WO1992017043A1 - Lösung zum anquellen von leiterplatten-polymeren vor einem alkalisch-oxydativen ätzschritt und die anwendung dieser lösung - Google Patents

Lösung zum anquellen von leiterplatten-polymeren vor einem alkalisch-oxydativen ätzschritt und die anwendung dieser lösung Download PDF

Info

Publication number
WO1992017043A1
WO1992017043A1 PCT/DE1992/000207 DE9200207W WO9217043A1 WO 1992017043 A1 WO1992017043 A1 WO 1992017043A1 DE 9200207 W DE9200207 W DE 9200207W WO 9217043 A1 WO9217043 A1 WO 9217043A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
carbonic acid
printed circuit
swelling
acid ester
Prior art date
Application number
PCT/DE1992/000207
Other languages
English (en)
French (fr)
Inventor
Marion SCHRÖTER
Burkhard Bressel
Original Assignee
Atotech Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland Gmbh filed Critical Atotech Deutschland Gmbh
Publication of WO1992017043A1 publication Critical patent/WO1992017043A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0055After-treatment, e.g. cleaning or desmearing of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0783Using solvent, e.g. for cleaning; Regulating solvent content of pastes or coatings for adjusting the viscosity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0796Oxidant in aqueous solution, e.g. permanganate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol

Definitions

  • the invention relates to a solution for the swelling of printed circuit board polymers and the use of this solution for the borehole cleaning of printed circuit boards.
  • the invention is used in the manufacture of printed circuit boards in electrical engineering and electronics.
  • insulating material carriers have prevailed as component carriers for many years.
  • These printed circuit boards generally consist of a composite material consisting of a polymer and a filler. The surface of these plates is metallized and accommodates the components that make up the electronic circuit. For a long time, it was customary to drill holes in the plate and to fasten the wired components with their connections in these holes by means of a soldering process. In the meantime, increasing numbers of unwired components are also attached to the surface alone by a soldering step.
  • a second level which has connections to the first or further levels (multilayer).
  • these connections are generally produced today by drilling holes in the insulating material plate which have to be made conductive in the subsequent production steps. This is done by applying a metal layer.
  • the metal layer must survive the inevitable soldering process without damage and must not change during the operation of the printed circuit board and during thermal cycles. It should therefore be uniformly thick and dense and adhere firmly to the insulating material carrier.
  • the insulating boards are usually made from a polymeric epoxy, starting from brominated bisphenol-A and a glass fabric.
  • the weakly cross-linked polymer has a tg of about 130 ° C, it is briefly thermally stable up to about 290 ° C.
  • a viscous solution of the polymer is first produced, with which the glass fabric is impregnated. After drying, a so-called prepreg is obtained which can be stored. From several layers of these Pregpregs and two final copper foils, the finished laminates are produced in a press at about 170 ° C, which now have a copper top layer; they are covered with metal on both sides.
  • prepregs are produced with a copper foil, into which a conductor pattern is etched after a template.
  • the remaining copper surface is then oxidized black and these inner layers are then stacked as described and pressed to form the multilayer.
  • poly (imide), cyanate esters, bismaleimide triazone, phenol-based resins and other polymers are also suitable for the production of circuit carriers.
  • holes are then drilled, depending on the requirements, with diameters of approximately 0.3 mm to 1.2 mm. Drilling is carried out at high speed: it is customary to carry out up to 250 strokes per minute with a drilling spindle. Because of the heating of the drill, some of the polymer melts and smears on the wall of the bore. The glass (fiber diameter approx. 10 ⁇ m) breaks and sections are pressed into the polymer.
  • the subsequent steps for metallizing the perforated wall must first remove loose material, drilling dust and glass fiber fragments. Then smeared polymer mear must be completely removed from the perforated wall, in particular in the case of multilayers, from the metallic inner layers. A certain roughness of the polymer layer is considered to be favorable in order to form a high adhesive strength of the metal layer to be applied subsequently to the substrate. So far, the metallic through-plating has been achieved according to the following scheam:
  • alkali e.g. Add sodium hydroxide.
  • DE-AS 22 22 941 describes the use of propylene carbonate in swellers for the pretreatment of ABS polymers.
  • the task within this document is a particularly gentle, i.e. little roughening pretreatment of the ABS plastic considered for a subsequent oxidizing chromic acid treatment.
  • the object of the invention is to find a swelling solution with such a solvent that lower exposure temperatures are possible, the formation of gas bubbles is avoided and the evaporation losses are kept low, at the same time a strong roughening of the circuit board material is achieved.
  • Advantageous embodiments are described in subclaims 2-5.
  • Claim 6 includes the use of the swelling solution according to the invention for drilling hole cleaning of printed circuit boards.
  • the carbonic acid esters according to the invention of the general formula R 1 -0-C0-0-R 2 comprise both straight-chain, symmetrical carbonic acid esters with C 2 -C 4 alkyl radicals as R 1 and 2 and carbonic acid onoalkyl esters, in which only one radical represents an alkyl group and the other means hydrogen as well as mixtures of different carbonic acid esters.
  • ethylene and propylene carbonate are suitable as cyclic carbonic acid esters.
  • the carbonic acid esters according to the invention are ideal solvents for the production of swelling solutions. They have sufficient chemical stability in aqueous solutions at temperatures up to 70 ° C, they can be mixed with water from approx. 50 ° C, and thus the swelling of the printed circuit board polymers can take place at an optimal exposure temperature between 50-6o ° C. On the one hand, this saves energy that would have been necessary for heating to higher temperatures, on the other hand there are no pocket voids due to the lower working temperature and the evaporation losses are lower.
  • the separation of the solvents according to the invention from the aqueous phase below 50 ° C. is of great advantage, since in this way the solid and the water-soluble Ver impurities can be easily removed from the swelling solution.
  • the carbonic acid esters according to the invention are also very suitable as solvents in swellers. As a result, the evaporation losses remain very low, no explosive gas-air mixtures can form, and the finished solution is non-flammable even at higher temperatures. It has proven particularly advantageous as the basis for a swelling solution of propylene carbonate, the boiling point of which is 240 ° C. It is also advantageous to work in the alkaline with the solvents according to the invention.
  • organic bases are added to the sweller, preferably tetramethylammonium hydroxide (TMAH).
  • the swelling solution according to the invention can contain further solvents and surfactants to support the action.
  • the swelling solution according to the invention allows a shortening of the exposure time to the polymers if the described exposure temperature is increased somewhat - but not above 70 ° C. Depending on the practical question, optimal exposure temperatures or times can thus be set.
  • the oxidative etching step known in the cleaning of circuit board boreholes is carried out in the usual way with alkaline permanganate solution.
  • a copper-clad and drilled epoxy circuit board (FR4) was immersed for 5 minutes at 60 ° C in a solution of 200 g / 1 propylene carbonate, 1 g / 1 Marlox FK64 and 5 g / 1 tetramethylammonium hydroxide, then rinsed with water and then at Oxidized 70 ° C for 15 minutes in a solution of 55 g / 1 KMn04 and 45 g / 1 NaOH.
  • the manganese dioxide (Mn02) formed was removed with a solution of sulfuric acid (65 g / 1) and hydrogen peroxide (15 g / 1). SEM images of the borehole walls produced subsequently showed no smear or drilling dust.
  • the boreholes were then cleaned with an aqueous surfactant solution and the glass fiber surfaces were conditioned with an aqueous solution of a quaternary nitrogen compound. It was then activated, reduced and chemically reductively copper-plated as usual.
  • a circuit board made of a cyanate ester-containing polymer was treated as in Example 1. Here, too, the borehole was cleaned very well after swelling and cleaning.
  • An injection molded part made of poly (acrylonitrile-butadiene-styrene) was swollen in a solution of 50 g / 1 propylene carbonate and 5 g / 1 tetramethylammonium hydroxide at 60 ° C. for 5 minutes and then oxidized with permanganate as described in Example 1 and after removal of the brownstone formed reductively metallized.
  • An adhesive strength of the metal on the polymer surface of> 1N / mm was achieved.
  • a molded part made of ULTEM (polyetherimide) was swollen in an aqueous solution of 100 g / 1 NaOH for 15 minutes at 50 ° C., rinsed in water for one minute and then etched with permanganate as described and then cleaned, activated and reductively copper-plated. Adhesive strengths of the metal on the polymer of> 0.8 N / mm were achieved.
  • An injection molded part made of poly (acrylonitrile-butadiene-styrene) was swollen in a solution of 50 g / 1 propylene carbonate and 2 g / 1 sodium hydroxide at 50 ° for 5 minutes and then oxidized with permanganate as described in Example 1. After removal of the brown stone formed, it was activated and reductively nickel-plated. An adhesive strength of the metal on the polymer surface of> 1N / mm was achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Lösung zum Anquellen von Leiterplatten-Polymeren vor einem alkalisch-oxidativen Ätzschritt und Bohrlochreinigung. Die Erfindung betrifft eine wässrige Lösung mit zugesetztem organischen Lösungsmittel zum Anquellen von Leiterplatten-Polymeren vor einem alkalisch-oxidativen Ätzschritt. Erfindungsgemäß wird als organisches Lösungsmittel ein geradkettiger Kohlensäureester der allgemeinen Formel R1-O-CO-O-R2, worin R1 und R2 C2- bis C4-Alkyl bedeuten, oder ein cyclischer Kohlensäureester, wie zum Beispiel Propylen- oder Ethylencarbonat, zugesetzt. Die erfindungsgemäße Quellösung erlaubt ein Arbeiten bei niedrigeren Temperaturen, die Bildung von pocket-voids wird vermieden, und die Verdunstungsverluste sind geringer. Die Erfindung findet bei der Bohrlochreinigung von Leiterplatten in der Elektrotechnik und Elektronik Anwendung.

Description

LÖSUNG ZUM ANQUELLEN VON LEITERPLATTEN-POLYMEREN VOR EINEM ALKA¬ LISCH-OXIDATIVEN ÄTZSCHPTTT UND DIE ANWENDUNG DIESER LÖSUNG
Die Erfindung betrifft eine Lösung zum Anquellen von Leiterplat¬ ten-Polymeren und die Anwendung dieser Lösung zur Bohrlochreini¬ gung von Leiterplatten. Die Erfindung findet bei der Herstellung von Leiterplatten in der Elektrotechnik und Elektronik Anwen¬ dung.
In der Elektronikindustrie haben sich als Träger von Bauteilen seit vielen Jahren Isolierstoff-Träger durchgesetzt. Diese Lei¬ terplatten bestehen im allgemeinen aus einem Verbundmaterial, das aus einem Polymeren und einem Füllstoff besteht. Die Ober¬ fläche dieser Platten ist metallisiert und nimmt die Bauteile auf, aus denen die elektronische Schaltung besteht. Es war lange Zeit üblich, dazu Bohrungen in die Platte einzubringen und die bedrahteten Bauteile mit ihren Anschlüssen in diesen Bohrungen durch einen Lötvorgang zu befestigen. Inzwischen werden in stei¬ gendem Anteil auch unbedrahtete Bauteile allein auf der Oberflä¬ che durch einen Lötschritt befestigt.
Zur Realisierung der nötigen Verbindungen zwischen den Bauteilen ist es unumgänglich, daß sich Leiterbahnen kreuzen müssen. Dies ist einer Verdrahtungsebene allein nicht möglich. Daher wird mindestens eine zweite Ebene benötigt, die Verbindungen zu der ersten oder zu weiteren Ebenen (Multilayer) aufweist. Diese Ver¬ bindungen werden im allgemeinen heute bei hochwertigeren Produk¬ ten dadurch erzeugt, daß in die Isolierstoffplatte Bohrungen eingebracht werden, die in den nachfolgenden Herstellungsschrit¬ ten leitfähig gemacht werden müssen. Das geschieht durch das Aufbringen einer Metallschicht. Die Metallschicht muß den unum¬ gänglichen Lötvorgang schadlos überstehen und darf sich bei dem Betrieb der Leiterplatte und bei thermischen Zyklen nicht verän¬ dern. Sie sollte daher gleichmäßig dick und dicht sein und an dem Isolierstoffträger fest haften. Die Isolierstoffplatten werden meist aus einem polymeren Epoxid, ausgehend von bromierten Bisphenol-A und einem Glasgewebe herge¬ stellt. Das schwach vernetzte Polymere weist einen tg-Wert von etwa 130° C auf, es ist kurzfristig thermisch bis etwa 290° C beständig. Üblicherweise wird zunächst eine viskose Lösung des Polymeren hergestellt, mit der das Glasgewebe imprägniert wird. Nach dem Trocknen erhält man ein sogenanntes Prepreg, das lager¬ bar ist. Aus mehreren Lagen dieser Pregpregs und zwei abschlie¬ ßenden Kupferfolien entstehen dann in einer Presse bei etwa 170° C die fertigen Laminate, die nun eine Deckschicht aus Kupfer aufweisen; sie sind zweiseitig mit Metall belegt. Zur Herstel¬ lung mehrlagiger Schaltungen (Multilayer) werden Prepregs mit einer Kupferfolie hergestellt, in welche nach einer Vorlage ein Leiterbahnbild geätzt wird. Zur besseren Haftfestigkeit wird dann die verbleibende Kupferoberfläche schwarz oxidiert und diese Innenlagen dann wie beschrieben gestapelt und zum Multi¬ layer verpreßt. Außer polymeren Epoxiden kommen zur Herstellung von Schaltungsträgern auch Poly(imid) , Cyanatester, Bismaleini- mid-Triazon, Harze auf Phenol-Basis und andere Polymere in Frage.
Nach einem Plan, der von der Art der aufzubringenden Schaltung abhängt, werden dann Bohrungen eingebracht, je nach Anforderung mit Durchmessern von etwa 0,3 mm bis 1,2 mm. Das Bohren erfolgt mit hoher Gewschwindigkeit: so ist es üblich, mit einer Bohr¬ spindel bis zu 250 Hübe pro Minute auszuführen. Wegen der Erwär¬ mung des Bohrers schmilzt dabebei ein Teil des Polymeren auf und verschmiert auf der Wand der Bohrung. Das Glas (Faserdurchmesser etwa 10 μm) bricht und Teilstücke drücken sich in das Polymere.
Die nachfolgenden Schritte zur Metallisierung der Lochwand müs¬ sen daher zunächst loses Material, Bohrmehl und Glasfaserbruch¬ stücke entfernen. Anschließend muß verschmiertes Polymersmear von der Lochwand, insbesondere bei Multilayern von den metalli¬ schen Innenlagen restlos entfernt werden. Zur Ausbildung einer hohen Haftfestigkeit der danach aufzubringenden Metallschicht zum Untergrund wird eine gewisse Rauhigkeit der Polymerschicht als günstig angesehen. Bisher wird die metallische Durchkontaktierung nach folgendem Scheam erreicht:
Reinigung der Bohrung mit einem Plasma-Verfahren oder durch Ät¬ zen mit Schwefelsäure, Chromsäure oder Permanganat (Ehrich, Me¬ talloberfläche 40 (1986)11). Darauf folgt die Aktivierung der Oberfläche durch Belegen mit Metallkeimen (meist Palladium) . An- schließened wird chemisch reduktiv eine dünne Metallschicht auf¬ gebracht. Alle weiteren Schritte erfolgen nach bekannten galva¬ nischen Verfahren und sind nicht Gegenstand dieser Erfindung.
Stand der Technik ist es, Bohrungen vorzugsweise mit alkalischen Permanganat-Lösungen zu reinigen und aufzurauhen. Es hat sich dabei gezeigt, daß Permanganat das polymere Epoxid gleichmäßig angreift, wobei die Angriffsgeschwindigkeit von Konzentration und Temperatur abhängt. Der oxidative Angriff des Permanganates wird verbessert, wenn das Polymer zuvor mit einem organischen Lösungsmittel aufgequollen wird. Nur dann wird auch die erfor¬ derliche Mikrorauhigkeit der Bohrlochwandung erzielt. Bisher sind als Queller Lösungen von Ethylenglykol oder Ethylenglykol- Derivaten oder N-Methylpyrrolidon in Wasser üblich (DE-OS 36 38 630, DE-OS 39 22 477 und US-PS 4,775,557).
Um zu einem ausreichenden Angriff der Polymeroberfläche zu ge¬ langen, ist es üblich, der Quellösung Alkali, z.B. Natriumhydro¬ xid, zuzugeben.
Desweiteren beschreibt die DE-AS 22 22 941 die Verwendung von Propylencarbonat in Quellern zur Vorbehandlung von ABS-Polymeri- saten. Als Aufgabe innerhalb dieser Schrift wird eine besonders schonende, d.h. wenig aufrauhende Vorbehandlung des ABS-Kunst- stoffes für eine nachfolgende oxidierende Chromsäurebehandlung betrachtet.
Diese bekannten Quellösungen weisen Nachteile auf. Um eine aus¬ reichende Quellung des Polymeren zu erzielen, sind Mindestein- wirkungste peraturen der Lösung von 65 - 75 ° C notwendig. Lei¬ der steigt die Tendenz zum Entmischen bei diesen Systemen mit steigender Temperatur. Die höhere Temperatur führt außerdem durch ungleichmäißige Ausdehnung des Leiterplattenmaterials zu einer Wanderung des Lösungsmittels entlang der Glasfasern und bildet dann beim nachfolgenden Lötvorgang Gasblasen. Die Zugabe von Natriumhydroxid zur Quellösung hat weiter den Nachteil, daß es sich durch Aufnahme von Kohlendioxid aus der Luft zur Carbo- natbildung und als Resultat zur Bildung von zwei Phasen kommen kann.
Aufgabe der Erfindung ist es, eine Quellösung mit einem solchen Lösungsmittel zu finden, daß niedrigere Einwirkungstemperaturen möglich, die Bildung von Gasblasen vermieden und die Verdun¬ stungsverluste gering gehalten werden, wobei gleichzeitig eine starke Aufrauhung des Leiterplattenmaterials erreicht wird.
Diese Aufgabe wird erfindungsgemäß durch die im Anspruch 1 ge¬ kennzeichnete Quelllösung gelöst. Vorteilhafte Ausführungsformen sind in den Unteransprüchen 2-5 beschrieben. Anspruch 6 beinhal¬ tet die Verwendung der erfindungsgemäßen Quellösung zur Bohrlo¬ chreinigung von Leiterplatten. Die erfindugsgemäßen Kohlensäure¬ ester der allgemeinen Formel R1-0-C0-0-R2 umfassen sowohl gerad- kettige, symmetrische Kohlensäureester, mit C2-C4-Alkylresten als R1 und 2 und Kohlensäure onoalkylester, in denen nur ein Rest eine Alky gruppe darstellt und der andere Wasserstoff be¬ deutet als auch Gemische verschiedener Kohlensäurester. Als cy- clische Kohlensäureester sind zum Beispiel Ethylen- und Propy- lencarbonat geeignet.
Es hat sich gezeigt, daß die erfindungsgemäßen Kohlensäureester zur Herstellung von Quelllösungen ideale Lösungsmittel sind. Sie besitzen in wässrigen Lösungen bei Temperaturen bis zu 70° C eine ausreichende chemische Stabilität, sie sind ab ca. 50° C mit Wasser mischbar, und somit kann das Anquellen der Leiter¬ platten-Polymeren bei einer optimalen Einwirkungstemperatur zwi¬ schen 50 - 6o° C erfolgen. Dadurch wird einerseits Energie ge¬ spart, die zur Erwärmung auf höhere Temperaturen nötig gewesen wäre, andererseits entstehen wegen der niedrigeren Arbeitstempe¬ ratur keine pocket-voids und die Verdunstungsverluste liegen niedriger. Die Entmischung der erfindungsgemäßen Lösungsmittel von der wässrigen Phase unterhalb von 50° C ist von großem Vor¬ teil, da auf diese Weise die festen und die wasserlöslichen Ver unreinigungen aus der Quelllösung leicht entfernt werden können. Die erfindungsgemäßen Kohlensäureester sind auch durch ihre ho¬ hen Siedepunkte, die übf.r 180° C liegen, als Lösungsmittel in Quellern gut geeignet. Dadurch bleiben die Verdunstungsverluste sehr gering, es können sich keine explosiven Gas-Luft-Gemische bilden, und die fertige Lösung ist auch bei höheren Temperaturen nicht entflammbar. Besonders vorteilhaft hat sich als Basis für eine Quellösng des Propylencarbonat erwiesen, dessen Siedepunkt bei 240° C liegt. Auch mit den erfindungsgemäβen Lösungsmitteln ist es vorteilhaft, im Alkalischen zu arbeiten. Um Entmischungen durch Kohlendioxid-Aufnahme des Quellers zu vermeiden, werden dem Queller organische Basen zugesetzt, bevorzugt Tetramethylam- moniumhydroxid (TMAH) .
Daneben kann die erfindungsgemäße Quellösung weitere Lösungsmit¬ tel und Tenside zur Unterstützung der Wirkung enthalten.
Die erfindungsgemäße Quellösung erlaubt eine Verkürzung der Ein¬ wirkungszeit auf die Polymeren, wenn die beschriebene Einwir¬ kungstemperatur etwas - aber nicht über 70° C - erhöht wird. Je nach praktischer Fragestellung lassen sich somit optimale Ein¬ wirkungstemperaturen oder -zeiten einstellen. Nach dem Anquellen des Leiterplatten-Polymerem mit dem erfindugsgemäßen Queller er¬ folgt der bei der Bohrlochreinigung von Leiterplatten bekannte oxidative Ätzschritt in üblicher Art und Weise mit alkalischer Permanganatlösung.
Die folgenden Beispiele dienen der Erläuterung der Erfindung, ohne sie einzuschränken.
BEISPIEL 1
Eine kupferkaschierte und gebohrte Epoxidleiterplatte (FR4) wurde 5 Minuten bei 60° C in eine Lösung aus 200 g/1 Propylen- carbonat, 1 g/1 Marlox FK64 und 5 g/1 Tetramethylammoniumhydro- xid getaucht, anschließend mit Wasser abgespült und dann bei 70° C für 15 Minuten in einer Lösung aus 55 g/1 KMn04 und 45 g/1 NaOH oxidiert. Dabei gebildeter Braunstein (Mn02) wurde mit ei¬ ner Lösung aus Schwefelsäure (65 g/1) und Wasserstoffperoxid (15 g/1) entfernt. Nachfolgend hergestellt REM-Aufnahmen der Bohr¬ lochwandungen wiesen keinerlei smear oder Bohrmehl auf. Die Bohrlöcher wurden dann mit einer wässrigen Tensidlösung gerei¬ nigt und die Glasfaseroberflächen mit einer wässrigen Lösung ei¬ ner quarternären StickstoffVerbindung konditioniert. Anschlie¬ ßend wurde wie üblich aktiviert, reduziert und chemisch reduktiv verkupfert.
BEISPIEL 2
Eine Leiterplatte aus einem Cyanatester-haltigen Polymeren wurde wie in Beispiel 1 behandelt. Auch hier zeigte sich eine sehr gute Reinigung des Bohrlochs nach dem Anquellen und Reinigen.
BEISPIEL 3
Wie Beispiel 1: statt Propylencarbonat wurde als Lösungsmittel Ethylencarbonat verwendet. Es wurde eine akteptable Reinigung der Bohrungen erzielt. BEISPIEL 4
Ein Spritzgußteil aus Poly(acrylnitril-butadien-styrol) wurde in einer Lösung von 50 g/1 Propylencarbonat und 5 g/1 Tetramethyl- ammoniumhydroxid 5 Minuten bei 60° C angequeollen und dann wie in Beispiel 1 beschrieben mit Permanganat oxidiert und nach dem Entfernen des gebildeten Braunsteins reduktiv metallisiert. Es wurde eine Haftfestigkeit des Metalls auf der Polymeroberfläche von > lN/mm erreicht.
BEISPIEL 5
Ein Formteil aus ULTEM (Polyetherimid) wurde in einer wässrigen Lösung aus 100 g/1 NaOH 15 Minuten bei 50° C angequollen, eine Minute in Wasser gespült und dann wie beschrieben mit Permanga¬ nat angeätzt und anschließend gereinigt, aktiviert und reduktiv verkupfert. Es wurden Haftfestigkeiten des Metalls auf dem Poly¬ meren von > 0,8 N/mm erreicht.
BEISPIEL 6
Ein Spritzgußteil aus Poly(acrylnitril-butadien-styrol) wurde in einer Lösung von 50 g/1 Propylencarbonat und 2 g/1 Natriumhydro¬ xid 5 Minuten bei 50° angequollen und dann wie in Beispiel 1 beschrieben mit Permanganat oxidiert. Nach dem Entfernen des ge¬ bildeten Braunsteins wurde aktiviert und reduktiv vernickelt. Es wurde eine Haftfestigkeit des Metalls auf der Polymeroberfläche von > lN/mm erreicht.

Claims

PATENTANSPRÜCHE
l.Wässrige Lösung, enthaltend organische Lösungsmittel zum An¬ quellen von Leiterplatten-Polymeren vor einem alkalisch-oxidati¬ ven Ätzschritt, dadurch gekennzeichnet, daß das organische Lö¬ sungsmittel ein geradkettiger, symmetrischer oder unsymmetri¬ scher Kohlensäureester der allgemeinen Formel R1-0-C0-0-R2, worin R^ und R2 C2- bis C4-Alkyl bedeuten, oder ein cyclischer Kohlensäureester ist oder Gemische verschiedener Kohlensäure¬ ester darstellt.
2.Lösung gemäß Anspruch 1, dadurch gekennzeichnet, daß diese einen Gehalt von 50 - 800 g/1, vorzugsweise 200 - 500 g/1, an Kohlensäureester oder Kohlensäureestergemisch hat.
3.Lösung gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß der zugesetzte cyclische Kohlensäureester Propylen- oder Etylen- carbonat ist.
4.Lösung nach mindestens einem der Ansprüche 1-4, dadurch ge¬ kennzeichnet, daß sie alkalisch ist und die zugesetzte Base eine organische Base, vorzugsweise Tetramethylammoniumhydroxid, ist.
S.Anwendung der wäßrigen Lösung nach mindestens einem der An¬ sprüche 1 bis 4 zur Borhlochreinugng von Leiterplatten, bei der die Leiterplatten-Polymeren bei einer Lösungstemperatur von 50 - 60° C angequollen und anschließend mit einer alkalischen Perman¬ ganatlösung oxidativ geätzt werden.
PCT/DE1992/000207 1991-03-13 1992-03-07 Lösung zum anquellen von leiterplatten-polymeren vor einem alkalisch-oxydativen ätzschritt und die anwendung dieser lösung WO1992017043A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4108461.6 1991-03-13
DE19914108461 DE4108461C1 (de) 1991-03-13 1991-03-13

Publications (1)

Publication Number Publication Date
WO1992017043A1 true WO1992017043A1 (de) 1992-10-01

Family

ID=6427391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000207 WO1992017043A1 (de) 1991-03-13 1992-03-07 Lösung zum anquellen von leiterplatten-polymeren vor einem alkalisch-oxydativen ätzschritt und die anwendung dieser lösung

Country Status (2)

Country Link
DE (1) DE4108461C1 (de)
WO (1) WO1992017043A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221948C1 (de) * 1992-07-02 1993-10-21 Schering Ag Verfahren zur Metallisierung von Kunststoffen und Verwendung
DE4326079A1 (de) * 1993-07-30 1995-02-02 Atotech Deutschland Gmbh Verfahren zur Behandlung von Kunststoffoberflächen und Anquell-Lösung
US6139762A (en) * 1998-12-11 2000-10-31 Shipley Company, L.L.C. Methods for manufacture of electronic devices
TWI713737B (zh) 2016-05-04 2020-12-21 德商德國艾托特克公司 沉積金屬或金屬合金至基板表面及包含基板表面活化之方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2222941A1 (de) * 1971-06-14 1972-12-21 Shipley Co Verfahren zum Vorbehandeln eines Substrates aus einem Acrylnitril/Butadien/Styrol-Harz
EP0137981A2 (de) * 1983-10-14 1985-04-24 Shipley Company Inc. Metallisiertes durchgehendes Loch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775557A (en) * 1987-11-09 1988-10-04 Enthone, Incorporated Composition and process for conditioning the surface of polycarbonate resins prior to metal plating
DE3922477A1 (de) * 1989-07-06 1991-01-17 Schering Ag Quellmittel zur vorbehandlung von kunstharzen vor einer stromlosen metallisierung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2222941A1 (de) * 1971-06-14 1972-12-21 Shipley Co Verfahren zum Vorbehandeln eines Substrates aus einem Acrylnitril/Butadien/Styrol-Harz
EP0137981A2 (de) * 1983-10-14 1985-04-24 Shipley Company Inc. Metallisiertes durchgehendes Loch

Also Published As

Publication number Publication date
DE4108461C1 (de) 1992-06-25

Similar Documents

Publication Publication Date Title
DE102004006312B4 (de) Mehrschichtige Leiterplatte, ein Verfahren zu deren Herstellung und einen isolierenden Film
DE102006051762B4 (de) Hochdichte Leiterplatte und Verfahren zu ihrer Herstellung
DE3341431A1 (de) Verfahren zum reinigen von loechern in gedruckten schaltungsplatten mit permanganathaltigen und basischen loesungen
DE3012889C2 (de) Basismaterial für die Herstellung gedruckter Schaltungen
DE3200301A1 (de) Entspannung durch elektromagnetische strahlungseinwirkung fuer aus polysulfonen bestehende gegenstaende
DE2739494B2 (de) Verfahren zum Herstellen elektrischer Leiterplatten
DE60206820T2 (de) Quelllösung zur Texturierung harzartiger Materialien und Abbeizen und Entfernen harzartiger Materialien
DE60211984T2 (de) Lösungsmittelquellzusammensetzung, welche heterocyclische Stickstoffverbindungen und Glycole enthält, zur Texturierung harzartigen Materials und zum Entschmieren und Entfernen harzartigen Materials
DE102020120758A1 (de) Bauteilträger, Verfahren zum Herstellen desselben und Verfahren zum Abschirmen eines strukturellen Merkmals in einem Bauteilträger
DE2847070A1 (de) Verfahren zur behandlung eines mit additiv aufplattierten gedruckten leiterzuegen versehenen substrates
US5311660A (en) Methyl chloroform-free desmear process in additive circuitization
DE2550598A1 (de) Verfahren zur lochwandmetallisierung
DE4108461C1 (de)
DE3313579A1 (de) Metallkaschiertes laminat und verfahren zur herstellung desselben
EP0662984B1 (de) Verfahren zum behandeln von kunststoffoberflächen und anquell-lösung
DD296510A5 (de) Quellmittel zur vorbehandlung von kunstharzen vor einer stromlosen metallisierung
DE102016006813B4 (de) Verfahren zur Herstellung einer Mehrlagenleiterplatte mit Kontaktierung von Innenlagen sowie Mehrlagenleiterplatte
DE3546611C2 (de)
EP0417750A2 (de) Verfahren zur direkten Metallisierung von Leiterplatten
WO1997005758A1 (de) Verfahren zur herstellung von durchkontaktierten leiterplatten oder mehrlagenleiterplatten (multilayer)
DE4402413C2 (de) Verfahren zum Elektroplattieren
JP2773710B2 (ja) 多層プリント配線板の製造方法
DE4205190C2 (de) Verfahren und Mittel zur Konditionierung von Substraten oder Basismaterialien für die nachfolgende Metallisierung
DE3006117C2 (de) Verfahren zum Herstellen von Leiterplatten mit mindestens zwei Leiterzugebenen
EP1289354B1 (de) Verfahren zum Herstellen von Löchern in einer Mehrlagenleiterplatte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA