WO1992005114A1 - Oxide superconductor - Google Patents

Oxide superconductor Download PDF

Info

Publication number
WO1992005114A1
WO1992005114A1 PCT/JP1991/001255 JP9101255W WO9205114A1 WO 1992005114 A1 WO1992005114 A1 WO 1992005114A1 JP 9101255 W JP9101255 W JP 9101255W WO 9205114 A1 WO9205114 A1 WO 9205114A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
oxide superconductor
composition
following
Prior art date
Application number
PCT/JP1991/001255
Other languages
English (en)
French (fr)
Inventor
Hitoshi Nobumasa
Kazuharu Shimizu
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DE69119886T priority Critical patent/DE69119886T2/de
Priority to US07/856,964 priority patent/US5372990A/en
Priority to EP91916219A priority patent/EP0502204B1/en
Publication of WO1992005114A1 publication Critical patent/WO1992005114A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/777Lanthanum, e.g. La2CuO4
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/777Lanthanum, e.g. La2CuO4
    • Y10S505/778Alkaline earth, i.e. Ca, Sr, Ba, Ra
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • Y10S505/781Noble metal, i.e. Ag, Au, Os, Ir, Pt, Ru, Rh, Pd or chromium, manganese, iron, cobalt or nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/782Bismuth-, e.g. BiCaSrCuO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/783Thallium-, e.g. Tl2CaBaCu308

Definitions

  • the present invention relates to a fusion reactor, a magnetic fluid generator, an accelerator, a rotating electric device (such as a motor or a generator), a magnetic separator, a magnetic levitation train, a magnetic levitation vehicle, a magnetic levitation elevator, a nuclear magnetic resonance tomography diagnostic apparatus.
  • magnet coil materials such as magnetic propulsion ships, electron beam exposure equipment, single crystal manufacturing equipment, various experimental equipment, and power loss in transmission lines, electrical energy storage, transformers, rectifiers, etc.
  • Suitable for various applications such as Josephson devices, SQUID devices, superconducting transistors, superconducting microwave three-dimensional circuits, and various functional materials such as infrared detection materials and magnetic shielding materials Suitable oxide Superconductor.
  • Ru Cu superconducting current flow - contains common zero dihedral, the Cu -0 2 surface and at a predetermined distance It has a layered structure in which another layer positioned as a repeating unit.
  • Such single-layer system oxide superconductor for example, B “Sr and 2 Cu 06, TA 2 B a 2 Cu 0 6, Nd 2 C u 0 4," Physica C “, vol. 166, 1990 , there is Pb 2 Sr La Cu 2 0 6+ & described on 502 pages to 512.
  • B a 0- Cu 0 - a layer comprising the B a O, a first Cu - and 02 surface, and the Y layer
  • the repeating unit consisting of the second Cu—O 2 plane and has a layered structure in the c-axis direction. Therefore, changing the aspect, the first Cu- 0 2 surface and Y layer and the second Cu - 0 units consisting of two faces, two Ba 0 - Sandouitsuchi between B a 0 layer - Cu 0 Structure.
  • this structure is referred to as a two-layer system because there are two Cu-0 planes in the unit.
  • the oxide superconductor of such a two-layer system for example, B i 2 S r 2 C at C u 2 0 8 and, "Nature", vol. 332 , March 31, 1988, pp 420-422 T _g 2 Ba 2 CaCu 2 ⁇ 8 according, "Nature", vol. 334 , July 14, 1988, YB a 2 C ⁇ 408 described on p. 141 -143, "Japanese Journal of Applied Physics ", vol. 26 , No.5, May 1987, No. L 649 ⁇ :.
  • a layer composed of SrO-B12O2-Sr0, a first Cu-O2 plane, a first Ca layer, A repeating unit composed of the second Cu—O 2 ffl, the second Ca layer, and the third Cu—O 2 plane has a layered structure in the c-axis direction.
  • the first Cu - 0 units consisting of two surfaces - 0 2 surface and the ⁇ of Ca layer and the second Cu - 0 2 surface and a second Ca layer third Cu
  • the structure is sandwiched between two S r 0 -B i 3 ⁇ 4 02 and one S r ⁇ layer.
  • this structure is referred to as a three-layer system because there are three Cu-02 planes in the unit.
  • this crystal structure as in the case of La 2 CuO 4, there is a shift of 12 unit lattices in the a and b axis directions in the Sr 0—B i ⁇ 0 2 —Sr 0 layer. . Therefore, crystallographically, the two repeating units constitute a repeating unit.
  • the present inventors analyzed the correlation between the above-mentioned Tc of the copper composite oxide superconductor and the inter-plane distance between Cu-O 2 planes in these crystal structures, and found the results as “Physica, vol. 167, 1990, pp. 515-519.
  • the blocking layer in the entire structure, Cu superconducting current flows - the distance between 0 two surfaces as a 6 or more blocks the interaction between them, further, Cu - 0 to 2 faces the carrier believed layer for imparting functions superconducting current is flow to the feed to Cu -O2 surface, also media Eti ring layer, Cu has a whole as a divalent charge - interposed between 0 dihedral by and neutralize its charge and that make it possible to form the whole of the crystal structure have both, Cu - 0 the distance between two surfaces with a layer of order to have an interaction between them as 4 a or less It is believed that there is.
  • 1 layer system oxide superconductor field ⁇ is that shown in Figure 1, two identical blocking layers La between 2 0 2 layers, one of which functions as a superconducting layer Cu 10 two faces may be viewed as Sandouitsuchi structure.
  • the two blocking layers are composed of the same B a0—Cu 0—B a0 layer. 1 of Cu- 0 2 surface and Medeie an tee ing layer Y layer and the second Cu- ⁇ 2
  • the unit consisting of the plane functions as a superconducting layer.
  • the oxide superconductor 3-layer system shown in FIG. 3 during the two S R_ ⁇ one Bi 2 0 2 _ Sr 0 layer, which is the same blocking layer, a first Cu - and 0 second surface, a first Ca layer, which is the first Medellin Ye one coating layer, a second Cu _ 0 2 surface, a second Ca layer as the second Medeie one tee ring layer, the It has a structure in which a unit consisting of the Cu-O 2 plane of No. 3 is sandwiched, and this unit functions as a superconducting layer.
  • the conventionally proposed copper composite oxide superconductor has, in its crystal structure, a superconducting layer sandwiched between two identical blocking layers.
  • This superconducting layer can be regarded as a single layer of Cu—O 2, or two (in the case of a two-layer system) or three (3 layers) with a mediating layer between each other.
  • a layer system it can be summarized as having a structure of Cu — 0 2 planes.
  • Ln 2 0z type (although, Ln is, Nd, Sm, selected from Eu and Gd)
  • the mediating layers are Ca, Sr,
  • Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb or Lu are present.
  • An object of the present invention is to increase the types of copper composite oxide superconductors, which have been conventionally found, to about 77 types to about 77 types, thereby enabling a copper composite oxide to be applied to a wider field. It is to provide an oxide superconductor.
  • Another object of the present invention is to provide a conventional copper composite oxide superconductor.
  • An object of the present invention is to provide a copper composite oxide superconductor having a higher Tc than Tc.
  • the following oxide superconductor a first blocking layer having a composition selected from the following group; a first Cu—O 2 plane; A second blocking layer having a composition different from that of the first blocking layer, and a second Cu—O 2 plane comprising a repeating unit layered in this order;
  • this superconductor is referred to as a single-layer oxide superconductor.
  • the oxide superconductor of the following a first Blocking layer having the composition selected from a group of the following, a first Cu - selected and 0 dihedral, from group b below
  • the third Cu — 0 2 plane, the second mediating layer made of an element selected from the group b below, and the fourth Cu — 0 2 plane are layered in this order. Including repeat units;
  • Ln 2 0 2 (however, Ln is, Nd, selected from S m, Eu and Gd);
  • this superconductor is referred to as a two-layer oxide superconductor.
  • the following oxide superconductor a first block having a composition selected from the following group a: A first Cu—O 2 plane, a first mediating layer composed of an element selected from group b below, a second Cu-02 plane, and an element selected from group b below.
  • a second Medeie one tee packaging layer that Do, third Cu - and 0 second surface, a second blocking layer of different composition than the selected from a group of the following, said first blocking layer, the 4 of Cu - fourth consisting of elements selected and zero dihedral, from group b below - 02 side and a third Medeie one tee ing layer consisting of elements selected from group b below, a fifth Cu A repeating unit in which the media layer and the sixth Cu—O 2 plane are layered in this order;
  • Ln 2 ⁇ 2 (where Ln is selected from Nd, Sm, Eu and Gd);
  • Group b Ca, Sr, Y, Nd, Sm, Eu, Gd, Dy ⁇
  • this superconductor is referred to as a three-layer oxide superconductor.
  • Oxide superconductor of the present invention Cu in the crystal structure - 0 dihedral face-to-face distance of shortening the Tc increases allowing the force of the Cu - 0 dihedral face-to-face distance of the is adjacent thereto It is based on the inference that there is a possibility that it may be regulated in the state of the blocking layer.
  • the blocking layer, Cu - believed to serve for supplying Kiyari ⁇ the O 2 side - at the same time Cu when blocking the interaction between 0 dihedral.
  • the blocking layers were all of the same composition.However, as long as they function as described above, even if they have different compositions, they function sufficiently as a blocking layer. It is estimated that it is possible to do so. In addition, it is assumed that the presence of blocking layers having different compositions causes some crystal distortion in the obtained crystal structure.
  • FIG. 4 figures of these three types of oxide superconductors are shown in FIG. 4, FIG. 5, and FIG.
  • the first blocking layer B ⁇ i, the first Cu—O 2 plane CH, and the first blocking layer having the composition selected from the above group are as follows.
  • Second blocking layer B of different composition! 2 , the second Cu 10 surface 2 and C 12 are located in layers in this order in the c-axis direction. This constitutes a repeating unit, and the Cu-02 plane C n (C 12 ) sandwiched between these two blocking layers Bu and B 12 is a superconducting layer.
  • the Cu — 0 2 plane located between the two blocking layers B n and B 12 is a single layer, and LM and L 12 which are the minimum units indicating superconductivity constitute a basic unit.
  • a first blocking layer B 21 formed of a composition selected from the group a - first Cu - 0 dihedral C 21, selected from the group b
  • a first mediating layer M 21 made of an element, a second Cu—O 2 plane C 22 , a second blocking layer B 22 having a composition different from that of the first blocking layer, and a third Cu -The 0 2 plane C 23 , the second mediating layer M 22 composed of an element selected from the group b, and the fourth Cu — 02 plane C 24 are layered in this order in the c-axis direction.
  • the first blocking layer having the composition selected from the above group a is selected.
  • both the first blocking layer and the second blocking layer are oriented in the direction perpendicular to the c-axis (a-axis direction and (Z or b axis direction)
  • the unit is one repeating unit in crystallography. If both the first blocking layer and the second blocking layer are shifted, and if the first booking layer and the second blocking layer have the same shift, one repetition is performed. The unit becomes the repeating unit in crystallography as it is, but if the deviation is different between the first blocking layer and the second blocking layer, the two repeating units are replaced with one repeating unit in crystallography. Become.
  • the same blocking layer is formed as in the case of the oxide superconductor conventionally discovered, that is, when the first blocking layer and the second blocking layer are the same, the basic unit described above is repeated. The unit is the same.
  • each blocking layer is not always a stoichiometric composition because of the ingress and egress of oxygen.
  • Each of the above compositions has a crystal lattice length equal to or close to the Cu-0 bond length in the Cu-02 plane. Therefore, when the entire crystal structure is formed by the method described later, the structure is secured by matching the blocking layer having these compositions with the Cu—O 2 plane.
  • the blocking layer is composed of these compositions in each superconductor, different compositions are selected for the first blocking layer and the second blocking layer.
  • the superconducting layer is sandwiched between the blocking layers of different compositions, causing distortion here, and as a result, compared with the case of sandwiching between the blocking layers of the same composition. This is because Tc becomes higher.
  • Ln may be used only one kind of the above elements may be used to select the two or more suitable in Yichun.
  • group b only one type may be selected, or two or more types may be selected.
  • the oxide superconductor of the present invention uses holes as charge carriers in any of the single-layer system, the two-layer system, and the three-layer system. Therefore, as in the case of Cu composite oxides superconductors it is already known, the hole concentration that put the Cu -0 2 side is Cu 1 per 0.0 1 above,-out preparative 0.5 following Become a superconductor.
  • the oxygen amount in the composition used is slightly shifted from the stoichiometric value, or the composition is constituted. Some cations are slightly replaced by other cations.
  • the valence of Cu in the blocking layer does not change at +1 valence.
  • the hole concentration of is ⁇
  • This supply of holes is mainly performed by controlling the amount of oxygen in the crystal structure by changing the heat treatment conditions under various oxygen partial pressures during the production of the oxide superconductor, or by controlling the amount of oxygen in the blocking layer. This is done by substituting some of the elements.
  • Such a method for controlling the hole concentration can be performed as a separate step even after the desired crystal structure is formed, so that there is no excess or deficiency of holes, and the charge balance of the entire crystal is reduced. This is particularly effective when the crystal cannot be obtained unless it is maintained, or when the range of the oxygen partial pressure in the atmosphere must be limited in order to grow the crystal.
  • the portion of + 3-valent La + 2-valent Ba, Sr, by substituting Ca or + 1-valent Na, can be supplied to the hole .
  • the hole concentration can be controlled by changing the degree of filling of atoms in the crystal structure by replacing part of Ba with Sr or Pb, thereby changing the ease of oxygen uptake.
  • the hole concentration can also be controlled by replacing Cu with A or Ga.
  • the hole concentration can also be controlled by replacing Cu with Ga or Ga.
  • the hole concentration can also be controlled by changing the combination ratio of Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu.
  • the oxide superconductor of the present invention is listed in the model of the repeating unit (Ui, U 2 , U 3 ) shown in FIGS. 4 to 6.
  • the single-layer oxide superconductors are of the following 21 types.
  • the oxide superconductor of the present invention can be manufactured by various methods.
  • it can be produced by a well-known powder mixing method.
  • it can be produced by various vapor deposition methods such as an electron beam vapor deposition method or a laser vapor deposition method capable of controlling vapor deposition in the atomic order of each element, and various sputtering methods such as a magnetron sputtering method.
  • various vapor deposition methods such as an electron beam vapor deposition method or a laser vapor deposition method capable of controlling vapor deposition in the atomic order of each element
  • various sputtering methods such as a magnetron sputtering method.
  • it can also be produced by a chemical vapor deposition method using a nitrogen compound or an organic metal, an atomization method using a nitrate or an organic acid, or a coating method using an alkoxylate or the like.
  • the laser deposition method in particular, finely controls the layer of the target composition in an oxygen atmosphere. It is particularly suitable because it can be deposited in a vacuum.
  • the laser vapor deposition method for example, “Japanese Journal of Applied Physics”, vol. 7, No. 7, July 1988, pages L1293 to L1296, and “Appl. Phys. Lett.”, Vol. 54, No. .18, May 1989, pp. 1802-1804, and "Appl. Phys. Lett", vol. 57, No. 2, July 9, 1990, 198-
  • the oxide superconductor of the present invention is manufactured by this laser deposition method, it is generally performed as follows.
  • an intended crystal structure is designed, and the respective compositions of the first blocking layer and the second blocking layer are selected. Then, each sintered body having the composition of each blocking layer is manufactured. Furthermore, Cu or Cu 0 2 sintered Ya Medeie - elements of tea packaging layer also prepared as a superconducting layer.
  • oxide superconductor In the case of a single-layer system oxide superconductor, it is sufficient to prepare a sintered body of Cu or Cu 0 2 sintered body for each blocking layer. Also, in the oxide superconductor having a two-layer system and three-layer systems, may be prepared sintered body containing the elements for Cu 0 2 and media Eti ring layer in the desired ratio constant for the superconducting layer .
  • Each of these sintered bodies is separately placed in a chamber to form a target, and a single crystal substrate of, for example, Mg 0 (100), heated to a desired temperature, is opposed to the target.
  • the chamber is placed in an oxygen atmosphere having a desired partial pressure of oxygen in the chamber, and an air having a desired strength is applied to the target. Irradiate Shima laser.
  • the laser irradiation is performed in the order of the target for the first blocking layer ⁇ the target for the superconducting layer ⁇ the target for the second blocking layer ⁇ the evening target for the superconducting layer ⁇ In this order.
  • a thin film having a repeating unit consisting of the first blocking layer, the superconducting layer, the second blocking layer, and the superconducting layer is formed on the surface of the single crystal substrate.
  • the obtained thin film is subjected to a heat treatment under a desired oxygen partial pressure to adjust the concentration of the charge carriers to form a superconductor.
  • the repeating unit In order to form this crystal structure, the repeating unit must be electrically neutral. If the entire charge of the repeating unit is not neutral, crystal growth cannot be performed as a bulk body.o
  • the obtained repeating unit is not necessarily electrically neutral, and the repetition unit must have a positive or negative charge as a whole. Become. And that can be calculated in advance from the charge of each of the constituent elements described above.
  • the repeating units of a single-layer oxide superconductor and a two-layer oxide superconductor in which the mediating layer is composed of Ca (this is referred to as Case 1)
  • the recurring unit of a two-layer oxide superconductor consisting of a Y-layer (this is referred to as Case 2)
  • the repeating unit of a three-layer oxide superconductor consisting of a Table 3 shows the calculated charge of
  • the total charge of the repeating unit was reduced to 0 by designing the constituent elements of the mediating layer and the partial replacement with other elements in the composition of each blocking layer.
  • the target composition can be selected so that
  • the repeating unit in Case 3, if the four mediating layers are composed of + divalent Ca instead of + trivalent Y, then the repeating unit The charge can be made zero as a whole.
  • Whether or not the material thus obtained has superconducting properties can be determined by cooling the material to a very low temperature and measuring its electrical resistance or susceptibility.
  • the material is determined to have superconducting properties.
  • non-superconductor material B the complex dielectric function of each of these materials was measured using a phase difference measuring device (NPDM-10000, manufactured by Nikon Corporation) under the following conditions.
  • Spectrometer M-70
  • Light source Halogen lamp
  • Detector Si, Ge, polarizer
  • Analyzer Glan Thompson
  • Analyzer rotation speed 2 times
  • Incident angle 80 °
  • Measurement wave number ⁇ 0 0 0 ⁇ 2 5 0 0 0 cm— 1
  • the symbol ⁇ indicates the real part
  • the reference symbol indicates the imaginary part.
  • the curve of the real part £ t passes through the 0 value near the wave number of 8100 cm- 1 and as apparent from FIG. 8, the curve of the imaginary part a 2 is pin wave number 8 1 0 0 cm- around 1 - shows a click value.
  • the real part £ i of the complex dielectric function of the material B, and Figure 9 the relationship between the imaginary part epsilon 2 and the measurement wave number, the inverse number of the function a * of the real part ai of the complex dielectric function, the imaginary part a 2 measurement Fig. 10 shows the relationship with the wave number.
  • the symbol ⁇ indicates the real part
  • the symbol ⁇ indicates the imaginary part.
  • the real part ⁇ 1 of the complex dielectric function has a zero value near the wavenumber of 1450 cm- 1 as shown in Fig. 9, but it is clear from Fig. 10. in like, 1 4 5 0 0 cnt near 1, clear peaks definitive the curve of the imaginary part a 2 as shown in FIG. 8 is not present. Moreover, as it is clear from the first 0 Figure, the imaginary part a 2 is shows your Dayaka peak at around 8 0 0 0 cm one 1, in Figure 9, in the near with 8000Cm- 1 £! Does not take the value 0.
  • FIG. 1 is a conceptual diagram of a conventional La 2 Cu 0 4 superconductor
  • FIG. 2 is a conceptual diagram of a conventional Ba 2 Cu 3 0 7 superconductor
  • Figure 3 is a conventional B i 2 S r 2 Ca 2 Cu 3 0 i. Superconductor concept diagram
  • Fig. 4 is a conceptual diagram of a single-layer oxide superconductor of the present invention
  • Fig. 5 is a conceptual diagram of a two-layer oxide superconductor of the present invention
  • Fig. 6 is a three-layer oxide superconductor of the present invention
  • Fig. 7 shows the real part of the complex dielectric function of an oxide superconductor.
  • FIG. 8 A graph showing the relationship between the imaginary part epsilon 2 and the measurement wave number, grayed FIG. 8 is showing the relationship between the real part a ⁇ for definitive the reciprocal function of the complex dielectric function of the oxide superconductor, and the imaginary part a 2 and the measurement wavenumber rough,
  • Figure 9 is the real part epsilon iota in the complex dielectric function of the oxide non-superconductor graph showing the relationship between the imaginary part e 2 and the measurement wave number, the first 0 Figure function reciprocal of the complex dielectric function of the oxide non-superconductor A graph showing the relationship between the real part ai and the imaginary part a 2 of the number and the measured wave number,
  • FIG. 11 is a model diagram of the crystal structure (type 114) of Example 3 which is a single-layer oxide superconductor of the present invention.
  • FIG. 12 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 3,
  • FIG. 13 is a model diagram of the crystal structure (type 11-15) of Example 8 which is a single-layer oxide superconductor of the present invention.
  • FIG. 14 is an X-ray diffraction pattern of the oxide superconductor of Example 8.
  • FIG. 15 shows an embodiment of a single-layer oxide superconductor of the present invention.
  • FIG. 16 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 9,
  • FIG. 17 is a model diagram of the crystal structure (111-type 17) of Example 10 which is a single-layer oxide superconductor of the present invention.
  • FIG. 18 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 10.
  • FIG. 19 is a model diagram of a crystal structure (type 2-6) of Example 15 which is a two-layer oxide superconductor of the present invention.
  • FIG. 20 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 15;
  • FIG. 21 is a model diagram of a crystal structure (type 2-8) of Example 1 which is a two-layer oxide superconductor of the present invention.
  • FIG. 22 is an X-ray diffraction pattern of the oxide superconductor of Example 17.
  • FIG. 23 is a model diagram of the crystal structure (type 2-11) of Example 18 which is a two-layer oxide superconductor of the present invention.
  • FIG. 24 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 18.
  • FIG. 25 is a model diagram of the crystal structure (type 3-5) of Example 27, which is the three-layer oxide superconductor of the present invention.
  • FIG. 26 is an X-ray diffraction pattern of the oxide superconductor of Example 27,
  • FIG. 27 shows an embodiment of a three-layer oxide superconductor of the present invention.
  • FIG. 28 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 30,
  • FIG. 29 is a model diagram of a crystal structure (3-20 type) of Example 32, which is a three-layer oxide superconductor of the present invention.
  • FIG. 30 is an X-ray diffraction pattern diagram of the oxide superconductor of Example 32.
  • Composition A sintered body of Pb 2 Cu Ox was obtained. This is called sintered body I.
  • the powders of S r CO 3 , La 2 (C 0 3 ) 3 ⁇ nH 20 , and Cu 0 were prepared so that the molar ratio of S r: La: Cu was 0.75: 0.25: 1 After weighing the mixture and mixing the three, the mixed powder was formed into a pellet at 500 kg / cm 2 , and the formed body was fired at 900 ° C. for 5 hours in the air.
  • composition Sr. . Sintered body of 75 La 0 .2 5 Cu Ox was obtained. This is designated as sintered body ⁇ .
  • Composition C a. 8 Y.
  • a sintered body of 2 CuC was obtained. This is called sintered body ⁇ .
  • the above sintered bodies I, n, m, and IV were separately set on a target table of a vacuum chamber, and Mg 0 (100) single crystal was placed at a position facing each of the sintered bodies.
  • the substrate was set, and the substrate was heated to 600 ° C.
  • the laser intensity was 15 O mJ / pulse.
  • the laser irradiation on the sintered body was performed as follows: sintered body 1 ⁇ sintered body ⁇ ⁇ sintered body m ⁇ sintered body w ⁇ sintered body m ⁇ sintered body ⁇ as one cycle This cycle was repeated.
  • a thin film was formed on the Mg0 substrate. After the formation of the thin film, the substrate was cooled at a rate of 20 ° C / min while flowing oxygen gas containing 8% by volume of ozone into the chamber at a flow rate of 25 ml min.
  • this thin film was the two-layer oxide superconductor referred to in the present invention.
  • Example 1 2 L i.4 Bao.4 Pbo. G Cu Ox Ca 0 .7Y0. 3 Cu Ox Bai.8 Lai.2C11 O x
  • Example 1 3 Lai. A Bao.2 Pbo.3 Cu Ox Can.1Y0. D Cu 0 x Ba 0 .0 La 0 .1 Cu Ox
  • Example 1 4 B i 2 S i'o.A Lan.1 Cu On Ca 0 .nYo.r> Cu Ox Bai.8 La n .2CU Ox
  • Example 17 7T ⁇ 1.0 S ⁇ .! .) B 3 ⁇ 4o on L a ( ) Cu 0:. Cao.95 Y 0. 05 C u 0 Ba n .9 S r 0 .1 Cu 0,
  • Example 18 Pb 3 Cu Ox Sro.7 L n .3C11 Ox Ca seemingly. ONdminister. T Cu 0, Lai.8 Bao.2 Cu 0, Example 19 9 Pbn. R llo .-, Ox S r 0 .. .5 La 0 n Cu Ox Ca 0 a Y 0. 2 Cu 0, Bi 2 Sr La Cu 0:. example 2 0 Lai R Ba n .2 Cu 0 x Can.9 S r () .1 Cu Ox Nd ,. 6 Ce 0. Cu 0,
  • Example 2 3 IT ⁇ 2 Ba ,, 8 La "2 Cu 0:.... Can.05 S ⁇ 05 CU 0 x Eui fiCeo iCu Ox
  • Example 2 6 Lao. ABao. IPb 0 . 3 Cu O x Cao.7Y0. 3 Cu Ox Ba 0 .9 S r 0 .1 Cu 3 0x
  • Example 3 2 P bo. 8 C t . 5 S r ". 5 La 0. SOx Ca 0 .7Y0. 3 Cu Ox Ba 2 Cu Ox
  • Example 34 Bi ,. R Pb remedy. OOx S ro.95 B ao.05 Cu 0: Ca household .9Y0.! . Cu Ox Smi G Ce 0 .1 Cu 0:..
  • Example 3 5 Pb Cu () r.Ox S r n .5 La n .5 Cu Ox Ca Cu Ox Eui e Ce n .4 Cu 0:
  • each of these sintered bodies was targeted, and a thin film was formed on the substrate shown in Table 3-(1) and (2) by laser vapor deposition.
  • the thin film was subjected to a heat treatment under an oxygen partial pressure in the same manner as in Example 1.
  • the target was irradiated with excimer laser during thin film formation by repeating the cycle shown in Table 3- (1) and (2).
  • Tables 3-(1) and (2) show the overall composition of the obtained thin film, and Tables 3 (1) and (2) also show models of the crystal structure from the X-ray diffraction pattern.
  • Type Irradiation cycle model Example 2 Sr Ti 0 3 (La, Ba, Pb) 2 (Ba, La) 2 Cu 3 0 8. 3 1 1
  • Example 3 Sr Ti 0 3 (Bi, Pb) 2 Sr 2 La 2 Cu 2 O 10 ⁇ - m- preparative ⁇ ⁇ 1 -.
  • 4 example 4 Sr Ti 0 3 (Bi, Pb) 2 (Sr, La) 2 Ba, La) 2 Cu 3 0io a H ⁇ I ⁇ il-'ffi 1 one 5 embodiment 5 Mr.
  • Example 21 Sr Ti 0.3 (Sm, Ce) 2 (Ba, La) z (Ca, Gd) 2 Cu s 0i 3 ⁇ ⁇ m m ⁇ u— 23
  • Example 22 Sr Ti 0 3 (Nd, Ce) 2 Sr 2 Bi 2 Ca 2 Cu 4 0 13. 8 m ⁇ n ⁇ i ⁇ n- 2- 25 example 2 ⁇ M 0 (Eu, Ce ) 2 (Ba, La) 2 T £ 2 (Ca, Sr zone 2 Cu 4 0 14 I ⁇ n- m ⁇ n ⁇ 1 l 2- 26
  • Examples 2 to 11 are single-layer oxide superconductors
  • Examples 12 to 24 are double-layer oxide superconductors. Up to 35 were three-layer oxide superconductors.
  • model diagrams of typical crystal structures of single-layer, two-layer and three-layer systems, and X-ray diffraction pattern diagrams corresponding to the structures are shown below.
  • Fig. 11 shows the model diagram of Example 3 (type 1_4)
  • Fig. 12 shows its X-ray diffraction pattern
  • Fig. 12 shows the model of Example 8 (type 1-15).
  • Fig. 13 shows the model diagram
  • Fig. 14 shows the X-ray diffraction pattern diagram
  • Fig. 15 shows the model diagram of Example 9 (111 type)
  • Fig. 16 shows the X-ray diffraction pattern diagram.
  • Fig. 17 shows the model diagram of Example 10 (models 1 to 17)
  • Fig. 18 shows its X-ray diffraction pattern diagram.
  • Fig. 19 shows the model of Example 15 (Type 2-6)
  • Fig. 20 shows its X-ray diffraction pattern
  • the model of Example 17 (Type 2-8).
  • Figure 21 shows the figure
  • Figure 22 shows the X-ray diffraction pattern
  • Figure 23 shows the model of Example 18 (2-11-1)
  • Figure 22 shows the X-ray diffraction pattern.
  • Figure 24 shows each.
  • Example 27 (type 3-5) is shown in FIG. 25, and its X-ray diffraction pattern is shown in FIG. 26.
  • Figure 27 is a model diagram of Fig. 28 shows the X-ray diffraction pattern
  • Fig. 29 shows the model of Example 32 (3-20 type)
  • Fig. 30 shows the X-ray diffraction pattern. .
  • the combination of the Cu 0 2 face of the present invention or the combination of two types of blocking layers having different compositions, two mediating layers and three Cu 0 2 faces As shown in the above, the number of types of copper composite oxide superconductors found in the past, about 20 types, can be further increased to about 77 types, enabling application to a wider range of fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書
酸化物超電導体
技術分野
本発明は、 核融合炉、 電磁流体発電機、 加速器、 回転 電気機器 (電動機や発電機など) 、 磁気分離機、 磁気浮 上列車、 磁気浮上自動車、 磁気浮上エレベータ、 核磁気 共鳴断層撮 診断装置、 磁気推進船、 電子ビーム露光装 置、 単結晶製造装置、 各種実験装置などのマグネッ トコ ィル用材料として適し、 また、 送電線、 電気エネルギー 貯蔵器、 変圧器、 整流器などの電力損失が問題になる用 途に適し、 さらに、 ジョセフソン素子、 S QU I D素子、 超電導トランジスタ、 超電導マイクロ波立体回路などの 各種素子として適し、 さらにまた、 赤外線探知材料、 磁 気遮蔽材料などの各種機能材料として適している酸化物 超電導体に^する。
背景技術
従来、 結晶構造が異なる 2 0種類ほどの銅複合酸化物 超電導体が見出されている。 そして、 これらの銅複合酸 化物超電導休は、 いずれも、 その結晶構造において、 超 電導電流が流 nる Cu — 02 面を共通して含み、 この Cu -02 面と所定の間隔を置いて位置する他の層とを 繰返し単位と 'る層状構造になっている。
たとえば、 La2Cu 04 の結晶構造の場合、 第 1図で 示すように、 : La22 層と Cu - 02 面とからなる繰返 し単位が c軸方向 (Cu — 02 面と垂直な方向) に層状 をなす構造 なっている。 観点を変えると、 2つの La2 02 層の層間に 1つの Cu - 02 面がサンドウイッチさ れた構造になっている。 以後、 前記の層間に存在する Cu 一〇2 面が 1つであるということから、 この構造を 1層系という,
なお、 この結晶構造の場合、 La202 層内で a, b軸 方向 (Cu — 02 面の面内方向) に 1 Z2単位格子分の ずれがあるため、 結晶学的には、 各 2個ずつの La202 層と Cu -02 面とが繰返し単位を構成する。
このような 1層系の酸化物超電導体には、 たとえば、 B "Sr2Cu 06 、 T A 2 B a2Cu 06 、 Nd2C u 04 や、 "Physica C", vol. 166, 1990, 第 502 〜512 頁に 記載の Pb2Sr La Cu206+& がある。
また、 Yt BazCu307 の結晶構造の場合は、 第 2図 で示すように、 B a 0— Cu 0 - B a Oからなる層と、 第 1の Cu - 02 面と、 Y層と、 第 2の Cu — 02 面と からなる繰返し単位が c軸方向に層状をなす構造になつ ている。 したがって、 観点を変えると、 第 1の Cu— 02 面と Y層と第 2の Cu — 02 面とからなる単位を、 2つ の Ba 0 - Cu 0 - B a 0層の間にサンドウイツチした 構造になっ いる。 以後、 この構造を、 前記単位内に 2 つの Cu - 0 面が存在していることから 2層系という。
なお、 この結晶構造の場合には、 前記の La2Cu 04 の場合と異なり、 a, b軸方向のずれはないので、 前記 の繰返し単位は、 結晶学的にみたそれと変わらない。
このような 2層系の酸化物超電導体には、 たとえば、 B i2 S r2 C at C u208や、 "Nature", vol. 332, March 31, 1988, 第 420〜422頁に記載の T _g 2Ba2CaCu28、 "Nature", vol. 334, July 14, 1988, 第 141 -143 頁 に記載の Y B a2 C ιΐ408、 "Japanese Journal of Applied Physics", vol. 26, No.5, May 1987, 第 L 649 〜: L651 頁に記載の B d2 Y C u307- x 、 "Materials Chemistry", vol. 7, 1982, 第 413 〜427 頁に記載の L a2- x C a 1+x C u20 (6-x) /2+s 、 "Physica C", vol. 157, 1989, 第 124 〜130 頁に記載の Pb2 S r2 (R, C a)i Cu308 + y
(R :希土類元素) がある。
さらに、 B i2 S r2C a2 C u30 i。の結晶構造の場合は、 第 3図で示すように、 S r O - B 12 O 2 - S r 0からな る層と、 第 1 の Cu - O 2 面と、 第 1 の Ca 層と、 第 2 の Cu - O 2 fflと、 第 2の Ca 層と、 第 3の Cu — 02 面とからなる繰返し単位が c軸方向に層状をなす構造に なっている。 したがって、 観点を変えると、 第 1の Cu — 02 面と第〗 の Ca 層と第 2の Cu - 02 面と第 2の Ca 層と第 3の Cu — 02 面とからなる単位を、 2つの S r 0 - B i ¾ 02 一 S r 〇層の間にサンドウイツチした 構造になっている。 以後、 この構造を、 前記単位内に 3 つの Cu - 02 面が存在していることから 3層系という。 なお、 この結晶構造の場合も、 前記の La2Cu O 4 の 場合と同様、 Sr 0— B i02 — Sr 0層内で a, b軸 方向に 1 2単位格子分のずれがある。 したがって、 結 晶学的には、 前記の繰返し単位 2個で繰返し単位を構成 することになる。
このような 3層系の酸化物超電導体には、 たとえば、 "Japanese Journal of Applied Physics , vol. 28, No.5, May 1989, 第 L 787 〜 L 790 頁に記載の Pb — B i 一 Sr - C a 一 Cu —◦系超電導体、 "Science", vol. 242, October 1988, 第 249 〜252 頁に記載の T - Pb — Sr - Ca 一 Cu —0系超電導体、 "Physical Review Letters", vol. 61, No.6, August 1988,第 750 〜753 頁に記載の T i 1 Ca„-1Ba2Cu„02 n+3 (n = 1、 2、 3 ) がある。
そして、 上記した 1層系、 2層系、 3層系の各超電導 体においては、 単位中の Cu - 02 面の数が多いものほ ど、 超電導転位温度 (Tc ) は高くなるということが知 られている。
ところで、 本発明者らは、 上記した銅複合酸化物超電 導体の Tc と、 これらの結晶構造における Cu -02 面 間の面間距離との相関を解析し、 その結果を、 "Physica , vol. 167, 1990, 第 515 〜519 頁に発表した。
そして、 そこでは、 Cu — 02 面の面間距離が短い結 晶構造のものほど、 その Tc が高い値を示すという事実 を見出した。 この現象を理由づけるために、 本発明者ら は、 超電導電流が流れる Cu — 02 面の間に介在する他 の層を、 ブロッキング層 (blocking layer) とメデイエ —ティ ング層 (mediating layer )とに分類して考察すベ きことを提案した。
この場合、 ブロッキング層は、 全体構造において、 超 電導電流が流れる Cu - 02 面間の距離を 6人以上とし てそれらの間の相互作用を遮断し、 さらに、 Cu - 02 面にキャリアを供給して Cu -O2 面に超電導電流が流 れる機能を付与するための層と考えられ、 また、 メディ エーティ ング層は、 全体として一 2価の電荷を有する Cu — 02 面の間に介在することにより、 その電荷を中 和し、 もって全体の結晶構造の形成を可能たらしめると ともに、 Cu - 02 面間の距離を 4 A以下としてそれら の間に相互作用をもたせるための層であると考えられる。
この観点に立つと、 第 1図で示した 1層系の酸化物超 電導体の場^は、 同一のブロッキング層である 2つの La202 層の間に、 超電導層として機能する 1つの Cu 一 02 面がサンドウイツチされた構造であるとみること ができる。
また、 第 2図で示した 2層系の酸化物超電導体の場合 には、 2つのブロッキング層が同一の B a 0— Cu 0— B a 0層からなり、 これらの層の間の、 第 1の Cu— 02 面とメデイエ一ティ ング層である Y層と第 2の Cu—〇2 面とからなる単位が超電導層として機能することになつ ている。
さらに、 第 3図で示した 3層系の酸化物超電導体の場 合は、 同一のブロッキング層である 2つの S r〇一Bi202 _ Sr 0層の間に、 第 1の Cu -02 面と、 第 1のメデ イエ一ティング層である第 1の Ca 層と、 第 2の Cu _ 02面と、 第 2のメデイエ一ティ ング層である第 2の Ca 層と、 第 3の Cu - O 2 面とからなる単位をサンドウイ ツチした構造になっていて、 この単位が超電導層として 機能していることになる。
このように、 本発明者らが提案した概念によれば、 従 来提案されている銅複合酸化物超電導体は、 その結晶構 造において、 2つの同一のプロッキング層の間に超電導 層がサンドウイツチされた構造とみなすことができ、 そ してこの超電導層は、 1つの Cu - O 2 面、 または互い の層間にメディエーティング層が介在する 2つ (2層系 の場合) もしくは 3つ (3層系の場合) の C u — 02 面 で構成されているものと整理することができる。
この観点に立って、 現在までに知られている銅複合酸 化物超電導体を考察すると、 上記ブロッキング層として は、
La202 型、
Ba O- Cu O-Ba 0型、
B a 0 - Cu 0— Cu O-Ba 0型、 S r 0 - B i202 - S r 0型、
B a O - T £ 2 O 2 - B a O型もしくは Ba O - T £ 0 - B a 0型、
S r 0 - Pb 0— Cu — Pb 〇 _ S r 0型、
S r 0 - (Pb, Cu)0 - S r 0型もしくは S r 0— (Pb, S r)0 - S r 0'型、 または、
Ln20z 型 (ただし、 Ln は、 Nd 、 Sm 、 Eu およ び Gd から選ばれる)
の 8種類の型が存在する。
また、 メディエーティ ング層としては、 Ca 、 S r 、
Y、 Nd 、 Sm 、 Eu 、 Gd 、 Dy 、 Ho 、 Er 、 Tm 、 Yb または Lu が存在する。
ところで、 第 1図で示した 1層系のものは、 Ln202 型のプロッキング層を含むもの以外は全て 1種類のプロ ッキング層しか有していない。 また、 第 2図や第 3図で 示した 2層系および 3層系のものは、 いずれも結晶構造 中に存在するプロッキング層は同種の 1種類のみである。 そのため、 従来の銅複合酸化物超電導体の種類は 2 0 種類ほどに限られてしまい、 産業上の利用分野が制限さ れるという二とになる。
発明の開示
本発明の目的は、 従来見出されている 2 0種類ほどの 銅複合酸化物超電導体の種類をさらに 7 7種類ほどに増 加させ、 より一層広い分野への適用を可能にする銅複合 酸化物超電導体を提供することで'ある。
本発明の他の目的は、 従来の銅複合酸化物超電導体の
Tc よりも高い Tc を有する銅複合酸化物超電導体を提 供することである。
本発明においては、 まず、 下記の酸化物超電導体: 下記の群から選ばれる組成からなる第 1のブロッキン グ層と、 第 1の Cu — 02 面と、 下記の群から選ばれる、 前記第 1のプロッキング層とは異なる組成からなる第 2 のブロッキング層と、 第 2の Cu — 02 面とがこの順序 で層状をなしている繰返し単位を含む;
Figure imgf000010_0001
B a 0— Cu 0 - B a 0
B a 0 - Cu O— Cu O - B a 0
S r 0— B i22 — S r 0
Figure imgf000010_0002
B a O - T O - Ba 0
S r O— Pb O— Cu — Pb 0— S r O
S r 〇一 (Pb, Cu)0— S r 0
S r 0 - (P b, S r)0 - S r 0 ;
が提供される。 以後、 この超電導体を 1層系酸化物超電 導体という。
また、 本発明においては、 下記の酸化物超電導体: 下記の a群から選ばれる組成からなる第 1のブロッキ ング層と、 第 1の Cu - 02 面と、 下記の b群から選ば れる元素からなる第 1のメデイエ一ティ ング層と、 第 2 の Cu — 02 面と、 下記の a群から選ばれる、 前記第 1 のブロッキング層とは異なる組成からなる第 2のブロッ キング層と、 第 3の Cu — 02 面と、 下記の b群から選 ばれる元素からなる第 2のメデイエ一ティ ング層と、 第 4の Cu — 02 面とがこの順序で層状をなしている繰返 し単位を含む ;
a群 : L a202
B a 0— Cu 0 - B a 0
Ba ϋ- Cu O-Cu O-Ba 0
S r 0— B "〇2 - S r O
B a O-T £ 2 02 一 Ba 0
Ba O-T O-Ba 0
S r 0- Pb 0 - Cu - Pb 0 - S r 0 S r 0— (Pb, Cu)0 - Sr O
S r 0— ( P b, S r)0 - S r 0
Ln202 (ただし、 Ln は、 Nd 、 S m 、 Eu および Gd から選ばれる) ;
b群 ·· Ca 、 S r 、 Y、 Nd 、 Sm 、 Eu 、 Gd、 Dy、 Ho 、 Er 、 Tm 、 Yb 、 Lu ;
が提供される。 以後、 この超電導体を 2層系酸化物超電 導体という.
さらに、 本発明においては、 下記の酸化物超電導体 : 下記の a群から選ばれる組成からなる第 1のブロッキ ング層と、 第 1の Cu — 02 面と、 下記の b群から選ば れる元素からなる第 1のメディエーティング層と、 第 2 の Cu - 02 面と、 下記の b群から選ばれる元素からな る第 2のメデイエ一ティ ング層と、 第 3の Cu — 02 面 と、 下記の a群から選ばれる、 前記第 1のブロッキング 層とは異なる組成からなる第 2のブロッキング層と、 第 4の Cu - 02 面と、 下記の b群から選ばれる元素から なる第 3のメデイエ一ティ ング層と、 第 5の Cu - 02 面と、 下記の b群から選ばれる元素からなる第 4のメデ イエ一ティ ング層と、 第 6の Cu - O 2 面とがこの順序 で層状をなしている繰返し単位を含む;
a群: L a202
B a 0— Cu 0 - B a 0
B a 0 - Cu 0 - Cu O - B a 0
S r 0 - B i202 — S r 0
B a 0— T 02 - B a 0
B a O - T O - B a 0
S r O— Pb 0 - Cu 一 Pb 0— S r 0
S r 0— (Pb, Cu)0— S r 0
S r 0— (Pb, S r)0 - S r 0
Ln22 (ただし、 Ln は、 Nd 、 Sm 、 E u および Gd から選ばれる) ;
b群: Ca 、 S r 、 Y、 Nd 、 Sm 、 Eu 、 Gd、 Dyヽ
Ho 、 E r 、 Tm 、 Yb 、 し u ; が提供される。 以後、 この超電導体を 3層系酸化物超電 導体という。
本発明の酸化物超電導体は、 結晶構造において Cu - 02 面の面間距離を短くすると Tc の上昇が可能になる 力 この Cu - 02 面の面間距離は、 これらに隣接して いるブロッキング層の状態で規制される可能性があると の推論に基づく ものである。
前述したように、 ブロッキング層は、 Cu — 02 面の 間の相互作用を遮断すると同時に Cu - O 2 面にキヤリ ァを供給する働きをするものと考えられる。
既知の銅複合酸化物超電導体ではブロッキング層は全 て同一組成のものであつたが、 しかし、 上記した働きを するものであれば、 異なる組成のものであっても充分に プロッキング層として機能することができるものと推定 される。 しかも、 異なる組成のブロッキング層が存在す ることにより、 得られる結晶構造では何らかの結晶歪み が生ずることが推測される。
まず、 これら 3種類の酸化物超電導体の図を第 4図、 第 5図および第 6図に示す。
第 4図の 1層系酸化物超電導体においては、 前記群か ら選ばれる組成からなる第 1 のプロッキング層 B】i、 第 1の Cu - O 2 面 C H、 第 1のブロッキング層とは異な る組成からなる第 2のブロッキング層 B! 2、 第 2の C u 一〇 2 面 C 12とが c軸方向にこの順序で層状に位置して おり、 これが繰返し単位 を構成し、 これら 2つのブ ロッキング層 B u、 B 12で挟まれた Cu - 02 面 C n (C 12) が超電導層になっている。 そして、 2つのプロ ッキング層 B n、 B 12の間に位置する Cu — 02 面が 1 層であり、 超電導を示す最小単位である L M、 L 12が基 本単位を構成している。
第 5図の 2層系酸化物超電導体においては、 前記 a群 から選ばれる組成からなる第 1のブロッキング層 B 21と- 第 1の Cu - 02 面 C 21と、 前記 b群から選ばれる元素 から成る第 1のメディエーティング層 M21と、 第 2の Cu - O 2 面 C 22と、 第 1のブロッキング層とは異なる 組成からなる第 2のブロッキング層 B 22と、 第 3の C u - 02 面 C 23と、 前記 b群から選ばれる元素からなる第 2のメデイエ一ティ ング層 M 22と、 さらに第 4の Cu — 02 面 C 24とが c軸方向にこの順序で層状に位置してお り、 これが繰返し単位 U2 を構成し、 第 1の Cu —〇2 面 C 2iとメデイエ一ティング層 M21と第 2の Cu - 02 面 C 22とからなる単位 S 21、 および、 第 2の Cu - O 2 面 C 23と第 2のメデイエ一ティ ング層 M22と第 4の Cu 一 02 面 C 24とからなる単位 S 22が超電導層になってい る。 そして、 この場合は、 L 21、 L 22が基本単位を構成 している。
第 6図で示した 3層系酸化物超電導体においては、 前 記 a群力、ら選ばれる組成からなる第 1のブロッキング層 B 31と、 第 1 の Cu — 02 面 C 31と、 前記 b群から選ば れる元素からなる第 1 のメディエーティ ング層 M31と、 第 2の Cu — 02 面 C 32と、 前記 b群から選ばれる元素 からなる第 2のメディエーティ ング層 M32と、 第 3の Cu - 02 面 C 33と、 第 1のブロッキング層とは異なる 組成からなる第 2のブロッキング層 B 32と、 第 4の C u 一 02 面 C 34と、 前記 b群から選ばれる元素からなる第 3のメディエーティ ング層 M33と、 第 5の Cu - 02 面 C 35と、 前記 b群から選ばれる元素からなる第 4のメデ イエ一ティ ング層 M34と、 第 6の Cu — 02 面 C 36とが c軸方向にこの順序で層状に位置しており、 これが繰返 し単位 U3 を構成し、 第 1の Cu — 02 面 C 31と第 1の メデイエ一ティ ング層 M31と第 2の Cu - 02 面 C 32と 第 2のメディエーティ ング層 M32と第 3の Cu - 02 面 C 33とからなる単位 S 31、 および、 第 4の Cu — 02 面 C 34と第 3のメデイエ一ティ ング層 M 33と第 5の C u - 02 面 C 35と第 4のメディエーティ ング層 M34と第 6の Cu - 0 2 面 C 36とからなる単位 S 32が超電導層になつ ている。 そして、 この場合は、 L 31、 L 32が基本単位を 構成している。
なお、 上記 1層系、 2層系、 3層系のいずれの場合に おいても、 第 1 のブロッキング層、 第 2のブロッキング 層のいずれもが、 c軸に垂直な方向 ( a軸方向および Z または b軸方向) にずれていない場合には、 1個の繰返 し単位がそのまま結晶学における繰返し単位となるが、 第 1のブロッキング層、 第 2のブロッキング層のいずれ か一方が a軸方向および Zまたは b軸方向にずれている 場合には、 2個の繰返し単位が結晶学における 1個の繰 返し単位となる。 また、 第 1のブロッキング層、 第 2の ブロッキング層のいずれもがずれている場合で、 かつ、 第 1のブッキング層と第 2のブロッキング層とでずれ方 が同じ場合には、 1個の繰返し単位がそのまま結晶学に おける繰返し単位となるが、 第 1のプロッキング層と第 2のブロツキク層とでずれ方が異なる場合には、 2個の 繰返し単位が結晶学における 1個の繰返し単位となる。
従来発見されている酸化物超電導体のように、 同一の ブロッキング層で形成されている場合、 すなわち、 第 1 のブロッキング層と第 2のブロッキング層とが同じ場合 には、 上述した基本単位と繰返し単位とは同じになる。
これらの各酸化物超電導体において、 それぞれのプロ ッキング層を構成している組成は、 酸素の出入りがある ので必ずしも化学量論的な組成になっているとは限らな い。
たとえば、 S r 0— B i202 - S r 0の場合、 実際に は酸素が過剰に結合していることが多く、 この層全体の 組成は、 B i2S r2〇 4+s となっている。
Ba 0 - Ύ £ 2 02 - Ba 0や Ba〇一 T 〇一BaO の場合も同様で、 これらの層全体の組成は、 それぞれ、 T £ 2 Ba204+s 、 T Ba203 + になっている。
また、 Sr 0 - Pb 0 - Cu 一 Pb 0 - S r 0の場合 も、 実際には酸素が過剰に取りこまれている場合が多く、 この層全体の組成は、 Pb2Sr2Cu 04 + δ となっている。 一方、 他の組成、 すなわち、 Ba 0 - Cu O- Ba 0 や Ba O - Cu O— Cu O- Ba ◦、 L a202 、 Sr O 一 (Pb, Cu)0— SrO、 SrO— ( P b, S r)〇一 S r 0、 Ln202 の場合には、 酸素が欠損している場台が多く、 これらの層全体の組成は、 それぞれ、 Ba2Cu 03— s、 B a2 C u204-δ ^ L a202 -« ^ 、 Ρ b, C u) S r203 - s、
(Pb, Sr)Sr203- s、 Ln202 - S となっている。
上記した各組成は、 いずれも、 その結晶格子の長さが、 Cu - 02 面における Cu — 0結合長と同じか近似して いる。 そのため、 全体の結晶構造を後述する方法で形成 する時に、 これら組成からなるプロッキング層と Cu — 02 面が適合して構造が確保される。
各超電導体において、 これらの組成でブロッキング層 を構成する場合には、 前記した第 1のプロッキング層と 第 2のプロッキング層では異なる組成のものを選択する。 理由は明確ではないが、 推定によれば、 異なる組成のブ 口ッキング層で超電導層が挟まれることにより、 ここに 歪みが生じ、 その結果、 同一組成のブロッキング層で挟 まれた場合に比べて Tc が高くなるからである。
また、 2層系および 3層系の酸化物超電導体のブロッ キング層に用いられる組成が Ln202 の場合、 Ln は、 上記元素のうちただ 1種を用いてもよく、 2種以上を適 宜に選択して用いてもよい。
同様に、 b群からはただ 1種を選択してもよく、 2種 以上を選択してもよい。
ところで、 本発明の酸化物超電導体は、 1層系、 2層 系および 3層系のいずれにおいても、 正孔 (ホール) を 電荷担体とする。 そのため、 既に知られている銅複合酸 化物超電導体の場合と同じように、 Cu -02 面におけ る正孔濃度が Cu 1個当たり 0. 0 1以上、 0. 5以下のと きに超電導体になる。
この電荷担体の濃度を上記範囲に調整するためには、 ブロッキング層を後述する方法で形成するときに、 用い る組成における酸素量を化学量論値から若干ずらしたり、 または、 その組成を構成する陽イオンの一部を他の陽ィ オンで若干置換したりする。
この場合、 ブロッキング層が Sr O-Pb 0— Cu — Pb 0— Sr 0を含む酸化物超電導体においては、 プロ ッキング層中の Cu の価数は + 1価で変化しないので、 Cu 1個当たりの正孔濃度は、 Cu の価数を + 1価とし こ δ |- する::
また、 La , B i 、 T 、 Ln (Nd 、 Sm 、 Eu 、
Gd 、 Dy 、 Ho 、 Er 、 Tm 、 Yb 、 Lu)の価数はい ずれも + 3価、 Ba 、 Sr 、 Ca の価数はいずれも + 2 価、 0の価数は一 2価として計算する。 P b の場合は、 + 2価と + 4価の価数をとりうるので、 この場合は、 + 2価と + 4価の混合価数と考えて + 3価とする。 ただし、 S r 0— P b 0 - C u 一 P b 0 - S r 0のブロッキング 層を形成するときには、 P b の価数は、 + 2価とする。
この正孔の供給は、 主として、 酸化物超電導体の製造 時に、 各種の酸素分圧下で熱処理条件を変化させること により、 結晶構造中の酸素量を制御するか、 または、 ブ 口ッキング層中の元素の一部を置換することによって行 なわれる。
たとえば、 各種酸素分圧下での熱処理の場合には、 酸 素分圧を 0. 0 0 1〜 1 0 0 0気圧の範囲で変化させなが ら、 酸素分圧が 1気圧より低い場合には約 3 0 0 °Cから 超電導体の融点未満の濃度で〗〜 1 0 0時間熱処理し、 そのまま、 液体窒素濃度まで急冷することによって酸素 欠損を生じさせて含有酸素量を減らし、 正孔濃度を減少 させる。
一方、 酸素分圧が 1気圧よりも高い場合は、 約 3 0 0 °Cから超電導体の融点未満の温度で 1〜 1 0 0時間熱処 理し、 そのまま炉内で徐冷することによって酸素欠損を 解消したり、 炉内に過剰の酸素を挿入して含有酸素量を 増やし、 正孔濃度を増大させる。 さらには、 熱処理時の 酸素雰囲気中の酸素にオゾンを混入させることにより、 酸素挿入量を大幅に増加させて正孔濃度を高めることも できる。
このような正孔濃度の制御方法は、 目的とする結晶構 造を形成した後であっても、 別工程として行なうことが できるので、 正孔の過不足がなく、 結晶全体の電荷バラ ンスが保たれていないと結晶が得られないような場合や、 結晶を生長させるためには、 雰囲気中の酸素分圧の範囲 を制限しなければならないような場合に適用してとくに 有効である。
つぎに、 ブロッキング層中の元素の一部を置換して正 孔濃度を制御する方法について説明する。
例えば、 La202 の場合は、 + 3価の La の一部を、 + 2価の Ba 、 Sr 、 Ca や、 + 1価の Na で置換する ことによって、 正孔を供給することができる。
B a 0— Cu 0 - B a 0や Ba 0— Cu 0— Cu 〇一 Ba 〇の場合は、 Ba を、 Na のような + 1価のアル力 リ金属で置換して正孔を供給したり、 Ba の一部を Sr や Pb で置換して結晶構造における原子の充塡状態を変 化させることにより、 酸素の取込みやすさを変化させた りして正孔濃度を制御することができる。 また、 Cu を A や Ga で置換することによつても正孔濃度を制御す ることができる。 また、 Cu を や Ga で置換するこ とによっても正孔濃度を制御することができる。
Sr 0 - B i 202 — Sr 〇の場合は、 + 3価の B i の 一部を + 2価の Pb で置換することによって正孔を供給 したり、 + 2価の S r の一部を + 3価の La で置換して 正孔を減少させたりして正孔濃度を制御することができ る。
Ba 0 - Ύ β 2 〇2 - Ba 0や BaO— T £ 0— BaO の場合は、 + 3価の T ^の一部を + 2価の Pb で置換し て正孔を供給したり、 + 2価の Baの一部を + 3価の La で置換して結晶構造における原子の充塡状態を変化させ ることにより酸素の取込みやすさを変化させたりして正 孔濃度を制御することができる。
S r 0 - Pb 0 - Cu 一 Pb 0— S r 0や S r 0 - (Pb, Cu)0— S r 0、 S r 0— (Pb, S r)0— S r 0 の場合は、 + 2価の S r の一部を + 3価の La で置換し て正孔を減少させたり、 S r の一部を B a や Ca で置換 して結晶構造における原子の充塡状態を変化させること により酸素の取込みやすさを変化させたりして正孔濃度 を制御することができる。
Ln202 の場合は、 + 3価の Ln の一部を、 Caや Mg などの + 2価のアル力リ土類金属で置換して正孔を供給 したり、 + 3価の Ln の一部を + 4価の Ce や Th で置 換して正孔を減少させたりして正孔濃度を制御すること ができる。
また、 2層系および 3層系の酸化物超電導体の場合に は、 メディエーティ ング層を構成する元素を前記 b群か ら選択する際に、 + 2価の Ca や S r と、 + 3価の Yや Nd 、 Sm 、 Eu 、 Gd 、 Dy 、 Ho 、 Er 、 Tm、 Yb、 Lu との組合わせ比率を変化させることよって正孔濃度 を制御することもできる。
以下に、 本発明の酸化物超電導体を、 第 4図〜第 6図 で示した繰返し単位 (Ui , U2 , U3)のモデルで列記 する。
これらは、 ブロッキング層、 Cu - 02 面、 メデイエ —ティ ング層の組合わせのモデルであつて、 ブロッキン グ層の組成表示については、 1層系における組成群、 2 層系および 3層系における a群と同じ表示になっている 力 実際には、 前記したように、 電荷担体の濃度調整の ために、 酸素量が化学量論値から若干ずれていたり、 陽 イオンが若干置換されたりしている。 また、 2層系およ び 3層系の酸化物超電導体においては、 b群から選ばれ る元素からなるメディエーティング層は Mで表示してあ る。 さらに、 1層系、 2層系および 3層系の各酸化物超 電導体は、 それぞれ、 たとえば、 " 1 — 1 6 " 、 " 2— 1 0 " 、 " 3 — 5 " のように通し番号で表示されている。
1層系酸化物超電導体は以下の 2 1種類である。
1 — 1 : B a 0 - C u 0 - B a O/C u 一 02 ZLa2
Figure imgf000022_0001
1 ー 2 : B a 0— Cu 0— Cu 0 - B a 0 / C u - 02
Figure imgf000022_0002
1 — 3 : B a 0— Cu 〇一 Cu 0 - B a 0,''Cu_ 02
Figure imgf000023_0001
(o ¾a - z o z d Σ-ο ¾a) / zo - no (〇 JS -O(JS 'qd) -o -is)
? (0 JS-O(nO ' cI) -0 JS) : 0 2 - τ zo- no/0 J s - z O a - 0 JS/'zO
一 no/ (0 JS - O(JS 'qd) —0 J S)
:· ^ ( 0 J S— 0 (n 0 'q d ) — 0 J S ) : 6 I - ΐ z0—
no/0 ¾ 3 - 0 no - o "3-0 ¾ 0
一 no/ (0 JS— O(JS 'qd) - 0 J S)
?5^^ (0 JS-0(nQ 'Qd) - 0 J S) : 8 ΐ - ΐ z 0 - no/o ¾ 9 - 0 no - o ¾g/ ^ o
一 no/ (0 -is -O(JS 'qj) —0 J S)
«^ ^ (0 JS-O(no 'qj) -0 J S ) ·· 丄 ΐ一 ΐ
ζ 0 - no/ ζ Οζ¾ 1/ ζ 0
一 no/ (0 JS-0(JS 'Qd) 一 0 J S)
): ^ (0 JS— O(n 'qd) — O JS) : 9 1— 1 zo -"0/ (o ¾a-o ^ -o ¾a) ):
^ (O Bg— 2 ? -ο ¾e) / zo- no/o J s - o qj -no - o qd— 0 J S : S ΐ - ΐ z0
一 no/o J s - zozia-o JSZ z0—
no/o J s - o qd -no - o qd— 0 JS : l - I
20 - n o
/0 Eg— o n — o no - o z0—
S2
SSiI0/I6df/JDd は (B a O - T ^ O - Ba 0) / C u - 02— 2 1 : (S r 0— (P'b, Cu)0— S r 0) または
(S r 0 - (Pb, S r)0 - S r 0) ZCu -
02/S r 0 - Pb 0 - Cu - P b 0 - S rO
/C u - O 2
2層系超電導体は以下の 2 8種類である。
2 — 1 : B a 0 - Cu 0 - Ba OZCu - 02 /M/
Cu— 02 /L a202 /Cu — 02 /M/Cu 一 02
- 2 : B a 0 - Cu 0 - Cu 0 - B a 0/C u- 02
/M/Cu 一 02 L a202 /Cu - 02 Z
M/Cu 一 02
- 3 : B a 0— Cu 0 - Cu 0 - Ba O Cu— 02
Figure imgf000025_0001
ZCu - 02 /M/Cu —〇2
- 4 : S r 0 - B i202 一 S r O/Cu - 02 ZM
/C u 一 02 XLa202 /Cu 一 02 /M/
C u - O z
- 5 : S r 0 - B i202 一 S r O/Cu 一 02 ZM /Cu- O 2 /Ba O - C u 0 - B a OZC u
Figure imgf000025_0002
- 6 : S r 0 - B i202 一 S r OZCu - 02 ZM
/C u — 02 /B aO - CuO - CuO - BaO / C M - 0 a /M/C u 一 02 寸 u§s6 OAV§/zedfJDd ss
〇a¾
=3
3 3 3
CJ o
3 o 〇 〇
o J
PQ
w) 〇
/ 〇 ¾ 〇g.り¾¾
〇 〇 〇
〇 〇 〇 3 〇 O
〇 PQ
on - 3 〇
〇 o 〇 o
O コ 3 〇 〇
\ O 〇 〇
寸 〇 〇 〇 〇 1 〇g 〇¾ 〇 〇 〇
〇gB 1 i 3
〇 〇 〇 o ^ 〇 =3 〇 3
PQ 1 P o
H 0 H ^Q PQ レ o
1 1 1
1 1 ^
〇 \ 1
〇 〇 〇
〇 〇 \ o
〇 \
\ \ o
PQ 〇 〇 〇 m 〇 〇
〇 O c 〇
Figure imgf000026_0001
) 〇 〇a3り¾¾
卜 ∞ CD CM CO
00
XI
〇〇 qd J I
0 00o〇 = n1— I " C u O-Ba OZCu - 02 /M/ Cu- 02 — 1 4 : S r 0 - Pb O-Cu- Pb 〇— Sr OZCu
- O 2 ZMZCu - O 2 / S r O - B i202 — Sr O/Cu — 02 /M/Cu 一〇2 — 1 5 : Sr O— Pb 0 - Cu— Pb O— Sr OZCu 一 02 /M/Cu 一 02 / (Ba O-T 2 02- BaO) または (BaO— T ^ O— BaO) ノ Cu — 02 /M/Cu — 02
- 1 6 : (31" 0— (?1),( 1])0— 81" 0) または
(Sr 0— (Pb, Sr)0— Sr 0) /Cu 一 02 ZMZCu - 02 ノ La202 ZCu— 02 /M/Cu — 02
- 1 7 : (31* 0— (?1),( 1])0— 81* 0) または
(Sr 0— (Pb, Sr)0- Sr 0) ZCu - 0 a ZMZCu - 02 ZB aO— C u〇一 B aO /Cu 一 02 ZMZCu — 02
- 1 8 : (Sr 0— (Pb, Cu)0— Sr 0) または
(Sr O - (Pb, Sr)0_ Sr 0) C u 一 Oz /M/Cu- 02 /BaO- CuO- CuO — Ba OZCu - 02 /M/Cu 一〇 2- 1 9 : (Sr 0— (Pb, Cu)0— Sr 0) または
(Sr 0 - (P b, S r)0 - S r 0) /Cu — 02 /M/Cu 一 02 /Sr 0-B i 202 一 Sr OZCu — 02 /M/Cu 一〇2 - 2 0 : (Sr O— (Pb, Cu)0— Sr O) または (Sr O— (Pb, S r)0 - S r O) /C 一 02 ZMZCu — 02 / (Ba 0 - T 20 a - Ba 0) または (Ba 0— T ^ O— Ba 0) XCu — 02 /M/Cu - O 2
- 2 1 : (Sr O - (Pb, Cu)0— Sr 0) または
(Sr 〇一 (Pb, S r)0 - S r 0) /Cu - 02 /M/Cu- 02 /Sr 0 - Pb 0— Cu
Figure imgf000028_0001
02
- 2 2 : Ln202 / C u 一 02 /M/Cu 一 02 Z
Figure imgf000028_0002
- 2 3 : Ln202 /Cu-02 /M/ C υ - 02/ B aO
- Cu 0 - Ba O/Cu - O 2 /M/Cu - 02
- 2 4 : Ln202 /Cu— 02 ノ MZCu— 02/BaO
- Cu 0- Cu O-Ba O/Cu — 02 /M XCu - 02
- 2 5 : Ln20 a XCu- 02 ZMZCu— 02ZSrO
- B i202 — Sr O/Cu — 02 /M/Cu - O 2
- 2 6 : Ln202 /Cu 一 02 /M/Cu 一◦ 2 Z
(BaO-T i 202 一 BaO) または (BaO -T O-Ba 0) ZCu - 02 ZMZCu 一 02
- 2 7 L n202 C u— 02 u- 02Z S rO 一 Pb 0 - Cu - Pb 0 S r 0/Cu- 02
Figure imgf000029_0001
- 2 8 : Ln202 / C u 一 02 /M/Cu - O2 /
(S r 0— (P b, C u)0 - S r O) または (S r 0 - (Pb, S r)0— S r 0) /Cu 一 02 ZMZCu - O2
3層系超電導体は以下の 2 8種類である。
3 - 1 : B a 0 - Cu 0— Ba 0/Cu — 02 /M/
Cu - O a /M/ Cn- 02 / /La202 / Cn
Figure imgf000029_0002
- 2 : Ba 0— Cu O— Cu 0— Ba O C u- 02 /M/Cu - O 2 ZMZCu— 02 /La202 Z C u - O 2 ZMZCu - O 2 /M/Cu ― 02
- 3 : B a O - C u 0— Cu O - B a 0/Cu- 02 ZMZCu - O 2 /M/Cu - O 2 /Ba 〇 — Cu O— Ba 0/Cu 一 02 /M C u 一
Figure imgf000029_0003
- 4 : S r 0 - B i202 — S r 0/Cu 一 02 /M / C u - 02 /M/Cu - 02 ZLa22 / C u - 02 ZMZCu — 02 /MZ'Cu - 02 — 5 : S r 0 - Β ί202 一 S r 0/Cu — 02 /M /Cu- 02 /M/Cu- 02 ZBaO— CuO - B a O/Cu 一 02 /M/Cu - 02 /M / C M — 02
- 6 : S r 0 - B i202 - S r O/Cu — 02 ZM ZCu— 02 /U/Ou- O z /BaO - CuO — Cu 0 - Ba O/Cu — 02 /M/Cu ―
Figure imgf000030_0001
- 7 : (BaO— T ^ 202 — BaO) または (B aO
- T £ O - Ba 0) ZCu — 02 /M/Cu - 02 /M/Cu - 02 / La202 /Cu - 02 /M/Cu — 02 MZCu - 02
- 8 : (B aO - T 202 — B aO) または (BaO
- T O - Ba 0) /C M — 02 /M/C U
Figure imgf000030_0002
Ba OZCu — 02 /M/Cu 一 02 /M/ Cu — 02
— 9 : (BaO— T ^ 202 — BaO) または (B aO
- T O - Ba 0) /Cu _ 02 /M/Cu
Figure imgf000030_0003
Cu 0 - B a O/Cu — 02 /M/Cu- 02 /M/Cu - 02
1 0 : (BaO— T 2〇2 — B aO) または (B aO - T 0 - B a 0) /Cu 一 02 /M/Cu - 0 a /M/Cu - 02 ZS r 0 - B i202 2
Figure imgf000031_0001
/Cu 一 02 ,
— 1 1 : S r 0 - Pb 0— Cu— Pb 0— Sr O/Cu
Figure imgf000031_0002
La202 /Cu - 02 ZMZCu - 02 /M
Figure imgf000031_0003
— 1 2 : Sr 0 - Pb 0 - Cu— Pb 0 - Sr O/Cu
一 02 /M/Cu - 02 /M/Cu - 02 / B a O— Cu O - B a O/Cu - O 2 ZMZ Cu - O 2 /M/Cu - O 2
— 1 3 : Sr O— Pb 0— Cu— Pb 0— Sr O/Cu
- O 2 /M/Cu 一 02 /M/Cu - O 2 / B a O - Cu 0— Cu O - B a O/Cu- 02 /M/Cu — 02 /M/Cu 一 02 — 1 4 : Sr O— Pb 0— Cu— Pb 0— Sr O/Cu
- O 2 /M/Cu - 02 /M/Cu - O 2 / Sr 0— B i202 — Sr O/Cu - 02 ZM ZCu — 02 /M/Cu - O 2
— 1 5 : Sr O - Pb 0 - Cu— Pb 0 - Sr O/Cu — 02 /M/Cu - O 2 /M/Cu - O 2 Z (B aO - T £ 20 a - B aO) または (BaO -T O-Ba 0) ZCu - O 2 ZMノ Cu 一 02 /M/Cu - O 2
— 1 6 : (Sr O— (P b, C u)0 - S r 0) または (S r 0 - (Pb, Sr)0-Sr 0) /Cu 一 02 /M/Cu - 02 /M/Cu 一 02 / La202 /Cu - 02 /M/Cu - 02 /M /Cu 一 02
- 1 7 : (Sr O— (Pb, Cu)0— Sr O) または
(S r 0 - (Pb, Sr)0- Sr 0) /Cu ― O i /M/Cu- O z ZMZCu - 02ZBaO 一 Cu O-Ba O Cu — 02 /M/Cu 一 02 /M/Cu 一 02
— 1 8 : (Sr O— (Pb, Cu)0— Sr O) または
(S r 0— (Pb, Sr)0— Sr 0) /Cu 一 02 /M/Cu- O z /M/Cu-02/BaO — Cu 0 - Cu O-Ba O Cu 一 02 /M
Figure imgf000032_0001
— 1 9 : (Sr O— (Pb, C u)0— Sr O) または
(Sr 0 - (Pb, Sr)0- Sr 0) /Cu ― 02 /M/Cu-02 /M/Cu-02 SrO - B i202 — Sr O/Cu 一〇 2 /M/Cu 一 02 ZMZCu - 02
- 2 0 : (Sr 0— (Pb, Cu)0— Sr 0) または
(Sr 〇_ ( P b, S r)0 - S r 〇) /Cu 一 02 /M/Cu - O z /M/Cu 一 02 /
(BaO-T 202 -BaO) または (BaO -T O-Ba 0) /Cu 一 02 /M/Cu 一 02 M/C u — 02
- 2 1 : (S r 0— (P b, Cu)0 - S r 0) または
(S r 0 - (Pb, S r)0 - S r O) /Cu — 02 /M/C u- 02 ZM/Cu - 02ZS rO 一 P b O— Cu — P b O— S r O C u- O 2 /M/C u 一 02 /M/Cu 一 02 2 2 : Ln202 ZCu — 02 /M/Cu — 02 ZM /Cu 一 02 ZL a202 /Cu — 02 /M/
Figure imgf000033_0001
2 3 : Ln202 /Cu 一 02 /M/Cu - 02 ZM /C u- Oz ZBa O - C u 0 - B a 0/ C u 一 02 /M/C u 一 02 /M/C - 02 一 2 4 : Ln202 /Cu 一 02 /M/Cu - 02 M
/C u 一 02 /B aO - C uO - CuO - BaO
Cu 一 02 /M/Cu 一 02 /M/Cu —
02
- 2 5 : Ln202 /Cu — 02 /M/Cu — 02 /M
/ C M - O 2 ZS r O - B i202 — S r 0/ Cu 一 02 /M/Cu - 02 /M/Cu- 02- 2 6 : Ln202 ZCu - 02 ZMZCu - 02 /M
/Cu - O z / (BaO - T £ 202 - B aO) または (B a 0— T ^ O— B a 0) C 一 02 /M/Cu - 02 /M/Cu - O 2
- 2 7 : Ln202 ZCu - 02 ZM/C u — 02 ZM
Figure imgf000034_0001
- S r O/Cu 一 02 i - O 2 /M
Figure imgf000034_0002
3 - 2 8 : Ln202 / C u - 02 u - O 2 /M
/CU- O 2/ (SrO (Pb, Cu)0— SrO) または (Sr O— (Pb, Sr)0— Sr O) / Cu - O 2 /M/Cu - O 2 /M/Cu-02 本発明の酸化物超電導体は、 いろいろな方法によって 製造することができる。
たとえば、 よく知られた粉末混合法によって製造する ことができる。 好ましくは、 各元素の原子オーダーでの 蒸着制御が可能な電子ビーム蒸着法またはレーザー蒸着 法などの各種の蒸着法や、 マグネトロンスパッタ法など の各種のスパッタ法で製造することができる。 また、 ノヽ 口ゲン化合物や有機金属などを用いる化学的気相成長法 や、 硝酸塩や有機酸などを用いる霧化法や、 アルコキシ トなどを用いる塗布法などでも製造することができる。 なお、 電子ビーム蒸着法やレーザ一蒸着法、 マグネト ロンスパッタ法、 化学的気相成長法などのように、 製造 時の雰囲気の全圧力が 1気圧以下である場合には、 その 雰囲気にオゾンを混入することによって、 前述したよう に、 超電導体中の酸素量の不足を補完することができる。
これらの製造方法のうち、 とくに、 レーザー蒸着法は、 酸素雰囲気の中で、 目的組成の層を微細にコントロール 3 して蒸着することができるので、 とくに好適である。 このレーザ一蒸着法に関しては、 例えば、 "Japanese Journal of Applied Physics", vol. 7, No.7, July 1988, 第 L1293 〜L1296 頁や、 "Appl. Phys. Lett. ", vol. 54, No.18, May 1989, 第 1802〜 1804頁や、 "Appl. Phys. Lett", vol. 57, No.2, July 9, 1990, 第 198 〜
200 頁に記載されている。
このレーザー蒸着法で本発明の酸化物超電導体を製造 する場合には、 概ね、 次のようにして行なわれる。
まず、 目的とする結晶構造が設計され、 第 1のブロッ キング層、 第 2のブロッキング層の各組成が選定される。 そして、 各プロッキング層の組成を有する各焼結体が製 造される。 また、 Cu または Cu 02 焼結体ゃメデイエ —ティ ング層の元素も超電導層用として用意される。
1層系酸化物超電導体の場合は、 各ブロッキング層用 の焼結体と Cu や Cu 02 焼結体を用意すればよい。 ま た、 2層系および 3層系の酸化物超電導体においては、 Cu 02 とメディエーティ ング層用の元素とを所望の比 率で含む焼結体を超電導層用として用意してもよい。
これらの各焼結体をチヤンバ内にそれぞれ別々に配置 してタ一ゲッ トにし、 所望の温度に加熱した、 たとえば Mg 0 ( 1 0 0 ) の単結晶基板を前記タ一ゲッ 卜に対向 して配置した状態で、 チャ ンバ内を所望の酸素分圧を有 する酸素雰囲気にして前記ターゲッ トに所望強度のェキ シマレーザーを照射する。
このとき、 レーザ一照射は、 第 1のブロッキング層用 のターゲッ ト→超電導層用のタ一ゲッ ト→第 2のブロッ キング層用のターゲッ ト→超電導層用の夕一ゲッ ト→··· という順序で行なう。
その結果、 単結晶基板の表面には、 第 1ブロッキング 層一超電導層一第 2プロッキング層—超電導層からなる 繰返し単位を有する薄膜が形成される。 その後、 得られ た薄膜を、 前記したように、 所望の酸素分圧下での熱処 理を行なうことによって、 電荷担体の濃度を調整して超 電導体にする。
なお、 この結晶構造が形成されるためには、 繰返し単 位が電気的に中性になっていることが必要である。 繰返 し単位の全体の電荷が中性になっていない場合には、 バ ルク体として結晶成長を行なうことができないからであ o
ところで、 想定した結晶構造に基づいて各層を形成し た場合、 得られる繰返し単位は必ずしも電気的に中性に なっているとは限らず、 全体として正 ·負いずれかの電 荷をもつようになる。 そして、 そのことは、 前記した各 構成元素の電価から予め計算することができる。
たとえば、 1層系の酸化物超電導体、 およびメデイエ 一ティ ング層が C a からなる 2層系酸化物超電導体の繰 返し単位 (これをケース 1 とする) 、 メデイエ一ティ ン グ層が Yからなる 2層系酸化物超電導体の繰返し単位 (これをケース 2 とする) 、 ならびに、 メデイエ一ティ ング層が Υからなる 3層系酸化物超電導体の繰返し単位 (これをケース 3 とする) のそれぞれの電荷を計算する と表 1のようになる。
No• ケース 1 ケース 2 ケース 3
1 一 1 + 1 + 3
2 一 2 0 + 2
3 一 3 一 1 + 1
4 0 + 2 + 4
5 一 1 + 1 + 3
6 - 0 + 2
7 0または- 1 +2または- -1 +4または +3
8 - 1または- -2 + 1または 0 + 3または +2
9 - 2または - 3 0または - 1 +2または + 1
1 0 0または - 1 + 2または + 1 +4または +3
1 1 一 1 + 1 + 3
1 2 一 2 0 + 2
1 3 一 3 一 1 + 1
1 4 一 1 + 1 + 3
1 5 - 1または- 2 + 1または 0 + 3または +2
1 6 一 2 0 + 2
1 7 一 3 - 1 + 1
1 8 一 4 一 2 0
1 9 一 0 + 2
2 0 - 2または- 3 0または- 1 + 2または + 1
2 - 3 - 1 + 1
1 3 したがって、 この表に基づいて、 メデイエ一ティ ング 層の構成元素や、 各ブロッキング層を構成する組成にお ける他の元素での一部置換などを設計して、 繰返し単位 の全体電荷を 0にするようにタ一ゲッ ト組成の選定を行 なうことができる。
たとえば、 ケース 3の N o . 7の繰返し単位の製造に 際しては、 4層あるメディエーティ ング層を + 3価の Y に代えて + 2価の C a で構成すれば、 繰返し単位の電荷 を全体として 0にすることができる。
このようにして得られた材料が超電導特性を有するか 否かは、 この材料を極低温にまで冷却してその電気抵抗 または帯磁率を測定することによって判定できる。
しかし、 室温下においても、 後述する方法で判定する ことができる。 その方法を以下に説明する。
すなわち、 測定試料を分光ェリプソメータにかけて、 所定の条件下で反射測定を行ない、 複素関数 £ * = ε 1 + ε 2 ι ( i は虚数単位) で示される複素誘電関数の実 部 : £! と虚部 : £ 2 を同時に求める。
この実部 と虚部 £ 2 の値を、 測定波数に対してプ ロッ トし、 描かれたその曲線において、 実部 £! の値が 0を通過するか否かを読み取る。 ど! 値が 0を通過する 材料は超電導特性を備えている。
つぎに、 前記した複素誘電関数 の逆数関数 a * ( = 1
- ) を計算する。 この場合、 この逆数関数も、 a* = ε * a 1 + a 2i ( i は虚数) で示される複素関数である。
この逆数関数 a* の実部 a i と虚部 a 2 の値を、 前記 の測定波数に対してプロッ 卜する。 虚部 a 2 について描 かれた曲線において、 超電導特性を有する材料は、 必ず、 前記複素誘電関数における ε i = 0を与える波数の近辺 の波数の位置にピークがあらわれる。 超電導特性を備え ていない材料には、 このピークは現れないか、 現れても 低波数側にシフ トし、 かつ、 ブロードになる。 したがって、 前記複素誘電関数における実部 £ i の曲 線が 0値を通過し、 かつ複素誘電関数の逆数関数におけ る虚部 a 2 の曲線が £ i = 0の波数の位置にピーク値を 有する場合には、 その材料は超電導特性を備えているも のと判定される。 たとえば、 組成が B iz S r2 C a Cu2Oy で Tc = 8 5 Kの酸化物超電導体の材料 Aと、 組成が B i2S r2Cu〇2 で 0 Kまで超電導にならない非超電導体の材料 Bとを用 意し、 これら材料について、 位相差測定装置 (NP DM — 1 0 0 0、 ニコン社製) を用い、 下記の条件下で、 各 複素誘電関数を測定した。
分光器: M— 7 0、 光源:ハロゲンランプ、 検出器: S i 、 Ge 、 偏光子、 検光子: グラン トムソン、 検 光子回転数: 2回、 入射角 : 8 0 ° 、 測定波数: Ί 0 0 0〜 2 5 0 0 0 cm—1
材料 Aの複素誘電関数 ε * の実部 、 虚部 ε 2 と測 定波数との関係を第 7図に示し、 複素誘電関数 の逆 数関数 a * の実部 a i 、 虚部 a 2 と測定波数との関係を 第 8図に示した。 図中、 〇印は実部、 參印は虚部を表す c 第 7図から明らかなように、 実部 £ t の曲線は、 波数 8 1 0 0 cm— 1付近で 0値を通り、 また第 8図から明らか なように、 虚部 a 2 の曲線は波数 8 1 0 0 cm— 1付近でピ —ク値を示している。
一方、 材料 Bの複素誘電関数 の実部 £ i、 虚部 ε 2 と測定波数との関係を第 9図に、 複素誘電関数 の逆 数関数 a * の実部 a i 、 虚部 a 2 と測定波数との関係を 第 1 0図に示す。 図中、 〇印は実部、 暴印は虚部である。
この材料 Bの場合は、 第 9図に見られるように複素誘 電関数の実部 ε 1 は波数 1 4 5 0 0 cm— 1付近で 0値にな つているが、 第 1 0図から明らかなように、 1 4 5 0 0 cnT1付近には、 第 8図で示したような虚部 a 2 の曲線に おける明瞭なピークは存在していない。 また、 第 1 0図 から明らかなように、 虚部 a 2 は 8 0 0 0 cm一1付近にお だやかなピークを示すが、 第 9図において、 8000cm—1付 近では £! は 0値をとらない。
図面の簡単な説明
第 1図は従来の La2Cu 04 超電導体の概念図、 第 2図は従来の Ba2Cu307 超電導体の概念図、 第 3図は従来の B i2S r2Ca2Cu30 i。超電導体の概念 図、
第 4図は本発明の 1層系酸化物超電導体の概念図、 第 5図は本発明の 2層系酸化物超電導体の概念図、 第 6図は本発明の 3層系酸化物超電導体の概念図、 第 7図は酸化物超電導体の複素誘電関数における実部
、 虚部 ε 2 と測定波数との関係を示すグラフ、 第 8図は酸化物超電導体の複素誘電関数の逆数関数に おける実部 a〗 、 虚部 a 2 と測定波数との関係を示すグ ラフ、
第 9図は酸化物非超電導体の複素誘電関数における実 部 ε ι 、 虚部 e 2 と測定波数との関係を示すグラフ、 第 1 0図は酸化物非超電導体の複素誘電関数の逆数関 数における実部 a i 、 虚部 a 2 と測定波数との関係を示 すグラフ、
第 1 1図は、 本発明の 1層系酸化物超電導体である実 施例 3の結晶構造 ( 1一 4型) のモデル図、
第 1 2図は、 実施例 3の酸化物超電導体の X線回折パ タ一ン図、
第 1 3図は本発明の 1層系酸化物超電導体である実施 例 8の結晶構造 ( 1 一 1 5型) のモデル図、
第 1 4図は実施例 8の酸化物超電導体の X線回折バタ 一ン図、
第 1 5図は本発明の 1層系酸化物超電導体である実施 例 9の結晶構造 ( 1 一 1 6型) のモデル図、
第 1 6図は、 実施例 9の酸化物超電導体の X線回折パ タ一ン図、
第 1 7図は本発明の 1層系酸化物超電導体である実施 例 1 0の結晶構造 ( 1 一 1 7型) のモデル図、
第 1 8図は実施例 1 0の酸化物超電導体の X線回折パ タ一ン図、
第 1 9図は本発明の 2層系酸化物超電導体である実施 例 1 5の結晶構造 ( 2 — 6型) のモデル図、
第 2 0図は、 実施例 1 5の酸化物超電導体の X線回折 パターン図、
第 2 1図は本発明の 2層系酸化物超電導体である実施 例 1 Ίの結晶構造 ( 2 — 8型) のモデル図、
第 2 2図は実施例 1 7の酸化物超電導体の X線回折パ タ一ン図、
第 2 3図は本発明の 2層系酸化物超電導体である実施 例 1 8の結晶構造 ( 2 — 1 1型) のモデル図、
第 2 4図は、 実施例 1 8の酸化物超電導体の X線回折 パターン図、
第 2 5図は本発明の 3層系酸化物超電導体である実施 例 2 7の結晶構造 ( 3 — 5型) のモデル図、
第 2 6図は実施例 2 7の酸化物超電導体の X線回折パ タ一ン図、
第 2 7図は本発明の 3層系酸化物超電導体である実施 例 3 0の結晶構造 ( 3— 1 0型) のモデル図、
第 2 8図は、 実施例 3 0の酸化物超電導体の X線回折 パターン図、
第 2 9図は本発明の 3層系酸化物超電導体である実施 例 3 2の結晶構造 (3 — 2 0型) のモデル図、
第 3 0図は実施例 3 2の酸化物超電導体の X線回折パ タ一ン図である。
発明の実施例
実施例 1
Pb 0、 Cu 0の各粉末を、 Pb : Cu のモル比が 2 : 1 となるように秤量して両者を混合し、 その混合粉を 5 0 0 kg/cm2 でペレツ ト状に成形したのち、 その成形 体を、 大気中において 8 0 0 °Cで 5時間焼成した。
組成: Pb2Cu Ox の焼結体が得られた。 これを焼結 体 I とする。
S r C O 3 、 La2 (C 03)3 · n H2 0、 Cu 0の各 粉末を、 S r : La : Cu のモル比が 0. 7 5 : 0. 2 5 : 1 となるように秤量して 3者を混合し、 その混合粉を 5 0 0 kg/cm2 でペレツ ト状に成形したのち、 その成形体 を、 大気中において 9 0 0 °Cで 5時間焼成した。
組成: S r。.75 La0.2 5 Cu Ox の焼結体が得られた。 これを焼結体 Πとする。
Ca C〇3 、 Y 2 03 、 Cu 0の各粉末を、 Ca : Y : Cu のモル比が 0. 8 : 0. 2 : 1 となるように秤量して 3者を混合し、 その混合粉を 5 0 0 kg/ cm2 でべレッ 卜 状に成形したのち、 その成形体を、 大気中において 9 0
0でで 5時間焼成した。
組成 : C a。. 8Y。. 2 C u C の焼結体が得られた。 こ れを焼結体 ΙΠとする。
L a2 (C 03)3 · n H2 0、 B a C 03 、 P b 〇、 C u Oの各粉末を、 L a : B a : P b : C u のモル比が 3 : 0. 7 5 : 0. 5 : 2 となるように秤量して 4者を混合 し、 その混合粉を 5 0 0 kg/cm2 でペレツ ト状に成形し たのち、 その成形体を、 大気中において 9 0 0 °Cで 5時 間焼成した。
組成 L a3B a0. 75 Pb0. 25 Cu2 O x の焼結体が得られ た。 これを焼結体 IVとする。
つぎに、 上記の各焼結体 I、 n、 m、 IVを真空チャ ン バのターゲッ ト台に別々にセッ 卜 し、 これら各焼結体の 対向位置に Mg 0 ( 1 0 0 ) 単結晶基板をセッ 卜 し、 こ の基板を 6 0 0 °Cに加熱した。
真空チャンバ内に 02 ガスと N 2 ◦ガスを流入し、 チ ャンバ内真空度を 5 X 1 0 4Torr (酸素分圧 2. 5 x 10— 4 Torr) に維持した状態で、 各焼結体のターゲッ 卜にェキ シマレーザーを照射した。
レーザーの強度は 1 5 O mJ/パルスとし、 焼結体の夕 —ゲッ 卜へのレーザの照射は、 焼結体 1→焼結体 Π→焼 結体 m→焼結体 w→焼結体 m→焼結体 πを 1 サイクルと し、 このサイクルを反復して行なった。
Mg 0基板の上に薄膜が形成された。 薄膜形成後、 チ ャンバの中に 8体積%のオゾンを含む酸素ガスを 2 5 ml min の流速で流しながら、 基板を 2 0 °C/min の速度で 冷却した。
得られた薄膜の全体組成は、
( P bo. 5 C Uo. 5 ) ( S r0.75 La0.25 ) 2 ( 1- a0.75 B ao. 1 9 P bo.06 ) 2 ( C ao. s Y D. 2 ) 2 C u5013. 2
であり、 X線回折スぺク トルをとつたところ、 この薄膜 の結晶構造は、 前記したモデル番号 2— 1 6と同じであ つた。
ついで、 この薄膜につき、 前記した位相差測定装置に よって室温下で複素誘電関数の実部 e i 、 虚部 e 2 を測 定したところ、 測定波数が約 9 5 0 O cnT1付近で ε I 値 は 0となり、 また、 逆数関数の虚部 a 2 の曲線も波数が 約 9 5 0 0 cnT1付近の位置にピークが観察された。
すなわち、 この薄膜は本発明でいう 2層系の酸化物超 電導体であることが確認された。
実施例 2〜 3 5
実施例 1の場合と同様にして、 粉末混合法で、 表 2— (1) 、 (2) に示した各種組成の焼結体を製造した。 表 2— ( 1 ) 焼結体 ( タ ー ゲ ッ 卜 ) の種類
IV
実施例 2 La Ba0.75 Pbu. r>Ox Cu 02 Bai.9 La0. i Cu Ox
実施例 3 B". ,iPbu. aOx Sr Cu Ox Lai. G Ba0.2 Pbo. G Cu 0:
実施例 4 Bi,. fiPb,,. BOX Sr0.7 La0. sCu Ox Bai.8 La0.2C11 On
実施例 5 Bii. GPbo. GOX S r0.7 La0.3 CU Ox Bai.7 Lao.3Cu20x
実施例 6 T .8 Pbo. Ba Cui. iOx Lai.8 Ba0.2 Cu Ox
実施例 7 T 6 ,.. 8 Pbo. lOx Ba Sr Cu,. iOx Bi,. BPbo. GOX
実施例 8 Pb3Cu Ox Sr Ba Cu Ox T £ 0. 8 Pbo.40x
実施例 9 Pbo.8 S fa. 5 Lan.5 Cui. sOx Cu Ox Lai.8 Bao.2 Cu Ox
実施例 1 0 Pbi. n S r0.5 Lao. s CU2 Ox Ba2Cu Ox
実施例 1 1 Bi2Ox Sr La Cu 0, Pbo.5CUD. SOX
実施例 1 2 L i.4 Bao.4 Pbo. G Cu Ox Ca0.7Y0. 3 Cu Ox Bai.8 Lai.2C11 Ox
実施例 1 3 Lai. a Bao.2 Pbo.3 Cu Ox Can.1Y0. d Cu 0 x Ba0.0 La0.1 Cu Ox
実施例 1 4 B i2 S i'o. A Lan.1 Cu On Ca0. nYo. r> Cu Ox Bai.8 Lan.2CU Ox
実施例 1 5 B i2 S i'u.7 Lan.: i Cu Ca0. a Yo.2 Cu Ox Ba Cu Ox
実施例 1 6 T ί 2 Bao. a Lan.1 Cu Ox Can. οΗθη. I Cu Ox Ban. a Lao.1 Cu 0„
実施例 1 7 T ^ 1. 0 S ο.!) B ¾o. on L a(). Cu 0: Cao.95 Y 0. 05 C u 0 Ban.9 S r0.1 Cu 0,
実施例 1 8 Pb3Cu Ox Sro.7 L n.3C11 Ox Ca„. oNd„. tCu 0, Lai.8 Bao.2 Cu 0, 実施例 1 9 Pbn. r llo. -,Ox S r0.5 La0. n Cu Ox Ca0. a Y 0. 2 Cu 0, Bi2Sr La Cu 0: 実施例 2 0 Lai. R Ban.2 Cu 0 x Can.9 S r().1 Cu Ox Nd,.6Ce0. Cu 0,
表 2— (2) 焼結体. ( タ ー ゲ ッ 卜 ) の種類
I I IV
実施例 2 1 I Ba,.8La0.2Cu20: Ca0. sGdo.2Cu Ox Ndi.6Ce0.4Cu Ox
実施例 2 2 I Bi Sr Cu 0, Ca Cu Ox Nt . GCe0.4Cu Ox
実施例 2 3 I T β2 Ba,,.8La„.2Cu 0: Can.05 S Γο. 05 C U 0 x Eui. fiCeo. iCu Ox
実施例 24 I Pb Cu Sr,.6Lao.4Cu20: Cao.8 Er0.2 Cu Ox Gdi. cCe0.4Cu Ox
実施例 2 5 La„.8Ba0. iPbo.3Cu 0: Ca0.7Y0. 3 Cu Ox Bai. a S r0.2Cu20x
実施例 2 6 Lao. aBao. iPb0.3Cu Ox Cao.7Y0. 3 Cu Ox Ba0.9 S r0.1 Cu30x
実施例 2 7 BizOx S r0.7 La0.3 Cu Ox Ca0.9Y0. 1 Cu 0, Bai. A La0, 1 Cu20: 実施例 2 8 Bi20x S r0.9 La0.1 Cu Ox Ca0.9Y0. i Cu Ox Bat.8 La().1 CunO: 実施例 2 9 T£ Ox Ba 0. 0 Sr0. iCu Ox Cao.95 Hoo.05 Cu 0: Bai.9 Lao. i Cu30: 実施例 3 0 Bi,. oPbo.8Sr,.7La0.2Cu20; Ca0.0Y0.1 Cu Ox T ^ 3. 2 Ba2Cu20x
実施例 3 1 Pb2. nSr,. La0. TCU20X Ca0.5 Sm0.5 Cu Ox B i2 S ri.4 Lan. B Cu20:
実施例 3 2 P bo.8 C t .5 S r„.5La0. sOx Ca0.7Y0. 3 Cu Ox Ba2Cu Ox
実施例 3 3 Bai. oLao. iCu3Ox Ca0. iGdo. aCu 0, du eCeo.4Cu Ox
実施例 34 Bi,. RPb„. oOx S ro.95 B ao.05 C u 0 : Ca„.9Y0.! Cu Ox Smi. G Ce0.1 Cu 0: 実施例 3 5 Pb Cu(). r.Ox S rn.5 Lan.5 Cu Ox Ca Cu Ox Eui. e Cen.4 Cu 0:
ついで、 実施例 1 の場合と同様にして、 これら各焼結 体をターゲッ トにし、 表 3 —(1) 、 (2) に示した基板の 上にレーザ一蒸着法で薄膜を形成し、 これら薄膜には、 実施例 1 と同様にして酸素分圧下での熱処理を行なった。 薄膜形成時におけるタ一ゲッ 卜へのエキシマレ一ザ一 の照射は、 表 3 —(1) 、 (2) に示したようなサイクルを 反復して行なつた。
得られた薄膜の全体組成を表 3 —(1) 、 (2) に示し、 また、 X線回折パターンからの結晶構造のモデルも表 3 一(1) 、 (2) に示した。
なお、 これらの薄膜につき、 実施例 1 と同様にして反 射測定を行なったところ、 全て、 複素誘電関数の実部 の曲線は 0値を通り、 かつ、 その逆数関数の虚部 a 2 の 曲線には、 前記 0値を与える波数の近辺にピークが認め られ、 超電導体であることが確認された。
表 3— ( 1 ) 基 板 の ターゲッ 卜へのレーザー 結晶構造 薄 膜 の 全 体 組 成
種 類 照射のサイクル のモデル 実施例 2 Sr Ti 03 (La, Ba, Pb)2(Ba, La)2 Cu308.3 1― 1 実施例 3 Sr Ti 03 (Bi, Pb)2 Sr2La2Cu2O10 π— m—ト ι→ 1 - 4 実施例 4 Sr Ti 03 (Bi, Pb)2(Sr, La)2 Ba, La)2 Cu30io. a H→I→il-'ffi 1一 5 実施例 5 し a A£ 03 (Bi, Pb)2(Sr, La)2(Ba, La)2 Cu40n.7 1― 6 実施例 6 Mg 0 (Ύ £, Pb)2 Ba2La2Cu2O10 m→n→i→n→ 卜 7 実施例 7 Sr Ti Oa {Ύ £, Pb)2(Bi, Pb)2(Sr, Ba)2 Sr2Cu20I2 Π→1Π-Ι→Ι→ 1 - 1 0 実施例 8 Mg 0 Pb2 (Sr, Ba)2 Ba2 (Ti, Pb)2 Cu30i2 i→i→i-ni→ 1 - 1 5 実施例 9 Sr Ti 03 (Pb, Cu) (Sr, La)2(La, Ba)2 Cu208.9 1 - 1 6 実施例 1 0 Sr Ti 03 (Pb, Cu) (Sr, La)2 Ba2Cu3Oio.! I→][→ 1 - 1 7 実施例 1 1 Sr Ti 03 (Pb, Cu) (Sr, La)4 Bi2Cu2O10.9 n→ I→H→m→ 1 - 1 9 実施例 1 2 La Ga 03 (La, Ba, Pb)2(Ba, La)2(Ca, Y)2Cu5012.5 Ι→Ε→Π→Π→ 2一 1 実施例 1 3 Sr Ti C (Ba, La)2(La, Ba, Pb)2(Ca, Y)2Cu6013.5 i→n→m→n→ 2 - 2 実施例 1 4 Nd A£ 03 B i2 (Sr, La)2(Ba, La)2(Ca, Y)2Cu50i5 Ι→Ε→Π→Ι→ 2 - 5 実施例 1 5 Mg 0 Bi2 (Sr, La)2 Ba2 (Ca, Y)2Cu60i5.7 2 - 6 実施例 1 6 Sr Ti 03 2(Ba, La)4(Ca, Ho)2 Cu50i3.5 2 -8 実施例 1 7 La A£ 03 (T , Pb) (Sr, La, Ba)4(Ca, Y)2CunOIz.5 Π→Ι→Ι→Ι→ 2 - 8 実施例 1 8 Mg 0 Pb2 (Sr, La)2 La2 (Ca, Nd)2 CU5OH E—i—ii— m— iv— m→ 2 - 1 1 実施例 1 9 Mg 0 (Pb, Cu) (Sr, La). Bi2 (Ca, Y)2CU40 . S Tv→m→n- i→n→m→ 2 - 1 9
t
実施例 2 0 Sr Ti 03 (Nd, Ce)2 (La, Ba)2(Ca, Sr)2 Ci 012 I→Εϋ → 2 - 2 2 个
个 表 3— (2) 板 の 夕一ゲッ 卜へのレ-一ザ- 結晶構造 薄 膜 の 全 体 組 成
類 照射のサイクル のモデル 実施例 21 Sr Ti 0.3 (Sm, Ce)2(Ba, La)z(Ca, Gd)2 Cus0i3 ι→ト m→u— 2一 23 実施例 22 Sr Ti 03 (Nd, Ce)2 Sr2Bi2Ca2Cu4013.8 m→n→i→n- 2― 25 実施例 2 Π M 0 (Eu, Ce)2(Ba, La)22(Ca, Srゾ 2 Cu4014 I→n— m→n→ 1 l 2― 26
1
実施例 24 Sr Ti 03 (Gd, Ce)2(Sr, La)2(Pb, Cu) (Ca, Er)2 Cu4013 2― 28 実施例 25 La Ga 03 (La, Ba, Pb)2 Ba2 (Ca, Y)4 Cu7016.5 3― 1 実施例 26 Sr Ti 0;, (La, Ba, Pb)2 Ba2 (Ca,
Figure imgf000051_0001
3 - - 2 実施例 27 Sr Ti 03 Biz (Sr, La)2(La, Ba)2(Ca, Y^Ci O .8 IV→ ni- 3 - - 5 実施例 28 Sr Ti 03 Bi2 (Sr, La)2(La, Ba)2(Ca, Y)4Cu8O20 rv→ IE— 3―一 6 実施冽 29 Nd Ga 03 T i (Ba, Sr, La)4(Ca, Ho) 4 Cu8Oig IV→ 3 - - 9 実施例 30 Sr Ti 03 (Bi, Pb)2 T 2(Ba, Sr, La)4(Ca, Y)4Cu602o.2 3 - ― 10 実施例 31 Mg 0 Pb2 ( S r, L a) ^ Bi2 (Ca, Sm)4 Cu7O20 ΠΙ→Π→ I→π— 3 - - 14 実施例 32 Mg 0 (Pb, Cu) (Sr, La) 2 Ba2T (Ca, Y) ¾ Cu6018 3 - - 20 実施例 33 Sr Ti 03 (Nd, Ce)2(Ba, La)2(Ca, Gd)i Cu8018 m→n- 1→n- 3 - -24 実施例 34 Sr Ti 0:i (Sm, Ce)2 Sr2 (B i, Pb)2(Ca, Y Cufi018 3 - -25 実施例 35 Ti 03 (Eu, Ce)2(Sr, La)2(Pb, Cu) Ca4Cu80 io.7 IV— ffi→H—卜 3 - -28
これら 3 4種類の超電導体薄膜のうち、 実施例 2 〜 1 1までは 1層系酸化物超電導体であり、 実施例 1 2 〜 2 4までは 2層系酸化物超電導体、 実施例 2 5 〜 3 5まで は 3層系酸化物超電導体であつた。
これら各超電導体のうち、 1層系、 2層系および 3層 系のそれぞれの代表的な結晶構造のモデル図と、 その構 造に対応する X線回折パターン図を以下に示す。
まず、 1層系からは、 実施例 3 ( 1 _ 4型) のモデル 図を第 1 1図、 その X線回折パターン図を第 1 2図に、 実施例 8 ( 1 — 1 5型) のモデル図を第 1 3図、 その X 線回折パターン図を第 1 4図に、 実施例 9 ( 1 一 1 6型) のモデル図を第 1 5図、 その X線回折パターン図を第 1 6図に、 そして実施例 1 0 ( 1 — 1 7型) のモデル図を 第 1 7図、 その X線回折パターン図を第 1 8図に、 それ ぞれ示す。
2層系からは、 実施例 1 5 ( 2— 6型) のモデル図を 第 1 9図、 その X線回折パターン図を第 2 0図に、 実施 例 1 7 ( 2 — 8型) のモデル図を第 2 1図、 その X線回 折パターン図を第 2 2図に、 そして実施例 1 8 ( 2 - 1 1型) のモデル図を第 2 3図、 その X線回折パターン図 を第 2 4図にそれぞれ示す。
また、 3層系からは、 実施例 2 7 ( 3 — 5型) のモデ ル図を第 2 5図に、 その X線回折パターン図を第 2 6図 に、 実施例 3 0 ( 3 — 1 0型) のモデル図を第 2 7図、 その X線回折パターン図を第 2 8図に、 そして実施例 3 2 ( 3 — 2 0型) のモデル図を第 2 9図に、 その X線回 折パターン図を第 3 0図にそれぞれ示す。
なお、 これらモデル図においても、 それぞれの結晶構 造においては、 前記したように、 実際問題としては、 電 荷担体の濃度調整のために、 酸素量の化学量論値からの 若干のずれがあったり、 陽イオンの若干の置換が施され たり している。
また、 実施例では、 本発明の酸化物超電導体の 7 7種 類のうち、 3 5種類を示したにとどまっている力、 残り のものも、 これら実施例に準じた方法で製造すること力《 できる。
このように、 本発明では 2種類の異なった組成のプロ ッキング層と 1層の C u 0 2 面との組み合わせ、 2種類 の異なった組成のブロッキング層、 1層のメディエーテ ィ ング層および 2層の C u 0 2 面の組み合わせ、 あるい は、 2種類の異なった組成のブロッキング層、 2層のメ ディエーティ ング層および 3層の C u 0 2 面の組み合わ せとすることで、 実施例にも示したように、 従来見出さ れている 2 0種類ほどの銅複合酸化物超電導体の種類を さらに 7 7種類ほどに増加させることができ、 より一層 広い分野への適用を可能とする。

Claims

請求の範囲
1. 下記の酸化物超電導体:
下記の群から選ばれる組成からなる第 1のブロッキン グ層と、 第 1の Cu — 02 面と、 下記の群から選ばれる 前記第 1のプロッキング層とは異なる組成からなる第 2 のブロッキング層と、 第 2の C u - 02 面とがこの順序 で層状をなしている繰返し単位を含む。
Figure imgf000054_0001
B a 0 - Cu 0 - B a 0
B a 0— Cu 0— Cu 0 - B a 0
S r 0 - B i20 a - S r 〇
Ba 0 - T 02 - Ba 0
Ba O-T O-Ba 0
S r 0— Pb O - Cu - Pb 0— Sr 0
S r ひ一 (Pb, Cu)0_ Sr 0
Sr 0— (Pb, Sr)0— Sr 0
2. 下記の酸化物超電導体:
下記の a群から選ばれる組成からなる第 1のプロッキ ング層と、 第 1の Cu -02 面と、 下記の b群から選ば れる元素からなる第 1のメディエーティ ング層と、 第 2 の Cu - 0 z 面と、 下記の a群から選ばれる、 前記第 1 のプロッキング層とは異なる組成からなる第 2のプロッ キング層と、 第 3の Cu -02 面と、 下記の b群から選 ばれる元素からなる第 2のメデイエ一ティ ング層と、 第 4の Cu -02 面とがこの順序で層状をなしている繰返 し単位を含む。
a群 : L a202
B a 0 - Cu 0 - B a 0
B a O - C u O - C u 0 - B a 0
S r 0 - B i202 - Sr 0
Figure imgf000055_0001
Ba O-T O-Ba 0
Sr 0 - P b 0— Cu — Pb 0— Sr 0
Sr 0 - (Pb, Cu)0 - Sr 0
S r O - (P b, S r)0— S r 0
Ln202 (ただし、 Ln は、 Nd 、 Sm 、 Eu および Gd から選ばれる)
b群 : Ca 、 Sr 、 Y、 Nd 、 Sni 、 Eu 、 Gd、 Dy、 Ho 、 Er 、 Tm 、 Yb 、 L u
3. 下記の酸化物超電導体 :
下記の a群から選ばれる組成からなる第 1のプロツキ ング層と、 第 1の Cu — 02 面と、 下記の b群から選ば れる元素からなる第 1のメディエーティ ング層と、 第 2 の Cu - 02 面と、 下記の b群から選ばれる元素からな る第 2のメディエーティ ング層と、 第 3の Cu — 02 面 と、 下記の a群から選ばれる、 前記第 1のプロッキング 層とは異なる組成からなる第 2のブロッキング層と、 第 4の Cu - 02 面と、 下記の b群から選ばれる元素から なる第 3のメディエーティ ング層と、 第 5の Cu —〇 2 面と、 下記の b群から選ばれる元素からなる第 4のメデ イエ一ティ ング層と、 第 6の Cu - 02 面とがこの順序 で層状をなしている繰返し単位を含む。
a群: L a202
B a 0— Cu 0 - B a O
B a 0— Cu 0— Cu 0 - B a 0
S r 0 - B i202 一 S r 0
Ba O-T i 2 0 a -Ba 0
Ba 0-T £ 0-Ba 0
S r 0— Pb 0— Cu - Pb 0— Sr 0
S r 0 - (Pb, Cu)0- Sr 0
Sr 0— (Pb, Sr)0— Sr 0
Ln2Oz (ただし、 Ln は、 Nd 、 Sm 、 Eu および Gd から選ばれる)
b群 : Ca 、 Sr 、 Y、 Nd 、 Sm 、 Eu 、 Gd、 Dy、
Ho 、 Er 、 Tm 、 Yb 、 Lu
PCT/JP1991/001255 1990-09-21 1991-09-20 Oxide superconductor WO1992005114A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69119886T DE69119886T2 (de) 1990-09-21 1991-09-20 Oxidischer supraleiter
US07/856,964 US5372990A (en) 1990-09-21 1991-09-20 Oxide superconductor
EP91916219A EP0502204B1 (en) 1990-09-21 1991-09-20 Oxide superconductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/252460 1990-09-21
JP25246090A JP3205997B2 (ja) 1990-09-21 1990-09-21 超電導体

Publications (1)

Publication Number Publication Date
WO1992005114A1 true WO1992005114A1 (en) 1992-04-02

Family

ID=17237691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001255 WO1992005114A1 (en) 1990-09-21 1991-09-20 Oxide superconductor

Country Status (5)

Country Link
US (1) US5372990A (ja)
EP (1) EP0502204B1 (ja)
JP (1) JP3205997B2 (ja)
DE (1) DE69119886T2 (ja)
WO (1) WO1992005114A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705457A (en) * 1994-09-13 1998-01-06 The Furukawa Electric Co., Ltd. Oxide superconductor and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680420A (ja) * 1992-08-31 1994-03-22 Mitsubishi Materials Corp 銅酸化物材料
IT1261373B (it) 1993-12-07 1996-05-20 Antonio Bianconi Superconduttori ad alta temperatura critica costituiti da eterostrutture metalliche tendenti al limite atomico.
JP3157667B2 (ja) * 1993-12-24 2001-04-16 財団法人国際超電導産業技術研究センター 酸化物超電導体およびその製造方法
WO2000058218A1 (fr) * 1999-03-26 2000-10-05 Japan Science And Technology Corporation Supraconducteur haute temperature selectivement reducteur et procede d'elaboration
DE10111938A1 (de) * 2001-03-13 2002-09-26 Merck Patent Gmbh Herstellung von Hochtemperatur-Supraleiter-Pulvern in einem Pulsationsreaktor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643011A (en) * 1987-03-25 1989-01-06 Hitachi Ltd Superconducting film and production thereof
JPS6476912A (en) * 1987-09-17 1989-03-23 Fujitsu Ltd Superconductor having lamellar structure
JPH01125878A (ja) * 1987-11-10 1989-05-18 Matsushita Electric Ind Co Ltd 薄膜多層超電導体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880773A (en) * 1987-07-25 1989-11-14 Sumitomo Electric Industries, Ltd. Superconducting material and a method for preparing the same
US5189011A (en) * 1987-07-26 1993-02-23 Sumitomo Electric Industries, Ltd. Superconducting material and method for preparing the same (Sr, γ)x (La, δ)1-x εy Cu1-y O3-z
DE3739886A1 (de) * 1987-11-25 1989-06-08 Hoechst Ag Supraleiter und verfahren zu seiner herstellung
US5019553A (en) * 1987-12-17 1991-05-28 Canon Kabushiki Kaisha Sr2 (Bi1-a Pba)x Cuy Oz metal oxide material
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors
US5073536A (en) * 1988-02-12 1991-12-17 The University Of Arkansas High temperature superconductors comprising Tl--Ca--Ba--O, Tl--Sr--Ba--Cu--O--Sr--Cu--O
US4988668A (en) * 1988-03-08 1991-01-29 International Business Machines Corporation Ti-Ca-Ba-Cu-D compositions electrically superconducting above 120 degrees K and processes for their preparation
JP2767283B2 (ja) * 1988-07-01 1998-06-18 財団法人生産開発科学研究所 Bi―Pb―Sr―Ba―Ca―Cu―O系超電導物質
US5126316A (en) * 1988-08-24 1992-06-30 E. I. Du Pont De Nemours And Company Bi2 Sr3-x Yx Cu2 O8+y superconducting metal oxide compositions
US5017554A (en) * 1988-08-24 1991-05-21 E. I. Du Pont De Nemours And Company Superconducting metal oxide Tl-Pb-Ca-Sr-Cu-O compositions and processes for manufacture and use
US5036044A (en) * 1988-09-29 1991-07-30 University Of Arkansas R-Tl-Sr-Ca-Cu-O superconductors
US5098868A (en) * 1989-10-13 1992-03-24 University Of Kansas Vanadium-based superconducting metallic oxides
US5194421A (en) * 1990-03-26 1993-03-16 Hitachi Chemical Company Bi-Pb-Sr-Mg-Ba-Ca-Cu-O oxide superconductors and production thereof
JPH04114915A (ja) * 1990-08-31 1992-04-15 Toray Ind Inc 超電導体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643011A (en) * 1987-03-25 1989-01-06 Hitachi Ltd Superconducting film and production thereof
JPS6476912A (en) * 1987-09-17 1989-03-23 Fujitsu Ltd Superconductor having lamellar structure
JPH01125878A (ja) * 1987-11-10 1989-05-18 Matsushita Electric Ind Co Ltd 薄膜多層超電導体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0502204A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705457A (en) * 1994-09-13 1998-01-06 The Furukawa Electric Co., Ltd. Oxide superconductor and method for manufacturing the same

Also Published As

Publication number Publication date
JP3205997B2 (ja) 2001-09-04
DE69119886T2 (de) 1996-11-14
EP0502204A1 (en) 1992-09-09
DE69119886D1 (de) 1996-07-04
JPH04132611A (ja) 1992-05-06
EP0502204A4 (ja) 1994-08-31
EP0502204B1 (en) 1996-05-29
US5372990A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
Lopez-Morales et al. Role of oxygen in PrBa 2 Cu 3 O 7− y: Effect on structural and physical properties
US5096882A (en) Process for controlling oxygen content of superconductive oxide, superconductive device and process for production thereof
WO1992005114A1 (en) Oxide superconductor
Salian et al. Review on the deposition, structure and properties of high entropy oxide films: current and future perspectives
Sato Co‐Mo thin films with an artificially layered structure
US5102861A (en) Superconductive materials implanted with phosphorus ions and process for preparing the same
US5354733A (en) Copper oxide superconductor containing carbonate radicals
Aoba et al. Synthesis of CxSr2Ca (n− 1) CunOz superconductors using high-pressure-synthesized Sr2Ca (n− 1) CunOy precursors (n= 2, 4)
JP2502744B2 (ja) 薄膜超電動体の製造方法
Greenblatt et al. Chemistry and Superconductivity in Thallium-Based Cuprates
JPH07206437A (ja) 超電導体およびその製造方法
Bellingeri et al. TIBCCO
JPH07206436A (ja) 超電導体およびその製造方法
Kim Synthesis and characterization of high transition temperature superconductors and of compounds related to these systems
JP2502743B2 (ja) 薄膜超電導体の製造方法
JP3206033B2 (ja) 酸化物超電導体
Pissas et al. Mössbauer studies of the series Bi2− xPbxSr2Bin− 1FenOy for x= 0.5, 1 and n= 2, 3
JPH01157406A (ja) 複合酸化物超電導体薄膜の製造方法
Poon et al. PHASE FLUCTUATION OF Pr AND Ca DOPED YBa 2 Cu 3 O 7− δ COMPOUNDS IN A MICROSCOPIC AREA
JPH0464266A (ja) 酸化物超伝導体および酸化物超伝導薄膜の製造方法
JPH0624741A (ja) 超電導体およびその製造方法
JPH04265205A (ja) 酸化物超電導体
Takayama-Muromachi Superconductivity of the Nd-Ce-Sr-Cu-0 system
DiMeo Jr Deposition and properties of bismuth strontium calcium copper oxide superconducting thin films
JPH02199056A (ja) Bi―Sr―Ca―Cu系複合酸化物超電導体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1991916219

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991916219

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991916219

Country of ref document: EP