EP2565464B1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP2565464B1
EP2565464B1 EP12180605.3A EP12180605A EP2565464B1 EP 2565464 B1 EP2565464 B1 EP 2565464B1 EP 12180605 A EP12180605 A EP 12180605A EP 2565464 B1 EP2565464 B1 EP 2565464B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
vacuum pump
hub
pump according
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12180605.3A
Other languages
English (en)
French (fr)
Other versions
EP2565464A3 (de
EP2565464A2 (de
Inventor
Jan Hofmann
Tobias Stoll
Michael Schweighöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to JP2012193203A priority Critical patent/JP5683544B2/ja
Publication of EP2565464A2 publication Critical patent/EP2565464A2/de
Publication of EP2565464A3 publication Critical patent/EP2565464A3/de
Application granted granted Critical
Publication of EP2565464B1 publication Critical patent/EP2565464B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps

Definitions

  • the invention relates to a vacuum pump according to the preamble of the first claim.
  • Rotating sleeves have proven themselves in vacuum pumps, for example in the form of a Holweckpumpcut.
  • One or a plurality of sleeves is attached on one side to a hub, which in turn is arranged on a shaft.
  • a hub which in turn is arranged on a shaft.
  • Such a structure shows, for example, the EP 0 695 872 A1 ,
  • the prior art ( DE 1 010 235 B ) includes a molecular pump in which a Holweckpumptreatment is provided which carries an arranged on a hub elongated one-piece sleeve.
  • This sleeve has the disadvantage that on the one hand the production must be carried out very accurately, since the pump-active column are very small and the sleeve must be made very precisely for this reason as a fast-rotating component.
  • an expansion of the sleeve by centrifugal forces plays a role in the rapid rotations, which also has a disadvantageous effect on the long design.
  • the prior art also includes a vacuum pump having a Holweckpumpe and downstream side channel pumping stages. This pump can be further improved in their design.
  • the vacuum pump according to the invention in particular a molecular pump, having a rotor which has a shaft, a hub connected to the shaft and a first sleeve connected to a first side and concentric with the shaft, and wherein the first sleeve is arranged below in the gas flow of a second sleeve is characterized in that the at least one second sleeve is concentric with the shaft on a second axial side of the first side opposite the second side of the hub connected thereto and that the hub comprises a lateral surface which is formed with a gas-promoting cooperating stator.
  • a radius of the first sleeve and a radius of the second sleeve are different. As a result, the space of the pump can be reduced while maintaining the same pressure ratio.
  • a further advantageous embodiment provides that a third sleeve with a smaller radius is arranged concentrically to the first sleeve.
  • This third sleeve is arranged axially from the shaft at the same height as the first sleeve.
  • a fourth sleeve is arranged with a radius concentric with the second sleeve. Viewed axially, the fourth sleeve is arranged at the same height with the second sleeve. As a result, the pumping capacity is further increased with the same installation space.
  • a stator is provided radially within the second sleeve, which cooperates pumping with an inner surface of the second sleeve. This also once again significantly increases the pumping capacity without the need to increase the installation space of the pump.
  • At least one rotor disk turbomolekularer type is arranged in the gas stream in front of the second sleeve. This also increases the pumping action of the pump.
  • a particularly preferred embodiment of the invention provides that the at least one sleeve comprises a carbon fiber reinforced plastic.
  • a carbon fiber reinforced plastic as a sleeve material allows even lower column, since the centrifugal expansion of the sleeve is reduced.
  • the hub has a lateral surface which interacts with a gas to promote a stator.
  • the lateral surface of the hub is used to achieve a pumping action.
  • the lateral surface and the radially outer outer surfaces of the first and the second sleeve are formed together as only a cylindrical surface. This has the advantage that the first and second sleeve together with the lateral surface of the hub acts as a continuous sleeve of a Holweck stage and thus the pumping action of the pump is optimized.
  • a further advantageous embodiment of the invention provides that the hub in the gas flow in front of the first sleeve has a constriction, which cooperates with a gas inlet.
  • This embodiment has the advantage that the interaction of the gas inlet with the constriction of the hub lead to an improvement of the vacuum technical parameters such as pumping speed and pressure ratio.
  • a longitudinal section through a vacuum pump shows Fig. 1 ,
  • a suction port 4 is provided through which gas is sucked into the vacuum pump. After compression, it is expelled through an outlet 6 from the vacuum pump.
  • a rotor 10 which generates the pumping action together with a stator 30.
  • the rotor 10 has a shaft 12, whose end facing the suction opening 4 is supported by a permanent magnet bearing 14. The opposite end is supported by a roller bearing 16.
  • This bearing arrangement has over other conceivable types of bearings such as flying bearings with two bearings on the opposite side of the intake 4, the advantage that a lubricant-free bearing is used on the suction side and due to the rotor dynamic simpler storage narrow column and a short overall length can be achieved.
  • a permanent magnet 20 is provided, which cooperates with a powered drive coil 22.
  • the rotor 10 is set in a sufficiently fast speed. This is based on the pumping principle used and is usually at some ten thousand revolutions per minute with molecular pumping principles.
  • the stator 30 has one or a plurality of helical channels 32 on its surface facing the rotor 10.
  • a hub 40 is attached on the shaft 12. It has a first side 42 and a second side 44 opposite thereto. The second side 44 faces the suction opening 4.
  • a first sleeve 50 is secured to the first side 42 and a second sleeve 52 to the second side. Both sleeves 50, 52 cooperate with the stator 30 and its helical channel 32 to create a holweck pumping action.
  • the gas flow leads through the suction opening 4 in a gap S between the second sleeve 52 and the stator 30.
  • the first sleeve 50 is arranged downstream in the gas flow of the second sleeve 52 and thus compresses toward the higher pressure.
  • Fig. 2 a part of the stator 30 and a part of the rotor 10 is shown.
  • the hub 40 is disposed on the shaft 12.
  • the hub 40 has a substantially disc-shaped and in a plane perpendicular to the shaft axis W expanding body, creating a low-cost redordynamically advantageous support structure for the sleeves 50, 52, 54 is created.
  • the hub 40 and at least one of the sleeves 50, 52, 54, 56 are integral educated. It is possible the hub 40 symmetrical or, as in Fig. 2 shown asymmetrically, in particular seen perpendicular to the axial direction, form.
  • first sleeve 50 and a third sleeve 54 are attached on its first side 42, which corresponds to a first end face of the hub 40.
  • the material of the sleeves 50, 52, 54 essentially comprises carbon fiber reinforced plastic.
  • the attachment of the sleeves 50, 52, 54 can be done for example by gluing.
  • a further shoulder 82 is provided, on which the extending in the direction of the suction opening and upstream in the gas flow of the first sleeve 50 second sleeve 52 is attached.
  • the hub 40 has a radially outer circumferential surface 46, which together with at least one helical channel 32 in the stator 30 achieves a pumping action.
  • the lateral surface 46 together with the radially outer surfaces 60 and 62 of the first and second sleeves 50 and 52 forms a cylindrical surface, apart from material transitions.
  • a rotor disk 70 turbomolekularer design is arranged in the gas flow in front of the second sleeve, with which the pumping speed is increased at a short length and the pressure range is extended to lower pressures.
  • Fig. 3 the additional design latitude is presented to make lengths L1 and L2 of first and second sleeves 50 and 52 of different lengths.
  • the vacuum technical data and the rotor dynamics can overlap due to the mass distribution on the rotor be matched.
  • radii R1 and R2 of first and second sleeves 50, 52 may be different from each other.
  • a fourth sleeve 56 may be provided. Between the second and fourth sleeve 52, 56, an additional stator 34 is provided, which has helical channels 36 and 38 as pump-active structures. The channel 36 cooperates with an inner surface 64 of the second sleeve 52.
  • the arrows illustrate the gas flow that initially occurs on the outer surface of the fourth sleeve 56 toward the hub 40, then is directed away from the hub 40 on the surface 64 of the second sleeve 52, and subsequently on the radially outer surface of the second sleeve 52 again is aligned in the direction of the hub 40.
  • constriction 48 represents a portion of the hub 40 between first and second sleeves 50, 52 in which the radius of the hub 40 is reduced from the radius 48 of both sleeves 50 and 52.
  • This constriction cooperates with an additional gas inlet 8 in the form that gas entering through the gas inlet 8 first enters the constriction 48.
  • gas can be distributed around the rotor 10, whereby the gas flow in the direction of the first sleeve 50 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft eine Vakuumpumpe nach dem Oberbegriff des ersten Anspruches.
  • Molekulare Pumpprinzipien sind aus der Vakuumtechnik aufgrund der vielfältigen Anwendungen bei der Erzeugung industrieller Vakua nicht mehr wegzudenken. Letztlich gründet sich der Pumpeffekt auf dem Impulsübertrag einer schnell bewegten Fläche auf Gasmoleküle, wodurch der statistischen thermischen Bewegung eine gerichtete Bewegung hinzuaddiert wird.
  • Rotierende Hülsen haben sich in Vakuumpumpen bewährt, beispielsweise in Form einer Holweckpumpstufe. Eine oder eine Mehrzahl von Hülsen wird einseitig an einer Nabe befestigt, die ihrerseits auf einer Welle angeordnet ist. Einen solchen Aufbau zeigt beispielsweise die EP 0 695 872 A1 .
  • In einigen Anwendungsfällen, beispielsweise beim Einsatz von Vakuumpumpen in Lecksuchern, wird ein hohes Druckverhältnis zwischen Ansaugöffnung und Auslass der Pumpe, insbesondere für leichte Gase gewünscht. Dies geht nach oben genanntem Bauprinzip mit sehr langen Hülsen einher. Gerade in diesen Anwendungen ist jedoch eine kompakte Bauweise gewünscht. Dem Wunsch widersprechen lange Hülsen, die die Baulänge der Vakuumpumpe selbst vergrößern.
  • Zum Stand der Technik ( DE 1 010 235 B ) gehört eine Molekularpumpe, bei der eine Holweckpumpstufe vorgesehen ist, die eine auf einer Nabe angeordnete lang gestreckte einstückige Hülse trägt. Diese Hülse weist den Nachteil auf, dass zum einen die Fertigung sehr genau ausgeführt sein muss, da die pumpaktiven Spalte sehr gering sind und die Hülse aus diesem Grunde als schnell drehendes Bauteil sehr exakt gefertigt werden muss. Zum anderen spielt bei den schnellen Drehungen eine Aufweitung der Hülse durch Fliehkräfte eine Rolle, was sich bei der langen Bauart ebenfalls nachteilig auswirkt.
  • Weiterhin gehört zum Stand der Technik ( DE 10 2009 035 332 A1 ) eine Vakuumpumpe, die hinsichtlich ihrer Pumpleistung verbessert werden kann.
  • Zum Stand der Technik ( EP 1 067 290 A2 ) gehört darüber hinaus eine Vakuumpumpe, die eine Holweckpumpe und nachgeschaltete Seitenkanalpumpstufen aufweist. Auch diese Pumpe kann in ihrer Bauart weiter verbessert werden.
  • Zum Stand der Technik ( GB 180,991 A ) gehört darüber hinaus eine Vakuumpumpe, die eine Holweckhülse aufweist, die jedoch so lang ausgebildet ist, dass zur Anordnung der Hülse, um beispielsweise eine Aufweitung zu vermeiden, zwei Naben vorgesehen sind. Diese Bauart ist sehr aufwendig.
  • Es war daher Aufgabe, eine Vakuumpumpe zu schaffen, die bei einer kompakten Bauweise ein hohes Druckverhältnis besitzt.
  • Die Aufgabe wird gelöst durch die Merkmale des unabhängigen Anspruches 1. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen 2 bis 9 gekennzeichnet.
  • Die erfindungsgemäße Vakuumpumpe, insbesondere Molekularpumpe, mit einem Rotor, welche eine Welle, eine mit der Welle verbundenen Nabe und eine mit einer ersten Seite verbundene und zur Welle konzentrische erste Hülse aufweist, und bei der die erste Hülse im Gasstrom einer zweiten Hülse nachfolgend angeordnet ist, zeichnet sich dadurch aus, dass die wenigstens eine zweite Hülse konzentrisch zur Welle auf einer in einer axialen Richtung der ersten Seite gegenüberliegenden zweiten Seite der Nabe mit dieser verbunden ist und dass die Nabe eine Mantelfläche umfasst, welche mit einem Stator gasfördernd zusammenwirkend ausgebildet ist.
  • Zur Lösung der Aufgabe wird gemäß den Merkmalen des Anspruches 1 vorgeschlagen, eine Nabe mit zwei Hülsen zu versehen, die auf gegenüberliegenden Seiten der Nabe angeordnet sind. Statt einer langen Hülse werden zwei kurze Hülsen benutzt, um die gleiche pumpaktive Länge zu erreichen. Der Vorteil ist nun, dass bei zwei Hülsen Fertigungstoleranzen eine geringere Rolle spielen. Solche Fertigungstoleranzen sind beispielsweise der Hülsendurchmesser und eine Verkippung der Hülse an der Befestigungsstelle. Diese Toleranzen müssen bei der Auslegung der Spalte zwischen Hülse und Stator berücksichtigt werden und führen bei einer langen Hülse zu weiten Spalten. Neben den Fertigungstoleranzen spielt auch die Aufweitung der Hülse durch Fliehkräfte bei schneller Drehung eine Rolle. Bei kurzen Hülsen ist diese Aufweitung geringer. Bei zwei kurzen Hülsen anstelle einer langen Hülse können daher engere Spalte eingesetzt werden. Enge Spalte bedeuten gleichzeitig eine Erhöhung des Druckverhältnisses, so dass das Druckverhältnis pro Länge steigt. Die Vakuumpumpe baut daher kompakter bei besserem Druckverhältnis als eine vergleichbare Vakuumpumpe nach bisheriger Bauart.
  • Gemäß einer möglichen Ausführungsform der Erfindung ist vorgesehen, dass ein Radius der ersten Hülse und ein Radius der zweiten Hülse unterschiedlich sind. Hierdurch lässt sich der Bauraum der Pumpe verkleinern bei durchaus gleich bleibendem Druckverhältnis.
  • Eine weitere vorteilhafte Ausführungsform sieht vor, dass eine dritte Hülse mit einem kleineren Radius konzentrisch zur ersten Hülse angeordnet ist. Diese dritte Hülse ist axial von der Welle aus gesehen auf gleicher Bauhöhe mit der ersten Hülse angeordnet. Durch diese Maßnahme ist es möglich, die Pumpleistung zu erhöhen, ohne dass zusätzlicher Bauraum benötigt wird.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass eine vierte Hülse mit einem Radius konzentrisch zur zweiten Hülse angeordnet ist. Axial gesehen ist die vierte Hülse auf gleicher Bauhöhe mit der zweiten Hülse angeordnet. Auch hierdurch wird bei gleich bleibendem Bauraum die Pumpleistung weiter erhöht.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist radial innerhalb der zweiten Hülse ein Stator vorgesehen, der mit einer inneren Oberfläche der zweiten Hülse pumpend zusammenwirkt. Auch hierdurch wird noch einmal die Pumpleistung deutlich erhöht, ohne dass der Bauraum der Pumpe vergrößert werden muss.
  • Gemäß einer weiteren vorteilhaften Ausführungsform ist vorgesehen, dass im Gasstrom vor der zweiten Hülse wenigstens eine Rotorscheibe turbomolekularer Bauart angeordnet ist. Auch hierdurch wird die Pumpwirkung der Pumpe erhöht.
  • Eine besonders bevorzugte Ausführungsform der Erfindung sieht vor, dass die wenigstens eine Hülse einen kohlenstofffaserverstärkten Kunststoff umfasst. Der Einsatz eines kohlenstofffaserverstärkten Kunststoffes als Hülsenmaterial ermöglicht noch geringere Spalte, da die Fliehkraftaufweitung der Hülse verringert wird.
  • Erfindungsgemäß umfasst die Nabe eine Mantelfläche, welche mit einem Stator Gas fördernd zusammenwirkt. Hierdurch wird die Mantelfläche der Nabe zum Erzielen einer Pumpwirkung benutzt.
  • Vorteilhaft sind die Mantelfläche und die radial außenliegenden Außenflächen der ersten und der zweiten Hülse zusammen als lediglich eine zylindrische Fläche ausgebildet. Dies hat den Vorteil, dass die erste und zweite Hülse zusammen mit der Mantelfläche der Nabe wie eine durchgehende Hülse einer Holweckstufe wirkt und damit die Pumpwirkung der Pumpe optimiert wird.
  • Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass die Nabe im Gasstrom vor der ersten Hülse eine Einschnürung aufweist, welche mit einem Gaseinlass zusammenwirkt. Diese Ausführungsform weist den Vorteil auf, dass das Zusammenwirken des Gaseinlasses mit der Einschnürung der Nabe zu einer Verbesserung der vakuumtechnischen Größen wie Saugvermögen und Druckverhältnis führen.
  • Das Vorsehen mehrerer konzentrischer Hülsen, die mit weiteren Statoren zusammenwirken und aufgrund ihrer Anordnung keinen zusätzlichen Bauraum benötigen, weist den Vorteil auf, dass die Vakuumpumpe bei einer kompakten Bauform ein besseres Druckverhältnis aufweist als eine vergleichbare Vakuumpumpe nach bisheriger Bauart.
  • Anhand eines Ausführungsbeispieles und seiner Weiterbildungen soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden. Es zeigen:
  • Fig. 1
    einen Längsschnitt durch eine Vakuumpumpe;
    Fig. 2
    einen Teilschnitt eines Rotors gemäß einer Weiterbildung mit einer Rotorscheibe turbomolekularer Bauart;
    Fig. 3
    einen Teilschnitt eines Rotors gemäß einer Weiterbildung mit einer weiteren Hülse;
    Fig. 4
    einen Teilschnitt eines Rotors gemäß einer Weiterbildung mit einer Einschnürung auf Höhe eines zusätzlichen Gaseinlasses.
  • Einen Längsschnitt durch eine Vakuumpumpe zeigt Fig. 1. Im Gehäuse 2 der Vakuumpumpe ist eine Ansaugöffnung 4 vorgesehen, durch die Gas in die Vakuumpumpe eingesaugt wird. Nach dem Verdichten wird es durch einen Auslass 6 aus der Vakuumpumpe ausgestoßen.
  • Innerhalb der Vakuumpumpe ist ein Rotor 10 vorgesehen, der zusammen mit einem Stator 30 die Pumpwirkung erzeugt. Der Rotor 10 weist eine Welle 12 auf, deren der Ansaugöffnung 4 zugewandtes Ende von einem Permanentmagnetlager 14 getragen wird. Das gegenüberliegende Ende wird von einem Wälzlager 16 unterstützt. Diese Lageranordnung besitzt gegenüber anderen denkbaren Lagerarten wie der fliegenden Lagerung mit zwei Wälzlagern auf der der Ansaugöffnung 4 gegenüberliegenden Seite den Vorteil, dass ein schmiermittelfreies Lager ansaugseitig eingesetzt wird und aufgrund der rotordynamisch einfacheren Lagerung enge Spalte und eine kurze Baulänge erreicht werden.
  • Auf der Welle 12 ist ein Permanentmagnet 20 vorgesehen, der mit einer bestromten Antriebsspule 22 zusammenwirkt. Hierdurch wird der Rotor 10 in eine ausreichend schnelle Drehzahl versetzt. Diese bemisst sich nach dem verwendeten Pumpprinzip und liegt bei molekularen Pumpprinzipien in der Regel bei einigen zehntausend Umdrehungen pro Minute.
  • Der Stator 30 weist auf seiner dem Rotor 10 zugewandten Oberfläche einen oder eine Mehrzahl schraubenlinienartiger Kanäle 32 auf.
  • An der Welle 12 ist eine Nabe 40 befestigt. Sie weist eine erste Seite 42 und eine dieser gegenüberliegende zweite Seite 44 auf. Die zweite Seite 44 ist der Ansaugöffnung 4 zugewandt. An der ersten Seite 42 ist eine erste Hülse 50 befestigt, an der zweiten Seite eine zweite Hülse 52. Beide Hülsen 50, 52 wirken mit dem Stator 30 und dessen schraubenlinienartigen Kanal 32 zur Erzeugung einer Pumpwirkung nach Holweck zusammen. Der Gasstrom führt durch die Ansaugöffnung 4 in einem Spalt S zwischen zweiter Hülse 52 und Stator 30. Die erste Hülse 50 ist im Gasstrom der zweiten Hülse 52 nachfolgend angeordnet und verdichtet damit zum höheren Druck hin. Durch die Verwendung der Hülsen 50 und 52 zusammen mit der beschriebenen Gasführung wirken sich Fertigungstoleranzen in geringerem Maße auf den Spalt S aus, so dass dieser enger als bei einer vergleichbaren einzelnen Hülse ausgeführt wird, deren Länge der Summe der Längen L1, L2 der beiden Hülsen 50, 52 entspricht.
  • Weiterbildungen sind in den nachfolgenden Fig. 2 bis 4 dargestellt, wobei die vorgestellten Merkmale miteinander kombiniert werden können.
  • In Fig. 2 ist ein Teil des Stators 30 und ein Teil des Rotors 10 dargestellt. Die Nabe 40 ist auf der Welle 12 angeordnet. Die Nabe 40 besitzt einen im Wesentlichen scheibenförmigen und sich in einer Ebene senkrecht zur Wellenachse W ausdehnenden Grundkörper, wodurch mit geringem Materialaufwand ein rotordynamisch vorteilhaftes Traggebilde für die Hülsen 50, 52, 54 geschaffen wird. Die Nabe 40 und wenigstens eine der Hülsen 50, 52, 54, 56 sind einstückig ausgebildet. Es ist möglich, die Nabe 40 symmetrisch oder, wie in Fig. 2 dargestellt, asymmetrisch, insbesondere senkrecht zur axialen Richtung gesehen, auszubilden. Auf ihrer ersten Seite 42, die einer ersten Stirnseite der Nabe 40 entspricht, sind zwei Absätze 80 und 84 vorgesehen, an denen die erste Hülse 50 und eine dritte Hülse 54 befestigt sind. Das Material der Hülsen 50, 52, 54 umfasst im Wesentlichen kohlenstofffaserverstärkten Kunststoff. Die Befestigung der Hülsen 50, 52, 54 kann beispielsweise durch Kleben erfolgen. Auf der der ersten Seite gegenüberliegenden zweiten Seite 44 ist ein weiterer Absatz 82 vorgesehen, an dem die sich in Richtung der Ansaugöffnung erstreckende und im Gasstrom der ersten Hülse 50 vorgelagerte zweite Hülse 52 befestigt ist.
  • Die Nabe 40 weist eine radial außenliegende Mantelfläche 46 auf, die mit wenigstens einem schraubenlinienartig verlaufenden Kanal 32 im Stator 30 zusammen eine Pumpwirkung erzielt. In einer Weiterbildung bildet die Mantelfläche 46 zusammen mit den radial außenliegenden Oberflächen 60 und 62 der ersten und zweiten Hülse 50 und 52 eine abgesehen von Materialübergängen durchgehende zylindrische Fläche.
  • Auf der Welle 12 ist im Gasstrom vor der zweiten Hülse eine Rotorscheibe 70 turbomolekularer Bauart angeordnet, mit welcher bei kurzer Baulänge das Saugvermögen erhöht und der Druckbereich zu niedrigeren Drücken hin erweitert wird.
  • In Fig. 3 wird der zusätzliche Gestaltungsspielraum vorgestellt, die Längen L1 und L2 von erster und zweiter Hülse 50 und 52 unterschiedlich lang zu gestalten. Hiermit können die vakuumtechnischen Daten und die Rotordynamik aufgrund der Massenverteilung auf dem Rotor aufeinander abgestimmt werden. Alternativ oder zusätzlich können Radien R1 und R2 von erster und zweiter Hülse 50, 52 voneinander verschieden sein.
  • Konzentrisch zur zweiten Hülse 52 und mit kleinerem Radius kann eine vierte Hülse 56 vorgesehen sein. Zwischen zweiter und vierter Hülse 52, 56 ist ein zusätzlicher Stator 34 vorgesehen, der als pumpaktive Strukturen schraubenlinienartige Kanäle 36 und 38 aufweist. Der Kanal 36 wirkt mit einer innenliegenden Oberfläche 64 der zweiten Hülse 52 zusammen. Die Pfeile veranschaulichen den Gasfluss, der zunächst an der äußeren Oberfläche der vierten Hülse 56 in Richtung Nabe 40 erfolgt, dann an der Oberfläche 64 der zweiten Hülse 52 von der Nabe 40 weggerichtet ist, und nachfolgend an der radial außenliegenden Oberfläche der zweiten Hülse 52 wieder in Richtung der Nabe 40 ausgerichtet ist.
  • Die Weiterbildung nach Fig. 4 weist einen zusätzlichen Stator 34 auf, durch dessen Wirkung durch die Ansaugöffnung 4 (nicht dargestellt) eintretendes Gas zunächst durch Zusammenwirken von Stator 34 und zweiter Hülse 52 von der Nabe 40 weg gefördert wird.
  • Ein weiteres mögliches Gestaltungsmerkmal wird durch eine Einschnürung 48 gebildet, die einen Bereich der Nabe 40 zwischen erster und zweiter Hülse 50, 52 darstellt, in welchem der Radius der Nabe 40 gegenüber dem Radius 48 beider Hülsen 50 und 52 verringert ist. Diese Einschnürung wirkt mit einem zusätzlichen Gaseinlass 8 in der Form zusammen, dass durch den Gaseinlass 8 eintretendes Gas zunächst in die Einschnürung 48 gelangt. Hierdurch kann sich Gas um den Rotor 10 herum verteilen, wodurch der Gasfluss in Richtung erster Hülse 50 verbessert wird.
  • Bezugszahlen
  • 2
    Gehäuse
    4
    Ansaugöffnung
    6
    Auslass
    8
    Gaseinlass
    10
    Rotor
    12
    Welle
    14
    Permanentmagnetlager
    16
    Wälzlager
    20
    Permanentmagnet
    22
    Antriebsspule
    30
    Stator
    32
    Kanäle
    34
    Stator
    36
    Kanäle
    38
    Kanäle
    40
    Nabe
    42
    erste Seite
    44
    zweite Seite
    46
    Mantelfläche
    48
    Einschnürung
    50
    Hülse
    52
    Hülse
    54
    Hülse
    56
    Hülse
    60
    Oberfläche
    62
    Oberfläche
    64
    Oberfläche
    70
    Rotorscheibe
    80
    Absatz
    82
    Absatz
    84
    Absatz
    L1
    Länge der Hülse
    L2
    Länge der Hülse
    R1
    Radius
    R2
    Radius
    S
    Spalt
    W
    Wellenachse

Claims (9)

  1. Vakuumpumpe, insbesondere Molekularvakuumpumpe, mit einem Rotor (10), welcher eine Welle (12), eine mit der Welle verbundene Nabe (40) und eine mit einer ersten Seite (42) der Nabe (40) verbundene und zur Welle (12) konzentrische erste Hülse (50) aufweist, wobei die erste Hülse (50) im Gasstrom einer zweiten Hülse (52) nachfolgend angeordnet ist,
    wobei die wenigstens eine zweite Hülse (52) konzentrisch zur Welle (12) auf einer in einer axialen Richtung der ersten Seite (42) gegenüberliegenden zweiten Seite (44) der Nabe (40) mit dieser verbunden ist, dadurch gekennzeichnet, dass die Nabe (40) eine Mantelfläche (46) umfasst, welche mit einem Stator (30) gasfördernd zusammenwirkend ausgebildet ist.
  2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass ein Radius (R1) der ersten Hülse (50) und ein Radius (R2) der zweiten Hülse (52) unterschiedlich sind.
  3. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine dritte Hülse (54) mit einem kleineren Radius konzentrisch zur ersten Hülse (50) angeordnet ist.
  4. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine vierte Hülse (56) mit einem kleineren Radius konzentrisch zur zweiten Hülse (52) angeordnet ist.
  5. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass radial innerhalb der zweiten Hülse (52) ein Stator (34) vorgesehen ist, der mit einer inneren Oberfläche (64) der Hülse (52) pumpend zusammenwirkend ausgebildet ist.
  6. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Gasstrom vor der zweiten Hülse (52) wenigstens eine Rotorscheibe (70) turbomolekularer Bauart angeordnet ist.
  7. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine Hülse (50, 52, 54, 56) einen kohlenstofffaserverstärkten Kunststoff umfasst.
  8. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Mantelfläche (46) und die radial außenliegenden Oberflächen (60, 62) von erster und zweiter Hülse (50, 52) zusammen als lediglich eine zylindrische Fläche ausgebildet sind.
  9. Vakuumpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Nabe (40) im Gasstrom vor der ersten Hülse (50) eine Einschnürung (48) aufweist, welche mit einem Gaseinlass (8) zusammenwirkend ausgebildet ist.
EP12180605.3A 2011-09-05 2012-08-16 Vakuumpumpe Active EP2565464B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193203A JP5683544B2 (ja) 2011-09-05 2012-09-03 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011112689.2A DE102011112689B4 (de) 2011-09-05 2011-09-05 Vakuumpumpe

Publications (3)

Publication Number Publication Date
EP2565464A2 EP2565464A2 (de) 2013-03-06
EP2565464A3 EP2565464A3 (de) 2015-04-15
EP2565464B1 true EP2565464B1 (de) 2019-04-24

Family

ID=46963391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12180605.3A Active EP2565464B1 (de) 2011-09-05 2012-08-16 Vakuumpumpe

Country Status (3)

Country Link
EP (1) EP2565464B1 (de)
JP (1) JP5683544B2 (de)
DE (1) DE102011112689B4 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013009462U1 (de) * 2013-10-28 2015-01-29 Oerlikon Leybold Vacuum Gmbh Trägerelement für Rohrelemente einer Holweckstufe
DE102013114290A1 (de) 2013-12-18 2015-06-18 Pfeiffer Vacuum Gmbh Vakuumpumpe
EP3907406B1 (de) * 2021-04-16 2023-05-03 Pfeiffer Vacuum Technology AG Vakuumpumpe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251547A2 (de) * 2009-05-16 2010-11-17 Pfeiffer Vacuum Gmbh Vakuumpumpe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB180991A (de) 1921-06-01 1923-08-07 Fernand Hippolyte Louis Holweck
DE1010235B (de) 1955-04-22 1957-06-13 Arthur Pfeiffer Fa Molekularpumpe
DE4427154A1 (de) 1994-08-01 1996-02-08 Balzers Pfeiffer Gmbh Reibungspumpe mit Magnetlagerung
DE19930952A1 (de) 1999-07-05 2001-01-11 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102009035332A1 (de) 2009-07-30 2011-02-03 Pfeiffer Vacuum Gmbh Vakuumpumpe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251547A2 (de) * 2009-05-16 2010-11-17 Pfeiffer Vacuum Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
DE102011112689B4 (de) 2024-03-21
EP2565464A3 (de) 2015-04-15
EP2565464A2 (de) 2013-03-06
JP2013053626A (ja) 2013-03-21
DE102011112689A1 (de) 2013-03-07
JP5683544B2 (ja) 2015-03-11

Similar Documents

Publication Publication Date Title
EP2295812B1 (de) Vakuumpumpe
WO1993023672A1 (de) Gasreibungsvakuumpumpe
WO2001057402A1 (de) Reibungsvakuumpumpe
DE102012003680A1 (de) Vakuumpumpe
EP1067290B1 (de) Vakuumpumpe
EP2565464B1 (de) Vakuumpumpe
DE4410656A1 (de) Reibungspumpe
EP0363503A1 (de) Pumpenstufe für eine Hochvakuumpumpe
EP2594803A1 (de) Reibungsvakuumpumpe
DE102018220007A1 (de) Seitenkanalverdichter für ein Brennstoffzellensystem zur Förderung und/oder Verdichtung von einem gasförmigen Medium
EP3088743B1 (de) Seitenkanal-vakuumpumpstufe mit einem unterbrecher, der auf der saugseite abgeschrägt ist
EP2933497A2 (de) Vakuumpumpe
EP3608545B1 (de) Vakuumpumpe
EP2148094B1 (de) Vakuumpumpe
WO2000020762A1 (de) Reibungsvakuumpumpe mit stator und rotor
EP1319131B1 (de) Compound-reibungsvakuumpumpe
EP3196471B1 (de) Vakuumpumpe
EP3043074B1 (de) Anordnung zur lagerung einer welle einer vakuumpumpe
EP2886870B1 (de) Vakuumpumpe mit verbesserter Einlassgeometrie
DE10149366A1 (de) Axial fördernde Reibungsvakuumpumpe
WO2004015272A1 (de) Evakuierungseinrichtung
EP3267040B1 (de) Turbomolekularpumpe
EP2902637B1 (de) Vakuumpumpe
EP3767109B1 (de) Vakuumsystem
EP4194700A1 (de) Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101AFI20150311BHEP

17P Request for examination filed

Effective date: 20150928

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014648

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1124483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120816

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230626

Year of fee payment: 12

Ref country code: GB

Payment date: 20230705

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230623

Year of fee payment: 12