EP1243796B1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP1243796B1
EP1243796B1 EP02005166A EP02005166A EP1243796B1 EP 1243796 B1 EP1243796 B1 EP 1243796B1 EP 02005166 A EP02005166 A EP 02005166A EP 02005166 A EP02005166 A EP 02005166A EP 1243796 B1 EP1243796 B1 EP 1243796B1
Authority
EP
European Patent Office
Prior art keywords
pump
gas
vacuum pump
connected downstream
side channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02005166A
Other languages
English (en)
French (fr)
Other versions
EP1243796A3 (de
EP1243796A2 (de
Inventor
Wolfgang Eberl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1243796A2 publication Critical patent/EP1243796A2/de
Publication of EP1243796A3 publication Critical patent/EP1243796A3/de
Application granted granted Critical
Publication of EP1243796B1 publication Critical patent/EP1243796B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/263Rotors specially for elastic fluids mounting fan or blower rotors on shafts

Definitions

  • the invention relates to a vacuum pump for conveying gases and for generating high vacuum according to the preamble of the first claim.
  • At least two vacuum pumps of different design and operation have been assembled to form a pumping station to produce high vacuum.
  • Pumping stations, consisting of at least two vacuum pumps, which are necessary to achieve the required vacuum technical parameters, such as pressure ratio and pumping speed, have the disadvantage that they are expensive and have a large footprint.
  • Each pump requires its own drive system with power supply, monitoring and control and its own storage system. Connecting lines between the pumps with valves and control devices increase the effort.
  • EP-A-1 067 290 shows a generic vacuum pump which compresses to atmospheric pressure and consists of two single or multi-stage gas friction pumps.
  • US Pat. No. 4,090,815 shows a combined vacuum pump comprising a plurality of pump stages which operate on the Siegbahn, Holweck and rotary valve principle. All pump stages are arranged serially one behind the other. An overflow valve is not shown.
  • US-A-5 040 949 shows a screw vacuum pump with a serial gas flow which is compressed by intermeshing rotors.
  • the compressed gas is recompressed by a simple screw structure, which can be completely bypassed by a bypass with an overflow valve.
  • US-A-3 536 418 shows a pumping station constructed of several individual vacuum pumps. An overflow valve is not shown.
  • DE 34 42 843 A shows a double-flow vacuum pump, wherein in each of the parallel flow paths a plurality of pumps with different operating principle are combined in such a way that higher outlet pressures are achieved. An overflow valve completely bypasses the last pump before reaching atmospheric pressure.
  • the invention has for its object to develop a vacuum pump, which comprises the entire pressure range from atmospheric pressure to high vacuum pressure of about 10 -4 mbar and less.
  • the pump should consist of one piece and have a compact construction, so that the disadvantages described above, which adhere to pumping stations consisting of several pumps, are avoided. Furthermore, they should have a sufficiently high pressure ratio and pumping speed to meet the requirements in practical use.
  • a reliable one and safe operation is one of the basic requirements.
  • Another aim is a lubricant-free operation on the high vacuum side.
  • a vacuum pump which covers the entire pressure range from atmospheric pressure to the high-vacuum range in a compact design. Due to the parallel arrangement of the gas friction pumps on the high-vacuum side, a double-flow suction area is formed, which allows a high pumping speed. Within the gas friction pump, the sucked gas is sufficiently compressed, so that the subsequent pump only needs to be single-flow. This combination, together with the feature that the two gas flows of the gas friction pump are combined within this and fed to the suction chamber of the subsequent stage, allows the compact design and reduces the size and design complexity considerably.
  • the present arrangement makes it possible to mount the shaft bearings at both ends of the rotor, results in a stable storage, can be used in the bearings with a small diameter, which allow easy operation at high speeds.
  • the bearings are separated by the gas friction pump from the high vacuum side, which has the advantage that the high vacuum side can be considered as lubricant-free.
  • the structural arrangement and the mode of operation offer to train the gas friction pump as Holweckpumpe. This is particularly suitable for forming a maximum pressure ratio in a confined space. Due to the double-flow arrangement, the required pumping speed is achieved.
  • a side channel pump is used. This is particularly suitable for compressing the gas ejected from the parallel gas friction pumps to atmospheric pressure.
  • an intermediate stage be connected directly to the Gasausdorfflansch via a connecting line.
  • the large quantities of gas then do not have to be pumped through the geometrically smaller end stages, which would result in long pumping times.
  • the connecting line is closed by a pressure relief valve and the compression to atmospheric pressure via the last pump stages.
  • a major advantage for the side channel pump is that its stator elements consist of undivided disks, as mentioned in claim 5.
  • the usual design, in which split disks are mounted between the rotor disks, has the consequence that the resulting column backflows are possible, which represent losses and significantly reduce the pressure ratio.
  • This crucial disadvantage of side channel pumps is avoided by the one-piece stator discs according to the invention.
  • the use of undivided stator elements is only possible if the rotor elements, as described in claim 6, are fastened with clamping rings on the rotor, because only then rotor and stator elements can be mounted successively and optimal axial play can be maintained.
  • the gas friction pump is designed as Holweckpumpe and the subsequent pump as a side channel pump.
  • the two parallel stages of the gas friction pump according to the design of Holweck 6 and 7 and the side channel pump 8 are housed.
  • the rotor elements 10, 11a, 11b and 13 of the two pumps are located on the common shaft 4. This is centered in the two bearings 9a and 9b. In this case, the bearing 9a is in the range of the atmospheric pressure and the bearing 9b in the region of the fore-vacuum pressure. In this area, there is also the drive assembly 5.
  • the rotor elements of the double-flow Holweckpumpe consist of a support ring 10, on which cylindrical Components 11a and 11b are housed for the two parallel pumping stages. Together with the stator elements 12a and 12b, which are formed as spiral grooves surrounding the cylindrical rotor elements 11a and 11b, they each form two two-stage Holweckpumpen.
  • the side channel pump consists of the one-piece rotor discs 13, which are fastened with clamping rings 14 on the rotor 4. In between, there are the stator components 15 with the delivery channels 16.
  • the gas is conveyed according to the arrows in the figure.
  • the gas is supplied from the suction portion 22 through the parallel pumping Holweckmakern 6 and 7, which consist of two series-connected pumping stages 11a / 12a and 11b / 12b, in the discharge regions 23 and 24.
  • the gas streams are merged into the discharge space 25 of the gas friction pump.
  • the gas flow from the discharge space 25 into the suction chamber 27 of the side channel pump.
  • the gas in several pumping stages, which are connected to each other via channels 20, compressed to atmospheric pressure and fed via the discharge chamber 29 the Gasaussorbflansch 3.
  • a connecting line 30 leads via a pressure relief valve 31 directly to the gas discharge flange 3.

Description

  • Die Erfindung betrifft eine Vakuumpumpe zur Förderung von Gasen und zur Erzeugung von Hochvakuum nach dem Oberbegriff des 1. Patentanspruches.
  • Zur Erzeugung von Hochvakuum sind Kombinationen von verschiedenen Typen von Vakuumpumpen notwendig, da der weite Druckbereich zwischen Atmosphärendruck und ca. 101-4 mbar oder kleiner mehrere Strömungsbereiche umfaßt, in denen die physikalischen Eigenschaften von Zuständen und Strömungen der Gase jeweils anderen Gesetzen unterworfen sind.
  • Seither wurden zur Erzeugung von Hochvakuum mindestens zwei Vakuumpumpen unterschiedlicher Bauart und Arbeitsweise zu einem Pumpstand zusammengefügt. Bewährt haben sich zum Beispiel Pumpstände, bestehend aus einer Turbomolekularpumpe als Hochvakuumpumpe und einer Drehschieberpumpe, welche gegen Atmosphärendruck ausstößt. Pumpstände, bestehend aus mindestens zwei Vakuumpumpen, welche zum Erzielen der geforderten vakuumtechnischen Größen, wie Druckverhältnis und Saugvermögen, notwendig sind, weisen den Nachteil auf, dass sie aufwendig sind und einen großen Platzbedarf haben. Jede Pumpe erfordert ein eigenes Antriebssystem mit Stromversorgung, -überwachung und -regelung sowie ein eigenes Lagersystem. Verbindungsleitungen zwischen den Pumpen mit Ventilen und Regeleinrichtungen vergrößern den Aufwand.
  • Die EP-A-1 067 290 zeigt eine gattungsgemäße Vakuumpumpe, die bis zu Atmosphärendruck verdichtet und aus zwei ein- oder mehrstufigen Gasreibungspumpen besteht.
  • Die US-A 4 090 815 zeigt eine kombinierte Vakuumpumpe aus mehreren Pumpstufen, die nach Siegbahn-, Holweck- und Drehschieberprinzip arbeiten. Alle Pumpstufen sind seriell hintereinander angeordnet. Ein Überströmventil ist nicht gezeigt.
  • Die US-A-5 040 949 zeigt eine Schraubenvakuumpumpe mit einem seriellen Gasstrom, der von ineinandergreifenden Rotoren verdichtet wird. Das verdichtete Gas wird von einer einfachen Schraubenstruktur nachverdichtet, welche durch einen Bypass mit einem Überströmventil vollständig überbrückt werden kann.
  • Die US-A-3 536 418 zeigt einen Pumpstand, der aus mehreren einzelnen Vakuumpumpen aufgebaut ist. Ein Überströmventil ist nicht gezeigt.
  • Die DE 34 42 843 A zeigt eine zweiflutige Vakuumpumpe, wobei in jedem der parallelen Strömungspfade mehrere Pumpen mit unterschiedlichem Wirkprinzip derart kombiniert sind, dass höhere Auslassdrücke erreicht werden. Ein Überströmventil überbrückt vollständig die letzte Pumpe vor Erreichen des Atmosphärendrucks.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vakuumpumpe zu entwickeln, welche den gesamten Druckbereich von Atmosphärendruck bis Hochvakuumdruck von ca. 10-4 mbar und kleiner umfaßt. Die Pumpe soll aus einem Stück bestehen und einen kompakten Aufbau aufweisen, so dass die oben beschriebenen Nachteile, welche Pumpständen anhaften, die aus mehreren Pumpen bestehen, vermieden werden. Weiterhin soll sie ein ausreichend hohes Druckverhältnis und Saugvermögen aufweisen, um den Anforderungen im praktischen Einsatz gerecht zu werden. Eine zuverlässige und sichere Betriebsweise ist eine der Grundvoraussetzungen. Als weiteres Ziel wird ein schmiermittelfreier Betrieb auf der Hochvakuumseite angestrebt.
  • Die Aufgabe wird durch die kennzeichnenden Merkmale des 1. Patentanspruches gelöst. Die Ansprüche 2 - 9 stellen weitere Ausgestaltungsformen der Erfindung dar.
  • Mit der erfindungsgemäßen Anordnung wird eine Vakuumpumpe vorgestellt, die in kompakter Bauweise den gesamten Druckbereich von Atmosphärendruck bis in den Hochvakuumbereich abdeckt. Durch die parallele Anordnung der Gasreibungspumpen auf der Hochvakuumseite wird ein zweiflutiger Ansaugbereich gebildet, der ein hohes Saugvermögen ermöglicht. Innerhalb der Gasreibungspumpe wird das angesaugte Gas ausreichend verdichtet, so dass die nachfolgende Pumpe nur noch einflutig zu sein braucht. Diese Kombination zusammen mit dem Merkmal, dass die beiden Gasströme der Gasreibungspumpe innerhalb dieser zusammengeführt und dem Ansaugraum der nachfolgenden Stufe zugeführt werden, ermöglicht die kompakte Bauweise und reduziert die Baugröße und den konstruktiven Aufwand erheblich. Dadurch, dass die vorliegende Anordnung es ermöglicht, die Wellenlager an beiden Enden des Rotors anzubringen, ergibt sich eine stabile Lagerung, bei der Lager mit geringem Durchmesser eingesetzt werden können, welche einen problemlosen Betrieb bei hohen Drehzahlen erlauben. Außerdem sind die Lager durch die Gasreibungspumpe von der Hochvakuumseite getrennt, was den Vorteil mit sich bringt, dass die Hochvakuumseite als schmiermittelfrei angesehen werden kann.
  • Die bauliche Anordnung und die Betriebsweise bieten an, die Gasreibungspumpe als Holweckpumpe auszubilden. Diese eignet sich besonders dazu, auf engem Raum ein maximales Druckverhältnis auszubilden. Durch die zweiflutige Anordnung wird das geforderte Saugvermögen erreicht.
  • Für die nachfolgende Pumpe wird vorteilhafterweise eine Seitenkanalpumpe verwendet. Diese eignet sich besonders dazu, dass von den parallelen Gasreibungspumpen ausgestoßene Gas bis Atmosphärendruck zu verdichten. Bei hohem Gasanfall kann unter Umgehung der letzten, dem Atmosphärendruck zugewandten Stufen eine Zwischenstufe direkt an den Gasausstoßflansch über eine Verbindungsleitung angeschlossen werden. Die großen Gasmengen müssen dann nicht durch die geometrisch kleiner dimensionierten Endstufen gepumpt werden, was lange Pumpzeiten zur Folge hätte. Bei geringeren Gasmengen wird die Verbindungsleitung durch ein Überdruckventil geschlossen und die Verdichtung bis zum Atmosphärendruck erfolgt über die letzten Pumpstufen. Diese Maßnahme ist nicht auf das hier vorliegende Beispiel einer Seitenkanalpumpe beschränkt, sondern kann auf alle anderen, nach höheren Drücken hin ausstoßenden mehrstufigen Pumpen angewandt werden.
  • Ein großer Vorteil für die Seitenkanalpumpe ist es, dass deren Statorelemente aus ungeteilten Scheiben bestehen, wie in Anspruch 5 erwähnt. Die übliche Bauweise, bei der geteilte Scheiben zwischen die Rotorscheiben montiert werden, hat zur Folge, dass durch die entstehenden Spalte Rückströmungen ermöglicht werden, welche Verluste darstellen und das Druckverhältnis erheblich vermindern. Dieser entscheidende Nachteil von Seitenkanalpumpen wird durch die erfindungsgemäßen einstückigen Statorscheiben vermieden. Die Verwendung von ungeteilten Statorelementen ist jedoch nur möglich, wenn die Rotorelemente, wie in Anspruch 6 beschrieben, mit Klemmringen auf dem Rotor befestigt werden, denn nur so können Rotor- und Statorelemente nacheinander montiert und optimale Axialspiele eingehalten werden.
  • Anhand der einzigen Abbildung soll die Erfindung näher erläutert werden. Bei diesem Beispiel ist die Gasreibungspumpe als Holweckpumpe und die nachfolgende Pumpe als Seitenkanalpumpe ausgebildet.
  • In dem Pumpengehäuse 1 mit Ansaugflansch 2 und Gasausstoßflansch 3 sind die beiden parallelen Stufen der Gasreibungspumpe nach der Bauart von Holweck 6 und 7 und die Seitenkanalpumpe 8 untergebracht. Die Rotorelemente 10, 11a,11b und 13 der beiden Pumpen befinden sich auf der gemeinsamen Welle 4. Diese ist in den beiden Lagern 9a und 9b zentriert. Dabei befindet sich das Lager 9a im Bereich des Atmosphärendruckes und das Lager 9b im Bereich des Vorvakuumdruckes. In diesem Bereich befindet sich auch die Antriebsanordnung 5. Die Rotorelemente der zweiflutigen Holweckpumpe bestehen aus einem Tragring 10, auf welchem zylindrische Bauteile 11a und 11b für die beiden parallelen Pumpstufen untergebracht sind. Zusammen mit den Statorelementen 12a und 12b, welche als Spiralrillen ausgebildet die zylindrischen Rotorelemente 11a und 11b umgeben, bilden sie jeweils zwei zweistufige Holweckpumpen.
  • Die Seitenkanalpumpe besteht aus den einstückigen Rotorscheiben 13, welche mit Klemmringen 14 auf dem Rotor 4 befestigt sind. Dazwischen befinden sich die Statorbauteile 15 mit den Förderkanälen 16.
  • Die Gasförderung erfolgt entsprechend den in der Abbildung eingetragenen Pfeilen. Zunächst wird das Gas von dem Ansaugbereich 22 über die parallel pumpenden Holweckstufen 6 und 7, weiche aus jeweils zwei in Serie geschalteten Pumpstufen 11a / 12a und 11b / 12b bestehen, in die Ausstoßbereiche 23 und 24 gefördert. Durch Verbindungselemente 26 zwischen diesen beiden Bereichen werden die Gasströme in den Ausstoßraum 25 der Gasreibungspumpe zusammengeführt. Über Verbindungselemente 28 gelangt der Gasstrom von dem Ausstoßraum 25 in den Ansaugraum 27 der Seitenkanalpumpe. Hier wird das Gas in mehreren Pumpstufen, welche über Kanäle 20 miteinander verbunden sind, bis auf Atmosphärendruck verdichtet und über den Ausstoßraum 29 dem Gasausstoßflansch 3 zugeführt. Von einer Zwischenstufe der Seitenkanalpumpe führt eine Verbindungsleitung 30 über ein Überdruckventil 31 direkt zum Gasausstoßflansch 3.

Claims (8)

  1. Vakuumpumpe, bestehend aus zwei ein- oder mehrstufigen Gasreibungspumpen (6) und (7) und einer mehrstufigen nachgeschalteten Pumpe (8), wobei die beiden Gasreibungspumpen in Strömungsrichtung parallel angeordnet sind derart, dass der angesaugte Gasstrom in einem Ansaugbereich (22) in zwei Teilströme geteilt wird und jeder dieser Teilströme durch die zugeordnete Gasreibungspumpe von dem Ansaugbereich (22) zu dem jeweiligen Ausstoßbereich (23) bzw. (24) gefördert wird und anschließend die beiden Gasströme über Verbindungselemente (26) in einem Ausstoßraum (25) zusammengeführt werden und dass der Ausstoßraum mit dem Ansaugraum (27) der nachgeschalteten Pumpe (8) über Leitungen (28) verbunden ist derart, dass die nachgeschaltete Pumpe das Gas weiter verdichtet, dadurch gekennzeichnet, dass von einer Zwischenstufe der nachgeschalteten Pumpe (8) aus einer Verbindungsleitung (30) zu einem Gasausstoßflansch (3) führt und in der Verbindungsleitung ein Überdruckventil (31) angebracht ist.
  2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die nachgeschaltete Pumpe (8) das Gas in einen weiteren Ausstoßraum (29) fördert.
  3. Vakuumpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Gasreibungspumpen (6) und (7) nach der Bauart von Holweck ausgebildet sind.
  4. Vakuumpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindungselemente (26) aus axialen Bohrungen bestehen, die innerhalb der Gasreibungspumpe (6) und (7) angebracht sind.
  5. Vakuumpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die nachgeschaltete Pumpe (8) eine Seitenkanalpumpe ist.
  6. Vakuumpumpe nach Anspruch 5, dadurch gekennzeichnet, dass die Statorelemente (15) der Seitenkanalpumpe aus ungeteilten Scheiben bestehen.
  7. Vakuumpumpe nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Rotorelemente (13) der Seitenkanalpumpe mittels Klemmringen (14) auf der Rotorwelle (4) befestigt sind.
  8. Vakuumpumpe nach der Art einer Seitenkanalpumpe, bestehend aus mehreren Stufen zum Fördern und Verdichten von Gasen bis zum Atmosphärendruck, dadurch gekennzeichnet, dass von einer Zwischenstufe aus unter Umgehung der letzten, dem Atmosphärendruck zugewandten Stufe eine Verbindungsleitung (30) zum Gasausstoßflansch (3) führt und in der Verbindungsleitung ein Überdruckventil (31) angebracht ist.
EP02005166A 2001-03-24 2002-03-08 Vakuumpumpe Expired - Lifetime EP1243796B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10114585A DE10114585A1 (de) 2001-03-24 2001-03-24 Vakuumpumpe
DE10114585 2001-03-24

Publications (3)

Publication Number Publication Date
EP1243796A2 EP1243796A2 (de) 2002-09-25
EP1243796A3 EP1243796A3 (de) 2003-08-27
EP1243796B1 true EP1243796B1 (de) 2006-11-08

Family

ID=7678927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02005166A Expired - Lifetime EP1243796B1 (de) 2001-03-24 2002-03-08 Vakuumpumpe

Country Status (4)

Country Link
US (1) US6676384B2 (de)
EP (1) EP1243796B1 (de)
JP (1) JP2002310092A (de)
DE (2) DE10114585A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150015A1 (de) * 2001-10-11 2003-04-17 Leybold Vakuum Gmbh Mehrkammeranlage zur Behandlung von Gegenständen unter Vakuum, Verfahren zur Evakuierung dieser Anlage und Evakuierungssystem dafür
GB0229353D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping system and method of operating a vacuum pumping arrangement
GB0229352D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement and method of operating same
GB0322889D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
US7140847B2 (en) * 2004-08-11 2006-11-28 The Boc Group, Inc. Integrated high vacuum pumping system
WO2009142905A1 (en) * 2008-05-20 2009-11-26 Sundew Technologies, Llc Deposition method and apparatus
GB2474507B (en) 2009-10-19 2016-01-27 Edwards Ltd Vacuum pump
DE102009056218A1 (de) * 2009-11-28 2011-06-01 Robert Bosch Gmbh Schraubenspindelpumpe mit integriertem Druckbegrenzungsventil
US20150377239A1 (en) * 2013-02-15 2015-12-31 Edwards Limited Vacuum pump
DE102013114290A1 (de) * 2013-12-18 2015-06-18 Pfeiffer Vacuum Gmbh Vakuumpumpe
GB2592030B (en) * 2020-02-12 2022-03-09 Edwards Ltd Multiple stage vacuum pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067290A2 (de) * 1999-07-05 2001-01-10 Pfeiffer Vacuum GmbH Vakuumpumpe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536418A (en) * 1969-02-13 1970-10-27 Onezime P Breaux Cryogenic turbo-molecular vacuum pump
JPS5267810A (en) * 1975-12-03 1977-06-04 Aisin Seiki Co Ltd High vacuum pump
DE2621201C3 (de) * 1976-05-13 1979-09-27 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Laufrad für eine Strömungsmaschine
JPS60116895A (ja) * 1983-11-30 1985-06-24 Hitachi Ltd 真空ポンプ
FR2647853A1 (fr) * 1989-06-05 1990-12-07 Cit Alcatel Pompe primaire seche a deux etages
DE19632375A1 (de) * 1996-08-10 1998-02-19 Pfeiffer Vacuum Gmbh Gasreibungspumpe
US6220824B1 (en) * 1999-06-21 2001-04-24 Varian, Inc. Self-propelled vacuum pump
DE19942410A1 (de) * 1999-09-06 2001-03-08 Pfeiffer Vacuum Gmbh Vakuumpumpe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067290A2 (de) * 1999-07-05 2001-01-10 Pfeiffer Vacuum GmbH Vakuumpumpe

Also Published As

Publication number Publication date
US6676384B2 (en) 2004-01-13
EP1243796A3 (de) 2003-08-27
EP1243796A2 (de) 2002-09-25
DE10114585A1 (de) 2002-09-26
DE50208630D1 (de) 2006-12-21
US20020136643A1 (en) 2002-09-26
JP2002310092A (ja) 2002-10-23

Similar Documents

Publication Publication Date Title
EP1067290B1 (de) Vakuumpumpe
EP1252445B1 (de) Turbomolekularpumpe
EP2295812B1 (de) Vakuumpumpe
EP1243796B1 (de) Vakuumpumpe
EP1078166B2 (de) Reibungsvakuumpumpe mit stator und rotor
WO1993023672A1 (de) Gasreibungsvakuumpumpe
DE3728154C2 (de) Mehrstufige Molekularpumpe
EP2156462A2 (de) Massenspektrometer-anordnung
EP1706645B1 (de) Mehrstufige reibungsvakuumpumpe
DE102012003680A1 (de) Vakuumpumpe
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
DE4327506C2 (de) Turbovakuumpumpe
EP1081387B1 (de) Vakuumpumpe
EP1128069B1 (de) Gasreibungspumpe
WO2008031819A1 (de) Vakuumpumpe
DE3032967C2 (de)
EP2148094A2 (de) Vakuumpumpe
DE10149366A1 (de) Axial fördernde Reibungsvakuumpumpe
EP2565464A2 (de) Vakuumpumpe
EP3267040B1 (de) Turbomolekularpumpe
DE4206972C2 (de)
DE112020003410T5 (de) Pumpenaggregat
DE102013112185B4 (de) Vakuumpumpe sowie Vakuumpumpe mit wenigstens einer Turbomolekularpumpstufe
EP1541871B1 (de) Seitenkanalpumpstufe
EP1164294B1 (de) Gasreibungspumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031222

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50208630

Country of ref document: DE

Date of ref document: 20061221

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070207

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120307

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130221

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140310

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208630

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001