WO1993004139A1 - Systeme ameliore d'emmagasinage d'energie thermique et procede pour l'emmagasinage et le transfert d'energie thermique - Google Patents

Systeme ameliore d'emmagasinage d'energie thermique et procede pour l'emmagasinage et le transfert d'energie thermique Download PDF

Info

Publication number
WO1993004139A1
WO1993004139A1 PCT/US1992/007255 US9207255W WO9304139A1 WO 1993004139 A1 WO1993004139 A1 WO 1993004139A1 US 9207255 W US9207255 W US 9207255W WO 9304139 A1 WO9304139 A1 WO 9304139A1
Authority
WO
WIPO (PCT)
Prior art keywords
clathrate
energy storage
thermal energy
guest molecule
storage system
Prior art date
Application number
PCT/US1992/007255
Other languages
English (en)
Inventor
Chien Chi Li
Original Assignee
Allied-Signal Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied-Signal Inc. filed Critical Allied-Signal Inc.
Publication of WO1993004139A1 publication Critical patent/WO1993004139A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Thermal energy storage systems contain a cooling medium, which is frozen during the off peak, evening hours. During the daytime, heat from the surrounding area is used to melt the frozen cooling medium. The removal of heat to drive the decomposition causes the surrounding area to become cooler.
  • Hydrate systems such as Na 2 SO 4 *10H 2 ⁇ have also been disclosed.
  • the hydrates tend to segregate after a few cycles.
  • such hydrates are inefficient and corrosive to the system.
  • Patent No. 4,821,794 discloses increasing clathrate formation and system efficiency by intimately mixing the water and guest molecule.
  • CFCs such as trichlorofluoromethane (R-
  • Halohydrocarbons such as HCFC 141(b) which contain hydrogen, and are believed to pose less of a threat to the ozone layer, and are thus the preferred guest molecules in clathrate formation according to the present invention.
  • Figure 1 shows one embodiment of the present invention, a clathrate formation apparatus including an ultrasonic atomizer.
  • the present invention relates to a thermal energy storage system having a clathrate formation chamber containing a clathrate forming cooling medium comprising a guest molecule, water and at least one help gas, means for lowering the temperature in said clathrate formation chamber and means for circulating the cooling medium containing clathrate through a heat exchanger.
  • a process for thermal energy storage and transfer comprising the steps of producing a clathrate slurry from a clathrate forming cooling medium comprising a guest molecule, water and at least one help gas and circulating said clathrate slurry through a heat exchanger is also disclosed.
  • Gas hydrates or clathrates are crystalline solids with icelike lattices formed from hydrogen-bonded water molecules. The lattices contain almost spherical holes which enclose guest molecules, usually of gases and volatile liquids. The guest molecule fills the interior of the cage lattice, stabilizing the ice structure of
  • the structure of the clathrate usually depends upon the size of the guest molecule. Smaller guest molecules (up to about 5.3 A diameter) form Structure 1 hydrates, containing 46 water molecules per unit cell. Each unit cell contains two small and six large cages. Larger molecules (up to about 7A diameter) tend to form Structure II clathrates, having 136 water molecules per unit cell. Each unit cell contains 16 small and 8 large cages. When the guest molecule is too large to fill the small cages, greater stabilization is possible by using "help" gases whose molecules have diameters small enough to enter the smaller cages.
  • gas means a compound which is a gas at ambient conditions. Such stabilization results in even higher formation temperatures.
  • help gases have van der Waals diameters less than about 5.35 A. More preferably the help gas is selected from the group consisting of nitrogen, nitrous oxide, hydrogen, oxygen, methane, neon, krypton, argon, ethylene, xenon, ethane, hydrogen sulphide, carbon dioxide and air. Most preferably the help gas is nitrous oxide, carbon dioxide or nitrogen. Any appropriate guest molecule may be used. It was heretofore unrecognized that the efficiency of thermal energy storage units could be increased by adding a help gas to the cooling medium. Further, the addition of at least one help gas may increase the rate of clathrate formation in some cases.
  • the cooling media of the present invention may be used in any thermal energy storage system known in the art, such as that of U.S. Patent No. 4,540,501.
  • a preferred clathrate formation apparatus for use in a thermal ene . rgy storage system and the process for using the device are best understood by reference to Figure 1.
  • the clathrate formation chamber, 1, is filled with host solution comprising water and at least one help gas.
  • the water/help gas (host solution) is saturated so that pressurization of the clathrate formation chamber is not necessary.
  • the host solution is cooled to about 5°C. by refrigeration coil, 7.
  • the guest molecule is cooled in chamber 2, by refrigeration coil 4 until the guest molecule solution is at the same temperature as the host solution in the clathrate formation chamber.
  • the guest molecule solution is removed from chamber 2 via line 5, and passes through atomizer 6.
  • the atomizer 6, introduces the guest molecule into the clathrate formation chamber 1, as particles with a diameter below about 100 microns.
  • the diameter of the droplets is between about 20 and about 50 microns.
  • An ultrasonic atomizer is preferred as the atomizer, however any other means for forming a large quantity of droplets of the appropriate size, thereby generating a large surface area may be used.
  • the droplets of guest molecule mix with the aqueous carbon dioxide solution and form a mixed clathrate which resembles snow-like flakes which have a density close to water.
  • the guest molecule is introduced to the clathrate formation chamber until a clathrate/aqueous carbon dioxide slurry is formed. Slurries have the best heat exchange properties, and are thus preferred.
  • the atomizer 6, is shut off. During the daytime heat from the surrounding area is exchanged via refrigeration line 7, and the clathrate is decomposed.
  • Any guest molecule which does not form clathrate (or guest molecule which is released as a result of the decomposition of clathrate upon heating) settles to the bottom of the clathrate formation chamber 1, and may be
  • the rest of the configuration of the thermal energy storage system of the present invention may be any configuration known in the art, such as U.S. Patent No. 4,540,501.
  • the guest molecule and water must be dissimilar and be in contact with each other. The more intimate the contact, the more efficient the clathrate formation will be. Any suitable surfactant may be used to increase both the contact between the guest molecule and water, and thereby the rate of clathrate formation.
  • the guest molecule may be any refrigerant having a molecular size which is small enough to be surrounded by host molecules.
  • the guest molecule is preferably chosen frombrominated, chlorinated and fluorinated hydrocarbons including CC1 2 F 2 (dichlorodifluoromethane, R-12) , CC1 3 F ( tri chl orof1uoromethane , R-ll) , CBrF 3 (bromotrifluoromethane , R-13B) , CHC1 2 F ( di chl oro fluoromethane , R-21) , CHC1F 2 ( chl orodi f luoromethane , R-22) , CH 2 C1F (chlorofluoromethane, R-31) , CH 2 F 2 (difluoromethane, R- 32), CC1 2 FCH 3 (l-fluoro-l,l-dichloroethane, HCFC-141b)
  • the guest molecule of the present invention is l-fluoro-1,1- dichloroethane (HCFC-141b) or 1,1,1,2 tetrafluoroethane (HFC-134a) .
  • HCFC-141b l-fluoro-1,1- dichloroethane
  • HFC-134a 1,1,1,2 tetrafluoroethane
  • Other compositions suitable as guest molecules may be readily determinable by one skilled in the art using the teaching of the present invention.
  • SUBSTITUTE SHEET water/help gas solutions are preferred because the formation chamber does not need to be pressurized to keep the help gas in solution.
  • help gases with low solubilities in both water and the clathrate former (guest molecule) concentrations of help gas in excess of saturation may be required.
  • HCFC- 141(b) is used as the guest molecule, at least about 20 moles of water is used for each 1 mole of HCFC-141(b). Appropriate preferred ratios for other guest molecules may be readily determined by one skilled in the art using the teaching of the present invention.
  • Agitation is not required to ensure clathrate formation of the cooling medium of the present invention.
  • agitation may be used to further encourage clathrate formation.
  • the clathrate is formed in a storage tank/crystallizer.
  • the pressure in the crystallizer is decreased by means of a compressor, as described in more detail in U.S. Patent No. 4,540,501, and heat is removed until the temperature of formation for the clathrate is reached.
  • the pressure and temperature are maintained until all of the clathrate is formed.
  • the clathrate is circulated through the heat exchanger via the recirculation loop. Clathrate is circulated through the heat exchanger, decomposed, and the water and guest molecule mixture is returned to the crystallizer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention se rapporte à un système amélioré d'emmagasinage d'énergie thermique et à un procédé pour l'emmagasinage et le transfert d'énergie thermique, dans lesquels le milieu réfrigérant constitué par un mélange formant du clatharte, comprend de l'eau, une molécule hôte appropriée et au moins un gaz auxilaire. Le gaz auxiliaire possède de préférence un diamètre de van der Waals inférieur à 5,35 Å environ, et il est de préférence choisi dans le groupe constitué par l'azote, l'oxyde nitreux, l'hydrogène, l'oxygène, le méthane, le néon, le krypton, l'argon, l'éthylène, le xénon, l'éthane, le sulfure d'hydrogène et le dioxyde de carbone. La molécule hôte peut être introduite dans la solution de molécule hôte par l'intermédiare d'un atomiseur à ultrasons.
PCT/US1992/007255 1991-08-27 1992-08-27 Systeme ameliore d'emmagasinage d'energie thermique et procede pour l'emmagasinage et le transfert d'energie thermique WO1993004139A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US935,767 1978-08-22
US75038691A 1991-08-27 1991-08-27
US750,386 1991-08-27
US93576792A 1992-08-26 1992-08-26

Publications (1)

Publication Number Publication Date
WO1993004139A1 true WO1993004139A1 (fr) 1993-03-04

Family

ID=27115266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/007255 WO1993004139A1 (fr) 1991-08-27 1992-08-27 Systeme ameliore d'emmagasinage d'energie thermique et procede pour l'emmagasinage et le transfert d'energie thermique

Country Status (2)

Country Link
AU (1) AU2517992A (fr)
WO (1) WO1993004139A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014917A1 (fr) * 1992-12-22 1994-07-07 Alliedsignal Inc. Nouveau milieu de formation de clathrate et son utilisation dans des systemes d'accumulation d'energie thermique et procedes d'accumulation et de transfert d'energie thermique
WO1996002607A1 (fr) * 1994-07-14 1996-02-01 E.I. Du Pont De Nemours And Company Compositions refrigerantes
US5916252A (en) * 1997-10-29 1999-06-29 Matsushita Electric Industrial Co., Ltd. Refrigerating or air-conditioning apparatus
JP2001181610A (ja) * 1999-12-24 2001-07-03 Daikin Ind Ltd 熱搬送媒体及び熱搬送装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508679A (ja) * 1991-06-27 1994-09-29 アライド−シグナル・インコーポレーテッド 熱エネルギー貯蔵システム用改良冷却剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU768753A1 (ru) * 1979-03-28 1980-10-07 Предприятие П/Я Р-6710 Способ извлечени благородных газов из газовых смесей
US4540501A (en) * 1984-09-12 1985-09-10 The United States Of America As Represented By The United States Department Of Energy Gas hydrate cool storage system
JPS60184585A (ja) * 1984-03-02 1985-09-20 Mitsubishi Heavy Ind Ltd 蓄冷剤
JPS61147075A (ja) * 1984-12-19 1986-07-04 三菱重工業株式会社 蓄冷装置
JPS6250381A (ja) * 1985-08-29 1987-03-05 Agency Of Ind Science & Technol 蓄冷剤
JPS63271095A (ja) * 1987-04-28 1988-11-08 Central Res Inst Of Electric Power Ind クラスレ−ト蓄冷熱槽
US4821794A (en) * 1988-04-04 1989-04-18 Thermal Energy Storage, Inc. Clathrate thermal storage system
JPH04124593A (ja) * 1990-09-14 1992-04-24 Technol Res Assoc Super Heat Pump Energ Accum Syst 蓄熱材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU768753A1 (ru) * 1979-03-28 1980-10-07 Предприятие П/Я Р-6710 Способ извлечени благородных газов из газовых смесей
JPS60184585A (ja) * 1984-03-02 1985-09-20 Mitsubishi Heavy Ind Ltd 蓄冷剤
US4540501A (en) * 1984-09-12 1985-09-10 The United States Of America As Represented By The United States Department Of Energy Gas hydrate cool storage system
JPS61147075A (ja) * 1984-12-19 1986-07-04 三菱重工業株式会社 蓄冷装置
JPS6250381A (ja) * 1985-08-29 1987-03-05 Agency Of Ind Science & Technol 蓄冷剤
JPS63271095A (ja) * 1987-04-28 1988-11-08 Central Res Inst Of Electric Power Ind クラスレ−ト蓄冷熱槽
US4821794A (en) * 1988-04-04 1989-04-18 Thermal Energy Storage, Inc. Clathrate thermal storage system
JPH04124593A (ja) * 1990-09-14 1992-04-24 Technol Res Assoc Super Heat Pump Energ Accum Syst 蓄熱材

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE WPIL Derwent Publications Ltd., London, GB; AN 81-47215D & SU,A,768 753 (V.A.IGNATOV) 8 October 1980 *
DATABASE WPIL Derwent Publications Ltd., London, GB; AN 92-196160 & JP,A,4 124 593 (SUPERHEAT PUMP ENERGY SUUSEKI SYSTEM) 21 April 1992 *
DATABASE WPIL Derwent Publications Ltd., London, GB; AN 92-338184 & JP,A,61 147 075 (MITSUBISHI HEAVY IND.) 4 July 1986 *
PATENT ABSTRACTS OF JAPAN 17 February 1989 & JP,A,63 271 095 ( CENTRAL RES.INST.OF ELECTRIC POWER IND ) 8 November 1988 *
PATENT ABSTRACTS OF JAPAN 29 October 1990 & JP,A,22 03 138 ( SANKI ENG. ) 29 October 1990 *
PATENT ABSTRACTS OF JAPAN 6 February 1986 & JP,A,60 184 585 ( MITSUBISHI JUKOGYO ) 20 September 1985 *
PATENT ABSTRACTS OF JAPAN 7 August 1987 & JP,A,62 050 381 ( AGENCY OF INDUSTRIAL SCIENCE AND TECHNOL. ) 5 March 1987 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014917A1 (fr) * 1992-12-22 1994-07-07 Alliedsignal Inc. Nouveau milieu de formation de clathrate et son utilisation dans des systemes d'accumulation d'energie thermique et procedes d'accumulation et de transfert d'energie thermique
WO1996002607A1 (fr) * 1994-07-14 1996-02-01 E.I. Du Pont De Nemours And Company Compositions refrigerantes
US5744052A (en) * 1994-07-14 1998-04-28 E. I. Du Pont De Nemours And Company Azeotrope-like compositions containing difluoromethane, pentafluoroethane, and carbon dioxide
US5916252A (en) * 1997-10-29 1999-06-29 Matsushita Electric Industrial Co., Ltd. Refrigerating or air-conditioning apparatus
JP2001181610A (ja) * 1999-12-24 2001-07-03 Daikin Ind Ltd 熱搬送媒体及び熱搬送装置
JP4581165B2 (ja) * 1999-12-24 2010-11-17 ダイキン工業株式会社 熱搬送装置

Also Published As

Publication number Publication date
AU2517992A (en) 1993-03-16

Similar Documents

Publication Publication Date Title
US10858562B2 (en) Binary refrigerating fluid
US10358592B2 (en) Heat transfer method
US9663697B2 (en) Use of ternary compositions
US10316231B2 (en) Low-temperature and average-temperature refrigeration
US5140824A (en) Gas hydrate thermal energy storage system
US5778685A (en) Clathrate forming medium and its use in thermal energy storage systems and processes for thermal energy storage and transfer
CN105940078A (zh) 工作介质的制造方法
US5159971A (en) Cooling medium for use in a thermal energy storage system
WO1993004139A1 (fr) Systeme ameliore d'emmagasinage d'energie thermique et procede pour l'emmagasinage et le transfert d'energie thermique
WO2019039510A1 (fr) Milieu de travail contenant du 1-chloro-2,3,3-trifluoropropène pour cyclage thermique, composition pour système de cyclage thermique, et système de cyclage thermique
US5307641A (en) Method and apparatus for producing ice by direct contact of a non-hydrate producing refrigerant with water
WO2004055453A1 (fr) Pompe thermique utilisant de l'hydrate de gaz et appareil utilisant de la chaleur
JP2004353991A (ja) 炭酸ガスハイドレートを利用した冷熱装置および冷熱方法
JP6180071B2 (ja) フルオロプロペンを含むクラスレート水和物
JPH10168000A (ja) クラスレート生成媒体およびそれを含む熱エネルギー貯蔵装置
JPH05180522A (ja) ガスクラスレート冷凍機
JP2004101138A (ja) ガスハイドレートを用いたヒートポンプ及び熱利用装置
JP2006290990A (ja) 混合物、熱媒体、並びに熱媒体を用いたヒートポンプ、及び熱利用装置
JPH09221664A (ja) 作動流体
JP2004101139A (ja) ガスハイドレートを用いたヒートポンプ及び熱利用装置
AU659663B2 (en) Improved cooling medium for use in a thermal energy storage system
JP3956556B2 (ja) 臭化テトラn−ブチルアンモニウム水和物系蓄熱材スラリーの製造方法および製造装置
JPH0835737A (ja) 化学式冷熱発生方法およびその装置
JPS6250381A (ja) 蓄冷剤
JP2002243206A (ja) 冷凍装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CS FI HU JP KP KR LK MG MN MW NO PL RO RU SD

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA