WO1992007407A1 - Rotor de moteur sans balais et fabrication dudit rotor - Google Patents

Rotor de moteur sans balais et fabrication dudit rotor Download PDF

Info

Publication number
WO1992007407A1
WO1992007407A1 PCT/JP1991/000926 JP9100926W WO9207407A1 WO 1992007407 A1 WO1992007407 A1 WO 1992007407A1 JP 9100926 W JP9100926 W JP 9100926W WO 9207407 A1 WO9207407 A1 WO 9207407A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
corrosion
yoke
field
Prior art date
Application number
PCT/JP1991/000926
Other languages
English (en)
French (fr)
Inventor
Takashi Nagate
Kenichi Endo
Yoshikazu Koike
Takeshi Seto
Yoshihiko Yamagishi
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to DE69123056T priority Critical patent/DE69123056T2/de
Priority to EP91912317A priority patent/EP0552365B1/en
Priority to US08/039,066 priority patent/US5359248A/en
Publication of WO1992007407A1 publication Critical patent/WO1992007407A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to brushless motors suitable for use in potentially corrosive atmospheres and liquids, particularly refrigerants, and more particularly to their rotors. Background technology
  • Permanent magnet rotors are generally known in which field permanent magnets are inserted into a yoke of laminated silicon steel plates.
  • FIG. 8 shows a conventional permanent magnet rotor, permanent magnet rotor 50 having yoke 51 .
  • the yoke 51 is formed by stacking a large number of silicon steel plates 52, and has four magnetic poles 53 protruding from the peripheral surface.
  • a slot 54 for inserting a field permanent magnet is formed in each magnetic pole 53, and a field permanent magnet 55 is inserted in each slot 54.
  • FIG. 9 shows a cross section of the conventional permanent magnet rotor 50 described above.
  • a field permanent magnet 55 is inserted in the slot 54 of the yoke.
  • the field permanent magnets 55 are entirely composed of permanent magnets, and are arranged so that every other outer peripheral surface of the permanent magnet rotor 50 has different magnetism, as shown in the drawing.
  • Permanent magnet rotor 50 has four magnetic poles due to field permanent magnet 55, and is rotationally driven by the interaction of the magnetic flux of the magnetic poles and the current of the drive coil of the motor (not shown).
  • the fluid around the permanent magnet rotor enters through the gaps between the steel plates of the laminated yoke and comes into contact with the field permanent magnets.
  • motors such as scroll-type compressor motors for air conditioners, in which fluid such as refrigerant directly passes through the interior, the permanent magnets of the permanent magnet rotor are in direct contact with the refrigerant.
  • the permanent magnet rotor of the first invention of the present application is provided with corrosion-resistant outer peripheral surfaces of field permanent magnets of a permanent magnet rotor used in an atmosphere or liquid that may be corrosive. It is characterized in that it is coated with a corrosion-resistant plate made of a flexible material.
  • a corrosion-resistant plate made of a corrosion-resistant material is used to form an outer peripheral wall having a rectangular cross-sectional shape and a cast-type permanent magnet is provided inside the outer peripheral wall.
  • a permanent magnet ingot is formed by injecting a solution of the above into a permanent magnet rolled bar with a predetermined cross-sectional dimension by hot rolling the permanent magnet ingot with a rolling roller while making it magnetically anisotropic.
  • a field permanent magnet is formed by cutting the permanent magnet rolled bar into a predetermined length, and the field permanent magnet is inserted or adhered to the yoke.
  • the permanent magnet rotor of the second invention of the present application is a rotor of a brushless motor that is used in an atmosphere or liquid that may be corrosive, wherein the yoke of the rotor and the outer surface of the field permanent magnet are is sealed with a thin plate made of corrosion-resistant material.
  • FIG. 1 is a perspective view showing a permanent magnet rotor of the present invention
  • FIG. FIG. 3 is a perspective view showing the first manufacturing process of the field permanent magnet for the permanent magnet rotor of the present invention
  • FIG. 5 is an exploded perspective view of the permanent magnet rotor of the second embodiment
  • FIG. 6 is a side cross section of the permanent magnet rotor of the second embodiment.
  • Fig. 7 is an explanatory drawing showing one manufacturing process of a metal case by a spatula drawing process
  • Fig. 8 is a perspective view showing a conventional permanent magnet rotor
  • Fig. 9 is a sectional view of a conventional permanent magnet rotor. be. Best Mode for Carrying Out the Invention
  • FIG. 1 shows an embodiment of a permanent magnet rotor according to the present invention.
  • a permanent magnet rotor 1 has a yoke 3 in which a large number of silicon steel plates 2 are laminated.
  • the silicon steel plate 2 has a plurality of crimps 4 that are embossed and recessed into a rectangular shape.
  • the yoke 3 has a through hole 5 in its center, and a rotating shaft 6 is inserted into this through hole 5.
  • the rotating shaft 6 has a key 7, and is configured so that the rotating shaft 6 and the yoke 3 rotate integrally.
  • the yoke 3 has four magnetic poles protruding radially from its outer peripheral surface, and a pair of magnetic poles 8a, 8a facing each other is provided with a slot 9 into which a field permanent magnet is inserted.
  • a pair of magnetic poles 8b, 8b other than the magnetic poles 8a, 8a are not provided with slots.
  • Field permanent magnets 10 are inserted in the slots 9 respectively.
  • the field permanent magnets 10 are arranged so that their north poles face each other. Due to the repulsion between the N poles of the field permanent magnet 10, the magnetic poles 8a and 8a have S pole magnetism, and the magnetic poles 8b and 8b have N pole magnetism. As a result, the permanent magnet rotor 1 has different magnetic fields on its outer peripheral surface. It has four magnetic poles arranged alternately, and is rotationally driven by the interaction between these magnetic poles and the current of a drive coil (not shown).
  • FIG. 2 shows a cross section of the permanent magnet rotor 1.
  • the permanent magnet rotor 1 has a pair of field permanent magnets 10, and each field permanent magnet 10 is composed of a steel-molded permanent magnet 11 at the center and a corrosion-resistant plate 12 at the periphery. It is
  • the corrosion-resistant plate 12 is made of a thin metal plate that can withstand the temperature and corrosiveness of the contacting coolant (hereinafter referred to as corrosion resistance), is wound around the outer periphery of the cast permanent magnet 11, and is integrated with the cast permanent magnet 11. formed in
  • the permanent magnet rotor 1 Since the outer peripheral surface of the field permanent magnet 10 is protected by the corrosion-resistant plate 12, the permanent magnet rotor 1 is used, for example, directly in a coolant, and the coolant penetrates between the silicon steel plates 2 to create a field.
  • the field permanent magnet 10 is not corroded even in a use environment in which it is in contact with the magnetic permanent magnet 10 . This prevents magnetic particles of the permanent magnet from separating from the field permanent magnet due to corrosion and clogging the details of the device. In addition, it is possible to prevent the field permanent magnet from being corroded and reducing its magnetic force.
  • FIG. 3 shows the first manufacturing process of the field permanent magnet 10 .
  • Corrosion-resistant sheet metal 13 is folded and welded at the seams to form the peripheral wall of the iron mold 14 of rectangular cross-section. Furthermore, the bottom surface of the mold 14 is sealed with a suitable member.
  • a permanent magnet ingot 15 is formed by pouring a solution 11a of a steel molding permanent magnet such as an alloy of braseodymium into the interior of the mold 14.
  • FIG. 4 shows the second manufacturing process of the field permanent magnet 10 .
  • the permanent magnet ingot 15 formed as described above is inserted into the hot working chamber 16 kept at a predetermined temperature, is magnetically anisotropic in a strong magnetic field, and is applied to the rolling rollers. Hot rolled by 17. As the rolling roller 17 rotates in the direction of arrow A shown in the drawing, the permanent magnet ingot 15 moves in the direction of arrow B shown in the drawing to form an elongated permanent magnet rolled bar 1 having a predetermined cross-sectional dimension.
  • the permanent magnet rolled bar 18 formed as described above is cut in a direction perpendicular to the axis by a cutting wheel to form a field permanent magnet 10 having a predetermined size.
  • the field permanent magnet 10 is inserted into the slot 9 of the yoke 3, and both end surfaces thereof are coated with a corrosion-resistant resin.
  • a rotating shaft 6 is inserted into this yoke 3 to form a permanent magnet rotor 1.
  • the manufacturing method as described above it is not necessary to wind the metal thin plate of the corrosion-resistant plate 12 around the outer peripheral surface of each field permanent magnet 10, and weld the joints of the metal thin plates individually.
  • the productivity of the magnetic permanent magnet 10 can be increased.
  • the field permanent magnet 10 having the corrosion resistant plate 12 is inserted into the slot 9 of the yoke 3, the field permanent magnet is not damaged during insertion. As a result, it is possible to obtain a method of manufacturing a permanent magnet rotor that is easy to manufacture and has high productivity.
  • the same magnetic poles of the field permanent magnets are opposed to each other, and the repulsion between the magnetic poles generates magnetic poles twice as many as the permanent magnets on the side peripheral surface of the permanent magnet rotor.
  • the present invention is not limited to the permanent magnet rotor with the above structure, and can be applied to a conventional permanent magnet rotor in which the same number of field permanent magnets as the magnetic poles are inserted into the yoke. You can
  • the permanent magnet rotor having a structure in which field permanent magnets are inserted into the slot of the yoke made of laminated copper plates is used. It can also be applied to a permanent magnet rotor having a structure in which permanent magnets for magnetic use are adhered.
  • the outer peripheral surface of the field permanent magnet is sealed with a corrosion-resistant plate made of a corrosion-resistant material, and the permanent magnet is completely isolated from the external atmosphere and fluid. Therefore, the permanent magnet rotor should not be exposed to potentially corrosive atmospheres or liquids, such as refrigerants. Even if it is used inside, the field permanent magnet can be prevented from being corroded. Furthermore, the corrosion-resistant plate made of corrosion-resistant material protects the permanent magnets in the central part, and can prevent damage to the permanent magnets during assembly of the permanent magnet rotor.
  • a corrosion-resistant plate made of a corrosion-resistant material is used as a part of the iron mold, and the permanent magnet ingot is formed by injecting the permanent magnets into the iron mold.
  • a cast permanent magnet ingot is magnetically anisotropic and hot-rolled to form a rolled bar. Since the magnet is formed, it is possible to greatly simplify the process compared to the method of winding a corrosion-resistant plate such as a thin metal plate directly around the outer peripheral surface of the permanent magnet.
  • FIG. 5 Due to the high productivity of the field permanent magnets and the ease of assembly using the unbreakable field permanent magnets, it is possible to obtain a permanent magnet rotor that is easy to manufacture.
  • the second invention of the present application will be described with reference to FIGS. 5 to 7.
  • FIG. 5 the second invention of the present application will be described with reference to FIGS. 5 to 7.
  • the outer surface of the yoke of the permanent magnet rotor and the permanent magnet for the field system which is used in an atmosphere or liquid with the possibility of corrosion, is covered with a thin plate made of a corrosion-resistant material. It is hermetically sealed. With this configuration, the yoke and field permanent magnets are completely isolated from the outside atmosphere and fluid, and the permanent magnet rotor is not exposed to corrosive atmospheres or liquids, such as refrigerants. Even if it is used, it can prevent the yoke and the field permanent magnet from being corroded.
  • the permanent magnet rotor 21 a rotor body 22; a metal case 23 covering an outer peripheral surface and one axial end surface of a columnar body composed of a yoke of the permanent magnet rotor body 22 and field permanent magnets; and the yoke. and a molding member 24 covering the other axial end surface of the columnar body of the field permanent magnet.
  • the permanent magnet rotor main body 22 has a yoke 25 at its center, and a through hole 26 is provided at the center of this yoke 25 .
  • a rotary shaft 27 is inserted into the through-hole 26, and is configured so that the joint 25 and the rotary shaft 27 are integrally rotated by a fitting key or the like (not shown).
  • the outer peripheral surface of the yoke 25 has a form in which a cylindrical outer peripheral surface and two parallel surfaces facing each other are combined. On the parallel surfaces of the outer peripheral surface of the yoke 25, there are elongated plate-shaped field permanent magnets with the same magnetic poles facing each other.
  • auxiliary yokes 30, 31 forming magnetic pole faces are adhered to the opposite surfaces of the field permanent magnets 28, 29.
  • the permanent magnet rotor 21 has four magnetic poles on its side peripheral surface and is rotationally driven by interaction with a drive coil of a motor (not shown).
  • the metal case 23 is a cylindrical portion covering the outer peripheral surface of a columnar body composed of the yoke 25, field permanent magnets 28, 29, and auxiliary yokes 30, 31.
  • the metal case 23 is formed by forming a metal container having a cylindrical side wall and a bottom from the thin metal plate by a normal deep drawing process in which the center of the thin metal plate is pressed into a die hole with a punch of a predetermined shape. formed by providing an opening in the As the thin metal plate for forming the metal case 23, Use materials with properties that can withstand temperature and corrosiveness (hereafter referred to as corrosion resistance). As a specific corrosion-resistant metal material, a thin sheet of stainless steel or other corrosion-resistant metal is used.
  • FIG. 6 shows a side cross section of the assembled permanent magnet rotor 21, and the permanent magnet rotor main body 22 configured as described above is inserted inside the metal case 23.
  • the outer peripheral surface 35 of the columnar body composed of the yoke 25, the field permanent magnets 28, 29, and the auxiliary yokes 30, 31 is covered with the cylindrical portion 32 of the metal case 23.
  • the axial end face 36 is covered by the bottom face 33 of the metal case 23.
  • the joint between the bottom opening 34 of the metal case 23 and the rotating shaft 27 is sealed with resin or by welding.
  • the open end of the cylindrical portion 32 of the metal case 23 is slightly larger than the end face 37 of the columnar body composed of the yoke 25, the auxiliary yokes 30, 31, and the field permanent magnets 28, 29. protrudes to A mold member 24 made of a corrosion-resistant resin mold material or aluminum die-cast is tightly fitted in the concave portion formed by the end face 37 and the cylindrical portion 32 of the metal case 23 .
  • the joint between the mold member 24 and the rotating shaft 27 and the joint between the mold member 24 and the cylindrical portion 32 of the metal case are sealed by resin bonding or welding. Due to the above structure, the yoke 25 of the permanent magnet rotor main body 22, the field permanent magnets 28, 29, and the auxiliary yokes 30, 31 are completely isolated from the outside and are free from corrosion.
  • the metal case 23 may be formed by spatula drawing instead of the deep drawing described above.
  • Figure 7 shows one step during the manufacturing of a metal case by spinning.
  • a metal sheet 38 is center-fixed to a mold 40 by a fixing device 39 and rotated by a motor 41 .
  • a spatula 42 is provided in the vicinity of the mold 40 so as to be rotatable about its end.
  • the spatula 42 is rotated in the X direction shown in the figure by the spatula driving device 43, and presses the rotating metal sheet 38 along the outer peripheral surface of the mold 40 to have a cylindrical side wall and a bottom surface.
  • An opening is provided in the bottom surface of this metal container to form a metal case 23 .
  • the metal case 23 is formed by deep drawing or spatula drawing as described above, it is possible to omit the process of welding the joints of the thin metal plates again after winding the thin metal plates around the permanent magnet rotor. Permanent magnet rotor productivity can be increased.
  • the permanent magnet rotor of this embodiment has a structure in which the same magnetic poles of field permanent magnets face each other, and magnetic poles twice as many as the permanent magnets are generated on the side peripheral surface of the permanent magnet rotor by repulsion between the magnetic poles.
  • the permanent magnet rotor is not limited to the above structure, and a permanent magnet rotor with any structure may be used.
  • the yoke of the permanent magnet rotor and the outer peripheral surface of the field permanent magnet are sealed with a thin plate made of a corrosion-resistant material. Therefore, it is possible to obtain a permanent magnet rotor that can be used in an atmosphere with the possibility of corrosion or in a liquid, for example, in a refrigerant.
  • the welding process can be omitted for sealing, and the coolant or the like can be prevented from leaking out from the seam. It is possible to obtain a permanent magnet rotor which is free from intrusions and which is easy to manufacture.
  • the rotor of the brushless motor according to the present invention can be used in an atmosphere that may corrode, such as in a scroll compressor motor.

Description

明細書
ブラシレスモータの回転子及びその製造方法 技術分野
本発明は、 腐食の可能性のある雰囲気中や液体中、 特に冷媒中 で使用されるのに適したブラシレスモータに関し、 よリ詳細には その回転子に関する。 背景技術
一般にけい素鋼板を積層したヨークに界磁用永久磁石を挿入し た永久磁石回転子が知られている。
図 8は従来の永久磁石回転子を示しており、 永久磁石回転子 5 0はヨーク 5 1を有している。 ヨーク 5 1は多数のけい素鋼板 5 2が積層されて形成され、 周面に突出した 4つの磁極 5 3が形成 されている。 各磁極 5 3には界磁用永久磁石を挿入するためのス ロット 5 4が形成され、 各スロット 5 4には界磁用永久磁石 5 5 が揷入されている。
図 9は上記従来の永久磁石回転子 5 0の横断面を示している。 ヨークのスロヅト 5 4には界磁用永久磁石 5 5が揷入されている 。 この界磁用永久磁石 5 5は全体が永久磁石からなり、 図中に示 すように永久磁石回転子 5 0の外周面が一つ置きに異なる磁性を 有するように配置されている。 この界磁用永久磁石 5 5により、 永久磁石回転子 5 0は 4つの磁極を有し、 この磁極の磁束と図示 しないモータの駆動用コイルの電流との相互作用によって回転駆 動される。
しかしながら従来の永久磁石回転子では、 永久磁石回転子の周 囲の流体が、 積層されたヨークの鋼板どうしの隙間から浸入して 界磁用永久磁石と接触する。 とりわけ空気調和機のスクロール形 圧縮機のモータのように、 内部を冷媒等の流体が直接通過するよ うなモータでは、 永久磁石回転子の永久磁石が冷媒と直接接触し て腐蝕され、 磁石の减磁によってモータの出力が減少したり、 離 脱した永久磁石の磁粉が機器の細部に詰まる等の問題があった。
また従来の永久磁石回転子では界磁用永久磁石が脆いため、 こ れをヨークに揷入あるいは貼着するときに破損する問題があった そこで本発明の目的は、 界磁用永久磁石が腐食されずに使用で き、 かつ、 製造が容易な永久磁石回転子及びその製造方法を提供 することにある。 発明の開示
上記目的を達成するために、 本願第 1の発明の永久磁石回転子 は、 腐食の可能性のある雰囲気中や液体中で使用される永久磁石 回転子の界磁用永久磁石の外周面に耐蝕性の材料からなる耐蝕板 を被覆したことを特徴とするものである。
また、 本願第 1の発明の永久磁石回転子の製造方法は、 耐蝕性 の材料からなる耐蝕板によつて断面矩形の鎵型の外周壁を形成し 、 この外周壁の内部に鎵造型永久磁石の溶液を注入して永久磁石 インゴットを形成し、 さらに磁気的に異方性化させつつ圧延ロー ラによって前記永久磁石インゴットを熱間圧延して所定の断面寸 法の永久磁石圧延棒に形成し、 この永久磁石圧延棒を所定の長さ に切断して界磁用永久磁石を形成し、 この界磁用永久磁石をョー クに挿入或いは貼着することを特徴とするものである。
本願第 2の発明の永久磁石回転子は、 腐食の可能性のある雰囲 気中や液体中で使用されるブラシレスモータの回転子において、 前記回転子のヨークと界磁用永久磁石の外表面を耐蝕性の材料か らなる薄板によって密封したことを特徴とするものである。 図面の簡単な説明
図 1は本発明の永久磁石回転子を示した斜視図、 図 2は本発明 の永久磁石回転子の断面図、 図 3は本発明の永久磁石回転子の界 磁用永久磁石の第一製造工程を示した斜視図、 図 4は本発明の永 久磁石回転子の界磁用永久磁石の第二製造工程を示した説明図、 図 5は第 2実施例の永久磁石回転子を分解して示した斜視図、 図 6は第 2実施例の永久磁石回転子の側断面図、 図 7はヘラ絞り加 ェによる金属ケースの一製造工程を示した説明図、 図 8は従来の 永久磁石回転子を示した斜視図、 図 9は従来の永久磁石回転子の 断面図である。 発明を実施するための最良の形態
以下に本発明の一実施例について添付の図面を参照して説明す 図 1は本発明による永久磁石回転子の一実施例を示している。 永久磁石回転子 1は多数のけい素鋼板 2を積層したヨーク 3を有 している。 けい素鋼板 2は型押しされて長方形に陥没させられた 複数のカシメ 4を有し、 隣り合うけい素鋼板 2のカシメ 4は互い に圧入され、 一体となってヨーク 3を形成している。 ヨーク 3は 中心部に貫通孔 5を有し、 この貫通孔 5に回転軸 6が挿入されて いる。 回転軸 6はキー 7を有し、 回転軸 6とヨーク 3とが一体に 回転するように構成されている。 ヨーク 3は外周面に放射状に突 出した 4つの磁極を有し、 これら磁極の向い合う一対の磁極 8 a , 8 aには界磁用永久磁石を挿入するスロット 9が設けられてい る。 磁極 8 a, 8 aを除く他の一対の磁極 8 b , 8 bにはスロヅ トが設けられていない。 前記スロヅト 9にはそれぞれ界磁用永久 磁石 1 0が挿入されている。
界磁用永久磁石 1 0は互いに N極が向い合うように配置されて いる。 界磁用永久磁石 1 0の N極どうしの反発により、 磁極 8 a , 8 aは S極の磁性を帯び、 磁極 8 b, 8 bは反対に N極の磁性 を帯びる。 このことにより永久磁石回転子 1は外周面に異なる磁 性が一つおきに配置された 4つの磁極を有し、 これら磁極と図示 しない駆動コィルの電流との相互作用によリ回転駆動される。 図 2は永久磁石回転子 1の横断面を示している。 永久磁石回転 子 1は一対の界磁用永久磁石 1 0を有しており、 各界磁用永久磁 石 1 0は中心部の鐃造型永久磁石 1 1と周縁部の耐蝕板 1 2とか ら構成されている。 耐蝕板 1 2は接触する冷媒の温度や腐食性に 耐え得る性質 (以下耐蝕性という) の金属薄板からなり、 錶造型 永久磁石 1 1の外周に巻装され、 錶造型永久磁石 1 1と一体に形 成されている。
界磁用永久磁石 1 0の外周面が耐蝕板 1 2によって保護されて いるので、 永久磁石回転子 1が、 例えば直接冷媒中で使用され、 冷媒がけい素鋼板 2の間に浸入して界磁用永久磁石 1 0と接触す る使用環境においても、 界磁用永久磁石 1 0が腐蝕されることが ない。 このことにより、 腐蝕によって永久磁石の磁粉が界磁用永 久磁石から分離し、 機器の細部に詰まることを防止できる。 また 界磁用永久磁石が腐蝕されて磁力が減少することも防止できる。
図 3は界磁用永久磁石 1 0の第一製造工程を示している。 耐蝕 性の金属薄板 1 3は折り曲げられ、 継目を溶接されて断面矩形の 鐃型 1 4の周壁を形成する。 さらに鎵型 1 4の底面は適当な部材 により密封される。 この錶型 1 4の内部に例えばブラセォジユー ムの合金等の鐃造型永久磁石の溶液 1 1 aを流し込み、 永久磁石 インゴット 1 5を形成する。
図 4は界磁用永久磁石 1 0の第二製造工程を示している。 上述 のように形成された永久磁石インゴット 1 5は所定の温度に保た れた熱間加工室 1 6の内部に挿入され、 強い磁界の中で磁気的に 異方性化されつつ、 圧延ローラ 1 7によって熱間圧延される。 圧 延ローラ 1 7が図中に示す矢印 Aの方向に回転するに従って、 永 久磁石インゴット 1 5は図中に示す矢印 Bの方向に移動して、 所 定断面寸法の細長い永久磁石圧延棒 1 8に圧延される。 上述のように形成された永久磁石圧延棒 1 8は切断砥石によつ て軸と直角の方向に切断され、 所定寸法の界磁用永久磁石 1 〇に 形成される。
上記の界磁用永久磁石 1 0は前記ヨーク 3のスロヅト 9に揷入 され、 さらにその両端面は耐蝕性の樹脂コーティングを施される 。 このヨーク 3に回転軸 6が揷入され、 永久磁石回転子 1が形成
C れる。
上記のような製造方法によれば、 耐蝕板 1 2の金属薄板を個々 の界磁用永久磁石 1 0の外周面に巻装し、 金属薄板の継目を個々 に溶接する必要がないので、 界磁用永久磁石 1 0の生産性を高く することができる。 さらに、 耐蝕板 1 2を有する界磁用永久磁石 1 0をヨーク 3のスロット 9に揷入するので、 挿入時に界磁用永 久磁石が破損することがない。 このことにより製造が容易であリ 、 かつ、 生産性が高い永久磁石回転子の製造方法を得ることがで き 。
この実施例の永久磁石回転子は、 界磁用永久磁石の同一磁極を '対向させ、 磁極どうしの反発により永久磁石回転子の側周面に永 久磁石の二倍の数の磁極を生成する構造の永久磁石回転子を用い て説明したが、 上記構造の永久磁石回転子に限られることなく、 磁極と同一の数の界磁用永久磁石をヨークに挿入した従来の永久 磁石回転子に適用しても良い。
またこの実施例では、 積層銅板からなるヨークのスロヅトに界 磁用永久磁石を挿入する構造の永久磁石回転子を用いて説明した が、 これに限られることなく、 柱状のヨークの外周面に界磁用永 久磁石を貼着した構造の永久磁石回転子にも適用できる。
以上のように、 本願第 1の発明によれば、 界磁用永久磁石の外 周面が耐蝕性の材料からなる耐蝕板によって密封され、 永久磁石 は外部の雰囲気や流体と完全に隔離されているので、 この永久磁 石回転子を、 腐食の可能性のある雰囲気中や液体中、 例えば冷媒 中で使用しても、 界磁用永久磁石が腐蝕されるのを防止できる。 さらに耐蝕性の材料の耐蝕板は中心部の永久磁石を保護し、 永久 磁石回転子の組立てに際して永久磁石が破損するのを防止できる
0
また本発明の永久磁石回転子の製造方法では、 耐蝕性の材料か らなる耐蝕板を鎳型の一部として使用し、 この鐃型に錶造型永久 磁石を注入して永久磁石インゴットを形成し、 鎵造された永久磁 石インゴットを磁気的に異方性化させつつ熱間圧延して圧延長棒 を形成し、 この圧延長棒を所定の寸法に切断して多数の界磁用永 久磁石を形成するようにしたので、 金属の薄板等の耐蝕板を直接 永久磁石の外周面に巻装する方法に比べて大幅な工程の簡略化が 可能である。 すなわち個々の永久磁石に耐蝕板を卷装する工程と 、 巻装された金属薄板等の耐蝕板の継目を溶接或いは接着するェ 程を省略でき、 多数の界磁用永久磁石を一度に生産でき、 高い生 産性の界磁用永久磁石を得ることができる。
この界磁用永久磁石の高い生産性と前記破損しない界磁用永久 磁石による組立ての容易さにより、 製造が容易な永久磁石回転子 を得ることができる。 次に、 図 5ないし図 7を参照して、 本願第 2の発明について説 明する。
本実施例の永久磁石回転子は、 腐食の可能性のある雰囲気中や 液体中で使用される永久磁石回転子のヨークと界磁用永久磁石の 外表面を、 耐蝕性の材料からなる薄板によって密封したものであ る。 このように構成すると、 ヨークと界磁用永久磁石は外部の雰 囲気や流体と完全に隔離され、 この永久磁石回転子を、 腐食の可 能性のある雰囲気中や液体中、 例えば冷媒中で使用しても、 ョー クと界磁用永久磁石とが腐蝕されるのを防止できる
すなわち、 図 5において、 永久磁石回転子 2 1は、 永久磁石回 転子本体 2 2と、 永久磁石回転子本体 2 2のヨークと界磁用永久 磁石とからなる柱状体の外周面と軸方向の一端面とを覆う金属ケ ース 2 3と、 前記ヨークと界磁用永久磁石の柱状体の軸方向の他 の一端面を覆うモールド部材 2 4とから構成されている。
永久磁石回転子本体 2 2は中心部にヨーク 2 5を有し、 このョ ーク 2 5の中心には貫通孔 2 6が設けられている。 この貫通孔 2 6には回転軸 2 7が揷入され、 図示しない嵌合キー等によリヨ一 ク 2 5と回転軸 2 7とが一体に回転するように構成されている。 ヨーク 2 5の外周面は円柱の外周面と、 互いに対向する二つの平 行面とを組み合わせた形態を有している。 前記ヨーク 2 5の外周 面の平行面には、 同一磁極を対向させた延板状の界磁用永久磁石
2 8, 2 9が貼着されている。 更に界磁用永久磁石 2 8 , 2 9の 対向する面の反対側の面には磁極面を形成する補助ヨーク 3 0, 3 1が貼着されている。
前記ヨーク 2 5の平行面に N極を対向させるように界磁用永久 磁石 2 8, 2 9を配置したとすると、 磁極同士の反発によリ図中 に示すようにヨーク 2 5の外周面は N極の磁性を帯び、 補助ョー ク 3 0, 3 1の外周面はそれぞれ S極の磁性を带びる。 これによ り、 永久磁石回転子 2 1は側周面に 4つの磁極を有し、 図示しな いモータの駆動コイルとの相互作用によって回転駆動される。 前記金属ケース 2 3はヨーク 2 5と界磁用永久磁石 2 8, 2 9 と補助ヨーク 3 0 , 3 1とからなる柱状体の外周面を覆う円筒部
3 2と前記柱状体の軸方向の一端面を覆う底面 3 3とから構成さ れている。 底面 3 3の中心には回転軸 2 7を貫通させる開口 3 4 が設けられている。 金属ケース 2 3は、 金属の薄板の中心部を所 定の形状のポンチでダイス孔に押し込む通常の深絞り加工により 、 金属薄板から円筒形側壁と底面とを有する金属容器を形成し、 その底面に開口を設けることによって形成される。 前記金属ケー ス 2 3を形成するための金属の薄板としては、 使用される冷媒の 温度や腐食性に耐え得る性質 (以下耐蝕性という) の材料を使用 する。 具体的な耐蝕性を備えた金属材料としては、 ステンレスや 他の耐蝕性のある金属の薄板が用いられる。
図 6は組み立られた永久磁石回転子 2 1の側断面を示しており 、 上記構成の永久磁石回転子本体 2 2は金属ケース 2 3の内部に 揷入されている。 前記ヨーク 2 5と界磁用永久磁石 2 8, 2 9と 補助ヨーク 3 0 , 3 1とからなる柱状体の外周面 3 5は金属ケ一 ス 2 3の円筒部 3 2に覆われ、 その軸方向の端面 3 6は金属ケー ス 2 3の底面 3 3によって覆われている。 金属ケース 2 3の底面 の開口 3 4と回転軸 2 7の接合部は樹脂や溶接により密封されて いる。
金属ケース 2 3の円筒部 3 2の開放された終端部は前記ヨーク 2 5と補助ヨーク 3 0, 3 1と界磁用永久磁石 2 8, 2 9とから なる柱状体の端面 3 7より僅かに突出している。 この端面 3 7と 金属ケース 2 3の円筒部 3 2とによって形成されて凹部に耐蝕性 樹脂モールド材或いはアルミダイカストからなるモールド部材 2 4が緊密に嵌合させられている。 モールド部材 2 4と回転軸 2 7 との接合部及びモールド部材 2 4と金属ケースの円筒部 3 2との 接合部は樹脂による接着や溶接によって密封されている。 上記構 造により、 永久磁石回転子本体 2 2のヨーク 2 5と界磁用永久磁 石 2 8, 2 9と補助ヨーク 3 0, 3 1は外部から完全に隔離され 、 腐食の可能性のある雰囲気中や液体中、 例えば冷媒中において この永久磁石回転子 2 1を使用しても、 冷媒がヨークや永久磁石 に接触して腐食を起こすことがない。 さらに金属ケース 2 3の円 筒部 3 2によって界磁用永久磁石 2 8, 2 9が飛散することがな い。
金属ケース 2 3の成形加工として、 上述の深絞り加工の代わり にヘラ絞り加工によって金属ケース 2 3を形成してもよい。 図 7 はヘラ絞り加工による金属ケースを製造中の一工程を示している 。 金属薄板 3 8は固定装置 3 9によって型 4 0に中心を固定され 、 モータ 4 1によって回転されている。 型 4 0の近傍にヘラ 4 2 が端部を中心に回動可能に設けられている。 ヘラ駆動装置 4 3に よってヘラ 4 2は図中に示す X方向に回動し、 回転中の金属薄板 3 8を型 4 0の外周面に沿って押し付けて、 円筒形側壁と底面と を有する金属容器を形成する。 この金属容器の底面に開口が設け られ、 金属ケース 2 3が形成される。
金属ケース 2 3は上述したように深絞り加工やヘラ絞り加工に よって形成されるので、 金属薄板を永久磁石回転子に卷装した後 に金属薄板の継目を改めて溶接する工程を省略ができ、 永久磁石 回転子の生産性を高めることができる。
この実施例の永久磁石回転子は、 界磁用永久磁石の同一磁極を 対向させ、 磁極どうしの反発により永久磁石回転子の側周面に永 久磁石の二倍の数の磁極を生成する構造の永久磁石回転子を用い て説明したが、 上記構造の永久磁石回転子に限られることなく、 任意の構造の永久磁石回転子を用いてもよい。
以上の説明から明らかなように、 本願第 2の発明によれば、 永 久磁石回転子のヨークと界磁用永久磁石の外周面を耐蝕性の材料 からなる薄板によつて密封するようにしたので、 腐食の可能性の ある雰囲気中や液体中、 例えば冷媒中で使用可能な永久磁石回転 子を得ることができる。
また、 深絞り加工やヘラ絞り加工で形成された金属ケースによ つてヨークと界磁用永久磁石とを密封するようにすれば、 密封の ため溶接工程を省略できると共に、 継目部から冷媒等が侵入する ことがない製作が容易な永久磁石回転子を得ることができる。 産業上の利用可能性
以上のように、 本発明にかかるブラシレスモータの回転子は、 スクロール形圧縮機のモータ等のように、 腐食の可能性のある雰 囲気中や液体中、 特に冷媒中で使用されるモータに適している

Claims

請求の範囲
1 . 多数のけい素鋼板を積層してなるヨークのスロヅトに永久磁 石を揷着した永久磁石回転子において、 上記永久磁石の外周面に 耐蝕性の材料からなる耐蝕板を被覆したことを特徴とする永久磁 石回転子。
2 . 永久磁石回転子のヨークが積層された多数のけい素鋼板によ つて形成され、 このヨークは外周面上に少なくとも 4つの偶数の 磁極を有し、 これらの磁極には界磁用永久磁石を揷入するスロッ トが一磁極おきに中心からほぼ等距離に設けられ、 このスロット には前記耐蝕板を備えた界磁用永久磁石が回転軸に面する側の面 が同一の磁性を有するように挿入されていることを特徵とする請 求の範囲第 1項記載の永久磁石回転子。
3 . 耐蝕性の材料からなる耐蝕板によって断面矩形の錶型の外周 壁を形成し、 この外周壁の内部に錶造型永久磁石の溶液を注入し て永久磁石インゴットを形成し、 さらに磁気的に異方性化させつ つ圧延ローラによって前記永久磁石インゴットを熱間圧延して所 定の断面寸法の永久磁石圧延棒に形成し、 この永久磁石圧延棒を 所定の長さに切断して界磁用永久磁石を形成し、 この界磁用永久 磁石をヨークに挿入或いは貼着することを特徵とする永久磁石回 転子の製造方法。
4 . 腐食の可能性のある雰囲気中や液体中で使用されるブラシレ スモータの回転子において、 前記回転子のヨークと界磁用永久磁 石の外表面を耐蝕性の材料からなる薄板によって密封したことを 特徴とするブラシレスモータの回転子。
5 . 前記永久磁石回転子のョークと界磁用永久磁石とからなる柱 状体の外周面と軸方向の一端面とを深絞り加工或いはヘラ絞り加 ェによって形成された継目のない耐蝕性の金属ケースによって密 封した請求の範囲第 4項記載の回転子。
6 . 前記永久磁石回転子のヨークと界磁用永久磁石とからなる柱 状体の外周面と軸方向の一端面とを深絞り加工或いはヘラ絞り加 ェによって形成された継目のない耐蝕性の金属ケースで密封し、 他の一端面を耐蝕性の樹脂モールド材或いはダイカスト材で密封 した請求の範囲第 4項記載の回転子。
PCT/JP1991/000926 1990-10-12 1991-07-10 Rotor de moteur sans balais et fabrication dudit rotor WO1992007407A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69123056T DE69123056T2 (de) 1990-10-12 1991-07-10 Verfahren zum schutz der magnete eines permanentmagnetischen rotors gegen korrosive stoffe
EP91912317A EP0552365B1 (en) 1990-10-12 1991-07-10 Method of protecting the magnets of a permanent magnetic rotor against corrosive agents
US08/039,066 US5359248A (en) 1990-10-12 1991-07-10 Corrosion resistant rotor with auxiliary yokes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27376990 1990-10-12
JP2/273769 1990-10-12
JP2/304539 1990-11-09
JP30453990 1990-11-09

Publications (1)

Publication Number Publication Date
WO1992007407A1 true WO1992007407A1 (fr) 1992-04-30

Family

ID=26550767

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1991/000926 WO1992007407A1 (fr) 1990-10-12 1991-07-10 Rotor de moteur sans balais et fabrication dudit rotor
PCT/JP1991/001053 WO1992007408A1 (fr) 1990-10-12 1991-08-06 Rotor de moteur sans balais et procede de production

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001053 WO1992007408A1 (fr) 1990-10-12 1991-08-06 Rotor de moteur sans balais et procede de production

Country Status (7)

Country Link
US (1) US5359248A (ja)
EP (1) EP0552365B1 (ja)
KR (1) KR930701853A (ja)
CN (2) CN2116301U (ja)
CA (1) CA2093001A1 (ja)
DE (1) DE69123056T2 (ja)
WO (2) WO1992007407A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544310A2 (en) * 1991-11-26 1993-06-02 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamoelectric machine rotor
US6891297B2 (en) * 2002-04-25 2005-05-10 Nissan Motor Co., Ltd. Electrical-steel-sheet formed body for rotor core, rotor, rotary electric machine and related method

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508576A (en) * 1990-07-12 1996-04-16 Seiko Epson Corporation Rotor for brushless electromotor
DE4423620A1 (de) * 1994-07-06 1996-01-11 Philips Patentverwaltung Mittels Permanentmagneten erregbarer elektrischer Motor, insbesondere Innenläufer- oder Außenläufermotor
US5900722A (en) * 1994-09-14 1999-05-04 Coleman Powermate, Inc. Multimode power converter
US5929611A (en) * 1994-09-14 1999-07-27 Coleman Powermate, Inc. Light weight rotor and stator with multiple coil windings in thermal contact
US5705917A (en) * 1994-09-14 1998-01-06 Coleman Powermate, Inc. Light weight machine with rotor employing permanent magnets and consequence poles
US6118186A (en) * 1994-09-14 2000-09-12 Coleman Powermate, Inc. Throttle control for small engines and other applications
US6018200A (en) * 1994-09-14 2000-01-25 Coleman Powermate, Inc. Load demand throttle control for portable generator and other applications
IT1281839B1 (it) * 1995-01-19 1998-03-03 Askoll Srl Dispositivo perfezionato di avviamento del rotore di un motore sincrono a magneti permanenti
JPH0993996A (ja) * 1995-09-28 1997-04-04 Yoshiaki Takahashi 発電電動機
US5758709A (en) * 1995-12-04 1998-06-02 General Electric Company Method of fabricating a rotor for an electric motor
EP0817355A3 (de) * 1996-07-03 1998-04-01 Siemens Aktiengesellschaft Selbsttragendes, mit Permanentmagneten bestücktes Läuferblechpaket
JP3308828B2 (ja) * 1996-10-18 2002-07-29 株式会社日立製作所 永久磁石回転電機及びそれを用いた電動車両
US6271614B1 (en) 1998-11-20 2001-08-07 Christopher J. Arnold Pulsed plasma drive electromagnetic motor generator
US6590311B1 (en) * 1999-12-06 2003-07-08 General Electric Company Cross-shaped rotor shaft for electrical machine
US6239527B1 (en) * 2000-01-26 2001-05-29 General Electric Company Non-circular field winding enclosure
JP2001275314A (ja) * 2000-03-24 2001-10-05 Seiko Precision Inc ロータ磁石およびモータおよびステッピングモータ
JP3974315B2 (ja) * 2000-07-25 2007-09-12 三菱電機株式会社 交流発電機
US6794773B2 (en) 2001-01-23 2004-09-21 General Electric Company Winding restraint on wound rotor generators or motors and method for forming the same
US6434962B1 (en) * 2001-05-16 2002-08-20 Carrier Corporation Motor baffle
CN1260874C (zh) * 2001-05-21 2006-06-21 株式会社三协精机制作所 电动机壳体的制造方法
DE10131474A1 (de) * 2001-06-29 2003-05-28 Bosch Gmbh Robert Elektrische Maschine
JP2003032926A (ja) * 2001-07-10 2003-01-31 Teijin Seiki Co Ltd 永久磁石型モータ
DE10256523A1 (de) * 2002-12-04 2004-06-24 Robert Bosch Gmbh Elektrische Maschine, insbesondere bürstenloser Synchronmotor
US7057323B2 (en) 2003-03-27 2006-06-06 Emerson Electric Co. Modular flux controllable permanent magnet dynamoelectric machine
ITMI20032241A1 (it) * 2003-11-18 2005-05-19 Sisme Immobiliare S P A Rotore a magneti permanenti per motore elettrico di rapido assemblaggio e metodo per il suo ottenimento
JP4687871B2 (ja) * 2004-11-26 2011-05-25 株式会社富士通ゼネラル アキシャルギャップ型電動機
JP4725442B2 (ja) * 2006-07-10 2011-07-13 トヨタ自動車株式会社 Ipmロータおよびipmロータの製造方法
FI121291B (fi) * 2007-12-11 2010-09-15 Abb Oy Kestomagneettimoduuli ja moduulin käsittävä sähkökoneen roottori
DE102007063307A1 (de) * 2007-12-28 2009-07-02 Robert Bosch Gmbh Montageverfahren zum Einpassen eines Permanentmagneten in ein Halteelement
CN102013780B (zh) * 2009-09-07 2014-03-12 德昌电机(深圳)有限公司 微型无刷电机
BE1018595A3 (nl) * 2009-09-10 2011-04-05 Atlas Copco Airpower Nv Werkwijze voor het assembleren van een rotor met permanente magneten, houder daarbij toegepast, en rotor verkregen door zulke werkwijze.
BR112013020591A2 (pt) * 2011-02-24 2016-10-18 Andritz Ritz Gmbh motor síncrono internamente excitado com rotor de imãs permanentes multiplamente protegido contra corrosão
IT202100023435A1 (it) * 2021-09-10 2023-03-10 Hpe S R L Rotore a magneti permanenti per una macchina elettrica rotante

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921525Y1 (ja) * 1970-10-02 1974-06-10
JPS4933482B1 (ja) * 1965-12-08 1974-09-07
JPS5337898A (en) * 1976-09-20 1978-04-07 Seiko Epson Corp Permanent magnet of enclosed construction
JPS58172376U (ja) * 1982-05-12 1983-11-17 株式会社日立製作所 永久磁石構造

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210168B2 (ja) * 1972-06-28 1977-03-22
JPS5035354B2 (ja) * 1972-07-29 1975-11-15
US4445062A (en) * 1978-12-26 1984-04-24 The Garrett Corporation Rotor assembly having anchors with undulating sides
US4414523A (en) * 1981-09-04 1983-11-08 Micropump Corporation Encapsulated magnet for magnetic drive
JPS58163255A (ja) * 1982-03-24 1983-09-28 Okuma Mach Works Ltd 永久磁石式同期モ−タの回転子
JPS58172376A (ja) * 1982-04-02 1983-10-11 Yodogawa Seiyaku Kk 5−エチルウラシルの製造方法
US4724348A (en) * 1984-12-03 1988-02-09 General Electric Company Rotatable assembly for dynamoelectric machines having means for reducing release of magnet material particles therefrom
US4930201A (en) * 1985-08-14 1990-06-05 Kollmorgen Corporation Method for manufacturing a composite sleeve for an electric motor
US4674178A (en) * 1985-10-16 1987-06-23 Sundstrand Corporation Method of fabricating a permanent magnet rotor
US4631435A (en) * 1985-12-18 1986-12-23 The Garrett Corporation Consequent pole permanent magnet rotor
CA1269029A (en) * 1986-01-29 1990-05-15 Peter Vernia Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
DE8603982U1 (ja) * 1986-02-14 1987-07-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt, De
US4742259A (en) * 1987-05-11 1988-05-03 Franklin Electric Co., Inc. Permanent magnet rotor for electric motor
US4935080A (en) * 1988-01-29 1990-06-19 Kollmorgen Corporation Protection and bonding of neodymium-boron-iron magnets used in the formation of magnet assemblies
US5140210A (en) * 1988-07-07 1992-08-18 Mitsubishi Denki K.K. Permanent-magnet type dynamoelectric machine rotor
US4973872A (en) * 1988-10-07 1990-11-27 Emerson Electric Co. Dynamoelectric machine rotor assembly with improved magnet retention stucture
JP2883225B2 (ja) * 1991-07-10 1999-04-19 三菱電機株式会社 耐熱耐圧形永久磁石同期電動機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933482B1 (ja) * 1965-12-08 1974-09-07
JPS4921525Y1 (ja) * 1970-10-02 1974-06-10
JPS5337898A (en) * 1976-09-20 1978-04-07 Seiko Epson Corp Permanent magnet of enclosed construction
JPS58172376U (ja) * 1982-05-12 1983-11-17 株式会社日立製作所 永久磁石構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0552365A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544310A2 (en) * 1991-11-26 1993-06-02 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamoelectric machine rotor
EP0544310A3 (en) * 1991-11-26 1993-09-01 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamoelectric machine rotor
US6891297B2 (en) * 2002-04-25 2005-05-10 Nissan Motor Co., Ltd. Electrical-steel-sheet formed body for rotor core, rotor, rotary electric machine and related method

Also Published As

Publication number Publication date
DE69123056D1 (de) 1996-12-12
EP0552365B1 (en) 1996-11-06
US5359248A (en) 1994-10-25
DE69123056T2 (de) 1997-04-03
KR930701853A (ko) 1993-06-12
CN2116301U (zh) 1992-09-16
WO1992007408A1 (fr) 1992-04-30
EP0552365A1 (en) 1993-07-28
CN1060747A (zh) 1992-04-29
CA2093001A1 (en) 1992-04-13
EP0552365A4 (ja) 1994-04-27

Similar Documents

Publication Publication Date Title
WO1992007407A1 (fr) Rotor de moteur sans balais et fabrication dudit rotor
EP0538472B1 (en) Rotor of brushless motor and manufacture thereof
EP0558746B1 (en) Rotor of brushless motor
JP5052288B2 (ja) アキシャルギャップ型回転機
JP5220993B2 (ja) モーター
JP6656428B2 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
JP2001136690A (ja) 回転機のロータ
JP2006230184A (ja) 電機子、モータ及び圧縮機並びにそれらの製造方法
WO2018029818A1 (ja) 電動機、圧縮機、冷凍空調装置および電動機の製造方法
USRE36367E (en) Rotor for brushless electromotor and method for making same
JP3828015B2 (ja) 永久磁石形モータ及び永久磁石形モータの製造方法及び圧縮機及び冷凍サイクル装置
JP2008199811A (ja) 回転電機
JPH0479741A (ja) 永久磁石回転子
JP3218217B2 (ja) 永久磁石型電動機、着磁装置およびその着磁方法
JP2893950B2 (ja) 永久磁石回転子の製造方法
JP3105181B2 (ja) マグネットカップリングの耐食性インナーマグネット
JP2002136091A (ja) ブラシレス直流モータ
JP6714907B2 (ja) 回転子、電動機、密閉型圧縮機および回転子の製造方法
JP3904470B2 (ja) 磁気カップリング装置及びこれを用いた流体機械
JP2003047186A (ja) 回転機のロータ
WO2022009332A1 (ja) 回転電機の回転子、回転電機、及び圧縮機
JP2013126267A (ja) 回転電気機械および圧縮機
WO2022107273A1 (ja) 回転子、電動機、送風機、空気調和装置、及び回転子の製造方法
JPH04190647A (ja) 永久磁石回転子
WO2020245903A1 (ja) 着磁用リング、着磁方法、着磁装置、ロータ、電動機、圧縮機および空気調和装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991912317

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991912317

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991912317

Country of ref document: EP