WO2018029818A1 - 電動機、圧縮機、冷凍空調装置および電動機の製造方法 - Google Patents

電動機、圧縮機、冷凍空調装置および電動機の製造方法 Download PDF

Info

Publication number
WO2018029818A1
WO2018029818A1 PCT/JP2016/073595 JP2016073595W WO2018029818A1 WO 2018029818 A1 WO2018029818 A1 WO 2018029818A1 JP 2016073595 W JP2016073595 W JP 2016073595W WO 2018029818 A1 WO2018029818 A1 WO 2018029818A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
stator
electric motor
shell
nonmagnetic film
Prior art date
Application number
PCT/JP2016/073595
Other languages
English (en)
French (fr)
Inventor
石川 淳史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/313,544 priority Critical patent/US10916989B2/en
Priority to PCT/JP2016/073595 priority patent/WO2018029818A1/ja
Priority to JP2018533369A priority patent/JP6651019B2/ja
Priority to CN201680087557.0A priority patent/CN109565191B/zh
Publication of WO2018029818A1 publication Critical patent/WO2018029818A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2207/00Specific aspects not provided for in the other groups of this subclass relating to arrangements for handling mechanical energy
    • H02K2207/03Tubular motors, i.e. rotary motors mounted inside a tube, e.g. for blinds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to an electric motor, a compressor, a refrigeration air conditioner, and an electric motor manufacturing method.
  • An electric motor used for a compressor such as a refrigeration air conditioner is generally incorporated in a compressor shell (housing) by shrink fitting or the like.
  • the shell of the compressor is made of iron, there is a problem that magnetic flux flows from the stator of the motor to the shell, iron loss occurs, and motor efficiency decreases.
  • Patent Document 1 discloses a synchronous generator in which a nonmagnetic frame is provided on the outer peripheral side of the stator and the stator is fitted to the shell through the nonmagnetic frame.
  • Patent Document 2 discloses an electric motor in which a stator is incorporated in a shell and an annular gap is provided between the outer periphery of the stator and the inner periphery of the shell.
  • JP 2008-113492 A Japanese Patent Laid-Open No. 2-168830 (see FIG. 1) JP 2008-113492 A (see FIG. 2)
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to improve motor efficiency by suppressing leakage magnetic flux from an electric motor to a shell.
  • An electric motor of the present invention is an electric motor arranged inside a shell, and has a stator having an outer peripheral surface facing the inner peripheral surface of the shell, a rotor arranged rotatably inside the stator, and an outer peripheral surface of the stator And a non-magnetic film disposed between the inner peripheral surface of the shell.
  • the nonmagnetic film is disposed between the outer peripheral surface of the stator and the inner peripheral surface of the shell, the leakage magnetic flux from the stator to the shell can be suppressed, and the motor efficiency can be improved. Moreover, since it is not necessary to enlarge the shell, it is possible to contribute to miniaturization of the electric motor.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an electric motor according to a first embodiment. It is a side view which shows the structure of the electric motor of a comparative example. It is the schematic diagram (A) and (B) which show the effect
  • 3 is a flowchart showing a method for manufacturing the electric motor according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a configuration of an electric motor according to a second embodiment.
  • FIG. 6 is a cross-sectional view showing a configuration of an electric motor according to a third embodiment. It is a figure which shows the compressor to which the electric motor of each embodiment is applied. It is a figure which shows the refrigerating air conditioner using the compressor of FIG. It is a figure which shows the air conditioning apparatus provided with the air blower to which the electric motor of each embodiment is applied.
  • FIG. 1 is a cross-sectional view showing electric motor 100 of the first embodiment.
  • An electric motor 100 shown in FIG. 1 is incorporated inside a cylindrical shell (housing) 4.
  • the shell 4 is a part of a container of a product in which the electric motor 100 is incorporated (for example, the scroll compressor 500 shown in FIG. 10).
  • the electric motor 100 includes a rotatable rotor 2 and a stator 1 provided so as to surround the rotor 2.
  • the stator 1 is incorporated inside the shell 4 described above.
  • the rotor 2 has a rotor core 20 having a plurality of magnet insertion holes 22 and permanent magnets 23 arranged in the respective magnet insertion holes 22.
  • the rotor core 20 has a cylindrical outer peripheral surface with the axis C1 being the center of rotation as the center.
  • a shaft hole 24 is formed at the radial center of the rotor core 20.
  • a shaft 21 that is a rotating shaft is fixed to the shaft hole 24 by press-fitting.
  • the direction of the axis C1 that is the rotation axis of the rotor 2 is referred to as “axial direction”.
  • a direction along the outer periphery (circumference centered on the axis C1) of the stator 1 and the rotor 2 is referred to as a “circumferential direction”.
  • the radial direction of the stator 1 and the rotor 2 around the axis C1 is referred to as “radial direction”.
  • the magnet insertion hole 22 penetrates the rotor core 20 in the axial direction.
  • a plurality (six in this case) of magnet insertion holes 22 are formed at equal intervals in the circumferential direction of the rotor core 20.
  • the magnet insertion hole 22 is a groove extending linearly in a plane orthogonal to the axial direction.
  • the magnet insertion hole 22 is disposed at a position as close as possible to the outer peripheral surface of the rotor core 20.
  • a permanent magnet 23 is disposed inside the magnet insertion hole 22.
  • the permanent magnets 23 constitute the magnetic poles of the rotor 2, and the number of permanent magnets 23 in the circumferential direction is the same as the number of poles of the rotor 2. That is, here, the number of poles of the rotor 2 is six. However, the number of poles of the rotor 2 is not limited to six, but may be two or more.
  • the permanent magnet 23 can be composed of a rare earth magnet mainly containing neodymium (Nd), iron (Fe) and boron (B) and containing dysprosium (Dy). Since the rare earth sintered magnet has a high residual magnetic flux density and a coercive force, it is possible to improve the efficiency of the electric motor 100 and improve the demagnetization resistance.
  • the permanent magnet 23 can also be composed of a sintered ferrite magnet whose main component is iron oxide. Since the sintered ferrite magnet has a high coercive force and is stably supplied, it is possible to reduce the manufacturing cost of the electric motor 100 and improve the demagnetization resistance.
  • the permanent magnet 23 is magnetized so as to have different magnetic poles on the radially outer side and the radially inner side of the rotor core 20. Further, the permanent magnets 23 adjacent in the circumferential direction have opposite magnetization directions. For example, when a certain permanent magnet 23 is magnetized so that the radially outer side is N-pole, the circumferentially adjacent permanent magnets 23 are magnetized so that the radially outer side is S-pole. .
  • Flux barriers 25 are respectively formed at both ends of the magnet insertion hole 22 in the circumferential direction.
  • the flux barrier 25 is a gap extending in the radial direction from the circumferential end of the magnet insertion hole 22 toward the outer periphery of the rotor core 20.
  • the flux barrier 25 is provided to suppress leakage magnetic flux between adjacent magnetic poles (that is, magnetic flux flowing through the poles).
  • the stator 1 includes a stator core 10 and a winding 15 wound around the stator core 10.
  • the stator core 10 is formed by, for example, laminating electromagnetic steel sheets having a thickness of 0.1 to 0.7 mm in the axial direction and fastening them by caulking or the like.
  • the stator core 10 has an annular yoke portion 11 and a plurality (18 in this case) of teeth 12 projecting radially inward from the yoke portion 11.
  • a winding 15 is wound around the teeth 12 of the stator core 10 via an insulator (insulating part) (not shown).
  • a slot 13 for accommodating the winding 15 is formed between the teeth 12 adjacent in the circumferential direction.
  • the winding method of the winding 15 may be distributed winding wound around a plurality of teeth 12 or concentrated winding wound around each tooth 12.
  • three slots 13 are opposed to one magnet insertion hole 22, but the present invention is not limited to such a configuration. Further, the number of teeth 12 is arbitrary.
  • the outer peripheral surface of the stator core 10 has six cylindrical surfaces 10a arranged at equal intervals in the circumferential direction and six flat surfaces 10b between adjacent cylindrical surfaces 10a.
  • the cylindrical surface 10a and the flat surface 10b are both arranged in the circumferential direction so that the central angle with respect to the axis C1 is a constant angle (for example, 30 degrees).
  • the cylindrical surface 10 a is a contact surface that contacts the inner peripheral surface of the shell 4.
  • the flat surface 10 b does not contact the inner peripheral surface of the shell 4, and a gap is generated between the flat surface 10 b (non-contact surface) and the inner peripheral surface of the shell 4.
  • a nonmagnetic film 3 is provided between the outer peripheral surface of the stator core 10 and the inner peripheral surface of the shell 4.
  • the nonmagnetic film 3 is formed in an annular shape and is provided over the entire circumference of the outer peripheral surface of the stator core 10.
  • the outer peripheral surface 30 of the nonmagnetic film 3 is in contact with the inner peripheral surface of the shell 4, and the inner peripheral surface 31 of the nonmagnetic film 3 is in contact with the outer peripheral surface of the stator core 10.
  • the stator core 10 is incorporated into the inside of the shell 4 by shrink fitting with the nonmagnetic film 3 fixed to the outer peripheral surface of the stator core 10.
  • the nonmagnetic film 3 suppresses leakage magnetic flux from the stator core 10 to the shell 4.
  • the nonmagnetic film 3 is made of a resin and desirably has a relative dielectric constant of 2 to 4. If the relative dielectric constant is 2 to 4, the generation of eddy current in the nonmagnetic film 3 can be suppressed. Moreover, since the stator core 10 is shrink-fitted to the shell 4 as will be described later, it is desirable that the nonmagnetic film 3 has heat resistance.
  • the nonmagnetic film 3 is made of, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
  • PET has a melting point of 258 ° C., but since the usable temperature is ⁇ 70 ° C. to 150 ° C., the shrink-fit temperature needs to be 150 ° C. or less.
  • PEN is superior in heat resistance and strength to PET, it can cope with a shrink fitting temperature of 150 ° C. or higher. Since both PET and PEN have flexibility, the nonmagnetic film 3 can be easily attached to the outer periphery of the stator core 10.
  • the thickness of the nonmagnetic film 3 is preferably 75 ⁇ m to 300 ⁇ m.
  • the thickness of the nonmagnetic film 3 is desirably 12 ⁇ m to 250 ⁇ m.
  • the thickness T of the nonmagnetic film 3 is 0.15 ⁇ T / G ⁇ 0.6 is preferably satisfied.
  • the nonmagnetic film 3 is composed of PEN, it is desirable to satisfy 0.024 ⁇ T / G ⁇ 0.5.
  • FIG. 2 is a cross-sectional view showing a configuration of the electric motor 101 of the comparative example.
  • the electric motor 101 of the comparative example has the same stator 1 and rotor 2 as the electric motor 100 of the first embodiment, but no nonmagnetic film is provided between the stator core 10 and the shell 4. That is, the cylindrical surface 10 a on the outer peripheral surface of the stator core 10 is in contact with the inner peripheral surface of the shell 4.
  • FIG. 3A is a diagram schematically showing the flow of magnetic flux between the stator core 10 and the shell 4 of the electric motor 101 (FIG. 2) of the comparative example.
  • FIG. 3B schematically shows the flow of magnetic flux between stator core 10 and shell 4 of electric motor 100 of the first embodiment (FIG. 1).
  • the magnetic flux from the permanent magnet 23 of the rotor 2 flows into the tooth 12 from the radially inner end of the tooth 12, flows radially outward in the tooth 12, flows to the yoke portion 11, and is linked to the winding 15. .
  • a driving force for rotating the rotor 2 around the axis C ⁇ b> 1 is generated by the action of the magnetic flux and the current flowing through the winding 15.
  • the nonmagnetic film 3 is disposed between the outer peripheral surface of the stator core 10 and the inner peripheral surface of the shell 4, Leakage magnetic flux flowing from the stator core 10 to the shell 4 can be suppressed. Thus, iron loss can be suppressed by suppressing leakage magnetic flux.
  • FIG. 4 is a graph showing changes in iron loss and induced voltage with respect to the thickness of the nonmagnetic film 3.
  • the vertical axis in FIG. 4 shows the iron loss (left side) and induced voltage (right side) in the shell 4 obtained by magnetic field analysis.
  • the horizontal axis represents a value (T / G) obtained by dividing the thickness T (mm) of the nonmagnetic film 3 by the gap G (mm) between the stator 1 and the rotor 2.
  • the iron loss is a loss generated when a magnetic flux flows through the shell 4.
  • the induced voltage is a counter electromotive force generated when a magnetic flux flows through the tooth 12.
  • the gap G is determined according to the size of the electric motor 100.
  • the gap G is set to 0.5 mm (fixed value), and the thickness T of the nonmagnetic film 3 is changed.
  • the characteristics of the iron loss and the induced voltage shown in FIG. 4 are the same when the nonmagnetic film 3 is made of either PET or PEN.
  • the iron loss of the shell 4 in the electric motor 101 (FIG. 2) of the comparative example that does not have the nonmagnetic film 3 is 100%.
  • the iron loss decreases as the thickness T of the nonmagnetic film 3 increases.
  • the iron loss is 80%, which shows an improvement effect over the comparative example (iron loss 100%).
  • the iron loss is 65%.
  • T / G is 0.4, the iron loss is 45%, and when T / G is 0.6.
  • the rate of decrease in iron loss with respect to the increase in T / G becomes moderate.
  • the induced voltage in the electric motor 101 (FIG. 2) of the comparative example not having the nonmagnetic film 3 is set to 100%.
  • the induced voltage decreases as the thickness T of the nonmagnetic film 3 increases.
  • the reason why the induced voltage decreases as the thickness T of the nonmagnetic film 3 increases is as follows.
  • the magnetic flux flowing through the teeth 12 flows into the yoke portion 11 as it is.
  • the magnetic flux flows excessively in the yoke part 11, magnetic saturation occurs in the yoke part 11, the magnetic permeability of the yoke part 11 decreases, and the amount of magnetic flux decreases.
  • the amount of magnetic flux flowing through the teeth 12 decreases, the amount of magnetic flux interlinked with the winding 15 decreases, and the induced voltage decreases.
  • the magnetic flux easily flows through the shell 4. Therefore, even if magnetic saturation occurs in the yoke portion 11 and the magnetic permeability is lowered, the teeth corresponding to the magnetic flux flowing through the shell 4 are reduced.
  • the amount of magnetic flux that flows through 12 can be increased. Therefore, the amount of magnetic flux interlinking with the winding 15 increases and the induced voltage increases. For these reasons, the induced voltage decreases as the thickness T of the nonmagnetic film 3 increases.
  • FIG. 5 is a graph showing changes in motor efficiency with respect to the thickness of the nonmagnetic film 3.
  • the vertical axis in FIG. 5 indicates the motor efficiency calculated by the magnetic field analysis. 5 indicates a value (T / G) obtained by dividing the thickness T of the nonmagnetic film 3 by the gap G.
  • T / G the motor efficiency when assuming that no iron loss occurs.
  • the most desirable range of T / G for suppressing the leakage magnetic flux is a range satisfying 0.15 ⁇ T / G ⁇ 0.6.
  • the thickness range of the nonmagnetic film 3 corresponding to the most desirable T / G range (0.15 to 0.6) is 75 ⁇ m to 300 ⁇ m. .
  • the nonmagnetic film 3 When the nonmagnetic film 3 is made of PET, it can be manufactured without increasing the manufacturing cost if the thickness is in the range of 75 ⁇ m to 300 ⁇ m. Therefore, it is desirable that the nonmagnetic film 3 made of PET has a thickness in the range of 75 ⁇ m to 300 ⁇ m.
  • the nonmagnetic film 3 when the nonmagnetic film 3 is composed of PEN, if the thickness is 12 ⁇ m to 250 ⁇ m, it can be manufactured without increasing the manufacturing cost. Therefore, it is desirable for the nonmagnetic film 3 made of PEN to have a thickness T in the range of 12 ⁇ m to 250 ⁇ m. This corresponds to a range of 0.024 ⁇ T / G ⁇ 0.5 when the gap G is 0.5 mm. 4 and 5 that even if T / G is within this range (0.24 to 0.5), a certain degree of iron loss suppression effect and motor efficiency improvement effect can be obtained.
  • FIG. 6 is a flowchart for explaining a manufacturing process of electric motor 100 of the first embodiment.
  • the stator core 10 is prepared, an insulator (not shown) is attached to the tooth 12 (or formed integrally), and the winding 15 is wound around the tooth 12 using a winding device (step S101).
  • FIG. 7 is a schematic diagram for explaining a process of attaching the nonmagnetic film 3 to the stator core 10.
  • the nonmagnetic film 3 is formed as a flexible tube. Therefore, the nonmagnetic film 3 can be attached so as to cover the outer peripheral surface of the stator core 10 in a state in which the nonmagnetic film 3 is elastically deformed and expanded in the radial direction.
  • the nonmagnetic film 3 is fixed in close contact with the outer peripheral surface of the stator core 10 by the elastic force of the nonmagnetic film 3 itself.
  • an adhesive may be applied to the outer peripheral surface of the stator core 10 in advance, and the nonmagnetic film 3 may be fixed to the stator core 10 by adhesion.
  • stator core 10 to which the nonmagnetic film 3 is fixed is incorporated into the shell 4 of the compressor, for example, by shrink fitting (step S103). Specifically, the stator core 10 is inserted inside the shell 4 in a state where the shell 4 is heated and thermally expanded. Thereafter, heating of the shell 4 is stopped and the shell 4 is contracted. As a result, the nonmagnetic film 3 is sandwiched between the outer peripheral surface of the stator core 10 and the inner peripheral surface of the shell 4.
  • the shrink fitting temperature can be set to 150 ° C. or higher.
  • the rotor 2 is assembled by fitting the shaft 21 into the shaft hole 24 of the rotor core 20 and inserting the permanent magnet 23 into the magnet insertion hole 22. Then, the rotor 2 is inserted inside the stator core 10 incorporated in the shell 4 (step S104). Thereafter, a bearing and a compression mechanism are respectively attached to the shaft 21 of the rotor 2 (step S105). Further, a lid or the like is attached to the shell 4 to seal the inside of the shell 4 (step S106). Thereby, the electric motor 100 attached to the shell 4 is manufactured.
  • the stator core 10 is incorporated into the shell 4, so that the nonmagnetic film 3 is placed between the stator core 10 and the shell 4 by a simple method. Can be arranged.
  • the rotor 2 is attached to the inside of the stator 1 (step S104). 1 may be incorporated into the shell 4.
  • the rotor 2 may be inserted inside the stator 1 after the bearing is attached to the shaft 21 of the rotor 2 in advance.
  • Embodiment 1 of the present invention since the nonmagnetic film 3 is disposed between the outer peripheral surface of the stator 1 and the inner peripheral surface of the shell 4, leakage from the stator 1 to the shell 4. Magnetic flux can be suppressed and motor efficiency can be improved. Moreover, since it is not necessary to enlarge the shell 4, it can contribute to size reduction of the electric motor 100.
  • the nonmagnetic film 3 is formed in a flexible tube shape, it can be attached so as to cover the outside of the stator 1. Therefore, the manufacturing process of the electric motor 100 is simplified, and the manufacturing cost can be reduced.
  • the nonmagnetic film 3 is provided over the entire outer periphery of the stator 1, the leakage magnetic flux from the stator 1 to the shell 4 can be effectively suppressed.
  • nonmagnetic film 3 is made of PET or PEN, leakage flux is suppressed and sufficient durability against heat when the stator core 10 is assembled into the shell 4 by shrink fitting is obtained.
  • the nonmagnetic film 3 is made of PET and has a thickness of 75 ⁇ m to 300 ⁇ m (0.15 ⁇ T / G ⁇ 0.6), thereby effectively suppressing leakage flux without increasing manufacturing costs. can do.
  • the nonmagnetic film 3 is made of PEN and has a thickness of 12 ⁇ m to 250 ⁇ m (0.024 ⁇ T / G ⁇ 0.5), thereby suppressing leakage magnetic flux without increasing the manufacturing cost. it can.
  • the nonmagnetic film 3 is attached to the outside of the stator 1, and the stator 1 is assembled into the shell 4 by shrink fitting.
  • the nonmagnetic film 3 can be disposed between the peripheral surface.
  • FIG. 8 is a cross-sectional view showing the configuration of electric motor 100A of the second embodiment.
  • the nonmagnetic film 3 is fixed to the outer peripheral surface of the stator 1 before the stator 1 is assembled into the shell 4, but in this second embodiment, the nonmagnetic film 3A is a shell. 4 is fixed to the inner peripheral surface.
  • the nonmagnetic film 3A is fixed to the inner peripheral surface of the shell 4 by adhesion, for example.
  • the nonmagnetic film 3A is arranged between the outer peripheral surface of the stator 1 and the inner peripheral surface of the shell 4.
  • the material and thickness of the nonmagnetic film 3A of the second embodiment are the same as those of the nonmagnetic film 3 of the first embodiment.
  • the nonmagnetic film 3A is fixed in advance to the inner peripheral surface of the shell 4, a gap is generated between the nonmagnetic film 3A and the flat surface 10b of the outer peripheral surface of the stator 1.
  • the nonmagnetic film 3A of the second embodiment is heated to a higher temperature than the nonmagnetic film 3 of the first embodiment.
  • electric motor 100A of the second embodiment since the nonmagnetic film 3A is disposed between the outer peripheral surface of the stator 1 and the inner peripheral surface of the shell 4, the leakage magnetic flux from the stator 1 to the shell 4 is suppressed. The motor efficiency can be improved.
  • Other configurations of electric motor 100A of the second embodiment are the same as electric motor 100 of the first embodiment.
  • the method for manufacturing the electric motor 100A according to the second embodiment is the same as the method for manufacturing the electric motor 100 according to the first embodiment except that the nonmagnetic film 3A is fixed to the inner peripheral surface of the shell 4 instead of the outer peripheral surface of the stator 1. It is the same.
  • the stator is similar to the first embodiment.
  • the leakage magnetic flux from 1 to the shell 4 can be suppressed, and the motor efficiency can be improved.
  • FIG. 9 is a cross-sectional view showing a configuration of electric motor 100B of the second embodiment.
  • the nonmagnetic film 3 is fixed over the entire circumference of the outer peripheral surface of the stator 1.
  • the cylindrical surface 10 a that is a part of the outer peripheral surface of the stator 1. Only the nonmagnetic film 3B is fixed.
  • the cylindrical surface 10a and the flat surface 10b are alternately formed on the outer peripheral surface of the stator core 10 as described in the first embodiment.
  • the cylindrical surface 10 a abuts against the inner peripheral surface of the shell 4, whereas a gap is formed between the flat surface 10 b and the inner peripheral surface of the shell 4.
  • the nonmagnetic film 3B is provided only on the cylindrical surface 10a.
  • the material and thickness of the nonmagnetic film 3B of Embodiment 3 are the same as those of the nonmagnetic film 3 of Embodiment 1.
  • the nonmagnetic film 3 of the first embodiment described above has a tube shape (FIG. 7), but the nonmagnetic film 3B of the third embodiment is formed in, for example, a strip shape that is long in a direction parallel to the axis C1.
  • the nonmagnetic film 3B is fixed to the cylindrical surface 10a on the outer peripheral surface of the stator 1 by, for example, adhesion. Or you may fix to the inner peripheral surface of the shell 4 by adhesion
  • the nonmagnetic film 3B is disposed between the outer peripheral surface (cylindrical surface 10a) of the stator 1 and the inner peripheral surface of the shell 4, the stator 1 to the shell 4 Leakage magnetic flux can be suppressed and motor efficiency can be improved. Further, since the nonmagnetic film 3B is formed only on a part of the outer peripheral surface of the stator 1, the material for forming the nonmagnetic film 3B can be reduced. Other configurations of electric motor 100B of the third embodiment are the same as electric motor 100 of the first embodiment.
  • the manufacturing method of the electric motor 100B of the third embodiment is the same as that of the electric motor 100 of the first embodiment except that the belt-like nonmagnetic film 3B is fixed to the cylindrical surface 10a of the stator 1 (or the inner peripheral surface of the shell 4). This is the same as the manufacturing method.
  • the nonmagnetic film 3B is disposed between a part of the outer peripheral surface of the stator 1 (cylindrical surface 10a) and the inner peripheral surface of the shell 4, As in the first embodiment, the leakage magnetic flux from the stator 1 to the shell 4 can be suppressed, and the motor efficiency can be improved. In addition, the material for constituting the nonmagnetic film 3B can be small.
  • FIG. 10 is a cross-sectional view illustrating a configuration of scroll compressor 500 including electric motor 100 according to the first embodiment.
  • the electric motors 100A and 100B of the second and third embodiments may be used.
  • the scroll compressor 500 includes a compression mechanism 510, an electric motor 100 that drives the compression mechanism 510, a main shaft 501 that connects the compression mechanism 510 and the electric motor 100, and the main shaft 501 opposite to the compression mechanism 510.
  • a sub-frame 503 that supports the end portion (sub-shaft portion), and refrigerating machine oil 504 stored in a sump 505 at the bottom of the sealed container 502.
  • the compression mechanism 510 includes a fixed scroll 511 and an orbiting scroll 512, an Oldham ring 513, a compliant frame 514, and a guide frame 515 combined so as to form a compression chamber between the respective plate-like spiral teeth. Prepare.
  • a suction pipe 506 penetrating the sealed container 502 is press-fitted into the heel fixed scroll 511.
  • a discharge pipe 507 that passes through the sealed container 502 and discharges high-pressure refrigerant gas discharged from the discharge port of the fixed scroll 511 to the outside (refrigeration cycle) is provided.
  • the sealed container 502 has a cylindrical shell 4 in which the electric motor 100 is incorporated by shrink fitting. Further, a glass terminal 508 for electrically connecting the stator 1 of the electric motor 100 and the drive circuit is fixed to the sealed container 502 by welding.
  • the motor efficiency is improved by reducing the leakage magnetic flux. Therefore, by using the electric motor 100 as the power source of the scroll compressor 500, the operation efficiency of the scroll compressor 500 can be improved and the energy consumption can be reduced.
  • scroll compressor 500 has been described as an example of the compressor, the electric motors of the above-described embodiments may be applied to a compressor other than the scroll compressor 500.
  • FIG. 11 is a diagram illustrating a configuration of the refrigeration air conditioner 600.
  • 11 includes a compressor (scroll compressor) 500, a four-way valve 601, a condenser 602, a decompression device (expander) 603, an evaporator 604, a refrigerant pipe 605, And a control unit 606.
  • the compressor 500, the condenser 602, the decompression device 603, and the evaporator 604 are connected by a refrigerant pipe 605 to constitute a refrigeration cycle.
  • Compressor 500 compresses the sucked refrigerant and sends it out as a high-temperature and high-pressure gas refrigerant.
  • the four-way valve 601 switches the refrigerant flow direction. In the state shown in FIG. 11, the refrigerant sent out from the compressor 500 flows into the condenser 602.
  • the condenser 602 exchanges heat between the refrigerant that flows in from the compressor 500 via the four-way valve 601 and air (for example, outdoor air), condenses and liquefies the refrigerant, and sends it out.
  • the decompression device 603 expands the liquid refrigerant sent out from the condenser 602 and sends it out as a low-temperature and low-pressure liquid refrigerant.
  • the evaporator 604 exchanges heat between the low-temperature and low-pressure liquid refrigerant sent out from the decompression device 603 and air (for example, indoor air), causes the refrigerant to take away the heat of the air, and evaporates (vaporizes) the gas refrigerant. Send out as.
  • the air from which heat has been removed by the evaporator 604 is supplied to a target space (for example, a room) by a blower (not shown).
  • the operations of the four-way valve 601 and the compressor 500 are controlled by the control unit 606.
  • the compressor 500 of the refrigeration air conditioner 600 uses the motor with high motor efficiency described in each embodiment, the operating efficiency of the refrigeration air conditioner 600 can be improved and energy consumption can be reduced.
  • components other than the compressor 500 in the refrigerating and air-conditioning apparatus 600 are not limited to the above-described configuration example.
  • FIG. 12 is a diagram showing a configuration of an air conditioner 400 using the electric motor 100 of the first embodiment.
  • the electric motors 100A and 100B of the second and third embodiments may be used.
  • the air conditioner 400 includes an outdoor unit 401, an indoor unit 402, and a refrigerant pipe 403 that connects them.
  • the outdoor unit 401 includes an outdoor blower 405 as a blower.
  • the indoor unit 402 includes an indoor blower 407.
  • FIG. 12 also shows a compressor 408 that compresses the refrigerant in the outdoor unit 401.
  • the outdoor blower 405 of the outdoor unit 401 includes the electric motor 100 to which the electric motor described in each embodiment is applied.
  • An impeller 406 is attached to the shaft 21 (FIG. 1) of the electric motor 100.
  • the impeller 406 attached to the shaft 21 rotates and blows air to the outdoors.
  • the air-conditioning apparatus 400 When the air-conditioning apparatus 400 performs a cooling operation, the heat released when the refrigerant compressed by the compressor 408 is condensed by a condenser (not shown) is released outside by the ventilation of the outdoor blower 405. .
  • the motors of the embodiments described above improve motor efficiency by reducing leakage magnetic flux. Therefore, by using the electric motor 100 as a power source of the outdoor blower 405, the operating efficiency of the air conditioner 400 can be improved and the energy consumption can be reduced.
  • the electric motor described in each embodiment is applied to the electric motor 100 of the outdoor fan 405 of the outdoor unit 401, but the electric motor 100 of each embodiment is applied to the indoor fan 407 of the indoor unit 402. Good.
  • stator 1, 1A, 1B stator, 10 stator core, 10a cylindrical surface, 10b flat surface, 11 yoke, 12 teeth, 13 slots, 15 windings (coils), 16 air gaps, 2 rotors, 20 rotor cores, 21 shafts, 22 magnet insertion hole, 23 permanent magnet, 24 shaft hole, 25 flux barrier (gap), 3, 3A, 1B non-magnetic film, 4 shell, 100, 100A, 100B electric motor, 400 air conditioner, 401 outdoor unit, 402 indoor Machine, 403 refrigerant piping, 405 blower, 406 impeller, 500 scroll compressor (compressor), 501 spindle, 502 sealed container, 510 compression mechanism, 600 refrigeration air conditioner.

Abstract

電動機は、シェルの内部に設けられる。電動機は、シェルの内周面に対向する外周面を有するステータと、ステータの内側に回転可能に配置されたロータと、ステータの外周面とシェルの内周面との間に配置された非磁性フィルムとを備える。

Description

電動機、圧縮機、冷凍空調装置および電動機の製造方法
 本発明は、電動機、圧縮機、冷凍空調装置および電動機の製造方法に関する。
 冷凍空調装置等の圧縮機に用いられる電動機は、一般に、圧縮機のシェル(筐体)に焼嵌め等によって組み込まれる。しかしながら、圧縮機のシェルは鉄で構成されているため、電動機のステータからシェルに磁束が流れ、鉄損が発生してモータ効率が低下するという問題がある。
 そこで、例えば特許文献1には、同期発電機において、ステータの外周側に非磁性枠を設け、この非磁性枠を介してステータをシェルに嵌合させたものが開示されている。また、特許文献2には、ステータをシェルに組み込み、ステータの外周とシェルの内周との間に環状の空隙を設けた電動機が開示されている。
特開平2-168830号公報(第1図参照) 特開2008-113492号公報(図2参照)
 しかしながら、ステータの外周側に非磁性枠を設けた場合、ステータの外径に対してシェルの外径を大きくする必要があり、電動機の小型化の妨げになる。また、ステータの外周とシェルの内周との間に環状の空隙を設けた場合、ステータの支持が不安定になる可能性がある。
 本発明は、上記の課題を解決するためになされたものであり、電動機からシェルへの漏れ磁束を抑制することによりモータ効率を向上することを目的とする。
 本発明の電動機は、シェルの内部に配置される電動機であって、シェルの内周面に対向する外周面を有するステータと、ステータの内側に回転可能に配置されたロータと、ステータの外周面とシェルの内周面との間に配置された非磁性フィルムとを備える。
 本発明では、ステータの外周面とシェルの内周面との間に非磁性フィルムが配置されているため、ステータからシェルへの漏れ磁束を抑制し、モータ効率を向上することができる。また、シェルを大きくする必要がないため、電動機の小型化に資することができる。
実施の形態1の電動機の構成を示す断面図である。 比較例の電動機の構成を示す側面図である。 実施の形態1の電動機の作用を比較例と対比して示す模式図(A)、(B)である。 実施の形態1における非磁性フィルムの厚さと、鉄損および誘起電圧との関係を示す特性図である。 実施の形態1における非磁性フィルムの厚さと、モータ効率との関係を示す特性図である。 実施の形態1の電動機の製造方法を示すフローチャートである。 実施の形態1の非磁性フィルムの取り付け方法を説明するための模式図である。 実施の形態2の電動機の構成を示す断面図である。 実施の形態3の電動機の構成を示す断面図である。 各実施の形態の電動機を適用した圧縮機を示す図である。 図10の圧縮機を用いた冷凍空調装置を示す図である。 各実施の形態の電動機を適用した送風機を備えた空気調和装置を示す図である。
実施の形態1.
<電動機の構成>
 図1は、実施の形態1の電動機100を示す断面図である。図1に示す電動機100は、円筒状のシェル(筐体)4の内側に組み込まれている。シェル4は、電動機100が組み込まれる製品(例えば図10に示すスクロール圧縮機500)の容器の一部である。
 電動機100は、回転可能なロータ2と、ロータ2を囲むように設けられたステータ1とを備えている。ステータ1は、上述したシェル4の内側に組み込まれている。ステータ1とロータ2との間には、例えば0.5mmの空隙16が設けられている。
 ロータ2は、複数の磁石挿入孔22を備えたロータコア20と、それぞれの磁石挿入孔22に配置された永久磁石23とを有している。ロータコア20は、回転中心である軸線C1を中心とする円筒状の外周面を有している。ロータコア20の径方向の中心には、シャフト孔24が形成されている。シャフト孔24には、回転軸であるシャフト21が圧入によって固定されている。
 以下では、ロータ2の回転軸である軸線C1の方向を、「軸方向」と称する。また、ステータ1およびロータ2の外周(軸線C1を中心とする円周)に沿った方向を、「周方向」と称する。また、軸線C1を中心とするステータ1およびロータ2の半径方向を、「径方向」と称する。 
 磁石挿入孔22は、ロータコア20を軸方向に貫通している。また、磁石挿入孔22は、ロータコア20の周方向に等間隔に複数(ここでは6個)形成されている。磁石挿入孔22は、軸方向に直交する面内において、直線状に延在する溝である。磁石挿入孔22は、ロータコア20の外周面にできるだけ近い位置に配置されている。
 磁石挿入孔22の内部には、永久磁石23が配置されている。永久磁石23はロータ2の磁極を構成しており、周方向における永久磁石23の数はロータ2の極数と同じである。すなわち、ここでは、ロータ2の極数は6極である。但し、ロータ2の極数は6極に限定されるものではなく、2極以上であればよい。
 永久磁石23は、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とし、ディスプロシウム(Dy)を含有する希土類磁石で構成することができる。希土類焼結磁石は、残留磁束密度および保磁力が高いため、電動機100の高効率化と減磁耐力の向上を実現することができる。永久磁石23は、また、酸化鉄を主成分とするフェライト焼結磁石で構成することもできる。フェライト焼結磁石は保磁力が高く、また供給が安定しているため、電動機100の製造コストの低減と減磁耐力の向上を実現することができる。
 永久磁石23は、ロータコア20の径方向外側と径方向内側とで異なる磁極を有するように着磁されている。また、周方向に隣り合う永久磁石23は、着磁方向が逆になっている。例えば、ある永久磁石23が、径方向外側がN極となるように着磁されている場合、周方向に隣接する永久磁石23は、径方向外側がS極となるように着磁されている。
 磁石挿入孔22の周方向の両端には、フラックスバリア25がそれぞれ形成されている。フラックスバリア25は、磁石挿入孔22の周方向端部からロータコア20の外周に向けて径方向に延在する空隙である。フラックスバリア25は、隣り合う磁極間の漏れ磁束(すなわち極間を通って流れる磁束)を抑制するために設けられる。
 ステータ1は、ステータコア10と、ステータコア10に巻回された巻線15とを備えている。ステータコア10は、例えば厚さ0.1~0.7mmの電磁鋼板を軸方向に積層し、カシメ等により締結したものである。
 ステータコア10は、円環状のヨーク部11と、ヨーク部11から径方向内側に突出する複数(ここでは18個)のティース12とを有している。ステータコア10のティース12には、図示しないインシュレータ(絶縁部)を介して、巻線15が巻き付けられる。周方向に隣り合うティース12の間には、巻線15を収容するためのスロット13が形成される。
 巻線15の巻き方は、複数のティース12に跨って巻き付けられる分布巻であってもよく、あるいは、1つのティース12毎に巻き付けられる集中巻であってもよい。なお、図1では、1つの磁石挿入孔22に3つのスロット13が対向しているが、このような構成に限定されるものではない。また、ティース12の数は、任意である。
 ここでは、ステータコア10の外周面は、周方向に等間隔に配置された6個の円筒面10aと、隣り合う円筒面10aの間の6個の平坦面10bとを有している。円筒面10aおよび平坦面10bは、いずれも、軸線C1に対する中心角が一定角度(例えば30度)になるように、周方向に配置されている。円筒面10aは、シェル4の内周面に当接する当接面である。一方、平坦面10bはシェル4の内周面には当接せず、平坦面10b(非当接面)とシェル4の内周面との間には、隙間が生じている。
 ステータコア10の外周面とシェル4の内周面との間には、非磁性フィルム3が設けられている。非磁性フィルム3は、環状に形成されており、ステータコア10の外周面の全周に亘って設けられている。
 非磁性フィルム3の外周面30はシェル4の内周面に当接し、非磁性フィルム3の内周面31はステータコア10の外周面に当接している。この実施の形態では、非磁性フィルム3がステータコア10の外周面に固定された状態で、ステータコア10がシェル4の内側に焼嵌めにより組み込まれる。
 非磁性フィルム3は、ステータコア10からシェル4への漏れ磁束を抑制するものである。非磁性フィルム3は、樹脂で形成されており、比誘電率が2~4であることが望ましい。比誘電率が2~4であれば、非磁性フィルム3内の渦電流の発生を抑制することができる。また、後述するようにステータコア10はシェル4に焼嵌めされるため、非磁性フィルム3は耐熱性を有することが望ましい。
 具体的には、非磁性フィルム3は、例えば、ポリエチレンテレフタレート(PET)、または、ポリエチレンナフタレート(PEN)で形成されている。PETは、融点が258℃であるが、使用可能温度が-70℃~150℃であるため、焼嵌め温度を150℃以下とする必要がある。一方、PENは、PETよりも耐熱性および強度において優れているため、150℃以上の焼嵌め温度にも対応可能である。PETおよびPENはいずれも可撓性を有するため、非磁性フィルム3をステータコア10の外周に簡単に装着することができる。
 非磁性フィルム3がPETで構成されている場合には、非磁性フィルム3の厚さは75μm~300μmであることが望ましい。非磁性フィルム3がPENで構成されている場合には、非磁性フィルム3の厚さは12μm~250μmであることが望ましい。
 例えば、ステータ1とロータ2との間のギャップ(図1に示した空隙16)をGとすると、非磁性フィルム3がPETで構成されている場合には、非磁性フィルム3の厚さTは、0.15≦T/G≦0.6を満足することが望ましい。非磁性フィルム3がPENで構成されている場合には、0.024≦T/G≦0.5を満足することが望ましい。
 図2は、比較例の電動機101の構成を示す断面図である。図2では、説明の便宜上、図1と共通の符号を用いて説明する。比較例の電動機101は、実施の形態1の電動機100と同様のステータ1およびロータ2を有しているが、ステータコア10とシェル4との間には非磁性フィルムが設けられていない。すなわち、ステータコア10の外周面の円筒面10aがシェル4の内周面に接している。
<非磁性フィルムの作用>
 次に、非磁性フィルム3の作用について説明する。図3(A)は、比較例の電動機101(図2)のステータコア10とシェル4との間の磁束の流れを模式的に示す図である。図3(B)は、実施の形態1の電動機100(図1)のステータコア10とシェル4との間の磁束の流れを模式的に示す図である。
 ロータ2の永久磁石23からの磁束は、ティース12の径方向内側の端部からティース12に流入し、ティース12内を径方向外側に流れてヨーク部11に流れ、巻線15に鎖交する。電動機100の駆動時には、この磁束と巻線15を流れる電流との作用により、ロータ2を軸線C1の周囲に回転させる駆動力が発生する。
 ここで、比較例の電動機101では、図3(A)に示すように、ステータコア10の外周面がシェル4の内周面に接しているため、ステータコア10内を流れる磁束の一部が、矢印Fで示すようにシェル4に流れる。シェル4は鉄のバルク体で形成されているため、シェル4内に磁束が流れると大きな鉄損が発生する。
 これに対し、実施の形態1の電動機100では、図3(B)に示すように、ステータコア10の外周面とシェル4の内周面との間に非磁性フィルム3が配置されているため、ステータコア10からシェル4に流れる漏れ磁束を抑制することができる。このように漏れ磁束を抑制することにより、鉄損を抑制することができる。
 図4は、非磁性フィルム3の厚さに対する鉄損および誘起電圧の変化を示すグラフである。図4の縦軸は、磁界解析により得られたシェル4での鉄損(左側)および誘起電圧(右側)を示す。横軸は、非磁性フィルム3の厚さT(mm)を、ステータ1とロータ2とのギャップG(mm)で除した値(T/G)を示す。鉄損は、シェル4に磁束が流れることにより発生する損失である。誘起電圧は、ティース12に磁束が流れることによって発生する逆起電力である。
 なお、非磁性フィルム3の厚さTをギャップGに対する相対値で評価するのは、ギャップGが電動機100のサイズに応じて決定されるためである。ここでは、ギャップGを0.5mm(固定値)とし、非磁性フィルム3の厚さTを変化させている。また、図4に示した鉄損および誘起電圧の特性は、非磁性フィルム3をPET、PENのいずれで構成した場合も同じである。
 鉄損については、非磁性フィルム3を有さない比較例の電動機101(図2)におけるシェル4の鉄損を100%としている。図4の実線から明らかなように、ステータコア10とシェル4との間に非磁性フィルム3を設けると、非磁性フィルム3の厚さTが増加するほど、鉄損が減少する。
 例えば、T/Gが0.15のときには鉄損が80%となり、比較例(鉄損100%)に対する改善効果がみられる。また、T/Gが0.2の場合には、鉄損が65%となり、T/Gが0.4の場合には、鉄損が45%となり、T/Gが0.6の場合には、鉄損が35%となる。一方、T/Gが0.6を超える範囲では、T/Gの増加に対する鉄損の減少率が緩やかになる。
 誘起電圧については、非磁性フィルム3を有さない比較例の電動機101(図2)における誘起電圧を100%としている。図4の破線から明らかなように、ステータコア10とシェル4との間に非磁性フィルム3を設けると、非磁性フィルム3の厚さTが増加するほど、誘起電圧が低下する。非磁性フィルム3の厚さTの増加と共に誘起電圧が低下する理由は、次の通りである。
 すなわち、非磁性フィルム厚さTが厚くなると、シェル4に磁束が流れにくくなるため、ティース12に流れる磁束はそのままヨーク部11に流れ込む。ここで、ヨーク部11に磁束が流れ過ぎると、ヨーク部11で磁気飽和が生じ、ヨーク部11の透磁率が低下して磁束量が減少する。その結果、ティース12に流れる磁束量が減少し、巻線15に鎖交する磁束量が減少して、誘起電圧が低下する。
 一方、非磁性フィルム3の厚さTが薄くなると、シェル4に磁束が流れやすくなるため、ヨーク部11で磁気飽和が生じて透磁率が低下しても、シェル4に流れる磁束の分だけティース12に流れる磁束量を増加させることができる。そのため、巻線15に鎖交する磁束量が増加し、誘起電圧が増加する。このような理由より、非磁性フィルム3の厚さTの増加と共に、誘起電圧が低下する。
 図4において、例えば、T/Gが0.15の場合には、誘起電圧が99.6%となり、T/Gが0.2の場合には、誘起電圧が99.5%となる。また、T/Gが0.4の場合には、誘起電圧が99.3%となり、T/Gが0.6の場合には、誘起電圧が99.1%となる。上述した鉄損が効率よく減少するT/Gの範囲(0.15~0.6)では、誘起電圧は低下するものの、低下率は小さい(1%未満)ことが分かる。
 図5は、非磁性フィルム3の厚さに対するモータ効率の変化を示すグラフである。図5の縦軸は、磁界解析により算出したモータ効率を示す。図5の縦軸は、非磁性フィルム3の厚さTをギャップGで除した値(T/G)を示す。モータ効率については、鉄損が発生しないと仮定した場合のモータ効率を100%としている。
 図5から、非磁性フィルム3を有さない比較例の電動機101(図2)では、モータ効率は95.9%である。これに対し、ステータコア10とシェル4との間にPETで構成した非磁性フィルム3を設け、T/Gを0.15とした場合には、モータ効率が96.25%となり、比較例に対する改善効果がみられる。また、T/Gが0.2の場合には、モータ効率が96.3%となり、T/Gが0.4の場合には、モータ効率が96.5%となり、T/Gが0.6の場合には、モータ効率が96.63%となる。一方、T/Gが0.6を超える範囲では、T/Gの増加に対するモータ効率の増加率が緩やかになる。
 これらの結果から、漏れ磁束を抑制する上でもっと最も望ましいT/Gの範囲は、0.15≦T/G≦0.6を満足する範囲であることが分かる。例えば、ギャップGが0.5mmの場合には、上記の最も望ましいT/Gの範囲(0.15~0.6)に対応する非磁性フィルム3の厚さの範囲は、75μm~300μmである。
 非磁性フィルム3がPETで構成される場合、厚さが75μm~300μmの範囲にあれば、製造コストの増加を招くことなく製造可能である。そのため、PETで構成される非磁性フィルム3については、厚さが75μm~300μmの範囲にあることが望ましい。
 一方、非磁性フィルム3がPENで構成される場合は、厚さが12μm~250μmであれば、製造コストの増加を招くことなく製造可能である。そのため、PENで構成される非磁性フィルム3については、厚さTが12μm~250μmの範囲にあることが望ましい。これは、ギャップGを0.5mmとすると、0.024≦T/G≦0.5の範囲に相当する。図4および図5から、T/Gがこの範囲(0.24~0.5)にあっても、ある程度の鉄損の抑制効果とモータ効率の改善効果が得られることが分かる。
<電動機の製造工程>
 次に、この実施の形態1における電動機100の製造工程について説明する。図6は、実施の形態1の電動機100の製造工程を説明するためのフローチャートである。まず、ステータコア10を用意し、ティース12に図示しないインシュレータを取り付け(または一体に成形し)、巻線装置を用いてティース12に巻線15を巻き付ける(ステップS101)。
 次に、ステータコア10の外周面に、非磁性フィルム3を取り付ける(ステップS102)。図7は、ステータコア10に非磁性フィルム3を取り付ける工程を説明するための模式図である。非磁性フィルム3は、可撓性を有するチューブとして形成されている。そのため、非磁性フィルム3を弾性変形させて径方向に広げた状態で、ステータコア10の外周面に被せるように取り付けることができる。
 非磁性フィルム3は、非磁性フィルム3自身の弾性力により、ステータコア10の外周面に密着した状態で固定される。あるいは、ステータコア10の外周面に予め接着剤を塗布し、非磁性フィルム3を接着によりステータコア10に固定してもよい。
 次に、非磁性フィルム3を固定したステータコア10を、例えば圧縮機のシェル4に、焼嵌めによって組み込む(ステップS103)。具体的には、シェル4を加熱して熱膨張させた状態で、シェル4の内側にステータコア10を挿入する。その後、シェル4の加熱を停止して、シェル4を収縮させる。これにより、非磁性フィルム3は、ステータコア10の外周面とシェル4の内周面とに挟まれた状態となる。
 上記の通り、非磁性フィルム3がPETで構成されている場合には、焼嵌め温度を150℃以下に設定する必要がある。一方、非磁性フィルム3がPENで構成されている場合には、焼嵌め温度を150℃以上に設定可能である。
 一方、ロータ2は、ロータコア20のシャフト孔24にシャフト21を嵌合させ、磁石挿入孔22に永久磁石23を挿入することにより組み立てる。そして、このロータ2を、シェル4に組み込まれたステータコア10の内側に挿入する(ステップS104)。その後、ロータ2のシャフト21に軸受および圧縮機構をそれぞれ取り付ける(ステップS105)。さらに、シェル4に蓋などを装着して、シェル4の内部を密閉する(ステップS106)。これにより、シェル4に取り付けられた電動機100が製造される。
 この製造方法によれば、チューブ形状の非磁性フィルム3をステータコア10に被せたのち、ステータコア10をシェル4に組み込むため、簡単な方法で、非磁性フィルム3をステータコア10とシェル4との間に配置することができる。
 なお、上記の説明では、ステータ1をシェル4に組み込んだ後(ステップS103)、ステータ1の内側にロータ2を取り付けたが(ステップS104)、ステータ1の内側にロータ2を挿入した後に、ステータ1をシェル4に組み込んでもよい。また、軸受の外径がロータ2の外径よりも小さい場合には、ロータ2のシャフト21に予め軸受を取り付けてから、ステータ1の内側にロータ2を挿入してもよい。
<実施の形態の効果>
 以上説明したように、本発明の実施の形態1では、ステータ1の外周面とシェル4の内周面との間に非磁性フィルム3が配置されているため、ステータ1からシェル4への漏れ磁束を抑制し、モータ効率を向上することができる。また、シェル4を大きくする必要がないため、電動機100の小型化に資することができる。
 また、非磁性フィルム3が、可撓性を有するチューブ形状に形成されているため、ステータ1の外側に被せるようにして取り付けることができる。そのため、電動機100の製造工程が簡単になり、製造コストを低減することができる。
 また、非磁性フィルム3が、ステータ1の外周の全域に亘って設けられているため、ステータ1からシェル4への漏れ磁束を効果的に抑制することができる。
 また、非磁性フィルム3がPETまたはPENで構成されているため、漏れ磁束を抑制すると共に、ステータコア10をシェル4に焼嵌めによって組み込む際の熱に対する十分な耐久性が得られる。
 また、非磁性フィルム3をPETで構成し、厚さを75μm~300μm(0.15≦T/G≦0.6)とすることにより、製造コストを増加させずに漏れ磁束を効果的に抑制することができる。
 また、非磁性フィルム3をPENで構成し、厚さを12μm~250μm(0.024≦T/G≦0.5)とすることにより、製造コストを増加させずに漏れ磁束を抑制することができる。
 また、電動機100の製造工程において、非磁性フィルム3をステータ1の外側に取り付け、そのステータ1をシェル4に焼嵌めによって組み込むことにより、簡単な方法で、ステータ1の外周面とシェル4の内周面との間に非磁性フィルム3を配置することができる。
実施の形態2.
 次に、本発明の実施の形態2について説明する。図8は、実施の形態2の電動機100Aの構成を示す断面図である。上述した実施の形態1では、ステータ1をシェル4に組み込む前の状態で、非磁性フィルム3がステータ1の外周面に固定されていたが、この実施の形態2では、非磁性フィルム3Aがシェル4の内周面に固定されている。
 非磁性フィルム3Aは、シェル4の内周面に例えば接着により固定される。このシェル4の内側に、ステータ1を焼嵌めによって組み込むことにより、非磁性フィルム3Aがステータ1の外周面とシェル4の内周面との間に配置された構成となる。実施の形態2の非磁性フィルム3Aの材質および厚さは、実施の形態1の非磁性フィルム3と同様である。
 非磁性フィルム3Aが予めシェル4の内周面に固定されているため、非磁性フィルム3Aとステータ1の外周面の平坦面10bとの間には、隙間が生じる。また、焼嵌めの際には、シェル4が加熱されるため、実施の形態2の非磁性フィルム3Aは、実施の形態1の非磁性フィルム3よりも高温に加熱される。
 この実施の形態2の電動機100Aにおいても、ステータ1の外周面とシェル4の内周面との間に非磁性フィルム3Aが配置されているため、ステータ1からシェル4への漏れ磁束を抑制し、モータ効率を向上することができる。実施の形態2の電動機100Aの他の構成は、実施の形態1の電動機100と同様である。
 また、実施の形態2の電動機100Aの製造方法は、非磁性フィルム3Aをステータ1の外周面ではなくシェル4の内周面に固定することを除き、実施の形態1の電動機100の製造方法と同様である。
 以上説明したように、本発明の実施の形態2では、ステータ1の外周面とシェル4の内周面との間に非磁性フィルム3Aが配置されているため、実施の形態1と同様、ステータ1からシェル4への漏れ磁束を抑制し、モータ効率を向上することができる。
実施の形態3.
 次に、本発明の実施の形態3について説明する。図9は、実施の形態2の電動機100Bの構成を示す断面図である。上述した実施の形態1では、ステータ1の外周面の全周に亘って非磁性フィルム3が固定されていたが、この実施の形態3では、ステータ1の外周面の一部である円筒面10aにのみ、非磁性フィルム3Bが固定されている。
 ステータコア10の外周面には、実施の形態1で説明したように、円筒面10aと平坦面10bとが交互に形成されている。円筒面10aはシェル4の内周面に当接するのに対し、平坦面10bとシェル4の内周面との間には隙間が形成される。この実施の形態3では、円筒面10aにのみ非磁性フィルム3Bを設けている。実施の形態3の非磁性フィルム3Bの材質および厚さは、実施の形態1の非磁性フィルム3と同様である。
 上述した実施の形態1の非磁性フィルム3はチューブ形状(図7)を有していたが、この実施の形態3の非磁性フィルム3Bは、例えば、軸線C1に平行な方向に長い帯状に形成されている。また、非磁性フィルム3Bは、ステータ1の外周面の円筒面10aに、例えば接着により固定される。あるいは、シェル4の内周面に、例えば接着により固定してもよい。
 この実施の形態3の電動機100Bにおいても、ステータ1の外周面(円筒面10a)とシェル4の内周面との間に非磁性フィルム3Bが配置されているため、ステータ1からシェル4への漏れ磁束を抑制し、モータ効率を向上することができる。また、ステータ1の外周面の一部にのみ非磁性フィルム3Bが形成されるため、非磁性フィルム3Bを構成するための材料が少なくて済む。実施の形態3の電動機100Bの他の構成は、実施の形態1の電動機100と同様である。
 また、実施の形態3の電動機100Bの製造方法は、帯状の非磁性フィルム3Bをステータ1の円筒面10a(またはシェル4の内周面)に固定することを除き、実施の形態1の電動機100の製造方法と同様である。
 以上説明したように、本発明の実施の形態3では、ステータ1の外周面の一部(円筒面10a)とシェル4の内周面との間に非磁性フィルム3Bが配置されているため、実施の形態1と同様、ステータ1からシェル4への漏れ磁束を抑制し、モータ効率を向上することができる。加えて、非磁性フィルム3Bを構成するための材料が少なくて済む。
<スクロール圧縮機>
 次に、上述した各実施の形態の電動機を適用したスクロール圧縮機について説明する。図10は、実施の形態1の電動機100を備えたスクロール圧縮機500の構成を示す断面図である。なお、実施の形態1の電動機100に換えて、実施の形態2,3の電動機100A,100Bを用いてもよい。
 スクロール圧縮機500は、密閉容器502内に、圧縮機構510と、圧縮機構510を駆動する電動機100と、圧縮機構510と電動機100とを連結する主軸501と、主軸501の圧縮機構510の反対側の端部(副軸部)を支持するサブフレーム503と、密閉容器502の底部の油だめ505に貯留される冷凍機油504とを備える。
  圧縮機構510は、それぞれの板状渦巻歯の間に圧縮室を形成するように組み合わされた固定スクロール511および揺動スクロール512と、オルダムリング513と、コンプライアントフレーム514と、ガイドフレーム515とを備える。
  固定スクロール511には、密閉容器502を貫通した吸入管506が圧入されている。また、密閉容器502を貫通して、固定スクロール511の吐出ポートから吐出される高圧の冷媒ガスを外部(冷凍サイクル)に吐出する吐出管507が設けられている。
 密閉容器502は、電動機100が焼嵌めによって組み込まれる円筒状のシェル4を有している。また、密閉容器502には、電動機100のステータ1と駆動回路とを電気的に接続するためのガラス端子508が溶接により固定されている。
 上述した実施の形態1~3の電動機100(100A,100B)は、漏れ磁束を低減することによりモータ効率を向上している。そのため、スクロール圧縮機500の動力源に電動機100を用いることで、スクロール圧縮機500の運転効率を向上し、消費エネルギーを低減することができる。
 ここでは、圧縮機の一例としてスクロール圧縮機500について説明したが、上述した各実施の形態の電動機は、スクロール圧縮機500以外の圧縮機に適用してもよい。
<冷凍空調装置>
 次に、上述したスクロール圧縮機500を備えた冷凍空調装置600について説明する。図11は、冷凍空調装置600の構成を示す図である。図11に示した冷凍空調装置600は、圧縮機(スクロール圧縮機)500と、四方弁601と、凝縮器602と、減圧装置(膨張器)603と、蒸発器604と、冷媒配管605と、制御部606とを備えている。圧縮機500、凝縮器602、減圧装置603および蒸発器604は、冷媒配管605によって連結され、冷凍サイクルを構成している。
 圧縮機500は、吸入した冷媒を圧縮して高温高圧のガス冷媒として送り出す。四方弁601は、冷媒の流れ方向を切り換えるものであり、図11に示した状態では、圧縮機500から送り出された冷媒を凝縮器602に流入させる。凝縮器602は、圧縮機500から四方弁601を経て流入した冷媒と空気(例えば、室外の空気)との熱交換を行い、冷媒を凝縮して液化させて送り出す。減圧装置603は、凝縮器602から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。
 蒸発器604は、減圧装置603から送り出された低温低圧の液冷媒と空気(例えば、室内の空気)との熱交換を行い、冷媒に空気の熱を奪わせて蒸発(気化)させ、ガス冷媒として送り出す。蒸発器604で熱が奪われた空気は、図示しない送風機により、対象空間(例えば室内)に供給される。四方弁601および圧縮機500の動作は、制御部606によって制御される。
 冷凍空調装置600の圧縮機500は、各実施の形態で説明したモータ効率の高い電動機を用いているため、冷凍空調装置600の運転効率を向上し、消費エネルギーを低減することができる。
 なお、冷凍空調装置600における圧縮機500以外の構成要素は、上述した構成例に限定されるものではない。
<空気調和装置>
 次に、上述した各実施の形態の電動機を適用した空気調和装置について説明する。図12は、実施の形態1の電動機100を用いた空気調和装置400の構成を示す図である。なお、実施の形態1の電動機100に換えて、実施の形態2,3の電動機100A,100Bを用いてもよい。空気調和装置400は、室外機401と、室内機402と、これらを接続する冷媒配管403とを備える。
 室外機401は、送風機としての室外送風機405を備えている。室内機402は、室内送風機407を備えている。図12には、室外機401において冷媒を圧縮する圧縮機408も示されている。
 室外機401の室外送風機405は、各実施の形態で説明した電動機が適用される電動機100を備えている。電動機100のシャフト21(図1)には、羽根車406が取り付けられている。電動機100のロータ2(図1)が回転すると、シャフト21に取り付けられた羽根車406が回転し、室外に送風する。
 空気調和装置400が冷房運転を行う場合には、圧縮機408で圧縮された冷媒が凝縮器(図示せず)で凝縮する際に放出された熱を、室外送風機405の送風によって室外に放出する。
 上述した各実施の形態の電動機は、漏れ磁束を低減することによりモータ効率を向上している。そのため、電動機100を室外送風機405の動力源に用いることにより、空気調和装置400の運転効率を向上し、消費エネルギーを低減することができる。
 なお、ここでは、室外機401の室外送風機405の電動機100に、各実施の形態で説明した電動機を適用したが、室内機402の室内送風機407に各実施の形態の電動機100を適用してもよい。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良または変形を行なうことができる。
 1,1A,1B  ステータ、 10 ステータコア、 10a 円筒面、 10b 平坦面、 11 ヨーク、 12 ティース、 13 スロット、 15 巻線(コイル)、 16 空隙(エアギャップ)、 2 ロータ、 20 ロータコア、 21 シャフト、 22 磁石挿入孔、 23 永久磁石、 24 シャフト孔、 25 フラックスバリア(空隙)、 3,3A,1B 非磁性フィルム、 4 シェル、 100,100A,100B 電動機、 400 空気調和装置、 401 室外機、 402 室内機、 403 冷媒配管、 405 送風機、 406 羽根車、 500 スクロール圧縮機(圧縮機)、 501 主軸、 502 密閉容器、 510 圧縮機構、 600 冷凍空調装置。

Claims (16)

  1.  シェルの内部に配置される電動機であって、
     前記シェルの内周面に対向する外周面を有するステータと、
     前記ステータの内側に回転可能に配置されたロータと、
     前記ステータの前記外周面と前記シェルの前記内周面との間に配置された非磁性フィルムと
     を備えた電動機。
  2.  前記非磁性フィルムは、前記ステータの前記外周面の全域に亘って設けられている、
     請求項1に記載の電動機。
  3.  前記非磁性フィルムは、樹脂で構成されている、
     請求項1または2に記載の電動機。
  4.  前記非磁性フィルムは、ポリエチレンテレフタレートで構成されている、
     請求項3に記載の電動機。
  5.  前記非磁性フィルムの厚さは、75μm~300μmである、
     請求項4に記載の電動機。
  6.  前記ステータと前記ロータとの隙間をGとすると、前記非磁性フィルムの厚さTが、
     0.15≦T/G≦0.6
     を満足する、
     請求項4または5に記載の電動機。
  7.  前記非磁性フィルムは、ポリエチレンナフタレートで構成されている、
     請求項3に記載の電動機。
  8.  前記非磁性フィルムの厚さは、12μm~250μmである、
     請求項7に記載の電動機。
  9.  前記ステータと前記ロータとの隙間をGとすると、前記非磁性フィルムの厚さTが、
     0.024≦T/G≦0.5
     を満足する、
     請求項7または8に記載の電動機。
  10.  前記非磁性フィルムは、前記ステータの前記外周面に固定されている、
     請求項1から9までの何れか1項に記載の電動機。
  11.  前記非磁性フィルムは、前記シェルの前記内周面に固定されている、
     請求項1から9までの何れか1項に記載の電動機。
  12.  前記ステータの前記外周面は、前記シェルの前記内周面に当接する当接面と、前記内周面に当接しない非当接面とを有し、
     前記非磁性フィルムは、前記当接面と前記シェルの前記内周面との間に配置され、前記非当接面と前記シェルの前記内周面との間には配置されていない、
     請求項1から9までの何れか1項に記載の電動機。
  13.  シェルを有する密閉容器と、前記密閉容器内に配置された圧縮機構と、前記圧縮機構を駆動する電動機とを備え、
     前記電動機は、
     前記シェルの内周面に対向する外周面を有するステータと、
     前記ステータの内側に回転可能に配置されたロータと、
     前記ステータの前記外周面と前記シェルの前記内周面との間に配置された非磁性フィルムとを備える、
     圧縮機。
  14.  圧縮機、凝縮器、減圧装置および蒸発器を備え、
     前記圧縮機は、シェルを有する密閉容器と、前記密閉容器内に配置された圧縮機構と、前記圧縮機構を駆動する電動機とを備え、
     前記電動機は、
     前記シェルの内周面に対向する外周面を有するステータと、
     前記ステータの内側に回転可能に配置されたロータと、
     前記ステータの前記外周面と前記シェルの前記内周面との間に配置された非磁性フィルムとを備える、
     冷凍空調装置。
  15.  ステータを用意する工程と、
     前記ステータの外周面に非磁性フィルムを取り付ける工程と、
     前記ステータをシェルの内側に組み込み、前記ステータの外周面と前記シェルの内周面との間に非磁性フィルムを配置する工程と、
     前記ステータの内側にロータを取り付ける工程と
     を有する電動機の製造方法。
  16.  前記非磁性フィルムは、チューブ形状で可撓性を有しており、
     前記ステータの外周面に非磁性フィルムを取り付ける工程では、前記非磁性フィルムを前記ステータの外周面に被せるように取り付ける
     請求項15に記載の電動機の製造方法。
     
PCT/JP2016/073595 2016-08-10 2016-08-10 電動機、圧縮機、冷凍空調装置および電動機の製造方法 WO2018029818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/313,544 US10916989B2 (en) 2016-08-10 2016-08-10 Motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing motor
PCT/JP2016/073595 WO2018029818A1 (ja) 2016-08-10 2016-08-10 電動機、圧縮機、冷凍空調装置および電動機の製造方法
JP2018533369A JP6651019B2 (ja) 2016-08-10 2016-08-10 電動機、圧縮機、冷凍空調装置および電動機の製造方法
CN201680087557.0A CN109565191B (zh) 2016-08-10 2016-08-10 电动机、压缩机及制冷空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073595 WO2018029818A1 (ja) 2016-08-10 2016-08-10 電動機、圧縮機、冷凍空調装置および電動機の製造方法

Publications (1)

Publication Number Publication Date
WO2018029818A1 true WO2018029818A1 (ja) 2018-02-15

Family

ID=61162822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073595 WO2018029818A1 (ja) 2016-08-10 2016-08-10 電動機、圧縮機、冷凍空調装置および電動機の製造方法

Country Status (4)

Country Link
US (1) US10916989B2 (ja)
JP (1) JP6651019B2 (ja)
CN (1) CN109565191B (ja)
WO (1) WO2018029818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184686A (ja) * 2020-05-22 2021-12-02 富士電機株式会社 回転電機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916989B2 (en) * 2016-08-10 2021-02-09 Mitsubishi Electric Corporation Motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing motor
US11387723B2 (en) 2019-10-31 2022-07-12 Deere & Company Hot drop fastening of coated machine components
US20230075941A1 (en) * 2020-02-26 2023-03-09 Mitsubishi Electric Corporation Outdoor unit and air conditioner
US11791675B2 (en) * 2020-03-06 2023-10-17 Lc Advanced Motor Technology Corporation Housing for a rotary electric machine and associated laminations
CN111555480B (zh) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113564U (ja) * 1988-01-20 1989-07-31
JP2002044892A (ja) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd 電動機およびそれを搭載した電動圧縮機
JP2004282928A (ja) * 2003-03-17 2004-10-07 Mitsubishi Electric Corp 電動機固定子
JP2010063344A (ja) * 2008-08-06 2010-03-18 Denso Corp 燃料供給ポンプ
JP2010119157A (ja) * 2008-11-11 2010-05-27 Hitachi Industrial Equipment Systems Co Ltd 回転機
JP2013247837A (ja) * 2012-05-29 2013-12-09 Asmo Co Ltd モータ
JP2015112011A (ja) * 2015-02-10 2015-06-18 三菱電機株式会社 誘導電動機、圧縮機および冷凍サイクル装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605258U (ja) 1983-06-20 1985-01-16 トヨタ自動車株式会社 発電機
JPS60182386A (ja) * 1984-02-28 1985-09-17 Toshiba Corp 密閉形圧縮機とその組立方法
JPH02168830A (ja) 1988-12-20 1990-06-28 Toshiba Corp クローポール形同期発電機
US6189322B1 (en) * 1998-03-13 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
TW508891B (en) * 2000-02-21 2002-11-01 Misubishi Electric Corp Stator iron core of electric motor, manufacturing method thereof, electric motor, and compresor
JP2003032936A (ja) * 2001-07-16 2003-01-31 Matsushita Electric Ind Co Ltd 電動機
JP2008113492A (ja) 2006-10-30 2008-05-15 Sanden Corp 電動モータおよび電動圧縮機
JP5204433B2 (ja) * 2007-07-13 2013-06-05 日本電産テクノモータ株式会社 モータ
US7679242B2 (en) * 2007-10-03 2010-03-16 Baker Hughes Incorporated Shrink tube encapsulated magnet wire for electrical submersible motors
WO2010041301A1 (ja) * 2008-10-06 2010-04-15 株式会社日立製作所 回転電機
JP5591099B2 (ja) * 2010-12-28 2014-09-17 三菱電機株式会社 圧縮機および冷凍サイクル装置
US9647501B2 (en) * 2013-02-14 2017-05-09 Mitsubishi Electric Corporation Interior permanent magnet motor, compressor and refrigeration and air conditioning apparatus
JP5705259B2 (ja) * 2013-04-09 2015-04-22 三菱電機株式会社 回転電機のステータコア固定構造
US10916989B2 (en) * 2016-08-10 2021-02-09 Mitsubishi Electric Corporation Motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113564U (ja) * 1988-01-20 1989-07-31
JP2002044892A (ja) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd 電動機およびそれを搭載した電動圧縮機
JP2004282928A (ja) * 2003-03-17 2004-10-07 Mitsubishi Electric Corp 電動機固定子
JP2010063344A (ja) * 2008-08-06 2010-03-18 Denso Corp 燃料供給ポンプ
JP2010119157A (ja) * 2008-11-11 2010-05-27 Hitachi Industrial Equipment Systems Co Ltd 回転機
JP2013247837A (ja) * 2012-05-29 2013-12-09 Asmo Co Ltd モータ
JP2015112011A (ja) * 2015-02-10 2015-06-18 三菱電機株式会社 誘導電動機、圧縮機および冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184686A (ja) * 2020-05-22 2021-12-02 富士電機株式会社 回転電機
JP7121071B2 (ja) 2020-05-22 2022-08-17 富士電機株式会社 回転電機

Also Published As

Publication number Publication date
CN109565191A (zh) 2019-04-02
US10916989B2 (en) 2021-02-09
JPWO2018029818A1 (ja) 2019-03-28
CN109565191B (zh) 2021-04-06
US20190319509A1 (en) 2019-10-17
JP6651019B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6651019B2 (ja) 電動機、圧縮機、冷凍空調装置および電動機の製造方法
JP6537623B2 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置
WO2017119102A1 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6636144B2 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
JP6942246B2 (ja) ロータ、電動機、圧縮機および空気調和装置
WO2016056065A1 (ja) 永久磁石埋込型電動機、圧縮機、および冷凍空調機
JP7023408B2 (ja) モータ、圧縮機および空気調和装置
JP6656429B2 (ja) 固定子、電動機、圧縮機、および冷凍空調装置
JP6339103B2 (ja) 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP7150181B2 (ja) モータ、圧縮機、及び空気調和機
JP7105999B2 (ja) 電動機、圧縮機、空気調和装置および電動機の製造方法
WO2018011850A1 (ja) ロータ、電動機、送風機、圧縮機および空気調和装置
JP7130051B2 (ja) 回転子、電動機、圧縮機、及び冷凍空調装置
WO2023248466A1 (ja) ステータ、電動機、圧縮機、冷凍サイクル装置および電動機の製造方法
JP7154373B2 (ja) 電動機、圧縮機、及び空気調和機
JP7130131B2 (ja) 着磁用リング、着磁方法、着磁装置、ロータ、電動機、圧縮機および空気調和装置
WO2022254678A1 (ja) コンシクエントポール型ロータ、電動機、圧縮機、及び空気調和機
JP7258140B2 (ja) 回転子、電動機、圧縮機、及び空気調和機
WO2020170418A1 (ja) モータ、圧縮機および空気調和装置
CN115298929A (zh) 转子、电动机、压缩机、制冷循环装置及空气调节装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533369

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912699

Country of ref document: EP

Kind code of ref document: A1