WO1992000479A1 - Magnetventil - Google Patents

Magnetventil Download PDF

Info

Publication number
WO1992000479A1
WO1992000479A1 PCT/DE1991/000436 DE9100436W WO9200479A1 WO 1992000479 A1 WO1992000479 A1 WO 1992000479A1 DE 9100436 W DE9100436 W DE 9100436W WO 9200479 A1 WO9200479 A1 WO 9200479A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
spring
coupling
electromagnet
coupling member
Prior art date
Application number
PCT/DE1991/000436
Other languages
English (en)
French (fr)
Inventor
Helmut Rembold
Ernst Linder
Martin Müller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP91909626A priority Critical patent/EP0537175B1/de
Priority to JP3509067A priority patent/JP3004354B2/ja
Priority to US07/966,045 priority patent/US5370355A/en
Priority to DE59106170T priority patent/DE59106170D1/de
Priority to RU9192016498A priority patent/RU2068521C1/ru
Publication of WO1992000479A1 publication Critical patent/WO1992000479A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the invention relates to a solenoid valve for controlling the flow opening of a connecting line, which in particular carries fuel as a fluid, according to the preamble of claim 1.
  • a solenoid valve known from FR-A 2 171 342
  • the armature is designed as a coupling member and has an axial blind bore, which is flanged at its outlet at the edge and holds a spring plate with this border as a coupling member, which springs from that in the blind bore clamped coupling spring is acted upon.
  • valve member is acted upon axially in the direction of the coupling member by a return spring and is held in contact with the spring plate in such a way that the valve member follows the armature when the armature or the coupling member is tightened against a return spring.
  • the electromagnet When the electromagnet is not energized, the armature is reset by the return spring and the valve member with its sealing surface is pressed onto a conical seat, the armature of the coupling member being lifted from the flanged edge of the blind bore in the coupling member against the force of the coupling spring by the valve member as the armature moves further can.
  • the coupling provided there has a greater rigidity than the return spring and is to do so determines to compensate for any path differences between the armature and the valve member and thus to offer the possibility of allowing higher tolerances in the manufacture of the solenoid valve or different temperature expansion of the individual parts and still providing a high closing force.
  • the solenoid valve with the characterizing features of claim 1 has the advantage that the compression of the coupling spring after lifting the support part from its stop is damped by the federal government, so that the increase in force
  • Closing direction is delayed immediately after the sealing surface of the valve member strikes the valve seat and the bouncing tendency of the valve closing member is further reduced accordingly.
  • valve member has a short flight time during the opening movement because the armature and the coupling member were pre-accelerated before the valve part was taken along.
  • the influence of flow forces on the valve seat on the movement of the valve member is small and the quantity of the injected fuel is also small.
  • Advantageous further developments and improvements of the solenoid valve specified in patent claim 1 are represented by the measures listed in the following claims.
  • a particularly advantageous embodiment is given by that of claim 2, in which the support part is formed in a simple manner by the collar on the valve member.
  • the valve member is rigidly coupled to the coupling member in the opening direction, so that a reliable reopening of the valve is achieved under the action of the opening force.
  • the fluid part can be separated from the electromagnet part, so that the fluid does not influence the functionality of the electromagnet. This separation advantageously takes place through the configuration according to claim 6.
  • the invention is explained in more detail with reference to the figure, which represents an embodiment.
  • the figure shows the solenoid valve in longitudinal section.
  • This has a two-part valve housing 1, consisting of a metallic valve block 2 and a cap 3 placed thereon.
  • the cap covers a recess 4 in the end face of the valve block 2, which is provided with an internal thread 5 and from which a guide bore 6 axially extends through the valve block leads.
  • This guide bore 6 is designed as a stepped bore with a stepped bore part 8 of reduced diameter, which has a conical shoulder at the transition to the guide bore 6 and which forms a valve seat 9.
  • the exit of the stepped bore part 8 from the valve block 6 opens into a collecting space 10 which is formed in a lower cover 11 which is tightly connected to the valve block 6 and from which a leakage connection 12 leads away.
  • the collecting space 10 is connected to the recess 5 via a compensating bore 14 lying parallel to the guide bore 6.
  • a fluid line 17 opens into the guide bore 6 via a first annular groove 16 in the guide bore wall on the side of the annular valve seat 9 facing the recess 4. B. from a pump workspace of a fuel injection pump.
  • a second annular groove 18 is provided axially below in the stepped bore part 8, from which the further part of the fluid line 17 leads away.
  • a valve closing member 20 is tightly displaceable, which is hollow-cylindrical and has an annular shoulder 21 on its circumference with a sealing surface which can be brought into tight contact with the valve seat 9.
  • the hollow valve member is open on the side of the catch chamber and has an inwardly projecting collar 23 on the side of the recess, which is inserted through a coupling spring 24 onto the head 25 of a screw 26 inserted into the valve closing member 20 from the side of the catch chamber 10 is pressed.
  • the screw 26 is axially screwed into a coupling member 23, which is guided in a sealing manner in the recess-side part of the guide bore and, with its end face 29 facing the valve member, serves to engage a spring plate 30 within the guide bore 6 of the coupling spring 24 which is supported here.
  • the preload of the coupling spring, with which it holds the valve member 20 on the head 25 of the screw, is thus defined via the screw-in depth of the screw 26.
  • the coupling member protrudes into the recess 4 and there has a damping collar 32 which can be brought into abutment with the end face 34 of the recess 4 with its end face 33 facing the valve member.
  • the coupling member 28 is made in several parts and has an axial threaded pocket bore 36 entering from the side of the recess, into which an armature 37 is screwed and thereby firmly and tightly clamps the inner edge 38 of a plate spring.
  • the Belleville washer is coated with sealing material on the side of the end face 34 of the recess 4.
  • a spring washer with punched-out spring arms can also be used, and a sealing washer or membrane can be provided on the side of the spring or the washer facing the valve member.
  • the outer edge of the sealing washer or the coated plate spring rests on a round cord seal 41 which is embedded in a recess 42 in the end face 34.
  • an eyebolt 44 screwed into the thread 5 of the recess engages on the side of the outer edge 40 facing away from the round cord seal 41.
  • the plate spring 39 or the sealing disk or membrane subdivide the recess 4 into a magnet-side space 50 and a valve member-side space 51, which is now sealed off from the magnet-side space, so that this and the collecting space leaking fluid, for. B. fuel, which can be discharged via leak port 12.
  • This keeps the electromagnet free of fuel, which may have a corrosive effect on the metal parts and could affect the functionality of the electromagnet.
  • the compensating bore 14 ensures the free movement of the spring and the coupling member with valve member 20.
  • the end face of the core 48 is covered with a thin metal layer, so that regardless of the coercive field strength there is a small resonance force and a robust stop surface on the magnetic core is achieved.
  • the valve member 20 Due to the plate spring, which is stronger than the coupling spring 24, the valve member 20 is held in the closed position shown or brought into this closed position after the magnet has dropped.
  • the valve member 20 is slightly raised from the head 25 so that the Closing force of the plate spring 39 reaches the closing member 20 via the coupling spring preload. If the solenoid valve is to be opened, the winding 47 is excited and the armature 37 is consequently attracted, counter to the force of the plate spring 39, which is supported on the eyebolt 44. In this process, the 3 and 23 of the closing member 20 come into contact with the head 25 again and is carried along by this together with the armature 37 and the coupling member 38 rigidly connected to it.
  • the shoulder 21 of the valve member then lifts off the seat 9 and allows a flow connection between the parts of the fluid line 17 via a circumferential recess 53 on the valve closing member 20 to the side of the collecting space 10.
  • the valve closing member is essentially pressure balanced. If the solenoid valve is to be brought into the closed position, the excitation of the electromagnet is interrupted and the plate spring 39 carries out the closing movement. First, the coupling member 28 moves with the plate spring in the closing direction together with the valve member 20 until it comes into contact with the valve seat 9. In the subsequent movement, the collar 23 lifts off the head 25 so that the coupling spring is compressed and the increase in closing force acting on the closing element is determined by the increase in the preload of the coupling spring.
  • the damping collar 32 approaches the end face 34, so that the movement in the closing direction of the coupling member 25 is slowed down and the closing force is increased in a damped manner until its final value is reached when the damping collar 32 is applied to the end face 34.
  • This ensures that the solenoid valve closes securely and prevents the valve member from opening again briefly when the force is applied suddenly and thus rebounding from the valve seat during the firing process.
  • the moving mass is kept small by the elastic coupling between the coupling member 23 and the closing member 20, and it is for this reason that the damping surface on the damping collar 32 can be formed in a sufficient size.
  • the damping is improved by the fact that there is a fuel filling in the valve member-side space, which the displacement by the damping collar 32 has a greater resistance than z. B. opposed air.
  • the restoring force of the plate spring 39 served as the closing force.
  • the magnetic force is used as the closing force against an opening spring acting in the opening direction.
  • the principle of the invention is shown using the exemplary embodiment and can be implemented in various embodiments.
  • the closing spring or opening spring and magnet can also act on different sides of the valve closing element with a corresponding variation in the design.
  • a vice spring clamped z. B. act in the opening direction and act an upside-down electromagnet with axial implementation of an actuating rod in the closing direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Es wird ein Magnetventil zur Steuerung der Durchflußöffnung einer Verbindungsleitung (17), die insbesondere als Fluid Kraftstoff führt, vorgeschlagen, bei der zur Vermeidung des Zurückprellens des Ventilschließgliedes (20) bei seiner Rückführung in die Schließstellung dieses mit einem von der rückführenden Kraft beaufschlagten Koppelglied (28) elastisch gekoppelt ist, wobei das Koppelglied über einen Dämpfungsbund (32) zusätzlich bei seiner das Schließen des Ventilschließgliedes (20) bewirkenden Bewegung gedämpft wird.

Description

Magnetventil
Stand der Technik
Die Erfindung geht von einem Magnetventil zur Steuerung der Durchflußöffnung einer Verbindungsleitung, die insbesondere als Fluid Kraftstoff führt, gemäß der Gattung des Patentanspruchs 1 aus. Bei einem solchen durch die FR-A 2 171 342 bekannten Magnetventil ist der Anker als Koppelglied ausgebildet und weist eine axiale Sackbohrung auf, die an ihrem Austritt am Rand umgebordelt ist und mit diesem Bordelrand als Koppelglied einen Federteller hält, der von der in der Sackbohrung eingespannten Koppelfeder beaufschlagt ist. Das Ventilglied wird von einer Rückstellfeder axial in Richtung Koppelglied beaufschlagt und so in Anlage an den Federteller gehalten, derart, daß beim Anzug des Ankers beziehungsweise des Koppelgliedes entgegen einer Rückstellfeder das Ventilgiied dem Anker folgt. Bei nicht erregtem Elektromagneten wird der Anker von der Rückstellfeder zurückgestellt und das Ventilglied mit seiner Dichtfläche auf einen konischen Sitz gepreßt, wobei bei sich weiterbewegendem Anker der Federteller des Koppelgliedes von dem umgebördelten Rand der Sackbohrung im Koppelglied entgegen der Kraft der Koppelfeder durch das Ventilglied abgehoben werden kann. Die dort vorgesehene Koppel hat eine größere Steifigkeit als die Rückstellfeder und ist dazu bestimmt, eventuelle Wegunterschiede zwischen Anker und Ventilglied auszugleichen und somit die Möglichkeit zu bieten, höhere Toleranzen bei der Fertigung des Magnetventils oder verschiedene Temperacurausdehnungen der Einzelteile zuzulassen und dennoch eine hohe Schließkraft bereitzustellen.
Bei schnellschaltenden Magnetventilen ergibt sich das Problem des Prellens des Ventilglieds nach dem Ventilschließen. Wird ein solches Magnetventil bei Kraftstoffeinspritzpumpen eingesetzt, so resultieren aus dem Wiederöffnen des Ventilglieds infolge seines Prellens unzulässig große Mengenstreuungen der eingespritzten Kraftstoffmenge. Zwar kann das Ventilprellen auch durch die durch den Stand der Technik bekannte Maßnahme der elastischen Kopplung zwischen Anker und Ventilglied gemildert werden, indem im Moment des Anliegens des Ventilgliedes auf seinem Ventilsitz eine gleichbleibende Schiießkraft zur Wirkung kommt, doch ist ein solches Ventil noch verbesserungsbedürftig. Insbesondere kann es bei diesem Ventil auch zu Schwingbewegungen der Koppelfeder kommen.
Vorteile der Erfindung
Das Magnetventil mit den kennzeichnenden Merkmaien des Patentanspruchs 1 hat demgegenüber den Vorteil, daß der Zusammendrückvorgang der Koppelfeder nach Abheben des Stützteils von seinem Anschlag durch den Bund gedämpft erfolgt, so daß die Krafterhöhung in
Schließrichtung unmittelbar nach Auftreffen der Dichtfläche des Ventilgliedes auf dem Ventilsitz verzögert erfolgt und entsprechend die Prellneigung des Ventiischließgliedes weiter verringert wird.
Das Ventilglied hat bei der Öffnungsbewegung eine kurze Flugzeit, weil der Anker und das Koppelglied vor der Mitnahme des Ventilteils vorbeschleunigt wurden. Dadurch ist der Einfluß von Strömungskräften am Ventilsitz auf die Bewegung des Ventilglieds klein und damit sind auch die Mengenstreuungen des eingespritzten Kraftstoffs klein. Durch die in den nachfolgenden Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Patentanspruch 1 angegebenen Magnetventils dargestellt. Eine besonders vorteilhafte Ausgestaltung ist mit der von Patentanspruch 2 gegeben, bei der in einfacher Weise das Stützteil durch den Bund am Ventilglied gebildet wird. In vorteilhafter Weise ist damit das Ventilglied in Offnungsrichtung starr mit dem Koppelglied gekoppelt, so daß unter Einwirkung der Öffnungskraft ein sicheres Wiederöffnen des Ventils erzielt wird. In vorteilhafter Weise kann gemäß Ausgestaltung nach Anspruch 4 der Fluidteil vom Elektromagnetteil getrennt werden, so daß das Fluid die Funktionsfähigkeit des Elektromagneten nicht beeinflußt. Diese Trennung erfolgt vorteilhafterweise durch die Ausgestaltung gemäß Anspruch 6.
Beschreibung
Die Erfindung ist anhand der Figur, die ein Ausführungsbeispiel darstellt, näher erläutert. Die Figur zeigt das Magnetventil im Längsschnitt. Dieses weist ein zweiteiliges Ventilgehäuse 1 auf, bestehend aus einem metallischen Ventilblock 2 und einer daraufgesetzten Kappe 3. Die Kappe überdeckt eine Ausnehmung 4 in der Stirnseite des Ventilblocks 2, die mit einem Innengewinde 5 versehen ist und von der axial eine Führungsbohrung 6 durch den Ventilblock führt. Dabei ist diese Führungsbohrung 6 als Stufenbohrung ausgeführt mit einem Stufenbohrungsteil 8 von reduziertem Durchmesser, der am Übergang zur Führungsbohrung 6 eine konische Schulter aufweist und der- einen Ventilsitz 9 bildet. Der Austritt des Stufenbohrungsteils 8 aus dem Ventilblock 6 mündet in einen Auffangraum 10, der in einem unteren, mit dem Ventilblock 6 dicht verbundenen Deckel 11 gebildet ist, von welchem ein Leckanschluß 12 abführt. Der Auffangraum 10 ist über eine parallel zur Führungsbohrung 6 liegende Ausgleichsbohrung 14 mit der Ausnehmung 5 verbunden. In die Führungsbohrung 6 mündet über eine erste Ringnut 16 in der Fuhrungsbohrungswand auf der zur Ausnehmung 4 liegenden Seite des ringförmigen Ventilsitzes 9 hin eine Fluidleitung 17, die z. B. von einem Pumpenarbeitsraum einer Kraftstoffeinspritzpumpe herführen kann. Axial darunter im Stufenbohrungsteil 8 ist eine zweite Ringnut 18 vorgesehen, von der der weiterführende Teil der Fluidleitung 17 abführt.
In der Führungsbohrung 6 ist ein Ventilschließglied 20 dicht verschiebbar, das hohlzylindrisch ausgeführt ist und an seinem Umfang eine Ringschulter 21 mit einer Dichtfläche aufweist, die in dichter Anlage an den Ventilsitz 9 bringbar ist. Das hohlzvlindrische Ventilglied ist zur Seite des Auf fangraumes hin offen und weist zur Seite der Ausnehmung hin einen nach innen ragenden Bund 23 auf, der durch eine Koppelfeder 24 auf den Kopf 25 einer von der Seite des Auffangraumes 10 her in das Ventilschließglied 20 eingebrachten Schraube 26 gedrückt wird. Die Schraube 26 ist in ein Koppelglied 23 axial eingeschraubt, das im ausnehmungsseitigen Teil der Führungsbohrung dichtgleitend geführt ist und mit seiner zum Ventilglied weisenden Stirnseite 29 innerhalb der Führungsbohrung 6 der Anlage eines Federtellers 30 der sich hier abstützenden Koppelfeder 24 dient. Über die Einschraubtiefe der Schraube 26 wird somit die Vorspannung der Koppelfeder definiert, mit der diese das Ventilglied 20 am Kopf 25 der Schraube hält.
Das Koppelglied ragt in die Ausnehmung 4 hinein und weist dort einen Dämpfungsbund 32 auf, der mit seiner zum Ventilglied weisenden Stirnfläche 33 in Anlage an die Stirnfläche 34 der Ausnehmung 4 bringbar ist. Das Koppelglied 28 ist mehrteilig ausgeführt und weist eine axiale, von der Seite der Ausnehmung her eintretende Gewindesackbohrung 36 auf, in die ein Anker 37 eingeschraubt ist und dabei den inneren Rand 38 einer Tellerfeder fest und dicht einspannt. Die Tellerfeder ist dabei zur Seite der Stirnfläche 34 der Ausnehmung 4 hin mit Dichtmaterial beschichtet. Statt einer Tellerfeder kann auch eine Federscheibe mit ausgestanzten Federarmen verwendet werden und es kann auf der dem Ventilglied zugewandten Seite der Feder oder der Scheibe eine Dichtscheibe oder Membran vorgesehen werden. Der äußere Rand der Dichtscheibe oder der beschichteten Tellerfeder liegt an einer Rundschnurdichtung 41 an, die in einer Ausnehmung 42 in der Stirnfläche 34 eingebettet ist. Eine in das Gewinde 5 der Ausnehmung eingeschraubte Ringschraube 44 greift dazu auf der der Rundschnurdichtung 41 abgewandten Seite des äußeren Randes 40, an.
In der Kappe ist koaxial zur Führungsbohrung 6 ein Elektromagnet 46 mit einer Spule 47 und einem Magnetkern 48 eingesetzt, der mit dem Anker 37 zusammenwirkt.
Die Tellerfeder 39 oder die Dichtscheibe bzw. Membran unterteilen die Ausnehmung 4 in einen magnetseitigen Raum 50 und einen ventilgliedseitigen Raum 51, der nun gegenüber dem magnetseitigen Raum dicht abgeschlossen ist, so daß dieser und der Auffangraum leckendes Fluid, z. B. Kraftstoff, aufnehmen kann, der über Leckanschluß 12 abgeführt werden kann. Damit wird der Elektromagnet frei von Kraftstoff gehalten, der unter Umständen korrosiv an den Metallteilen wirken kann und die Funktionstüchtigkeit des Elektromagneten beeinflussen könnte. Die Ausgleichsbohrung 14 gewährleistet die freie Beweglichkeit der Feder und des Koppelglieds mit Ventilglied 20. Die Stirnseite des Kerns 48 ist mit einer dünnen Metallschicht überzogen, so daß sich unabhängig von der an der Koerzitivfeidstärke eine kleine Resonanzkraft ergibt und eine robuste Anschlagfläche am Magnetkern erzielt wird.
Durch die Tellerfeder, die stärker ist als die Koppelfeder 24, wird das Ventilglied 20 in der gezeigten Schließstellung gehalten oder nach Abfall des Magneten in diese Schließstellung gebracht. Dabei ist das Ventilglied 20 geringfügig vom Kopf 25 abgehoben, so daß die Schließkraft der Tellerfeder 39 über die Koppelfedervorspannung auf das Schließglied 20 gelangt. Soll das Magnetventil geöffnet werden, wird die Wicklung 47 erregt und der Anker 37 demzufolge angezogen, entgegen der Kraft der Tellerfeder 39, die sich an der Ringschraube 44 abstützt. Bei diesem Vorgang kommt der 3und 23 des Schließgliedes 20 wieder in Anlage an den Kopf 25 und wird durch diesen zusammen mit dem Anker 37 und dem mit diesem starr verbundenen Koppelglied 38 mitgenommen. Die Schulter 21 des Ventilglieds hebt dann vom Sitz 9 ab und erlaubt über eine umfangsseitige Ausnehmung 53 am Ventilschließglied 20 zur Seite des Auffangraumes 10 hin eine Durchflußverbindung zwischen den Teilen der Fluidleitung 17. Das Ventilschließglied ist dabei im wesentlichen druckausgeglichen. Soll das Magnetventil in Schließstellung gebracht werden, so wird die Erregung des Elektromagneten unterbrochen, und es führt die Tellerfeder 39 die Schließbewegung durch. Dabei bewegt sich zunächst das Koppelglied 28 mit der Tellerfeder in Schließrichtung zusammen mit dem Ventilglied 20, bis dieses in Anlage auf den Ventilsitz 9 kommt. In der Folgebewegung hebt der Bund 23 vom Kopf 25 ab, so daß die Koppelfeder komprimiert wird und der Schließkraftanstieg, der auf das Schließglied wirkt, durch .die Erhöhung der Vorspannung der Koppelfeder bestimmt ist. In diesem Bereich nähert sich der Dämpfungsbund 32 der Stirnseite 34, so daß die Bewegung in Schließrichtung des Koppelglieds 25 gedämpft verlangsamt wird und die Schließkraft entsprechend gedämpft erhöht wird, bis ihr Endwert bei Anlage des Dämpfungsbundes 32 an der Stirnseite 34 erreicht ist. Damit wird ein sicheres Schließen des Magnetventils erreicht und vermieden, daß das Ventilglied bei stoßartiger Kraftbeaufschlagung und damit Rückprallen vom Ventilsitz während des Schiießvorgangs kurzzeitig wieder öffnet. Die bewegte Masse wird durch die elastische Kopplung zwischen Koppelglied 23 und Schließglied 20 kleingehalten, und es kann aus diesem Grund auch die Dämpfungsfläche am Dämpfungsbund 32 in genügender Größe ausgebildet werden. Die Dämpfung wird verbessert durch die Tatsache, daß in dem ventilgliedseitigen Raum eine Kraftstoffüllung vorliegt, die der Verdrängung durch den Dämpfungsbund 32 einen größeren Widerstand als z. B. Luft entgegensetzt. Bei dem ausgeführten Beispiel dienten als Schließkraft die Rückstellkraft der Tellerfeder 39. Ausführungsbeispiele sind möglich, wenn als Schließkraft die Magnetkraft entgegen einer in Offnungsrichtung wirkenden Öffnungsfeder verwendet wird. Das Prinzip der Erfindung ist anhand des Ausführungsbeispiels gezeigt und kann in verschiedenen Ausführungsformen verwirklicht werden. So können Schließfeder oder Öffnungsfeder und Magnet auch an verschiedenen Seiten des Ventilschließgliedes zum Angriff kommen bei entsprechender Variation des konstruktiven Aufbaus. Eine umgekehrt eingespannte Tellerfeder kann z. B. in Offnungsrichtung wirken und ein umgedreht angeordneter Elektromagnet mit axialer Durchführung einer Betätigungsstange in Schließrichtung wirken.

Claims

Ansprüche
1. Magnetventil zur Steuerung der Durchflußöffnung einer Verbindungsleitung (17), die insbesondere als Fluid Kraftstoff führt, mit einem Ventilgehäuse (1) und einer darin angeordneten Führungsbohrung (6, 8), in der ein von einem Anker (37) des Elektromagneten (46) des Magnetventils betätigbares Ventilglied (20) verschiebbar gelagert ist, daß mit einer an einer Schulter (21) vorgesehenen Dichtfläche in Anlage an einem die Durchflußöffnung umgebenden Ventilsitz (9) unter Einwirkung einer Schließkraft bringbar ist und unter Einwirkung einer Öffnungskraft wieder davon abhebbar ist, wobei die Schließkraft mit dem Ventilglied über ein Koppelglied (23) gekoppelt ist, das eine Koppelfeder (24) aufweist, die sich einerseits an dem Koppelglied und andererseits an einem relativ zum Koppelglied und zusammen mit dem Ventilglied beweglichen Stützteil (23) abstützt, das durch die Koppelfeder in Anlage an einen Anschlag (25. am Koppelglied bringbar und bei in Schließstellung befindlichem Ventilglied (20) davon abgehoben ist, dadurch gekennzeichnet, daß das Koppelglied (28) in einer Führungsbohrung (6) geführt ist und einen Dämpfungsbund (32) aufweist, dessen in Richtung Ventilsitz weisende Stirnfläche (33) in Anlage an einer zu dieser parallelen Anlagefläche (34) am Ventilgehäuse (2) bringbar ist.
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß das Ventilglied (20) hohlzylindrisch ausgebildet ist mit einer kegelförmig verlaufenden Schulter (21) am Umfang und einem nach innen ragenden Bund (23), an dem auf der einen Seite die Koppelfeder (24) und auf der anderen Seite der Anschlag in Form eines Kopfes (25) am Ende eines durch die vom Bund umgebene Öffnung des Ventilgliedes (20) geführten, mit dem Koppelglied (28) verbundenen Schaftes zur Anlage bringbar ist.
3. Magnetventil nach Anspruch 2, dadurch gekennzeichnet, daß der Schaft mit dem Koppelglied (28) verschraubt ist.
4. Magnetventil nach den Ansprüchen 1 - 3, dadurch gekennzeichnet, daß die Führungsbohrung (6) der Führung des Ventilglieds (20) und des Koppelglieds (28) dient und in Räume (51, 10) mündet, die über eine Ausgleichsbohrung (14) miteinander verbunden sind und gegenüber dem Elektromagneten (46) abgedichtet sind.
5. Magnetventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Schließkraft von einer vorgespannten Feder (39)erzeugt wird, entgegen der als Öffnungskraft die Kraft des Elektromagneten bei seiner Erregung wirkt und das Koppelglied (23) Teil des Ankers (37) des Elektromagneten ist.
6. Magnetventil nach Anspruch 5, dadurch gekennzeichnet, daß die Feder eine den einen auf der Seite des Elektromagneten angeordneten Raum (51), in dem die Führungsbohrung (6) mündet, dicht verschließende Tellerfeder ist, die mittig zwischen einem als Anker dienenden Teil (37) und dem Koppelglied (38) innen eingespannt ist und am äußeren Rand (40) zwischen einem Stützteil (44) und einer Dichtung (41) eingespannt ist.
7. Magnetventil nach Anspruch 5, dadurch gekennzeichnet, daß der eine auf der Seite des Elektromagneten angeordnete Raum (51) zum Elektromagneten hin durch eine Dichtscheibe oder eine Membran verschlossen ist.
8. Magnetventil nach einem der vorstehenden Ansprüche 1 - 4, dadurch gekennzeichnet, daß die Schließkraft durch Erregung des Elektromagneten erzeugt wird, der das Schließglied (20) gegen eine in Öffnungsrichtung wirkende Feder bewegt.
PCT/DE1991/000436 1990-06-30 1991-05-25 Magnetventil WO1992000479A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP91909626A EP0537175B1 (de) 1990-06-30 1991-05-25 Magnetventil
JP3509067A JP3004354B2 (ja) 1990-06-30 1991-05-25 電磁弁
US07/966,045 US5370355A (en) 1990-06-30 1991-05-25 Magnetic valve
DE59106170T DE59106170D1 (de) 1990-06-30 1991-05-25 Magnetventil.
RU9192016498A RU2068521C1 (ru) 1990-06-30 1991-05-25 Электромагнитный клапан

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4020951A DE4020951A1 (de) 1990-06-30 1990-06-30 Magnetventil
DEP4020951.2 1990-06-30

Publications (1)

Publication Number Publication Date
WO1992000479A1 true WO1992000479A1 (de) 1992-01-09

Family

ID=6409458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000436 WO1992000479A1 (de) 1990-06-30 1991-05-25 Magnetventil

Country Status (8)

Country Link
US (1) US5370355A (de)
EP (1) EP0537175B1 (de)
JP (1) JP3004354B2 (de)
CZ (1) CZ280232B6 (de)
DE (2) DE4020951A1 (de)
ES (1) ES2077229T3 (de)
RU (1) RU2068521C1 (de)
WO (1) WO1992000479A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2324336A (en) * 1997-04-18 1998-10-21 Bosch Gmbh Robert I.c. engine fuel-injection unit with electromagnetic control valve

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232196A (en) * 1992-03-31 1993-08-03 Ldi Pneutronics Corporation Proportional solenoid controlled valve
JPH11508345A (ja) * 1995-06-23 1999-07-21 ディーゼル テクノロジー カンパニー 燃料ポンプおよびその作動方法
IT1276503B1 (it) * 1995-07-14 1997-10-31 Elasis Sistema Ricerca Fiat Perfezionamenti ad una valvola di dosaggio a comando elettromagnetico, per un iniettore di combustibile.
JP3701367B2 (ja) * 1996-02-22 2005-09-28 Smc株式会社 ポペット弁
US5961097A (en) * 1996-12-17 1999-10-05 Caterpillar Inc. Electromagnetically actuated valve with thermal compensation
DE19705431A1 (de) * 1997-02-13 1998-08-20 Bosch Gmbh Robert Rückhaltesystem
EP0978931B1 (de) * 1998-02-23 2008-08-06 Mitsubishi Denki Kabushiki Kaisha Steuer ventil
DE19820341C2 (de) 1998-05-07 2000-04-06 Daimler Chrysler Ag Betätigungsvorrichtung für eine Hochdruck-Einspritzdüse für flüssige Einspritzmedien
US6109541A (en) * 1998-07-23 2000-08-29 Caterpillar Inc. Apparatus for reducing the bounce of a poppet valve
DE19839522C1 (de) * 1998-08-29 1999-12-30 Daimler Chrysler Ag Für eine Brennkraftmaschine vorgesehene Steckpumpe mit integriertem Magnetventil
DE19923422C2 (de) * 1999-05-21 2003-05-08 Bosch Gmbh Robert Elektronisches Einspritzsystem
US6250329B1 (en) * 1999-08-30 2001-06-26 Ardishir Rashidi Snap open pressure relief valve
DE10016599A1 (de) * 1999-11-16 2001-05-17 Continental Teves Ag & Co Ohg Elektromagnetventil
WO2001036242A1 (de) 1999-11-16 2001-05-25 Continental Teves Ag & Co. Ohg Elektromagnetventil
DE10112661A1 (de) * 2001-03-16 2002-09-19 Bosch Gmbh Robert Magnetventil
DE10148219B4 (de) * 2001-09-28 2007-05-16 Bosch Gmbh Robert Verfahren, Computerprogram und Steuer-und/oder Regelgerät für eine Brennkraftmaschine, sowie Brennkraftmaschine
DE10308482B4 (de) * 2002-02-26 2006-11-09 Kendrion Binder Magnete Gmbh Elektromagnetventil
DE10209527A1 (de) 2002-03-04 2003-09-25 Bosch Gmbh Robert Einrichtung zur druckmodulierten Formung des Einspritzverlaufes
JP3843915B2 (ja) * 2002-08-29 2006-11-08 株式会社ノーリツ 燃焼装置
DE102008030453A1 (de) * 2008-06-26 2010-01-14 Hydac Electronic Gmbh Betätigungsvorrichtung
ES2647298T3 (es) 2014-09-19 2017-12-20 Danfoss A/S Válvula solenoide
DE102022128756A1 (de) 2022-10-28 2024-05-08 Norgren Gmbh Elektromechanisches Ventil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2051166A1 (de) * 1970-02-09 1971-08-19 Magdeburger Armaturenwerke Dampfungsvorrichtung insbesondere fur Kegel indirekt gesteuerter Magnetven
DE2262247A1 (de) * 1972-12-20 1974-06-27 Teves Gmbh Alfred Elektromagnetisches ventil
US3995813A (en) * 1974-09-13 1976-12-07 Bart Hans U Piezoelectric fuel injector valve
DE2739085A1 (de) * 1977-08-30 1979-03-08 Technologieforschung Gmbh Magnetventil
US4183000A (en) * 1976-11-30 1980-01-08 Saunier Duval Electromagnetic safety mechanism
DE3406199A1 (de) * 1983-02-26 1984-09-06 Lucas Industries P.L.C., Birmingham, West Midlands Elektromagnetventil fuer fluide
US4484727A (en) * 1981-11-11 1984-11-27 Lucas Industries Public Limited Company Fluid control valves
EP0128124A2 (de) * 1984-04-10 1984-12-12 WEBER S.r.l. Elektromagnetisch gesteuertes Drosselklappenumgehungsventil einer Gemischaufbereitungsvorrichtung für eine Brennkraftmaschine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2343806A (en) * 1941-08-20 1944-03-07 Square D Co Valve
US2697581A (en) * 1949-02-14 1954-12-21 Gen Controls Co Electromagnetically operated valve with adjustable opening
US2650617A (en) * 1950-09-07 1953-09-01 Missouri Automatic Contr Corp Electromagnetic valve
US2827923A (en) * 1954-08-30 1958-03-25 N G N Electrical Ltd Magnetically operated valves
US2980139A (en) * 1956-10-10 1961-04-18 Westinghouse Electric Corp Two-way valve
US3575199A (en) * 1968-11-04 1971-04-20 Reef Baker Corp Automatic condensate valve
IT947485B (it) * 1972-02-10 1973-05-21 Sirai S R L Soc Italiana Regol Valvola in particolare ad aziona mento elettromagnetico
JPS5847338Y2 (ja) * 1974-07-27 1983-10-28 株式会社ナブコ 電磁式流体圧力制御弁
DE3928613A1 (de) * 1989-08-30 1991-03-07 Bosch Gmbh Robert Elektromagnetisches schaltventil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2051166A1 (de) * 1970-02-09 1971-08-19 Magdeburger Armaturenwerke Dampfungsvorrichtung insbesondere fur Kegel indirekt gesteuerter Magnetven
DE2262247A1 (de) * 1972-12-20 1974-06-27 Teves Gmbh Alfred Elektromagnetisches ventil
US3995813A (en) * 1974-09-13 1976-12-07 Bart Hans U Piezoelectric fuel injector valve
US4183000A (en) * 1976-11-30 1980-01-08 Saunier Duval Electromagnetic safety mechanism
DE2739085A1 (de) * 1977-08-30 1979-03-08 Technologieforschung Gmbh Magnetventil
US4484727A (en) * 1981-11-11 1984-11-27 Lucas Industries Public Limited Company Fluid control valves
DE3406199A1 (de) * 1983-02-26 1984-09-06 Lucas Industries P.L.C., Birmingham, West Midlands Elektromagnetventil fuer fluide
EP0128124A2 (de) * 1984-04-10 1984-12-12 WEBER S.r.l. Elektromagnetisch gesteuertes Drosselklappenumgehungsventil einer Gemischaufbereitungsvorrichtung für eine Brennkraftmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2324336A (en) * 1997-04-18 1998-10-21 Bosch Gmbh Robert I.c. engine fuel-injection unit with electromagnetic control valve
GB2324336B (en) * 1997-04-18 1999-04-07 Bosch Gmbh Robert Fuel-injection unit for internal combustion engines

Also Published As

Publication number Publication date
US5370355A (en) 1994-12-06
JP3004354B2 (ja) 2000-01-31
EP0537175A1 (de) 1993-04-21
DE4020951A1 (de) 1992-01-02
ES2077229T3 (es) 1995-11-16
CZ280232B6 (cs) 1995-12-13
DE59106170D1 (de) 1995-09-07
CS197291A3 (en) 1992-02-19
RU2068521C1 (ru) 1996-10-27
JPH05508209A (ja) 1993-11-18
EP0537175B1 (de) 1995-08-02

Similar Documents

Publication Publication Date Title
EP0537175B1 (de) Magnetventil
EP0195261B1 (de) Magnetventil, insbesondere Kraftstoffmengensteuerventil
EP0897469B1 (de) Magnetventil
EP1259729B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
DE19757475C2 (de) Servogesteuertes Magnetventil
DE3602956A1 (de) Elektromagnetisch betaetigbares kraftstoffeinspritzventil
DE3938136A1 (de) Elektromagnetisch betaetigbares ventil
DE10100422A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
EP1315900B1 (de) Brennstoffeinspritzventil
EP0050711A1 (de) Elektrisch ansteuerbare Ventileinrichtung
EP2307776A1 (de) Luftspaltbegrenzung bei magnetventil
EP0182109B1 (de) Magnetventil zur Fluidsteuerung
DE10131199A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
DE3500449C2 (de)
EP1339969A1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
DE102007011047A1 (de) Magnetventilinjektor
AT412807B (de) Elektromagnetisch betätigtes gasventil
EP1570170A1 (de) Brennstoffeinspritzventil
DE10256903A1 (de) Hockdruckkraftstoffzuführsystem
EP0793004B1 (de) Elektromagnetische Ventilbetätigung
DE19936943A1 (de) Brennstoffeinspritzventil
DE10113008A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
DE3536828A1 (de) Kraftstoffeinspritzvorrichtung mit einem elektromagnetischen steuerventil zwischen einspritzpumpe und einspritzduese
DE102016202954A1 (de) Elektromagnetisch ansteuerbares Saugventil und Hochdruckpumpe
DE3522992A1 (de) Kraftstoffeinspritzventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991909626

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991909626

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991909626

Country of ref document: EP