EP1119710B1 - Reibungsvakuumpumpe - Google Patents

Reibungsvakuumpumpe Download PDF

Info

Publication number
EP1119710B1
EP1119710B1 EP99938360A EP99938360A EP1119710B1 EP 1119710 B1 EP1119710 B1 EP 1119710B1 EP 99938360 A EP99938360 A EP 99938360A EP 99938360 A EP99938360 A EP 99938360A EP 1119710 B1 EP1119710 B1 EP 1119710B1
Authority
EP
European Patent Office
Prior art keywords
rotor
stator
pump according
unit
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99938360A
Other languages
English (en)
French (fr)
Other versions
EP1119710A1 (de
Inventor
Heinrich Engländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1119710A1 publication Critical patent/EP1119710A1/de
Application granted granted Critical
Publication of EP1119710B1 publication Critical patent/EP1119710B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations

Definitions

  • the invention relates to a friction vacuum pump, which has a stator, a rotor and a housing and with which during their operation a tight
  • the gap between the stator and rotor must be observed got to.
  • the characteristics of this type of machine depend largely depends on the size of the gap between the stator and rotor off.
  • Machines of the type concerned here are built usually such that the rotor to avoid of vibration transmissions from the stator elastic is decoupled. It is customary to use elastomer rings for the bearings supported in the housing. From DE-U-80 27 697 (see also FR-A-2 310 481) is known, the rotor with a spindle bearing equip and this overall via O-rings in Support the housing. In constructions of this type a minimal gap between stator and rotor of some Tenths of a millimeter should not be undershot because the elastomers used the technical limit to Set narrowing of the column.
  • the present invention is based on the object to design a machine of the type concerned here in such a way that they have narrower gaps between stator and rotor can be operated as before.
  • stator and rotor are coupled to one another in terms of vibration and that consists of the stator and rotor System together via vibrating elements in the housing is supported.
  • "Coupled with each other in terms of vibration technology” is supposed to mean that rotor unit and stator unit execute essentially identical vibrations, so the size of the column between the stator and Rotor components much smaller than previously executed can be.
  • the common vibrations of the systems consisting of rotor and stator are used by Vibrating elements added, over which this system supported in the housing.
  • a rigid coupling of the rotor is particularly advantageous and stator.
  • the pumps 1 according to FIGS. 1 and 2 each exist of an outer housing 2 and one located therein Rotor / stator system 3, which is based on vibrating elements 4, 5 is supported in the housing 2.
  • the housing 2 carries On the suction side the connection flange 6 and one on the pressure side Connection cover 7.
  • the rotor-stator system 3 comprises the rotor unit 8 and the stator unit 9.
  • the central shaft is part of the rotor unit 8 11, the suction side of the substantially bell-shaped designed rotor 12 carries.
  • the shaft is on the pressure side 11 equipped with the motor rotors 13 of the drive motor.
  • the stator of the drive motor is designated 14. It is supported in the housing 2.
  • Components of the stator unit 9 are three sleeve components 15, 16, 17, one of which (15) on the pressure side, the the other two (16, 17) on the suction side (inside and outside the wall 18 of the bell-shaped rotor 12) are arranged.
  • the pressure side end of the sleeve 15 is equipped with an inward edge 21, the inside as a sliding fit 22 for the pressure side Shaft bearing 23 is formed.
  • the edge 21 is equipped with a receptacle for an O-ring 24 equipped with an elastomeric material.
  • a corresponding one Recording is on the connection cover 7 of the housing 2 provided.
  • the recordings are designed such that the O-ring 24 next to the Function of sealing the function of a first, pressure side located vibrating element 5, about the supports the rotor-stator system 3 in the housing 2.
  • Other oscillating elements can also be used in place of the O-ring 23 (e.g. Simmerrings, flat rings, piston seals) be provided.
  • the connecting flange 6 is on the suction side with an inward directed stage 31 for the inclusion of another O-ring 32 or another vibrating element. There is a recording corresponding to this recording itself in the area of the end face of the sleeve 16.
  • the O-ring 32 forms the second in addition to the sealing function Vibrating element 4, over which the rotor-stator system 3 supported in the housing 2.
  • the housing 2 forms a Adapter sleeve together with cover 7 and connection flange 6 clamps the rotor-stator system 3. With appropriate Housing 2 and connection flange can be dimensioned 6 can also be in one piece. additionally the sleeve 16 is supported on a step-like extension 29 in the sleeve 15.
  • the suction end of the inner sleeve 16 is with a equipped inward edge 34, the inside a sliding fit 35 for the suction side Shaft bearing 36 forms. Furthermore is in this Area an annular spring 37, the necessary bearing contact forces generated.
  • the rotor unit 8 and the stator unit 9 via the bearings 23, 36 and Sliding fits 22, 35 rigidly coupled together. This will reduce the game size you want between Stator and rotor reached.
  • the rotor-stator system 3 is supported in the housing 2 from.
  • the design of the vibrating elements as O-rings has the advantage of being a sealing function at the same time can take over. They ensure a vacuum tight Separation of the delivery rooms located in the inner housing and the atmosphere. Appropriately surrounds another O-ring 38 the outer periphery of the rim 28 which is the inner Sleeve 16 carries, so that in the area of the union nut 27 vacuum tightness is guaranteed.
  • the Stator unit 9 practically forms a second inner one Casing. It is vacuum tight, so the outer casing 2 can be equipped with louvers 39.
  • the embodiment of Figure 1 is a single flow Turbomolecular vacuum pump with one from the suction side to the pressure side tapering delivery chamber 40 is formed.
  • the outer sleeve 17 carries on its inside Stator blade rows 42, the outside of the rotor wall 18 rows of rotor blades 41.
  • the path of the extracted gases is indicated by arrows 43.
  • You step through the connecting flange 6 in the with the blades 41, 42nd equipped conveying space and get through openings 44 in the inner sleeve 16 along the shaft 11 and through openings 45 in the edge 21 to the outlet opening 46.
  • the embodiment of Figure 2 is a three-stage Molecular pump.
  • the inside of the sleeve 17 and the outside of the sleeve 16 are each in the amount of Wall 18 of the rotor 12 equipped with a thread 47, 48, which together with the cylindrical rotor wall 18 effect the desired gas production in two stages.
  • the outside of the shaft 11, which is in the range of Sleeve 16 has an enlarged diameter, is with equipped with a thread 49 and forms together with the inside of the sleeve 16, the third pump stage.
  • the path of the extracted gases is indicated by arrows 51. They come in through the connecting flange 6 the outer pump stage. This pump stage is useful a filling stage consisting of a blade ring 52 upstream.
  • FIG. 2 can in simpler Modified to a single-stage friction vacuum pump become. Without sleeve 17, rotor bell 18 and union nut 27 only the third pump stage would be present and effective. The edges 26 and 28 as well as the thread 48 could be omitted. Another requirement would be that the diameter of the vibrating and sealing element 4,32 and the end face of the sleeve 16 each other correspond so that the rotor-stator system 3 elastic can be supported in the housing 2.7.
  • stator 9 and rotor unit 8 rigid in terms of vibration coupled with each other (sliding fits 35, 22).
  • At the Embodiment according to Figure 2 is between the upper bearing 36 and the inside of the rim 34 in the O-ring 63 with a compared to the diameter of the O-rings 24.32 much smaller diameter.
  • This o-ring 63 only serves to bridge the fit game. A major influence on the choice of The O-ring has gaps between the rotor and stator units 63 not.
  • the implementation of the invention is for small turbomolecular pumps of particular advantage. As it gets smaller The damaging part of the backflow takes up the size based on the gas flow to and thereby disproportionately worsens the vacuum technology Characteristics of a pump. By the invention Reduction of the gap between the rotor and Stator with the present new concept can be significantly improve the vacuum data. The conversely means that this creates a pump in this size still with economically reasonable effort can produce. The fact also contributes to this at that the pump is made from relatively few parts can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die Erfindung bezieht sich auf eine Reibungsvakuumpumpe, die einen Stator, einen Rotor und ein Gehäuse aufweist und bei der während ihres Betriebes ein enger Spalt zwischen Stator und Rotor eingehalten werden muss. Die Eigenschaften von Maschinen dieser Art hängen maßgeblich von der Größe des Spaltes zwischen Stator und Rotor ab.
Der Aufbau von Maschinen der hier betroffenen Art erfolgt üblicherweise derart, dass der Rotor zur Vermeidung von Schwingungsübertragungen vom Stator elastisch entkoppelt ist. Üblich ist es, die Lagerungen über Elastomerringe im Gehäuse abzustützen. Aus der Schrift DE-U-80 27 697 (Siehe auch FR-A-2 310 481) ist bekannt, den Rotor mit einer Spindellagerung auszurüsten und diese insgesamt über O-Ringe im Gehäuse abzustützen. Bei Konstruktionen dieser Art darf ein minimaler Spalt zwischen Stator und Rotor von einigen Zehntel-Millimeter nicht unterschritten werden, da die verwendeten Elastomere die technische Grenze zur Verengung der Spalte setzen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Maschine der hier betroffenen Art derart zu gestalten, dass sie mit engeren Spalten zwischen Stator und Rotor als bisher betrieben werden können.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass Stator und Rotor schwingungstechnisch miteinander gekoppelt sind und dass das aus Stator und Rotor bestehende System gemeinsam über Schwingelemente im Gehäuse gehaltert ist. "Schwingungstechnisch miteinander gekoppelt" soll bedeuten, dass Rotoreinheit und Statoreinheit im wesentlichen identische Schwingungen ausführen, so dass die Größe der Spalte zwischen den Stator- und Rotorbestandteilen wesentlich kleiner als bisher ausgeführt werden können. Die gemeinsamen Schwingungen des aus Rotor und Stator bestehenden Systems werden von den Schwingelementen aufgenommen, über die sich dieses System im Gehäuse abstützt.
Besonders vorteilhaft ist eine starre Kopplung von Rotor und Stator. Bei einer Lösung dieser Art ist die Größe des Spaltes zwischen Stator und Rotor nur noch von den fertigungstechnisch machbaren Toleranzen der gespritzten oder spanend gefertigten Teile abhängig, die wesentlich enger sind als die bisherigen, durch die verwendeten Elastomere zwischen Stator und Rotor einzuhaltenden Spalte.
Aus fertigungstechnischen Gründen kann jedoch eine starre Kopplung häufiger nicht realisiert werden. In solchen Fällen ist es zweckmäßig, wenn sich zwischen Statoreinheit und Rotoreinheit ein oder mehrere Schwingelemente befinden, die zwar noch relative Schwingbewegungen zulassen; die maximale Amplitude dieser Bewegungen kann jedoch wesentlich kleiner gewählt werden als es beim Stand der Technik notwendig war, da die maßgeblichen - gemeinsamen - Schwingbewegungen von Stator und Rotor von den sich im Gehäuse abstützenden Schwingelementen aufgenommen werden. Eine drastische Verkleinerung der Spalte zwischen den Stator- und Rotorbestandteilen ist deshalb auch bei dieser Lösung noch möglich. Beispielsweise können die O-Ringe zwischen Stator- und Rotoreinheit wesentlich steifer sein als die äußeren Schwingelemente, so dass sich unter Berücksichtigung der jeweils schwingenden Massen z.B. ein Schwingungsamplitudenverhältnis innen zu außen wie 20:80 ergibt.
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 und 2 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
  • Figur 1 einen Schnitt durch eine Turbomolekularvakuumpumpe nach der Erfindung und
  • Figur 2 einen Schnitt durch eine Molekularvakuumpumpe.
Die Pumpen 1 nach den Figuren 1 und 2 bestehen jeweils aus einem äußeren Gehäuse 2 und einem darin befindlichen Rotor- / Stator-System 3, das sich über Schwingelemente 4, 5 im Gehäuse 2 abstützt. Das Gehäuse 2 trägt saugseitig den Anschlussflansch 6 und druckseitig einen Anschlussdeckel 7. Das Rotor-Stator-System 3 umfasst die Rotoreinheit 8 und die Statoreinheit 9.
Bestandteil der Rotoreinheit 8 ist die zentrale Welle 11, die saugseitig den im wesentlichen glockenförmig gestalteten Rotor 12 trägt. Druckseitig ist die Welle 11 mit den Motorläufern 13 des Antriebsmotors ausgerüstet. Der Stator des Antriebsmotors ist mit 14 bezeichnet. Er stützt sich im Gehäuse 2 ab.
Bestandteile der Statoreinheit 9 sind drei Hülsenbauteile 15, 16, 17, von denen eines (15) druckseitig, die beiden anderen (16, 17) saugseitig (innerhalb und außerhalb der Wandung 18 des glockenförmigen Rotors 12) angeordnet sind. Das druckseitige Ende der Hülse 15 ist mit einem einwärts gerichteten Rand 21 ausgerüstet, dessen Innenseite als Schiebepassung 22 für das druckseitige Wellenlager 23 ausgebildet ist. Außerdem ist der Rand 21 mit einer Aufnahme für einen O-Ring 24 aus elastomerem Werkstoff ausgerüstet. Eine dazu korrespondierende Aufnahme ist am Anschlussdeckel 7 des Gehäuses 2 vorgesehen. Die Aufnahmen (Nuten, Winkel oder dgl.) sind derart ausgebildet, dass der O-Ring 24 neben der Funktion des Dichtens die Funktion eines ersten, druckseitig gelegenen Schwingelementes 5 hat, über das sich das Rotor-Stator-System 3 im Gehäuse 2 abstützt. An Stelle des O-Ringes 23 können auch andere Schwingelemente (z.B. Simmerringe, Flachringe, Kolbendichtungen) vorgesehen sein.
Zur Bildung eines inneren vakuumdichten Gehäuses ist die Hülse 15 saugseitig mit einem nach außen gerichteten Rand 26 versehen, an dem die beiden weiteren Hülsen 16, 17 befestigt sind. Das geschieht mit einer von der Druckseite her auf die äußere Hülse 17 aufschraubbaren Überwurfmutter 27, die den äußeren Rand 26 an der Hülse 15 und einen äußeren Rand 28, der Bestandteil der inneren Hülse 16 ist, einspannt.
Der Anschlußflansch 6 ist saugseitig mit einer einwärts gerichteten Stufe 31 für die Aufnahme eines weiteren O-Ringes 32 oder eines anderen Schwingelementes versehen. Eine zu dieser Aufnahme korrespondierende Aufnahme befindet sich im Bereich der Stirnseite der Hülse 16. Der O-Ring 32 bildet neben der Dichtfunktion das zweite Schwingelement 4, über das sich das Rotor-Stator-System 3 im Gehäuse 2 abstützt. Das Gehäuse 2 bildet eine Spannhülse, die zusammen mit Deckel 7 und Anschlußflansch 6 das Rotor-Stator-System 3 einspannt. Bei entsprechender Dimensionierung können Gehäuse 2 und Anschlussflansch 6 auch einstückig sein. Zusätzlich stützt sich die Hülse 16 auf einer stufenartigen Erweiterung 29 in der Hülse 15 ab.
Das saugseitige Ende der inneren Hülse 16 ist mit einem nach innen gerichteten Rand 34 ausgerüstet, dessen Innenseite eine Schiebepassung 35 für das saugseitige Wellenlager 36 bildet. Weiterhin befindet sich in diesem Bereich eine Ringfeder 37, die die nötigen Lageranstellkräfte erzeugt.
Bei beiden Ausführungsbeispielen sind die Rotoreinheit 8 und die Statoreinheit 9 über die Lager 23, 36 und die Schiebepassungen 22, 35 starr miteinander gekoppelt. Dadurch wird die gewünschte Spielverkleinerung zwischen Stator und Rotor erreicht. Über die Schwingelemente 4 und 5 stützt sich das Rotor-Stator-System 3 im Gehäuse 2 ab. Die Ausbildung der Schwingelemente als O-Ringe hat den Vorteil, dass sie gleichzeitig Dichtfunktion übernehmen können. Sie sorgen für eine vakuumdichte Trennung der im inneren Gehäuse gelegenen Förderräume und der Atmosphäre. Zweckmäßig umgibt ein weiterer O-Ring 38 den äußeren Umfang des Randes 28, der die innere Hülse 16 trägt, so dass auch im Bereich der Überwurfmutter 27 Vakuumdichtheit gewährleistet ist. Die Statoreinheit 9 bildet praktisch ein zweites inneres Gehäuse. Es ist vakuumdicht, so dass das äußere Gehäuse 2 mit Luftschlitzen 39 ausgerüstet werden kann.
Das Ausführungsbeispiel nach Figur 1 ist als einflutige Turbomolekularvakuumpumpe mit einem sich von der Saugseite zur Druckseite verjüngenden Förderraum 40 ausgebildet. Die äußere Hülse 17 trägt auf ihrer Innenseite Statorschaufelreihen 42, die Außenseite der Rotorwand 18 Rotorschaufelreihen 41. Der Weg der geförderten Gase ist durch Pfeile 43 gekennzeichnet. Sie treten durch den Anschlussflansch 6 in den mit den Schaufeln 41, 42 bestückten Förderraum ein und gelangen durch Öffnungen 44 in der inneren Hülse 16 entlang der Welle 11 und durch Öffnungen 45 im Rand 21 zur Auslassöffnung 46.
Das Ausführungsbeispiel nach Figur 2 ist eine dreistufige Molekularpumpe. Die Innenseite der Hülse 17 und die Außenseite der Hülse 16 sind jeweils in Höhe der Wandung 18 des Rotors 12 mit einem Gewinde 47, 48 ausgerüstet, die zusammen mit der zylindrischen Rotorwand 18 die gewünschte Gasförderung in zwei Stufen bewirken. Auch die Außenseite der Welle 11, die im Bereich der Hülse 16 einen vergrößerten Durchmesser hat, ist mit einem Gewinde 49 ausgerüstet und bildet zusammen mit der Innenseite der Hülse 16 die dritte Pumpenstufe. Der Weg der geförderten Gase ist durch Pfeile 51 gekennzeichnet. Sie treten durch den Anschlussflansch 6 in die äußere Pumpstufe ein. Zweckmäßig ist dieser Pumpstufe eine aus einem Schaufelkranz bestehende Füllstufe 52 vorgelagert. Nach dem Verlassen der äußeren ersten Pumpstufe treten sie in die zweite Pumpstufe zwischen Rotorwand 18 und Hülse 16 ein, welche sie mit einer der Förderrichtung der ersten Pumpstufe entgegengesetzten Richtung durchströmen. Nach einer weiteren Richtungsumkehr gelangen sie durch Öffnungen 53 im Rand 35 und durch Öffnungen in der Feder 37 in die dritte Pumpstufe und von dort aus in der bereits zu Figur 1 beschriebenen Weise zur Auslassöffnung 46.
Das Ausführungsbeispiel nach Figur 2 kann in einfacher Weise zu einer einstufigen Reibungsvakuumpumpe umgebaut werden. Ohne Hülse 17, Rotorglocke 18 und Überwurfmutter 27 wäre nur die dritte Pumpstufe vorhanden und wirksam. Auch die Ränder 26 und 28 sowie das Gewinde 48 könnten entfallen. Eine weitere Voraussetzung wäre, dass die Durchmesser des Schwing- und Dichtungselementes 4,32 sowie der Stirnseite der Hülse 16 einander entsprechen, damit das Rotor-Stator-System 3 elastisch im Gehäuse 2,7 abgestützt werden kann.
Beim Ausführungsbeispiel nach Figur 1 sind Statoreinheit 9 und Rotoreinheit 8 schwingungstechnisch starr miteinander (Schiebepassungen 35, 22) gekoppelt. Beim Ausführungsbeispiel nach Figur 2 befindet zwischen dem oberen Lager 36 und der Innenseite des Randes 34 im O-Ring 63 mit einem im Vergleich zum Durchmesser der O-Ringe 24,32 wesentlich kleineren Durchmesser. Dieser O-Ring 63 dient lediglich der Überbrückung des Passungsspiels. Einen wesentlichen Einfluß auf die Wahl des Spaltes zwischen Rotor- und Statoreinheit hat der O-Ring 63 nicht.
Die Realisierung der Erfindung ist bei kleinen Turbomolekularpumpen von besonderem Vorteil. Bei kleiner werdender Baugröße nimmt der schädliche Anteil der Rückströmung bezogen auf den geförderten Gasstrom zu und verschlechtert dadurch überproportional die vakuumtechnischen Eigenschaften einer Pumpe. Durch die erfindungsgemäße Reduzierung der Spalte zwischen Rotor und Stator mit dem vorliegenden neuen Konzept lassen sich die vakuumtechnischen Daten deutlich verbessern. Das bedeutet umgekehrt, dass sich dadurch eine Pumpe in dieser Baugröße noch mit wirtschaftlich sinnvollem Aufwand produzieren lässt. Mit dazu trägt die Tatsache bei, dass die Pumpe aus relativ wenigen Teilen hergestellt werden kann.

Claims (14)

  1. Reibungsvakuumpumpe, die eine Statoreinheit (9), eine Rotoreinheit (12) und ein Gehäuse (2, 7) aufweist und bei der während ihres Betriebes ein enger Spalt zwischen Stator und Rotor eingehalten werden soll, dadurch gekennzeichnet, dass Stator (9) und Rotor (8) schwingungstechnisch miteinander gekoppelt sind und dass das aus Statoreinheit (9) und Rotoreinheit (8) bestehende System (3) gemeinsam über Schwingelemente (4, 5) im Gehäuse (2, 7) gehaltert ist.
  2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, dass mechanische Lager (23, 36) vorgesehen sind und dass Rotor und Stator über die mechanischen Lager miteinander gekoppelt sind.
  3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Stator (9) und Rotor (8) schwingungstechnisch starr miteinander gekoppelt sind.
  4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, dass zwischen Rotoreinheit (8) und Lager (23, 36) und/oder Lager (23, 36) und Statoreinheit (9) eine axiale Schiebepassung (22, 35) vorgesehen ist.
  5. Pumpe nach Anspruch 2, dadurch gekennzeichnet, dass sich zwischen einem der Lager und der Statoreinheit ein der Überbrückung eines Passungsspieles dienender O-Ring (63) befindet.
  6. Pumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet dass das Gehäuse (2) eine Spannhülse bildet, die zusammen mit einem stirnseitigen Deckel (7) das Rotor-Stator-System (3) verspannt.
  7. Pumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Bestandteile der Rotoreinheit (8) eine zentrale Welle (11) sowie ein Rotor (12) sind und dass sich die Rotoreinheit (8) über die Lager (23, 36) in der Statoreinheit (9) abstützt.
  8. Pumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Bestandteile der Statoreinheit (9) Hülsen (15, 16, 17) sowie Aufnahmen für Schwingelemente (4, 5, 24, 32) sind, über die sich das Rotor-Stator-System (3) im Gehäuse (2, 7) abstützt.
  9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, dass die Statoreinheit (9) ein zweites inneres Gehäuse bildet.
  10. Pumpe nach Anspruch 9, dadurch gekennzeichnet, dass das innere Gehäuse vakuumdicht ist und dass das äußere Gehäuse (2) mit Luftschlitzen (39) ausgerüstet ist.
  11. Pumpe nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass ihr Rotor (12) glockenförmig ausgebildet ist und dass drei Pumpstufen vorhanden sind.
  12. Pumpe nach Anspruch 11, dadurch gekennzeichnet, dass der Stator (9) drei Hülsen (15, 16, 17) umfasst, von denen eine druckseitig und zwei saugseitig angeordnet sind, und zwar je eine außerhalb und innerhalb der Rotorwand (18).
  13. Pumpe nach Anspruch 12, dadurch gekennzeichnet, dass die druckseitige (15) und die innere saugseitige Hülse (16) mit äußeren Rändern (26, 28) ausgerüstet sind, die mit Hilfe einer auf die Druckseite der äußeren Hülse anschraubbaren Überwurfmutter (27) miteinander verspannt sind.
  14. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (12) stirnseitig mit einer Füllstufe (52) ausgerüstet ist.
EP99938360A 1998-10-07 1999-07-28 Reibungsvakuumpumpe Expired - Lifetime EP1119710B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19846189 1998-10-07
DE19846189A DE19846189A1 (de) 1998-10-07 1998-10-07 Reibungsvakuumpumpe
PCT/EP1999/005395 WO2000020763A1 (de) 1998-10-07 1999-07-28 Reibungsvakuumpumpe

Publications (2)

Publication Number Publication Date
EP1119710A1 EP1119710A1 (de) 2001-08-01
EP1119710B1 true EP1119710B1 (de) 2002-09-04

Family

ID=7883695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99938360A Expired - Lifetime EP1119710B1 (de) 1998-10-07 1999-07-28 Reibungsvakuumpumpe

Country Status (5)

Country Link
US (1) US6641376B1 (de)
EP (1) EP1119710B1 (de)
JP (1) JP2002526721A (de)
DE (2) DE19846189A1 (de)
WO (1) WO2000020763A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050743A1 (de) * 2004-10-19 2006-04-20 Pfeiffer Vacuum Gmbh Vibrationsarme Vakuumpumpe
US7550881B1 (en) 2006-01-17 2009-06-23 Honeywell International Inc. Vibration damper for generator or motor stator
GB0618745D0 (en) * 2006-09-22 2006-11-01 Boc Group Plc Molecular drag pumping mechanism
EP2088327B1 (de) * 2008-02-11 2011-08-31 Agilent Technologies Italia S.p.A. Stütze für Wälzlager
DE102013214662A1 (de) * 2013-07-26 2015-01-29 Pfeiffer Vacuum Gmbh Vakuumpumpe
GB2588146A (en) * 2019-10-09 2021-04-21 Edwards Ltd Vacuum pump

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2215473C3 (de) * 1972-03-29 1980-12-18 Standard Elektrik Lorenz Ag, 7000 Stuttgart Eigenschwingungsgedämpfter, geräuscharmer Radiallüfter
IT1032818B (it) * 1975-05-06 1979-06-20 Rava E Perfezionamento alle pompe turbomo lecolari
DE8027697U1 (de) * 1980-10-17 1982-04-01 Leybold-Heraeus GmbH, 5000 Köln Turbomolekular-vakuumpumpe
DE3039196A1 (de) * 1980-10-17 1982-05-13 Leybold-Heraeus GmbH, 5000 Köln Verfahren zur montage einer einflutigen turbomolekular-vakuumpumpe und nach diesem verfahren montierte turbomolekular-vakuumpumpe
DE3204750C2 (de) * 1982-02-11 1984-04-26 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar Magnetisch gelagerte Turbomolekularpumpe
JPS59168295A (ja) * 1983-03-16 1984-09-21 Hitachi Ltd タ−ボ分子ポンプ
US4806075A (en) * 1983-10-07 1989-02-21 Sargent-Welch Scientific Co. Turbomolecular pump with improved bearing assembly
DE3410905A1 (de) * 1984-03-24 1985-10-03 Leybold-Heraeus GmbH, 5000 Köln Einrichtung zur foerderung von gasen bei subatmosphaerischen druecken
JPS61294191A (ja) * 1985-06-24 1986-12-24 Seiko Seiki Co Ltd タ−ボ分子ポンプの装着装置
JPS63128286U (de) * 1987-02-16 1988-08-22
JPH0641566Y2 (ja) * 1987-09-04 1994-11-02 昭一 水村 ゴルフのクラブやゲートボールのスティック等における変形シャフトの取付構造
JPH0759955B2 (ja) * 1988-07-15 1995-06-28 ダイキン工業株式会社 真空ポンプ
JPH07117067B2 (ja) * 1988-12-30 1995-12-18 株式会社島津製作所 分子ポンプ
EP0408791B1 (de) * 1989-07-20 1994-03-16 Leybold Aktiengesellschaft Reibungspumpe mit glockenförmigem Rotor
DE3926577A1 (de) 1989-08-11 1991-02-14 Leybold Ag Vakuumpumpe mit einem rotor und mit unter vakuum betriebenen rotorlagerungen
DE4314419A1 (de) * 1993-05-03 1994-11-10 Leybold Ag Reibungsvakuumpumpe mit Lagerabstützung
JPH071395A (ja) * 1993-06-15 1995-01-06 Souzou Kagaku:Kk 超音波加工用工具クランプ方法
JP3427950B2 (ja) * 1994-11-17 2003-07-22 株式会社島津製作所 モレキュラドラッグポンプ
FR2735535B1 (fr) * 1995-06-16 1997-07-11 Cit Alcatel Pompe turbomoleculaire
JP2001241393A (ja) * 1999-12-21 2001-09-07 Seiko Seiki Co Ltd 真空ポンプ

Also Published As

Publication number Publication date
US6641376B1 (en) 2003-11-04
DE19846189A1 (de) 2000-04-13
JP2002526721A (ja) 2002-08-20
DE59902592D1 (de) 2002-10-10
EP1119710A1 (de) 2001-08-01
WO2000020763A1 (de) 2000-04-13

Similar Documents

Publication Publication Date Title
EP0640185B1 (de) Gasreibungsvakuumpumpe
DE69733666T2 (de) Kompaktes spiralgehäuse
DE29516599U1 (de) Reibungsvakuumpumpe mit Zwischeneinlaß
DE102006053237A1 (de) Lagermodul für eine Vakuumpumpe
EP1090231B2 (de) Reibungsvakuumpumpe mit chassis, rotor und gehäuse sowie einrichtung, ausgerüstet mit einer reibungsvakuumpumpe dieser art
DE10004263A1 (de) Dynamische Dichtung
WO1999060275A1 (de) Reibungsvakuumpumpe mit stator und rotor
DE2948398A1 (de) Abgasturbolader
WO2001057402A1 (de) Reibungsvakuumpumpe
DE102012003680A1 (de) Vakuumpumpe
DE3506299A1 (de) Turbo-molekularpumpe
EP1119710B1 (de) Reibungsvakuumpumpe
EP1119709B1 (de) Reibungsvakuumpumpe mit stator und rotor
EP2039941B1 (de) Vakuumpumpe
DE69213116T2 (de) Hermetisches Motorverdichtergehäuse
EP0013942B1 (de) Kreiselpumpe für mit Feststoffen versetzte Flüssigkeiten
EP1423630B1 (de) Dichtungsanordnung, insbesondere zur abdichtung der spindelwelle einer spindel
DE3121529C2 (de)
DE2409857A1 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
DE3922782A1 (de) Molekularpumpe in kombinierter bauart
EP1422423A1 (de) Einrichtung mit evakuierbarer Kammer
DE3516061A1 (de) Kreiselpumpe
EP0584106B1 (de) Mehrflutige flüssigkeitsringpumpe
EP3045728A1 (de) Spiralvakuumpumpe
DE1528895C3 (de) Zentrifugalpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020125

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902592

Country of ref document: DE

Date of ref document: 20021010

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021217

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1119710E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090716

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090720

Year of fee payment: 11

Ref country code: DE

Payment date: 20090722

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090727

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100728

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59902592

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100728