WO1993018174A1 - Composes polymeres de l'acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants - Google Patents

Composes polymeres de l'acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants Download PDF

Info

Publication number
WO1993018174A1
WO1993018174A1 PCT/FR1993/000205 FR9300205W WO9318174A1 WO 1993018174 A1 WO1993018174 A1 WO 1993018174A1 FR 9300205 W FR9300205 W FR 9300205W WO 9318174 A1 WO9318174 A1 WO 9318174A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polyglucuronic
glucuronic acid
preparation
residue
Prior art date
Application number
PCT/FR1993/000205
Other languages
English (en)
Inventor
Josiane Courtois-Sambourg
Bernard Courtois
Alain Heyraud
Philippe Colin-Morel
Marguerite Rinaudo-Duhem
Original Assignee
Universite De Picardie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Picardie filed Critical Universite De Picardie
Priority to JP5515378A priority Critical patent/JPH07504928A/ja
Priority to EP93905441A priority patent/EP0629245A1/fr
Publication of WO1993018174A1 publication Critical patent/WO1993018174A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof

Definitions

  • the present invention relates, as new industrial products, to polymeric compounds of glucuronic acid, namely the polyglucuronic linking compounds B (1-4) of formula I below. It also relates to the process for the preparation of these new compounds as well as their use, in particular as gelling, thickening, hydrating, stabilizing, chelating, flocculating, purifying and susceptible to forming fibers, on the one hand, and as starting materials for the preparation of oligosaccharide compounds, on the other hand.
  • -It also targets as a new industrial product a particular bacterial strain belonging to all Rhizobium, namely the strain Rhizobium meliloti NCIMB 40472, which is useful in the preparation of said polymeric compounds of glucuronic acid by fermentation.
  • the closest prior art known to the owner of the present invention comprises hyaluronic acid described in particular in the work Merck Index, linked edition, (1989), pages 751-752 (product No 4675), of on the one hand, and the polysaccharide described in document FR-A-2 378 092, on the other hand.
  • Hyaluronic acid is a natural polysaccharide consisting of a repeating unit with two units: a glucuronic acid unit and a glucosaminidic unit. In this polysaccharide, these two units are alternated; the glucuronic acid unit has a chain p (l-3) and the glucosaminidic unit has a chain B (l-4).
  • the structural formula of hyaluronic acid provided in the above-mentioned Merck Index is as follows:
  • the polysaccharide of document FR-A-2 378 092 is produced by the exocellular route from a strain of Pseudomo ⁇ as NCIB 11264 (ATCC 31260) and comprises a repeating unit consisting of 7 D-glucose units (a glucose unit substituted in position 6, two units of disubstituted glucose in position 4, two units of glucose substituted in position 3 and two units of disubstituted glucose in positions 4,6) and of 1 unit of substituted D-galactose in position 3, this repeating pattern being esterified with l acetic acid unit and 1 pyruvic acid unit, the side chain of the polymer ending in a 4.6-0- (1-carboxyethylidene) -D-glucose unit.
  • Rhizobium meliloti M5N1 (reference given by the holder of the present invention), isolated from the ground, has been described by J. COURTOIS et al., J. Bacteriol. , (1988), 170, pages 5925-5927. Under the fermentation conditions given below, this strain produces polysaccharides having glycosidic bonds p (l-3) and in particular the polymer corresponding to the formula
  • said article does not describe or suggest polysaccharides with an average dp greater than 200 ⁇ and in particular with an average dp greater than or equal to 300, according to the invention.
  • it neither describes nor suggests the presence or obtaining exclusively D-polyglucuronic polysaccharides with p (l-4) chain and high dp, among the exocellular polysaccharides produced by molds belonging to the order of the mucorals and used as sources of Mw oligosaccharides ranging from 5500 to 10000 daltons.
  • the oxidized cellulose obtained according to the process of US-A-2 232 990 is not a polysaccharide of the D-polyglucuronic acid type
  • Said oxidized cellulose is different from the polysaccharides of the present invention in particular with regard to the fact (i) that its molecular weight is higher (see US-A-2232 990, page 2 right column, lines 60 64), where it is indicated that the polysaccharide chain of the starting cellulose has not been cleaved), and (ii) that it is insoluble in water (the examples of oxidized cellulose only state its solubility in water containing 2 % NaOH), while the polysaccharides (as well as the oligosaccharides which derive therefrom) according to the present invention are polymers, of the D-polyglucuronic acid type with chain B (1-4) comprising only D-glucuronic acid units, which are all water-soluble.
  • the aim of 1 • invention is to provide new polysaccharides that are structurally different from the above-mentioned hyaluronic acid and other polysacchari ⁇ of the prior art, especially polymer products mentioned above and alginates, first , and which are industrially useful in particular as gelling, thickening, hydrating, stabilizing, chelating, flocculating, purifying means capable of forming fibers, intended in particular for the food, dietetic, pharmaceutical fields (in human " or veterinary therapy " ) , cosmetic, agricultural, water purification, paints, on the other hand.
  • a new polymer compound of glucuronic acid is recommended, characterized in that it is chosen from the group consisting of
  • n is a number having an average value between approximately 300 and 2500
  • the aim here is a process for the preparation of a glucuronic acid polymer compound of formula I or one of its esters in which the alcohol OH functions are partially O-acetylated, said process being characterized in that it includes the fermentation, in the presence of a nutritive medium containing a source of nitrogen, a source of carbon and salts, of a bacterial strain belonging to the set of Rhizobium and producing polysaccharides when it is cultivated at pH 7 in an aqueous nutritive medium containing 1 g / 1 of K 2 HP0 4 , 0.2 g of MgS0_ * .7H 2 0, 1 g / 1 of NH4NO3 and 10 g / 1 of glucose.
  • the aim is, as a new industrial product, the Rhizobium meliloti NCIMB 40472 strain (reference given by the Holder of the present invention: M5N1 CS) which is obtained by mutation of the above-mentioned wild strain M5N1.
  • the use of said polymeric glucuronic acid compounds is pre ⁇ coned, especially in the food, pharmaceutical (in human or veterinary therapy), cosmetic or water purification fields. , in particular as gelling, thickening, hydrating, stabilizing, plasticizing, chelating or flocculating means, or also as film-forming means or forming fibers and fibers.
  • the use of said compounds is pre ⁇ coned in the preparation of oligosaccharides which are particularly useful in agriculture. ABBREVIATIONS
  • HPLC high performance liquid chromatography
  • Ml aqueous identification nutrient medium containing lg / 1 of K 2 HPO ⁇ , 0.2 g of MgS0 4 .7H 2 0, 1 g / 1 of NH.4NO3 and 10 g / 1 of glucose and allowing distinguish by culture at pH 7 the Rhizobium strains which produce PS from those which do not produce
  • M2 aqueous nutritive medium of production, preferred according to the invention, containing 1 g / 1 of yeast extract, 1 g / 1 of K 2 HP0 4 , 0.2 g / 1 of MgSO_ a , .7H 2 0 and 10 g / 1 of glucose, fructose or sucrose
  • M5N1 wild strain of Rhizobium meliloti described by J. COURTOIS et al., J. Bacteriol. , (1988),
  • the polymeric compounds of glucuronic acid according to the invention therefore include the polygluconic acids of formula I, their esters, their ethers and their mixtures. More specifically, such a polymeric compound of glucuronic acid is chosen from one set consisting of
  • esters of polyglucuronic acids of formula I in which the OH residue of at least one carboxylic acid group COOH is replaced by a residue, alkoxy in
  • esters of polyglucuronic acids of formula I in which the hydrogen atom of at least one alcohol group OH is replaced by an aliphatic acyl residue of C 2 -C *,
  • esters of polyglucuronic acids of formula I in which (i) the OH residue of at least one COOH carboxylic acid group is replaced by a C _ -C C * alkoxy residue, and (ii) the hydrogen atom d 'at least one OH alcohol group is replaced by an aliphatic acyl residue in
  • ethers of polyglucuronic acids of formula I in which the hydrogen atom of at least one alcohol group OH is replaced by a C ⁇ -C_ * alkyl residue, ether-esters of polyglucuronic acids of formula I wherein (i) the remaining OH of at least one carboxylic acid group COOH is replaced by a radical C -C alkoxy ⁇ , and (ii) the hydrogen atom 'at least one OH alcohol group is replaced by an alkyl residue in
  • alkoxy groups in C1-C.4 may be of linear or branched hydrocarbon chain, they include the MeO, EtO, PrO, iPrO, BuO, iBuO, sBuO and tBuO groups.
  • C -C4 alkyl groups may have a linear or branched hydrocarbon chain, they include the Me, Et, Pr, iPr, Bu, iBu, sBu and tBu groups.
  • Aliphatic acyl groups, C 2 -C ⁇ may be straight or branched hydrocarbon chain, they include groups Ac, COEt, COPc, COiPr.
  • the preferred product according to the invention has an Mw of 80,000 to 400,000 daltons and is chosen from the group consisting of
  • each glucuronic acid cycle of formula I comprising at most 33% by weight of O-CO-CH3 groups (ie OAc) relative to the weight of said glucuronic acid cycle.
  • the acetyloxy function is located either in position 2, or in position 3, or even in positions 2 and 3 of the glucuronic acid cycle.
  • the deacetylation is carried out at a pH greater than 8.0 at RT (the pH greater than 8.0 being obtained by means of a strong base, in particular an alkali metal hydroxide such as NaOH or KOH).
  • a strong base in particular an alkali metal hydroxide such as NaOH or KOH.
  • deacetylated polymer which corresponds to formula I above can be represented by the abbreviated formula: A.gluc B l - [-> 4 A.gluc B l -] perennial-> 4 A.gluc (Io)
  • the bacterial strains which are suitable for implementing the preparation process according to the invention, are those which (i) belong to the set of Rhizobium and (ii) produce PS when they are cultivated at pH 7 in an aqueous nutritive medium for identification, namely the medium Ml which contains lg / 1 of K 2 HP0 * , 0.2 g of MgS0 *. 7H 2 0, 1 g / 1 of NH ⁇ N0 3 and 10 g / 1 glucose.
  • the process for preparing a polymer compound of glucuronic acid comprises fermentation in the presence of a source of nitrogen, from a carbon and salt source, from a bacterial strain belonging to the set of Rhizobiums which produce PS by culture at pH 7 in the aforementioned aqueous medium Ml.
  • the production of said polymer compound can be either intracellular or most often exocellular.
  • said fermentation is carried out by means of an aqueous medium containing 0.5 to 2 g / 1 of K 2 HP0 ⁇ , 0.05 to 0.3 g / 1 of MgSO * , 0, 8 to 3 g / 1 of yeast extract and 7 to 20 g / 1 of sugar, at a temperature of 25 to 40 ° C.
  • the nutrient medium can contain any sugar, the preferred sugar is chosen in particular from glucose, fructose, sucrose and mixtures thereof.
  • the bacteria By incubation in such an aqueous medium, for an appropriate duration (preferably less than or equal to 100 h or, if necessary, more than 100 h), the bacteria produce (both in the growth phase and in the stationary phase of not -proliferation), a polymeric compound of D-glucuronic acid which is the product of formula I or one of its esters in which the alcohol functions OH are partially O-acetylated. From this compound, the other esters and / or ethers are obtained according to a method known per se.
  • the aqueous fermentation-incubation medium will contain 1 g / 1 of yeast extract, 1 g / 1 of K ⁇ HPO * ,, 0 , 2 g / 1 of MgS0 ⁇ . 7H 2 0 (source of MgS0 ⁇ ) and 10 g / 1 of sugar (preferably glucose, fructose or sucrose), at a temperature of 30 ° C, at a pH of 7 (obtained by addition of NaOH or KOH), with p0 2 from 30 to 100% (depending on the degree of acetylation desired).
  • sugar preferably glucose, fructose or sucrose
  • this fermentation is carried out from a bacterial population greater than or equal to 10 2 bacteria / ml and better still greater than or equal to 10 ⁇ bacteria / ml.
  • the liquid fermentation medium incubated for a duration of less than or equal to 100 h, which contains the polygluronic polymer compound according to the invention, is collected as soon as the bacterial population is greater than or equal to 10 9 bacteria / ml.
  • the bacteria are separated from the fermentation medium, in particular by filtration or dialysis (in particular on a membrane) or else by centrifugation in order to collect said polyglucuronic polymer compound contained in the fermentation juice.
  • This polyglucuronic polymer compound is isolated from the resulting filtrate, dialysate or supernatant, either by precipitation using an organic solvent such as EtOH, PrOH, iPrOH, MeCOMe or an analogous solvent, or by precipitation in an acid medium at a lower pH. or equal to 3.
  • an organic solvent such as EtOH, PrOH, iPrOH, MeCOMe or an analogous solvent
  • the polyglucuronic polymer compound when obtained by precipitation using an organic solvent, it is recommended to operate at low temperature, preferably at a temperature of the order of 4 "C; the precipitate is then collected by centrifugation and then dried (in particular under vacuum at RT).
  • the polyglucuronic polymer compound when obtained by precipitation in an acid medium, it is collected by centrifugation, washed with water and dispersed with stirring in an aqueous solution at a pH greater than or equal to 8.0 to be purified; the polyglucuronic polymer compound thus dissolved in an alkaline medium is immediately reprecipitated using an organic solvent as indicated above.
  • the esters of the COOH carboxylic acid function can be formed from the deacetylated polymer by alkylation according to a method known per se. It is also possible to obtain the esters of the alcohol OH function by reaction of the deacetylated compound of formula I with an appropriate acid according to a method known per se. The ethers of the OH alcohol function are obtained from said deacetylated compound by application of a reaction mechanism also known per se. The same is true for the esters of the COOH and OH functions and the ether-esters.
  • polyglucuronic polymer compounds with chain J3 (l-4) are useful in several fields, namely: the food industry, both human and animal, in particular as thickening or texturing agents; - the paper and board industry, in particular as additives or coating means, or even as fibers;
  • polyglucuronic compounds according to the invention have proved to be particularly useful industrially as a replacement for hyaluronic acid in the fields where said hyaluronic acid has hitherto intervened.
  • Polyglucuronic compounds, according to the invention are more precisely very effective in human and veterinary therapy, on the one hand, and in surgery, on the other hand, because of their ability to form fibers and threads or yarns.
  • the polyglucuronic polymer yarns according to the invention are perfectly suitable for the production of stitches, they have a structure which can be eliminated by biodegradation or treatment with water. Therefore, they have a great analogy with the son made of hyaluronic acid and are very interesting in the field of viscochurgery.
  • Polyglucuronic fibers and threads are also very effective in the paper and textile fields.
  • the polyglucuronic compounds according to the invention are also useful in the field of the preparation of D-polyglucuronic oligosaccharides with chain B (1-4). More specifically, the OSs are obtained by hydrolysis, in particular acid or enzymatic, of said D-polyglucuronic polymer compounds with chain B (l-4).
  • This hydrolysis can be carried out either (i) in the presence of the bacteria Rhizobium meliloti NCIMB 40472, by continuing the fermentation in the medium M2 for more than 100 h, or (ii) by incubation of the polyglucuronic polymer compounds with chain B (l-4 ) or fermentation juice containing them for more than 100 h at a temperature of 20-40 ° C, either (iii) by enzymatic cleavage in particular by means of a cellulase, or (iv) by cleavage in acid medium with a pH less than or equal to 3, for at least 90 hours at 100 ° C.
  • the bones thus obtained and then dried have, after isolation, a variable dp from 2 to 10 for short-chain bones, from 10 to 50 for medium-sized bones, and from 50 to 100 approximately for those with a long chain .
  • the Preferred OSes according to the invention have a dp of between 5 and 20.
  • OS are also useful in the pharmaceutical field, in human and veterinary therapy or in the field of diagnosis, in particular as a means of targeting active ingredients.
  • the best mode of carrying out the invention consists in providing a polyglucuronic acid of formula I having an Mw of the order of 80,000 to 400,000 daltons.
  • This polyglucuronic acid is obtained from the bacterial strain Rhizobium meliloti NCIMB 40472.
  • an aqueous nutrient medium containing 1 g / l of yeast extract, 1 g / l of K 2 HPO_ * , 0.2 g / l of MgS0_ *. 7H 2 0 is sown. and 10 g / 1 of glucose, fructose or sucrose (ie the abovementioned M2 medium), at a temperature of 30 ° C., at a pH of 7, with p0 2 of 30 to 100% by means of said strain Rhizobium meliloti NCIMB 40472 so as to have in the starting fermentation medium for this strain a bacterial population of at least 10 4 bacteria / ml.
  • Fermentation is carried out until a bacterial population of at least 10 s bacteria / ml is obtained (it can be continued according to the desired production).
  • the bacteria are separated from the fermentation medium by tan filtration. gential on a filter or filter membrane with 200 n porosity.
  • the filtrate which contains the optionally acetylated polyglucuronic acid is treated with EtOH, iPrOH or MeCOMe at 4 ° C.
  • the precipitate thus obtained is collected by filtration and then dried.
  • the polymer thus obtained, redissolved can then be deacetylated at pH 11, for at least 7 h and at most 24 h at RT.
  • the total duration of fermentation-incubation of the nutritive medium (M2 medium or analogous medium containing a sugar different from glucose, fructose and sucrose) with the Rhizobium meliloti NCIMB 40472 strain for the production of polysaccharides of formula I and of their corresponding esters (in which the alcohol OH function is partially acetylated) is less than or equal to 100 h, at 30 ° C. and at pH 7.
  • This production is carried out (a) during the growth phase of the strain , and / or (b) during the non-proliferation phase thereof after the bacterial population has reached at least the value of 10 9 bacteria / ml.
  • the production of the PS of the invention is favored having an Mw located in the upper part of the range 80,000-400,000 daltons; when the duration is greater than 100 h, the production of PS having an Mw located in the lower part of this interval, and of OS is favored.
  • the mixture of living bacteria obtained after mutation is seeded on the medium Ml.
  • This medium is used to eliminate the bacteria considered here not interesting according to a character of auxotrophy.
  • the glucose contained in Ml fulfills two functions: it acts as a carbon source, on the one hand, and it makes it possible to distinguish mutated or non-used bacteria, which do not produce PS, from mutated bacteria producing PS in presence of said glucose.
  • the colonies producing PS are cultivated on aniline blue medium.
  • the medium with aniline blue makes it possible to distinguish the strains, which respond positively to said medium and have glycosidic bonds B (l-3), from the strains responding negatively which are collected.
  • the strains thus collected are analyzed for their content in extrachromosomal DNA (i.e. their plasmid content).
  • the direct lysis protocol developed by T.ECKHARDT, Plasmid, (1978), C. pages 584-588, is applied to said strains.
  • the plasmid profiles of said strains are compared with that of the wild-type strain M5N1 at the start, in order to identify and retain only the strains having a modified plasmid content.
  • This strain thus selected has been (i) checked as regards its infectivity with regard to alfalfa (legume specific for Rhizobium meliloti; the response to infection being positive since only nodules appeared on alfalfa roots), then (ii) deposited with an approved organization.
  • This strain is referenced NCIMB 40472. PREPARATION II
  • the inoculum of the Rhizobium meliloti NCIMB 40472 strain is introduced [the inoculum consists here of 1 liter of M2 (in Erlenmeyer flask ) containing the strain NCIMB 40472].
  • the inoculum is used when the bacterial suspension is of the order of 10 9 bacteria / ml. Fermentation is carried out with the following parameters: temperature 30 ° C pH maintained at 7 (addition of KOH 1M or more) p0 2 30 at 100% (depending on the degree of acetylation desired) stirring 100 rpm
  • the medium can contain 1 to 5 gl _i.
  • the yield relative to the sugar in the M2 medium thus varies between 20 and 85% (the measurements are carried out by HPLC chromatography with a Beckman TSK 2000 SW column and detection by refractometry).
  • the cells are cultured under the conditions (inoculum / medium) described in preparation II above.
  • the suspension in the fermenter reaches 10 9 bacteria / ml of Rhizobium meliloti NCIMB 40472, the fermentation medium is passed through microfiltration membranes (200 n of porosity), the cells are washed and recovered (they can be recovered directly by continuous centrifugation under sterile conditions).
  • These cells are washed using a nitrogen-free medium comprising: and then introduced into a fermenter containing 15 liters of medium devoid of nitrogen but supplemented with 10 g / 1 of glucose, fructose or sucrose.
  • the fermenter thus inoculated at a bacterial concentration of approximately 10 9 bacteria / ml is subjected to the same parameters as in the case of a growing production.
  • the medium contains the same polymer as that of preparation II at a concentration similar to that of the growing fermentation.
  • the bacteria are eliminated from the fermen ⁇ tation medium by filtration (in particular tangential filtration on a 200 nm porosity filter, in particular the MICROSART MINI filter sold by the company SARTORIUS) or by centrifugation of the fermentation medium of the preparation II, III or IV.
  • the polyglucuronic compound with chain p (l-4) is recovered from the filtrate or from the supernatant by precipitation with an organic solvent such as EtOH, iPrOH or MeCOMe.
  • an organic solvent such as EtOH, iPrOH or MeCOMe.
  • iPrOH this solvent is added to the filtrate in a proportion of 70% v / v, if necessary in the presence of 1M NaCl.
  • the resulting assembly is homogenized and a precipitate of poly ⁇ glucuronic compound is formed (precipitation is favored at low temperature, in particular at + 4 ° C.).
  • the precipitate is collected by centrifugation and dried under vacuum at RT.
  • the filtrate or supernatant obtained according to step (a) of preparation V is purified by tangential ultrafiltration with a membrane whose porosity is between 60,000 and 80,000 daltons. To purify the concen ⁇ trate, the filtrate is removed and replaced with distilled water. This operation is repeated until the desired purification is reached.
  • the polygluonic curonic polymer B (l-4) is isolated by evaporation under vacuum at RT.
  • PREPARATION VIII Deacetylation The isolated polymer obtained according to preparation VII which contains at most 33% by weight of group OAc relative to the weight of the glucuronic acid repeating unit is treated at a pH greater than 8 by means of NaOH. Overnight at RT and at pH 11 allows the molecule to be deacetylated. ANALYZES
  • the products of preparations V-VIII are D-polyglucuronic polymer compounds exclusively constituted by D-glucuronic acid units, and having a p (l-4) sequence; 2 e ) the products of preparations V-VII are partially acetylated D-glucuronic acid polymer compounds (at most 33% by weight as indicated above) in position 2, in position 3 or in positions 2 and 3; 3) the product of preparation VIII is deacetylated.
  • the solutions of the polyglucuronic compound according to preparations V-VIII are stable when cold in an alkaline medium, in particular at pH 11; if the temperature rises, the OAc substituents are cleaved. This polyglucuronic compound is also stable in an acid medium but precipitates at a pH of around 3.
  • the intrinsic viscosity (Vi) in 0.1 M NaCl is 650 ml / g for an Mw of 150,000 (the Mw can vary depending on the duration of fermentation between 80,000 and 400,000 dal ⁇ tons and better between 100,000 and 350,000 daltons).
  • This intrinsic viscosity is low compared to that of the succinoglycan produced by the wild strain Rhizobium meliloti M5N1 which has a Vi of 5,480 ml / g for a Hw of 4,000,000 daltons.
  • the results obtained with regard to this intrinsic viscosity are comparable to those of an alginate having an Mw of 270,000 daltons.
  • solutions of polyglucuro ⁇ nic polymer compounds according to the invention having an Mw greater than 300,000 daltons at concentrations of 20 to 30 g / 1 form a few minutes after their homogenization of thermoreversible firm gels.
  • the polymer according to the invention having an Mw of the order of 80,000 dal ⁇ tons gives a few minutes after its homogenization a flexible gel.
  • the solutions of the polymers according to the invention behave like thickeners.
  • the monovalent ions form gels with the solutions of the polyglucuronic polymers according to the invention. These gels are thermoreversible. The formation of the gel depends on the nature of the cation, on the ionic strength and on the concentration, the ion selectivity being the following: Na- ⁇ Li- ⁇ K * ⁇ MU-.
  • the transition temperature depends on the concentration of NH 4 - * - (NH_ * C1 from 0.5 M to 1.5 M or more) and the rate of acetate in the molecule.
  • the gel formed with 0.5 M NH 4 Cl and the polyglucuronic compound according to the invention at a concentration of 10 to 15 g / l, brought to 100 ° C. for 24 h is practically not degraded.
  • the polysaccharide forms a gel which is comparable to those of pectinic acids (substances of the polygalacturonic acid type) and of alginates (substances of the copoly type of mannuronic acid / guluronic acid era).
  • pectinic acids substances of the polygalacturonic acid type
  • alginates substances of the copoly type of mannuronic acid / guluronic acid era
  • the polyglucuronic polymer compound according to the invention in solution in water and placed in the presence of MgCl 2 is capable of forming a thermoreversible gel.
  • the gels can be formed directly in contact with Ca 2- * - and polyglucuronic polymer compounds with p (l-4) sequence by dialysis or any other method allowing progressive contact between the ion and said polymer compounds.
  • these gels can be formed using reagents allowing progressive gelling: it is thus possible to form a gel from a polymer compound at 10 g / 1 in water and CaHPO4.2H 2 0 (at the concentration of 1.2 to 1.5 g / 1) and gluconolactone (at the concentration of 4.5 g / 1), after homogenization, the gel forms in the preparation kept immobile.
  • Firm gels can be obtained from concentrations of polyglucuronic polymer compound according to the invention of the order of 3 g / 1.
  • the gel brought to a temperature of 100 "C for 1.5 h does not undergo any modification, the strength of the gel (module) is unchanged after 24 h (compression measurement carried out on an INSTR ⁇ N device) ,
  • the gel placed at 100 ° C at pH below 2 is stable for at least 1 h
  • the gel placed at 100 ° C at pH 8-13 is stable for at least 1 h, - in CaCl 2 , 0.34 M, the gel is stable for at least 24 h; at RT
  • the gel is stable (in one week, the module goes from 1.8 to 1.3 N / cm 2 ),
  • the gel is maintained for at least a week
  • the water of said polyglucuronic polymers from the concentration of 3 g / 1, brought into contact with an alcohol, in particular EtOH, form gels.
  • fibers can be obtained from polymer / CaCl 2 gels.
  • X-ray shots on polymer fibers / CaCl 2 show a periodicity along the axis of each fiber of the order of 103 nm. Such a periodicity is analogous to that found for cellulose.
  • the present preparation illustrates the obtaining of OS in the growth medium and in the presence of Rhizobium meliloti bacteria NCIMB 40472.
  • a fermentation is carried out in a growth medium according to the operating methods described. in preparation II above, with the difference that the duration of said fermentation is greater (preferably) or equal to 100 h at RT to obtain a relatively large amount of OS. This prolonged hydrolysis leads to the formation of bone in the medium.
  • the bacteria are separated from the fermentation medium by centrifugation or tangential microfiltration using filters with a porosity of 200 nm.
  • the OS compound is recovered by ultrafiltration, purified by chromatography and dried. It has a dp of 5-60 and can be separated into three fractions of (a) dp 5-10, (b) dp 10-50 and (c) dp 50-60, in particular by chromatography.
  • PREPARATION X Obtaining an oligosaccharide compound
  • the present preparation illustrates the obtaining of OS in the absence of bacteria.
  • step (b) The isolation of the OS compound formed in said liquid medium is carried out as indicated in step (b) of preparation IX. After ultrafiltration, purification and drying, an OS having a dp of 5-60 is obtained and separated ble in three fractions of dp 5-10, 10-50 and 50-60. PREPARATION XI
  • the present preparation illustrates the obtaining of OS by enzymatic hydrolysis.
  • the present preparation illustrates the obtaining of OS by acid hydrolysis.
  • step (b) The isolation of the OS compound thus obtained is carried out as indicated in step (b) of preparation IX. After ultrafiltration, purification and drying, an OS is obtained having a dp of 5-60 separable into three fractions of dp 5-10, 10-50 and 50-60.
  • glucuronic acid obtained by deacetylation according to the operating methods described in preparation VIII was subjected to extensive enzymatic hydrolysis so as to provide the glucuronic acid.
  • the glucuronic acid thus formed can be isolated by ultrafiltration and purified by ion exchange chromatography, by electrodialysis or any other suitable method making it possible to separate said acid from the larger molecules and from the salts present in the hydrolysis medium. enzymatic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention concerne en tant que produit industriel nouveau un composé polymère de l'acide glucuronique caractérisé en ce qu'il est choisi parmi l'ensemble constitué par (a) les acides D-polyglucuroniques à enchaînement β(1-4) de formule (I) dans laquelle n est un nombre ayant une valeur moyenne comprise entre environ 300 et 2500, (b) les esters correspondants, (c) les éthers correspondants, et (d) leurs mélanges. Elle concerne également le procédé de préparation de ce nouveau produit par fermentation, de préférence par fermentation de la souche Rhizobium meliloti NCIMB 40472. Ce nouveau produit est utile notamment (i) dans le domaine alimentaire, pharmaceutique en thérapeutique humaine ou vétérinaire, cosmétique ou de l'épuration des eaux, en particulier en tant que moyen gélifiant, épaississant, hydratant, stabilisant, chélatant ou floculant, et (ii) dans la préparation d'oligosaccharides.

Description

COMPOSES POLYMERES DE L 'ACIDE GLUCURONIQUE, PROCEDE DE PREPARATION ET UTILISATION NOTAMMENT EN TANT QUE MOYENS GELIFIANTS, EPAISSISSANTS, HYDRATANTS, STABILISANTS, CHELATANTS OU FLOCULANTS
DOMAINE DE L'INVENTION
La présente invention a trait, en tant que pro¬ duits industriels nouveaux, à des composés polymères de l'acide glucuronique, à savoir les composés polyglucuro- niques à enchaînement B(l-4) de formule I ci-après. Elle concerne également le procédé de préparation de ces nouveaux composés ainsi que leur utilisation, notamment en tant que moyens gélifiants, épaississants, hydratants, stabilisants, chélatants, floculants, épurants et suscep¬ tibles de former des fibres, d'une part, et en tant que matériaux de départ pour la préparation de composés oligosaccharides, d'autre part.
-Elle vise également en tant que nouveau produit industriel une souche bactérienne particulière apparte- nant à 1'ensemble des Rhizobium, à savoir la souche Rhizobium meliloti NCIMB 40472, qui est utile dans la préparation desdits composés polymères de l'acide glucu¬ ronique par fermentation. ART ANTERIEUR Des polysaccharides, tels que les polymères de la présente invention, qui sont constitués exclusivement de motifs ou unités -acide glucuronique à enchaînement B(l-4), n'ont pas encore été décrits jusqu'à maintenant. L'art antérieur le plus proche, connu du Titulai¬ re de la présente invention comprend l'acide hyaluronique décrit notamment dans l'ouvrage Merck Index, lié édition, (1989), pages 751-752 (produit No 4675), d'une part, et le polysaccharide décrit dans le document FR-A-2 378 092, d'autre part.
L'acide hyaluronique est un polysaccharide natu¬ rel constitué d'un motif répétitif à deux unités : une unité acide glucuronique et une unité glucosaminidique. Dans ce polysaccharide, ces deux unités sont alternées ; l'unité acide glucuronique présente un enchaînement p(l-3) et l'unité glucosaminidique un à enchaînement B(l-4). La formule développée de l'acide hyaluronique fournie dans le Merck Index précité est la suivante :
Figure imgf000004_0001
Le polysaccharide du document FR-A-2 378 092 est produit par voie exocellulaire à partir d'une souche de Pseudomoπas NCIB 11264 (ATCC 31260) et comprend un motif répétitif constitué de 7 unités D-glucose (une unité de glucose substitué en position 6, deux unités de glucose disubstitué en position 4, deux unités de glucose substi¬ tué en position 3 et deux unités de glucose disubstitué en positions 4,6) et de 1 unité de D-galactose substitué en position 3, ce motif répétitif étant estérifié avec l unité acide acétique et 1 unité acide pyruvique, la chaîne latérale du polymère se terminant par une unité 4,6-0-(1-carboxyéthylidène)-D-glucose.
On sait par ailleurs que la souche sauvage Rhizobium meliloti M5N1 (référence donnée par le Titulai¬ re de la présente invention), isolée du sol, a été décri¬ te par J. COURTOIS et al., J. Bacteriol . , (1988), 170, pages 5925-5927. Dans les conditions de fermentation données ci-après, cette souche produit des polysacchari- des présentant des liaisons glycosidiques p(l-3) et en particulier le polymère répondant à la formule
-£*-4)β-D-glc -(1 -*-4)-β-D-glc (1 - 3)β-D-gal (1 lj—
β-0-glc -(•! -*-3)0-D-glc (1 -*-3)-S-D-glc -(1
Figure imgf000005_0001
(III)
+ Succinate o o + Acétate
H3C-C-C02H
qui a été déterminée par A. HEYRAUD et al., Int .J. Macromol . , (1986), 8 , pages 55-88.
On sait enfin de l'article de G. De RUITER et al., Carbohydrate Polymers, (1992), 3J3, pages 1-7 que des composés polyglucuroniques à enchaînement B(l-4) ont été isolés à partir de polysaccharides exocellulaires pro¬ duits par des moisissures appartenant à 1'ordre des mucorales. Ces composés polyglucuroniques, qui ont un Mw compris entre 5 500 et 10 000 daltons (i.e. un dp de 30 à 56 environ) selon les indications fournies dans le ta- bleau I page 3 dudit article, sont en fait des oligosaccharides qui sont structurellement différents notamment par leur degré de polymérisation des polysaccharides selon l'invention. De plus, ledit article ne décrit ni ne suggère les polysaccharides de dp moyen supérieur à 200 τ et en particulier de dp moyen supérieur ou égal à 300, selon l'invention.. En particulier, il ne décrit ni ne suggère la présence ou l'obtention de polysaccharides exclusivement D-polyglucuroniques à enchaînement p(l-4) et de dp élevé, parmi les polysaccharides exocellulaires produits par les moisissures appartenant à l'ordre des mucorales et utilisés comme sources d'oligosaccharides de Mw allant de 5500 à 10000 daltons.
On sait que US-A-2 232 990 (i) décrit un procédé d'oxydation de la cellulose, dans des conditions non-nitratantes, au moyen de N02 gazeux, et (ii) émet l'hypothèse (voir page 3,colonne de droite, lignes 16-19) "If a completely o∑idized cellulose is reacted with aqueous sodium hydro∑ide or a sodium sait of a weak acid, the resultinç copound is sodium polyaπhydroglucuronate. n Or il se trouve que ce procédé ne permet qu'une oxydation partielle de la cellulose et que seuls quelques motifs D-glucose du squelette polyoside de la cellulose sont transformés en motifs acide D-glucuronique.
La cellulose oxydée obtenue selon le procédé de US-A-2 232 990 n'est pas un polysaccharide du type acide D-polyglucuronique à enchaînement |3(l-4) selon la présente invention. Ladite cellulose oxydée est différente des polysaccharides de la présente invention eu égard notamment au fait (i) que son poids moléculaire est plus élevé (voir US-A-2232 990, page 2 colonne de droite, lignes 60 64), où il est signalé que la chaîne polyoside de la cellulose de départ n'a pas été clivée), et (ii) qu'elle est insoluble dans l'eau (les exemples de cellulose oxydée ne font état que de sa solubilité dans de l'eau contenant 2 % de NaOH), alors que les polysaccharides (ainsi que les oligosaccharides qui en dérivent) selon la présente invention sont des polymères, du type acide D-polyglucuronique à enchaînement B(l-4) ne comportant que des motifs acide D-glucuronique, qui sont tous hydro- solubles.
En bref, les indications fournies dans US-A-2 232 990 mettent en évidence que ledit procédé d'oxydation ne conduit qu'à une cellulose faiblement oxydée. D'ailleurs, l'obtention par oxydation de la cellulose d'un matériau polyosique partiellement oxydé est confirmé par A. CESARO et al. dans l'ouvrage New Developments in Induεtrial Polysaccharides, Gordon and Breach, New York 1985. BUT DE L'INVENTION
Le but de 1invention est de fournir de nouveaux polysaccharides qui soient structurellement différents de l'acide hyaluronique précité et des autres polysacchari¬ des de l'art antérieur, notamment les produits polymères mentionnés ci-dessus et les alginates, d'une part, et qui soient industriellement utiles notamment en tant que moyens gélifiants, épaississants, hydratants, stabili¬ sants, chélatants, floculants, épurants et susceptibles de former des fibres, destinés notamment au domaine alimentaire, diététique, pharmaceutique (en thérapeutique humaine " ou vétérinaire), cosmétique, agricole, de l'épuration des eaux, des peintures, d'autre part.
On se propose également de fournir un procédé de préparation de ces nouveaux polysaccharides, qui sont -des composés polymères de 1'acide glucuronique à enchaînement
Figure imgf000007_0001
De plus, on se propose d'utiliser ces nouveaux polysaccharides en tant que source pour 1'obtention de composés appartenant à 1'ensemble des oligosaccharides.
Il existe en particulier un besoin en matériaux polymères pour remplacer notamment 1'acide hyaluronique (principalement) et les alginates (à la rigueur) . Pour satisfaire ce besoin, les chercheurs ont essayé de propo¬ ser des produits qui soient aussi intéressants que l'acide hyaluronique. Cet objectif particulier est atteint par la présente invention. Pour remplir ce but et fournir de nouveaux produits appartenant à l'ensemble des polysaccharides, on a recherché à mettre au point de nou¬ veaux composés polymères de l'acide glucuronique qui soient utiles industriellement .
OBJET DE L'INVENTION
Selon un premier aspect de l'invention, on préco¬ nise un nouveau composé polymère de 1'acide glucuronique caractérisé en ce qu'il est choisi parmi l'ensemble cons¬ titué par
(a) les acides D-polyglucuroniques à enchaînement p(l-4) de formule
Figure imgf000008_0001
dans laquelle n est un nombre ayant une valeur moyenne comprise entre environ 300 et 2500,
(b) les esters correspondants,
(c) les éthers correspondants, et
(d) leurs mélanges. Selon un second aspect de l'invention, on préco¬ nise un procédé de préparation d'un, tel composé polymère de l'acide glucuronique.
Plus précisément, on vise ici un procédé de préparation d'un composé polymère d'acide glucuronique de formule I ou de l'un de ses esters dans lesquels les fonctions alcool OH sont partiellement O-acétylées, ledit procédé étant caractérisé en ce qu'il comprend la fermentation, en présence d'un milieu nutritif contenant une source d'azote, une source de carbone et des sels, d'une souche bactérienne appartenant à l'ensemble des Rhizobium et produisant des polysaccharides quand elle est cultivée à pH 7 dans un milieu nutritif aqueux contenant 1 g/1 de K2HP04, 0,2 g de MgS0_*.7H20, 1 g/1 de NH4NO3 et 10 g/1 de glucose.
Selon un troisième aspect de l'invention, on vise en tant que produit industriel nouveau la souche Rhizobium meliloti NCIMB 40472 (référence donnée par le Titulaire de la présente invention : M5N1 CS) qui est obtenue par mutation de la souche sauvage M5N1 précitée. Selon un quatrième aspect de l'invention, on pré¬ conise l'utilisation desdits composés polymères de l'aci¬ de glucuronique, notamment dans le domaine alimentaire, pharmaceutique (en thérapeutique humaine ou vétérinaire) , cosmétique ou de l'épuration des eaux, en particulier en tant que moyens gélifiants, épaississants, hydratants, stabilisants, plastifiants, chélatants ou floculants, ou encore en tant que moyens filmogènes ou formant des fibres et des fibres. Selon un cinquième aspect de l'invention, on pré¬ conise l'utilisation desdits composés dans la préparation d'oligosaccharides notamment utiles en agriculture. ABREVIATIONS
Par commodité, les abréviations suivantes ont été utilisées dans le texte de la présente invention. Ac = acétyle Bu = n-butyle dp = degré de polymérisation Et = éthyle EtO = éthyloxy gai = galactose glc = glucose A.gluc = acide glucuronique
HPLC = chromatographie liquide haute performance iBu = isobutyle iBuO = isobutyloxy iPr = isopropyle iPrO = isopropyloxy
Ml = milieu nutritif aqueux d'identification conte- nant l g/1 de K2HPOΛ, 0,2 g de MgS04.7H20, 1 g/1 de NH.4NO3 et 10 g/1 de glucose et permettant de distinguer par culture à pH 7 les souches de Rhizobium qui produisent des PS de celles qui n'en produisent pas M2 = milieu nutritif aqueux de production, préféré selon l'invention, contenant 1 g/1 d'extrait de levure, 1 g/1 de K2HP04, 0,2 g/1 de MgSO_a,.7H20 et 10 g/1 de glucose, fructose ou saccharose M5N1 = souche sauvage de Rhizobium meliloti décrite par J. COURTOIS et al., J. Bacteriol . , (1988),
170, pages 5925-5927 M5N1 CS = souche de Rhizobium meliloti selon l'invention, obtenue par mutation de la souche sauvage M5N1 et déposée auprès du NCIMB sous le No 40472 Me = méthyle MeO = méthyloxy
Mw = poids moléculaire moyen en poids NCIMB = National Collection of Industrial and Marine
Bacteria, (il s'agit d'un organisme britannique agréé pour le dépôt de souches) OS = oligosaccharide
Pr = n-propyle
PS = polysaccharide
RT = température ambiante (15-25°C) sBu = s.-butyle sBuO = s.-butyloxy tBu = t.-butyle tBuO = t.-butyloxy Vi = viscosité intrinsèque (ou γi ) DESCRIPTION DETAILLEE DE L'INVENTION
Les composés polymères de 1'acide glucuronique selon 1 *invention comprennent donc les acides polyglucu¬ roniques de formule I, leurs esters, leurs éthers et leurs mélanges. Plus précisément, un tel composé polymère de l'a¬ cide glucuronique est choisi parmi 1 'ensemble constitué par
- les acides polyglucuroniques de formule I,
- les esters des acides polyglucuroniques de formule I dans lesquels le reste OH d'au moins un groupe acide carboxylique COOH est remplacé par un reste, alkoxy en
- les esters des acides polyglucuroniques de formule I dans lesquels l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste acyle aliphatique en C2—C*,
- les esters des acides polyglucuroniques de formule I dans lesquels (i) le reste OH d'au moins un groupe acide carboxylique COOH est remplacé par un reste alkoxy en c_.- C_*, et (ii) l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste acyle aliphatique en
C2—Ca,,
- les éthers des acides polyglucuroniques de formule I dans lesquels l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste alkyle en Cι-C_*, les éther-esters des acides polyglucuroniques de formule I dans lesquels (i) le reste OH d'au moins un groupe acide carboxylique COOH est remplacé par un reste alkoxy en Ci- CΛ , et (ii) l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste alkyle en
Figure imgf000012_0001
- leurs mélanges.
Les groupes alkoxy précités en C1-C.4 peuvent être à chaîne hydrocarbonée linéaire ou ramifiée, ils compren- nent les groupes MeO, EtO, PrO, iPrO, BuO, iBuO, sBuO et tBuO.
Les groupes alkyle précités en C -C4 peuvent être à chaîne hydrocarbonée linéaire ou ramifiée, ils compren¬ nent les groupes Me, Et, Pr, iPr, Bu, iBu, sBu et tBu. Les groupes acyle aliphatiques en C2-CΛ peuvent être à chaîne hydrocarbonée linéaire ou ramifiée, ils comprennent les groupes Ac, COEt, COPr, COiPr.
Le produit préféré selon l'invention, a un Mw de 80 000 à 400 000 daltons et est choisi parmi l'ensemble constitué par
- les acides polyglucuroniques de formule I,
- les esters du type acétate correspondants dans lesquels les fonctions alcool OH sont partiellement O-acétylées, chaque cycle acide glucuronique de la formule I compor- tant au plus 33 % en poids de groupes O-CO-CH3 (i.e. OAc) par rapport au poids dudit cycle acide glucuronique.
Dans ce dernier cas, la fonction acétyloxy est localisée soit en position 2, soit en position 3, soit encore en positions 2 et 3 du cycle acide glucuronique. Bien entendu, il est possible d'éliminer ladite fonction acétyloxy. La désacétylation est réalisée à un pH supérieur à 8,0 à RT (le pH supérieur à 8,0 étant obtenu au moyen d'une base forte notamment un hydroxyde de métal alcalin comme NaOH ou KOH). Ainsi, 7-8 heures à RT et à pH 11 suffisent pour desacétyler le composé poly- mère comportant jusqu'à 33 % en poids de groupe OAc par rapport au poids du cycle acide glucuronique.
Le polymère désacétylé qui répond à la formule I ci-dessus peut être représenté par la formule abrégée : A.gluc B l-[->4 A.gluc B l-]„->4 A.gluc (Io)
Les souches bactériennes, qui conviennent pour la mise en oeuvre du procédé de préparation selon 1'inven¬ tion, sont celles qui (i) appartiennent à l'ensemble des Rhizobium et (ii) produisent des PS quand elles sont cultivées à pH 7 dans un milieu nutritif aqueux d'iden¬ tification, à savoir le milieu Ml qui contient l g/1 de K2HP0*, 0,2 g de MgS0*.7H20, 1 g/1 de NHΛN03 et 10 g/1 de glucose.
Parmi les souches bactériennes qui conviennent, on peut notamment citer les souches de Rhizobium meliloti et les souches apparentées qui contiennent toutes un seul plasmide ayant un Mw d'environ 100 000 à 150 000 daltons. Parmi celles-ci, la souche préférée selon l'invention est la souche Rhizobium meliloti NCIMB 40472. Le procédé de préparation d'un composé polymère de l'acide glucuronique, selon l'invention, comprend la fermentation en présence d'une source d'azote, d'une source de carbone et de sels, d'une souche bactérienne appartenant à l'ensemble des Rhizobium qui produisent des PS par culture à pH 7 dans le milieu aqueux Ml précité.
Selon ce procédé, la production dudit composé polymère peut être soit intracellulaire soit le plus sou¬ vent exocellulaire. En pratique, pour une production exocellulaire, ladite fermentation est effectuée au moyen d'un milieu aqueux contenant 0,5 à 2 g/1 de K2HP0Λ, 0,05 à 0,3 g/1 de MgSO*, 0,8 à 3 g/1 d'extrait de levure et 7 à 20 g/1 de sucre, à une température de 25 à 40°C. Le milieu nutritif peut contenir un sucre quelconque, le sucre préféré est notamment choisi parmi le glucose, le fructose, le saccharose et leurs mélanges.
Par incubation dans un tel milieu aqueux, pen¬ dant une durée appropriée (de préférence inférieure ou égale à 100 h ou à la rigueur supérieure à 100 h) , les bactéries produisent (tant dans la phase de croissance que dans la phase stationnaire de non-prolifération) , un composé polymère de l'acide D-glucuronique qui est le produit de formule I ou l'un de ses esters dans lequel les fonctions alcool OH sont partiellement O-acétylées. A partir de ce composé, on obtient les autres esters et/ou éthers selon une méthode connue en soi.
De préférence, pour l'obtention dudit composé polymère de l'acide glucuronique selon l'invention, le milieu aqueux de fermentation-incubation renfermera 1 g/1 d'extrait de levure, 1 g/1 de K≈HPO*,, 0,2 g/1 de MgS0Λ.7H20 (source de MgS0Λ) et 10 g/1 de sucre (de préférence glucose, fructose ou saccharose), à une température de 30°C, à un pH de 7 (obtenu par addition de NaOH ou KOH), avec p02 de 30 à 100 % (selon le degré d'acétylation souhaité) .
De façon avantageuse, cette fermentation est mise en oeuvre à partir d'une population bactérienne supérieu¬ re ou égale à 102 bactéries/ml et mieux supérieure ou é- gale à 10Λ bactéries/ml. On recueille le milieu liquide de fermentation incubé pendant une durée inférieure ou égale à 100 h, qui contient le composé polymère polyglu- curonique selon l'invention, dès que la population bactérienne est supérieure ou égale à 109 bactéries/ml. Dans cette optique, les bactéries sont séparées du milieu de fermentation notamment par filtration ou dialyse (en particulier sur membrane) ou encore par centrifugation afin de recueillir ledit composé polymère polyglucuroni- que contenu dans le jus de fermentation. Ce composé polymère polyglucuronique est isolé du filtrat, dialysat ou surnageant résultant, soit par pré¬ cipitation au moyen d'un solvant organique tel que EtOH, PrOH, iPrOH, MeCOMe ou un solvant analogue, soit par précipitation en milieu acide à un pH inférieur ou égal à 3.
De façon avantageuse, quand le composé polymère polyglucuronique est obtenu par précipitation au moyen d'un solvant organique, on recommande d'opérer à basse température, de préférence à une température de l'ordre de 4"C ; le précipité est alors recueilli par centrifuga¬ tion puis séché (notamment sous vide à RT).
De façon également avantageuse, quand le composé polymère polyglucuronique est obtenu par précipitation en milieu acide, il est recueilli par centrifugation, lavé à l'eau et dispersé sous agitation dans une solution aqueu¬ se à pH supérieur ou égal à 8,0 pour être purifié ; le composé polymère polyglucuronique ainsi dissous en milieu alcalin est aussitôt reprécipité au moyen d'un solvant organique comme indiqué ci-dessus.
A partir du polymère désacétylé, on peut former les esters de la fonction acide carboxylique COOH par al- kylation selon une méthode connue en soi. On peut égale¬ ment obtenir les esters de la fonction alcool OH par réaction du composé désacétylé de formule I avec un acide approprié selon une méthode connue en soi. Les éthers de la fonction alcool OH sont obtenus à partir dudit composé désacétylé par application d'un mécanisme réactionnel également connu en soi. Il en est de même pour les esters des fonctions COOH et OH et les éther-esters.
Les composés polymères polyglucuroniques à enchaînement J3(l-4) selon l'invention, sont utiles dans plusieurs domaines, à savoir : l'industrie alimentaire tant humaine qu'animale, notamment en tant qu'agents épaississants ou texturants ; - l'industrie des papiers et cartons, notamment en tant qu'additifs ou moyens de couchage, voire même en tant que fibres ;
- l'industrie textile, notamment en tant qu'agents mor- dants et en tant que fibres ;
- l'industrie cosmétique, notamment en tant qu'agents épaississants, texturants, hydratants et/ou stabilisants;
- l'industrie pharmaceutique (en thérapeutique humaine et vétérinaire, d'une part, en chirurgie, d'autre part, et en galenique, d'autre part) , notamment en tant qu'agents de texture, d'enrobage, de stabilisation, de résorbage, en tant qu'additifs pour pansement ou peau artificielle ;
- l'industrie photographique, notamment en tant qu'agents filmogènes ; - l'industrie des explosifs, notamment en tant qu'agents de dessiccation ou moyens plastifiants ;
- l'industrie des détergents et tensioactifs ;
- l'industrie des encres, peintures, vernis, laques, adhésifs et émaux, notamment en tant qu'additifs épais- sissants, texturants ou plastifiants;
- l'industrie du traitement des métaux (en particulier pour le décapage) et celle du traitement des eaux, notam¬ ment en tant qu'agents chélatants ou floculants ;
- l'industrie des forages, notamment en tant qu'additifs pour boues de forage ;
- 1'agriculture, notamment en tant que support d'enroba¬ ge ;
- l'immobilisation de cellules et en tant que support de culture. Les composés polyglucuroniques, selon l'inven¬ tion, se sont révélés particulièrement utiles industriel¬ lement en remplacement de l'acide hyaluronique dans les domaines où ledit acide hyaluronique est intervenu jusqu'à présent. Les composés polyglucuroniques, selon 1'inven¬ tion, sont plus précisément très efficaces en thérapeuti¬ que humaine et vétérinaire, d'une part, et en chirurgie, d'autre part, en raison de leur aptitude à former des fi- bres et des fils ou filés. En particulier, les fils en polymère polyglucuronique selon l'invention conviennent parfaitement pour la réalisation de points de suture, ils ont une structure éliminable par biodégradation ou trai¬ tement à l'eau. De ce fait, ils présentent une grande analogie avec les fils constitués d'acide hyaluronique et sont très intéressants dans le domaine de la viscochirur- gie.
Les fibres et fils polyglucuroniques sont égale¬ ment très performants dans le domaine papetier et le do- maine textile.
Les composés polyglucuroniques, selon 1'inven¬ tion, sont également utiles dans le domaine de la prépa¬ ration dOligosaccharides D-polyglucuroniques à enchaîne¬ ment B(l-4). Plus précisément, les OS sont obtenus par hydrolyse notamment acide ou enzymatique desdits composés polymères D-polyglucuroniques à enchaînement B(l-4).
Cette hydrolyse peut être réalisée, soit (i) en présence des bactéries Rhizobium meliloti NCIMB 40472, en continuant la fermentation dans le milieu M2 pendant plus de 100 h, soit (ii) par incubation des composés polymères polyglucuroniques à enchaînement B(l-4) ou du jus de fer¬ mentation les contenant pendant plus de 100 h à une tem¬ pérature de 20-40°C, soit (iii) par clivage enzymatique notamment au moyen d'une cellulase, soit encore (iv) par clivage en milieu acide à pH inférieur ou égal à 3, pen¬ dant au moins 90 h à 100°C.
Les OS ainsi obtenus puis séchés ont, après iso¬ lation, un dp variable de 2 à 10 pour les OS à chaîne courte, de 10 à 50 pour les OS de taille moyenne, et de 50 à 100 environ pour ceux ayant une chaîne longue. Les OS préférés selon l'invention ont un dp compris entre 5 et 20.
Ces OS qui comportent des unités d'acide glucuro¬ nique sont en particulier utiles dans le domaine de l'agriculture, eu égard à leurs effets bénéfiques sur :
- les cultures végétales in vitro,
- les croissances racinaires (notamment la formation de poils absorbants),
- l'induction d'un système de défense chez les plantes vis-à-vis des bactéries, moisissures, virus et autres agents cliniques extérieurs, et
- la protection des semences, en tant qu'additifs pour enrobage.
Ces OS sont également utiles dans le domaine pharmaceutique, en thérapeutique humaine et vétérinaire ou dans le domaine du diagnostic, notamment en tant que moyen de ciblage d'ingrédients actifs. MEILLEUR MODE
Le meilleur mode de mise en oeuvre de 1'invention consiste à fournir un acide polyglucuronique de formule I ayant un Mw de l'ordre de 80 000 à 400 000 daltons. Cet acide polyglucuronique est obtenu à partir de la souche bactérienne Rhizobium meliloti NCIMB 40472.
De façon pratique, on procède à l'ensemencement d'un milieu nutritif aqueux contenant 1 g/1 d'extrait de levure, 1 g/1 de K2HPO_*, 0,2 g/1 de MgS0_*.7H20 et 10 g/1 de glucose, fructose ou saccharose (i.e. le milieu M2 précité), à une température de 30°C, à un pH de 7, avec p02 de 30 à 100 % au moyen de ladite souche Rhizobium meliloti NCIMB 40472 de façon à avoir dans le milieu de fermentation de départ pour cette souche une population bactérienne d'au moins 104 bactéries/ml. La fermentation est effectuée jusqu'à ce que l'on obtienne une population bactérienne d'au moins 10s bactéries/ml (elle peut être poursuivie selon la production souhaitée). On sépare les bactéries du milieu de fermentation par filtration tan- gentielle sur un filtre ou une membrane filtrante de 200 n de porosité. Le filtrat qui contient l'acide polyglucuronique éventuellement acétylé est traité avec EtOH, iPrOH ou MeCOMe à 4°C. Le précipité ainsi obtenu est recueilli par filtration puis séché. Le polymère, ainsi obtenu, remis en solution peut être ensuite désacétylé à pH 11, pendant au moins 7 h et au plus 24 h à RT.
En pratique, la durée totale de fermentation- incubation du milieu nutritif (milieu M2 ou milieu analo¬ gue contenant un sucre différent du glucose, du fructose et du saccharose) avec la souche Rhizobium meliloti NCIMB 40472 pour la production des polysaccharides de formule I et de leurs esters correspondants (dans lesquels la fonc- tion alcool OH est partiellement acétylée) est inférieure égale ou supérieure à 100 h, à 30°C et à pH 7. Cette production est réalisée (a) pendant la phase de croissance de la souche, et/ou (b) pendant la phase de non-prolifération de celle-ci après que la population bactérienne ait atteint au moins la valeur de 109 bactéries/ml. Quand la durée est nettement inférieure à 100 h, on favorise la production des PS de l'invention ayant un Mw se situant dans la partie haute de l'inter¬ valle 80 000-400 000 daltons ; quand la durée est supé- rieure à 100 h, on favorise la production des PS ayant un Mw se situant dans la partie basse de cet intervalle, et des OS.
D'autres avantages et caractéristiques de l'in¬ vention seront mieux compris à la lecture d'exemples de préparation et de résultats d'essais qui suivent. Bien entendu, l'ensemble de ces éléments n'est nullement limitatif mais donné à titre d'illustration. PREPARATION I
Obtention de la souche Rhizobium meliloti NCIMB 40472 a) Mutation
On procède à la mutation de la souche sauvage M5N1 précitée au moyen de N-méthyl-N'-nitro-N-nitrosogua- nidine. b) Sélection
Le mélange des bactéries vivantes obtenues après mutation est ensemencé sur le milieu Ml. Ce milieu sert à éliminer les bactéries jugées ici non intéressantes selon un caractère d'auxotrophie. Le glucose contenu dans Ml remplit deux fonctions : il intervient en tant que source de carbone, d'une part, et il permet de distinguer les bactéries mutées ou non- utées, qui ne produisent pas de PS, des bactéries mutées produisant des PS en présence dudit glucose.
Les colonies produisant des PS sont cultivées sur milieu au bleu d'aniline. Le milieu au bleu d'aniline permet de distinguer les souches, qui répondent positive¬ ment audit milieu et ont des liaisons glycosidiques B(l-3), des souches répondant négativement que l'on recueille.
Les souches ainsi recueillies sont analysées quant à leur contenu en DNA extrachromosomique (i.e. leur contenu plasmidique) . On applique le protocole de lyse directe mis au point par T.ECKHARDT, Plasmid, (1978), Ç pages 584-588, sur lesdites souches.
Les profils plasmidiques desdites souches sont comparés à celui de la souche sauvage M5N1 de départ, afin de repérer et de ne retenir que les souches présen¬ tant un contenu plasmidique modifié. On a ainsi retenu une souche, qui ne comporte qu'un seul plasmide de Mw compris entre 100 000 et 150 000 daltons, et qui ne com- porte plus les plasmides constitutifs de la souche M5N1, à savoir : 2 plasmides de Mw = 1 000 000 daltons et 1 plasmide de Mw = 90 000 daltons.
Cette souche ainsi sélectionnée a été (i) contrô¬ lée en ce qui concerne son pouvoir d'infecti ité vis-à- vis de la luzerne (légumineuse spécifique de Rhizobium meliloti ; la réponse à l'infection étant positive puis¬ que des nodules sont apparus sur des racines de luzerne), puis (ii) déposée auprès d'un organisme agréé. Cette sou¬ che est référencée NCIMB 40472. PREPARATION II
Fermentation en condition de croissance Dans un fermenteur de 20 litres contenant 15 li¬ tres de milieu M2, on introduit 1'inoculum de la souche Rhizobium meliloti NCIMB 40472 [1'inoculum est constitué ici par 1 litre de M2 (en fiole d'Erlenmeyer) contenant la souche NCIMB 40472]. L'inoculum est utilisé quand la suspension bactérienne est de l'ordre de 109 bactéries/ ml. La fermentation est effectuée avec les paramètres suivants : température 30°C pH maintenu à 7 (addition de KOH 1M ou plus) p02 30 à 100 % (selon le degré d'acétylation souhaité) agitation 100 t/min
A l'issue du processus de fermentation, le milieu peut contenir 1 à 5 g.l_i.jour-1 de polymère polyglucuro¬ nique à enchaînement B(l-4) selon l'invention. Le rende- ment par rapport au sucre du milieu M2 varie ainsi entre 20 et 85 % (les mesures sont effectuées en chromatogra- phie HPLC avec une colonne Beckman TSK 2000 SW et détec¬ tion par réfractométrie) . PREPARATION III Fermentation en condition de non-prolifération
Les cellules sont cultivées dans les conditions (inoculum/milieu) décrites dans la préparation II ci- dessus. Lorsque la suspension dans le fermenteur atteint 109 bactéries/ml de Rhizobium meliloti NCIMB 40472, on fait passer le milieu de fermentation au travers de mem¬ branes de microfiltration (200 n de porosité), les cel¬ lules sont lavées et récupérées (elles peuvent être récu¬ pérées directement par centrifugation en continu dans des conditions stériles). Ces cellules sont lavées au moyen d'un milieu exempt d'azote comprenant :
Figure imgf000022_0001
et introduites ensuite dans un fermenteur contenant 15 litres de milieu dépourvu d'azote mais additionné de 10 g/1 de glucose, fructose ou saccharose.
Le fermenteur ainsi inoculé à une concentration bactérienne d'environ 109 bactéries/ml est soumis aux mêmes paramètres que dans le cas d'une production en croissance.
A l'issue de la fermentation, le milieu contient le même polymère que celui de la préparation II à une concentration analogue à celle de la fermentation en croissance. PREPARATION IV
Fermentation en continu Le protocole opératoire est le même que selon la production en croissance. En cours de production, on pré¬ lève un volume de milieu qui est soumis en continu à une microfiltration, le filtrat contenant le polymère poly¬ glucuronique à enchaînement B(l-4) est récupéré, les bac¬ téries pouvant le cas échéant être recyclées dans le fer¬ menteur avec un milieu de fermentation stérile correspon¬ dant à celui qui a été sous-tiré. PREPARATION V Isolation du polymère
(a) Les bactéries sont éliminées du milieu de fermen¬ tation par filtration (en particulier filtration tangen- tielle sur filtre de 200 nm de porosité, notamment filtre MICROSART MINI commercialisé par la société SARTORIUS) ou par centrifugation du milieu de fermentation de la préparation II, III ou IV.
(b) Le composé polyglucuronique à enchaînement p(l-4) est récupéré du filtrat ou du surnageant par précipita¬ tion avec un solvant organique tel que EtOH, iPrOH ou MeCOMe. Quand on utilise iPrOH, ce solvant est ajouté au filtrat selon une proportion de 70 % v/v, le cas échéant en présence de NaCl 1M. On homogénéise l'ensemble résultant et il se forme un précipité de composé poly¬ glucuronique (la précipitation est favorisée à basse température, notamment à + 4°C). Le précipité est re¬ cueilli par centrifugation et séché sous vide à RT. PREPARATION VI
Isolation du polymère Après l'étape (a) de la préparation V, on procède à la précipitation selon les modalités suivantes.
(b) La précipitation est réalisée en milieu acide (on peut utiliser HCl) et intervient à un pH voisin de 3. Le précipité obtenu est récupéré par centrifugation, lavé à l'eau puis dispersé sous agitation dans une solution aqueuse à pH 8 ; le polymère se redissout, il est récupé¬ ré par filtration avec un solvant organique comme indiqué à l'étape (b) de la préparation V, ou directement par sé¬ chage ou déshydratation. PREPARATION VII Isolation du polymère Le composé polyglucuronique à enchaînement p(l-4) isolé selon les modalités des préparations V et VI étant peu purifié, l'on recommande d'utiliser les conditions opératoires qui suivent pour obtenir un produit hautement purifié. Le filtrat ou surnageant obtenu selon l'étape (a) de la préparation V est purifié par ultrafiltration tan- gentielle avec une membrane dont la porosité est comprise entre 60 000 et 80 000 daltons. Pour purifier le concen¬ trât, on écarte le filtrat et l'on remplace par de l'eau distillée. Cette opération est répétée jusqu'à ce que la purification désirée soit atteinte. Le polymère polyglu¬ curonique à enchaînement B(l-4) est isolé par évaporation sous vide à RT. PREPARATION VIII Désacétylation Le polymère isolé, obtenu selon la préparation VII qui contient au plus 33 % en poids de groupe OAc par rapport au poids de l'unité répétitive acide glucuronique est traité à un pH supérieur à 8 au moyen de NaOH. Une nuit à RT et à pH 11 permet de desacétyler la molécule. ANALYSES
(a) Les analyses effectuées sur les produits polymè¬ res obtenus selon les préparations V-VII, d'une part, et la préparation VIII, d'autre part, ont permis de mettre en évidence que :
1°) les produits des préparations V-VIII sont des compo¬ sés polymères D-polyglucuroniques exclusivement consti¬ tués d'unités acide D-glucuronique, et présentant un enchaînement p(l-4) ; 2e) les produits des préparations V-VII sont des composés polymères de l'acide D-glucuronique partiellement acéty- lés (au plus 33 % en poids comme indiqué ci-dessus) en position 2, en position 3 ou en positions 2 et 3 ; 3°) le produit de la préparation VIII est désacétylé. (b) En ce qui concerne la stabilité, on constate que les solutions du composé polyglucuronique selon les préparations V-VIII sont stables à froid en milieu alca¬ lin, notamment à pH 11 ; si la température s'élève, les substituants OAc sont clivés. Ce composé polyglucuronique est également stable en milieu acide mais précipite à un pH de 1'ordre de 3.
(c) En ce qui concerne la viscosité, on constate 'que la viscosité intrinsèque (Vi) dans NaCl 0,1 M est de 650 ml/g pour un Mw de 150 000 (le Mw peut varier en fonction de la durée de fermentation entre 80 000 et 400 000 dal¬ tons et mieux entre 100 000 et 350 000 daltons). Cette viscosité intrinsèque est faible par comparaison avec celle du succinoglycanne produit par la souche sauvage Rhizobium meliloti M5N1 qui a une Vi de 5480 ml/g pour un Hw de 4 000 000 daltons. Les résultats obtenus en ce qui concerne cette viscosité intrinsèque sont comparables à ceux d'un alginate ayant un Mw de 270 000 daltons. Les solutions de composés polymères polyglucuro¬ niques selon l'invention ayant un Mw supérieur à 300 000 daltons à des concentrations de 20 à 30 g/1 forment quelques minutes après leur homogénéisation des gels fermes thermoréversibles. Aux mêmes concentrations dans l'eau, le polymère selon l'invention ayant un Mw de l'ordre de 80 000 dal¬ tons, donne quelques minutes après son homogénéisation un gel souple. Aux concentrations plus faibles, les solu¬ tions des polymères selon 1'invention se comportent comme des épaississants.
(d) Interaction avec les ions monovalents
Les ions monovalents forment des gels avec les solutions des polymères polyglucuroniques selon 1'inven¬ tion. Ces gels sont thermoréversibles. La formation du gel dépend de la nature du cation, de la force ionique et de la concentration, la sélectivité ionique étant la sui¬ vante : Na- < Li- < K* < MU-.
Avec NH4"*", on observe une transition conforma- tionnelle : la température de transition dépend de la concentration en NH4-*- (NH_*C1 de 0,5 M à 1,5 M ou plus) et du taux d'acétate dans la molécule.
Le gel, formé avec NH.4CI 0,5 M et le composé po¬ lyglucuronique selon 1'invention à une concentration de 10 à 15 g/1, portée à 100°C pendant 24 h n'est pratique- ment pas dégradé.
(e) Interaction avec les ions divalents
En association avec des ions métalliques diva¬ lents notamment ceux des calcium, baryum, strontium, magnésium, zinc et cuivre divalent, des gels sont formés. Avec l'ion calcium, le polysaccharide forme un gel qui est comparable à ceux des acides pectiniques (substances du type acide polygalacturonique) et des alginates (sub¬ stances du type copoly ère acide mannuronique/acide guluronique) . Contrairement aux acides pectiniques et alginiques, le composé polymère polyglucuronique selon l'invention, en solution dans l'eau et mis en présence de MgCl2 est capable de former un gel thermoréversible.
Les gels peuvent être formés directement au con¬ tact de Ca2-*- et des composés polymères polyglucuroniques à enchaînement p(l-4) par dialyse ou toute autre méthode permettant un contact progressif entre l'ion et lesdits composés polymères. En particulier, ces gels peuvent être formés en utilisant des réactifs permettant une gélifica- tion progressive : il est ainsi possible de former un gel à partir d'un composé polymère à 10 g/1 dans l'eau et de CaHP0_4.2H20 (à la concentration de 1,2 à 1,5 g/1) et de gluconolactone (à la concentration de 4,5 g/1), après homogénéisation, le gel se forme dans la préparation maintenue immobile. Des gels fermes peuvent être obtenus à partir de concentrations en composé polymère polyglucuronique selon l'invention de l'ordre de 3 g/1.
En ce qui concerne la stabilité des gels déter¬ minée à partir de solutions aqueuses de composé polymère polyglucuronique selon l'invention en présence de Ca, on a constaté ce qui suit : à 100°C
- dans l'eau, le gel porté à une température de 100"C pendant 1,5 h ne subit pas de modification, la force du gel (module) est inchangée après 24 h (mesure de compres¬ sion effectuée sur appareil INSTRÔN) ,
- dans HC1, le gel placé à 100°C à des pH inférieurs à 2 est stable pendant au moins 1 h,
- dans NaOH, le gel placé à 100°C à des pH de 8-13 est stable pendant au moins 1 h, - dans CaCl2, 0,34 M, le gel est stable pendant au moins 24 h ; à RT
- dans l'eau, le gel est stable (en une semaine, le module passe de 1,8 à 1,3 N/cm2),
- dans la soude, le gel se maintient pendant au moins une semaine,
- dans HC1, il n'y a pas de modification apparente de la qualité du gel pendant plus d'une semaine, - dans CaCl2, il n'y a pas de changement du module du gel après une semaine,
On constate par ailleurs que les gels obtenus avec CaCl2, mis en présence de NaCl donnent lieu à un échange entre les ions Ca2-*- et Na-*-. L'échange est prati- quement total avec NaCl 4M, mais le module reste inchan¬ gé.
On observe en outre que le taux d'acétate dans le polymère ne semble pas modifier sa stabilité dans 1'en¬ semble des conditions opératoires précitées. (f) Interaction avec les ions trivalents
On a observé que les gels formés avec les ions trivalents, notamment Fe3+ et Cr3-*-, sont stables ther i- quement dans les conditions opératoires précitées. (g) -Divers On a constaté que les composés polymères polyglu¬ curoniques à enchaînement p(l-4) selon l'invention sont substantiellement solubles dans les lipides, les huiles. En présence de calcium, les solutions lipidiques ou hui¬ leuses peuvent former des gels. On a également constaté que des solutions dans
1'eau desdits polymères polyglucuroniques à partir de la concentration de 3 g/1, mises en contact avec un alcool, notamment EtOH, forment des gels.
Par ailleurs, des fibres peuvent être obtenues à partir de gels de polymère/CaCl2. Des clichés de rayons X sur des fibres polymères/CaCl2 montrent une périodicité le long de l'axe de chaque fibre de l'ordre de 103 nm. Une telle périodicité est analogue à celle trouvée pour la cellulose. PREPARATION IX
Obtention d'un composé oligosaccharide La présente préparation illustre l'obtention d'OS dans le milieu de croissance et en présence de bactéries Rhizobium meliloti NCIMB 40472. (a) On procède à une fermentation en milieu de crois¬ sance selon les modalités opératoires décrites dans la préparation II ci-dessus, avec la différence que la durée de ladite fermentation est supérieure (de préférence) ou égale à 100 h à RT pour obtenir une quantité relativement importante d'OS. Cette hydrolyse prolongée conduit à la formation d'OS dans le milieu.
(b) on sépare les bactéries du milieu de fermentation par centrifugation ou microfiltration tangentielle au moyen de filtres de porosité de 200 nm. Le composé OS est récupéré par ultrafiltration, purifié par chromatographie et séché. Il présente un dp de 5-60 et peut être séparé en trois fractions de (a) dp 5-10, (b) dp 10-50 et (c) dp 50-60, notamment par chromatographie. PREPARATION X Obtention d'un composé oligosaccharide
La présente préparation illustre l'obtention d'OS en l'absence de bactéries.
(a) On incube le milieu liquide de fermentation, obtenu après élimination des bactéries selon l'étape (a) de la préparation V, pendant 100 h à une température com¬ prise entre 20 et 40°C.
(b) L'isolation du composé OS formé dans ledit milieu liquide est effectuée comme indiqué à l'étape (b) de la préparation IX. Après ultrafiltration, purification et séchage, on obtient un OS ayant un dp de 5-60 et sépara- ble en trois fractions de dp 5-10, 10-50 et 50-60. PREPARATION XI
Obtention d'un composé oligosaccharide La présente préparation illustre l'obtention d'OS par hydrolyse enzymatique.
(a) On soumet le composé polymère polyglucuronique à enchaînement p(l-4) obtenu selon les modalités opératoi¬ res décrites dans la préparation V, VI ou VII, à une dé¬ gradation enzymatique au moyen d'une cellulase. (b) L'isolation du composé OS ainsi obtenu est effec¬ tuée comme indiqué à l'étape (b) de la préparation IX. Après ultrafiltration, purification puis séchage, on ob¬ tient un OS ayant un dp de 5-60 séparable en trois frac- tions de dp 5-10, 10-50 et 50-60. PREPARATION XII
Obtention d'un composé oligosaccharide La présente préparation illustre l'obtention d'OS par hydrolyse acide.
(a) On soumet le composé polymère polyglucuronique à enchaînement B(l-4) obtenu selon les modalités opératoi¬ res décrites dans la préparation V, VI ou VII, à une hy¬ drolyse acide pendant 96 h à pH 3 au moyen de HC1.
(b) L'isolation du composé OS ainsi obtenu- est effec¬ tuée comme indiqué à l'étape (b) de la préparation IX. Après ultrafiltration, purification puis séchage, on ob¬ tient un OS ayant un dp de 5-60 séparable en trois frac¬ tions de dp 5-10, 10-50 et 50-60.
Les OS des trois fractions obtenues suivant les préparations IX-XII peuvent être isolés par chromatogra- phie du type gel-filtration ou par toute autre méthode permettant de séparer les molécules en fonction de leur taille et/ou de leur masse. PREPARATION XIII
Obtention de 1'acide glucuronique L'acide polyglucuronique de formule I obtenu par désacétylation selon les modalités opératoires décrites dans la préparation VIII a été soumis à une hydrolyse enzymatique poussée de façon à fournir l'acide glucuroni¬ que. L'acide glucuronique ainsi formé peut être isolé par ultrafiltration et purifié par chromatographie d'échanges d'ions, par électrodialyse ou toute autre mé¬ thode appropriée permettant de séparer ledit acide des molécules plus grandes et des sels présents dans le milieu d'hydrolyse enzymatique.

Claims

REVENDICATIONS
1. Composé polymère de l'acide glucuronique caracté¬ risé en ce qu'il est choisi parmi l'ensemble constitué par
(a) les acides D-polyglucuroniques à enchaînement ]3(l-4) de formule
Figure imgf000031_0001
dans laquelle n est un nombre ayant une valeur moyenne comprise entre environ 300 et 2500,
(b) les esters correspondants,
(c) les éthers correspondants, et
(d) leurs mélanges.
2. Composé suivant la revendication 1, caractérisé en ce qu'il est choisi parmi l'ensemble constitué par
- les esters des acides polyglucuroniques de formule I dans lesquels le reste OH d'au moins un groupe acide carboxylique COOH est remplacé par un reste alkoxy en
- les esters des acides polyglucuroniques de formule I dans lesquels l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste acyle aliphatique en
- les esters des acides polyglucuroniques de formule I dans lesquels (i) le reste OH d'au moins un groupe acide carboxylique COOH est remplacé par un reste alkoxy en Cι-C_4, et (ii) 1'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste acyle aliphatique en C2—C.*, - les éthers des acides polyglucuroniques de formule I dans lesquels l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste alkyle en d-C4, les éther-esters des acides polyglucuroniques de formule I dans lesquels (i) le reste OH d'au moins un groupe acide carboxylique COOH est remplacé par un reste alkoxy en Cι-C4, et (ii) l'atome d'hydrogène d'au moins un groupe alcool OH est remplacé par un reste alkyle en
Figure imgf000032_0001
- leurs mélanges.
3. Composé suivant la revendication 1, caractérisé en ce qu'il a un poids moléculaire moyen en poids de 80 000 à 400 000 daltons et est choisi parmi l'ensemble constitué par
- les acides polyglucuroniques de formule I selon la revendication 1,
- les esters acétate correspondants dans lesquels les fonctions alcool OH sont partiellement o-acétylées, cha¬ que cycle acide glucuronique de la formule I comportant au plus 33 % en poids de groupes 0-C0-CH3 par rapport au poids dudit cycle acide glucuronique.
4. Procédé de préparation d'un composé polymère d'acide glucuronique de formule I selon la revendication 1 ou de l'un de ses esters dans lesquels les fonctions alcool OH sont partiellement O-acétylées, ledit procédé étant caractérisé en ce qu'il comprend la fermentation, en présence d'un milieu nutritif contenant une source d'azote, une source de carbone et des sels, d'une souche bactérienne appartenant à l'ensemble des Rhizobium et produisant des polysaccharides quand elle est cultivée à pH 7 dans un milieu nutritif aqueux contenant 1 g/1 de K2HP04, 0,2 g de MgS04.7H20, 1 g/1 de NH4N03 et 10 g/1 de glucose.
5. Procédé suivant la revendication 4, caractérisé en ce que ladite souche contient un seul plasmide ayant un poids moléculaire moyen en poids d'environ 100 000 à 150 000 daltons.
6. Procédé suivant la revendication 4 ou 5, caracté¬ risé en ce qu'il comprend la fermentation de la souche Rhizobium meliloti NCIMB 40472.
7. Procédé suivant l'une quelconque des revendica¬ tions 4 à 6, caractérisé en ce que la fermentation est effectuée dans un milieu aqueux contenant 0,5 à 2 g/1 de K2HP04, 0,05 à 0,3 g/1 de MgS04, 0,8 à 3 g/1 d'extrait de levure et 7 à 20 g/1 de sucre, à une température de 25 à 40°C, ledit sucre étant notamment choisi parmi le gluco¬ se, le fructose, le saccharose et leurs mélanges.
8. Procédé suivant l'une quelconque des revendica¬ tions 4 à 7, caractérisé en ce qu'il comprend (i) le recueil du milieu de fermentation incubé pendant une durée appropriée, après que la population bactérienne ait atteint une valeur supérieure ou égale à 109 bactéries/ ml, puis (ii) l'isolation du composé polymère de l'acide glucuronique.
9. _Souche bactérienne appartenant à l'ensemble des Rhizobium, caractérisée en ce qu'il s'agit de la souche
Rhizobium meliloti NCIMB 40472.
10. Utilisation du composé polymère de l'acide glucu¬ ronique selon l'une quelconque des revendications 1 à 3, notamment dans le domaine alimentaire, pharmaceutique en thérapeutique humaine ou vétérinaire, cosmétique ou de l'épuration des eaux, en particulier en tant que moyen gélifiant, épaississant, hydratant, stabilisant, chéla- tant ou floculant. .
11. Utilisation du composé polymère de l'acide glucu- ronique selon l'une quelconque des revendications 1 à 3, pour la fabrication de fibres ou fils polyglucuroniques.
12. Utilisation du composé polymère de l'acide glucu¬ ronique selon l'une quelconque des revendications 1 à 3, dans la préparation de composés oligosaccharides D-poly- glucuroniques à enchaînement B(l-4).
13. Composé oligosaccharide, caractérisé en ce qu'il est obtenu par hydrolyse, notamment acide ou enzymatique, d'un composé polymère de l'acide glucuronique selon l'une quelconque des revendications l à 3, et en ce qu'il a un degré de polymérisation notamment compris entre 2 et 100 et de préférence compris entre 5 et 20.
PCT/FR1993/000205 1992-03-03 1993-03-01 Composes polymeres de l'acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants WO1993018174A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5515378A JPH07504928A (ja) 1992-03-03 1993-03-01 高分子グルクロン酸化合物,その製造方法及び用途,特にゲル化剤,粘度付与剤,湿気付与剤,安定剤,キレート化剤又は凝集剤としての用途
EP93905441A EP0629245A1 (fr) 1992-03-03 1993-03-01 Composes polymeres de l'acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/02510 1992-03-03
FR9202510A FR2688222B1 (fr) 1992-03-03 1992-03-03 Composes polymeres de l'acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants.

Publications (1)

Publication Number Publication Date
WO1993018174A1 true WO1993018174A1 (fr) 1993-09-16

Family

ID=9427280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000205 WO1993018174A1 (fr) 1992-03-03 1993-03-01 Composes polymeres de l'acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants

Country Status (5)

Country Link
EP (1) EP0629245A1 (fr)
JP (1) JPH07504928A (fr)
CA (1) CA2131384A1 (fr)
FR (1) FR2688222B1 (fr)
WO (1) WO1993018174A1 (fr)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781673A1 (fr) * 1998-07-28 2000-02-04 Univ Picardie Utilisation d'un glucuronane en tant qu'agent immunostimulant, procede de preparation
WO2010067327A1 (fr) 2008-12-11 2010-06-17 Sederma Composition cosmétique contenant des oligoglucuronanes acétylés
US20110150795A1 (en) * 2008-04-15 2011-06-23 Innovactiv Inc. Cosmetic compositions comprising exopolysaccharides derived from microbial mats, and use thereof
WO2014049055A2 (fr) 2012-09-27 2014-04-03 Sofradim Production Procédé de préparation d'une couche poreuse
US9242026B2 (en) 2008-06-27 2016-01-26 Sofradim Production Biosynthetic implant for soft tissue repair
US9308068B2 (en) 2007-12-03 2016-04-12 Sofradim Production Implant for parastomal hernia
US9445883B2 (en) 2011-12-29 2016-09-20 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US9499927B2 (en) 2012-09-25 2016-11-22 Sofradim Production Method for producing a prosthesis for reinforcing the abdominal wall
US9526603B2 (en) 2011-09-30 2016-12-27 Covidien Lp Reversible stiffening of light weight mesh
US9554887B2 (en) 2011-03-16 2017-01-31 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US9622843B2 (en) 2011-07-13 2017-04-18 Sofradim Production Umbilical hernia prosthesis
US9750837B2 (en) 2012-09-25 2017-09-05 Sofradim Production Haemostatic patch and method of preparation
US9839505B2 (en) 2012-09-25 2017-12-12 Sofradim Production Prosthesis comprising a mesh and a strengthening means
US9877820B2 (en) 2014-09-29 2018-01-30 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US9932695B2 (en) 2014-12-05 2018-04-03 Sofradim Production Prosthetic porous knit
US9931198B2 (en) 2015-04-24 2018-04-03 Sofradim Production Prosthesis for supporting a breast structure
US9980802B2 (en) 2011-07-13 2018-05-29 Sofradim Production Umbilical hernia prosthesis
US10080639B2 (en) 2011-12-29 2018-09-25 Sofradim Production Prosthesis for inguinal hernia
US10159555B2 (en) 2012-09-28 2018-12-25 Sofradim Production Packaging for a hernia repair device
US10184032B2 (en) 2015-02-17 2019-01-22 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US10213283B2 (en) 2013-06-07 2019-02-26 Sofradim Production Textile-based prosthesis for laparoscopic surgery
US10327882B2 (en) 2014-09-29 2019-06-25 Sofradim Production Whale concept—folding mesh for TIPP procedure for inguinal hernia
US10363690B2 (en) 2012-08-02 2019-07-30 Sofradim Production Method for preparing a chitosan-based porous layer
US10405960B2 (en) 2013-06-07 2019-09-10 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10549015B2 (en) 2014-09-24 2020-02-04 Sofradim Production Method for preparing an anti-adhesion barrier film
US10646321B2 (en) 2016-01-25 2020-05-12 Sofradim Production Prosthesis for hernia repair
US10675137B2 (en) 2017-05-02 2020-06-09 Sofradim Production Prosthesis for inguinal hernia repair
US10682215B2 (en) 2016-10-21 2020-06-16 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US10743976B2 (en) 2015-06-19 2020-08-18 Sofradim Production Synthetic prosthesis comprising a knit and a non porous film and method for forming same
US10865505B2 (en) 2009-09-04 2020-12-15 Sofradim Production Gripping fabric coated with a bioresorbable impenetrable layer
US11471257B2 (en) 2018-11-16 2022-10-18 Sofradim Production Implants suitable for soft tissue repair
EP4089163A1 (fr) 2021-05-11 2022-11-16 Université Clermont Auvergne Composé polymère d'acide glucuronique avec des groupes phénoliques, composition formant un gel comprenant un tel composé et son procédé de production
US20230220117A1 (en) * 2021-03-08 2023-07-13 Exopolymer, Inc. Biopolymers for Topical Use
US12064330B2 (en) 2020-04-28 2024-08-20 Covidien Lp Implantable prothesis for minimally invasive hernia repair

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768335B1 (fr) * 1997-09-12 2000-03-03 Sederma Sa Compositions a usage cosmetique ou dermopharmaceutique contenant une association d'extrait d'algue et d'exopolysaccharide
FR2795289B1 (fr) 1999-06-25 2005-09-30 Centre Nat Rech Scient Utilisation de polymeres 1,4 beta-d-glycuronanes et d'oligosaccharides glycuroniques derives en tant que phytosanitaires et/ou fertilisants
JP2005015680A (ja) * 2003-06-27 2005-01-20 Toppan Printing Co Ltd ポリグルクロン酸
WO2007026341A1 (fr) * 2005-09-02 2007-03-08 Alltracel Development Services Limited Procede permettant de preparer de l'acide polyanhydroglucuronique et/ou des sels de celui-ci
WO2009060140A2 (fr) * 2007-08-31 2009-05-14 Greentech Composition cosmetique comprenant un ou plusieurs composes de type beta- ( 1, 3 ) -glucuronane ou beta- ( 1, 3 ) -glucoglucuronane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2232990A (en) * 1938-07-15 1941-02-25 Eastman Kodak Co Preparation of oxycellulose

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 294 (C-732)26 Juin 1990 *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 235 (C-191)19 Octobre 1983 *

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781673A1 (fr) * 1998-07-28 2000-02-04 Univ Picardie Utilisation d'un glucuronane en tant qu'agent immunostimulant, procede de preparation
US9308068B2 (en) 2007-12-03 2016-04-12 Sofradim Production Implant for parastomal hernia
US10368971B2 (en) 2007-12-03 2019-08-06 Sofradim Production Implant for parastomal hernia
US11752168B2 (en) 2008-04-15 2023-09-12 Lucas Meyer Cosmetics Canada Inc. Methods of using cosmetic compositions comprising exopolysaccharides derived from microbial mats
US20110150795A1 (en) * 2008-04-15 2011-06-23 Innovactiv Inc. Cosmetic compositions comprising exopolysaccharides derived from microbial mats, and use thereof
US11040058B2 (en) 2008-04-15 2021-06-22 Lucas Meyer Cosmetics Canada Inc. Cosmetic compositions comprising exopolysaccharides derived from microbial mats, and methods of use thereof
US9242026B2 (en) 2008-06-27 2016-01-26 Sofradim Production Biosynthetic implant for soft tissue repair
US10070948B2 (en) 2008-06-27 2018-09-11 Sofradim Production Biosynthetic implant for soft tissue repair
WO2010067327A1 (fr) 2008-12-11 2010-06-17 Sederma Composition cosmétique contenant des oligoglucuronanes acétylés
FR2939799A1 (fr) * 2008-12-11 2010-06-18 Sederma Sa Composition cosmetique comprenant des oligoglucuronanes acetyles.
US20150196475A1 (en) * 2008-12-11 2015-07-16 Sederma, S.A.S. Cosmetic Composition Containing Acetylated Oligoglucuronans
US10159636B2 (en) 2008-12-11 2018-12-25 Sederma, S.A.S. Cosmetic composition containing acetylated oligoglucuronans
US10865505B2 (en) 2009-09-04 2020-12-15 Sofradim Production Gripping fabric coated with a bioresorbable impenetrable layer
US11970798B2 (en) 2009-09-04 2024-04-30 Sofradim Production Gripping fabric coated with a bioresorbable impenetrable layer
US9554887B2 (en) 2011-03-16 2017-01-31 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US10472750B2 (en) 2011-03-16 2019-11-12 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US11612472B2 (en) 2011-03-16 2023-03-28 Sofradim Production Prosthesis comprising a three-dimensional and openworked knit
US10709538B2 (en) 2011-07-13 2020-07-14 Sofradim Production Umbilical hernia prosthesis
US11039912B2 (en) 2011-07-13 2021-06-22 Sofradim Production Umbilical hernia prosthesis
US9622843B2 (en) 2011-07-13 2017-04-18 Sofradim Production Umbilical hernia prosthesis
US11903807B2 (en) 2011-07-13 2024-02-20 Sofradim Production Umbilical hernia prosthesis
US9980802B2 (en) 2011-07-13 2018-05-29 Sofradim Production Umbilical hernia prosthesis
US9526603B2 (en) 2011-09-30 2016-12-27 Covidien Lp Reversible stiffening of light weight mesh
US11471256B2 (en) 2011-12-29 2022-10-18 Sofradim Production Prosthesis for inguinal hernia
US11925543B2 (en) 2011-12-29 2024-03-12 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US10080639B2 (en) 2011-12-29 2018-09-25 Sofradim Production Prosthesis for inguinal hernia
US10342652B2 (en) 2011-12-29 2019-07-09 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US9445883B2 (en) 2011-12-29 2016-09-20 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US11266489B2 (en) 2011-12-29 2022-03-08 Sofradim Production Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit
US10363690B2 (en) 2012-08-02 2019-07-30 Sofradim Production Method for preparing a chitosan-based porous layer
US9750837B2 (en) 2012-09-25 2017-09-05 Sofradim Production Haemostatic patch and method of preparation
US9499927B2 (en) 2012-09-25 2016-11-22 Sofradim Production Method for producing a prosthesis for reinforcing the abdominal wall
US9839505B2 (en) 2012-09-25 2017-12-12 Sofradim Production Prosthesis comprising a mesh and a strengthening means
WO2014049055A2 (fr) 2012-09-27 2014-04-03 Sofradim Production Procédé de préparation d'une couche poreuse
US10159555B2 (en) 2012-09-28 2018-12-25 Sofradim Production Packaging for a hernia repair device
US11304790B2 (en) 2013-06-07 2022-04-19 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10213283B2 (en) 2013-06-07 2019-02-26 Sofradim Production Textile-based prosthesis for laparoscopic surgery
US11622845B2 (en) 2013-06-07 2023-04-11 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10405960B2 (en) 2013-06-07 2019-09-10 Sofradim Production Textile-based prothesis for laparoscopic surgery
US12059338B2 (en) 2013-06-07 2024-08-13 Sofradim Production Textile-based prothesis for laparoscopic surgery
US10549015B2 (en) 2014-09-24 2020-02-04 Sofradim Production Method for preparing an anti-adhesion barrier film
US12070534B2 (en) 2014-09-24 2024-08-27 Sofradim Production Method for preparing an anti-adhesion barrier film
US9877820B2 (en) 2014-09-29 2018-01-30 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US10327882B2 (en) 2014-09-29 2019-06-25 Sofradim Production Whale concept—folding mesh for TIPP procedure for inguinal hernia
US11291536B2 (en) 2014-09-29 2022-04-05 Sofradim Production Whale concept-folding mesh for TIPP procedure for inguinal hernia
US11589974B2 (en) 2014-09-29 2023-02-28 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US10653508B2 (en) 2014-09-29 2020-05-19 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
US9932695B2 (en) 2014-12-05 2018-04-03 Sofradim Production Prosthetic porous knit
US12091788B2 (en) 2014-12-05 2024-09-17 Sofradim Production Prosthetic porous knit
US11359313B2 (en) 2014-12-05 2022-06-14 Sofradim Production Prosthetic porous knit
US11713526B2 (en) 2014-12-05 2023-08-01 Sofradim Production Prosthetic porous knit
US10745835B2 (en) 2014-12-05 2020-08-18 Sofradim Production Prosthetic porous knit
US10815345B2 (en) 2015-02-17 2020-10-27 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US10184032B2 (en) 2015-02-17 2019-01-22 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US10660741B2 (en) 2015-04-24 2020-05-26 Sofradim Production Prosthesis for supporting a breast structure
US11439498B2 (en) 2015-04-24 2022-09-13 Sofradim Production Prosthesis for supporting a breast structure
US9931198B2 (en) 2015-04-24 2018-04-03 Sofradim Production Prosthesis for supporting a breast structure
US10743976B2 (en) 2015-06-19 2020-08-18 Sofradim Production Synthetic prosthesis comprising a knit and a non porous film and method for forming same
US11826242B2 (en) 2015-06-19 2023-11-28 Sofradim Production Synthetic prosthesis comprising a knit and a non porous film and method for forming same
US11389282B2 (en) 2016-01-25 2022-07-19 Sofradim Production Prosthesis for hernia repair
US10646321B2 (en) 2016-01-25 2020-05-12 Sofradim Production Prosthesis for hernia repair
US11696819B2 (en) 2016-10-21 2023-07-11 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US10682215B2 (en) 2016-10-21 2020-06-16 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US11672636B2 (en) 2017-05-02 2023-06-13 Sofradim Production Prosthesis for inguinal hernia repair
US10675137B2 (en) 2017-05-02 2020-06-09 Sofradim Production Prosthesis for inguinal hernia repair
US11471257B2 (en) 2018-11-16 2022-10-18 Sofradim Production Implants suitable for soft tissue repair
US12064330B2 (en) 2020-04-28 2024-08-20 Covidien Lp Implantable prothesis for minimally invasive hernia repair
US20230220117A1 (en) * 2021-03-08 2023-07-13 Exopolymer, Inc. Biopolymers for Topical Use
WO2022238441A1 (fr) 2021-05-11 2022-11-17 Universite Clermont Auvergne Composé polymère d'acide glucuronique à groupes phénoliques, composition de formation de gel comprenant un tel composé et son procédé de production
EP4089163A1 (fr) 2021-05-11 2022-11-16 Université Clermont Auvergne Composé polymère d'acide glucuronique avec des groupes phénoliques, composition formant un gel comprenant un tel composé et son procédé de production

Also Published As

Publication number Publication date
CA2131384A1 (fr) 1993-09-16
FR2688222A1 (fr) 1993-09-10
JPH07504928A (ja) 1995-06-01
EP0629245A1 (fr) 1994-12-21
FR2688222B1 (fr) 1995-05-19

Similar Documents

Publication Publication Date Title
WO1993018174A1 (fr) Composes polymeres de l&#39;acide glucuronique, procede de preparation et utilisation notamment en tant que moyens gelifiants, epaississants, hydratants, stabilisants, chelatants ou floculants
CN101512006B (zh) 用于纯化高分子量透明质酸的有效方法
EP2714918A1 (fr) Extraction de chitines en une seule étape par hydrolyse enzymatique en milieu acide
EP2321419B1 (fr) Procédé de co-production de chitine, de ses dérivés et de polymères contenant du glucose, du mannose et/ou du galactose, par la fermentation de levure pichia pastoris dsmz 70877
JP5969390B2 (ja) フコース含有細菌バイオポリマー
CH692919A5 (fr) Procédé de purification de l&#39;acide hyaluronique à poids moléculaire élevé.
JP3181337B2 (ja) キトサンオリゴ糖混合物の製造方法、及びキチンオリゴ糖混合物の製造方法
JP2766165B2 (ja) バクテリアセルロースの製造方法
JPH07119243B2 (ja) β−グルカン及びその製造方法
WO2013171424A1 (fr) Souche productrice de turanose et utilisations
FR2781673A1 (fr) Utilisation d&#39;un glucuronane en tant qu&#39;agent immunostimulant, procede de preparation
EP1121453B1 (fr) Heteropolysacchardie produit par un agrobacterium radiobacter
EP1603394A1 (fr) Procede pour la potentialisation et la stimulation des defenses naturelles des plantes
EP0979301B1 (fr) Souche de pseudomonas alginovora productrice d&#39;alginate-lyase et son utilisation pour la depolymerisation d&#39;alginate
JP3064052B2 (ja) 微細藻類から多糖類を生産する方法
JP2560257B2 (ja) キトサンーキチン系中空繊維の製造方法
FI105346B (fi) Fermentointiprosessi ksantaanikumin valmistamiseksi
FR2906819A1 (fr) Nouveau polysaccharide,son procede de preparation et ses utilisations notamment dans le domaine cosmetique
EP0296965B1 (fr) Procédé de fermentation pour l&#39;obtention d&#39;un polysaccharide de type xanthane
JP3826168B2 (ja) 微生物由来の多糖類
FR2687686A1 (fr) Enzyme destinee a la fragmentation du n-acetylheparosane, obtention des preparations contenant cette enzyme et procedes de fragmentation utilisant cette enzyme.
JPH04268301A (ja) 新規なセルロースおよびその製造法
JPS62257901A (ja) ヒアルロン酸の製造法
CH639277A5 (en) Antitumour agent containing a beta-1,3-glucan
JPH0675512B2 (ja) 低重合度ヒアルロン酸アルカリ塩の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA HU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993905441

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1994 290997

Country of ref document: US

Date of ref document: 19940829

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2131384

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1993905441

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993905441

Country of ref document: EP