WO1993023672A1 - Gasreibungsvakuumpumpe - Google Patents

Gasreibungsvakuumpumpe Download PDF

Info

Publication number
WO1993023672A1
WO1993023672A1 PCT/EP1993/000984 EP9300984W WO9323672A1 WO 1993023672 A1 WO1993023672 A1 WO 1993023672A1 EP 9300984 W EP9300984 W EP 9300984W WO 9323672 A1 WO9323672 A1 WO 9323672A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
rotor
stage
vacuum
designed
Prior art date
Application number
PCT/EP1993/000984
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Kabelitz
Martin Mühlhoff
Hans Kriechel
Frank Fleischmann
Original Assignee
Leybold Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Aktiengesellschaft filed Critical Leybold Aktiengesellschaft
Priority to DE59300970T priority Critical patent/DE59300970D1/de
Priority to US08/338,452 priority patent/US5553998A/en
Priority to EP93911777A priority patent/EP0640185B1/de
Priority to JP5519810A priority patent/JPH07506648A/ja
Publication of WO1993023672A1 publication Critical patent/WO1993023672A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a gas friction vacuum pump with at least two differently designed pump stages / which each comprise a rotor section and a stator section.
  • Friction pumps include molecular and turbomolecular vacuum pumps.
  • a moving rotor wall and a stationary stator wall are designed and spaced apart in such a way that the impulses transmitted from the walls to gas molecules located between them have a preferred direction.
  • the rotor and / or stator wall are equipped with thread-like depressions or projections.
  • Turbomolecular vacuum pumps have intermeshing rows of stator and rotor blades in the manner of a turbine.
  • Turbomolecular pumps have a relatively low compression (pressure ratio of pressure-side pressure to suction-side pressure) and a relatively high pumping speed (pump speed, volume flow per unit of time). Their manufacture and assembly is complex and expensive. In addition, they require a backing pressure of around 10 _a rabar. Molecular pumps also have a - relatively high compression, but their pumping speed is relatively small. They pump up to pressures of 10 mbar and more, so that the effort required for generating the pre-vacuum is less than with turbomolecular pumps. It is therefore known to equip gas-friction vacuum pumps with differently designed pump stages, the pump stage on the forevacuum side generally being a molecular pump stage because of the better fore-vacuum resistance. The present invention has for its object to provide a gas friction vacuum pump of the type mentioned, which can be easily adapted to different applications.
  • the proposed measures have the advantage that the end pressure behavior of the pump can be influenced in a staggered manner by simple variations of the rotor and stator components. It is possible to significantly influence the pump properties of the entire pump through the use of modular turbomolecular pump stages on a molecular pump stage. The basic structure of the downstream molecular pump is not affected.
  • FIG. 1 shows a section through a friction pump designed as a molecular pump
  • Figure 2 shows a partial section through the friction pump
  • Figures 3 and 4 further variations of different Reibungsvakuumpumpstu s.
  • the friction pump 1 shown in FIG. 1 has a first housing section 2. Part of this first housing section 2 is the outer cylinder 3, which is equipped with the flange 4. With the help of the flange 4, the friction pump 1 can be connected to the recipient to be evacuated either directly or via a reducer 5 with the flanges 6 and 7. The reducer 5 is required if the flange 4 of the pump 1 has a smaller or larger diameter than the flange of the recipient, not shown.
  • the rotor 9 is bell-shaped. It comprises the shaft 10 with its axis of rotation 8, the hub 11 and the cylindrical section 12. Inside the space 13 formed by the bell-shaped rotor 9 there are the drive motor 14 and at least the upper bearing of the two rotor bearings 15. The motor 14 and the Rotor bearings 15 are supported on the component 16 fixed to the housing.
  • the outside of the bell-shaped rotor 9 forms, together with the inside of the outer cylinder 3, the pumping surfaces of a molecular pump stage 3 12, or the annular gas delivery channel 20.
  • the inside can be designed of the housing cylinder 3 separate rings 17, 18, 19 may be provided.
  • the gases to be pumped are conveyed from the inlet 21 to the outlet, not shown.
  • a forevacuum pump, also not shown, is connected to the outlet during operation.
  • the rotor 9 In the area of the hub 11 on the high vacuum side, the rotor 9 is designed conically in such a way that its diameter increases in the direction of flow. A smooth inner surface of the outer cylinder 3 or the associated ring 17 is assigned to this area. Structures 22 serving for gas production are provided on the rotor 9 itself. For example, they can be designed as radial webs, the width of which decreases in the direction of flow, so that the molecular pump stage 3, 12 has an inlet stage 17, 22 with improved delivery capacity.
  • the rotor 9 is fastened by means of a screw 23 in the region of the high-vacuum end of the shaft 10.
  • the end face of the rotor 9 is equipped with a circular projection 25 which is concentric with the axis of rotation 8.
  • This projection 25 is part of centering means which are provided both on the rotor 9 and on the further rotor sections to be fastened on the end face of the rotor 9.
  • the molecular pump stage 3, 12 is preceded by a turbomolecular pump stage 26. This consists of the rotor section 27 with its rotor blades 28 and the housing section 29 with its stator blades 30.
  • the end face of the rotor section 27 facing the rotor 9 is provided with a recess 31 (centering means) which is concentric with the axis of rotation 8.
  • the diameter of this recess corresponds to the outside diameter of the circular projection 25 on the end face of the rotor 9, as a result of which the desired centering with respect to the axis of rotation 8 is achieved.
  • the housing section 29 is equipped with the flanges 32 and 33. With the flange 32 on the fore-vacuum side, the turbomolecular pump stage 26 is attached to the flange
  • the fastening of the rotor section 27 to the rotor 9 of the molecular pump stage expediently serves screws 34 which axially penetrate the rotor section 27 and are screwed into the end face of the rotor 9.
  • the position of the screws is indicated by dash-dotted lines 34.
  • the molecular pump stage 3, 12 is preceded by a special friction pump stage (filling stage 35), the housing section 36 of which has a smooth inner surface.
  • the rotor section 37 is designed as described in EU-A 363 503.
  • the rotor section 37 comprises a central part 38 and webs 39.
  • the webs form the structures which effect the gas delivery. Their width and their slope decrease from the suction side to the pressure side. This requires a conical design of the central part 38. It is particularly expedient if the taper of the hub 11 of the rotor 9 of the molecular pump stage 3, 12 continuously adjoins the taper of the central part 38 of the rotor section 37.
  • the housing section 36 On the fore-vacuum side, the housing section 36 is equipped with the flange 41, which is connected to the flange 4 of the molecular pump stage 3, 12. »On the inlet side, the reducer 5 closes welded to a component. Of course there is also the possibility of connecting the housing section 36 and the reducer 5 to one another via flanges. A reducer 5 according to FIG. 2 is then to be used together with a filling stage 35 according to FIG. 4.
  • a turbomolecular pump stage 26 and a filling stage 35 are arranged upstream of the molecular pump stage 3, 12 in the direction of flow.
  • the associated housing sections 3, 36, 29 are connected via flanges.
  • the connection of the Roto sections 9, 37, 27 is realized in the manner described for FIG. 2.
  • the respective centering means are appropriately equipped with identical diameters, so that the desired modular structure is possible. If two further pump stages are located upstream of the molecular pump stage 3, 12, then it is only necessary to use longer fastening screws 34 to fasten the two rotor sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Gasreibungsvakuumpumpe (1) mit mindestens zwei unterschiedlich gestalteten Pumpstufen (3, 12; 26; 35), welche jeweils einen Rotorabschnitt (9, 27, 37) und einen Gehäuseabschnitt (3, 29, 36) umfassen; um die Pumpe verschiedenen Einsatzfällen anpassen zu können, wird vorgeschlagen, daß hochvakuumseitig verschiedene Eingangsstufen aufsetzbar sind, daß die Pumpstufen lösbar miteinander verbunden sind.

Description

Gasreibungsvakuumpumpe
Die Erfindung bezieht sich auf eine Gasreibungsvakuumpumpe mit mindestens zwei unterschiedlich gestalteten Pumpstufen/ welche jeweils einen Rotorabschnitt und einen Statorabschnitt umfassen.
Zu den Reibungspumpen gehören Molekular- und Turbomolekularvaku¬ umpumpen. Bei Molekularpumpen sind eine sich bewegende Rotorwand und eine ruhende Statorwand so gestaltet und beabstandet, daß die von den Wandungen auf dazwischen befindliche Gasmoleküle über¬ tragenen Impulse eine bevorzugte Richtung haben. In der Regel sind Rotor- und/oder Statorwand mit gewindeartigen Vertiefungen oder Vorsprüngen ausgerüstet. Turbomolekularvakuumpumpen weisen nach Art einer Turbine ineinandergreifende Stator- und Rotor¬ schaufelreihen auf.
Turbomolekularpumpen haben eine relativ niedrige Kompression (Druckverhältnis von druckseitigem Druck zu saugseitigem Druck) und relativ hohes Saugvermögen (Pumpgeschwindigkeit, Volumen¬ durchfluß pro Zeiteinheit). Ihre Herstellung und Montage ist aufwendig und teuer. Darüber hinaus benötigen sie einen Vorvaku- umdruck von etwa 10_a rabar. Molekularpumpen haben ebenfalls eine - relativ hohe Kompression, ihr Saugvermögen ist jedoch relativ klein. Sie fördern bis zu Drücken von 10 mbar und mehr, so daß der für die Vorvakuumerzeugung erforderliche Aufwand geringer als bei Turbomolekulapumpen ist. Es ist deshalb bekannt, Gasrei¬ bungsvakuumpumpen mit unterschiedlich gestalteten Pumpstufen auszurüsten, wobei die vorvakuumseitige Pumpstufe wegen der besseren Vorvakuumbeständigkeit in der Regel eine Molekularpump¬ stufe ist. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Gasreibungsvakuumpumpe der eingangs genannten Art zu schaffen, die in einfacher Weise an verschiedene Einsatzfälle angepaßt werden kann.
Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst.
Die vorgeschlagenen Maßnahmen haben den Vorteil, daß durch einfache Variationen der Rotor- und Statorbauteile das Enddruck¬ verhalten der Pumpe gestaffelt beeinflußt werden kann. Allein durch modular aufsetzbare Turbomolekularpumpstufen auf eine Molekularpumpstufe ist es möglich, die Pumpeigenschaften der gesamten Pumpe deutlich zu beeinflussen. Der grundsätzlich Aufbau der nachgeschalteten Molekularpumpe wird nicht beeinflußt.
Weitere Vorteile und Einzelheiten der Erfindung sollen an Hand von in den Figuren 1 bis 4 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
Figur 1 einen Schnitt durch eine als Molekularpumpe ausgebildete Reibungspumpe,
Figur 2 einen Teilschnitt durch die Reibungspumpe nach
Figur 1, ausgerüstet mit einer hochvakuumseitig ange¬ ordneten Turbomolekularpumpstufe sowie
Figuren 3 und 4 weitere Variationen von unterschiedlichen Reibungsvakuumpumpstu en.
Die in Figur 1 dargestellte Reibungspumpe 1 weist einen ersten Gehäuseabschnitt 2 auf. Bestandteil dieses ersten Gehäuseab¬ schnittes 2 ist der äußere Zylinder 3, der mit dem Flansch 4 ausgerüstet ist. Mit Hilfe des Flansches 4 kann die Reibungspumpe 1 entweder unmittelbar oder über ein Reduzierstück 5 mit den Flanschen 6 und 7 an den zu evakuierenden Rezipienten ange¬ schlossen werden. Das Reduzierstück 5 ist dann erforderlich, wenn der Flansch 4 der Pumpe 1 einen kleineren oder größeren Durch¬ messer hat als der Flansch des nicht dargestellten Rezipienten.
Der Rotor 9 ist glockenförmig ausgebildet. Er umfaßt die Welle 10 mit ihrer Drehachse 8, die Nabe 11 und den zylindrischen Ab¬ schnitt 12. Innerhalb des vom glockenförmigen Rotor 9 gebildeten Raumes 13 befinden sich der Antriebsmotor 14 und zumindest das obere Lager der beiden Rotorlagerungen 15. Der Motor 14 und die Rotorlagerungen 15 stützen sich auf dem gehäusefesten Bauteil 16 ab.
Die Außenseite des glockenförmigen Rotors 9 bildet zusammen mit der Innenseite des äußeren Zylinders 3 die pumpaktiven Flächen einer Molekularpumpstufe 3 12, bzw. den ringförmigen Gasförder¬ kanal 20. In an sich bekannter Weise (EU-A-408 792) können zur Gestaltung der Innenseite des Gehäusezylinders 3 separate Ringe 17, 18, 19 vorgesehen sein. Die zu pumpenden Gase werden vom Einlaß 21 bis zum nicht dargestellten Auslaß gefördert. An den Auslaß wird während des Betriebs eine ebenfalls nicht darge¬ stellte Vorvakuumpumpe angeschlossen.
Im Bereich der hochvakuumseitig gelegenen Nabe 11 ist der Rotor 9 derart konisch gestaltet, daß sein Durchmesser in Strömungsrich- tung zunimmt. Diesem Bereich ist eine glatte innere Oberfläche des äußeren Zylinders 3 bzw. des zugehörigen Ringes 17 zugeord¬ net. Der Gasförderung dienende Strukturen 22 sind am Rotor 9 selbst vorgesehen. Sie können beispielsweise als radiale Stege ausgebildet sein, deren Breite in Strömungsrichtung abnimmt, so daß die Molekularpumpstufe 3, 12 eine Einlaufstufe 17, 22 mit verbesserter Förderleistung hat.
Im Bereich des hochvakuumseitigen Endes der Welle 10 ist der Rotor 9 mittels einer Schraube 23 befestigt. Die Stirnseite des Rotors 9 ist mit einem kreisförmigen, zur Drehachse 8 konzen¬ trischen Vorsprung 25 ausgerüstet. Dieser Vorsprung 25 ist Bestandteil von Zentriermitteln, die sowohl am Rotor 9 als auch an den auf der Stirnseite des Rotors 9 zu befestigenden weiteren Rotorabschnitten vorgesehen sind. Beim Ausführungsbeispiel nach Figur 2 ist der Molekularpumpstufe 3, 12 eine Turbomolekularpumpstufe 26 vorgelagert. Diese besteht aus dem Rotorabschnitte 27 mit seinen Rotorschaufeln 28 und dem Gehäuseabschnitt 29 mit seinen Statorschaufeln 30. Die dem Rotor 9 zugewandte Stirnseite des Rotorabschnittes 27 ist mit einer zur Drehachse 8 konzentrischen Aussparung 31 (Zentriermittel) verse¬ hen. Der Durchmesser dieser Aussparung entspricht dem Außendurch¬ messer des kreisförmigen Vorsprunges 25 auf der Stirnseite des Rotors 9, wodurch die gewünschte Zentrierung zur Drehachse 8 erreicht wird. Der Gehäuseabschnitt 29 ist mit den Flanschen 32 und 33 ausgerüstet. Mit dem vorvakuumseitig gelegenen Flansch 32 erfolgt die Befestigung der Turbomolekularpumpstufe 26 am Flansch
4 der Molekularpumpstufe 3, 12. An den Flansch 33 wird entweder unmittelbar der zu evakuierende Rezipient oder das Reduzierstück
5 montiert.
Der Befestigung des Rotorabschnittes 27 am Rotor 9 der Moleku¬ larpumpstufe dienen zweckmäßig Schrauben 34, welche den Rotorab¬ schnitt 27 axial durchsetzen und in die Stirnseite des Rotors 9 eingeschraubt werden. Die Lage der Schrauben ist durch strich¬ punktierte Linien 34 angedeutet.
Beim Ausführungsbeispiel nach Figur 3 ist der Molekularpumpstufe 3, 12 eine besondere Reibungspumpstufe (Füllstufe 35) vorgela¬ gert, deren Gehäuseabschnitt 36 eine glatte innere Oberfläche hat. Der Rotorabschnitt 37 ist derart gestaltet, wie es in der EU-A 363 503 beschrieben ist. Der Rotorabschnitt 37 umfaßt einen Zentralteil 38 und Stege 39. Die Stege bilden die die Gasförde¬ rung bewirkenden Strukturen. Ihre Breite und ihre Steigung nehmen von der Saugseite zur Druckseite hin ab. Dieses setzt eine konische Gestaltung des Zentralteiles 38 voraus. Besonders zweckmäßig ist es, wenn sich die Konizität der Nabe 11 des Rotors 9 der Molekularpumpstufe 3, 12 stetig an die Konizität des Zentralteiles 38 des Rotorabschnittes 37 anschließt.
Vorvakuumseitig ist der Gehäuseabschnitt 36 mit dem Flansch 41 ausgerüstet, der mit dem Flansch 4 der.Molekularpumpstufe 3, 12 verbunden wird» Einlaßseitig ist es mit dem Reduzierstück 5 zu einem Bauteil verschweißt. Es besteht natürlich auch die Mög¬ lichkeit, Gehäuseabschnitt 36 und Reduzierstück 5 über Flansche miteinander zu verbinden. Ein Reduzierstück 5 nach Fig. 2 ist dann zusammen mit einer Füllstufe 35 nach Fig. 4 zu verwenden.
Beim Ausführungsbeispiel nach Figur 4 sind der Molekularpumpstufe 3, 12 in Strömungsrichtung eine Turbomolekularpumpstufe 26 und eine Füllstufe 35 vorgelagert. Die Verbindung der zugehörigen Gehäuseabschnitte 3, 36, 29 erfolgt über Flansche. Die Verbindung der Roto abschnitt 9, 37, 27 ist in der Weise realisiert, wie es zur Figur 2 beschrieben wurde. Die jeweiligen Zentriermittel sind zweckmäßig mit identischen Durchmessern ausgerüstet, so daß der gewünschte modulare Aufbau möglich ist. Sind der Molekularpump¬ stufe 3, 12 hochvakuumseitig zwei weitere Pumpstufen vorgelagert, dann ist es zur Befestigung der beiden Rotorabschnitte lediglich erforderlich, längere Befestigungsschrauben 34 zu verwenden.

Claims

GasreibungsvakuumpumpePATENTANSPRÜCHE
1. Gasreibungsvakuumpumpe (1) mit mindestens zwei unterschied¬ lich gestalteten Pumpstufen (3, 12; 26; 35), welche jeweils einen Rotorabschnitt (9, 27, 37) und einen Gehäuseabschnitt (3, 29, 36) umfassen, dadurch gekennzeichnet, daß die Pumpstufen lösbar miteinander verbunden sind.
2. Pumpe nach Anspruch 1 mit einer vorvakuumseitigen Pumpstufe (3, 12), welche als Molekularpumpe ausgebildet ist, dadurch gekennzeichnet, daß die weitere, hochvakuumseitig angeord¬ nete Pumpstufe (26) als Turbomolekularpumpe ausgebildet ist.
3. Pumpe nach Anspruch 1 mit einer vorvakuumseitigen Pumpstufe (3, 12), welche als Molekularpumpe ausgebildet ist, dadurch gekennzeichne , daß die hochvakuumseitig angeordnete Pump¬ stufe (35) eine Füllstufe mit einem Stator (36) und einem Rotor (38) ist, wobei der Rotor (38) mit einer die Gasför¬ derung bewirkenden Struktur versehen ist, die aus radial sich erstreckenden Stegen (39) besteht, deren Steigung und deren Breite von der Saugseite zur Druckseite hin abnehmen.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, daß der Füllstufe (35) eine Turbomolekularpumpstufe (26) vorgelagert ist.
5. Pumpe nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß ein im wesentlichen zylindrischer, erster Rotorabschnitt (12) und ein im wesentlichen zylindrischer erster Gehäuseabschnitt (3) die vorvakuumseitige Molekular¬ pumpstufe mit einem im Querschnitt ringförmigen Gasförder¬ kanal (20) bilden, daß ein zweiter Rotorabschnitt (27, 37) und ein zweiter Gehäuseabschnitt (29, 36) die zweite, hochvakuumseitig gelegene Pumpstufe (29 bzw. 35) bilden und daß die beiden Pumpstufen lösbar miteinander verbunden sind.
6. Pumpe nach einem der Ansprüche 2 bis 5, dadurch gekennzeich¬ net, daß der Rotor (9) hochvakuumseitig mit in Strömungsrich¬ tung zunehmendem Durchmesser konisch gestaltet ist (Nabe 11) und daß er in seinem konischen Abschnitt der Gasförderung dienende Strukturen (22) trägt.
7. Pumpe nach Anspruch 3 und Anspruch 6, dadurch gekennzeich¬ net, daß die Füllstufe (35) ein Zentralteil (38) aufweist, der mit in Strömungsrichtung zunehmendem Durchmesser ge¬ staltet ist.
8. Pumpe nach Anspruch 7, dadurch gekennzeichnet, daß sich die Konizität der Nabe (11) des Rotors (9) stetig an die Konizi¬ tät des Zentralteiles (38) der Füllstufe (35) anschließt.
9. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die einander zugewandten Stirnseiten der lösbar miteinander zu verbindenden Rotorabschnitte (9, 27, 37) mit Zentriermitteln (25, 31) ausgerüstet sind.
10. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet. daß der Gehäuseabschnitt (29 oder 36) der hochvakuumseitig angeordneten Pumpstufe (26 oder 35) mit einem Reduzierstück (5) einstückig ausgebildet ist.
PCT/EP1993/000984 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe WO1993023672A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59300970T DE59300970D1 (de) 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe.
US08/338,452 US5553998A (en) 1992-05-16 1993-04-23 Gas friction vacuum pump having at least three differently configured pump stages releasably connected together
EP93911777A EP0640185B1 (de) 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe
JP5519810A JPH07506648A (ja) 1992-05-16 1993-04-23 ガス摩擦真空ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4216237.8 1992-05-16
DE4216237A DE4216237A1 (de) 1992-05-16 1992-05-16 Gasreibungsvakuumpumpe

Publications (1)

Publication Number Publication Date
WO1993023672A1 true WO1993023672A1 (de) 1993-11-25

Family

ID=6459056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/000984 WO1993023672A1 (de) 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe

Country Status (5)

Country Link
US (1) US5553998A (de)
EP (1) EP0640185B1 (de)
JP (1) JPH07506648A (de)
DE (2) DE4216237A1 (de)
WO (1) WO1993023672A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007989A1 (de) * 1996-08-16 1998-02-26 Leybold Vakuum Gmbh Reibungsvakuumpumpe
WO1999015793A1 (de) * 1997-09-24 1999-04-01 Leybold Vakuum Gmbh Compoundpumpe
EP1205667A2 (de) * 2000-11-13 2002-05-15 Pfeiffer Vacuum GmbH Gasreibungspumpe

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216237A1 (de) * 1992-05-16 1993-11-18 Leybold Ag Gasreibungsvakuumpumpe
JPH0886298A (ja) * 1994-09-19 1996-04-02 Hitachi Ltd ドライターボ真空ポンプ
GB9525337D0 (en) * 1995-12-12 1996-02-14 Boc Group Plc Improvements in vacuum pumps
DE59912626D1 (de) * 1998-05-26 2006-02-16 Leybold Vakuum Gmbh Reibungsvakuumpumpe mit chassis, rotor und gehäuse sowie einrichtung, ausgerüstet mit einer reibungsvakuumpumpe dieser art
JP3092063B2 (ja) 1998-06-17 2000-09-25 セイコー精機株式会社 ターボ分子ポンプ
US6328527B1 (en) * 1999-01-08 2001-12-11 Fantom Technologies Inc. Prandtl layer turbine
JP3788558B2 (ja) 1999-03-23 2006-06-21 株式会社荏原製作所 ターボ分子ポンプ
JP3961155B2 (ja) * 1999-05-28 2007-08-22 Bocエドワーズ株式会社 真空ポンプ
US6514035B2 (en) * 2000-01-07 2003-02-04 Kashiyama Kougyou Industry Co., Ltd. Multiple-type pump
DE10008691B4 (de) * 2000-02-24 2017-10-26 Pfeiffer Vacuum Gmbh Gasreibungspumpe
JP5149472B2 (ja) * 2000-05-15 2013-02-20 プファイファー・ヴァキューム・ゲーエムベーハー ガス摩擦ポンプ
DE10111546A1 (de) 2000-05-15 2002-01-03 Pfeiffer Vacuum Gmbh Gasreibungspumpe
DE10046766A1 (de) * 2000-09-21 2002-04-11 Leybold Vakuum Gmbh Compound-Reibungsvakuumpumpe
US7717684B2 (en) * 2003-08-21 2010-05-18 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
GB0503946D0 (en) * 2005-02-25 2005-04-06 Boc Group Plc Vacuum pump
US7457661B2 (en) * 2005-03-24 2008-11-25 Medtronic Vascular, Inc. Catheter-based, dual coil photopolymerization system
US7326034B2 (en) * 2005-09-14 2008-02-05 Schlumberger Technology Corporation Pump apparatus and methods of making and using same
US7845413B2 (en) 2006-06-02 2010-12-07 Schlumberger Technology Corporation Method of pumping an oilfield fluid and split stream oilfield pumping systems
JP5369591B2 (ja) 2008-10-03 2013-12-18 株式会社島津製作所 ターボ分子ポンプ
US8152442B2 (en) * 2008-12-24 2012-04-10 Agilent Technologies, Inc. Centripetal pumping stage and vacuum pump incorporating such pumping stage
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US11274671B2 (en) * 2011-09-14 2022-03-15 Roger L. Bottomfield Turbine cap for turbo-molecular pump
JP6706553B2 (ja) * 2015-12-15 2020-06-10 エドワーズ株式会社 真空ポンプ及び該真空ポンプに搭載される回転翼、反射機構
JP6885851B2 (ja) * 2017-10-27 2021-06-16 エドワーズ株式会社 真空ポンプ、ロータ、ロータフィン、およびケーシング
GB2592618A (en) * 2020-03-03 2021-09-08 Edwards Ltd Turbine blades and methods of manufacture of turbine blades

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525698A1 (fr) * 1982-04-21 1983-10-28 Hitachi Ltd Pompe turbomoleculaire
EP0159464A1 (de) * 1984-03-24 1985-10-30 Leybold Aktiengesellschaft Molekularvakuumpumpe
FR2630167A1 (fr) * 1988-01-05 1989-10-20 Sholokhov Valery Pompe moleculaire a vide
EP0363503A1 (de) * 1988-10-10 1990-04-18 Leybold Aktiengesellschaft Pumpenstufe für eine Hochvakuumpumpe
EP0408792A1 (de) * 1989-07-20 1991-01-23 Leybold Aktiengesellschaft Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224009A5 (de) * 1973-03-30 1974-10-25 Cit Alcatel
JPS6034594U (ja) * 1983-08-16 1985-03-09 セイコー精機株式会社 縦型タ−ボ分子ポンプ
JPS60182394A (ja) * 1984-02-29 1985-09-17 Shimadzu Corp タ−ボ分子ポンプ
US4732529A (en) * 1984-02-29 1988-03-22 Shimadzu Corporation Turbomolecular pump
DE3613344A1 (de) * 1986-04-19 1987-10-22 Pfeiffer Vakuumtechnik Turbomolekular-vakuumpumpe fuer hoeheren druck
JPS6341695A (ja) * 1986-08-07 1988-02-22 Seiko Seiki Co Ltd タ−ボ分子ポンプ
JPS6385288A (ja) * 1986-09-29 1988-04-15 Hitachi Ltd 真空ポンプ
JPS6463698A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Turbo vacuum pump
DE58907244D1 (de) * 1989-07-20 1994-04-21 Leybold Ag Reibungspumpe mit glockenförmigem Rotor.
DE4216237A1 (de) * 1992-05-16 1993-11-18 Leybold Ag Gasreibungsvakuumpumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525698A1 (fr) * 1982-04-21 1983-10-28 Hitachi Ltd Pompe turbomoleculaire
EP0159464A1 (de) * 1984-03-24 1985-10-30 Leybold Aktiengesellschaft Molekularvakuumpumpe
FR2630167A1 (fr) * 1988-01-05 1989-10-20 Sholokhov Valery Pompe moleculaire a vide
EP0363503A1 (de) * 1988-10-10 1990-04-18 Leybold Aktiengesellschaft Pumpenstufe für eine Hochvakuumpumpe
EP0408792A1 (de) * 1989-07-20 1991-01-23 Leybold Aktiengesellschaft Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007989A1 (de) * 1996-08-16 1998-02-26 Leybold Vakuum Gmbh Reibungsvakuumpumpe
WO1999015793A1 (de) * 1997-09-24 1999-04-01 Leybold Vakuum Gmbh Compoundpumpe
US6422829B1 (en) 1997-09-24 2002-07-23 Leybold Vakuum Gmbh Compound pump
EP1205667A2 (de) * 2000-11-13 2002-05-15 Pfeiffer Vacuum GmbH Gasreibungspumpe
EP1205667A3 (de) * 2000-11-13 2002-11-20 Pfeiffer Vacuum GmbH Gasreibungspumpe

Also Published As

Publication number Publication date
JPH07506648A (ja) 1995-07-20
US5553998A (en) 1996-09-10
DE59300970D1 (de) 1995-12-21
EP0640185A1 (de) 1995-03-01
DE4216237A1 (de) 1993-11-18
EP0640185B1 (de) 1995-11-15

Similar Documents

Publication Publication Date Title
EP0640185B1 (de) Gasreibungsvakuumpumpe
DE2412624C2 (de) Molekularvakuumpumpenanordnung
EP1252445B1 (de) Turbomolekularpumpe
EP0828080A2 (de) Gasreibungspumpe
EP0408792B1 (de) Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe
EP2295812B1 (de) Vakuumpumpe
EP1067290B1 (de) Vakuumpumpe
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
DE3728154A1 (de) Mehrstufige molekularpumpe
EP1017944B1 (de) Compoundpumpe
EP1243796B1 (de) Vakuumpumpe
EP1119709B1 (de) Reibungsvakuumpumpe mit stator und rotor
EP2933497A2 (de) Vakuumpumpe
WO2002031360A1 (de) Pumpe als seitenkanalpumpe
DE3032967C2 (de)
EP2565464B1 (de) Vakuumpumpe
EP1319131A1 (de) Compound-reibungsvakuumpumpe
DE10224604B4 (de) Evakuierungseinrichtung
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP1119710B1 (de) Reibungsvakuumpumpe
EP1200739A1 (de) Reibungsvakuumpumpe mit pumpaktiven elementen
EP3267040B1 (de) Turbomolekularpumpe
DE3521253A1 (de) Spiralverdichter
DE9301758U1 (de) Mehrstufige Vakuumpumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993911777

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08338452

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993911777

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993911777

Country of ref document: EP