahren gestattet eine simultane, sehr kostengünstige Herstellung von kleinsten Löchern beliebiger Form. Neben einer massiven Erhöhung der erzielbaren Verbindungsdichte weist das DYCOstrate®-Ver- fahren noch eine Reihe weiterer Vorteile auf, die in den genannten Schriften bzw. Publikationen im Detail beschrieben sind.
Sind mehrlagige Leiterstrukturen notwendig, so kann man mehrere Fouensub- strate zu Mehrlagenschaltungen zusammenlaminieren. Hierzu wird beispiels¬ weise eine vorab hergestellte zweilagige Folienschaitung, deren Dielektrikum vorteilhafterweise aus Polyimidfolien besteht, ein- oder zweiseitig mit einer anderen, einseitig mit einer Kupferfolie kaschierten Polyimidfolie zusammen- laminiert. Dieses Verbinden zu einer höherlagigen Folienschaltung erfolgt mittels einer Kleberfolie bei Druck und Temperatur. Daraufhin werden ein- oder beidseitig Sacklöcher zum elektrischen Durchkontaktieren mittels Plas¬ ma-Technik in diese mehrlagige Folienschaltung geätzt.
Die verwendeten Polyimidfolien genügen höchsten Dielektrizitätseigenschaf- ten und sind sehr flexibel in den Anwendungen. Es erweist sich allerdings als nachteüig, dass das Polyimidmaterial und die Klebefolien aus Acrylat bzw. Epoxy-Acrylat- Verbindungen wenig kostengünstig sind. Auch sind die Klebe- folien relativ weich und aufgrund ihrer geringen Dicke von 25 μm manuell schwierig und somit kostenaufwendig zu handhaben.
Für Anwendungen mit nicht notwendigerweise flexiblen Substraten, beispiels- weise für starre Leiteφlatten und für MCM-Substrate, kann im obigen Press¬ vorgang anstatt einer einseitig mit einer Kupferfolie kaschierten Polyimidfolie,
auch eine einseitig mit einer aushärtbaren Schicht Harz auflackierte Kupferfo¬ lie verwendet werden. Solche Harze bestehen beispielsweise aus Epoxy-, Po- lyimid- oder Cyanat Ester-Materialien, die unter Druck und bei Temperaturen von 150°C bis 220°C aufschmelzen und aushärten. Diese Harze sind in der Anschaffung günstiger als die obigen Klebefolien, ausserdem wird der Pro¬ zessablauf vereinfacht, da die Funktion der Polyimidfolie plus die der Klebe¬ folie von der einen auflackierten Schicht Harz erfüllt wird.
Beim Veφressen treten allerdings Nachteile auf. So kann aushärtbares, unter Druck und Temperatur unzureichend niederviskoses Harz nicht alle Hohlräu¬ me von Folienmaterial ausfüllen. Auch kann viskoses Harz nach Aussen aus- gepresst werden. Somit besteht die Gefahr, dass Kupferschichten gegenein¬ ander mangelhaft isoliert und separiert sind. Solche Kupferschichten können durch fehlendes (intermediäres) Harz zu nahe aneinander geraten und es kann sogar zu ungewollten elektrischen Verbindungen kommen.
Als Lösung dieser Nachteile wird in der Schrift US-5362534 die Verwendung einer ausgehärteten nichtfliessfähigen Lage Harz verbunden mit einer aus¬ härtbaren fliessfähigen Schicht Harz beschrieben. Die schon ausgehärtete Lage Harz kann beim Veφressen zu Mehrlagenschaltungen nicht fliessen und dient als Abstandshalter, die aushärtbare fliessfähige Lage Harz fliesst dabei in Hohlräume von Folienmaterial und dient als Verbindungsmittel. In der Praxis erweist sich dieses Verfahren allerdings als nachteilig, da die eine Schicht Harz in einem separaten Verfahrensschritt vorgängig ausgehärtet wer¬ den muss, was zeit- und energieaufwendig ist, und da diese eine Schicht aus¬ gehärtetes nichtfliessendes Harz beim Zusammenlaminieren unter Druck und Temperatur derart belastet werden, dass sie schrumpft und spröde wird und die damit verbundene Schaltung unter Spannung kommt, sich verzieht und sich beispielsweise Risse und andere Schäden bilden.
Als weitere Lösung dieser Nachteile wird in der Schrift GB-9401869.4 der Anmelderin ein Beifügen von pulver- bzw. faserförmigen Spaceφartikeln vor dem Lackieren bzw. Beschichten in eine Lage nichtausgehärtetes Harz vorge- schlagen. Diese Partikel ermöglichen das Einhalten eines Mindestabstands zwischen den Kupferschichten und verhindern somit ungewollte Kurzschlüsse. In der Praxis erweist sich die Verwendung von Spaceφartikeln allerdings als nachteilig. Die Partikel müssen beim Pressvorgang formstabil bleiben, d.h. sie dürfen sich nicht zusammenpressen lassen. Auch müssen sie in nachfolgenden Plasma-Ätz-Verfahren strukturierbar sein, d.h. sie dürfen nicht: schneller oder langsamer als die Harzmatrix herausgelöst werden, um so das Bilden uner¬ wünschter Kavernen oder Inseln zu vermeiden. Auch müssen die Partikel mit allen weiteren Fertiguπgsprozessen kompatibel sein, insbesondere dürfen sie nicht in den verschiedenen nasschemischen Prozessschritten der Leiteφlat- tenfertigung anquellen, bzw. sich auflösen, d.h. sie müssen eine geringe Was¬ seraufnahme zeigen und dürfen die allgemeinen Dielektrizitätseigenschaften, wie Isolationsfestigkeit, Dielektrizitätskonstante, usw. der Harzmarrix nicht negativ beeinflussen. Solche Nebenbedingungen schränken natürlich die Wahl der möglichen Materialien drastisch ein. Aus diesem Grund muss man auf wenige und teuere Materialien zurückgreifen, beispielsweise auf die Verwen¬ dung von Aramidfasern als Spaceφartikel. Aber auch diese teueren Aramid- fasern besitzen den Nachteil einer unregelmässigen Partikelverteilung in der Harzmatrix, den der Bildung unerwünschter Lufteinschlüsse oder den der lokalen Ausschwemmung durch dünnfliessendes Harz während des Pressvor- gangs.
Die vorliegende Erfindung hat zur Aufgabe, ein Verfahren aufzuzeigen, mit dem ein einfaches und kostengünstiges Veφressen von plasma-ätzbaren Fo- lienhalbzeugen zu extrem dünnen und extrem fein strukturieπen mehrschich¬ tigen Folienleiteφlatten möglich ist. Es sollen dabei bekannte und bewährte
Techniken, Materialien und dergleichen zur Anwendung kommen, beispiels¬ weise zur Herstellung der Leiterstrukturen sollen bekannte nasschemische Verfahren anwendbar sein. Diese Leiteφlatten sollen in bezug auf die Wei¬ terverarbeitung, insbesondere bezüglich der Bestückung und der Anwendung mit bekannten Systemen wie dem DYCOstrate®- Verfahren kompatibel sein. Ferner soll die Herstellung von Leiteφlatten unter Verwendung solcher Fo¬ lienhalbzeuge automatisch, beispielsweise von Rolle-zu-Rolle ablaufbar sein, wobei auch ein zuführender Chargenbetrieb durch Einschleusung von beispielsweise Trägeφlatten möglich sein soll.
Diese Aufgabe wird durch die Erfindung gemäss der Patentansprüche gelöst.
Die Rahmenbedingungen der erfindungsgemässen Idee bestehen darin, plas- ma-ätzbare Folienhalbzeuge derart weiterzuentwickeln, dass neue Verfahren¬ schritte nicht eingefügt zu werden brauchen, bisherige Verfahrenschritte nicht verändert zu werden brauchen und wenn möglich, sogar überflüssig werden.
Die Erfindung löst die Aufgabe unter Berücksichtigung dieses Ansatzes auf originelle Weise, indem sie ein Verfahren angibt, bei dem Folienhalbzeuge mit mehreren aufeinanderliegenden Isolatorschichten verwendet werden, welche Isolatorschichten unterschiedliche Funktionen wahrnehmen ohne dass die Folienhalbzeuge speziell vorbehandelt werden müssen. Erfindungsgemäss werden Folienhalbzeuge mit mehreren unterschiedlich viskosen aber span¬ nungsfrei aushärtbaren Schichten Harz verwendet, deren unterschiedliche Viskositäten optimal aufeinander abgestimmt sind, derart, dass beim Veφres¬ sen unter Druck und Temperatur mindestens eine dieser Lagen Harz hoch- viskos (no-flow Harz) ist und als Distanzmittel dient und mindestens eine andere dieser Lagen Harz weniger viskos (Standard oder high-flow Harz) ist
und als Verbindungsmittel dient. Mindestens eines der miteinander zu verbin¬ denden Folienhalbzeuge ist als verbindendes Folienhalbzeug mit solchen mul¬ tiplen Isolatorschichten versehen. Folienhalbzeuge lassen sich über die Funk¬ tionentrennung der Isolatorschichten in Distanzmittel und Veibindungsmittel verzugsfrei, blasenfrei und kurzschlusssicher zu Folienleiteφlatten veφressen, die sich wegen der kontrolliert einstellbaren Schichtdicken für hochfrequente Anwendungen eignen. Die multiplen Isolatorschichten kommen als doppelte Isolatorschichten in Folienleiteφlatten zu liegen, sie verbinden mechanisch und sie trennen elektrisch verschiedene Verdrahtungsebenen. Dieses Verbin- den eignet sich für den Gebrauch von Träger- oder Transferfolien, für das gleichzeitige Veφressen von mehr als zwei Folienhalbzeugen und für Rolle- zu-Rolle-Prozesse.
Die folgenden Zeichnungen erläutern die Erfindung anhand des beispiels¬ weisen Veφressens von Folienhalbzeugen näher.
Fig 1 zeigt Teile von Ausführungsformen von Folienhalbzeugen, die in einem ersten Verfahren gemäss dem Stand der Technik mit einer Klebefolie zu einer Folienleiteφlatte veφresst werden.
Fig 2 zeigt Teile einer Folienleiteφlatte einer Ausführungsform gemäss Figur 1, die mit einer Klebefolie veφresst keine kurzschlussträchti¬ gen Bereiche aufweist.
Fig 3 zeigt Teile von Ausführungsformen von Folienhalbzeugen, die in einem weiteren Verfahren gemäss dem Stand der Technik mit einer Schicht fliessfähigen Harz zu einer Folienleiteφlatte veφresst wer¬ den.
zeigt Teile einer Folienleiteφlatte in der Ausführungsform gemäss Figur 3, die mit einer Schicht fliessfähigen Harz veφresst kurz- schiussträchtige Bereiche aufweist.
zeigt Teile von Ausführungsformen von Folienhalbzeugen, die in einem weiteren Verfahren gemäss dem Stand der Technik mit Spaceφartikeln zu einer Folienleiteφlatte veφresst werden.
zeigt Teile einer Folienleiteφlatte in der Ausführungsform gemäss Figur 5, die mit Spaceφartikeln veφresst keine kurzschlussträchtige
Bereiche aufweist.
zeigt Teile von Ausführungsformen von Folienhalbzeugen, die in einem weiteren Verfahren gemäss dem Stand der Technik mit einer Schicht ausgehärteten, nichtfliessfähigen Harz und einer Schicht nichtausgehärteten, fliessfähigen Harz zu einer Folienleiteφlatte veφresst werden.
zeigt Teile einer Folienleiteφlatte in der Ausführungsform gemäss Figur 7, die mit einer Schicht mehrmals ausgehärteten, nichtfliess¬ fähigen Harz veφresst Bereiche mit Spannungen und Rissen auf¬ weist.
zeigt Teile zweier bevorzugter Ausführungsformen von Folienhalb- zeugen, die in einer ersten Variante des erfindungsgemässen Ver¬ fahrens mit zwei Lagen aushärtbaren Harz zu einer Folienleiter¬ platte veφresst werden.
zeigt Teile einer Folienleiteφlatte in der Ausführungsform ge- mäss Figur 9, die erfindungsgemäss mit zwei Lagen einmal ausge-
härteten Harz veφresst keine kurzschlussträchtigen Bereiche ohne Spannungen und Risse aufweist.
zeigt Teile zweier bevorzugter Ausführungsformen von Folien- halbzeugen, die in einer weiteren Variante des erfindungsgemäs¬ sen Verfahrens mit einer Trägerfolie zu einer Folienleiteφlatte veφresst werden.
zeigt Teile einer Folienleiteφlatte in der Ausführungsform gemäss Figur 11, die erfindungsgemäss mit einer Trägerfolie veφresst keine kurzschlussträchtigen Bereiche ohne Spannungen und Risse aufweist.
zeigt Teile einer Folienleiteφlatte in der Ausführurigsform gemäss Figur 12, nach Entfernen der Trägerfolie.
zeigt Teile dreier bevorzugter Ausführungsformen von Folienhalb¬ zeugen, die in einer weiteren Variante des erfindungsgemässen Verfahrens mit einer Trägerfolie zu zwei Folienleiteφlatten ver- presst werden.
zeigt Teile zweier Folienleiteφlatteπ in den Ausführungsformen ge¬ mäss Figur 14, die erfindungsgemäss mit einer Trägerfolie veφresst keine kurzschlussträchtigen Bereiche ohne Spannungen und Risse aufweisen.
zeigt Teile zweier Folienleiteφlatten in den Ausführungsformen ge¬ mäss Figur 15, nach Entfernen der Trägerfolie.
Die Figuren 1 und 2 zeigen Teile zweier Ausführungsformen von Folienhalb¬ zeugen F.1,F.2, die in einem ersten Verfahren gemäss dem Stand der Technik mit einer separaten intermediären Klebefolie 2 als Verbindungsmittel zu einer Folienleiteφlatte L.1 veφresst werden. Die Klebefolie 2 ist aus dielek- trischem Material und besteht beispielsweise aus 25 μm dicken Acrylat bzw. Epoxyd-Acrylat-Verbindungen. Die zweilagigen Folienhalbzeuge F.l,F-2 wei¬ sen nichtfliessfähige Schichten dielektrischen Materials oder Isolatorschichten 7 und 6 auf und sie weisen Schichten elektrisch leitfähigen Materials oder Leitschichten 1 und 5 auf. Beispielsweise bestehen beide Folienhalbzeuge F.1JF2 aus jeweüs einer 50 μm dicken Polyimidfolie als Isolatorschicht 6,7, die beide einseitig mit einer 20 μm dicken Kupferfolie als Leitschicht 1,5 auflami¬ niert sind. Die Isolatorschicht 6 dient als Träger von Strompfaden und als mechanischer Träger einer Folienleiteφlatte, die Isolatorschicht 7 dient als Abstandshalter der zu verbindenden Folienhalbzeuge F.1,F.2. Natürlich lassen sich auch andere gebräuchlichen Metalle und Legierungen als Leitschichten 1,5 verwenden, hierbei sei insbesondere die Verwendung von Metallschichten aus Aluminium, aus verzinntem Kupfer, aus Nickel-Gold-beschichtem Kupfer, usw. erwähnt.
Die Leitschicht 5 des Folienhalbzeugs F.2 wird in bekannten und bewährten Herstellungsverfahren, vorteilhafterweise in nasschemischen Verfahren, bei¬ spielsweise im DYCOstrate®- Verfahren, in Strompfade 4 und in Isolatorberei¬ che 3 strukturiert. In Isolatorbereichen 3 wird das Leitmaterial bis auf die darunterliegende nichtfliessfähigen Isolatorschicht 6 entfernt. Die Dimensio¬ nen solcher Strukturierungen sind in der Grössenordnung der Dicke der ver¬ wendeten Schichten Leit- und Isolatormaterials und beispielsweise 10 bis 100 μm gross.
Die Folienhalbzeuge F.1,F.2 werden in bekannten und bewährten Verbin¬ dungsverfahren, vorteilhafterweise in Pressverfahren unter Druck und Tempe¬ ratur verbunden. Dieses Veφressen verbindet die Folienhalbzeuge F.IJFJΣ wie durch die Pfeile in Figur 1 gekennzeichnet. Die aushärtbare Isolatorschicht der Klebefolie 2 ist unter Druck und Temperatur flüssig und verfliesst in die Isolatorbereiche 3. Im nachfolgenden Aushärteprozess werden die beiden Folienhalbzeuge F.1,F.2 zu einer Folienleiteφlatte L.1 verbunden. Die Isola¬ torschicht 2 verfliesst und deckt die strukturierten Strompfade 5, die Isolator¬ bereiche 3 und (in dieser Figur nicht eingezeichnete) bestückte Bauelemente und Anschlussdrähte isolierend und schützend ab. Diese Veipressen erlaubt ein kurzschlusssicheres Herstellen von Folienleiteφlatten. Allerdings ist das Verfahren mit hohen Kosten behaftet. Die auf dem Markt erhältlichen, pias- ma-ätzbaren Klebefolie 2 zum Verkleben von insbesondere nichtfliessfähigen Polyimidfolien 7 sind teuer, auch sind sie relativ weich und schliesslich sind die drei separaten Halbzeuge F.1,2,F.2, insbesonders die dünne Klebefohe 2, verfahrenstechnisch schwierig zu handhaben.
Die Figuren 3 und 4 zeigen Teile zweier Ausführungsformen von Folienhalb- zeugen F.2,F.3, die in einem weiteren Verfahren gemäss dem Stand der Technik mit Hilfe einer dielektrischen Schicht aushärtbaren Harz 2 als Ver¬ bindungsmittel zu einer Folienleiteφlatte L*2 veφresst werden. Diese Aus¬ führungsformen ähnein weitgehend denjenigen gemäss Figur 1, sodass auf diese Beschreibung verwiesen und im folgenden lediglich wichtige Unterschie- de erläutert werden. Das zweilagige Folienhalbzeug F.3 ist einseitig mit einer 50 μm dicken Schicht nichtausgehärteten Harzes 2 versehen, zum Verbinden unter Druck und Temperatur wird keine separate Klebefolie benötigt und ein eigenständiger Abstandshalter fehlt. Dieses nichtausgehärtete Harz 2 wird beispielsweise durch bekannte Lackierverfahren auf die Kupierfolie 1 aufge- bracht. Es werden bekannte Epoxyd-, Polyimid-, Cyanat-Esterharze verwendet.
Das Veφressen der Isolatorschicht 2 erfolgt in diesem Verfahren gemäss dem Stand der Technik unvollständig und inhomogen. Poren und Lufteiπschlüsse in der beispielsweise auflackierten Isolatorschicht 2 verursachen Defekte bis hin zu ungewollten elektrischen Verbindungen. Auch verfliesst die verbindende Isolatorschicht 2 in bestimmten Bereichen schneller und stärker, sodass unter¬ schiedlich dicke ausgehärtete Isolatorschichten 2 entstehen, die fehierträchtig sind, da sie in Bereichen der von strukturierten Strompfaden 4 zur Leitschicht 1 Kurzschlüsse, Unterbrüche oder Korrosion bewirken können. Solche un- gleichmässig verflossenen Isolatorschichten 2 erstarren beim Aushärten unter Scherspannungen, was in Figur 4 durch die entlang ihrer Längsachse verboge¬ ne und verformte Folienleiteφlatte angezeigt wird. Solche Scherspannungen sind nachteilig und können zu Rissen oder zum Lösen von Verbindungen führen. Ungleichmässige Dicken der Dielektrikumschicht 2 führen bei hoch¬ frequenten Anwendungen (Frequenzen > 1GHz) zu Störungen, wie hohe Dämpfungen, Reflexionen oder Übersprechen von Signalen.
Die Figuren 5 und 6 zeigen Teile zweier Ausführungsformen von Folienhalb¬ zeugen F.2,F.4, die in einem weiteren Verfahren gemäss dem Stand der Technik mit Hilfe einer dielektrischen Schicht aushärtbaren Harzes 2, dass mit Spacermaterial 8 versehen ist, zu einer Folienleiteφlatte LJ veφresst werden. Diese Ausführungsformen ähneln denjenigen gemäss Figur 3, sodass auf diese Beschreibung verwiesen und im folgenden lediglich wichtige Unter¬ schiede erläutert werden. Das zweilagige Folienhalbzeug F.4 ist einseitig mit einer 50 μm dicken Schicht nichtausgehäπeten Harzes und mit darin integrierten Spaceφartikeln 8 versehen. Als solche plasma-ätzbare Spaceφ- artikel 8 werden beispielsweise Aramidfasern verwendet.
Die mit Spaceφartikeln 8 versehene Isolatorschicht 2 verfliesst sehr gut und deckt die strukturierten Strompfade 5, die Isolatorbereiche 3 und (in dieser
Figur nicht eingezeichnete) bestückte Bauelemente und Anschlussdrähte iso¬ lierend und schützend ab. Diese Veφressen erlaubt ein kurzschlusssicheres Herstellen von Folienleiteφlatten. Diese Verfahren hat allerdings den Nachteil der hohen Kosten. Bekannte plasma-ätzbare Space φartikel 8 sind teuer und sie sind mit weiteren Fertigungsprossen nur unter Schwierigkeiten kompatibel.
Die Figuren 7 und 8 zeigen Teile zweier Ausführungsformen von Folienhalb- zeugen F.2,F.5, die in einem weiteren Verfahren gemäss dem Stand der Technik mit Hilfe einer Schicht nichtausgehärteten fliessfähigen Harz 2 ver¬ sehen zu einer Folienleiteφlatte L.4 veφresst werden. Diese Ausführungs¬ formen ähneln denjenigen gemäss den Figuren 1 bis 6, sodass auf diese Be¬ schreibungen verwiesen wird und im folgenden lediglich wichtige Unterschie- de erläutert werden.
Das dreilagige Folienhalbzeug F.5 weist eine bereits ausgehärtete Lage Harz 7 auf, die beim Veφressen nicht fliessen kann und die als Abstandshalter dient. Ferner weist es eine aushärtbare fliessfähige Lage Harz 2 auf, die beim Aushärten in Hohlräume fliesst und als Verbindungsmittel dient. In der Praxis erweist sich dieses Verfahren allerdings als nachteüig, da die eine Schicht Harz 7 in einem separaten Verfahrensschritt vor dem Aufbringen der weite¬ ren Lage fliessfähigen Harz 2 ausgehärtet werden muss, was zeit- und ener- gieaufwendig ist, und da diese eine Schicht ausgehärtetes nichtfliessendes Harz 7 beim Zusammenlaminieren unter Druck und Temperatur derart bela¬ stet werden, dass sie schrumpft und spröde wird und die damit verbundene Schaltung unter Spannung kommt, sich verzieht und sich beispielsweise Risse und andere Schäden bilden. In Figur 8 ist dieses spannungsgeladene spröde Schicht Harz 7 des Folienhalbzeuges F.5 verzogen mit dem Folienhalbzeug F.2 zu einer Folieπleiteφlatte L.4 verbunden und hat zu einem beispielhaften
partiellen Lösen der Kupferfolie 1 von der Schicht Harz 7 (angezeigt durch den nach aussen gerichteten Spannungspfeil) geführt.
Die Figuren 9 und 10 zeigen Teile zweier Ausführungsformen von Folienhalb¬ zeugen F-2,F.6, die im erfindungsgemässen Verfahren zu einer Folienleiter¬ platte L.5 veφresst werden. Diese Ausführungsformen ähneln in gewissen Eigenschaften denjenigen des Standes der Technik gemäss den Figuren 1 bis 8. Es wird wiederum ein zweilagiges Folienhalbzeug F.2 mit einer Isolator- schichten 6 auf einer in Strompfade 4 und in Isolatorbereiche 3 strukturierten Leitschicht 5 verwendet, wobei die Isolatorschicht 6 als Träger der Strompfa¬ de 4 und als mechanischer Träger der Foiienleiteφlatte L.5 dient.
Neu ist die Verwendung eines dreilagigen Folienhalbzeug F.6 mit mindestens zwei aushärtbaren viskosen Isolatorschichten 2,7 und mit einer Leitschicht 1. Diese beiden Isolatorschichten 2,7 sind vorteilhafterweise aus oben erwähnten Harzmaterialien und unterscheiden sich physikalisch darin, dass eine der La¬ gen Harz hochviskos (no-flow) ist und dass eine andere der Lagen Harz weni- ger viskos (Standard oder high-flow) ist. Die viskose Lage no-flow Harz 7 schmilzt beim Veφressen ohne zu verfliessen und härtet spannungsfrei aus, sie dient als intrinsischer Abstandshalter. Die weniger viskose Lage standard- oder high-flow Harz der Isolatorschicht 2 wird teigig, schmilzt beim Veφres¬ sen in Holhräume und bildet beim Aushärten eine spannungsfreie feste Ver- bindung. In den Kanten und Ecken der strukturierten Isolatorbereiche 3 blei¬ ben keine Hohlräume oder Luftblasen übrig. Es bilden sich also keine fehler¬ trächtigen Bereiche, die Verbindung ist kurzschlusssicher, alle Oberflächenbe¬ reiche des Folienhalbzeugs F.2 sind mit einer isolierenden und schützenden Schicht Harz 2 versehen. Dieses Verbindungsmittel deckt die strukturierten Strompfade 5, die Isolatorbereiche 3 und gegebenenfalls bestückte Bauele¬ mente und Anschlussdrähte isolierend und schützend ab.
Erfindungsgemäss erfolgt eine funktionale Trennung der verwendeten Isola¬ torschichten 2,7 des verbindenden Folienhalbzeugs F.6. Die eine Isolator¬ schicht 7 behält beim Verbinden ihre Form und Dicke bei (Formerhalt) und erfüllt somit die konzipierte Funktion eines Distanzmittels. Die andere Isola¬ torschicht 2 verliert beim Verbinden ihre Form und Dicke und erfüüt die konzipierte Funktion eines Verbindungsmittels. Diese beiden physikalisch ge¬ gensätzlichen Funktionen lassen sich durch Wahl der Viskositäten optimieren. Dadurch dass die beiden viskosen Isolatorschichten 2,7 nichtausgehärtet sind, erfolgt das Aushärten homogen und spannungsfrei. Die verbindende nieder¬ viskose Isolatorschicht 2 ist optimiert für ein weitgehendes gleichmässiges Verfliessen in strukturierte Isolatorbereiche 3, sodass eine gleichmässig ver¬ flossene Isolatorschicht 2 nach Aushärten verbindend wirkt, während eine formerhaltende hochviskose Isolatorschicht 7 mit konstanter Dicke gleichmäs- sig isolierend aushärtet. Diese mit solchen Isolatorschichten 2,7 versehene Folienleiteφlatte L.5 eignet sich somit für hochfrequente Anwendungen.
Natürlich lassen sich auch Folienhalbzeuge mit mehr als zwei oder drei Lagen Leit- und/oder Isolatormaterial verwenden. Diese mindestens zwei aneinander beschichteten Lagen Leit- und/oder Isolatormaterial können jeweils dicker als 50 μm oder auch dünner als 15 μm sein. Die Schichtdicken schwanken je nach Anwendung und Funktion. Die Lagen viskosen Harzes sind vorteilhafterweise 15 bis 50 μm dick, während beispielsweise Trägeφlatten mehrere mm dick sind. Auch können andere Leitmaterialien als das beschriebene Kupfer ver¬ wendet werden, wie Aluminium, Nickel, Gold, Paladium, Stahl, Bronze etc. Die Folienhalbzeuge können starr oder flexibel sein. Es lassen sich auch mehr als zwei Folienhalbzeuge gleichzeitig miteinander verbinden. Flexible Folien¬ halbzeuge lassen sich in Rolle-zu-Rolle-Prozessen miteinander veφressen. Vorteilhafterweise werden die Lagen Isolatormaterial 2,7 als Harze in einem Verfahrenschritt zu einem Folienhalbzeug F.6 auflackiert. Eine erste Schicht
no-flow Harz 7 wird auf eine Kupferfolie 1 als Leitmateriai auflackiert (und büdet das Distanzmittel) und daraufhin wird eine weitere Schicht staπdard- oder high-flow Harz 2 aufgetragen (und bildet das Verbindungsmittel).
Verschiedene Lagen Dielektrikum 2,7 können derart kombiniert werden, dass sowohl die Viskositätseigenschaften als auch die Dielektrizitätseigenschaften kontrolliert einstellbar sind.
- So lässt sich die Viskosität der verwendeten Lagen Isoiatormaterial 2,7 auf die Verfahrensbedingungen (Druck,Temperatur) abstimmen und in einem breiten Bereich kontinuierlich einstellen. Je nach dem Prozentsatz langkettiger Moleküle, welche die Viskosität, im aushärtbaren Harzmate¬ rial reicht die Viskosität vom hochviskosen no-flow Harz bei grösser/- gleich 10+3 Poise über das mittelviskose Standard Harz bei rund 5xl0+2
Poise bis zum niederviskosen high-flow Harz bei kleiner/gleich 10 *2 Poi¬ se. Dieses kontrollierte Schneidern bzw. genaue Einstellen der Viskosi¬ tätseigenschaften ist für bekannte handelsübliche Harze möglich, insbe¬ sondere ist es für Epoxyd-, Polyimid- oder Cyanat Ester-Materialien mög- lieh, die unter Druck und bei Temperaturen von 150°C bis 220°C auf¬ schmelzen und aushärten.
So lässt sich die Dielektriziztätskonstante der Folienleiteφlatte bei Ver¬ wendung einer Kombination von Cyanat Ester-Harz mit Epoxydharz in den intermediären Isolatorschichten kontrolliert einstellen. Auch können andere Isolatormaterialien wie Süizium-Trägeφlatteπ, Keramik-Träger¬ platten, Epoxyd-Polyimid-Harze, Epoxyd-Acryl-Harze, Silikonmassen, Po¬ lyurethan oder Cyanat-Ester-Harze verwendet werden.
Die Verwendungszwecke solcher Folienhalbzeuge sind vielfältig. Beispiels¬ weise kann man solche verbindenden Foiienhalbzeuge F.6 mit doppelten Isolatorschichten auch auf bekannte Leiteφlatten auflaminieren, um so eine zusätzliche Verdrahtungsebene zu generieren. Auch kann man verbindende Folienhalbzeuge die keine Leitschicht aufweisen und nur aus mindestens zwei Isolatorschichten bestehen auf solche Leiteφlatten auflaminieren, wenn man keine zusätzliche Verdrahtungsebene anlegen möchte. Dem Fachmann stehen bei Kenntnis der vorliegenden Erfindung sehr viele Möglichkeiten der Reali¬ sierung von Verfahrensvarianten offen.
Die Figuren 11 bis 13 zeigen Teile zweier Ausführungsformen von Folien¬ halbzeugen F.2, F.6', die in einer Variante des erfindungsgemässen Verfahrens zu einer Folienleiteφlatte L.5 veφresst werden. Diese Ausführungsformen ähneln denjenigen des erfindungsgemässen Verfahrens gemäss den Figuren 9 und 10, sodass lediglich die Unterschiede zu diesem Verfahren erläutert wer¬ den. Es wird diesmal ein vierlagiges Folienhalbzeug F.6' verwendet, welches mit einer Leitschicht 1, mit einer Isolatorschichten 7 als Distanzmittel, mit einer Isolatorschicht 2 als Verbindungsmittel und mit einer Trägerfolie 9 versehen ist.
Die Trägerfolie 9 des Folienhalbzeugs F.6' ist ein mechanischer Träger zum Tragen extrem dünner Kupferfolien einer Leitschicht 1 beim Verbinden zu Folienleiteφlatten. Um feinste Leiterstrukturen aus Leitschichten nassche¬ misch herauszuätzen, ist es naheliegend, solche Leitschichten möglichst dünn zu gestalten. In gängigen Herstellungsverfahren werden hierzu Kupferfolien von 18, 35 oder 50 μm Dicke verwendet, welche Leiterstrukturen von 90 bis 500 μm Leiterbreite erlauben. Um Feinstleiter mit 50 μm Leiterbreite herzu- stellen, sind aber noch dünnere Schichtdicken von 5 bis 10 μm Dicke gefor¬ dert. Diese dünnen Folien sind verfahrenstechnisch sehr schwer zu handha-
ben. Und allen diese Leitschichten 1 ist gemeinsam, ob dünn oder nicht, dass sie empfindlich gegenüber Verschmutzungen und Beschädigungen smd. Insbe¬ sondere können Staubpartikel auf der Leitschicht 1 beim Veφressen Ein¬ drücke, Kratzer oder gar Löcher verursachen. Solche Probleme werden um- gangen, indem man solch dünne Leitschichten auf Träger- und Transferfolien, beispielsweise leicht haftend anbringt, um so ein schonendes und verfahrens¬ technisch leichtes Verbinden zu ermöglichen. Als Träge rfolienmaterial wird vorzugsweise Aluminium verwendet, welches in späteren Verfahrensschritten selektiv weggeätzt oder nach dem Veφressen zu Folienleiteφlatten abgezo- gen wird. Aluminium ist relativ hart und bewirkt, dass die Oberfläche der fertig laminierten Folienleiteφlatte eben ist, was die weitere Verarbeitung, insbesondere die photochemische Strukturierung wesentlich erleichtert und so auch die Ausbeute des ganzen Herstellungsverfahrens sehr erhöht. Das Fo¬ lienhalbzeug F.6' ist somit eine Variante des oben beschriebenen Folienhalb- zeugs F.6 gemäss Figur 9. Das erfindungsgemasse Verfahren der zwei Lagen Harz ist somit vollauf kompatibel mit anderen Herstellungsverfahren.
Die funktionale Trennung der verwendeten Isolatorschichten 2,7 wird durch das Anbringen einer solchen Trägerfolie 9 nicht berührt. Das Distanzmittel ist für einen weitgehenden Formerhalt ausgelegt, während das Verbindungsmittel für ein optimales Verfliessen in Isolatorbereichen 3 des zu verbindenden Folienhalbzeugs F.2 ausgelegt ist. Diese gemäss Figur 12 mit intermediären viskosen Isolatorschichten 2,7 versehene vorbereitete Folienleiteφlatte L.5' ist verzugsfrei ausgehärtet verbunden. In Figur 13 wird die Trägerfolie 9 als bei¬ spielsweise wiederverwertbares Hilfsmittel verwendet. Die Trägerfolie 9 ist schlecht haftend mit der Leitschicht 1 verbunden, sie wird somit leicht von dieser abgezogen, wodurch die vorbereitete Folienleiteφlatte L.5' mit ähn¬ lichen Eigenschaften wie in Figur 10 gebildet wird. Die in dieser Verfahrens- Variante hergestellte Leitschicht 1 kann im Vergleich mit der Ausführungs-
form gemäss Figur 10 bedeutend dünner gearbeitet sein. Das Veφressen mit der Trägerfolie 9 lässt sich auch in Rolle-zu-Rolle-Prozessen durchführen.
Die Figuren 14 bis 16 zeigen Teile von Ausführungsformen von drei Folien¬ halbzeugen F2,F.6", die in einer Variante des erfindungsgemäs.sen Verfahrens zu zwei Folienleiteφlatten L.5 veφresst werden. Diese Ausführungsformen ähnein denjenigen des erfindungsgemässen Verfahrens gemäss den Figuren 11 bis 13, sodass lediglich die Unterschiede zu diesem Verfahren erläutert wer- den. Es wird diesmal ein siebenlagiges Folienhalbzeug F.6" verwendet, wel¬ ches aus einer Trägerfolie 9 besteht, die beidseitig mit jeweils einer Leit¬ schicht 1, einer Isolatorschichten 7 als Distanzmittel und einer Isolatorschicht 2 als Verbindungsmittel versehen ist. Das siebenlagige Folienhalbzeug F.6" wird beidseitig mit jeweils einem Folienhalbzeug F.2 zu einer vorbereiteten Folienleiteφlatte L.5" verbunden. Dieses Veφressen erfolgt gleichzeitig, in einem Verfahrensschritt. Die viskosen Lagen no-flow Harz schmelzen beim Veφressen nicht fliessend auf und bilden beim Aushärten intrinsische Ab¬ standshalter. Die weniger viskosen Standard- oder high-flow l.agen Harz der Isolatorschicht 2 schmelzen beim Veφressen fliessend auf bilden beim Aus- härten feste Verbindungen. Sie decken die strukturierten Strompfade 5, die Isolatorbereiche 3 und gegebenenfalls bestückte Bauelemente und Anschluss¬ drähte isolierend und schützend ab. Die Trägerfolie 9 ist schlecht haftend mit den beiden Leitschichten 1 verbunden. Gemäss Figur 16 wird die Trägerfolie
9 von diesen beiden Leitschichten 1 abgezogen, wodurch zwei Folienleiter- platten L.5 gebildet werden, die den Ausführungsformen gemäss den Figuren
10 und 13 entsprechen.
Der Vorteil dieser weiteren Variante des erfindungsgemässen Verfahrens ist offensichtlich. Im Unterschied zu den vorhergehenden Varianten wird durch gleichzeitiges Herstellen von zwei Folienleiteφlatten L.5 nur eine Trägerfolie
9 benötigt. Auch werden in einem Verfahrensschritt drei Folienhalbzeuge F2,F.6" miteinander verbunden. Dies ist somit material- und zeitsparend. Ansonsten besitzt diese Variante des Verfahrens alle Eigenschaften der bei¬ den vorhergehenden Varianten und ist kompatibel mit bekannten Verfahren wie dem DYCOstrate®- Verfahren und lässt sich in Rolle-zu-Rolle-Prozessen betreiben.
Claims
P A T E N T A N S P R U C H E
1. Verfahren zum Herstellen von Folienleiteφlatten (L.5) aus Folien¬ halbzeugen (F.2/6/6'/6"), bei dem mindestens zwei Folienhalbzeuge (F.2/6/6'/6") miteinander unter Druck und Temperatur verbunden werden, dadurch gekennzeichnet, dass zum Verbinden mindestens zwei viskose, sich in ihren Fliesseigenschaften unterscheidende Isola- 5 torschichten (2,7) vorgesehen sind, dass Folienhalbzeuge (F.2/6/6'/6") veφresst werden und dabei die eine Isolatorschicht (7) nichtfliessend aufgeschmolzen und die andere Isolatorschicht (2) fliessend aufgeschmolzen wird und dass die beiden aufgeschmolzenen Isolatorschichten (2,7) ausgehärtet werden. 10
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass zum - kurzschlusssicheren Verbinden von Folienhalbzeugen (I'\2/6/6'/6") zu Folienleiteφlatten (L.5), hochviskose Isolatorschichten (7) ver- 15 wendet werden, die unter Druck und Temperatur nichtfliessend und ihre Form beibehaltend schmelzen und spannungsfrei verbindend erstarren, sodass die Folienhalbzeuge (F.2/6/6'/6") in definierter Distanz zueinander liegen.
20
Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass zum Verbinden von Folienhalbzeugen (F.2/6/676") zu Folienleiteφlatten (L.5), niederviskose Isolatorschichten (2) verwendet werden, die unter Druck und Temperatur verfliessen und spannungsfrei verbindend erstarren. 5
4. Verfahren gemäss einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, dass zum schonenden Verbinden einer Leitschicht (1) ei¬ nes Folienhalbzeugs (F.2/676") über Isolatorschichten (2,7) mit ei- 10 nem Folienhalbzeug (F.2) zu einer vorbereiteten Folienleiteφlatte (L.5'/5"), diese Leitschicht (1) einseitig mit einer Trägerschicht (9) leicht haftend verbunden wird und dass die Trägerschicht (9) nach dem Verbinden zu einer vorbereiteten Folienleiteφlatte (L.5'/5") von der Leitschicht (1) abgelöst wird, sodass eine Folienleiteφlatte 15 (L.5) gebildet wird.
5. Verfahren gemäss Anspruch 4, dadurch gekennzeichnet, dass zum gleichzeitigen und schonenden Verbinden von zwei Leitschichten (1) 20 eines Folienhalbzeugs (F.6") über Isolatorschichten (2,7) mit zwei Folienhalbzeugen (F.2) zu einer vorbereiteten Folienleiteφlatte (L.5"), diese Leitschichten (1) mit den beiden Seiten einer Träger¬ schicht (9) leicht haftend verbunden werden, dass zwei Folienhalb¬ zeuge (F.2) gleichzeitig auf das Folienhalbzeug (F.6") aufgebracht 25 und verbunden werden, dass die Trägerschicht (9) nach dem Ver¬ binden zu einer vorbereiteten Folienieiteφlatte (L.5") von den bei¬ den Leitschichten (1) abgelöst wird, sodass zwei Folienleiteφlatten (L.5) gebildet werden.
6. Folienhalbzeuge (F.2/6/6'/6") zum Durchführen des Verfahrens ge¬ mäss Anspruch 1, dadurch gekennzeichnet, dass die Folienhalbzeuge (F-2/6/6'/6") Leitschichten (1) besitzen, dass Distanzschichten oder nichtfliessend schmelzende Isolatorschichten (7) auf Leitscliichten (1) angebracht sind und dass Verbindungschichten oder fliessend schmel¬ zende Isolatorschichten (2) auf Distanzschichten oder nichtfliessend schmelzenden Isolatorschichten (7) angebracht sind.
7. Foiienhalbzeuge (F.2/6/6'/6") gemäss Anspruch 6, dadurch 10 gekennzeichnet, dass die Distanzschichten (2) und die Verbindungs¬ schichten (7) aus Lagen aushärtbaren Harzes bestehen, die sich in ihrer Viskosität beim Aufschmelzen unterscheiden.
15
8. Folienhalbzeuge (FJ2/6/6'/6") gemäss Anspruch 7, dadurch gekenn¬ zeichnet, dass die Leitschichten (1) aus Kupferfolien bestehen, dass die Distanzschichten (2) und die Verbindungsschichten (7) aus Lagen Cyanat-Ester Harz oder Epoxydharz bestehen und dass die Lagen Harz auf die Kupferfolien auflackiert werden. 20
Folienhalbzeuge (F.2/6/6'/6") gemäss Anspruch 7, dadurch gekennzeichnet, dass die Leitschichten (1) aus Kupferfolien bestehen, dass die Distanzschichten (2) und die Verbindungsschichten (7) aus 25 Lagen Epoxyd-Acryl Harz oder Epoxyd-Polyimid Harz bestehen und dass die Lagen Harz auf die Kupferfolien auflackiert werden.
30
10. Folienleiteφlatten (L.5) hergestellt nach dem Verfahren gemäss An¬ spruch 1, dadurch gekennzeichnet, dass verschiedene Leitschichten (1,5) über mindestens zwei Isolatorschichten (2,7) miteinander ver¬ bunden sind, dass Distanzschichten oder nichtfliessend schmelzende Isolatorschichten (7) auf erste Leitschichten (1) angebracht sind und dass Verbindungschichten oder geschmolzende Isolatorschichten (2) zwischen Distanzschichten oder nichtfliessend schmelzenden Isolator¬ schichten (7) und zweiten Leitschichten (5) angebracht sind.
10
11. Folienleiteφlatten (L.5) gemäss Anspruch 10, dadurch gekennzeich¬ net, dass die Verbindungen zwischen den Verbindungsschichten (2) und zweiten Leitschichten (5) blasenfrei und spannungsfrei ausgebil¬ det sind, sodass Strompfade (4), Isolatorbereiche (3), bestückte Bau- 15 elemente (8) und Anschlussdrähte (9) schützend umhüllt sind.
12. Folienleiteφlatten (L.5) gemäss Anspruch 10, dadurch gekennzeich¬ net, dass Distanzschichten (7) mit definiert einstellbaren, gleichmässi- 20 gen Schichtdicken aufgebracht sind, sodass hochfrequente Anwendun¬ gen möglich sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH323395 | 1995-11-15 | ||
CH3233/95 | 1995-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997018695A1 true WO1997018695A1 (de) | 1997-05-22 |
Family
ID=4251538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1996/000394 WO1997018695A1 (de) | 1995-11-15 | 1996-11-06 | Verfahren zur herstellung von mehrschichtigen folienleiterplatten |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1997018695A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121198A1 (en) | 2018-12-10 | 2020-06-18 | Salvia Bioelectronics B.V. | An implantable medical device with two or more encapsulated components |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0148602A2 (de) * | 1984-01-09 | 1985-07-17 | Stauffer Chemical Company | Übertragungswalzen von leitenden Metallschichten |
JPH03184841A (ja) * | 1989-12-15 | 1991-08-12 | Hitachi Chem Co Ltd | 積層板成形用金属体及び該金属体とプリプレグの構成体並びに金属張積層板の製造方法 |
JPH03244194A (ja) * | 1990-02-22 | 1991-10-30 | Fujitsu Ltd | 多層フレキシブルプリント配線板 |
JPH05220893A (ja) * | 1992-02-06 | 1993-08-31 | Toagosei Chem Ind Co Ltd | 銅張絶縁シートおよびブラインドホールを有する多層プリント配線板の製造方法 |
WO1993026143A1 (de) * | 1992-06-15 | 1993-12-23 | Dyconex Patente Ag | Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung |
JPH06260771A (ja) * | 1993-03-08 | 1994-09-16 | Toagosei Chem Ind Co Ltd | プリント配線板用銅張絶縁シート |
JPH06260733A (ja) * | 1993-03-08 | 1994-09-16 | Toagosei Chem Ind Co Ltd | 銅張絶縁シート用樹脂組成物 |
US5362534A (en) * | 1993-08-23 | 1994-11-08 | Parlex Corporation | Multiple layer printed circuit boards and method of manufacture |
JPH07224252A (ja) * | 1994-02-10 | 1995-08-22 | Hitachi Chem Co Ltd | 絶縁接着材料シート及び銅箔付き絶縁接着材料シート並びにその製造法とそれを用いた多層配線板の製造法 |
-
1996
- 1996-11-06 WO PCT/CH1996/000394 patent/WO1997018695A1/de active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0148602A2 (de) * | 1984-01-09 | 1985-07-17 | Stauffer Chemical Company | Übertragungswalzen von leitenden Metallschichten |
JPH03184841A (ja) * | 1989-12-15 | 1991-08-12 | Hitachi Chem Co Ltd | 積層板成形用金属体及び該金属体とプリプレグの構成体並びに金属張積層板の製造方法 |
JPH03244194A (ja) * | 1990-02-22 | 1991-10-30 | Fujitsu Ltd | 多層フレキシブルプリント配線板 |
JPH05220893A (ja) * | 1992-02-06 | 1993-08-31 | Toagosei Chem Ind Co Ltd | 銅張絶縁シートおよびブラインドホールを有する多層プリント配線板の製造方法 |
WO1993026143A1 (de) * | 1992-06-15 | 1993-12-23 | Dyconex Patente Ag | Verfahren zur herstellung von leiterplatten unter verwendung eines halbzeuges mit extrem dichter verdrahtung für die signalführung |
JPH06260771A (ja) * | 1993-03-08 | 1994-09-16 | Toagosei Chem Ind Co Ltd | プリント配線板用銅張絶縁シート |
JPH06260733A (ja) * | 1993-03-08 | 1994-09-16 | Toagosei Chem Ind Co Ltd | 銅張絶縁シート用樹脂組成物 |
US5362534A (en) * | 1993-08-23 | 1994-11-08 | Parlex Corporation | Multiple layer printed circuit boards and method of manufacture |
JPH07224252A (ja) * | 1994-02-10 | 1995-08-22 | Hitachi Chem Co Ltd | 絶縁接着材料シート及び銅箔付き絶縁接着材料シート並びにその製造法とそれを用いた多層配線板の製造法 |
Non-Patent Citations (5)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 15, no. 437 (M - 1176) 7 November 1991 (1991-11-07) * |
PATENT ABSTRACTS OF JAPAN vol. 16, no. 31 (E - 1159) 27 January 1992 (1992-01-27) * |
PATENT ABSTRACTS OF JAPAN vol. 17, no. 664 (M - 1523) 8 December 1993 (1993-12-08) * |
PATENT ABSTRACTS OF JAPAN vol. 18, no. 661 (E - 1644) 14 December 1994 (1994-12-14) * |
PATENT ABSTRACTS OF JAPAN vol. 95, no. 11 26 November 1995 (1995-11-26) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020121198A1 (en) | 2018-12-10 | 2020-06-18 | Salvia Bioelectronics B.V. | An implantable medical device with two or more encapsulated components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69938582T2 (de) | Halbleiterbauelement, seine herstellung, leiterplatte und elektronischer apparat | |
DE69727014T2 (de) | Ein Montierungsverfahren für eine Vielzahl elektronischer Teile auf einer Schaltungsplatte | |
DE68928633T2 (de) | Verfahren zur Herstellung elektrischer Verbindungsteile | |
DE69125354T2 (de) | Biegsame Leiterplatte | |
DE69411438T2 (de) | Schaltungsanordnungen und Verfahren zu deren Herstellung | |
EP1350417B1 (de) | Verfahren zur herstellung einer elektronischen baugruppe | |
DE69517652T2 (de) | Anisotropische Leiterschicht für Mikroverbindungen | |
DE60224611T2 (de) | Leiterplatte mit eingebetteter elektrischer Vorrichtung und Verfahren zur Herstellung einer Leiterplatte mit eingebetteter elektrischer Vorrichtung | |
DE112011105178B4 (de) | Halbleitervorrichtung | |
EP3231261B1 (de) | Leiterplatte mit einem asymmetrischen schichtenaufbau | |
DE69708879T2 (de) | Z-achsenzwischenverbindungsverfahren und schaltung | |
DE10238037B4 (de) | Halbleitereinrichtung mit Gehäuse und Halterung | |
DE69312983T2 (de) | Höckerförmige Anschlusselektrode auf einem Substrat für Flipchip-Verbindung | |
DE60132397T2 (de) | Verfahren zur Herstellung eines thermisch leitenden Substrats mit Leiterrahmen und Wärmestrahlungsplatte | |
EP3231262B1 (de) | Semiflexible leiterplatte mit eingebetteter komponente | |
DE102006047992A1 (de) | Kernloses Substrat und dessen Herstellverfahren | |
DE69020009T2 (de) | Verfahren zum Herstellen von Verbindungselektroden. | |
DE3335848C2 (de) | ||
EP0494153A1 (de) | Verbundanordnung mit leiterplatte. | |
DE4203114A1 (de) | Bandtraeger fuer halbleitergeraete und verfahren zur herstellung desselben | |
DE4012100A1 (de) | Leiterplatte mit einer kuehlvorrichtung und verfahren zur herstellung derselben | |
EP2982226B1 (de) | Verfahren zum herstellen eines leiterplattenelements | |
DE60217059T2 (de) | Montagekonstruktion für eine elektronische integrierte Leistungsschaltung, die auf einem Halbleiterchip gebildet ist, sowie ein entsprechendes Herstellungsverfahren | |
WO2002032199A1 (de) | Leiterplatte sowie verfahren zum herstellen einer solchen leiterplatte und eines schichtverbundmaterials für eine solche leiterplatte | |
WO1997018695A1 (de) | Verfahren zur herstellung von mehrschichtigen folienleiterplatten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |