WO1993012188A1 - Drahtlacke auf basis von polyester, die tris-2-hydroxyethylisocyanurat enthalten, sowie verfahren zu deren herstellung - Google Patents

Drahtlacke auf basis von polyester, die tris-2-hydroxyethylisocyanurat enthalten, sowie verfahren zu deren herstellung Download PDF

Info

Publication number
WO1993012188A1
WO1993012188A1 PCT/EP1992/002776 EP9202776W WO9312188A1 WO 1993012188 A1 WO1993012188 A1 WO 1993012188A1 EP 9202776 W EP9202776 W EP 9202776W WO 9312188 A1 WO9312188 A1 WO 9312188A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
wire enamel
wire
resin
polyester
Prior art date
Application number
PCT/EP1992/002776
Other languages
English (en)
French (fr)
Inventor
Michael Schink
Gerold Schmidt
Klaus-Wilhelm Lienert
Roland Peter
Original Assignee
Dr. Beck & Co. Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Beck & Co. Aktiengesellschaft filed Critical Dr. Beck & Co. Aktiengesellschaft
Priority to JP5510560A priority Critical patent/JPH07504692A/ja
Priority to EP92924638A priority patent/EP0616628A1/de
Priority to BR9206901A priority patent/BR9206901A/pt
Priority to US08/244,674 priority patent/US5536791A/en
Publication of WO1993012188A1 publication Critical patent/WO1993012188A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/125Unsaturated polyimide precursors the unsaturated precursors containing atoms other than carbon, hydrogen, oxygen or nitrogen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • C08G73/127Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C09D179/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins

Definitions

  • the present invention relates to wire enamels containing polyester based on tris-2-hydroxyethyl isocyanurate, organic solvents, catalysts,
  • the present invention also relates to a method for producing these wire enamels.
  • Wire enamels based on polyester resins are known and described, for example, in US Pat. No. 3,342,780, in US Pat. No. 3,249,578 and in EP-B-144 281.
  • Polyol component is used in the publications mentioned tris-2-hydroxyethyl isocyanurate.
  • TAEIC tris-2-hydroxyethyl isocyanurate
  • Wire enamel layer or at a particularly high thermal pressure (IEC 851-6).
  • IEC 851-6 particularly high thermal pressure
  • wire enamels based on polyester resins compared to wire enamels based on polyesterimide resins or polyamideimide resins is that the wires coated with polyester enamels have a low thermal shock.
  • THEIC modified Polyester wire enamels are therefore used in two-layer coatings for wires as a "base coat" to which, for example, a polyamideimide wire enamel is applied.
  • the object underlying the present invention was to provide wire enamels which avoid the disadvantages associated with polyester wire enamels and thus improve the property profile of THEIC polyester wire enamels. These wire enamels should be stable in storage, have good adhesion to copper wires, have the highest possible heat pressure and sufficient thermal shock.
  • the wire enamels should have the highest possible solids content with a viscosity that is favorable for processing.
  • the surface quality of the painted wires should be improved, especially with regard to the hardness properties.
  • This object is achieved by wire enamels containing polyester based on tris-2-hydroxyethyl isocyanurate (THEIC), organic solvents, catalysts, auxiliaries and additives, which are characterized in that the wire enamels a) 20 to 50% by weight of THEIC Polyester, b) 2 to 35% by weight of a bismaleimide resin, c) 0.1 to 3% by weight of a catalyst, preferably a titanate catalyst, and d) 35 to 77% by weight of organic solvents, based on the total weight of the wire enamel , which is 100% by weight. It is surprising and unpredictable that the modification of THEIC polyester wire enamels with bismaleimide resins gives wire enamels which adhere very well to copper wires and which lead to coatings with excellent technological properties.
  • TEEIC tris-2-hydroxyethyl is
  • polyesters (component a)) modified with tris-2-hydroxyethyl isocyanurate are known and are described, for example, in US Pat. No. 3,342,780 and EP-B-144 281.
  • TEEIC tris-2-hydroxyethyl isocyanurate
  • the polyesters are prepared in a known manner by esterification of polybasic carboxylic acids with polyhydric alcohols in the presence of suitable catalysts.
  • an alcohol component i.a. Tris-2-hydroxyethyl isocyanurate used.
  • Alcohols suitable for the production of the polyesters are, for example, ethylene glycol, 1,2-and 1,3-propylene glycol, 1,2-butanediol, 1,3 and -1,4, 1,5-pentanediol, neopentyl glycol, diethylene glycol, triethylene glycol kol and triols, such as glycerol, trimethylolethane, trimethylolpropane and tris-2-hydroxyethyl isocyanurate. Mixtures of ethylene glycol and tris-2-hydroxyethyl isocyanurate are preferably used. The use of tris-2-hydroxyethyl isocyanurate leads to high softening temperatures of the lacquer layer.
  • Suitable carboxylic acids are, for example, phthalic acid, isophthalic acid, terephthalic acid and their esterifiable derivatives, such as the anhydrides, if they exist, and the lower alkyl esters of the acids mentioned, such as methyl, ethyl, propyl, butyl, amyl, hexyl and octyl phthalates, terephthalates and isophthalates. Both the half esters, the dialkyl esters and mixtures of these compounds can be used. The corresponding acid halides of these compounds can also be used.
  • polyesters have a ratio of hydroxyl to carboxyl groups from 1.1: 1 to 2.0: 1, preferably from 1.15: 1 to 1.60: 1.
  • Catalysts suitable for the production of the polyesters which are used in amounts of 0.01 to 5% by weight, based on the feed mixture, are conventional esterification catalysts, for example
  • Heavy metal salts for example lead acetate, zinc acetate, furthermore organic titanates, for example
  • Tetra-n-butyl titanate cerium compounds and organic acids, e.g. p-toluenesulfonic acid.
  • a polyester a) which is produced from ethylene glycol, tris-2-hydroxyethyl isocyanurate and dimethyl terephthalate and has a hydroxyl number in the range from 80 to 150 mg KOH / g is preferably used in the wire enamels according to the invention.
  • component b) of the invention is preferably used in the wire enamels according to the invention.
  • Bismaleimide resins used in wire enamels are resins or prepolymers with bismaleimides as building blocks.
  • the bismaleimide resins are generally obtained from the bismaleimide units and comonomers (hardeners). Mixing and heating the bismaleimides and the comonomers gives them Bismaleimide resins or prepolymers.
  • Bismaleimide building blocks correspond to the general formula
  • Y is an optionally substituted alkenyl group and X is a divalent radical having at least two carbon atoms.
  • Monomeric bismaleimides are e.g. known from DE-A-20 40 094, DE-A-27 19 903 and DE-A-32 47 058.
  • Preferred bismaleimide components are 4,4'-bismaleimidodiphenylmethane, 4,4'-Bismaleinimidodiphenylether, 3.3, -Bismaleinimidodiphenylsulfon, 1,3-bismaleimidobenzene, 2,4-Bismaleinimidotoluol, 1,6-bismaleimidohexane and 2,2,4- Trimethyl-1,6-bismaleimidohexane.
  • polymaleimides and mixtures of various bismaleimides can also be used to prepare the bismaleimide resins.
  • the bismaleimides can also contain up to 20% of a monoimide.
  • Suitable comonomers are alkenyl compounds, aromatic and aliphatic polyamines, polyphenols, aminophenols, vinyl and allyl compounds.
  • Polyamines suitable as comonomers are known, for example, from DE-A-17 70 867; 4,4'-diaminodiphenylmethane are preferred, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodicyclohexyl methane and 3,3'-diaminodiphenyl sulfone.
  • polyphenols that can be used are bisphenol A, bisphenol F or novolaks; others are listed in DE-A-24 59 925.
  • alkenylphenols or phenol ethers are described in DE-A-26 27 045, o, o'-diallybisphenol A is preferred.
  • Oligomeric allyl- or propenyl-terminated sulfones or allylated dicyclopentadiene polyphenols are also suitable.
  • Aminophenols which can be used are, for example, m- or p-aminophenol. Examples of vinyl and allyl compounds are: styrene, divinylbenzene, diallyl phthalate,
  • Suitable additives are, for example
  • Fillers such as chalk, kaolin, quartz flour, dolomite, heavy spar, metal powder, aluminum oxide hydrate, cement,
  • Reinforcing fibers such as glass, carbon, asbestos and cellulose fibers as well as synthetic organic fibers, e.g. from polyethylene, polycarboxylic acid esters, polycarbonate or polyamides, inhibitors such as hydroquinones, quinones, nitrobenzenes, N-nitroso compounds, salts of divalent copper and quaternary ammonium salts,
  • Polymerization initiators such as benzoyl peroxide
  • Hardening accelerators for example octoates or naphthenates of copper, lead, calcium, magnesium, cerium and in particular of manganese and cobalt; also aromatic Amines, such as dimethylaniline and diethylaniline, imidazoles, tertiary phosphines, organic acids,
  • Shrinkage-reducing polymers such as polystyrene, polymethyl methacrylate, polyvinyl acetate, polyethylene, polybutadiene and graft copolymers, copolymers and condensation polymers, such as saturated polyesters or polyester urethanes,
  • - elasticizing additives e.g. rubbery
  • Block copolymers and modified polytetrahydrofuran, - flame retardants and plasticizers are also known.
  • the starting materials are mixed using customary techniques and at temperatures of i.a. 70 to 190 ° C heated, depending on the reaction time, a prepolymer is formed with an increase in viscosity.
  • a viscous solution or a glassy solid which is either ground or dissolved in a solvent, for example dimethylformamide or N-methylpyrrolidone, is obtained after cooling.
  • the bismaleimide resins can also be prepared in a solvent. Suitable bismaleimide resins are described, for example, in DE-A-38 27 120, DE-A-38 35 197 and DE-A-39 24 867.
  • the solid, meltable bismaleinimide resins known from DE-A-39 24 867 are particularly preferably used in the wire enamels according to the invention. These are made from
  • R C 1 -C 4 alkyl
  • n 0.1 or 2
  • Suitable bismaleimides A) are the bismaleimide building blocks already mentioned, 4,4'-methylene-bis- (N-phenylmaleimide) preferably being used.
  • Suitable aminophenols B) are m-, o- and p-aminophenol, with m-aminophenol being preferred.
  • the molar ratio A): B) is between 2.4: 1 and 1.4: 1, preferably between 2.0: 1 and 1.5: 1 and in particular between 1.8: 1 and 1.6: 1.
  • Suitable ones Catalysts C) are secondary or tertiary amines or phosphines.
  • Preferred amines are N, N, N ', N'-tetramethyldiaminodiphenylmethane, N, N-dimethylaniline and dimethylbenzylamine or also imidazoles, such as 1-methylimidazole.
  • Triphenylphosphine is preferred for the phosphines.
  • inhibitors D) for preventing the premature radical polymerization of the double bond of the bismaleimide customary, preferably phenolic compounds, in particular hydroquinone or 2,6-dimethylhydroquinone, are obtained in amounts of up to 1, preferably 0.1 to 0.5% by weight to the sum of A) + B).
  • Vinyl and allyl compounds E which are admixed in amounts of up to 25, preferably from 5 to 20,% by weight, based on the sum of A) + B), are copolymerized as comonomers in the resin matrix during the curing of the prepreg. They act as thinners to lower the resin viscosity, but above all you can, by suitable choice of the type and amount of these additives, also in the form of mixtures of several vinyl or allyl compounds, the stickiness of the
  • Suitable are, for example, N-vinylpyrrolidone, N-vinylcarbazole, divinylbenzene, acrylates, diallyl ethers, ethoxylated bisphenol A methacrylate, 3,3'-diallyl bisphenol A, 3,3'-dipropenyl bisphenol A, and also reaction products of a diepoxide with acrylic acid or methacrylic acid, but especially diallyl phthalate or prepolymers produced therefrom, triallyl cyanurate and triallyl isocyanurate.
  • Conventional epoxy resins F) in amounts of up to 25% by weight, based on A) + B), can also act as reactive thinners which are incorporated into the resin matrix.
  • polymerization initiators G) to accelerate the curing process 0 to 2, preferably 0.01 up to 2% by weight, based on the sum of A) + B), of conventional peroxides which decompose into free radicals at temperatures above 180 ° C.
  • the mixture is heated to temperatures between 140 to 190 ° C., preferably to 150 to 180 °, the components melting and bismaleimide and aminophenol reacting with one another.
  • the residence time of the reactants at these temperatures should be relatively short, preferably 1 to 10, in particular 2 to 4 minutes. be.
  • the reaction is carried out until 70 to 90 mol% of component A and 30 to 60 mol% of component B are still present in the unreacted form in the bismaleimide resin formed.
  • the degree of conversion can be controlled in a simple manner by means of the reaction temperature, reaction time and, if appropriate, the type and amount of the addition catalyst.
  • the progress of the reaction can be monitored by rapid cooling and analytical determination of the unreacted starting components A) + B).
  • High pressure liquid chromatography (HPLC) is used for the quantitative determination of A + B in the resin mixture, whereby the retention times and areas were previously calibrated with the pure substances A and B.
  • HPLC High pressure liquid chromatography
  • the melt is rapidly cooled.
  • the resin can be granulated, flaked or pulverized.
  • bismein imide resins b) which are particularly preferably used A) a bismaleimide
  • R-Ar-O-Het-O-Ar-R with R alkenyl or alkenyloxy group with 3-6
  • Ar phenylene, naphthylene or
  • Het heterocyclic six-membered ring selected from the group
  • Suitable comonomers B) are, for example, 2,6-bis (3-allyl-4-hydroxyphenoxy) pyridine, 2,6-bis (3-allyloxyphenoxy) pyridine, 2,6-bis (4-allyl-3- hydroxyphenoxy) pyridine, 2,6-bis [(3-allyl-4-hydroxyphenylisopropyl) phenoxy] pyridine and the corresponding pyridazine derivatives.
  • 2,6-Bis (2-propenylphenoxy) pyridine is particularly preferably used as the heterocyclic comonomer.
  • Suitable manufacturing processes are in the
  • the starting materials are mixed using customary techniques and heated to temperatures between 70 and 190 ° C., with the formation of a prepolymer. Depending on the progress of the prepolymerization, a relatively low-viscosity melt or a glass-like solidified solid is obtained, which is ground or dissolved in a solvent.
  • the resins can also be prepared in a solvent.
  • the mixing ratio in the reaction of the bismaleimide with the heterocyclic alkenyl compound can be chosen relatively freely, an equivalent ratio of 1 to 0.05 to 5 being preferred.
  • Additional components can be added to the bismaleimide resins described.
  • Possible additional components are, for example, amines, preferably aromatic diamines (for example 4,4 , -diaminodiphenylmethane) and aminophenols, which are also an addition reaction can make double bonds with maleimide.
  • Prepolymers for example of a bisimide and an amine, can also be used.
  • Other components up to a share of
  • vinyl monomers e.g. Styrene, ⁇ -methylstyrene, divinylbenzene, acrylic or methacrylic acid ester, diallyl phthalate, 3,3'-diallylbisphenol A, triallyl isocyanurate, triallyl cyanurate or vinyl pyrrolidone.
  • the bismaleimide resins known from this laid-open publication are preferably used because they have low softening temperatures and a long gelation time, which enables processing in the melt state.
  • the bismaleimide resins described are suitable for use in the wire enamels according to the invention.
  • the bismaleimide resins used in the wire enamels according to the invention are available, for example, under the trademark Palimid ® S from BASF AG, for example the bismaleimide resins Palimid ® S
  • Palimid ® S 410 KR, Palimid ® S 430 KR and Palimid ® S 440 KR are particularly preferred Palimid ® S 410 KR, Palimid ® S 430 KR and Palimid ® S 440 KR (BASF AG).
  • Organic solvents (component d) which are suitable for the wire enamels according to the invention and can also be used for the production of THEIC polyesters NEN are cresolic and non-cresolic organic solvents such as cresol, phenol, glycol ethers such as methyl glycol, ethyl glycol, isopropyl glycol, butyl glycol, methyl diglycol, ethyl diglycol, butyl diglycol; Glycol ether esters, such as, for example, methyl glycol acetate, ethyl glycol acetate, butyl glycol acetate and 3-methoxy-n-butyl acetate; cyclic carbonates, such as propylene carbonate; cyclic esters such as ⁇ -butyrolactone and, for example, dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone.
  • cresolic and non-cresolic organic solvents such as cresol, phenol, glycol ether
  • Aromatic solvents can also be used, if appropriate in combination with the solvents mentioned.
  • the organic solvents can be partially replaced by blending agents. Either pure solvent or pure solvent mixture or solvent with up to 40% by weight, based on the total weight of component d), of cutting agent is preferably used.
  • suitable blending agents are xylene, solvent naphtha ® , toluene, ethylbenzene, cumene, heavy benzene, various combinations thereof.
  • the wire enamels according to the invention contain 0.1 to 3% by weight, based on the total weight of the wire enamel, including the catalyst, of a transesterification catalyst, preferably a titanate catalyst (component c)), such as tetraalkyl titanates, for example tetraisopropyl titanate, tetrapropyl titanate, tetrabutyl titanate, tetraamyl titanate, Tetrahexyl titanate, tetraethyl titanate, tetramethyl titanate, diisopropyldibutyl titanate or aryl titanates, such as tetraphenyl titanate, tetracresyl titanate, tetraxylenyl titanate or triethanolamine titanate.
  • a titanate catalyst component c
  • tetraalkyl titanates for example tetraisopropyl titanate, tetrapropyl titanate, tetrabutyl titan
  • the wire enamels according to the invention advantageously contain 0.2 to 5.0% by weight of a flow-promoting phenol-formaldehyde resin e), based on the total weight of the wire enamel including component e).
  • Suitable phenolic resins are known condensation products of phenol, substituted phenols or bisphenol A with formaldehyde.
  • the properties of the phenolic resins depend on the type of phenol component and the aldehyde component, on the pH value set during production and on the quantitative ratio of the two reactants.
  • the phenolic resins can also be modified by incorporating other compounds in the polycondensation as well as by subsequent modification of the phenolic resin and different control of the reaction process.
  • those with other aldehydes can also be used.
  • the wire enamels according to the invention contain up to 0.3% by weight of imidazole or an imidazole derivative f), based on the total weight of the wire enamels including component f).
  • imidazole derivative for example
  • the wire enamels contain up to 0.3% by weight of a tertiary amine g), based on the total weight of the wire enamel, including g).
  • Suitable tertiary amines are N-methylmorpholine, N-methylpyrrolidine, N-methylpyrrole, trimethylamine, triethylamine, dimethylethanolamine, diethylmethylamine, methyldiethanolamine, ethylmethylethanolamine, Dimethylethylamine, dimethylpropylamine, dimethyl-3-hydroxy-1-propylamine, dimethylbenzylamine, dimethyl-2-hydroxy-1-propylamine, dimethyl-1-hydroxy-2-propylamine and 1,4-diazabicyclo [2.2.2. ]octane.
  • the wire enamels can also contain customary auxiliaries and additives in customary amounts, preferably up to 1% by weight, based on the total weight of components a) and b).
  • auxiliaries for the wire enamels for example, flow-improving melamine resins or leveling agents based on polyacrylates can be used.
  • Wire enamels according to the invention which a) 28 to 47% by weight of THEIC polyester, b) 4 to 10% by weight of a bismaleimide resin, c) 0.3 to 1.5% by weight lead to coatings with particularly good properties.
  • a titanate catalyst d) 40 to 67% by weight of organic solvents, e) 0.4 to 4.0% by weight of a phenol-formaldehyde resin, f) 0.01 to 0.2% by weight of imidazole and / or an imidazole derivative and g) 0.01 to 0.2% by weight of a tertiary amine, based on the total weight of the wire enamel, which is 100% by weight.
  • the present invention also relates to a method for the production of the wire enamels described above, which is characterized in that the polyester component a), the bismaleimide resin b), the catalyst c), organic solvent d), if appropriate the phenolic resin component e), if appropriate the imidazole or the imidazole derivative f) , if necessary the tertiary amine g) and further auxiliaries and additives by mixing and if necessary
  • Dispersing can be processed into a wire coating composition.
  • the THEIC polyester a) can be dissolved together with the bismaleimide resin.
  • the wire enamels are applied and hardened using conventional wire enamelling machines.
  • the required lacquer film thickness is built up by at least 1 to 10 individual orders, whereby each individual lacquer application is cured without bubbles before the new lacquer application.
  • Usual lacquering machines operate at take-off speeds of 5 to 180 m / min, depending on the binder base of the wire enamel and the thickness of the wire to be coated. Typical oven temperatures are between 300 and 550 ° C.
  • Such Wire coating machines are known and therefore do not need to be explained in more detail here.
  • the wire enamels according to the invention are surprisingly stable in storage, even though they contain components as diverse as THEIC polyesters, bismaleimide resins, titanates and possibly phenolic resins.
  • the wire enamel coatings obtained from the lacquers according to the invention after lacquering and baking have very good adhesion to copper wires, although - as will be shown below - bismaleimide resins alone, i.e. without the polyester component a), lead to non-stick coatings.
  • the wire coatings resulting from the lacquers according to the invention have an extraordinarily good property profile.
  • the wires coated with the lacquers according to the invention have excellent results in terms of thermal shock.
  • a polyester resin having a hydroxyl number of 90 to 140 mgKOH / g is prepared from 125.84 g of ethylene glycol, 294.92 g of tris-2-hydroxyethyl isocyanurate, 578.57 g of dimethyl terephthalate and 0.68 g of butyl titanate by heating to 200 ° C.
  • This THEIC-modified polyester resin is used in the following working examples.
  • 1,2-dimethylimidazole 126.78 g of solvent naphtha and 253.15 g of cresol, the lacquer is stirred for 6 hours and then filtered.
  • EXAMPLE 2 71.42 g of a bismaleimide resin based on monomeric bismaleimides and aminophenols and 0.07 g of 1,2-dimethylimidazole are added to 892.79 g of the THEIC-modified polyester resin lacquer produced under B) at room temperature with stirring. After adding 26.79 g of cresol and 8.93 g of solvent naphtha, the lacquer is stirred for 6 hours and then filtered.
  • the viscosity of this solution is 630 mPas at 23 ° C.
  • the solution is added with stirring at room temperature
  • the lacquer is stirred for 2 hours and then filtered.
  • lacquers produced under B) and C) and in Examples 1 to 5 are lacquered on a standard wire lacquering machine.
  • the coated wires are tested according to IEC 851. The results are summarized in the following table:
  • the wire painted with a THEIC polyester varnish (comparative example B) is characterized by very good adhesion when winding 1 x d with a pre-stretch of 25%.
  • the disadvantage is a relatively weak thermal shock 1 x d of 155 ° C.
  • the bismaleimide resin varnish described under C) has no liability on copper wires.
  • the wire enamels according to the invention produced in Examples 1-5 have good adhesion to the copper wire which corresponds to the standard.
  • the surface quality of the coated wires and the hardness of the coating film are in some cases above the level compared to conventional wires coated with THEIC polyesters.
  • Wires have a thermal pressure of 430 - 450 ° C and a thermal shock, 1 x d to 220oC.
  • the tan S steep rise is between 136oC and 146oC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft Drahtlacke, die: (a) 20 bis 50 Gew.-% eines Tris-2-hydroxyethylisocyanurat-modifizierten Polyesters, (b) 2 bis 35 Gew.-% eines Bismaleinimidharzes, (c) 0,1 bis 3 Gew.-% eines Katalysators, vorzugsweise eines Titanatkatalysators und (d) 35 bis 77 Gew.-% organische Lösungsmittel, bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthalten. Die Erfindung betrifft ebenfalls Herstellungsverfahren der erfindungsgemässen Drahtlacke.

Description

DRAHTLACKE AUF BASIS VON POLYESTER, DIE TRIS-2-HYDROXYETHYLISOCYANURAT ENTHALTEN, SOWIE VERFAHREN ZU DEREN HERSTELLUNG.
Die vorliegende Erfindung betrifft Drahtlacke, enthaltend Polyester auf Basis von Tris-2-hydroxyethylisocyanurat, organische Lösungsmittel, Katalysatoren,
Hilfsstoffe und Additive. Gegenstand der vorliegenden Erfindung ist außerdem ein Verfahren zur Herstellung dieser Drahtlacke.
Drahtlacke auf Basis von Polyesterharzen sind bekannt und beispielsweise beschrieben in der US-PS 3,342,780, in der US-PS 3,249 578 und in der EP-B-144 281. Als
Polyolkomponente wird in den genannten Druckschriften Tris-2-hydroxyethylisocyanurat eingesetzt. Die Verwendung von Tris-2-hydroxyethylisocyanurat (THEIC) führt dabei zu besonders hohen Erweichungstemperaturen der
Drahtlackschicht bzw. zu einem besonders hohen Wärmedruck (IEC 851-6). Die mit Drahtlacken auf Basis von
Polyesterharzen beschichteten Drähte zeichnen sich dadurch aus, daß der Lackfilm eine gute Haftung auf
Kupferdrähten besitzt.
Der Nachteil der Drahtlacke auf Basis von Polyesterharzen verglichen mit Drahtlacken auf Basis von Polyesterimidharzen oder Polyamidimidharzen besteht darin, daß die mit Polyesterlacken beschichteten Drähte einen geringen Wärmeschock aufweisen. THEIC-modifizierte Polyesterdrahtlacke werden daher in Zweischichtlackierungen für Drähte als "Basecoat" verwendet, auf den beispielsweise ein Polyamidimid-Drahtlack aufgebracht wird.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand darin, Drahtlacke zur Verfügung zu stellen, die die mit Polyesterdrahtlacken verbundenen Nachteile vermeiden und damit das Eigenschaftsprofil der THEIC-Polyesterdrahtlacke verbessern. Diese Drahtlacke sollten lagerstabil sein, eine gute Haftung auf Cu-Drähten besitzen, einen möglichst hohen Wärmedruck sowie einen ausreichenden Wärmeschock aufweisen.
Außerdem sollten die Drahtlacke einen möglichst hohen Festkörpergehalt bei einer für die Verarbeitung günstigen Viskosität aufweisen. Die Oberflächenqualität der lackierten Drähte sollte verbessert werden, insbesondere hinsichtlich der Härteeigenschaften. Diese Aufgabe wird gelöst durch Drahtlacke, enthaltend Polyester auf Basis von Tris-2-hydroxyethylisocyanurat (THEIC), organische Lösungsmittel, Katalysatoren, Hilfsstoffe und Additive, die dadurch gekennzeichnet sind, daß die Drahtlacke a) 20 bis 50 Gew.-% des THEIC-Polyesters, b) 2 bis 35 Gew.-% eines Bismaleinimidharzes, c) 0,1 bis 3 Gew.-% eines Katalysators, vorzugsweise eines Titanatkatalysators und d) 35 bis 77 Gew.-% organische Lösungsmittel, bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthalten. Es ist überraschend und war nicht vorhersehbar, daß durch Modifizierung von THEIC-Polyesterdrahtlacken mit Bismaleinimidharzen Drahtlacke erhalten werden, die sehr gut auf Kupferdrähten haften und die zu Beschichtungen mit hervorragenden technologischen Eigenschaften führen.
Im folgenden werden nun zunächst die einzelnen Komponenten der erfindungsgemäßen Drahtlacke näher erläutert.
Die mit Tris-2-hydroxyethylisocyanurat (THEIC) modifizierten Polyester (Komponente a) ) sind bekannt und beispielsweise beschrieben in der US-PS 3,342,780 und der EP-B-144 281. Die Herstellung der Polyester erfolgt in bekannter Weise durch Veresterung von mehrwertigen Carbonsäuren mit mehrwertigen Alkoholen in Gegenwart geeigneter Katalysatoren. Als Alkoholkomponente wird dabei u.a. Tris-2-hydroxyethylisocyanurat eingesetzt.
Anstelle der freien Säure können auch deren esterbildende Derivate eingesetzt werden.
Für die Herstellung der Polyester geeignete Alkohole sind beispielsweise Ethylenglykol, Propylenglykol-1,2 und -1,3, Butandiol-1,2, -1,3 und -1,4, Pentandiol- 1,5, Neopentylglykol, Diethylenglykol, Triethylengly- kol sowie Triole, wie z.B. Glycerin, Trimethylolethan, Trimethylolpropan und Tris-2-hydroxyethylisocyanurat. Bevorzugt eingesetzt werden Mischungen von Ethylenglykol und Tris-2-hydroxyethylisocyanurat. Die Verwendung von Tris-2-hydroxyethylisocyanurat führt zu hohen Erweichungstemperaturen der Lackschicht. Geeignete Carbonsäuren sind beispielsweise Phthalsäure, Isophthalsäure, Terephthalsäure sowie deren veresterbare Derivate, wie z.B. die Anhydride, soweit sie existieren, und die niederen Alkylester der genannten Säuren, wie z.B. Methyl-, Ethyl-, Propyl-, Butyl-, Amyl-, Hexyl- und Octylphthalate, -terephthalate und -isophthalate. Einsetzbar sind sowohl die Halbester, die Dialkylester als auch Mischungen dieser Verbindungen. Einsetzbar sind auch die entsprechenden Säurehalogenide dieser Verbindungen. Die Mengen der einzelnen Komponenten werden so gewählt, daß die Polyester ein Verhältnis von Hydroxyl- zu Carboxylgruppen von 1,1 : 1 bis 2,0 : 1, bevorzugt von 1,15 : 1 bis 1,60 : 1, aufweisen. Für die Herstellung der Polyester geeignete Katalysatoren, die in Mengen von 0,01 bis 5 Gew.-%, bezogen auf das Einsatzgemisch, eingesetzt werden, sind übliche Veresterungskatalysatoren, wie zum Beispiel
Schwermetallsalze, zum Beispiel Bleiacetat, Zinkacetat, weiterhin organische Titanate, beispielsweise
Tetra-n-butyltitanat, Cerverbindungen sowie organische Säuren, wie z.B. p-Toluolsulfonsäure.
Bevorzugt wird in den erfindungsgemäßen Drahtlacken ein Polyester a) verwendet, der hergestellt wird aus Ethylenglykol, Tris-2-hydroxyethylisocyanurat und Dimethylterephthalat und eine Hydroxylzahl aufweist im Bereich von 80 bis 150 mg KOH/g. Unter den als Komponente b) der erfindungsgemäßen
Drahtlacke eingesetzten Bismaleinimidharze sind Harze bzw. Präpolymere mit Bismaleinimiden als Bausteine zu verstehen. Aus den Bismaleinimid-Bausteinen und Comonomeren (Härtern) werden die Bismaleinimidharze im allgemeinen erhalten. Durch Vermischen und Erwärmen der Bismaleinimide und der Comonomeren entstehen die Bismaleinimidharze bzw. -präpolymere. Bismaleinimid-Bausteine entsprechen der allgemeinen Formel
Figure imgf000007_0001
wobei Y eine ggf. substituierte Alkenylgruppe ist und X einen zweiwertigen Rest mit zumindest zwei Kohlenstoffatomen bedeutet. Monomere Bismaleinimide sind z.B. aus der DE-A-20 40 094, der DE-A-27 19 903 und der DE-A-32 47 058 bekannt.
Bevorzugte Bismaleinimid-Bausteine sind 4,4'-Bismaleinimidodiphenylmethan, 4,4'-Bismaleinimidodiphenylether, 3,3,-Bismaleinimidodiphenylsulfon, 1,3-Bismaleinimidobenzol, 2,4-Bismaleinimidotoluol, 1,6-Bismaleinimidohexan und 2,2,4-Trimethyl-1,6-bismaleinimidohexan. Neben Bismaleinimiden können zur Herstellung der Bismaleinimidharze auch Polymaleinimide sowie Mischungen verschiedener Bismaleinimide verwendet werden. Die Bismaleinimide können auch bis zu 20 % eines Monoimids enthalten.
Geeignete Comonomere sind AlkenylVerbindungen, aromatische und aliphatische Polyamine, Polyphenole, Aminophenole, Vinyl- und Allylverbindungen. Als Comonomere geeignete Polyamine sind z.B. aus DE-A-17 70 867 bekannt; bevorzugt sind 4,4'-Diaminodiphenylmethan, 4,4'-Diaminodiphenylsulfon, 4,4'-Diaminodicyclohexylmethan und 3,3'-Diaminodiphenylsulfon. Unter den verwendbaren Polyphenolen sind Bisphenol A, Bisphenol F oder Novolake zu nennen; weitere sind DE-A-24 59 925 aufgeführt. Geeignete Alkenylphenole oder -phenolether werden in DE-A-26 27 045 beschrieben, bevorzugt ist o,o'-DiallyIbisphenol A. Ebenfalls geeignet sind oligomere allyl- oder propenylterminierte Sulfone oder allylierte Dicyclopentadien-Polyphenole. Einsetzbare Aminophenole sind z.B. m- oder p-Aminophenol. Unter Vinyl- und Allylverbindungen sind beispielshaft zu nennen: Styrol, Divinylbenzol, Diallylphthalat,
Acrylate, Methacrylate, Diallylbenzol, Alkenylphenole, Alkenylphenolether, Triallylisocyanurat oder Vinylpyrrolidon. Bevorzugt sind Vinyl- und Allylverbindungen, insbesondere DiallyIbisphenol A.
Geeignete Zusatzstoffe sind beispielsweise
- Füllstoffe, wie Kreide, Kaolin, Quarzmehl, Dolomit, Schwerspat, Metallpulver, Aluminiumoxidhydrat, Zement,
Talkum, Kieselgur sowie Pigmente,
- Verstärkungsfasern, wie Glas-, Kohlenstoff-, Asbest- und Cellulosefasern sowie synthetische organische Fasern, z.B. aus Polyethylen, Polycarbonsäureestern, Polycarbonat oder Polyamiden, - Inhibitoren, wie Hydrochinone, Chinone, Nitrobenzole, N-Nitrosoverbindungen, Salze des zweiwertigen Kupfers und quarternäre Ammoniumsalze,
- Polymerisationsinitiatoren, wie Benzoylperoxid,
Methylethylketonperoxid, tert.-Butylperoktoat,
tert.-Butylperbenzoat, Cyclohexanonperoxid, Acetylacetonperoxid, Perketale, Percarbonate, Dicumylperoxid, C-C-labile Verbindungen und Azoverbindungen,
- Härtungsbeschleuniger, z.B. Oktoate oder Naphthenate von Kupfer, Blei, Calcium, Magnesium, Cer und insbesondere von Mangan und Kobalt; ferner aromatische Amine, wie Dimethylanilin und Diethylanilin, Imidazole, tertiäre Phosphine, organische Säuren,
- schrumpfmindernde Polymerisate, wie Polystyrol, Polymethylmethacrylat, Polyvinylacetat, Polyethylen, Polybutadien und Pfropfcopolymere, Copolymere sowie Kondensationspolymere, wie gesättigte Polyester oder Polyesterurethane,
- elastifizierende Zusätze, z.B. kautschukartige
Blockcopolymere und modifiziertes Polytetrahydrofuran, - flammhemmende Stoffe und Weichmacher.
Zur Herstellung der Bismaleinimidharze b) werden die Ausgangsmaterialien unter Anwendung üblicher Techniken vermischt und auf Temperaturen von i.a. 70 bis 190°C erhitzt, wobei sich je nach Reaktionsdauer unter Viskositätsanstieg ein Präpolymer bildet. Je nach Comonomertyp und Comonomermenge wird nach dem Abkühlen eine viskose Lösung oder ein glasartig erstarrter Feststoff erhalten, der entweder gemahlen oder in einem Lösungsmittel, beispielsweise Dimethylformamid oder N-Methylpyrrolidon, gelöst wird. Die Herstellung der Bismaleinimidharze kann auch in einem Lösungsmittel erfolgen. Geeignete Bismaleinimidharze sind zum Beispiel beschrieben in der DE-A-38 27 120, der DE-A-38 35 197 und der DE-A-39 24 867.
Besonders bevorzugt werden in den erfindungsgemäßen Drahtlacken die aus der DE-A-39 24 867 bekannten, festen, schmelzbaren Bismaleinimidharze eingesetzt. Diese werden hergestellt aus
A) einem Bismaleinimid der Formel
Figure imgf000010_0002
mit
X = CH2, 0 oder SO2,
R = C1 - C4-Alkyl,
n = 0,1 oder 2,
B) einem Aminophenol der Formel
Figure imgf000010_0001
mit m = 1 oder 2, im Molverhältnis A) : B) = 2,4 : 1 bis 1,4 : 1, wobei A) und B) zu einem Präpolymeren vorreagieren, sowie ggf. C) 0 bis 2 Gew.-%, bezogen auf A) + B), eines sekundären oder tertiären Amins oder Phosphins als Ad ditionskatalysator,
D) 0 bis 1 Gew.-%, bezogen auf A) + B), eines Polymerisationsinhibitors,
E) 0 bis 25 Gew.-%, bezogen auf A) + B), einer copolymerisierbaren Vinyl- oder Allylverbindung,
F) 0 bis 25 Gew.-%, bezogen auf A) + B), eines min- destens 2 Epoxidgruppen enthaltenden Epoxidharzes und
G) 0 bis 2 Gew.-%, bezogen auf A) + B), eines Peroxidinitiators, wobei 70 bis 90 Mol-% von A) und 30 bis 60 Mol-% von B) in unumgesetzter Form vorliegen und der verbleibende Rest zum Präpolymeren reagiert hat. Geeignete Bismaleinimide A) sind die bereits genannten Bismaleinimid-Bausteine, wobei bevorzugt 4,4'-Methylen-bis-(N-phenylmaleinsäureimid) eingesetzt wird.
Beispiele für geeignete Aminophenole B) sind m-, o- und p-Aminophenol, wobei m-Aminophenol bevorzugt ist. Das Molverhältnis A) : B) liegt zwischen 2,4 : 1 und 1,4 : 1, vorzugsweise zwischen 2,0 : 1 und 1,5 : 1 und insbesondere zwischen 1,8 : 1 und 1,6 : 1. Geeignete Katalysatoren C) sind sekundäre oder tertiäre Amine bzw. Phosphine. Bevorzugte Amine sind N,N,N',N'-Tetramethyldiaminodiphenylmethan, N,N-Dimethylanilin und Dimethylbenzylamin oder auch Imidazole, wie z.B. 1-Methylimidazol. Bei den Phosphinen ist Triphenylphosphin bevorzugt. Als Inhibitoren D) zur Verhinderung der vorzeitigen radikalischen Polymerisation der Doppelbindung des Bismaleinimids werden übliche, vorzugsweise phenolische Verbindungen, insbesondere Hydrochinon oder 2,6-Dimethylhydrochinon in Mengen von bis zu 1, vorzugsweise 0,1 bis 0,5 Gew.-%, bezogen auf die Summe A) + B), eingesetzt.
Vinyl- und Allylverbindungen E), die in Mengen von bis zu 25, vorzugsweise von 5 bis 20 Gew.-%, bezogen auf die Summe A) + B) zugemischt werden, werden bei der Aushärtung des Prepregs als Comonomere in die Harzmatrix einpolymerisiert. Sie wirken als Verdünner zur Erniedrigung der Harzviskosität, vor allem aber kann man durch geeignete Wahl der Art und Menge dieser Zusatzstoffe auch in Form von Gemischen mehrerer Vinyl- oder Allylverbindungen die Klebrigkeit des
Prepregs gezielt einstellen und die Erweichungstemperatur des Harzes auf Raumtemperatur absenken. Bevorzugt sind Monomere, die zwei oder drei Vinyl- oder
Allylgruppen aufweisen. Geeignet sind z.B. N-Vinylpyrrolidon, N-Vinylcarbazol, Divinylbenzol, Acrylate, Diallylether, ethoxyliertes Bisphenol-A-methacrylat, 3,3'-Diallyl-Bisphenol A, 3,3'-Dipropenyl-Bisphenol A, ferner Umsetzungsprodukte eines Diepoxids mit Acrylsäure oder Methacrylsäure, insbesondere aber Diallylphthalat oder daraus erzeugte Präpolymere, Triallylcyanurat und Triallylisocyanurat. Übliche Epoxidharze F) in Mengen von bis zu 25 Gew.-%, bezogen auf A) + B), können ebenfalls als reaktive Verdünner wirken, die in die Harzmatrix eingebaut werden. Als Polymerisationsinitiatoren G) zur Beschleunigung des Härtungsvorgangs können 0 bis 2, vorzugsweise 0,01 bis 2 Gew.-%, bezogen auf die Summe A) + B), üblicher Peroxide, die bei Temperaturen oberhalb von 180°C in Radikale zerfallen, zugesetzt werden. Das Gemisch wird auf Temperaturen zwischen 140 bis 190°C, vorzugsweise auf 150 bis 180° aufgeheizt, wobei die Komponenten aufschmelzen und Bismaleinimid und Aminophenol miteinander reagieren. Die Verweilzeit der Reaktionspartner bei diesen Temperaturen soll verhältnismäßig kurz, vorzugsweise 1 bis 10, insbesondere 2 bis 4 min. betragen. Die Umsetzung wird soweit getrieben, bis in dem entstehenden Bismaleinimid-Harz noch 70 bis 90 Mol-% der Komponente A und 30 bis 60 Mol-% der Komponente B in unumgesetzter Form vorliegen. Der Grad der Umsetzung kann auf einfache Weise durch Reaktionstemperatur, Reaktionszeit und ggf. durch Art und Menge des Additionskatalysators gesteuert werden. Der Fortgang der Reaktion kann durch rasches Abkühlen und analytische Bestimmung der nicht umgesetzten Ausgangskomponenten A) + B) kontrolliert werden. Dabei wird die Hochdruckflüssigkeitschromatographie (HPLC) zur quantitativen Bestimmung von A + B im Harzgemisch angewandt, wobei die Retentionszeiten und Flächen mit den Reinsubstanzen A und B zuvor geeicht wurden. Nach Beendigung der Reaktion wird die Schmelze rasch abgekühlt. Das Harz kann granuliert, verschuppt oder pulverisiert werden.
Bezüglich weiterer Einzelheiten zur Herstellung der in den erfindungsgemäßen Drahtlacken bevorzugt verwendete Bismaleinimidharze b) wird auf entsprechende Ausführungen in der DE-A-39 24 867 verwiesen.
Desweiteren werden in den erfindungsgemäßen Drahtlacken besonders bevorzugt Bismeleinimidharze b) eingesetzt, die A) ein Bismaleinimid,
B) ein heterocyclisches Comonomer der Formel
R-Ar-O-Het-O-Ar-R mit R = Alkenyl- oder Alkenyloxy-Gruppe mit 3-6
C-Atomen,
Ar = Phenylen-, Naphthylen- oder
Figure imgf000014_0001
mit X = O, S, SO2, CO, C(R,)2 (R' = H, C1 - C6-Alkyl, CF3 oder Phenyl) oder eine chemische Bindung, wobei Ar ggf. eine Hydroxylgruppe tragen kann,
Het = heterocyclischer Sechsring, ausgewählt aus der Gruppe
Figure imgf000014_0002
enthalten. Derartige bevorzugte Bismaleinimidharze werden in der DE-A-38 27 120 beschrieben.
Geeignete Comonomere B) sind zum Beispiel 2,6-Bis- (3-allyl-4-hydroxyphenoxy)pyridin, 2,6-Bis(3-allyloxy- phenoxy)pyridin, 2,6-Bis(4-allyl-3-hydroxyphenoxy)- pyridin, 2,6-Bis [(3-allyl-4-hydroxyphenylisopropyl)- phenoxy]pyridin sowie die entsprechenden Pyridazinderivate. Besonders bevorzugt wird als heterocyclisches Comonomer 2,6-Bis(2-propenylphenoxy) pyridin verwendet. Geeignete Herstellungsverfahren werden in der
DE-A-38 27 120 beschrieben.
Bezüglich geeigneter monomerer Bismaleinimide wird auf zuvor genannte Beispiele verwiesen.
Zur Herstellung der Bismaleinimidharze werden die Ausgangsmaterialien unter Anwendung der üblichen Techniken vermischt und auf Temperaturen zwischen 70 bis 190°C erhitzt, wobei die Bildung eines Präpolymeren erfolgt. Je nach Fortschritt der Vorpolymerisation erhält man eine relativ niedrig viskose Schmelze oder einen glasartig erstarrten Feststoff, der gemahlen oder in einem Lösungsmittel gelöst wird. Die Herstellung der Harze kann auch in einem Lösungsmittel erfolgen.
Das Mischungsverhältnis bei der Umsetzung des Bismaleinimids mit der heterocyclischen Alkenylverbindung ist relativ frei wählbar, wobei ein Äquivalent-Verhältnis von 1 zu 0,05 bis 5 vorzuziehen ist.
Den beschriebenen Bismaleinimidharzen können weitere Komponenten beigefügt werden. In Frage kommende Zusatzkomponenten sind beispielsweise Amine, bevorzugt aromatische Diamine (z.B. 4,4,-Diaminodiphenylmethan) und Aminophenole, die ebenfalls eine Additionsreaktion mit den Maleinimiddoppelbindungen eingehen können. Es können auch Präpolymere, z.B. aus einem Bisimid und einem Amin, eingesetzt werden. Weitere Komponenten, die bis zu einem Anteil von
50 Gew.-%, bezogen auf die Mischung, mitverwendet werden können, sind geeignete Vinylmonomere, z.B. Styrol, α-Methylstyrol, Divinylbenzol, Acryl- oder Methacrylsäureester, Diallylphthalat, 3,3'-Diallylbisphenol A, Triallylisocyanurat, Triallylcyanurat oder Vinylpyrrolidon.
Bezüglich weiterer Einzelheiten wird auf entsprechende Ausführungen in der DE-A-38 27 120 verwiesen. Die aus dieser Offenlegungsschrift bekannten Bismaleinimidharze werden bevorzugt verwendet, da sie niedrige Erweichungstemperaturen und eine lange Gelierzeit aufweisen, die eine Verarbeitung im Schmelzzustand ermöglicht.
Außer den beschriebenen Bismaleinimidharzen kommt eine Vielzahl weiterer BMI-Harz für den Einsatz in den erfindungsgemäßen Drahtlacken in Frage. Die in den erfindungsgemäßen Drahtlacken verwendeten Bismaleinimidharze sind beispielsweise erhältlich unter dem Warenzeichen Palimid® S der Firma BASF AG, so zum Beispiel die Bismaleinimidharze Palimid® S
410 KR, Palimid® S 420 KR, Palimid® S 430 KR, Palimid® S 440 KR, Palimid© S 450 KR und Palimid® S 460 KR.
Besonders bevorzugt sind Palimid® S 410 KR, Palimid® S 430 KR und Palimid® S 440 KR (BASF AG).
Für die erfindungsgemäßen Drahtlacke geeignete organisehe Lösungsmittel (Komponente d), die auch schon zur Herstellung der THEIC-Polyester verwendet werden kön nen, sind kresolische und nicht-kresolische organische Lösungsmittel, wie beispielsweise Kresol, Phenol, Glykolether, wie z.B. Methylglykol, Ethylglykol, Isopropylglykol, Butylglykol, Methyldiglykol, Ethyldiglykol, Butyldiglykol; Glykoletherester, wie z.B. Methylgly- kolacetat, Ethylglykolacetat, Butylglykolacetat und 3-Methoxi-n-butylacetat; cyclische Carbonate, wie z.B. Propylencarbonat; cyclische Ester, wie z.B. γ-Butyrolacton sowie beispielsweise Dimethylformamid, N,N-Dimethylacetamid und N-Methylpyrrolidon. Weiterhin können noch aromatische Lösungsmittel, ggf. in Kombination mit den genannten Lösungsmitteln eingesetzt werden. Die organischen Lösungsmittel können teilweise durch Verschnittmittel ersetzt werden. Vorzugsweise werden entweder reines Lösungsmittel bzw. reines Lösungsmittelgemisch oder Lösungsmittel mit bis zu 40 Gew.-%, bezogen auf das Gesamtgewicht der Komponente d), Ver- Schnittmittel verwendet. Beispiele für geeignete Verschnittmittel sind Xylol, Solventnaphtha®, Toluol, Ethylbenzol, Cumol, Schwerbenzol, verschiedene
Solvesso®- und Shellsol®-Typen sowie Deasof®. Die erfindungsgemäßen Drahtlacke enthalten 0,1 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Drahtlackes einschließlich des Katalysators, eines Umesterungskatalysators, vorzugsweise eines Titanatkatalysators (Komponente c)), wie zum Beispiel Tetraalkyltitanate, beispielswiese Tetraisopropyltitanat, Tetrapropyltitanat, Tetrabutyltitanat, Tetraamyltitanat, Tetrahexyltitanat, Tetraethyltitanat, Tetramethyltitanat, Diisopropyldibutyltitanat oder Aryltitanate, wie Tetraphenyltitanat, Tetrakresyltitanat, Tetraxylenyltitanat oder auch Triethanolamintitanat. Weiterhin geeignete Vernetzungskatalysatoren sind Schwermetall- salze, wie Bleiacetat, Zinkacetat, Cerverbindungen sowie organische Säuren, wie z.B. p-Toluolsulfonsäure.
Vorteilhafterweise enthalten die erfindungsgemäßen Drahtlacke 0,2 bis 5,0 Gew.-% eines verlaufsfördernden Phenol-Formaldehydharzes e), bezogen auf das Gesamtgewicht des Drahtlackes einschließlich der Komponente e).
Geeignete Phenolharzes sind bekannte Kondensationsprodukte von Phenol, substituierten Phenolen oder Bisphenol A mit Formaldehyd. Die Eigenschaften der Phenolharze hängen ab von der Art der Phenolkomponente und der Aldehydkomponente, von dem bei der Herstellung eingestellten pH-Wert und vom Mengenverhältnis der beiden Reaktionspartner. Gemäß der vorliegenden Erfindung können die Phenolharze auch modifiziert werden durch Einbau anderer Verbindungen bei der Polykondensation sowie durch nachträgliche Modifizierung des Phenolharzes und unterschiedliche Führung des Reaktionsprozesses. Selbstverständlich sind neben den Kondensationsprodukten mit Formaldehyd auch solche mit anderen Aldehyden verwendbar.
Es ist weiterhin vorteilhaft, daß die erfindungsgemäßen Drahtlacke bis zu 0,3 Gew.-% Imidazol oder eines Imidazolderivates f), bezogen auf das Gesamtgewicht der Drahtlacke einschließlich der Komponente f), enthalten. Als Imidazolderivat kommt beispielsweise
Methylimidazol und 1,2-Dimethylimidazol in Frage. Des weiteren ist es bevorzugt, daß die Drahtlacke bis zu 0,3 Gew.-% eines tertiären Amins g), bezogen auf das Gesamtgewicht des Drahtlackes einschließlich g), enthalten. Geeignete tertiäte Amine sind N-Methylmorpholin, N-Methylpyrrolidin, N-Methylpyrrol, Trimethylamin, Triethylamin, Dimethylethanolamin, Diethylmethylamin, Methyldiethanolamin, Ethylmethylethanolamin, Dimethylethylamin, Dimethylpropylamin, Dimethyl-3-hydroxy-1-propylamin, Dimethylbenzylamin, Dimethyl-2-hydroxy-1-propylamin, Dimethyl-1-hydroxy-2-propylamin sowie 1,4-Diazabicyclo[2.2.2. ]oktan.
Außerdem können die Drahtlacke noch übliche Hilfsmittel und Additive in üblichen Mengen, bevorzugt bis zu 1 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten a) und b), enthalten. Als Hilfsstoffe für die Drahtlacke können beispielsweise verlaufsverbessernde Melaminharze oder Verlaufsmittel auf Basis von Polyacrylaten eingesetzt werden.
Zu Beschichtungen mit besonders guten Eigenschaften führen erfindungsgemäße Drahtlacke, die a) 28 bis 47 Gew.-% des THEIC-Polyesters, b) 4 bis 10 Gew.-% eines Bismaleinimidharzes, c) 0,3 bis 1,5 Gew.-% eines Titanatkatalysators, d) 40 bis 67 Gew.-% organische Lösungsmittel, e) 0,4 bis 4,0 Gew.-% eines Phenol-Formaldehyd-Harzes, f) 0,01 bis 0,2 Gew.-% Imidazol und/oder eines Imidazolderivates und g) 0,01 bis 0,2 Gew.-% eines tertiären Amins, bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthalten.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung der zuvor beschriebenen Drahtlacke, das dadurch gekennzeichnet ist, daß die Polyesterkomponente a), das Bismaleinimidharz b), der Katalysator c), organisches Lösungsmittel d), ggf. die Phenolharzkomponente e), ggf. des Imidazol bzw. das Imidazolderivat f), ggf. das tertiäre Amin g) sowie weitere Hilfsstoffe und Additive durch Mischen und ggf.
Dispergieren zu einer Drahtbeschichtungszusammensetzung verarbeitet werden.
Bevorzugt dabei ist ein Verfahren zur Herstellung der erfindungsgemäßen Drahtlacke, das dadurch gekennzeichnet ist, daß der THEIC-modifizierte Polyester a) in organischem Lösungsmittel gelöst wird, das Bismaleinimidharz b) entweder als Feststoff oder in organischer Lösung der Polyesterharzlösung zugegeben wird und die Komponenten c), ggf. d), ggf. e), ggf. f) und ggf. g) sowie weitere Hilfsstoffe und Additive zugegeben werden. Ggf. wird anschließend noch mit zusätzlichem Lösungsmittel auf die gewünschte Viskosität eingestellt.
Es sind auch Modifizierungen dieses Herstellverfahrens möglich. So kann beispielsweise der THEIC-Polyester a) mit dem Bismaleinimidharz zusammen gelöst werden.
Die Drahtlacke werden mittels üblicher Drahtlackiermaschinen aufgebracht und gehärtet. Dabei wird die jeweils erforderliche Lackfilmstärke durch mindestens 1 bis zu 10 Einzelaufträgen aufgebaut, wobei jeder einzelne Lackauftrag vor dem erneuten Lackauftrag blasenfrei ausgehärtet wird, übliche Lackiermaschinen arbeiten mit Abzugsgeschwindigkeiten von 5 bis 180 m/min, je nach Bindemittelbasis des Drahtlackes und je nach Dicke des zu beschichtenden Drahtes. Typische Ofentemperaturen betragen zwischen 300 und 550ºC. Derartige Drahtlackiermaschinen sind bekannt und brauchen daher hier nicht näher erläutert zu werden.
Die erfindungsgemäßen Drahtlacke sind überraschenderweise lagerstabil, obwohl sie so unterschiedliche Komponenten wie THEIC-Polyester, Bismaleinimidharze, Titanate und ggf. Phenolharze enthalten. Die aus den erfindungsgemäßen Lacken nach dem Lackieren und Einbrennen erhaltenen Drahtlacküberzuge weisen eine sehr gute Haftung auf Kupferdrähten auf, obwohl - wie nachstehend gezeigt wird - Bismaleinimidharze allein, d.h. ohne die Polyesterkomponente a), zu nichthaftenden Überzügen führen. Überraschenderweise wurde gefunden, daß die aus den erfindungsgemäßen Lacken resultieren- den Drahtbeschichtungen ein außergewöhnlich gutes Eigenschaftsprofil aufweisen. So weisen die mit den erfindungsgemäßen Lacken lackierten Drähte insbesondere hervorragende Ergebnisse hinsichtlich des Wärmeschocks auf.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
A) Herstellung eines THEIC-Polyesterharzes
Aus 125,84 g Ethylenglykol, 294,92 g Tris-2-hydroxyethylisocyanurat, 578,57 g Dimethylterephthalat und 0,68 g Butyltitanat wird durch Erhitzen auf 200ºC ein Polyesterharz mit einer Hydroxylzahl von 90 bis 140 mgKOH/g hergestellt. Dieses THEIC-modifizierte Polyesterharz wird in den folgenden Ausführungsbeispielen eingesetzt.
B) Herstellung eines THEIC-Polyesterlackes
Unter Rühren werden 355,60 g des unter A) herge- stellten THEIC-modifizierten Polyesters in
264,80 g Kresol bei 150°C gelöst. Nach Kühlen auf Raumtemperatur werden 15,00 g Butyltitanat, 54,30 g Solventnaphtha und 42,62 g eines handelsüblichen Phenolharzes zugegeben und mit 214,4 g Kresol und 53,54 g Solventnaphtha verdünnt.
Viskosität (23°C): 540 mPas
Festkörper (1 g, 1 h, 180°C) : 39,8 %.
C) Herstellung eines Bismaleinimidharzlackes
Zu 366,12 g eines Bismaleinimidharzes auf Basis von monomeren Bismaleinimiden und Aminophenolen werden 253,33 g Kresol gegeben und bei Raumtemperatur bis zum vollständigen Lösen des Bismaleinimidharzes gerührt. Nach Zugabe von 0,62 g
1,2-Dimethylimidazol, 126,78 g Solventnaphtha und 253,15 g Kresol wird der Lack 6 Stunden gerührt und anschließend filtriert.
Viskosität (23°C): 546 mPas
Festkörper (1 g, 1 h, 180°C) : 37,6 %
Beispiel 1:
Zu 925,89 g des unter B) hergestellten THEIC-modifizierten Polyesterharzlackes werden bei Raumtemperatur unter Rühren 37,04 g eines Bismaleinimidharzes auf Basis von monomeren Bismaleinimiden und Aminophenolen und 0,04 g 1,2-Dimethylimidazol gegeben. Nach Zugabe von 27,77 g Kresol und 9,26 g Solventnaphtha wird der Lack 6 Stunden gerührt und anschließend filtriert.
Viskosität (23ºC): 640 mPas Festkörper (1 g, 1 h, 180°C) : 40,6 %
Beispiel 2: Zu 892,79 g des unter B) hergestellten THEIC-modifizierten Polyesterharzlackes werden bei Raumtemperatur unter Rühren 71,42 g eines Bismaleinimidharzes auf Basis von monomeren Bismaleinimiden und Aminophenolen und 0,07 g 1,2-Dimethylimidazol gegeben. Nach Zugabe von 26,79 g Kresol und 8,93 g Solventnaphtha wird der Lack 6 Stunden gerührt und anschließend filtriert.
Viskosität (23°C): 815 mPas
Festkörper (1 g, 1 h, 180ºC) : 41,1 %
Beispiel 3:
Es werden 81,80 g eines Bismaleinimidharzes auf Basis von monomeren Bismaleinimiden und Aminophenolen in
75,00 g Kresol und 24,99 g Solventnaphtha gelöst. Die
Viskosität dieser Lösung beträgt 630 mPas bei 23°C.
Die Lösung wird unter Rühren bei Raumtemperatur zu
818,05 g des unter B) hergestellten THEIC-modifizierten Polyesterlackes gegeben. Nach Zugabe von 0,16 g
1,2-Dimethylimidazol wird der Lack 2 Stunden gerührt und anschließend filtriert.
Viskosität (23°C): 540 mPas
Festkörper (1 g, 1 h, 180°C) : 39,6 %
Beispiel 4:
Bei 75°C werden unter Rühren 97,61 g eines Bismaleinimidharzes auf Basis von monomeren Bismaleinimiden und Aminophenolen in 23,76 g Kresol gelöst. Die Viskosität dieser Lösung beträgt 35 Pas bei 23°C. Nach Abkühlen auf 50°C werden 813,38 g des unter B) hergestellten Polyesterlackes, 0,12 g 1,2-Dimethylimidazol, 48,86 g Kresol und 16,29 g Solventnaphtha zugegeben, der Lack wird 2 Stunden gerührt und anschließend filtriert.
Viskosität (23°C): 695 mPas
Festkörper (1 g, 1 h, 180°C) : 41,2 % Beispiel 5:
Es werden 139,35 g eines Bismaleinimidharzes auf Basis von monomeren Bismaleinimiden und Aminophenolen bei 75ºC unter Rühren in 33,93 g Kresol gelöst; Nach Abkühlen auf 50ºC werden 696,77 g des unter B) hergestellten THEIC-modifizierten Polyesterlackes, 0,14 g 1,2-Dimethylimidazol, 97,37 g Kresol und 32,44 g Solventnaphtha zugegeben. Der entstandene Lack wird 2 Stunden gerührt und anschließend filtriert.
Viskosität (23°C) : 650 mPas
Festkörper (1 g, 1 h, 180ºC): 40,5 %
Die unter B) und C) sowie in den Beispielen 1 bis 5 hergestellten Lacke werden auf einer standardmäßigen Drahtlackiermaschine lackiert.
Lackierbedingungen: Ofen KLH, Fa. Aumann
Länge: 4 m
Temperatur: 500°C
Auftragssystem: Pumpe + Filz
Drahtdurchmesser: 0,71 mm
Abzugsgeschwindigkeit: 28 m/min
Zahl der Durchzüge: 8 Zunahmegrad: 2 L
Die lackierten Drähte werden nach IEC 851 geprüft. Die Ergebnisse sind in der folgenden Tabelle zusammengefaßt:
Figure imgf000026_0001
Der mit einem THEIC-Polyesterlack lackierte Draht (Vergleichsbeispiel B) zeichnet sich durch eine sehr gute Haftung beim Wickeln 1 x d mit einer Vordehnung von 25 % aus. Nachteilig ist ein relativ schwacher Wärmeschock 1 x d von 155ºC.
Der unter C) beschriebene Bismaleinimidharzlack hat auf Kupferdrähten keine Haftung.
Die in den Beispielen 1 - 5 hergestellten erfindungsgemäßen Drahtlacke haben eine dem Standard entsprechende gute Haftung auf dem Kupferdraht. Die Oberflächenqualität der lackierten Drähte sowie die Härte des Lackfilms liegen zum Teil über dem Niveau verglichen mit konventionellen mit THEIC-Polyestern lackierten Drähten.
Die erfindungsgemäßen Drahtlacke zeichnen sich aber insbesondere dadurch aus, daß die mit ihnen lackierten
Drähte einen Wärmedruck von 430 - 450°C und einen Wärmeschock, 1 x d bis 220ºC aufweisen. Der tan S-Steilanstieg liegt zwischen 136ºC und 146°C.

Claims

Patentansprüche
1. Drahtlack, enthaltend Polyester auf Basis von
Tris-2-hydroxyethylisocyanurat, organische Lösungsmittel, Katalysatoren, Hilfsstoffe und Additive, dadurch gekennzeichnet, daß der Drahtlack a) 20 bis 50 Gew.-% des THEIC-Polyesters, b) 2 bis 35 Gew.-% eines Bismaleinimidharzes, c) 0,1 bis 3 Gew.-% eines Katalysators, vorzugsweise eines Titanatkatalysators und d) 35 bis 77 Gew.-% organische Lösungsmittel, bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthält.
2. Drahtlack nach Anspruch 1, dadurch gekennzeichnet, daß der Drahtlack 0,2 bis 5,0 Gew.-% eines Phenolharzes e), bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthält.
3. Drahtlack nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Drahtlack bis zu 0,3 Gew.-% Imidazol bzw. eines Imidazol-Derivates f), bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthält.
4. Drahtlack nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Drahtlack bis zu 0,3 Gew.-% eines tertiären Amins g), bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthält.
5. Drahtlack nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Drahtlack a) 28 bis 47 Gew.-% des THEIC-Polyesters, b) 4 bis 10 Gew.-% eines Bismaleinimidharzes, c) 0,3 bis 1,5 Gew.-% eines Titanatkatalysators, d) 40 bis 67 Gew.-% organische Lösungsmittel, e) 0,4 bis 4,0 Gew.-% eines Phenol-Formaldehyd-Harzes, f) 0,01 bis 0,2 Gew.-% Imidazol und/oder eines Imidazolderivates und g) 0,01 bis 0,2 Gew.-% eines tertiären Amins, bezogen auf das Gesamtgewicht des Drahtlackes, welches 100 Gew.-% beträgt, enthält.
6. Drahtlack nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß der Polyester a) hergestellt wird aus Ethylenglykol, Tris-2-hydroxyethylisocyanurat und Dimethylterephthalat und eine Hydroxylzahl im Bereich von 80 bis 150 mg KOH/g aufweist.
7. Drahtlack nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß das Bismaleinimidharz b) hergestellt wird aus A) einem Bismaleinimid der Formel
Figure imgf000030_0002
mit
X = CH2 , 0 oder SO2 ,
R = C1 " - C4-Alkyl,
n = 0, 1 oder 2 ,
B) einem Aminophenol der Formel
Figure imgf000030_0001
mit m = 1 oder 2, im Molverhältnis A) : B) = 2,4 : 1 bis 1,4 : 1, wobei A) und B) zu einem Präpolymeren vorreagieren, sowie ggf. C) 0 bis 2 Gew.-%, bezogen auf A) + B), eines sekundären oder tertiären Amins oder Phosphins als Additionskatalysator,
D) 0 bis 1 Gew.-%, bezogen auf A) + B), eines Polymerisationsinhibitors,
E) 0 bis 25 Gew.-%, bezogen auf A) + B), einer copolymerisierbaren Vinyl- oder Allylverbindung,
F) 0 bis 25 Gew.-%, bezogen auf A) + B), eines mindestens 2 Epoxidgruppen enthaltenden Epoxidharzes und
G) 0 bis 2 Gew.-%, bezogen auf A) + B), eines Peroxidinitiators, wobei 70 bis 90 Mol-% von A) und 30 bis 60 Mol-% von B) in unumgesetzter Form vorliegen und der verbleibende Rest zum Präpolymeren reagiert hat.
8. Drahtlack nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß das Bismaleinimidharz b)
A) ein Bismaleinimid,
B) ein heterocyclisches Comonomer der Formel R-Ar-0-Het-0-Ar-R
mit R = Alkenyl- oder Alkenyloxy-Gruppe mit 3-6
C-Atomen, Ar = Phenylen-, Naphthylen- oder
Figure imgf000032_0001
mit X = O, S, SO2, CO, C(R')2 (R' = H, C1 - C6-Alkyl, CF3 oder Phenyl) oder eine chemische Bindung, wobei Ar ggf. eine Hydroxylgruppe tragen kann,
Het heterocyclischer Sechsring, ausgewählt aus der Gruppe
Figure imgf000032_0002
enthält.
9. Drahtlack nach Anspruch 8, dadurch gekennzeichnet, daß das Comonomer B) 2,6-Bis-(2-propenylphenoxy) pyridin ist.
10. Verfahren zur Herstellung des Drahtlackes nach einem oder nach mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der THEIC-modifizierte Polyester (a), das Bismaleinimidharz b), die Katalysatorkomponente c), organisches Lösemittel (d), ggf. die Phenolharzkomponente e), ggf. die Imidazol-Komponente f), ggf. das tertiäre Amin g) sowie weitere Hilfsstoffe und Additive zu einer Drahtbeschichtungszusammensetzung durch Mischen und ggf. Dispergieren verarbeitet werden.
11. Verfahren zur Herstellung des Drahtlackes nach Anspruch 10, dadurch gekennzeichnet, daß der Polyester a) in organischem Lösungsmittel gelöst wird, das Bismaleinimidharz b) als Feststoff oder in organischer Lösung der Polyesterharzlösung zugegeben wird und die Komponenten c), ggf. d), ggf. e), ggf. f), ggf. g) sowie weitere Hilfsstoffe und Additive zugegeben werden.
PCT/EP1992/002776 1991-12-09 1992-12-01 Drahtlacke auf basis von polyester, die tris-2-hydroxyethylisocyanurat enthalten, sowie verfahren zu deren herstellung WO1993012188A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5510560A JPH07504692A (ja) 1991-12-09 1992-12-01 線用エナメルならびにその製造方法
EP92924638A EP0616628A1 (de) 1991-12-09 1992-12-01 Drahtlacke auf basis von polyester, die tris-2-hydroxyethylisocyanurat enthalten, sowie verfahren zu deren herstellung
BR9206901A BR9206901A (pt) 1991-12-09 1992-12-01 Vernizes para arames bem como processos para a produção dos mesmos
US08/244,674 US5536791A (en) 1991-12-09 1992-12-01 Wire coatings and processes for their preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4140472.6 1991-12-09
DE4140472A DE4140472A1 (de) 1991-12-09 1991-12-09 Drahtlacke sowie verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
WO1993012188A1 true WO1993012188A1 (de) 1993-06-24

Family

ID=6446573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/002776 WO1993012188A1 (de) 1991-12-09 1992-12-01 Drahtlacke auf basis von polyester, die tris-2-hydroxyethylisocyanurat enthalten, sowie verfahren zu deren herstellung

Country Status (8)

Country Link
US (1) US5536791A (de)
EP (1) EP0616628A1 (de)
JP (1) JPH07504692A (de)
BR (1) BR9206901A (de)
DE (1) DE4140472A1 (de)
RU (1) RU94039928A (de)
TR (1) TR27664A (de)
WO (1) WO1993012188A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043710A1 (de) 2007-10-04 2009-04-09 Elantas Gmbh Drahtlacke mit guter haftung auf elektrischen leitern
DE102011003129A1 (de) 2011-01-25 2012-07-26 Elantas Gmbh Drahtlack-Zusammensetzung enthaltend Polyole auf Melamin-Basis, deren Verwendung und Verwendung eines Polyols auf Melamin-Basis
DE102011006437A1 (de) 2011-03-30 2012-10-04 Elantas Gmbh Polyester- oder Polyesterimidharze, welche mit dem cyclischen Imid einer aromatischen Tricarbonsäure terminiert sind, sowie diese enthaltende Drahtlack-Zusammensetzungen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041943A1 (de) * 2000-08-25 2002-03-14 Schenectady Int Inc Polyamidimidharzlösung und ihre Verwendung zur Herstellung von Drahtlacken
JP4793565B2 (ja) * 2005-03-24 2011-10-12 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP4475470B2 (ja) * 2007-04-05 2010-06-09 三菱電機株式会社 回転電機のコイル部の絶縁構造
JP5342277B2 (ja) * 2009-03-03 2013-11-13 古河電気工業株式会社 多層絶縁電線
WO2013096238A1 (en) 2011-12-20 2013-06-27 U.S. Coatings Ip Co. Llc Coating process with self-crosslinkable composition for electrical steel sheet
CN109251657A (zh) * 2018-08-20 2019-01-22 安徽晟然绝缘材料有限公司 一种高软化击穿赛克改性聚酯亚胺漆包线漆及其制备方法
CN110256954A (zh) * 2019-07-01 2019-09-20 南通百川新材料有限公司 一种改性聚酯亚胺漆包线漆及其制备方法
CN110591536A (zh) * 2019-10-30 2019-12-20 安徽晟然绝缘材料有限公司 一种高软化击穿聚氨酯漆包线漆及其制备方法
US11434313B2 (en) * 2020-12-16 2022-09-06 Canon Kabushiki Kaisha Curable composition for making cured layer with high thermal stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1811780A1 (de) * 1967-12-26 1969-08-21 Gen Electric Beschichtungsmaterial aus Polyester
DE2728843A1 (de) * 1976-06-25 1977-12-29 Toshiba Chem Prod Waermehaertbare harzmasse
EP0144281A1 (de) * 1983-12-01 1985-06-12 Essex Group Inc. Tris(hydroxyäthyl)isocyanurat-Polyester-Emaillacke mit hohem Feststoffgehalt
EP0237763A2 (de) * 1986-02-15 1987-09-23 BASF Aktiengesellschaft Verfahren zur Herstellung von hitzehärtbaren Prepregs bzw. Halbzeugen aus Bismaleinimid-Harzen
EP0354500A2 (de) * 1988-08-10 1990-02-14 BASF Aktiengesellschaft Hitzehärtbare Bismaleinimid-Formmassen
EP0410298A1 (de) * 1989-07-27 1991-01-30 BASF Aktiengesellschaft Bismaleinimid-Harze
EP0441047A2 (de) * 1990-01-19 1991-08-14 Minnesota Mining And Manufacturing Company Wärmehärtbare Zusammensetzung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763269A (en) * 1968-03-25 1973-10-02 Allied Chem Polyesters from tris(2-hydroxyalkyl)isocyanurate homopolymers
DE3739612A1 (de) * 1987-11-23 1989-06-01 Basf Lacke & Farben Verfahren zum beschichten von metallbaendern im bandlackierverfahren fuer die fertigung von thermisch stark belasteten teilen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1811780A1 (de) * 1967-12-26 1969-08-21 Gen Electric Beschichtungsmaterial aus Polyester
DE2728843A1 (de) * 1976-06-25 1977-12-29 Toshiba Chem Prod Waermehaertbare harzmasse
EP0144281A1 (de) * 1983-12-01 1985-06-12 Essex Group Inc. Tris(hydroxyäthyl)isocyanurat-Polyester-Emaillacke mit hohem Feststoffgehalt
EP0237763A2 (de) * 1986-02-15 1987-09-23 BASF Aktiengesellschaft Verfahren zur Herstellung von hitzehärtbaren Prepregs bzw. Halbzeugen aus Bismaleinimid-Harzen
EP0354500A2 (de) * 1988-08-10 1990-02-14 BASF Aktiengesellschaft Hitzehärtbare Bismaleinimid-Formmassen
EP0410298A1 (de) * 1989-07-27 1991-01-30 BASF Aktiengesellschaft Bismaleinimid-Harze
EP0441047A2 (de) * 1990-01-19 1991-08-14 Minnesota Mining And Manufacturing Company Wärmehärtbare Zusammensetzung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043710A1 (de) 2007-10-04 2009-04-09 Elantas Gmbh Drahtlacke mit guter haftung auf elektrischen leitern
DE102007047492A1 (de) 2007-10-04 2009-04-16 Elantas Gmbh Drahtlacke mit guter Haftung auf elektrischen Leitern
DE102011003129A1 (de) 2011-01-25 2012-07-26 Elantas Gmbh Drahtlack-Zusammensetzung enthaltend Polyole auf Melamin-Basis, deren Verwendung und Verwendung eines Polyols auf Melamin-Basis
WO2012100968A1 (de) 2011-01-25 2012-08-02 Elantas Gmbh Drahtlack-zusammensetzung enthaltend polyole auf melamin-basis
DE102011006437A1 (de) 2011-03-30 2012-10-04 Elantas Gmbh Polyester- oder Polyesterimidharze, welche mit dem cyclischen Imid einer aromatischen Tricarbonsäure terminiert sind, sowie diese enthaltende Drahtlack-Zusammensetzungen
WO2012130724A1 (de) 2011-03-30 2012-10-04 Elantas Gmbh Polyester- oder polyesterimidharze, welche mit dem cyclischen imid einer aromatischen tricarbonsäure terminiert sind, sowie diese enthaltende drahtlack-zusammensetzungen

Also Published As

Publication number Publication date
JPH07504692A (ja) 1995-05-25
US5536791A (en) 1996-07-16
DE4140472A1 (de) 1993-06-17
BR9206901A (pt) 1995-11-21
EP0616628A1 (de) 1994-09-28
TR27664A (tr) 1995-06-16
RU94039928A (ru) 1996-07-10

Similar Documents

Publication Publication Date Title
DE3030111C2 (de) Härtbare Harzzusammensetzung
WO1993012188A1 (de) Drahtlacke auf basis von polyester, die tris-2-hydroxyethylisocyanurat enthalten, sowie verfahren zu deren herstellung
DE2019396A1 (de) Bis-imidverbindungen und deren Homo- und Copolymerisate
DE2019436A1 (de) Polyimide und Verfahren zu ihrer Herstellung
DE3048830A1 (de) Haertbare harzmasse
DE3026384C2 (de) Härtbare Harzmasse
DE2921513C2 (de) Imidgruppenhaltige Polymerisate
DE2230887B2 (de) Verfahren zur herstellung von haertbaren vorpolymeren aus maleinsaeureimiden und polyaminen
CH620938A5 (de)
DE2234148A1 (de) Polyimide
DE3028087A1 (de) Zusammensetzung aus einem ungesaettigten polyesterharz
DE2234166A1 (de) Polyimide und verfahren zu deren herstellung
EP0476323B1 (de) Bindemittelkombinationen und ihre Verwendung in Beschichtungsmitteln und Dichtmassen
EP0300329B1 (de) Bismaleinimid-Harze
DE2317578A1 (de) Pulverisierfoermige acrylharzbindemittelmischungen
DE2321513A1 (de) Loesliche polyimide aus aromatischen dianhydriden und 10,10-di-(p-aminophenyl)thioxanthen
DE3047286C2 (de) Verfahren zum mehrlagigen Beschichten eines Gegenstandes
DE2930031C2 (de) Wärmehärtbare Harzzusammensetzung
EP0549923A2 (de) Härtbare Masse, Verfahren zu deren Herstellung und deren Verwendung zur Fixierung von Wickelgütern
DE3726286A1 (de) Formmassen aus ungesaettigten polyesterharzen
EP0600947B1 (de) Härtbare pulverförmige mischungen auf basis von polyarylensiloxanen
EP0073022A1 (de) Esterverbindungen, Verfahren zu deren Herstellung und deren Verwendung als Härter
DE2708846A1 (de) Harzzusammensetzung
DE2930031C3 (de)
DE818581C (de) Verfahren zur Herstellung von Polymerisationsprodukten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992924638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08244674

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992924638

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992924638

Country of ref document: EP